The present invention provides systems, methods, and devices for electroporation-based therapies (EBTs). Embodiments provide patient-specific treatment protocols derived by the numerical modeling of 3D reconstructions of target tissue from images taken of the tissue, and optionally accounting for one or more of physical constraints and/or dynamic tissue properties. The present invention further relates to systems, methods, and devices for delivering bipolar electric pulses for irreversible electroporation without damage to tissue typically associated with an EBT-induced excessive charge delivered to the tissue and mitigate electrochemical effects that may distort the treatment region.
Irreversible electroporation (IRE) and other electroporation-based therapies (EBTs), such as electrogenetransfer or electrochemotherapy, may often be administered in a minimally invasive fashion. There are, however, several considerations that may lead to an increase in the difficulty of administering such treatments. This includes typical applications where deep targeted regions are treated by placing needle or other electrodes deep into the tissue, where one can no longer directly visualize the affected area. There is some evidence that changes in the tissue's permeability, and therefore also its electrical conductivity, allow one to visualize and monitor affected regions in real-time. These changes are most pronounced in homogeneous and image-dense tissues, such as hyperechoic ultrasound tissues, where increased permeability decreases the electroporated echogenicity. However, many tumors and other tissues are far too heterogeneous or exhibit properties that do not allow for simple visualization of the electroporated areas. In addition, these changes for real-time imaging typically only designate electroporated regions, not necessarily those killed for IRE therapies.
In applying EBTs, ensuring adequate coverage of the targeted region (e.g., any mass or lesion or undesirable tissue to be affected, including margins beyond the lesion itself), while sparing healthy tissues is vital to therapeutic success. Due to the limitations inherent in treating deep tissues without exposing them, it is critical for practitioners to develop and implement treatment protocols capable of achieving their clinical objectives.
Furthermore, typical electrodes and pulsing parameters (number of pulses, pulse polarity, pulse length, repetition rate, pulse shape, applied voltage, electrode geometry and orientation, etc.) will have a large impact on the affected areas. Typical therapeutic geometries dictated by current electrode setups will be ellipsoidal in general shape. However, many tumors do not distinctly fit the shapes created by a single setup of an electrode. Therefore, successful implementation of EBTs typically requires a complex array of electrodes and pulse parameters arranged in a specific manner to ensure complete treatment of the targeted area while minimizing effects to healthy tissue and sparing vital structures. Such predictions of superimposing treatment regions for complex protocols can be cumbersome. Therefore, treatment planning techniques that aid or allow a practitioner to develop general treatment protocols for most clinical tumors are typically used to effectively capitalize on the great therapeutic potential for IRE and other EBTs.
Current treatment planning techniques from systems such as the NanoKnife® utilize interpolations and analytical techniques to aid practitioner treatment region predictions. The interpolation techniques provide the physician with diagrams of 3D numerical model solution predicted treatment areas from very specific settings, including an exact number of pulses, pulse length, voltage, and electrode setup (e.g., separation distance, exposure length, and diameter) with dimensions provided for the treatment areas in 2 planes and the general shape. The predicted treatment dimensions are taken from the experimental results of applying that specific set of conditions in experimental subjects, typically in healthy, homogeneous environments. It is from this diagram of expected region, that the physician would set up their electrodes the same way and use the same pulses and arrange multiple applications to the point where they anticipate they will have treated the entire volume.
There is room, however, for improvement in such systems. If the targeted volume is smaller than the dimensions in the diagram, the practitioner has no information about how much to change the physical setup (exposure length, separation distance, etc.), or pulse parameters (voltage, number of pulses, etc.) in order to prevent damaging the surrounding tissue. In another example, if the shape does not fit that of the diagram, the practitioner will not be able to adjust the protocol to minimize damage beyond the targeted margin while still treating the targeted area.
In another solution to facilitating practitioner treatment planning, software is provided that uses a lookup table of treatment dimensions or uses a calibrated analytical solution to mimic the shape of numerical simulations. The lookup table may be taken from a large compilation of simulations run at varying physical and pulse parameters, where dimensions of interest for predicted treatment regions are taken based on a calibrated electric field threshold found to represent the affected margin of interest observed in experiments on healthy tissue (IRE, reversible electroporation, no electroporation, thermal damage).
Although the lookup table would allow a practitioner to manipulate the above variables and receive real-time feedback on predicted dimensions, the geometry of the affected region is often more complex than can be summarized with a few dimensions. Therefore, analytical solutions for the shape of the electric field distribution have been developed and are the current state-of-the-art on the NanoKnife® system. These solutions are able to mimic the shape of the electric field distribution from typical numerical simulations. The value of electric field contour is then matched to that seen from the numerical solution so that they both respond to their physical and pulse conditions in approximately the same manner. A calibration can then be used to adjust the size, and therefore various electric field thresholds (IRE, reversible, no electroporation, thermal damage) depicted to provide predicted affected regions. The practitioner may then adjust the variables such as voltage and separation distance (currently the only two that account for changes in predicted margins in the NanoKnife® embodiment), and see how the predicted affected margins vary in real-time. This provides the practitioner a much better method to find and place an appropriate electrode array with variable voltages to treat the entire region. There is also an optimization autoset probes function that places the probes and sets the voltage based on the number of probes selected and three dimensions input for the targeted region (assuming it to be a perfect ellipsoid).
The current state-of-the-art provides a very basic, fundamental explanation to practitioners about predicted treatment regions. Application of the current techniques in real-life clinical and experimental scenarios in which EBTs will typically be used provides to the practitioner helpful but inflexible tools.
For example, the analytical embodiment is a simple cross-sectional view of predicted margins at the center of the electrodes. This means that it cannot account for the falloff of electric field distribution (and therefore affected margins) at the tips of the electrodes. Although use of this approach can mimic the shape and size of these regions in 2D, it is not possible to accurately depict 3D scenario shapes in detail. Further, the lookup table cannot easily provide an accurate 3D shape, nor can the analytical solution be adapted.
True electroporation applications will increase the conductivity of the affected regions, which will in turn change the size and shape of the electric field distribution. A comparison of the electric field distribution (A,C) and conductivity map (B,D) of two identical numerical models without (A,B) and with (C,D) changing conductivity is shown in
Tumors will often have different electrical and physical properties than their neighboring tissues or even from their native tissues of origin (e.g., cancerous astrocytes which may not behave the same as normal ones). In addition, surrounding tissues of different tissue types will also have different properties from each other (bone, muscle, fat, blood). These differences in electrical properties will alter the electric field distribution for a given application of EBTs. Because the electric field to which the tissue is exposed is the primary determinant in the effect on the cell, these changes will change the shape and size of the affected regions. Numerical simulations are capable of modeling the electric field distribution in such heterogeneous systems. However, the rigid analytical solutions cannot be adjusted to account for such differences, and therefore could not as accurately predict affected regions for the different environments in clinical cases. The analytical solution, e.g., could not predict the differences between a tumor situated adjacent to the skull, the quadriceps muscle, or the heart. Although lookup tables could theoretically be developed for the dimensions of the affected regions in a number of environments, the great variability between the anatomy of each patient, each specific tumor, and each exact tumor location relative to its environment is impractical and futile.
The current embodiment of the treatment planning software still leaves it up to the practitioner to select a desired number of probes, but provides no simple method of showing how the optimized distributions will be shaped if the user wants to directly compare using different numbers of probes for a given lesion. The current system therefore also does not select the optimal number of probes for the user, a question that may be difficult to answer for more complex electrode geometries.
Temperature changes associated with Joule-type resistive heating of the tissue will also affect local regions conductivity based on its temperature (typically increases by approximately 3%/° C.). This will also change the size and shape of the electric field distribution based on the parameters used; including the number of pulses, pulse length, and repetition rate for an entire protocol (more pulses of longer length with higher repetition rates will all increase the thermally-associated conductivity changes, increasing this variation). Because the current treatment planning tools are based on simulations from the electric field distribution of a single application of a pulse, these dynamic conductivity behaviors also cannot be taken into account. Something that does would have to be able to simulate the changes that occur as a result of thermal effects on conductivity.
The current state of the art does allow the practitioner to describe the size/shape of the lesion in very basic dimensional terms (length, width, depth). This shape is then superimposed to scale with the predicted treatment regions, allowing a practitioner to ensure appropriate distribution and coverage. Although we have already pointed out the insufficiencies in handling this third dimension, it should also be pointed out that the basic ellipsoidal shape assumed by this system is wholly inadequate at describing the complex, often irregular, asymmetric geometries that tumors may take in clinical settings. The practitioner is thus left currently with assessing treatment protocol adequacy in 2D terms.
What is needed is a technique and system (or a series of independent systems) that allows a practitioner to accurately plan and implement in real time patient-specific treatment protocols which are capable of accounting for dynamic tissue properties and which can be used with accuracy and reliability in the clinical or experimental setting for EBTs.
The numerous limitations inherent in the planning system described above provide great incentive for a new, better system capable of accounting for one or more of these issues. If EBTs are to be seen as an accurate, reliable therapeutic method, then treatment planning methods and packages should be developed that can more accurately predict treatment outcomes with these considerations taken into account in a patient-to-patient basis.
The primary limitation to the above-mentioned, state-of-the-art treatment planning system is its need to provide treatment predictions in real-time, where a practitioner would be capable of changing the voltage or geometry parameters of a treatment protocol and immediately see how that impacts the entire treatment region. However, as more complex tumor shapes, sizes, and environments are encountered, real-time evaluation of superimposed treatment regions is cumbersome at best and inadequate to develop reliable therapies. Therefore, a more advanced system that allows treatment planning in advance of applying the therapy would be ideal to handling these detailed procedures. This allows for the adaptation of numerical solutions to provide treatment regions.
Accordingly, embodiments of the invention provide treatment planning systems, methods, and devices for determining a patient-specific electroporation-based treatment protocol comprising: a) a module operably configured to receive and process information from medical images of a target structure to prepare a 3-D reconstruction model of the target structure; and b) a module operably configured to perform a numerical model analysis using as inputs in the analysis the 3-D reconstruction and information from one or more of physical constraints, tissue heterogeneities, dynamic effects of electropermeabilization, dynamic thermal effects, or effects resulting from multiple treatments; and c) a module operably configured to construct one or more electrical protocols defining a treatment region and treatment parameters for effectively treating the target structure.
Further included in embodiments of the invention are treatment planning systems for determining a patient-specific electroporation-based treatment protocol comprising: a) a processing module operably configured for performing the following stages: 1) receiving and processing information from medical images of a target structure and preparing a 3-D reconstruction model of the target structure; 2) performing a numerical model analysis using as inputs in the analysis the 3-D reconstruction and information from one or more of physical constraints, tissue heterogeneities, dynamic effects of electropermeabilization, dynamic thermal effects, or effects resulting from multiple treatments; and 3) constructing one or more protocols each providing a treatment region with parameters for electroporating the target structure; and b) a processor for executing the stages of the processing module.
Such treatment planning systems can comprise a processing module capable of performing one or more of the stages in real time.
Information from medical images to be analyzed in treatment systems according to embodiments of the invention can be extracted from one or an array of images obtained from pathologic specimens or one or more imaging modalities chosen from radiographs, tomograms, nuclear scintigraphic scans, CT, MRI, PET, or US. The information from one or more of these sources can be compiled to prepare a 3D reconstruction of the target area, which is represented by a surface or a solid volume. The treatment planning systems according to embodiments of the invention can have as a target structure a) a targeted region or mass; orb) a targeted region or mass with neighboring regions; or c) a 3D map of voxels to be treated as independent elements in the finite modeling software.
Preferred numerical model analysis for treatment systems of the invention comprise finite element modeling (FEM). Even more preferred as treatment planning systems, wherein the numerical model analysis involves accounting for physical constraints, tissue heterogeneities, dynamic effects of electropermeabilization, dynamic thermal effects, and multiple treatment effects.
Even further, self-optimization algorithms for constructing the treatment protocols can also be incorporated into the inventive methods, systems, and devices. For example, the treatment planning systems can comprise a self-optimization algorithm which is capable of repeatedly evaluating one or more of physical constraints, placement of electrodes, electric field distribution simulations, and evaluation of outcome success until one or more effective protocol is constructed. It can also generate a predicted treatment time that will aid the physician in determining the optimal protocol.
According to some embodiments of the invention, the treatment planning systems can involve automatically, interactively, or automatically and interactively with or without user input determining the treatment region and parameters for electroporating.
Such treatment planning systems can also be capable of constructing protocols for an initial patient treatment or retreatment with or without additional medical images.
Treatment systems according to embodiments of the invention can also be adapted to instruct an electrical waveform generator to perform the protocol.
Such systems can further comprise an electrical waveform generator in operable communication with the processing module and capable of receiving and executing the treatment protocol.
Instructions for implementing the treatment protocols can comprise specifying a number of bipolar pulses to be delivered, a length of pulse duration, and a length of any delay between pulses. Additionally, the generators of such treatment systems can be operably configured for delivering a bipolar pulse train.
Methods and devices incorporating one or more of the features of the treatment planning systems according to the invention are also considered embodiments.
In particular, treatment planning methods can comprise: a) receiving and processing information from medical images of a target structure and preparing a 3-D reconstruction model of the target structure; b) performing a numerical model analysis using as inputs in the analysis the 3-D reconstruction and information from one or more of physical constraints, tissue heterogeneities, dynamic effects of electropermeabilization, dynamic thermal effects, or effects resulting from multiple treatments; and c) constructing an electroporation protocol based on results of the analyzing; wherein the receiving, processing, analyzing, and constructing is performed in real time.
Other methods may comprise method steps for reducing adverse effects of irreversible electroporation of tissue comprising administering electrical pulses through electrodes to tissue in a manner which causes irreversible electroporation of the tissue but minimizes electrical charge build up on the electrodes, or minimizes charge delivered to the tissue, or both. Adverse effects to be avoided may include, to name a few, one or more of thermal damage of the tissue, deleterious electrochemical effects, or electrolysis.
Preferred methods according to the invention may comprise electrical pulses comprising a series of unipolar and bipolar pulses with a net charge of zero. More particularly, the net charge of zero can be achieved by a change in potential direction for each pulse, or a change in potential direction within each pulse.
Further, electrical pulses generated in the methods can together comprise a pulse protocol comprising a train of unipolar pulses followed by a train of unipolar pulses of opposite polarity, or a train of bipolar pulses, or simultaneous unipolar pulses of opposite polarity which are offset from one another by a desired amount, or a combination of protocols.
Electrical pulses used in the methods, systems, and devices of the invention can have a waveform which is square, triangular, trapezoidal, exponential decay, sawtooth, sinusoidal, or of alternating polarity, or comprise a combination of one or more waveforms.
Control systems for electroporation devices are also considered embodiments of the present invention. Such systems can be configured to comprise: a) a processor in operable communication with a control module; b) a control module executable by the processor and in operable communication with an electrical circuit, wherein the control module is operably configured for initiating switching of the circuit at a rate of between 10 ms to 1 ns; and c) an electrical circuit operably configured to enable delivery of a voltage to an electrode and switching of the voltage to a second electrode to cause reversing of the polarity of the electric potential between the two electrodes.
Similarly, electroporation system embodiments of the invention can comprise: a) an electroporation device capable of delivering a first unipolar electrical pulse; b) the electroporation device further capable of, or a second electroporation device capable of, delivering a second unipolar electrical pulse which is opposite in polarity to the first unipolar pulse; c) a processor in operable communication with a control module; d) a control module executable by the processor and in operable communication with the electroporation device(s), wherein the control module is operably configured for initiating delivery of the first unipolar electrical pulse at a time 1 and for initiating delivery of the second unipolar electrical pulse at time 2 offset from time 1 by 1 second to 1 nanosecond.
Electroporation devices can also be operably configured to enable delivery of an electrical pulse to a first electrode, switching of the pulse to a second electrode to cause reversing of the polarity of the electric potential between the two electrodes, and switching of the pulse back to the first electrode or to zero, wherein a cycle of switching is established which cycle is capable of being performed at a rate of between 10 milliseconds to 1 nanosecond.
Such devices, systems, and methods can be configured to provide for switching to occur between or within the electrical pulse. Devices, for example, can be configured such that the electrical pulses together comprise a pulse protocol comprising a train of unipolar pulses followed by a train of unipolar pulses of opposite polarity or a train of bipolar pulses.
Aspects of the invention include Aspect 1, a treatment planning system for determining a patient-specific electroporation-based treatment protocol comprising: a processing module operably configured for performing the following stages: receiving and processing information from medical images of a target structure and preparing a 3-D reconstruction model of the target structure; performing a numerical model analysis using as inputs in the analysis the 3-D reconstruction and information from one or more of physical constraints, tissue heterogeneities, dynamic effects of electropermeabilization, dynamic thermal effects, or effects resulting from multiple treatments; and constructing one or more protocols each providing a treatment region with parameters for electroporating the target structure; and a processor for executing the stages of the processing module.
Aspect 2 is the treatment planning system of Aspect 1, wherein the processing module is capable of performing the stages in real time.
Aspect 3 is the treatment planning system of Aspect 1, wherein the information from medical images is extracted from an array of images obtained from one or more imaging modalities chosen from radiographs, tomography, nuclear scintigraphy, CT, MRI, fMRI, PET, or US.
