This disclosure relates generally to process filtration systems, and more particularly to systems utilizing tangential flow filtration.
Filtration is typically performed to separate, clarify, modify and/or concentrate a fluid solution, mixture or suspension. In the biotechnology and pharmaceutical industries, filtration is vital for the successful production, processing, and testing of new drugs, diagnostics and other biological products. For example, in the process of manufacturing biologicals, using animal or microbial cell culture, filtration is done for clarification, selective removal and concentration of certain constituents from the culture media or to modify the media prior to further processing. Filtration may also be used to enhance productivity by maintaining a culture in perfusion at high cell concentration.
Biologics manufacturing processes have advanced through substantial process intensification. Both eukaryotic and microbial cell culture to produce recombinant proteins, virus-like particles (VLP), gene therapy particles, and vaccines now include cell growth techniques that can achieve 100e6 cells/ml or higher. This is achieved using cell retention devices that remove metabolic waste products and refresh the culture with additional nutrients. One of the most common means of cell retention is to perfuse a bioreactor culture using hollow fiber filtration using alternating tangential flow (ATF). Both commercial and development scale processes use a device that controls a diaphragm pump to perform ATF through a hollow fiber filter (see, e.g., U.S. Pat. No. 6,544,424).
Downstream purification of viral vectors is often conducted in batch mode. Batch mode purification may result in lower productivity, variation in product quality, high equipment footprint, and higher production cost. While multicolumn based continuous chromatographic purification of viral vectors has been reported, this method may involve complex valve switching and high chances of process failure. These multi-column based methods also often require expensive resins which increases cost of production.
Precipitation based purification is less expensive than chromatographic purification. Such purification has been previously reported for batch mode, which has all of the previously noted disadvantages.
This disclosure describes the use of precipitation for continuous downstream purification of viral vectors. This method is more robust and less expensive than multi-column chromatographic processes.
The present disclosure, in its various aspects, is directed generally to methods of preparation of viral vectors, and related devices and systems. Embodiments according to the present disclosure, including those described herein, may increase particularly the effectiveness and efficiency of processes used for the preparation and purification of viral vectors.
In an aspect, a method of preparation of viral vectors may comprise flowing a solution comprising the viral vectors and an impurity through a system of hollow fiber filters into a feed channel of a tangential flow filtration apparatus. The solution may comprise a salt in an amount sufficient to cause precipitation of the viral vector but not of the impurity. The resulting retentate from the system of hollow fiber filters may be resolubilized. The viral vectors may pass into a permeate after tangential flow filtration.
In various embodiments described here or otherwise, the salt may be calcium phosphate. The step of resolubilizing may comprise adding EDTA saline. The tangential flow filtration may comprise alternating tangential flow filtration or tangential flow depth filtration. The method may comprise flowing the solution through a vessel wherein (a) the vessel mixes the salt into the solution and (b) the vessel is characterized by a narrow distribution of residence times.
In an aspect, a method of purifying viral vectors may comprise flowing a solution comprising the viral vector and an impurity into a feed channel of a tangential flow filtration apparatus. The solution may comprise a salt in an amount sufficient to cause precipitation of the impurity but not of the viral vector. The precipitated impurity may not pass into a permeate while the viral vector may pass into the permeate.
In various embodiments, the retentate may be discarded. The salt may comprise a quaternary ammonium compound. The salt may comprise cetyltrimethylammonium bromide (CTAB). The method may comprise flowing the solution through a vessel wherein (a) the vessel may mix the salt into the solution and (b) the vessel may be characterized by a narrow distribution of residence times. The vessel may be a coiled flow inversion reactor or a stirred tank reactor. The tangential flow filtration apparatus may be an alternating tangential flow (ATF) filtration or tangential flow depth filtration apparatus.
In an aspect, a method of preparation of a viral vector may include flowing a solution comprising the viral vector and an impurity through a first filter comprising a first retentate channel and a first permeate channel. A retentate may be flowed from the first retentate channel of the first filter into a second retentate channel of a tangential flow filtration filter. The retentate may be resolubilized from the first retentate channel of the first filter. The solution may comprise a salt in an amount sufficient to cause substantial precipitation of the viral vector but not of the impurity. The viral vector passes into a second permeate channel of the tangential flow filter.