Aspect 4 is the treatment planning system of Aspect 1, wherein the numerical model analysis comprises finite element modeling (FEM).
Aspect 5 is the treatment planning system of Aspect 1, wherein the 3D reconstruction is a surface or a solid volume.
Aspect 6 is the treatment planning system of Aspect 4, wherein the target structure is a targeted region or mass; or is a targeted region or mass with neighboring regions; or is a 3D map of voxels to be treated as independent elements in the finite modeling software.
Aspect 7 is the treatment planning system of Aspect 1, wherein the numerical model analysis involves accounting for physical constraints, tissue heterogeneities, dynamic effects of electropermeabilization, dynamic thermal effects, and multiple-treatment effects.
Aspect 8 is the treatment planning system of Aspect 1, further comprising a self-optimization algorithm for constructing the protocols.
Aspect 9 is the treatment planning system of Aspect 8, wherein the self-optimization algorithm is capable of repeatedly evaluating one or more of physical constraints, placement of electrodes, electric field distribution simulations, and outcome success of the, and evaluation of outcome success until one or more effective protocol is constructed.
Aspect 10 is the treatment planning system of Aspect 1, wherein the treatment region and parameters for electroporating are determined automatically, interactively, or automatically and interactively with or without user input.
Aspect 11 is the treatment planning system of Aspect 1, capable of constructing protocols for an initial patient treatment or retreatment with or without additional medical images.
Aspect 12 is the treatment planning system of Aspect 1, further adapted for instructing an electrical waveform generator to perform the protocol.
Aspect 13 is the treatment planning system of Aspect 12, further comprising an electrical waveform generator in operable communication with the processing module and capable of receiving and executing the treatment protocol.
Aspect 14 is the treatment planning system of Aspect 12, wherein instructing comprises specifying a number of bipolar pulses to be delivered, a length of pulse duration at any pole, and a length of any delay between pulses.
Aspect 15 is the treatment planning system of Aspect 13, wherein the generator is operably configured for delivering a bipolar pulse train.
Aspect 16 is the treatment planning system of Aspect 2, wherein the processing module further comprises functionality for monitoring electrode or tissue temperature in real time and for considering electrode or tissue temperature in the analysis.
Aspect 17 is a treatment planning method comprising: receiving and processing information from medical images of a target structure and preparing a 3-D reconstruction model of the target structure; performing a numerical model analysis using as inputs in the analysis the 3-D reconstruction and information from one or more of physical constraints, tissue heterogeneities, dynamic effects of electropermeabilization, dynamic thermal effects, or effects resulting from multiple treatments; and constructing an electroporation protocol based on results of the analyzing; wherein the receiving, processing, analyzing, and constructing is performed in real time.
Aspect 18 is a method of reducing adverse effects of irreversible electroporation comprising administering electrical pulses through electrodes to tissue in a manner which causes irreversible electroporation of the tissue but minimizes electrical charge build up on the electrodes, or minimizes charge delivered to the tissue, or both.
Aspect 19 is the method of Aspect 18, wherein the adverse effects are one or more of thermal damage of the tissue or electrolysis.
Aspect 20 is the method of Aspect 19, wherein the electrical pulses comprise a series of unipolar or bipolar pulses with a net charge of zero.
Aspect 21 is the method of Aspect 20, wherein the net charge of zero is achieved by a change in potential direction between each pulse, or a change in potential direction within each pulse.
Aspect 22 is the method of Aspect 20, wherein the electrical pulses together comprise a pulse protocol comprising a train of unipolar pulses followed by a train of unipolar pulses of opposite polarity, or a train of bipolar pulses, or simultaneous unipolar pulses of opposite polarity which are offset from one another by a desired amount, or a combination of protocols.
Aspect 23 is the method of Aspect 22, wherein the electrical pulses have a waveform which is square, triangular, trapezoidal, exponential decay, sawtooth, sinusoidal, or of alternating polarity, or comprise a combination of one or more waveform.
Aspect 24 is a control system for an electroporation device comprising: a processor in operable communication with a control module; a control module executable by the processor and in operable communication with an electrical circuit, wherein the control module is operably configured for initiating switching of the circuit at a rate of between 10 ms to 1 ns; and an electrical circuit operably configured to enable delivery of a voltage to an electrode and switching of the voltage to a second electrode to cause reversing of the polarity of the electric potential between the two electrodes.
Aspect 25 is a electroporation system comprising: an electroporation device capable of delivering a first unipolar electrical pulse; the electroporation device further capable of, or a second electroporation device capable of, delivering a second unipolar electrical pulse which is opposite in polarity to the first unipolar pulse; a processor in operable communication with a control module; a control module executable by the processor and in operable communication with the electroporation device(s), wherein the control module is operably configured for initiating delivery of the first unipolar electrical pulse at a time 1 and for initiating delivery of the second unipolar electrical pulse at time 2 offset from time 1 by 1 second to 1 nanosecond.
Aspect 26 is an electroporation device operably configured to enable delivery of an electrical pulse to a first electrode, switching of the pulse to a second electrode to cause reversing of the polarity of the electric potential between the two electrodes, and switching of the pulse back to the first electrode or to zero, wherein a cycle of switching is established which cycle is capable of being performed at a rate of between 10 milliseconds to 1 nanosecond.
Aspect 27 is the device of Aspect 26, wherein the switching occurs for each electrical pulse or within each electrical pulse.
Aspect 28 is the device of Aspect 27, wherein the electrical pulses together comprise a pulse protocol comprising a train of unipolar pulses followed by a train of unipolar pulses of opposite polarity or a train of bipolar pulses.
Aspect 29 is the device of Aspect 28, wherein the electrical pulses have a waveform which is square, triangular, trapezoidal, exponential decay, sawtooth, sinusoidal, or of alternating polarity, or comprise a combination of one or more waveform.
Irreversible electroporation (IRE) is a new focal tissue ablation technique. The treatments are capable of sparing major blood vessels, extracellular matrix and other sensitive or critical structures. The procedure involves the delivery of low-energy electric pulses through minimally invasive electrodes inserted within the tissue. The target tissue is exposed to external electric field distributions around the electrodes, which alter the resting transmembrane potential of the cells. The degree of tissue electroporation (i.e., no effect, reversible electroporation and/or irreversible electroporation) depends on the magnitude of the induced transmembrane potential.
Numerical models for electric field optimization are available and typically include the physical properties of the tissue and treatment parameters including electrode geometry and pulse parameters (e.g., duration, number, amplitude, polarity, and repetition rate). These models can also incorporate the dynamic changes in tissue electric conductivity due to electroporation and thermal effects.
In embodiments of the invention there is provided a numerical model to visualize the IRE treated regions using sequential independent combinations of multiple energized and grounded electrodes. Specifically, in such models electric conductivity changes due to electroporation and thermal effects from an IRE pulse sequence are capable of being incorporated into the analysis for developing and constructing more effective treatment protocols. A particular embodiment involves setting the resulting conductivity distribution as the initial condition for the next pulse sequence, then repeating this procedure sequentially until all the pulse sequences are completed. In this manner, electric conductivity dependencies from previous pulses are incorporated and more accurate electric field distributions are presented. It is important to note that it is assumed that once a tissue is irreversibly electroporated, the tissue conductivity would not revert back. Consequently, a comprehensive IRE distribution can be presented in which the conductivity changes due to the previous pulses are considered. Such methods are most useful when using three or more electrodes with electrode-pairs being energized independently.
The electric conductivity map in certain circumstances can be crucial in the treatment planning of irreversible electroporation and other pulsed electric field therapeutic applications. The conductivity map is what determines how the current generated by the applied voltages/potentials will flow and the magnitude of the electric field. Several factors affect this distribution before, during and after the treatment including tissue heterogeneities, electropermeabilization, thermal effects and multiple treatments.
First, each tissue has its own “resting/unique” electric conductivity before the application of the electric pulses. Thus, in any particular organ or system there could be a mixture of conductivities that need to be accounted for in the treatment planning as in the case of white matter, gray matter and tumor tissue in the brain for example. Also, due to the permeabilization of the cells in the tissue that are exposed to an electric field threshold capable of altering the membrane structure, there is an increase in conductivity as well (electroporation effect). In addition, each of the tissue's conductivity will vary with changes in temperature as is the case for brain (3.2% C−1) or liver (2% C−1).
The main region treated by irreversible electroporation does not have sufficient increase in temperature to generate thermal damage, however, at the electrode tissue interface (where the electric field is highest) there is a significant increase in temperature and thus the conductivity map is altered. Capturing these and other dynamic effects can be crucial since they represent more accurate/realistic treatment geometries and pulse parameters that are not captured elsewhere. Accounting for these effects in treatment planning software is expected to lead to the optimization of pulse parameters and minimize damage to surrounding healthy tissue.
Numerical modeling methods, such as finite element modeling (FEM), are more accurate and are actually where the previous treatment planning systems derive their solutions (the lookup table and analytical solutions are calibrated to mimic the numerical solutions).
The reason numerical solutions were not implemented previously is that software packages to do so can be expensive, can take extensive periods to come up with a solution (inhibiting real-time feedback as was the goal above), and require familiarity with complex software in order to develop protocols (practically requiring an engineer to develop the plans). Because the direction of EBTs is toward application in more complex settings where more accurate solutions are desirable and take priority over time for development, the system described in this disclosure is one that can be performed with numerical solutions by developing the treatment plan well in advance (hours, days, weeks, or months) of its implementation.
General Stages of Planning Electroporation-Based Treatments.
A canine patient with a 360 cm3 tumor in the left thigh was treated according to a treatment planning embodiment of the invention. This treatment plan serves to demonstrate the complexity and numerous steps typically involved in developing and implementing a comprehensive treatment plan for electroporation-based therapies. This description is intended to provide guidance as to the formulation of a basic treatment planning system, which can be operably configured to include one or more of the following stages:
Image Acquisition. Images of the target lesion or of a portion of the body to be treated can be acquired by taking an array of medical images using one or more imaging modalities, including CT, MRI, PET, or US to name a few.
As shown in
Regions of Interest (ROI) Tracing. The target ROI can be outlined in the images used to identify the tumor, whether manually or by way of a computer program, to identify a potential treatment area. For example, a computer program capable of detecting anomalies, such as the OsiriX open-source image analysis software (Geneva, Switzerland), could be used to outline the targeted region (e.g., a tumor, site for electrogenetransfer, etc.). As shown in
Visualizing and Reconstructing 3D Geometry. The traced regions of interest from a series of axial CT slices can be compiled and interpolated between the steps to create a three-dimensional geometry that the practitioner could use to gain an understanding of the basic shape of the target mass and/or its location relative to other tissues.
If desired, the reconstructed geometry can also be visualized relative to the rest of the patient. This allows one to assess (in greater detail than the initial
Geometry Modeling. The 3D geometry can then be imported into finite element modeling software (FEM). Indeed, several geometries can be imported using software such as Comsol Multiphysics (Comsol, Stockholm, Sweden), including: a) just the targeted region or mass; b) the targeted region and other traced neighboring regions (muscle, fat, bone, etc); or a 3D Map of all the voxels to be treated as independent elements in the finite modeling software. The coordinate system from the medical images can also be matched.
Assign Model Properties. Any physical and/or thermal properties and/or electrical properties can be assigned in numerous ways. For example, the properties can be assigned arbitrarily; deduced by designating which of the target region or the other traced neighboring regions are of what tissue type and using properties of these tissue types from the literature; experimentally measured with a “pre-pulse” (e.g., as described in U.S. patent application Ser. No. 12/491,151, “Irreversible Electroporation to Treat Aberrant Cell Masses;” or the properties can be derived from an algorithm or coordination scheme based on voxel or pixel value imported from the 3D map.
The assignment of properties to the model can be performed within software and manually accounted for in placements. If such properties are either assigned arbitrarily or are deduced as described above, the different shapes depicted in the model (e.g.,
In a preferred embodiment, the tissue properties are derived from medical images. Due to the properties of tissue and how the tissues are assessed by modern imaging techniques, it may be possible to derive accurate estimations of a tissue's properties based on its response to the various imaging modalities.
For example, for computed tomography, pixel values are based on the radiodensity of the tissue at that point in the image (its attenuation). It is common practice to scale these attenuations relative to distilled water according to the equation:
where μX, μwater, and μair are the linear attenuation coefficients of that point in the tissue, water, and air, respectively. Essentially, this system normalizes the radiodensity of all tissues relative to water.
A tissue's Hounds Unit (HU) value may serve as a representation of its relative water content, with larger absolute value HU's (because it can be negative as well) containing less water. Thus, one could determine (with some noise) a function of HU that goes in the domain from −1000 (air, minimal radioattenuation) to +1000 (an equivalent difference of higher radioattenuation), where the curve estimates the water content. The data in Table I supports this concept.
These are general evaluations of conductivity. It does not matter what the conductivity of distilled water is, but it would likely be taken to be that of physiological saline for conductivity estimation (1.2 S/m). From qualitatively assessing the data in Table I, it can be seen that the closer a tissue's HU is to 0, the higher its conductivity. This is also reflected because it is known that muscle has a higher water content than fat, which is closer to the HU of 0 and a higher conductivity, while bone having the least water content of all, is the least conductive.
Although not a comprehensive table, the trends are clearly evident that one may be able to fit an interpolation function between HU and conductivity. With further exploration, it may be seen that this may be a result of higher volumetric water concentrations having higher conductivity. The idea that higher percentage of water causes a tissue to have a radiodensity more similar to that of water is an assumption, but when taking it into account, the relationship between conductivity and %-water may also be used to estimate the tissue's electrical properties, as described in Duck, 1990 (
Evaluate any Physical Placement Constraints. Potential physical placement constraints, such as vital structures (nerves, brain, blood vessels, etc.), access orientation preferences (from head, from rear, supine, prone patient positioning, etc.), and/or physical barriers (bones, sensitive structures, etc.) can be identified. The potential constraints can then be used to guide/constrain what angles are possible for the electrodes and if the electrodes should be placed to avoid certain areas more than others.
Placement of Electrodes. Any number of electrodes could be placed into or around the targeted region. Their number, location, orientation, and size could all be adjusted independently.
Simulation of the Electric Field Distribution. Simulation of the electric field distribution (e.g., numerically solved electric field distributions) are capable of being correlated with experimental data to superimpose predicted volumes of affected regions (treated, untreated, thermal damage).
For example,
The color maps are representative electric field isocontour regions that may be used in determining predicted treatment regions, reversible regions, or safety margins based on electric field thresholds. For example, if the protocol anticipates an IRE electric field threshold of 500 V/cm, then the entire volume of the tissue exposed to this electric field or higher (depicted in green) would be the predicted treatment region. In addition, if it were desired to ensure sparing of a sensitive structure such as a nerve, and an exact resolution of the above-predicted 500 V/cm IRE electric threshold was insufficient to guarantee sparing, a different electric field may be used to predict a safety margin which would be used to ensure that this threshold is not crossed by the sensitive structure (such as 250 V/cm depicted in red).
Another factor to consider in any analysis for determining proper placement of the electrodes and/or the charge needed for a particular application is the expected behavior of the electric field relative to the electrodes. As shown in
More particularly, the image shown in
Evaluate Success of Outcome. Determine whether the setup used appropriately meets its treatment demands of affecting the desired regions while preventing unacceptable effects on untargeted and sensitive regions. This could be assessed qualitatively or quantitatively with a fitness function.
Optimization. The evaluation of physical constraints, placement of electrodes, simulation of the electric field distribution, and evaluation of outcome success can be repeated until a suitable solution is developed. This optimization stage can be performed manually (interactively) by a practitioner or automatically. The Optimization Quality Function of Formula I discussed in more detail below could also be used for manual optimization.
In this embodiment, the optimization phase of the system was performed qualitatively and was iterated with the previous four steps until settling on the electrode array shown in
Further, as shown in
Implementation. Once a desired solution has been developed, the generator system for applying the designated pulsing protocol can be set up for implementation of the desired protocol. More particularly, the practitioner could then place the electrodes according to the prescribed protocol and let the generator apply the pulses.
Also during implementation, the systems, methods, and or devices according to the invention can be operably configured to monitor certain variables. One such variable can include monitoring the temperature of the electrodes and/or surrounding tissue in real time during treatment to ensure limited to no thermal damage to the tissue being treated. If monitored in real time, adjustments could then be made, if necessary, to avoid damage.
One, multiple, or all phases of system embodiments according to the invention can be performed manually or be performed (in whole or in any number of parts) by an automated system capable of performing the phases for the practitioner. Many of these steps can be performed without user input, and could be blocked off into distinct automated processes (with/without coupling to human-performed processes) or could be linked together through a comprehensive system. All of this is able to be done for an initial treatment, or redone for any retreatments that may be necessary, with or without new images (depending on case circumstances).
Comprehensive Package System: Treatment Planning Software.
Due to the great complexity and time required to develop customized treatment protocols for each patient, it is desirable to automate one or more steps, or the entirety, of the treatment planning process. Since Cassini Oval and other analytical solutions are limited by their ability to incorporate many of the complexities commonly found in treatment situations (such as heterogeneities, complex geometries, different electrode dimensions and orientations, etc.), and because the trend seems to be to move treatment planning towards a simpler solution for practitioners so less time is wasted in trying all the different available options—a robust automatic treatment planning system that incorporates numerous variables and runs a self-optimization algorithm to automatically determine the optimal treatment parameters needed to be used to treat a particular patient is highly desired.
Systems according to embodiments of the invention are flexible in that such systems can be operably configured to solve many scenarios numerically and to select the best electrode geometry and pulse parameters for a given situation. Alternatively or additionally, solutions may be obtained analytically, with tables, etc.
Embodiments of the systems according to the invention can be operably configured to be run on an independent system well in advance of treatment administration to allow sufficient computation time, review, and possible re-working of the protocol prior to treatment. The appropriate protocol could then be uploaded directly to the pulse generator.
Model Creation. Preferred embodiments of systems according to the invention include a model creation stage for establishing an initial model of the target area.
Geometry: Treatment geometries (information, such as tumor dimensions, electrodes, and peripheral tissue dimensions, for example) may be input manually, by analyzing medical images that were taken and any reconstructions, from computer analyses of medical images/tomography, or other (2D and 3D) mapping techniques.
Properties: Conductivity values for the model subdomains may be obtained by measuring them on the subject directly (placing electrodes within tissue then applying a voltage and measuring the current to get Z/σ), by taking typical values found in the literature for the tissue types, or by noninvasive a measuring techniques such as functional Magnetic Resonance Imaging (fMRI), Electrical Impedance Tomography, etc; and combining these with the relevant equations (for E-field distributions, it is the ratio between tissues/regions that alters the field, absolute values will only be important when considering thermal effects). Medical images that already obtain the conductivity values (fMRI) or coupled to conductivity values (analyzing and mapping a medical image for the different tissues and coupling the regions to a conductivity value determined as described above) may then be used as the geometries for a numerical/analytical model as the various subdomains, to establish the initial model.
Electrodes. Once the model geometry has been developed, a single or any set of electrode options (type, number, dimensions, etc.) may be selected to be used or allowed to be selected by the program.
Running the Program. After setting up the geometry and electrode options to consider, the practitioner would essentially select a “GO” button to let the program run through the many variations to use and solve each using FEM or advanced analytical methods. The program would solve each scenario for various effects (no effect, reversible electroporation, irreversible electroporation, or thermal) and distributions within the model. Thermal considerations will greatly increase the computational cost of the model, but may be desired to determine thermal damage and scarring, especially in very sensitive structures.
Exemplary Optimization Quality Function. The systems of embodiments of the invention can employ a variety of algorithms (iterative, genetic, etc.) in order to optimize the treatment parameters for the best possible result for a particular patient scenario. Such systems can also be operably configured to employ a function for evaluating the quality of each solution, where desired results, D, (IRE and/or REB throughout the targeted regions) are added; and the undesired results, U, (thermal damage, IRE beyond targeted region, etc.) are subtracted, with each aspect having its own unique scaling (since IRE to entire targeted region is far more important that avoiding IRE to healthy tissues). One such function can include:
ψ(ET,EP,ϕ, . . . )=A·[IRE]D+B·[REB]D−C·[Therm]D−E·[IRE]U−F·[REB]U−G·[Therm]U Formula I:
wherein D=Desired/Targeted Volume (done as a percentage);
U=Undesired/Peripheral Volume (done as an absolute value);
A, B, C, E, F, G=Scaling factors, with likely situations including: 1) A & B>>C, E, F, and G (treatment success most important); 2) G>>C (thermal to healthy worse than to targeted; 3) B & F may be neglected in purely IRE treatments; and 4) F can typically be assumed to be=0 since no negative effects to the tissue would be associated with this parameter, since it would either have no effect (without chemicals), or will not have an effect on healthy cells (with selective chemicals); but may matter in situations involving nonselective chemicals;
ET=Electrode Type and geometry (single/dual, diameter, length);
EP=Electrode Positioning (location and orientation in 3D space);
ϕ=Applied voltage;
ψ=Quality, the value of the protocol on the entire domain of the targeted and surrounding volumes.
Additional details on ψ(ET, EP, ϕ, . . . ): This is the value function of a given treatment protocol for the modeled domain previously mentioned as a function of electrode type and geometry, electrode positioning, applied voltage, and any other factors. More specifically: 1) ET(style, number, dimensions), with style referring to the style of the pulse, such as single, multi-unipolar, hybrid, proprietary, etc., with number referring to the number of probes used, and dimensions referring to the geometry and dimensions of all exposed and insulated regions in all three directions for each electrode used.
EP refers to the position of each or all electrodes in relation to a reference point arbitrarily chosen within the (x, y, z) domain of the model (location and orientation). In one example, the center of the tumor could be selected as the reference point and arbitrarily set to (0, 0, 0). The reference point may also be selected ahead of time or afterwards by the practitioner that will be easy for the practitioner to physically use at the time of treatment administration, such as some anatomical landmark that can be used as a reference for where the electrodes are and the electrode orientation. It is also possible to match the coordinate system from the medical images.
The ψ function may be solved for altered ET and EP, and the ϕ may then be scaled accordingly for the geometry (since it the model geometry and properties that will affect the shape of the distribution, the absolute value of it may be scaled to the applied voltage after this shape is found for each ET and EP). This would dramatically reduce the number of iterations and thus the computational cost.
In embodiments, the system can be operably configured to iteratively adjust ET, EP, etc. and obtain the resulting ψ, storing the top ones (or all those meeting some type of baseline threshold criterion). The resulting stored solutions would then be saved for presentation to the practitioner for conducting a review and visually assessing the value of each solution for selecting the protocol that best meets the demands of the therapy (could range on their arbitrary criterion such as the best quality, most simple to administer and apply the EP in the treatment, most robust, etc.)
The electrical parameters used (number of pulses, repetition rate, shape, pulse length, etc.) can be set as standardized parameters for typical treatments, and optionally these parameters can be flexible in case certain scenarios require different values—such as abdomino-thoracic procedures requiring repetition rate to be synchronized with the patient's heart rate to reduce the risk of pulse-induced arrhythmias. If known or found experimentally, standard electrical parameters can be used to determine the best combination of treatment parameters to use and have been applied to various tissues/tumors to determine the electric field threshold of each for this set of parameters, thus allowing treatment outcome to be reviewed and not just electric field distributions. Table II provides a list of exemplary electric parameters that can be manipulated within the IRE treatments discussed herein.
Additional considerations, such as multiple pulse protocols that create dynamic tissue properties as a function of electric field, and temperature changes, may need to be investigated or added. Such dynamic properties are demonstrated in
The following examples are different than the previously described examples in which the treatment region depended on electropermeabilization, and multiple electrode combinations. In this case, a 2-D model of an irreversible electroporation protocol is shown in which the electric parameters of the protocol included 90 pulses, at 2000V, delivered at a frequency of 1.5 Hz, using 100 μs pulses. The 2D model generates much higher temperatures and thus changes relative to the complete 3D model since the heat has a larger volume in which to diffuse. Nevertheless, this case is reported for illustration purposes and to show that in fact these dynamic effects can be incorporated into treatment planning models. Changes only due to temperature are incorporated in this example to emphasize the importance of accounting for these effects in the models.
To illustrate the thermal effect of electroporation on tissues contacting the electrodes,
Therapy Application. Once the practitioner has selected a desired solution from the options on the treatment planning software, the electrical protocol (pulse characteristics, number, sequence, etc.) could be saved and then uploaded to the pulse generator system. At this point, the practitioner would have to do no more than place the electrodes in the predetermined positions and hit “START”, at which point the instrument carries out the prescribed pulsing conditions.
Exemplary Methods for IRE Treatment Planning
Open source image analysis software (OsiriX, Geneva, Switzerland) was used to isolate the brain tumor geometry from the normal brain tissue. The tumor was traced in each of the two-dimensional (2-D) diagnostic T1 post-contrast MRI scans as shown in
As provided in
Based on the tumor dimensions and numerical simulations, the voltage configurations that would mainly affect tumor tissue were determined and are provided in Table III as well as are displayed in
IRE Therapy. Total intravenous general anesthesia was induced and maintained with propofol and fentanyl constant rate infusions. A routine left rostrotentorial approach to the canine skull was performed and a limited left parietal craniectomy defect was created. The craniectomy size was limited to the minimum area necessary to accommodate placement of the IRE electrode configurations required to treat the tumor, as determined from pre-operative treatment plans. Following regional durectomy, multiple biopsies of the mass lesion were obtained, which were consistent with a high-grade (WHO Grade III) mixed glioma.
After administration of appropriate neuromuscular blockade and based on the treatment planning, focal ablative IRE lesions were created in the tumor using the NanoKnife® (AngioDynamics, Queensbury, N.Y. USA), and blunt tip electrodes. The NanoKnife® is an electric pulse generator in which the desired IRE pulse parameters (voltage, pulse duration, number of pulses, and pulse frequency) are entered. The NanoKnife® is also designed to monitor the resulting current from the treatment and to automatically suspend the delivery of the pulses if a current threshold is exceeded.
The electrodes were inserted into the tumor tissue in preparation for pulse delivery. The blunt tip electrodes were connected by way of a 6-foot insulated wire (cable) to the generator. After foot pedal activation, the pulses were conducted from the generator to the exposed electrodes.
The two sets of pulse strengths were delivered in perpendicular directions to ensure uniform coverage of the tumor and were synchronized with the electrocardiogram (ECG) signal to prevent ventricular fibrillation or cardiac arrhythmias (Ivy Cardiac Trigger Monitor 3000, Branford, Conn., USA). The sets of pulses were delivered with alternating polarity between the sets to reduce charge build-up on the surface of the electrodes. In addition, shorter pulse durations than those used in previous IRE studies were used in order to reduce the charge delivered to the tissue and decrease resistive heating during the procedure. Previous calculations and experimental data from previous intracranial IRE experiments ensured that no thermal damage would be generated in normal brain. The temperature measured near the electrodes showed a maximum 0.5° C. increase after four sets of twenty 50-μs pulses when using similar parameters to the ones in Table I. In addition, the charge delivered during the procedure was typical or lower than that used in humans during electroconvulsive therapy, a treatment for depression that also uses electric pulses.
Treatment Systems, Methods, and Devices Using Bipolar Electric Pulses
It has been found that alternating polarity of adjacent electrodes minimizes charge build up and provides a more uniform treatment zone. More specifically, in IRE treatments there is an energized and grounded electrode as the pulses are delivered. In embodiments, charge build-up on the surface of the electrodes can be minimized by alternating the polarity between sets of pulses. It is believed that there are still electrode surface effects that can be associated with negative outcomes.
Further, the use of bipolar pulses (net charge of zero) as seen in
In one experiment, a superficial focal ablative IRE lesion was created in the cranial aspect of the temporal lobe (ectosylvian gyrus) using the NanoKnifeB (AngioDynamics, Queensbury, N.Y.) generator, blunt tip bipolar electrode (AngioDynamics, No. 204002XX) by delivering 9 sets of ten 50 us pulses (voltage-to-distance ratio 2000 V/cm) with alternating polarity between the sets to prevent charge build-up on the stainless steel electrode surfaces. These parameters were determined from ex-vivo experiments on canine brain and ensured that the charge delivered during the procedure was lower than the charge delivered to the human brain during electroconvulsive therapy (an FDA approved treatment for major depression).
Other undesirable consequences of various electroporation protocols have also been experienced. More specifically, with the application of electric potentials, electrical forces may drive ions towards one electrode or the other. This may also lead to undesirable behavior such as electrolysis, separating water into its hydrogen and oxygen components, and leading to the formation of bubbles at the electrode-tissue interface. These effects are further exacerbated for multiple pulse applications. Such effects may cause interference with treatment by skewing electric field distributions and altering treatment outcomes in a relatively unpredictable manner. By altering the polarity between the electrodes for each pulse, these effects can be significantly reduced, enhancing treatment predictability, and thus, outcome. This alternating polarity may be a change in potential direction for each pulse, or occur within each pulse itself (switch each electrode's polarity for every pulse or go immediately from positive to negative potential within the pulse at each electrode).
The circuit can be operably configured to function in the following representative manner. At Time 0, the switches are in position 0. The voltage source would be used to charge an array of capacitors to the desired electric potential for a given pulse. At Time t1, the switches move to position 1. This causes rapid initiation of capacitor discharge, generating a high-slope ΔV between the electrodes placed in the tissue (the first half of a square wave). This gives electrode 1 a “negative” voltage and electrode 2 a “positive” voltage (based on their relative electric potentials). The capacitor(s) continue delivering the electric charge over time, causing a logarithmic decay of the electric potential to which the tissue is exposed. At Time t2, the switches move to position 2. This changes which electrode is connected to which end of the circuit, rapidly reversing the polarity of the electric potential, making electrode 1 “positive” and electrode 2 “negative.” The peak of this reversal is the same as the remaining charge on the capacitors after the decay between t1 and t2. The remaining charge on the capacitors continues to decay. At Time t3, the switches return to position 0. This disconnects the circuits, creating a rapid drop in the electric potential between the electrodes, returning ΔV to zero. Alternatively, at Time t3, the switch could return to position 1, then alternate between positions 1 and 2 for a desired period of time to deliver several bipolar pulses in rapid succession. Such switching circuitry would enable delivery of a bipolar pulse train comprising individual pulses having a duration ranging from 10 ms to 1 ns, much faster than any human could achieve.
It should be mentioned that the electric potential difference is arbitrary, and the polarity of any of the pulses in the above-mentioned example are for demonstration only, and are not the sole method of obtaining multipolar pulses. Alternative approaches are possible and this basic circuitry representation may be adapted to generate any series of complex pulses by changing the pattern of switch behavior.
For instance, unipolar pulses may have their polarity reversed every pulse or after any number of pulses by moving the switches from position 0 to 1 for pulse delivery, then back to 0 (first pulse); then from position 0 to 2 for delivery, then back to 0 (second pulse of opposite polarity). As shown in
As shown in
The pulses could also be made multipolar by switching from position 0 to 1 (first polarity), then to position 2 (reversed polarity), then back to position 1 (returning to initial polarity), and so on, all within the same pulse.
Even further, the bipolar pulses can be configured in a manner to deliver a charge to the tissue where the net effect of the pulse is something other than zero. For example, the magnitude of the positive portion of the pulse can be different than the magnitude of the negative portion of the pulse. More specifically, the pulse can be 90% positive and 10% negative or 90% negative and 10% positive. Indeed, any ratio of positive:negative charge can be used, including from 0:100 (mono-polar and positive) to 100:0 (mono-polar and negative). Specifically, 50:50 (net charge of zero) is preferred, but 90:10, 80:20, 75:25, 60:40 and the reverse can be used depending on the desired effect.
Additionally, the time between any switch could be used to alter the length of any pulse or change the pulse repetition rate. And, if varying combinations of different capacitor banks were used in the system, then depending on which ones were connected, it would be possible to change the applied voltage to the electrodes between pulses or within a pulse (of any polarity).
The shape and type of pulse can also be varied for particular applications. In various embodiments, the individual electric pulses can be unipolar while in other embodiments, the individual electric pulses can be bipolar. In certain preferred embodiments, a train of unipolar pulses is delivered in one direction, followed by a subsequent pulse train of opposite polarity. Depending on the outcome desired, the waveforms of the electric pulses are triangular, square, sinusoidal, exponential, or trapezoidal. Other geometric shapes are contemplated as well. In some embodiments, an electrode is connected to a system for employing electrical impedance tomography (EIT), computed tomography (CT), Magnetic Resonance Imaging (MRI), or ultrasound to image the tissue prior to treatment by applying small alternating currents that themselves do not damage the tissue.
A large variety of other parameters can influence the efficiency of membrane poration, such as the shape of the electrical pulses, polarity, size of target cells, and thermal conditions during and after the pulses.
Another method for avoiding excessive charge build up in tissues being treated by electroporation is to deliver counteracting pulses simultaneously from one or more pulse generator. In embodiments, the pulses delivered by the generators can overlap in time for some portion of the pulse and be offset from one another.
In one such embodiment, electrical pulses are delivered in a series of two pulses of alternating polarity (from millisecond to nanosecond range). Use of alternating polarities reduces or eliminates charge buildup on the electrode(s). For example, two NanoKnife™ (AngioDynamics, Queensbury, N.Y.) devices can be linked to the same electrode array, and programmed to deliver synched or slightly offset pulses to the electrodes. The first pulse can generate a 2500 V/cm electric field of 500 ns duration. This pulse is followed immediately (yet slightly offset) by the onset of a second pulse, which generates a −2500 V/cm electric field for 500 ns. The net effect of the pulses in the tissue is a net charge of zero and an additional benefit is avoiding the need for complex circuitry as the need for abrupt switching of the polarity is obviated.
Also during implementation of a desired treatment protocol, the systems, methods, and or devices according to the invention can be operably configured to monitor certain variables, such as temperature of the electrodes and/or surrounding tissue. If monitored during the procedure and in real time, adjustments to the protocol, including adjustments to the type, length, number, and duration of the pulses, could then be made, if necessary, to avoid damage of the tissue being treated.