In various embodiments, the salt may be calcium phosphate. Resolubilizing may further comprise adding EDTA saline to the retentate. The tangential flow filter may comprise an alternating tangential flow (ATF) filter or a tangential flow depth filter. The solution may be flowed through a vessel wherein (a) the vessel mixes the salt into the solution, (b) the vessel is characterized by a narrow distribution of residence times, and (c) the solution is flowed from the vessel towards the first filter. A second filter may be included. The second filter may comprise a third retentate channel in fluid communication with the first retentate channel. The second filter may comprise a third permeate channel in fluid communication with the first retentate channel. A first mixer may be upstream of the first retentate channel. A second mixer may be upstream of the third retentate channel. A buffer may be flowed into the second mixer. The first filter and the second filter may each comprise a flat-sheet cassette, a spiral wound fiber filter, or a hollow fiber filter
In an aspect, a method of concentrating a viral vector may include flowing a solution comprising the viral vector and an impurity into a first retentate channel of a hollow fiber filter. A retentate may be flowed from the first retentate channel of the hollow fiber filter into a second retentate channel of a tangential flow filter. The solution may comprise a salt in an amount sufficient to cause substantial precipitation of the viral vector but not of the impurity. The substantially precipitated impurity may be retained within a second retentate channel of the tangential flow filter. The viral vector may be passed into a permeate channel of the tangential flow filter.
In various embodiments, the salt may be calcium phosphate. The retentate may be resolubilized from the first retentate channel of the first hollow fiber filter by adding EDTA saline to the retentate. The tangential flow filter may comprise an alternating tangential flow (ATF) filter or a tangential flow filter. The solution may be flowed through a vessel wherein (a) the vessel mixes the salt into the solution, (b) the vessel is characterized by a narrow distribution of residence times, and (c) the solution is flowed from the vessel towards the hollow fiber filter.
In an aspect, a method of purifying a viral vector may include flowing a solution comprising the viral vector and an impurity into a feed channel of a tangential flow filter. The solution may comprise a salt in an amount sufficient to cause substantial precipitation of the impurity but not of the viral vector. The substantially precipitated impurity may not pass into a permeate of the tangential flow filter. The viral vector may pass into the permeate of the tangential flow filtration apparatus.
In various embodiments, flowing the solution may comprise the substantially precipitated impurity from the container to a waste. The salt may comprise a quaternary ammonium compound. The salt may comprise cetyltrimethylammonium bromide (CTAB). The solution may be flowed through a vessel wherein (a) the vessel mixes the salt into the solution, (b) the vessel is characterized by a narrow distribution of residence times, and (c) the solution is flowed from the vessel to the container. The vessel may be a coiled flow inversion reactor or a stirred tank reactor. The tangential flow filter may be an alternating tangential flow (ATF) filter or tangential flow filter.
In precipitation based continuous purification of viral vectors, a reactor and filtration system are used. The reactor may be a continuous stirred tank reactor (CSTR) or a coiled coil reactor (CCR). The filtration system may be operated as an alternating tangential flow (ATF) filter, a tangential flow filter (TFF), or a tangential flow depth filter (TFDF). The method may be used to (i) purify viral vectors, (ii) concentrate viral vectors, or (iii) removing impurities from a viral vector feed. Exemplary filters may include hollow fiber filters having, e.g., pore sizes ranging from about 1 kda to about 15 μm for TFDF operation or larger pore sizes for a TFDF filter, operated in one or both TFF or ATF mode. In various embodiments described herein, a TFF operating in ATF mode may have less fouling (compared to non-ATF) due to changes in flow direction within the retentate channel along the filter. This may increase filter performance. In various embodiments described herein, TFDF may allow for faster flow rate but it may have lower filtration capacity than TFF or ATF.
In certain embodiments, solutions are mixed and the resulting material flows through the system via gravity, induced pressure (e.g., a mag-lev, peristaltic or diaphragm/piston pump), or other forces. The material moves through the system at a rate dependent on precipitation kinetics of either the product or the impurities present. Once material arrives at the filtration system containing an ATF, TFF, TFDF, or the like, a pressure system impels the material through the filtration system. In some embodiments, the pressure system may include a diaphragm pump.
In certain embodiments, the likely impurities may consist of host cell proteins and nutrients used in the feed medium.
In certain embodiments, the system contains a reactor, e.g., a coiled coil reactor, i.e., a coiled flow inversion reactor, or a continuous stirred tank reactor. Without wishing to be bound by any theory, it is believed that a coiled flow inversion reactor acts to enhance radial mixing, creating a narrow residence time distribution. The use of a coiled coil reactor or a continuous stirred tank reactor may depend on precipitation kinetics. In some embodiments, the mixed material would flow into a series of static mixers and hollow fiber filters in order to remove impurities. The membrane pore size may vary and may depend on the size of the viral vector and precipitates present in the system. Waste is removed from the system and buffer added while the material is flowing through the series of static mixers and hollow fiber filters. The resulting retentate of such a system contains the precipitate, which is resolubilized before flowing through a filtration system. Portions of the filtration system may comprise ATF, TFF, or TFDF operation and may include a hollow fiber, flat sheet cassette filter, or spiral wound fiber filter.