It is important to note that bipolar pulses are only effective for electroporation if each pulse within the train is long enough in duration to charge the plasma membrane to a permeabilizing level. If this is not the case, the pulses offset each other from fully charging the plasma, and supra-poration effects dominate when the pulse amplitude is increased. Additionally, a delay can be included between pulses within the train, or the total number of pulses within the train can be controlled, to limit the Joule heating in the tissue while still delivering a lethal dose of energy. Embodiments of the invention are equally applicable to any electroporation-based therapy (EBT), including therapies employing reversible electroporation, such as gene delivery therapy and electrochemotherapy, to name a few. One of skill in the art is equipped with the skills to modify the protocols described herein to apply to certain uses.
The repetition rate of pulse trains can also be controlled to minimize interference with, and allow treatment of vital organs that respond to electrical signals, such as the heart. The concept of alternating polarity of pulses can be extended to the use of multiple electrodes. For example, a combination of three electrodes can be used to deliver three sequential sets of alternating polarity pulses to a target tissue. More specifically, Electrode A can be used to deliver a 500 ns pulse at 1000 V at a starting time (T=0) and a 500 ns pulse at −1000 V at T=1 μs. Electrode B can be used to deliver a 500 ns pulse at 1000 V at T=500 ns, and a 500 ns pulse at −1000 V at T=1.5 μs. Electrode C can be used to deliver a 500 ns pulse at 1000 V at T=1 μs, and a −1000V pulse at T=2.0 μs. Of course, this concept can be applied using any numbers of electrodes and pulse times to achieve highly directed cell killing.
Monitoring Temperature During Electroporation Procedures
One of the main advantages of N-TIRE over other focal ablation techniques is that the pulses do not generate thermal damage due to resistive heating, thus major blood vessels, extracellular matrix and other tissue structures are spared. See B. Al-Sakere, F. Andre, C. Bernat, E. Connault, P. Opolon, R. V. Davalos, B. Rubinsky, and L. M. Mir, “Tumor ablation with irreversible electroporation,” PLoS ONE, vol. 2, p. e1135, 2007; and J. F. Edd, L. Horowitz, R. V. Davalos, L. M. Mir, and B. Rubinsky, “In vivo results of a new focal tissue ablation technique: irreversible electroporation,” IEEE Trans Biomed Eng, vol. 53, pp. 1409-15, July 2006, both of which are incorporated by reference herein in their entireties. The inventors have found that with real time temperature data measured at the electrode-tissue interface, the non-thermal aspect of the technique can be confirmed. One such way to measure temperature in-vivo during the pulse delivery is to use fiber optic probes.
In an experiment performed by the inventors, temperatures were measured in the brain during an N-TIRE procedure using the Luxtron® m3300 Biomedical Lab Kit Fluoroptic® Thermometer (LumaSense™ Technologies, Santa Clara, Calif. USA). STB medical fiber optic probes (LumaSense™ Technologies, Santa Clara, Calif. USA) were placed at the electrode-tissue interface and 7.5 mm along the insulation.
After insertion of the electrodes, four sets of twenty 50 μs pulses were delivered with a voltage-to-distance ratio of 1000 V/cm between the electrodes. The electrode exposure and separation distance were each 5 mm. The polarity of the electrodes was alternated between the sets to minimize charge build-up on the electrode surface. These parameters were determined from previous in-vivo N-TIRE procedures which showed sufficient ablation of tissue. The NanoKnife® was synchronized with the dog's heart rate in order to prevent any ventricular defibrillation or arrhythmias.
For treatment planning purposes, in order to model accurate N-TIRE treatment, it is beneficial to incorporate changes in conductivity due to permeabilization of the tissue (as described in detail in the treatment planning section of this specification), as well as incorporate information relating to temperature changes. See P. A. Garcia, J. H. Rossmeisl, R. E. Neal, II, T. L. Ellis, J. Olson, N. Henao-Guerrero, J. Robertson, and R. V. Davalos, “Intrracranial Non-Thermal Irreversible Electroporation: In vivo analysis,” Journal of Membrane Biology, p. (in press), 2010, which is incorporated by reference herein in its entirety. Conductivity changes due to thermal effects could have important implications with a number of different treatment parameters, including electrode geometry and pulse parameters (i.e., duration, number, amplitude, and repetition rate, etc.).
The changes in the temperature resulting from N-TIRE are less than 0.5° C. and they are not sufficient to generate thermal damage. This confirms that any cell death achieved by the procedure was a direct result of N-TIRE since at the electrode-tissue interface the highest thermal effects are expected to be achieved. It is also apparent from this data that it can be assumed in numerical modeling that electrical conductivity changes due to electroporation only and not temperature.
A chemical reaction technique was performed to fabricate parallel silver electrodes on glass microscope slides with 100 μm spacing. Briefly, a commercially available mirroring kit was used to deposit pure silver onto the microscope slides (Angel Gilding Stained Glass Ltd, Oak Park, Ill.). A negative thin film photoresist (#146DFR-4, MG Chemicals, Surrey, British Colombia, Canada) was laid on top of the slide and passed through an office laminator (#4, HeatSeal H212, General Binding Corporation, Lincolnshire, Ill.). A photomask printed at 20k DPI on a transparent film (Output City, Cad/Art Services Inc, Bandon, Oreg.) was placed ink side down onto the photoresist, and slides were exposed to UV light for 45 seconds. After exposure, the slides were placed in a 200 mL bath containing a 10:1 DI water to negative photo developer (#4170-500ML, MG Chemicals, Surrey, British Colombia, Canada). The slides were placed in a beaker containing DI water to stop the development process and gently dried using pressurized air. Electrode structures on the microscope slides were fabricated by removing all silver not covered by the patterned photoresist. A two part silver remover was included in the mirroring kit used to deposit the silver. The photoresist was then removed by placing the slide in a bath of acetone.
Microfluidic channels were fabricated using the patterned photoresist on a microscope slide that had not undergone the silvering process. Liquid phase polydimethylsiloxane (PDMS) in a 10:1 ratio of monomers to curing agent (Sylgrad 184, Dow Corning, USA) was degassed under vacuum prior to being poured onto the photoresist master and cured for 1 hour at 100° C. After removing the cured PDMS from the mold, fluidic connections to the channels were punched in the devices using 1.5 mm core borers (Harris Uni-Core, Ted Pella Inc., Redding, Calif.). The PDMS mold was then bonded over the glass slides containing the patterned electrodes by treating with air plasma for 2 minutes in a PDC-001 plasma cleaner (Harrick Plasma, Ithaca, N.Y.).
High voltage electrical wires were taped to the glass slide with exposed wire placed in direct contact with the electrical pads. A drop of high purity silver paint (Structure Probe Inc., West Chester, Pa.) was placed on the pad and allowed to dry for one hour creating a solid electrical connection. A drop of 5 minute epoxy (Devcon, Danvers, Mass.), used to secure the electrical connections, was placed on top of each electrode pad and allowed to cure for 24 hours. Pulses were delivered across the electrodes as described in EXAMPLE 4 prior to the amplification stage. No amplification was needed as the gap between the electrodes was only 100 μm. Therefore, the output signal of a function generator (GFG-3015, GW Instek, Taipei, Taiwan)+/−10 V can be used to generate an electric field capable of inducing electroporation, as shown in
Following culture in DMEM-F12 (supplemented with 10% FBS and 1% penicillin streptomycin) MDA-MB-231 cells were resuspended in a PBS solution 1:1 with Trypan Blue (0.4%). Trypan Blue is a determinant of cell membrane integrity, and stains electroporated cells blue, whereas non-electroporated cells remain transparent. Cells at a concentration of 106/ml were injected into the microfluidic channel using a syringe. The function generator was triggered by the microcontroller to deliver 80, 50 kHz bursts with a width of 1 ms and an amplitude of 500 V/cm. Results shown in
The analytical model for TMP described in the detailed description of the invention was utilized to investigate electroporation of a spherical cell subject to alternative waveforms. As mentioned, the critical TMP (Φcr) across the plasma membrane required to induce IRE is approximately 1 V. Belehradek, J., S. Orlowski, L. H. Ramirez, G. Pron, B. Poddevin, and L. M. Mir, Electropermeabilization of Cells in Tissues Assessed by the Qualitative and Quantitative Electroloading of Bleomycin. Biochimica Et Biophysica Acta-Biomembranes, 1994. 1190(1): p. 155-163. This threshold is illustrated in
The theoretical model of TMP suggests that IRE should be possible up to 1 MHz for an electric field of 1500 V/cm. Including a delay between the positive and negative pulses comprising the bipolar burst offers a therapeutic advantage in addition to protecting the MOSFETs in the pulse generation system from ringing. By not forcing a discharge of the TMP with an immediate reversal of polarity, the cell is allowed to return to the resting TMP according to its characteristic time constant. As a result, the TMP is maintained above the critical voltage required for IRE for a longer amount of time. This metric has been recognized as a potential indicator of treatment outcomes in electroporation based therapies with bipolar waveforms. Garcia, P. A., J. H. Rossmeisl, R. E. Neal, T. L. Ellis, J. D. Olson, N. Henao-Guerrero, J. Robertson, and R. V. Davalos, Intracranial Nonthermal Irreversible Electroporation: In Vivo Analysis. Journal of Membrane Biology, 2010. 236(1): p. 127-136.
Other potential waveforms for performing high-frequency electroporation are shown in
A 2D axisymmetric FEM representative of a slab of non-infiltrated fat adjacent to dry skin was simulated using COMSOL 4.2a (Burlington, Mass.). An energized and grounded electrode were modeled as infinite fins (0.5 mm diameter) separated 0.5 cm from the skin-fat interface, for a total spacing of 1 cm. The electric potential distribution within the tissue was obtained by transiently solving
Additionally, the homogeneous solution was solved according to the Laplace equation:
−∧·(∧ϕ)=0
For the heterogeneous case, the dielectric properties of various tissues were chosen from data generated by Gabriel et al. available at (http://niremf.ifac.cnr.it/docs/dielectric/home.html). Gabriel, S., R. W. Lau, and C. Gabriel, The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Physics in Medicine and Biology, 1996. 41(11): p. 2251-2269. The data was interpolated in Mathematica 7 (Wolfram Research, Inc.) in order to estimate the dielectric properties at 1 kHz and 1 MHz. For the homogeneous case, the electric field distribution is independent of the dielectric properties. The energized and grounded electrodes were subtracted from the skin and fat subdomains, and treated purely as boundary conditions at 1000 V and 0V, respectively.
From the surface contour map, at 1 kHz, which is representative of a 500 us traditional electroporation pulse, the electric field is highly non-uniform. A majority of the voltage drop occurs within the skin layer, and the fat layer remains untreated. However, at 1 MHz, which is representative of a 500 ns high-frequency electroporation pulse, the voltage drop is distributed more uniformly throughout the entire domain. As a result, both the skin and fat layers can be treated. Additionally, the electric field distribution at 1 MHz closely resembles that of the homogenous solution. Therefore, knowledge of dielectric properties and intricate geometrical arrangements of heterogeneous tissues can be neglected during treatment planning for high-frequency electroporation. This greatly reduces treatment planning protocols and produces more predictable outcomes.
The present invention provides an advancement over tissue ablation techniques previously devised by providing improved devices and methods for precisely and rapidly ablating diseased, damaged, disordered, or otherwise undesirable biological tissues in situ. As used herein, the term ablation is used to indicate destruction of cells, but not necessarily destruction of the underlying extracellular matrix. More specifically, the present invention provides new devices and methods for ablating target tissues for the treatment of diseases and disorders, and particularly tumors of the brain, using IRE. Use of IRE to decellularize diseased tissue provides a controlled, precise way to destroy aberrant cells of a tissue or organ, such as tumor or cancer cells or masses of the brain.
Non-thermal IRE is a method to kill undesirable cells using electric fields in tissue while preserving the ECM, blood vessels, and neural tubes/myelin sheaths. Certain electrical fields, when applied across a cell, have the ability to permeabilize the cell membrane through a process that has come to be called “electroporation”. When electrical fields permeabilize the cell membrane temporarily, after which the cells survive, the process is known as “reversible electroporation”. Reversible electroporation has become an important tool in biotechnology and medicine. Other electrical fields can cause the cell membrane to become permeabilized, after which the cells die. This deadly process is known as “irreversible electroporation”. According to the present invention, non-thermal irreversible electroporation is a minimally invasive surgical technique to ablate undesirable tissue, for example, tumor tissue. The technique is easy to apply, can be monitored and controlled, is not affected by local blood flow, and does not require the use of adjuvant drugs. The minimally invasive procedure involves placing needle-like electrodes into or around the targeted area to deliver a series of short and intense electric pulses that induce structural changes in the cell membranes that promote cell death. The voltages are applied in order to electroporate tissue without inducing significant Joule heating that would significantly damage major blood vessels and the ECM. For a specific tissue type and set of pulse conditions, the primary parameter determining the volume irreversibly electroporated is the electric field distribution within the tissue. Recent IRE animal experiments have verified the many beneficial effects resulting from this special mode of non-thermal cell ablation, such as preservation of major structures including the extracellular matrix, major blood vessels, and myelin sheaths, no scar formation, as well as its promotion of a beneficial immune response. Due to the nature of the function of the brain, in treatment of brain tissues, such as brain tumors, the total electrical charge delivered is at least as important as maintaining low temperature.
In a first aspect, the present invention provides a method for treating aberrant cell growth in animals. In general, the method comprises inserting one or more electrodes into or immediately adjacent to aberrant cell masses and applying IRE to cause irreversible cell death to the aberrant cells. In some embodiments, two or more electrodes are used to treat aberrant cell masses and effect cell death. The electrodes may be present on the same or different devices. Preferably, the parameters for IRE are selected to minimize or avoid excessive heating of the treated tissue and surrounding tissue, thus reducing collateral damage to healthy tissue near the aberrant cell mass. In addition, it is preferable to minimize the total electrical charge delivered when treating brain tissue to avoid complications. The methods are particularly well suited for treatment of aberrant cell growths in or on the brain, as it is important to avoid collateral damage to brain tissue during treatments of that organ. The methods also can be applied to treat a number of other of cancers, including liver cancer, prostate cancer, and pancreatic adenocarcinoma.
Viewed differently, the method for treating aberrant cell growth in animals can be considered a method of treating an animal (including humans) having an aberrant cell growth or mass in or on a tissue or an organ. In exemplary embodiments, the organ is a brain, and the aberrant cell mass is a benign or malignant tumor. Under this view, the method can be a method of treating an animal suffering from a disease or disorder resulting from aberrant cell growth by reducing or eliminating some or all of a mass (e.g., tumor) produced by the aberrant cell growth.
To effect the methods according to the invention, the present invention provides devices designed to treat aberrant cell masses using irreversible electroporation (IRE). While IRE devices have been disclosed prior to the priority date of this document, advanced surgical tools for in vivo IRE to treat diseased tissues and organs had not been developed. The present invention, for the first time, provides devices suitable for in vivo IRE treatment of diseases and disorders, particularly those associated with abnormal cell growth in or on a tissue or organ, which allow for minimally invasive treatment of patients suffering from such abnormal cell growth. The present inventors have designed microsurgical tools to treat currently inoperable tumors in humans and other animals through IRE, and in particular brain tumors. While not so limited, the designs provided herein are sufficient to ablate the majority of tumors smaller than about 3 cm in diameter, such as those about 14 cc in volume or less.
The present invention extends and improves on prior techniques for IRE by providing new methods and devices for IRE treatment of solid tumors, including those associated with brain cancer. Because the brain is susceptible to small fluctuations in temperature, the present invention provides devices and techniques for non-thermal IRE to kill undesirable cells and tissues. In addition, because the brain functions by way of electrical charges, the present invention provides devices and techniques that limit or precisely control the amount of electrical charge delivered to tissue. To achieve the invention, a device has been developed that contains both conducting and non-conducting surfaces and that is capable of delivering controlled pulses of electricity to tumor tissues while substantially protecting surrounding healthy tissue. In exemplary embodiments, the device has a laminate structure of at least one electrically conductive and at least one electrically insulative material. In some exemplary embodiments, the device has at least two concentric disk electrodes separated by an insulating material similar in dimensions to those already used in deep brain stimulation (DBS). DBS is an FDA approved therapy that alleviates the symptoms of otherwise treatment-resistant disorders, such as chronic pain, Parkinson's disease, tremor, and dystonia. The Examples, below, present results demonstrating that an IRE procedure does not induce substantial thermal effects in the brain, and delivers electrical charges to highly defined regions of tissues, supporting the conclusion that IRE can be used as a minimally invasive surgical technique for the treatment of brain cancer and other diseases and disorders involving aberrant cell mass development. The methods employ the unique designs discussed herein, which provide improved controlled delivery of electrical pulses with controlled three-dimensional patterns and controlled thermal outputs. The present devices and systems provide surgical tools and methods for IRE treatment of subcutaneous tumors that expand the application space for this new technology, with the potential to treat a number of cancers, including brain, liver, prostate and pancreatic adenocarcinoma.