In certain embodiments, the system contains a reactor, e.g., a coiled coil reactor, i.e., a coiled flow inversion reactor, or a continuous stirred tank reactor. A viral vector is precipitated in such a reactor, and the resulting mixture flowed through a hollow fiber filter. The resulting retentate contains the precipitate and may be resolublized to be flowed through a filtration system. Portions of the filtration system may comprise ATF, TFF, or TFDF operation and may include a hollow fiber, flat sheet cassette filter, or spiral wound fiber filter.
In certain embodiments, the system contains a reactor, e.g., a coiled coil reactor, i.e., a coiled flow inversion reactor, or a continuous stirred tank reactor. A solution containing impurities is mixed in said reactor, precipitating the impurities. The resulting mixture has the precipitated impurities removed from the system and the resulting solution flowed through a filtration system. Portions of the filtration system may comprise ATF, TFF, or TFDF operation and may include a hollow fiber, flat sheet cassette filter, or spiral wound fiber filter.
In certain embodiments, the system is used for proteins, nanoparticles, and viruses (e.g., AAV, lentivirus; virus-like particles, microparticles, microcarriers, microspheres, nanoparticles, and the like).
In certain embodiments, the viral vector is precipitated. Without wishing to be bound by any theory, precipitating viral vectors is believed to allow for the removal of the viral vector from the solution via filtration, with the precipitated viral vector in the retentate. This method is used for purification of viral vectors, concentration of viral vectors, or similar processes.
In some embodiments, impurities are precipitated. The precipitated impurities are then removed from the mixture, and the resulting solution flowed through a filtration system.
In some embodiments, an impure viral vector is mixed with a precipitating agent (i.e., calcium phosphate, ammonium sulfate) within a bioreactor, specifically a coiled coil reactor or a continuous stirred tank reactor. The precipitating agent specifically precipitates the viral vector. The solution is flowed through a series of static mixers and hollow fiber filters. Without wishing to be bound by any theory, this series is used in order to increase both precipitation of the viral vectors and removal of those viral vectors from the system. The retentate containing the precipitate is collected from the filters and a solution (i.e., 0.1 M EDTA saline) added in order to resolubilize the viral vectors. The resolubilized solution is filtered in order to produce pure viral vectors.
In some embodiments, a dilute viral vector is mixed with a precipitating agent (i.e., calcium phosphate) within a reactor, specifically a coiled coil reactor or a continuous stirred tank reactor. The precipitating agent specifically precipitates the viral vector. The solution is flowed through a hollow fiber filter. The resulting retentate contains the precipitated viral vector, and the resulting permeate is removed as waste. The precipitate is resolubilized and filtered, resulting in a concentrated viral vector.
In certain embodiments, an impure viral vector is mixed with a precipitating agent (i.e., cetyl trimethyl ammonium bromide (CTAB), domiphen bromide, or the like) within a reactor, specifically a coiled coil reactor or a continuous stirred tank reactor. The precipitating agent specifically precipitates the impurities in the solution. After mixing, the impurities are removed from the mixture, wherein the solution containing the viral vectors is filtered, resulting in purified product.
In certain embodiments, further downstream processing may be necessary to remove trace amounts of impurities. In some embodiments, the cell culture fluid should be clarified prior to use in the described system. If connected to a continuous clarification system, the upstream bioreactor can be directly integrated into the described system.
The foregoing disclosure has presented several exemplary embodiments of filtration systems according to the present disclosure. These embodiments are not intended to be limiting, and it will be readily appreciated by those of skill in the art that various additions or modifications may be made to the systems and methods described above without departing from the spirit and scope of the disclosure. Additionally, while the foregoing disclosure has focused primarily on alternating tangential flow filtration systems and their applications, it will be appreciated by those of skill in the art that the principles of the disclosure are applicable to other systems including hollow-fiber TFF and TFDF and other filtration systems.
This application claims the benefit of priority under 35 USC § 119 to U.S. Provisional Application Ser. No. 62/946,082, filed Dec. 10, 2019, which is incorporated by reference herein in its entirety and for all purposes.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/064150 | 12/10/2020 | WO |
Number | Date | Country | |
---|---|---|---|
62946082 | Dec 2019 | US |