In practicing the method, the number of electrodes, either on a single or multiple devices, used can be selected by the practitioner based on the size and shape of the tumor to be treated and the size and shape of the electrode. Thus, embodiments of the invention include the use of one, two, three, four, five, or more electrodes. Each electrode can be independently sized, shaped, and positioned in or adjacent the tumor to be treated. In addition, the number and spacing of electrodes on a single device can be adjusted as desired. As detailed below, the location, shape, and size of electrodes can be selected to produce three-dimensional killing zones of numerous shapes and sizes, allowing for non-thermal treatment of tumors of varying shapes and sizes.
Surprisingly, it has been found that pulse durations for ablation of solid tumors can be relatively short, thus reducing the probability of generation of thermal conditions and excessive charges that cause collateral damage to healthy tissues. More specifically, the present invention recognizes for the first time that, in contrast to prior disclosures relating to IRE, the pulse length for highly efficient tissue ablation can be lower than 100 microseconds (100 us). Indeed, it has surprisingly been determined that a pulse length of 25 us or lower can successfully cause non-thermal cell death. Thus, in embodiments, the method of treatment uses pulse lengths of 10 us, 15 us, 20 us, 25 us, 30 us, 35 us, 40 us, 45 us, 50 us, 55 us, 60 us, 65 us, 70 us, 75 us, 80 us, 85 us, or 90 us. Preferably, to most effectively minimize peripheral damage due to heat, pulse lengths are limited to 90 us or less, for example 50 us or less, such as 25 us. By reducing the pulse length, as compared to prior art techniques for IRE, larger electric fields can be applied to the treatment area while avoiding thermal damage to non-target tissue (as well as to target tissue). As a result of the decreased pulse length and concomitant reduction in heat production, the methods of the invention allow for treatment of tissues having higher volumes (e.g., larger tumors) than possible if prior art methods were to be employed for in vivo treatment of tumors.
It has also been determined that voltages traditionally used for IRE are too high for beneficial treatment of tumors in situ. For example, typically, IRE is performed using voltages of between 4000 V/cm to 1500 V/cm. The present invention provides for use of voltages of much lower power. For example, the present methods can be performed using less than 1500 V/cm. Experiments performed by the inventors have shown that 2000 V/cm can cause excessive edema and stroke in patients when applied to brain tissue. Advantageously, for treatment of brain tumors, applied fields of about 500 V/cm to 1000 V/cm are used. Thus, in general for treatment of brain tumors, applied fields of less than 1000 V/cm can be used.
Further, it has been discovered that the number of electrical pulses that can be applied to successfully treat tumors can be quite high. Prior art methods of using IRE for various purposes included the use of relatively few pulses, for example 8 pulses or so. Reports of use of up to 80 pulses for IRE have been published; however, to the inventors' knowledge, a higher number of pulses has not been recommended. The present invention provides for the use of a relatively high number of pulses, on the order of 90 pulses or greater. For example, in exemplary embodiments, 90 pulses are used. Other embodiments include the use of more than 90 pulses, such as 100 pulses, 110 pulses, or more.
According to the method of the invention, cycle times for pulses are set generally about 1 Hz. Furthermore, it has been found that alternating polarity of adjacent electrodes minimizes charge build up and provides a more uniform treatment zone. More specifically, in experiments performed by the inventors, a superficial focal ablative IRE lesion was created in the cranial aspect of the temporal lobe (ectosylvian gyrus) using the NanoKnifeB (Angiodynamics, Queensbury, N.Y.) generator, blunt tip bipolar electrode (Angiodynamics, No. 204002XX) by delivering 9 sets of ten 50 us pulses (voltage-to-distance ratio 2000 V/cm) with alternating polarity between the sets to prevent charge build-up on the stainless steel electrode surfaces. These parameters were determined from ex-vivo experiments on canine brain and they ensured that the charge delivered during the procedure was lower than the charge delivered to the human brain during electroconvulsive therapy (an FDA approved treatment for major depression). Excessive charge delivery to the brain can induce memory loss, and thus is preferably avoided.
The method of the invention encompasses the use of multiple electrodes and different voltages applied for each electrode to precisely control the three-dimensional shape of the electric field for tissue ablation. More specifically, it has been found that varying the amount of electrical energy emitted by different electrodes placed in a tissue to be treated allows the practitioner to finely tune the three-dimensional shape of the electrical field that irreversibly disrupts cell membranes, causing cell death. Likewise, the polarity of electrodes can be varied to achieve different three-dimensional electrical fields. Furthermore, one of the advantages of embodiments of the invention is to generate electric field distributions that match complex tumor shapes by manipulating the potentials of multiple electrodes. In these embodiments, multiple electrodes are energized with different potential combinations, as opposed to an “on/off” system like radio frequency ablation, to maximize tumor treatment and minimize damage to surrounding healthy tissue.
The method of the invention is implemented using devices and systems. The devices according to the invention are suitable for minimally invasive temporary implantation into a patient, emission of a tissue-ablating level of electricity, and removal from the patient. The device according to the invention thus may be used in the treatment of tumors and the treatment of patients suffering from tumors. The devices can take multiple forms, based on the desired three-dimensional shape of the electrical field for cell killing. However, in general, the devices include two or more regions of differing conductivity. In some embodiments, the device comprises alternating regions of conductivity, for example a region of electrical conductivity, which is adjacent a region of electrical non-conductivity, which is adjacent a different region of conductivity. In embodiments, the device comprises two or more layers of conductive and insulative materials, in a laminate structure with alternating conductive properties. To protect tissue that is not to be treated, the outer layer can be insulative except at the region where treatment is to be effected. According to embodiments of the device, the amount of conductive material exposed to the tissue to be treated can be adjusted by a movable non-conductive element disposed on the outer surface of the device.
Further, in general, the device takes a rod-like shape, with one dimension (i.e., length) being substantially longer than the other (i.e., width or diameter). While exemplary embodiments are configured in a generally cylindrical shape, it is to be understood that the cross-sectional shape of the electrode can take any suitable geometric shape. It thus may be circular, square, rectangular, oval, elliptical, triangular, pentagonal, hexagonal, octagonal, etc.
The devices of the invention comprise one or more electrodes, which are electrically conductive portions of the device. The devices are thus electrically conductive elements suitable for temporary implantation into living tissue that are capable of delivering an electrical pulse to the living tissue. The device of the invention has a proximal end and a distal end. The proximal end is defined as the end at which the device is attached to one or more other elements, for control of the function of the device. The distal end is defined by the end that contacts target tissue and delivers electrical pulses to the tissue. The distal end thus comprises an exposed or exposable electrically conductive material for implantation into a target tissue. Typically, the distal end is described as including a “tip” to denote the region of the distal end from which an electrical pulse is delivered to a tissue. The device further comprises at least one surface defining the length and circumference of the device.
The device of the invention comprises an electrode tip at the distal end. The electrode tip functions to deliver electrical pulses to target tissue. The tip may be represented by a single conductive layer of the device or may be represented by two or more conductive layers that are exposed to the tissue to be treated. Furthermore, the tip may be designed to have any number of geometrical shapes. Exemplary embodiments include tips having a needle-like shape (i.e., electrical pulses emanate from a small cone-like structure at the distal end of the device) or having a circular shape (i.e., electrical pulses emanate from the cylindrical outer surface of the device, which is a section of the device where the outer insulative layer has been removed to expose the next layer, which is conductive). For use in treatment of brain tumors, the tip advantageously comprises a blunt or rounded end to minimize laceration of brain tissue. In embodiments, the rounded or blunt end comprises a hole that allows for a sharp or needle-like structure to be deployed into tumor tissue at the appropriate time.
The device comprises a proximal end, which generally functions for attachment of the device to a power source/controller and a handle. The proximal end thus may comprise connections for electrical wires that run from the power source/controller to the electrically conductive layers of the device. Standard electrical connections may be used to connect the conductive elements to the wires. In embodiments, the device is attached to a handle for ease of use by a human. While not limited in the means for attaching the device to the handle, in embodiments, the connection is made by way of a friction fit between the outer surface of the device and the handle, for example by way of an insulative O-ring (e.g., a Norprene O-ring) on the handle. In other embodiments, the device comprises, on its outer surface, ridges or other surface features that mate with surface features present on the handle. In yet other embodiments, the proximal end comprises one or more structures that allow for controlled movement of the outer surface along the length of the device. In such embodiments, the outer surface will comprise an outer sheath that is electrically non-conductive, and which surrounds an electrically conductive layer. Using the structures at the proximal end, the outer sheath may be moved, relative to the rest of the device, to expose or conceal varying portions of the electrically conductive material beneath it. In this way, the amount of surface area of the conductive material at the tip can be adjusted to provide a desired height of exposure of tissue to the electrode tip. Of course, other structures for securely fastening the device to a holder may be used, such as clips, set screws, pins, and the like. The device is not limited by the type of structure used to connect the device to the holder.
The device of the invention can be designed to have any desired size. Typically, it is designed to be minimally invasive yet at the same time suitable for delivery of an effective electrical field for IRE. The diameter or width is thus on the order of 0.5 mm to 1 cm. Preferably, the diameter or width is about 0.5 mm to about 5 mm, such as about 1 mm, 2 mm, 3 mm, or 4 mm. The length of the device is not particularly limited, but is generally set such that a surgeon can use the device comfortably to treat tumors at any position in the body. Thus, for human use, the device is typically on the order of 40 cm or less in length, such as about 30 cm, 25 cm, or 15 cm, whereas for veterinary use, the length can be much larger, depending on the size of animal to be treated. For treatment of human brain tumors, the length can be on the order of 40 cm.
In some embodiments, the device, or a portion of it, is flexible. A flexible device is advantageous for use in accessing tumors non-invasively or minimally invasively through natural body cavities. In embodiments where the device or a portion of it is flexible, the shape of the device can change based on contact with body tissues, can be pre-set, or can be altered in real-time through use of wires or other control elements, as known in the art, for example in use with laparoscopic instruments.
The device of the invention can be part of a system. In addition to the device, the system can comprise a handle into or onto which the device is disposed. The handle can take any of a number of shapes, but is generally designed to allow a surgeon to use the device of the invention to treat a patient in need. It thus typically has a connector for connecting the device to the holder, and a structure for the surgeon to grasp and maneuver the device. The handle further can comprise a trigger or other mechanism that allows the surgeon to control delivery of electrical pulses to the device, and thus to the tissue to be treated. The trigger can be a simple on/off switch or can comprise a variable control that allows for control of the amount of power to be delivered to the device. Additionally, the handle may be created in such a manner that it may be attached to additional pieces of equipment, such as ones that allow precise placement of the electrode relative to an inertial or the patient's frame of reference, allowing steady and accurate electrode positioning throughout an entire procedure, which may entail the application of electric pulses in addition to radiotherapy, imaging, and injections (systemically and locally) of bioactive agents. Furthermore, the handle may be attached to machines that are operated remotely by practitioners (e.g., the Da Vinci machine)
The system can further comprise a power source and/or a power control unit. In embodiments, the power source and control unit are the same object. The power source provides electrical power to the device, typically by way of an electrical connection through the handle. The power source can be any suitable source that can deliver the proper amount of electrical power to the device of the invention. Suitable power sources are commercially available, and the invention is not limited by the type or manufacturer. The power control unit provides the user with the ability to set the power output and pulse time for electrical pulses to be delivered to the device, and thus to the tissue to be treated. Suitable control units are commercially available, and the invention is not limited by the type or manufacturer. For example, an appropriate power source/controller is available from Angiodynamics (Queensbury, N.Y.).
To illustrate 1) the possibility to monitor creation of a cell-free tissue section in brain in real-time using imaging techniques, 2) the variety of tissues that can be used, and 3) how to preserve vasculature, a healthy female purpose bred beagle was used. Nine sets of ten pulses were delivered with alternating polarity between the sets to minimize charge build-up on the electrode surfaces. The maximum voltage-to-distance ratio used was 2000 V/cm because the resulting current did not exceed 2 amps. The charge that was delivered to the brain during the IRE procedure was 22.5 mC, assuming ninety pulses (50 us pulse durations) that would result from a maximum hypothetical current of 5 amps.
Method: After induction of general anesthesia, a routine parietotemporal craniectomy defect was created to expose the right temporal lobe of the brain. Two decelluarization sites were performed: 1) a deep lesion within the caudal aspect of the temporal lobe using a monopolar electrode configuration (6 mm electrode insertion depth perpendicular to the surface of the target gyrus, with 5 mm interelectrode distance), and 2) a superficial lesion in the cranial aspect of the temporal lobe using a bipolar electrode (inserted 2 cm parallel to the rostrocaudal length of the target gyrus, and 2 mm below the external surface of the gyrus). Intraoperative adverse effects that were encountered included gross microhemorrhages around the sharp monopolar electrode needles following insertion into the gyrus. This hemorrhage was controlled with topical application of hemostatic foam. Subject motion was completely obliterated prior to ablating the superficial site by escalating the dose of atracurium to 0.4 mg/kg. Grossly visible brain edema and surface blanching of the gyrus overlying the bipolar electrode decelluarization site was apparent within 2 minutes of completion of IRE at this site. This edema resolved completely following intravenous administration of 1.0 g/kg of 20% mannitol. No adverse clinically apparent effects attributable to the IRE procedure, or significant deterioration in neurologic disability or coma scale scores from baseline evaluations were observed. However, the results indicated to the inventors that a lower voltage would provide adequate results but with less ancillary trauma to the brain.
Methods to monitor creation of cell-free tissues in vivo: A unique advantage of IRE to ablate tissues in vivo is its ability to be monitored in real-time using imaging techniques, such as electrical impedance tomography, MRI, and ultrasound. Below, this Example shows MRI examinations performed immediate post-operatively, which demonstrate that IRE decelluarization zones were sharply demarcated (
As shown in
Macrolevel and histologic verification of treating cells: The brain was collected within 2 hours of the time of death and removed from the cranium. Care was taken to inspect soft tissues and areas of closure created at the time of surgery. The brain was placed in 10% neutral buffered formalin solution for a minimum of 48 hours. Then, the brain was sectioned at 3 mm intervals across the short axis of the brain, in order to preserve symmetry and to compare lesions. Following gross dissection of fixed tissues, photographs were taken of brain sections in order to document the position and character of lesions, as shown in
Microscopic lesions correlated well with macroscale appearance. Areas of treatment are represented by foci of malacia and dissociation of white and grey matter. Small perivascular hemorrhages are present and there is sparing of major blood vessels (see
Analysis to determine IRE threshold: To determine the electric field needed to irreversibly electroporate tissue, one can correlate the lesion size that was observed in the ultrasound and MRI images with that in the histopathological analysis to determine the percentage of lesion growth. Decellularized site volumes can be determined after identification and demarcation of IRE decellularization zones from surrounding brain tissue using hand-drawn regions of interest (ROI). A representative source sample image is provided in
The present invention provides simple and elegant minimally invasive microsurgical tools to treat currently inoperable tumors in humans and animals through IRE. Exemplary designs are shown in
The size and shape of the IRE area is dictated by the voltage applied and the electrode configuration and is readily predictable through numerical modeling. Therefore, different surgical tips can be fashioned to achieve the same therapeutic result. For example, tip 710 can comprises retractable conductive spikes 713 emanating from a blunt end tip 710 and disposed, when deployed, at an acute angle to tip 710 (see
The devices can comprise interchangeable surgical tips, allowing for versatility in creating a device well suited for different tissues or different sized or shaped tumors. Varying electrode diameters (varied in part by selection of the type and length of deployable spikes) and separation distances will be sufficient to ablate the majority of tumors about or smaller than 3 cm by selecting the appropriate voltages to match different tumor sizes and shapes. As shown in later figures, some of the embodiments of the device comprise an element at the tip to introduce anti-cancer drugs for ECT, cytotoxic proteins, or other bioactive agents into the targeted area.
While not depicted in detail, embodiments of the device comprise durable carbon coatings over portions of the device that act both to insulate normal tissue and to increase the efficiency of IRE pulsing.
With general reference to
Turning now to
As shown in the cut-away depiction in
In addition to changing charges, adapting the physical dimensions of the probe also allows flexibility in tailoring the treatment area to match the dimensions of the tumor. By altering the electrode parameters, including diameter, length, separation distance, and type, it is possible to conveniently tailor the treatment to affect only specific, targeted regions. In addition, developing an electrode capable of altering and adapting to these dimensional demands greatly enhances its usability and adaptability to treatment region demands.
Many IRE treatments may involve coupled procedures, incorporating several discrete aspects during the same treatment. One embodiment of the invention provides a device with a needle-like tip 910 with an incorporated hollow needle 990 with either an end outlet 991 (shown in
The schematics in
Irreversible Electroporation (IRE), a new minimally invasive technique we invented to treat tumors, can be enhanced using carbon nanotubes (CNTs). The technique can be used on a variety of tumors including liver, prostate, pancreatic adenocarcinoma and renal carcinoma. Focal ablation techniques, such as IRE, however, are not selective and thus cannot distinguish between healthy and cancerous cells. To overcome this limitation, nanoparticles can be incorporated into IRE therapy. Nanomaterials offer a potential means for energy focusing, because they present a toolset with a unique size range closely matching that of cells (1 to 1,000 nm), and substantial multi-functional capability. Some embodiments of nanoparticles exhibit a “lightning rod” effect when exposed to electric fields, amplifying the field at the nanoparticle's tip, thereby producing a significantly larger electric potential compared to its surroundings and reducing the possibility of sub-lethal joule heating. This localized amplification of electric fields could thus be used as a means to induce IRE from relatively small electric fields; residual adverse effects to surrounding tissue would subsequently be reduced. Targeting of nanoparticles through tumor specific antibodies to the desired tissue region will allow treatment up to and beyond the tumor margin using IRE, and offer the opportunity to lower the IRE applied field, thereby minimizing damage to surrounding, non-cancerous tissue during treatment. Integration of CNTs into IRE could more selectively localize the electric field and thermal profile to cancer cells through antibody targeting and more precisely control the induction of cell death and HSP expression.
When carbon nanotubes (CNTs) are immersed in an electric field, an induced dipole is generated that tends to align the axis of the CNT parallel to the electric field. Taking advantage of these effects can be used to reduce cell damage during treatment. For example, two sets of electric fields delivered subsequent to and at right angles to each other is a technique that can be used to align the CNTs and electroporate the cells. Under some circumstances, cells electroporated using CNTs may result in cells having a higher vitality than when electroporated without the use of CNTs. The use of CNTs injected into a region of tissue, with or without targeting antibodies, to mediate IRE for tumor ablation is another method covered by the present invention.
In N-TIRE therapy, the local electric field distribution dictates the treatment area. When electric field parameters are optimized, N-TIRE possesses a clear therapeutic advantage in that there is no induction of thermal injury in the ablated area, thereby preserving important tissue components such as the extracellular matrix, major blood vessels, myelin sheaths, and nerves. Since N-TIRE is a focal ablation technique, it does not selectively kill infiltrative cancer cells with the potential for re-growth and metastasis beyond the tumor margin without affecting the surrounding healthy cells. The ablation area can be enlarged without inducing joule heating and the selectivity of N-TIRE can be enhanced through the use of CNTs. Localized amplification of electric fields from CNTs could induce N-TIRE in adjacent cells from relatively small electric fields, without affecting healthy surrounding cells. Further, antibody targeting of CNTs to tumor cells could permit localized CNT-mediated electric field amplification at selected tumor cell membranes causing targeted cell death due to permanent membrane destabilization. Even further, it is advantageous to incorporate CNTs into N TIRE protocols in order to simultaneously lower the voltage for N-TIRE and expand the treatable area.
Combinatorial CNT-mediated N-TIRE cancer therapies can include treatment of a number of cancers including prostate, liver, kidney, and pancreatic. Breast cancer is a particularly apt application since this combinatorial therapy can directly address the need of scar reduction and mitigate the likelihood of metastasis, which have proven in some circumstances to be helpful for improved treatment. Adapting N-TIRE treatments for breast carcinomas has several unique challenges. Among these are the diverse and dynamic physical and electrical properties of breast tissue. The fatty and connective tissues within the breast region surrounding a tumor have low water content, and thus significantly reduced electrical conductivity and permittivity than tumors. It has been shown that N-TIRE treatment area is highly predictable based on electric field distribution. CNTs will provide a means to raise the electric field magnitude within the tumor and increase N-TIRE treatment area in localized breast carcinomas.
Selective destruction of tumor cells with CNT-mediated N-TIRE therapy is dependent upon targeting CNTs to the tumor cells of interest. In physiological conditions, cells uptake folic acid across the plasma membrane using the folate carrier to supply the folate requirements of most normal cells. In contrast, folate receptor (FR), a high affinity membrane folate-binding protein, is frequently overexpressed in a wide variety of cancer cells. Since it is generally either absent or present at only low levels in most normal cells, the FR has been identified as not only a marker of cancers but also a potential and attractive target for tumor-specific drug delivery. Thus, bioconjugated nanoparticles, such as those conjugated with folic acid (FA-NP), can be synthesized and used as drug delivery tools for administering drugs into cancer cells.
In embodiments, the device comprises a cooling system within the electrode to reduce the highly localized temperature changes that occur from Joule heating. During the electric pulses for IRE, the highest quantity of heat generation is at the electrode-tissue interface. By actively cooling (for example, via water flow) the electrode during the procedure, these effects are minimized. Further, cooling provides a heat sink for the nearby tissue, further reducing thermal effects. This allows more flexibility in treating larger tissue regions with IRE while keeping thermal effects negligible, providing a greater advantage for IRE over conventional thermal techniques. Cooling can be achieved by placement of one or more hollow chambers within the body of the device. The cooling chambers can be closed or open. Open chambers can be attached at the proximal end to fluid pumping elements to allow for circulation of the fluid (e.g., water) through the device during use.
In embodiments, the device comprises an outer protector that is designed to be movable up and down along the length of the device.
The invention provides a system for performing IRE tumor tissue ablation. As depicted in
In this embodiment, device 1100 comprises further elements for use. More specifically, device 1100 comprises a height adjustment apparatus 1151 at its proximal end to effect movement of outer sheath 1160. Outer sheath 1160 further comprises markings or scores 1168 on its surface to indicate amount of movement of outer sheath 1160 after implantation of device 1100 into tumor tissue.
We have discovered that a highly customizable electric field distribution may be attained by combining multiple electrode charges within the same pulse. This allows a highly customized and controllable treatment protocol to match the dimensions of the target tissue. In addition, the invasiveness of the treatment may be decreased by reducing the number of electrode placements required for treatment. In order to demonstrate the great flexibility in electric field distribution shape, 2-dimensional and axis symmetric models were developed with 3 and 4 electrode arrays along a single axis. The results are depicted in
We have done some preliminary studies and determined that the electric field distribution may be altered, and thus controlled, by changing the diameter and shape of the electrode between the conducting surfaces. This fact can be used to design and develop an electrode with an expandable/contractible interior and deformable exterior to change its size in real-time before or during a treatment to alter, and thus specify the electric field distribution in a manner that may be desirable during treatment. The ability to adjust this dimension in real-time is made additionally useful by the fact that a significantly smaller electrode may be inserted to keep it minimally invasive, and then expand the dimension once the electrode has reached the target tissue. In embodiments, the invention includes the use of a balloon between regions of charge that may be inflated/deflated during treatment to alter field distribution.
With the application of electric potentials, electrical forces may drive ions towards one electrode or the other. This may also lead to undesirable behavior such as electrolysis, separating water into its hydrogen and oxygen components, and leading to the formation of bubbles at the electrode-tissue interface. These effects are further exacerbated for multiple pulse applications. Such effects may cause interference with treatment by skewing electric field distributions and altering treatment outcomes in a relatively unpredictable manner. By altering the polarity between the electrodes for each pulse, these effects can be significantly reduced, enhancing treatment predictability, and thus, outcome. This alternating polarity may be a change in potential direction for each pulse, or occur within each pulse itself (switch each electrode's polarity for every pulse or go immediately from positive to negative potential within the pulse at each electrode).
Using a bipolar electrode with 4 embedded electrodes, one can use the middle two electrodes to inject a sinusoidal current (˜5 mA) that is low enough in magnitude to not generate electroporation and measure the voltage drop across the remaining two electrodes. From this setup one can calculate the impedance of the tissue and gather the conductivity of the tissue which is needed for treatment planning. One can do this analysis in a dynamic form after each electroporation pulse. Conductivity increases as a function of temperature and electroporation; therefore, for accurate treatment predictions and planning, the dynamic conductivity is needed and we can use the bipolar or unipolar electrodes to map the conductivity distribution before IRE treatment and during to adjust the pulse parameters.
The following are parameters that can be manipulated within the IRE treatments discussed herein.
The present invention has been described with reference to particular embodiments having various features. It will be apparent to those skilled in the art that various modifications and variations can be made in the practice of the present invention without departing from the scope or spirit of the invention. One skilled in the art will recognize that these features may be used singularly or in any combination based on the requirements and specifications of a given application or design. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention. It is intended that the specification and examples be considered as exemplary in nature and that variations that do not depart from the essence of the invention are intended to be within the scope of the invention.
This application is a Continuation application of U.S. patent application Ser. No. 14/808,679, filed Jul. 24, 2015. The '679 application is a Divisional application of U.S. patent application Ser. No. 12/906,923, filed Oct. 18, 2010, which issued as U.S. Pat. No. 9,198,733 on Dec. 1, 2015, and which parent application claims priority to and the benefit of the filing date of U.S. Provisional Application No. 61/252,445, filed Oct. 16, 2009. The '923 application is a Continuation-in-Part (CIP) of U.S. patent application Ser. No. 12/757,901, filed Apr. 9, 2010, which issued as U.S. Pat. No. 8,926,606 on Jan. 6, 2015, and which claims priority to U.S. Provisional Application Nos. 61/167,997, filed Apr. 9, 2009, and 61/285,618, filed Dec. 11, 2009; and the '923 application is a CIP of U.S. patent application Ser. No. 12/609,779, which was filed Oct. 30, 2009, and which issued as U.S. Pat. No. 8,465,484 on Jun. 18, 2013. The '923 application is a CIP of U.S. application Ser. No. 12/491,151, filed Jun. 24, 2009, which issued as U.S. Pat. No. 8,992,517 on Mar. 31, 2015, and which claims priority to U.S. Provisional Application Nos. 61/075,216, filed Jun. 24, 2008, 61/171,564, filed Apr. 22, 2009, and 61/167,997, filed Apr. 9, 2009, and the '151 application is a CIP of U.S. patent application Ser. No. 12/432,295, which was filed Apr. 29, 2009, and which issued as U.S. Pat. No. 9,598,691 on Mar. 21, 2017, and which claims priority to U.S. Provisional Application No. 61/125,840, filed Apr. 29, 2008, each of which is hereby incorporated by reference herein in its entirety. Further, the '679 application is a Continuation-in-Part application of U.S. patent application Ser. No. 13/332,133, filed Dec. 20, 2011, which issued as U.S. Pat. No. 10,448,989 on Oct. 22, 2019. The '133 application is a Continuation-in-Part application of U.S. patent application Ser. No. 12/757,901, filed Apr. 9, 2010, which issued as U.S. Pat. No. 8,926,606 on Jan. 6, 2015. The '901 application relies on the disclosure of and claims priority to and the benefit of the filing date of U.S. Provisional Application Nos. 61/167,997, filed Apr. 9, 2009, and 61/285,618, filed Dec. 11, 2009. Additionally, the '133 application relies on the disclosure of and claims priority to and the benefit of the filing date of U.S. Provisional Application No. 61/424,872, filed Dec. 20, 2010.
Number | Name | Date | Kind |
---|---|---|---|
1653819 | Northcott | Dec 1927 | A |
3730238 | Butler | May 1973 | A |
3746004 | Jankelson | Jul 1973 | A |
3871359 | Pacela | Mar 1975 | A |
4016886 | Doss et al. | Apr 1977 | A |
4037341 | Odle et al. | Jul 1977 | A |
4216860 | Heimann | Aug 1980 | A |
4226246 | Fragnet | Oct 1980 | A |
4262672 | Kief | Apr 1981 | A |
4267047 | Henne et al. | May 1981 | A |
4278092 | Borsanyi et al. | Jul 1981 | A |
4299217 | Sagae et al. | Nov 1981 | A |
4311148 | Courtney et al. | Jan 1982 | A |
4336881 | Babb et al. | Jun 1982 | A |
4344436 | Kubota | Aug 1982 | A |
4392855 | Oreopoulos et al. | Jul 1983 | A |
4406827 | Carim | Sep 1983 | A |
4407943 | Cole et al. | Oct 1983 | A |
4416276 | Newton et al. | Nov 1983 | A |
4447235 | Clarke | May 1984 | A |
4469098 | Davi | Sep 1984 | A |
4489535 | Veltman | Dec 1984 | A |
4512765 | Muto | Apr 1985 | A |
4580572 | Granek et al. | Apr 1986 | A |
4636199 | Victor | Jan 1987 | A |
4672969 | Dew | Jun 1987 | A |
4676258 | Inokuchi et al. | Jun 1987 | A |
4676782 | Yamamoto et al. | Jun 1987 | A |
4687471 | Twardowski et al. | Aug 1987 | A |
4716896 | Ackerman | Jan 1988 | A |
4723549 | Wholey et al. | Feb 1988 | A |
D294519 | Hardy | Mar 1988 | S |
4756838 | Veltman | Jul 1988 | A |
4772269 | Twardowski et al. | Sep 1988 | A |
4798585 | Inoue et al. | Jan 1989 | A |
4810963 | Blake-Coleman et al. | Mar 1989 | A |
4813929 | Semrad | Mar 1989 | A |
4819637 | Dormandy et al. | Apr 1989 | A |
4822470 | Chang | Apr 1989 | A |
4836204 | Landymore et al. | Jun 1989 | A |
4840172 | Augustine et al. | Jun 1989 | A |
4863426 | Ferragamo et al. | Sep 1989 | A |
4885003 | Hillstead | Dec 1989 | A |
4886496 | Conoscenti et al. | Dec 1989 | A |
4886502 | Poirier et al. | Dec 1989 | A |
4889634 | El-Rashidy | Dec 1989 | A |
4903707 | Knute et al. | Feb 1990 | A |
4907601 | Frick | Mar 1990 | A |
4919148 | Muccio | Apr 1990 | A |
4920978 | Colvin | May 1990 | A |
4921484 | Hillstead | May 1990 | A |
4946793 | Marshall, III | Aug 1990 | A |
4976709 | Sand | Dec 1990 | A |
4981477 | Schon et al. | Jan 1991 | A |
4986810 | Semrad | Jan 1991 | A |
4987895 | Heimlich | Jan 1991 | A |
5019034 | Weaver et al. | May 1991 | A |
5031775 | Kane | Jul 1991 | A |
5052391 | Silberstone et al. | Oct 1991 | A |
5053013 | Ensminger et al. | Oct 1991 | A |
5058605 | Slovak | Oct 1991 | A |
5071558 | Itoh | Dec 1991 | A |
5098843 | Calvin | Mar 1992 | A |
5122137 | Lennox | Jun 1992 | A |
5134070 | Casnig | Jul 1992 | A |
5137517 | Loney et al. | Aug 1992 | A |
5141499 | Zappacosta | Aug 1992 | A |
D329496 | Wotton | Sep 1992 | S |
5156597 | Verreet et al. | Oct 1992 | A |
5173158 | Schmukler | Dec 1992 | A |
5186715 | Phillips et al. | Feb 1993 | A |
5186800 | Dower | Feb 1993 | A |
5188592 | Hakki | Feb 1993 | A |
5190541 | Abele et al. | Mar 1993 | A |
5192312 | Orton | Mar 1993 | A |
5193537 | Freeman | Mar 1993 | A |
5209723 | Twardowski et al. | May 1993 | A |
5215530 | Hogan | Jun 1993 | A |
5224933 | Bromander | Jul 1993 | A |
5227730 | King et al. | Jul 1993 | A |
5242415 | Kantrowitz et al. | Sep 1993 | A |
5273525 | Hofmann | Dec 1993 | A |
D343687 | Houghton et al. | Jan 1994 | S |
5277201 | Stern | Jan 1994 | A |
5279564 | Taylor | Jan 1994 | A |
5281213 | Milder | Jan 1994 | A |
5283194 | Schmukler | Feb 1994 | A |
5290263 | Wigness et al. | Mar 1994 | A |
5308325 | Quinn et al. | May 1994 | A |
5308338 | Helfrich | May 1994 | A |
5318543 | Ross et al. | Jun 1994 | A |
5318563 | Malis et al. | Jun 1994 | A |
5328451 | Davis et al. | Jul 1994 | A |
5334167 | Cocanower | Aug 1994 | A |
5348554 | Imran et al. | Sep 1994 | A |
D351661 | Fischer | Oct 1994 | S |
5383917 | Desai et al. | Jan 1995 | A |
5389069 | Weaver | Feb 1995 | A |
5391158 | Peters | Feb 1995 | A |
5403311 | Abele et al. | Apr 1995 | A |
5405320 | Twardowski et al. | Apr 1995 | A |
5425752 | Vu Nguyen | Jun 1995 | A |
5439440 | Hofmann | Aug 1995 | A |
5458625 | Kendall | Oct 1995 | A |
5484400 | Edwards et al. | Jan 1996 | A |
5484401 | Rodriguez et al. | Jan 1996 | A |
5533999 | Hood et al. | Jul 1996 | A |
5536240 | Edwards et al. | Jul 1996 | A |
5536267 | Edwards et al. | Jul 1996 | A |
5540737 | Fenn | Jul 1996 | A |
5546940 | Panescu et al. | Aug 1996 | A |
5562720 | Stern et al. | Oct 1996 | A |
5575811 | Reid et al. | Nov 1996 | A |
D376652 | Hunt et al. | Dec 1996 | S |
5582588 | Sakurai et al. | Dec 1996 | A |
5586982 | Abela | Dec 1996 | A |
5588424 | Insler et al. | Dec 1996 | A |
5588960 | Edwards et al. | Dec 1996 | A |
5599294 | Edwards et al. | Feb 1997 | A |
5599311 | Raulerson | Feb 1997 | A |
5616126 | Malekmehr et al. | Apr 1997 | A |
5620479 | Diederich | Apr 1997 | A |
5626146 | Barber et al. | May 1997 | A |
D380272 | Partika et al. | Jun 1997 | S |
5634899 | Shapland et al. | Jun 1997 | A |
5643197 | Brucker et al. | Jul 1997 | A |
5645855 | Lorenz | Jul 1997 | A |
5672173 | Gough et al. | Sep 1997 | A |
5674267 | Mir et al. | Oct 1997 | A |
5683384 | Gough et al. | Nov 1997 | A |
5687723 | Avitall | Nov 1997 | A |
5690620 | Knott | Nov 1997 | A |
5697905 | d'Ambrosio | Dec 1997 | A |
5700252 | Klingenstein | Dec 1997 | A |
5702359 | Hofmann et al. | Dec 1997 | A |
5718246 | Vona | Feb 1998 | A |
5720921 | Meserol | Feb 1998 | A |
5735847 | Gough et al. | Apr 1998 | A |
5752939 | Makoto | May 1998 | A |
5778894 | Dorogi et al. | Jul 1998 | A |
5782882 | Lerman et al. | Jul 1998 | A |
5800378 | Edwards et al. | Sep 1998 | A |
5800484 | Gough et al. | Sep 1998 | A |
5807272 | Kun et al. | Sep 1998 | A |
5807306 | Shapland et al. | Sep 1998 | A |
5807395 | Mulier et al. | Sep 1998 | A |
5810742 | Pearlman | Sep 1998 | A |
5810762 | Hofmann | Sep 1998 | A |
5830184 | Basta | Nov 1998 | A |
5836897 | Sakurai et al. | Nov 1998 | A |
5836905 | Lemelson et al. | Nov 1998 | A |
5843026 | Edwards et al. | Dec 1998 | A |
5843182 | Goldstein | Dec 1998 | A |
5865787 | Shapland et al. | Feb 1999 | A |
5868708 | Hart et al. | Feb 1999 | A |
5873849 | Bernard | Feb 1999 | A |
5904648 | Arndt et al. | May 1999 | A |
5919142 | Boone et al. | Jul 1999 | A |
5919191 | Lennox et al. | Jul 1999 | A |
5921982 | Lesh et al. | Jul 1999 | A |
5944710 | Dev et al. | Aug 1999 | A |
5947284 | Foster | Sep 1999 | A |
5947889 | Hehrlein | Sep 1999 | A |
5951546 | Lorentzen | Sep 1999 | A |
5954745 | Gertler et al. | Sep 1999 | A |
5957919 | Laufer | Sep 1999 | A |
5957963 | Dobak, III | Sep 1999 | A |
5968006 | Hofmann | Oct 1999 | A |
5983131 | Weaver et al. | Nov 1999 | A |
5984896 | Boyd | Nov 1999 | A |
5991697 | Nelson et al. | Nov 1999 | A |
5999847 | Elstrom | Dec 1999 | A |
6004339 | Wijay | Dec 1999 | A |
6009347 | Hofmann | Dec 1999 | A |
6009877 | Edwards | Jan 2000 | A |
6010613 | Walters et al. | Jan 2000 | A |
6016452 | Kasevich | Jan 2000 | A |
6029090 | Herbst | Feb 2000 | A |
6041252 | Walker et al. | Mar 2000 | A |
6043066 | Mangano | Mar 2000 | A |
6050994 | Sherman | Apr 2000 | A |
6055453 | Hofmann et al. | Apr 2000 | A |
6059780 | Gough et al. | May 2000 | A |
6066134 | Eggers et al. | May 2000 | A |
6068121 | McGlinch | May 2000 | A |
6068650 | Hofmann et al. | May 2000 | A |
6071281 | Burnside et al. | Jun 2000 | A |
6074374 | Fulton | Jun 2000 | A |
6074389 | Levine et al. | Jun 2000 | A |
6085115 | Weaver et al. | Jul 2000 | A |
6090016 | Kuo | Jul 2000 | A |
6090105 | Zepeda et al. | Jul 2000 | A |
6090106 | Goble et al. | Jul 2000 | A |
D430015 | Himbert et al. | Aug 2000 | S |
6096035 | Sodhi et al. | Aug 2000 | A |
6102885 | Bass | Aug 2000 | A |
6106521 | Blewett et al. | Aug 2000 | A |
6109270 | Mah et al. | Aug 2000 | A |
6110192 | Ravenscroft et al. | Aug 2000 | A |
6113593 | Tu et al. | Sep 2000 | A |
6116330 | Salyer | Sep 2000 | A |
6120493 | Hofmann | Sep 2000 | A |
6122599 | Mehta | Sep 2000 | A |
6123701 | Nezhat | Sep 2000 | A |
6132397 | Davis et al. | Oct 2000 | A |
6132419 | Hofmann | Oct 2000 | A |
6134460 | Chance | Oct 2000 | A |
6135999 | Fanton et al. | Oct 2000 | A |
6139545 | Utley et al. | Oct 2000 | A |
6150148 | Nanda et al. | Nov 2000 | A |
6159163 | Strauss et al. | Dec 2000 | A |
6178354 | Gibson | Jan 2001 | B1 |
D437941 | Frattini | Feb 2001 | S |
6193715 | Wrublewski et al. | Feb 2001 | B1 |
6198970 | Freed et al. | Mar 2001 | B1 |
6200314 | Sherman | Mar 2001 | B1 |
6208893 | Hofmann | Mar 2001 | B1 |
6210402 | Olsen et al. | Apr 2001 | B1 |
6212433 | Behl | Apr 2001 | B1 |
6216034 | Hofmann et al. | Apr 2001 | B1 |
6219577 | Brown, III et al. | Apr 2001 | B1 |
D442697 | Hajianpour | May 2001 | S |
6233490 | Kasevich | May 2001 | B1 |
6235023 | Lee et al. | May 2001 | B1 |
D443360 | Haberland | Jun 2001 | S |
6241702 | Lundquist et al. | Jun 2001 | B1 |
6241725 | Cosman | Jun 2001 | B1 |
D445198 | Frattini | Jul 2001 | S |
6258100 | Alferness et al. | Jul 2001 | B1 |
6261831 | Agee | Jul 2001 | B1 |
6277114 | Bullivant et al. | Aug 2001 | B1 |
6278895 | Bernard | Aug 2001 | B1 |
6280441 | Ryan | Aug 2001 | B1 |
6283988 | Laufer et al. | Sep 2001 | B1 |
6283989 | Laufer et al. | Sep 2001 | B1 |
6284140 | Sommermeyer et al. | Sep 2001 | B1 |
6287293 | Jones et al. | Sep 2001 | B1 |
6287304 | Eggers et al. | Sep 2001 | B1 |
6296636 | Cheng et al. | Oct 2001 | B1 |
6298726 | Adachi et al. | Oct 2001 | B1 |
6299633 | Laufer | Oct 2001 | B1 |
6300108 | Rubinsky et al. | Oct 2001 | B1 |
D450391 | Hunt et al. | Nov 2001 | S |
6312428 | Eggers et al. | Nov 2001 | B1 |
6326177 | Schoenbach et al. | Dec 2001 | B1 |
6327505 | Medhkour et al. | Dec 2001 | B1 |
6328689 | Gonzalez et al. | Dec 2001 | B1 |
6347247 | Dev et al. | Feb 2002 | B1 |
6349233 | Adams | Feb 2002 | B1 |
6351674 | Silverstone | Feb 2002 | B2 |
6375634 | Carroll | Apr 2002 | B1 |
6387671 | Rubinsky et al. | May 2002 | B1 |
6398779 | Buysse et al. | Jun 2002 | B1 |
6403348 | Rubinsky et al. | Jun 2002 | B1 |
6405732 | Edwards et al. | Jun 2002 | B1 |
6411852 | Danek et al. | Jun 2002 | B1 |
6419674 | Bowser et al. | Jul 2002 | B1 |
6428802 | Atala | Aug 2002 | B1 |
6443952 | Mulier et al. | Sep 2002 | B1 |
6463331 | Edwards | Oct 2002 | B1 |
6470211 | Ideker et al. | Oct 2002 | B1 |
6478793 | Cosman et al. | Nov 2002 | B1 |
6482221 | Hebert et al. | Nov 2002 | B1 |
6482619 | Rubinsky et al. | Nov 2002 | B1 |
6485487 | Sherman | Nov 2002 | B1 |
6488673 | Laufer et al. | Dec 2002 | B1 |
6488678 | Sherman | Dec 2002 | B2 |
6488680 | Francischelli et al. | Dec 2002 | B1 |
6491706 | Alferness et al. | Dec 2002 | B1 |
6493589 | Medhkour et al. | Dec 2002 | B1 |
6493592 | Leonard et al. | Dec 2002 | B1 |
6500173 | Underwood et al. | Dec 2002 | B2 |
6503248 | Levine | Jan 2003 | B1 |
6506189 | Rittman et al. | Jan 2003 | B1 |
6514248 | Eggers et al. | Feb 2003 | B1 |
6520183 | Amar | Feb 2003 | B2 |
6526320 | Mitchell | Feb 2003 | B2 |
D471640 | McMichael et al. | Mar 2003 | S |
D471641 | McMichael et al. | Mar 2003 | S |
6530922 | Cosman et al. | Mar 2003 | B2 |
6533784 | Truckai et al. | Mar 2003 | B2 |
6537976 | Gupta | Mar 2003 | B1 |
6540695 | Burbank et al. | Apr 2003 | B1 |
6558378 | Sherman et al. | May 2003 | B2 |
6562604 | Rubinsky et al. | May 2003 | B2 |
6569162 | He | May 2003 | B2 |
6575969 | Rittman et al. | Jun 2003 | B1 |
6589161 | Corcoran | Jul 2003 | B2 |
6592594 | Rimbaugh et al. | Jul 2003 | B2 |
6607529 | Jones et al. | Aug 2003 | B1 |
6610054 | Edwards et al. | Aug 2003 | B1 |
6611706 | Avrahami et al. | Aug 2003 | B2 |
6613211 | Mccormick et al. | Sep 2003 | B1 |
6616657 | Simpson et al. | Sep 2003 | B2 |
6627421 | Unger et al. | Sep 2003 | B1 |
D480816 | McMichael et al. | Oct 2003 | S |
6634363 | Danek et al. | Oct 2003 | B1 |
6638253 | Breznock | Oct 2003 | B2 |
6653091 | Dunn et al. | Nov 2003 | B1 |
6666858 | Lafontaine | Dec 2003 | B2 |
6669691 | Taimisto | Dec 2003 | B1 |
6673070 | Edwards et al. | Jan 2004 | B2 |
6678558 | Dimmer et al. | Jan 2004 | B1 |
6689096 | Loubens et al. | Feb 2004 | B1 |
6692493 | Mcgovern et al. | Feb 2004 | B2 |
6694979 | Deem et al. | Feb 2004 | B2 |
6694984 | Habib | Feb 2004 | B2 |
6695861 | Rosenberg et al. | Feb 2004 | B1 |
6697669 | Dev et al. | Feb 2004 | B2 |
6697670 | Chomenky et al. | Feb 2004 | B2 |
6702808 | Kreindel | Mar 2004 | B1 |
6712811 | Underwood et al. | Mar 2004 | B2 |
D489973 | Root et al. | May 2004 | S |
6733516 | Simons et al. | May 2004 | B2 |
6753171 | Karube et al. | Jun 2004 | B2 |
6761716 | Kadhiresan et al. | Jul 2004 | B2 |
D495807 | Agbodoe et al. | Sep 2004 | S |
6795728 | Chornenky et al. | Sep 2004 | B2 |
6801804 | Miller et al. | Oct 2004 | B2 |
6812204 | McHale et al. | Nov 2004 | B1 |
6837886 | Collins et al. | Jan 2005 | B2 |
6847848 | Sterzer et al. | Jan 2005 | B2 |
6860847 | Alferness et al. | Mar 2005 | B2 |
6865416 | Dev et al. | Mar 2005 | B2 |
6881213 | Ryan et al. | Apr 2005 | B2 |
6892099 | Jaafar et al. | May 2005 | B2 |
6895267 | Panescu et al. | May 2005 | B2 |
6905480 | McGuckin et al. | Jun 2005 | B2 |
6912417 | Bernard et al. | Jun 2005 | B1 |
6927049 | Rubinsky et al. | Aug 2005 | B2 |
6941950 | Wilson et al. | Sep 2005 | B2 |
6942681 | Johnson | Sep 2005 | B2 |
6958062 | Gough et al. | Oct 2005 | B1 |
6960189 | Bates et al. | Nov 2005 | B2 |
6962587 | Johnson et al. | Nov 2005 | B2 |
6972013 | Zhang et al. | Dec 2005 | B1 |
6972014 | Eum et al. | Dec 2005 | B2 |
6989010 | Francischelli et al. | Jan 2006 | B2 |
6994689 | Zadno-Azizi et al. | Feb 2006 | B1 |
6994706 | Chornenky et al. | Feb 2006 | B2 |
7011094 | Rapacki et al. | Mar 2006 | B2 |
7012061 | Reiss et al. | Mar 2006 | B1 |
7027869 | Danek et al. | Apr 2006 | B2 |
7036510 | Zgoda et al. | May 2006 | B2 |
7053063 | Rubinsky et al. | May 2006 | B2 |
7054685 | Dimmer et al. | May 2006 | B2 |
7063698 | Whayne et al. | Jun 2006 | B2 |
7087040 | McGuckin et al. | Aug 2006 | B2 |
7097612 | Bertolero et al. | Aug 2006 | B2 |
7100616 | Springmeyer | Sep 2006 | B2 |
7113821 | Sun et al. | Sep 2006 | B1 |
7130697 | Chornenky et al. | Oct 2006 | B2 |
7211083 | Chornenky et al. | May 2007 | B2 |
7232437 | Berman et al. | Jun 2007 | B2 |
7250048 | Francischelli et al. | Jul 2007 | B2 |
D549332 | Matsumoto et al. | Aug 2007 | S |
7257450 | Auth et al. | Aug 2007 | B2 |
7264002 | Danek et al. | Sep 2007 | B2 |
7267676 | Chornenky et al. | Sep 2007 | B2 |
7273055 | Danek et al. | Sep 2007 | B2 |
7291146 | Steinke et al. | Nov 2007 | B2 |
7331940 | Sommerich | Feb 2008 | B2 |
7331949 | Marisi | Feb 2008 | B2 |
7341558 | Torre et al. | Mar 2008 | B2 |
7344533 | Pearson et al. | Mar 2008 | B2 |
D565743 | Phillips et al. | Apr 2008 | S |
D571478 | Horacek | Jun 2008 | S |
7387626 | Edwards et al. | Jun 2008 | B2 |
7399747 | Clair et al. | Jul 2008 | B1 |
D575399 | Matsumoto et al. | Aug 2008 | S |
D575402 | Sandor | Aug 2008 | S |
7419487 | Johnson et al. | Sep 2008 | B2 |
7434578 | Dillard et al. | Oct 2008 | B2 |
7449019 | Uchida et al. | Nov 2008 | B2 |
7451765 | Adler | Nov 2008 | B2 |
7455675 | Schur et al. | Nov 2008 | B2 |
7476203 | DeVore et al. | Jan 2009 | B2 |
7520877 | Lee et al. | Apr 2009 | B2 |
7533671 | Gonzalez et al. | May 2009 | B2 |
D595422 | Mustapha | Jun 2009 | S |
7544301 | Shah et al. | Jun 2009 | B2 |
7549984 | Mathis | Jun 2009 | B2 |
7565208 | Harris et al. | Jul 2009 | B2 |
7571729 | Saadat et al. | Aug 2009 | B2 |
7632291 | Stephens et al. | Dec 2009 | B2 |
7655004 | Long | Feb 2010 | B2 |
7674249 | Ivorra et al. | Mar 2010 | B2 |
7680543 | Azure | Mar 2010 | B2 |
D613418 | Ryan et al. | Apr 2010 | S |
7718409 | Rubinsky et al. | May 2010 | B2 |
7722606 | Azure | May 2010 | B2 |
7742795 | Stone et al. | Jun 2010 | B2 |
7765010 | Chornenky et al. | Jul 2010 | B2 |
7771401 | Hekmat et al. | Aug 2010 | B2 |
RE42016 | Chornenky et al. | Dec 2010 | E |
D630321 | Hamilton | Jan 2011 | S |
D631154 | Hamilton | Jan 2011 | S |
7871406 | Nields et al. | Jan 2011 | B2 |
RE42277 | Jaafar et al. | Apr 2011 | E |
7918852 | Tullis et al. | Apr 2011 | B2 |
7937143 | Demarais | May 2011 | B2 |
7938824 | Chornenky et al. | May 2011 | B2 |
7951582 | Gazit et al. | May 2011 | B2 |
7955827 | Rubinsky et al. | Jun 2011 | B2 |
RE42835 | Chornenky et al. | Oct 2011 | E |
D647628 | Helfteren | Oct 2011 | S |
8048067 | Davalos et al. | Nov 2011 | B2 |
8055323 | Sawyer | Nov 2011 | B2 |
RE43009 | Chornenky et al. | Dec 2011 | E |
8109926 | Azure | Feb 2012 | B2 |
8114070 | Rubinsky et al. | Feb 2012 | B2 |
8162918 | Ivorra et al. | Apr 2012 | B2 |
8187269 | Shadduck et al. | May 2012 | B2 |
8221411 | Francischelli et al. | Jul 2012 | B2 |
8231603 | Hobbs et al. | Jul 2012 | B2 |
8240468 | Wilkinson et al. | Aug 2012 | B2 |
8251986 | Chornenky et al. | Aug 2012 | B2 |
8267927 | Dalal et al. | Sep 2012 | B2 |
8267936 | Hushka et al. | Sep 2012 | B2 |
8282631 | Davalos et al. | Oct 2012 | B2 |
8298222 | Rubinsky et al. | Oct 2012 | B2 |
8348921 | Ivorra et al. | Jan 2013 | B2 |
8361066 | Long et al. | Jan 2013 | B2 |
D677798 | Hart et al. | Mar 2013 | S |
8425455 | Nentwick | Apr 2013 | B2 |
8425505 | Long | Apr 2013 | B2 |
8454594 | Demarais et al. | Jun 2013 | B2 |
8465464 | Travis et al. | Jun 2013 | B2 |
8465484 | Davalos et al. | Jun 2013 | B2 |
8506564 | Long et al. | Aug 2013 | B2 |
8511317 | Thapliyal et al. | Aug 2013 | B2 |
8518031 | Boyden et al. | Aug 2013 | B2 |
8562588 | Hobbs et al. | Oct 2013 | B2 |
8603087 | Rubinsky et al. | Dec 2013 | B2 |
8632534 | Pearson et al. | Jan 2014 | B2 |
8634929 | Chornenky et al. | Jan 2014 | B2 |
8647338 | Chornenky et al. | Feb 2014 | B2 |
8715276 | Thompson et al. | May 2014 | B2 |
8753335 | Moshe et al. | Jun 2014 | B2 |
8814860 | Davalos et al. | Aug 2014 | B2 |
8835166 | Phillips et al. | Sep 2014 | B2 |
8845635 | Daniel et al. | Sep 2014 | B2 |
8880195 | Azure | Nov 2014 | B2 |
8903488 | Callas et al. | Dec 2014 | B2 |
8906006 | Chornenky et al. | Dec 2014 | B2 |
8926606 | Davalos et al. | Jan 2015 | B2 |
8958888 | Chornenky et al. | Feb 2015 | B2 |
8968542 | Davalos et al. | Mar 2015 | B2 |
8992517 | Davalos et al. | Mar 2015 | B2 |
9005189 | Davalos et al. | Apr 2015 | B2 |
9078665 | Moss et al. | Jul 2015 | B2 |
9149331 | Deem et al. | Oct 2015 | B2 |
9173704 | Hobbs et al. | Nov 2015 | B2 |
9198733 | Neal, II et al. | Dec 2015 | B2 |
9283051 | Garcia et al. | Mar 2016 | B2 |
9414881 | Callas et al. | Aug 2016 | B2 |
9598691 | Davalos | Mar 2017 | B2 |
9700368 | Callas et al. | Jul 2017 | B2 |
9764145 | Callas et al. | Sep 2017 | B2 |
9867652 | Sano et al. | Jan 2018 | B2 |
9943599 | Gehl et al. | Apr 2018 | B2 |
10117701 | Davalos et al. | Nov 2018 | B2 |
10117707 | Garcia et al. | Nov 2018 | B2 |
10154874 | Davalos et al. | Dec 2018 | B2 |
10238447 | Neal et al. | Mar 2019 | B2 |
10245098 | Davalos et al. | Apr 2019 | B2 |
10245105 | Davalos et al. | Apr 2019 | B2 |
10272178 | Davalos et al. | Apr 2019 | B2 |
10286108 | Davalos et al. | May 2019 | B2 |
10292755 | Davalos et al. | May 2019 | B2 |
10448989 | Arena et al. | Oct 2019 | B2 |
10470822 | Garcia et al. | Nov 2019 | B2 |
10471254 | Sano et al. | Nov 2019 | B2 |
10537379 | Sano et al. | Jan 2020 | B2 |
10694972 | Davalos et al. | Jun 2020 | B2 |
10702326 | Neal et al. | Jul 2020 | B2 |
10828085 | Davalos et al. | Nov 2020 | B2 |
10828086 | Davalos et al. | Nov 2020 | B2 |
10959772 | Davalos et al. | Mar 2021 | B2 |
11254926 | Garcia et al. | Feb 2022 | B2 |
11272979 | Garcia et al. | Mar 2022 | B2 |
11311329 | Davalos et al. | Apr 2022 | B2 |
11382681 | Arena et al. | Jul 2022 | B2 |
11406820 | Sano et al. | Aug 2022 | B2 |
11453873 | Davalos et al. | Sep 2022 | B2 |
11607271 | Garcia et al. | Mar 2023 | B2 |
11607537 | Latouche et al. | Mar 2023 | B2 |
11638603 | Sano et al. | May 2023 | B2 |
11655466 | Neal et al. | May 2023 | B2 |
11737810 | Davalos et al. | Aug 2023 | B2 |
11890046 | Neal, II et al. | Feb 2024 | B2 |
11903690 | Davalos et al. | Feb 2024 | B2 |
11925405 | Davalos et al. | Mar 2024 | B2 |
11950835 | O'Brien et al. | Apr 2024 | B2 |
11952568 | Neal, II et al. | Apr 2024 | B2 |
11974800 | Sano et al. | May 2024 | B2 |
12059197 | Davalos et al. | Aug 2024 | B2 |
20010039393 | Mori et al. | Nov 2001 | A1 |
20010044596 | Jaafar | Nov 2001 | A1 |
20010046706 | Rubinsky et al. | Nov 2001 | A1 |
20010047167 | Heggeness | Nov 2001 | A1 |
20010051366 | Rubinsky et al. | Dec 2001 | A1 |
20020002393 | Mitchell | Jan 2002 | A1 |
20020010491 | Schoenbach et al. | Jan 2002 | A1 |
20020022864 | Mahvi et al. | Feb 2002 | A1 |
20020040204 | Dev et al. | Apr 2002 | A1 |
20020049370 | Laufer et al. | Apr 2002 | A1 |
20020052601 | Goldberg et al. | May 2002 | A1 |
20020055731 | Atala et al. | May 2002 | A1 |
20020065541 | Fredricks et al. | May 2002 | A1 |
20020072742 | Schaefer et al. | Jun 2002 | A1 |
20020077314 | Falk et al. | Jun 2002 | A1 |
20020077627 | Johnson et al. | Jun 2002 | A1 |
20020077676 | Schroeppel et al. | Jun 2002 | A1 |
20020082543 | Park et al. | Jun 2002 | A1 |
20020099323 | Dev et al. | Jul 2002 | A1 |
20020104318 | Jaafar et al. | Aug 2002 | A1 |
20020111615 | Cosman et al. | Aug 2002 | A1 |
20020112729 | DeVore et al. | Aug 2002 | A1 |
20020115208 | Mitchell et al. | Aug 2002 | A1 |
20020119437 | Grooms et al. | Aug 2002 | A1 |
20020133324 | Weaver et al. | Sep 2002 | A1 |
20020137121 | Rubinsky et al. | Sep 2002 | A1 |
20020138075 | Edwards et al. | Sep 2002 | A1 |
20020138117 | Son | Sep 2002 | A1 |
20020143365 | Herbst | Oct 2002 | A1 |
20020147462 | Mair et al. | Oct 2002 | A1 |
20020156472 | Lee et al. | Oct 2002 | A1 |
20020161361 | Sherman et al. | Oct 2002 | A1 |
20020183684 | Dev et al. | Dec 2002 | A1 |
20020183735 | Edwards et al. | Dec 2002 | A1 |
20020183740 | Edwards et al. | Dec 2002 | A1 |
20020188242 | Wu | Dec 2002 | A1 |
20020193784 | McHale et al. | Dec 2002 | A1 |
20020193831 | Edward | Dec 2002 | A1 |
20030009110 | Tu et al. | Jan 2003 | A1 |
20030016168 | Jandrell | Jan 2003 | A1 |
20030055220 | Legrain | Mar 2003 | A1 |
20030055420 | Kadhiresan et al. | Mar 2003 | A1 |
20030059945 | Dzekunov et al. | Mar 2003 | A1 |
20030060856 | Chornenky et al. | Mar 2003 | A1 |
20030078490 | Damasco et al. | Apr 2003 | A1 |
20030088189 | Tu et al. | May 2003 | A1 |
20030088199 | Kawaji | May 2003 | A1 |
20030096407 | Atala et al. | May 2003 | A1 |
20030105454 | Cucin | Jun 2003 | A1 |
20030109871 | Johnson et al. | Jun 2003 | A1 |
20030127090 | Gifford et al. | Jul 2003 | A1 |
20030130711 | Pearson et al. | Jul 2003 | A1 |
20030135242 | Mongeon et al. | Jul 2003 | A1 |
20030149451 | Chomenky et al. | Aug 2003 | A1 |
20030153960 | Chornenky et al. | Aug 2003 | A1 |
20030154988 | DeVore et al. | Aug 2003 | A1 |
20030159700 | Laufer et al. | Aug 2003 | A1 |
20030166181 | Rubinsky et al. | Sep 2003 | A1 |
20030170898 | Gundersen et al. | Sep 2003 | A1 |
20030194808 | Rubinsky et al. | Oct 2003 | A1 |
20030195385 | DeVore | Oct 2003 | A1 |
20030195406 | Jenkins et al. | Oct 2003 | A1 |
20030199050 | Mangano et al. | Oct 2003 | A1 |
20030208200 | Palanker et al. | Nov 2003 | A1 |
20030208236 | Heil et al. | Nov 2003 | A1 |
20030212394 | Pearson et al. | Nov 2003 | A1 |
20030212412 | Dillard et al. | Nov 2003 | A1 |
20030225360 | Eppstein et al. | Dec 2003 | A1 |
20030228344 | Fields et al. | Dec 2003 | A1 |
20040009459 | Anderson et al. | Jan 2004 | A1 |
20040019371 | Jaafar et al. | Jan 2004 | A1 |
20040055606 | Hendricksen et al. | Mar 2004 | A1 |
20040059328 | Daniel et al. | Mar 2004 | A1 |
20040059389 | Chornenky et al. | Mar 2004 | A1 |
20040068228 | Cunningham | Apr 2004 | A1 |
20040116965 | Falkenberg | Jun 2004 | A1 |
20040133194 | Eum et al. | Jul 2004 | A1 |
20040138715 | Groeningen et al. | Jul 2004 | A1 |
20040146877 | Diss et al. | Jul 2004 | A1 |
20040153057 | Davison | Aug 2004 | A1 |
20040176855 | Badylak | Sep 2004 | A1 |
20040193042 | Scampini et al. | Sep 2004 | A1 |
20040193097 | Hofmann et al. | Sep 2004 | A1 |
20040199159 | Lee et al. | Oct 2004 | A1 |
20040200484 | Springmeyer | Oct 2004 | A1 |
20040206349 | Alferness et al. | Oct 2004 | A1 |
20040210248 | Gordon et al. | Oct 2004 | A1 |
20040230187 | Lee et al. | Nov 2004 | A1 |
20040236376 | Miklavcic et al. | Nov 2004 | A1 |
20040243107 | Macoviak et al. | Dec 2004 | A1 |
20040267189 | Mavor et al. | Dec 2004 | A1 |
20040267340 | Cioanta et al. | Dec 2004 | A1 |
20050004507 | Schroeppel et al. | Jan 2005 | A1 |
20050010209 | Lee et al. | Jan 2005 | A1 |
20050010259 | Gerber | Jan 2005 | A1 |
20050013870 | Freyman et al. | Jan 2005 | A1 |
20050020965 | Rioux et al. | Jan 2005 | A1 |
20050043726 | Mchale et al. | Feb 2005 | A1 |
20050048651 | Ryttsen et al. | Mar 2005 | A1 |
20050049541 | Behar et al. | Mar 2005 | A1 |
20050061322 | Freitag | Mar 2005 | A1 |
20050066974 | Fields et al. | Mar 2005 | A1 |
20050112141 | Terman | May 2005 | A1 |
20050143817 | Hunter et al. | Jun 2005 | A1 |
20050165393 | Eppstein | Jul 2005 | A1 |
20050171522 | Christopherson | Aug 2005 | A1 |
20050171523 | Rubinsky et al. | Aug 2005 | A1 |
20050171574 | Rubinsky et al. | Aug 2005 | A1 |
20050182462 | Chornenky et al. | Aug 2005 | A1 |
20050197619 | Rule et al. | Sep 2005 | A1 |
20050261672 | Deem et al. | Nov 2005 | A1 |
20050267407 | Goldman | Dec 2005 | A1 |
20050282284 | Rubinsky et al. | Dec 2005 | A1 |
20050283149 | Thorne et al. | Dec 2005 | A1 |
20050288684 | Aronson et al. | Dec 2005 | A1 |
20050288702 | McGurk et al. | Dec 2005 | A1 |
20050288730 | Deem et al. | Dec 2005 | A1 |
20060004356 | Bilski et al. | Jan 2006 | A1 |
20060004400 | McGurk et al. | Jan 2006 | A1 |
20060009748 | Mathis | Jan 2006 | A1 |
20060015147 | Persson et al. | Jan 2006 | A1 |
20060020347 | Barrett et al. | Jan 2006 | A1 |
20060024359 | Walker et al. | Feb 2006 | A1 |
20060025760 | Podhajsky | Feb 2006 | A1 |
20060074413 | Behzadian | Apr 2006 | A1 |
20060079838 | Walker et al. | Apr 2006 | A1 |
20060079845 | Howard et al. | Apr 2006 | A1 |
20060079883 | Elmouelhi et al. | Apr 2006 | A1 |
20060085054 | Zikorus et al. | Apr 2006 | A1 |
20060089635 | Young et al. | Apr 2006 | A1 |
20060121610 | Rubinsky et al. | Jun 2006 | A1 |
20060142801 | Demarais et al. | Jun 2006 | A1 |
20060149123 | Vidlund et al. | Jul 2006 | A1 |
20060173490 | Lafontaine et al. | Aug 2006 | A1 |
20060182684 | Beliveau | Aug 2006 | A1 |
20060195146 | Tracey et al. | Aug 2006 | A1 |
20060212032 | Daniel et al. | Sep 2006 | A1 |
20060212078 | Demarais et al. | Sep 2006 | A1 |
20060217703 | Chornenky et al. | Sep 2006 | A1 |
20060224188 | Libbus et al. | Oct 2006 | A1 |
20060235474 | Demarais | Oct 2006 | A1 |
20060247619 | Kaplan et al. | Nov 2006 | A1 |
20060264752 | Rubinsky et al. | Nov 2006 | A1 |
20060264807 | Westersten et al. | Nov 2006 | A1 |
20060269531 | Beebe et al. | Nov 2006 | A1 |
20060276710 | Krishnan | Dec 2006 | A1 |
20060278241 | Ruano | Dec 2006 | A1 |
20060283462 | Fields et al. | Dec 2006 | A1 |
20060293713 | Rubinsky et al. | Dec 2006 | A1 |
20060293725 | Rubinsky et al. | Dec 2006 | A1 |
20060293730 | Rubinsky et al. | Dec 2006 | A1 |
20060293731 | Rubinsky et al. | Dec 2006 | A1 |
20060293734 | Scott et al. | Dec 2006 | A1 |
20070010805 | Fedewa et al. | Jan 2007 | A1 |
20070016125 | Wong et al. | Jan 2007 | A1 |
20070016183 | Lee et al. | Jan 2007 | A1 |
20070016185 | Tullis et al. | Jan 2007 | A1 |
20070021803 | Deem et al. | Jan 2007 | A1 |
20070025919 | Deem et al. | Feb 2007 | A1 |
20070043345 | Davalos et al. | Feb 2007 | A1 |
20070060989 | Deem et al. | Mar 2007 | A1 |
20070078391 | Wortley et al. | Apr 2007 | A1 |
20070088347 | Young et al. | Apr 2007 | A1 |
20070093789 | Smith | Apr 2007 | A1 |
20070096048 | Clerc | May 2007 | A1 |
20070118069 | Persson et al. | May 2007 | A1 |
20070129711 | Altshuler et al. | Jun 2007 | A1 |
20070129720 | Demarais et al. | Jun 2007 | A1 |
20070129760 | Demarais et al. | Jun 2007 | A1 |
20070151848 | Novak et al. | Jul 2007 | A1 |
20070156135 | Rubinsky | Jul 2007 | A1 |
20070191889 | Lang | Aug 2007 | A1 |
20070203486 | Young | Aug 2007 | A1 |
20070230757 | Trachtenberg et al. | Oct 2007 | A1 |
20070239099 | Goldfarb et al. | Oct 2007 | A1 |
20070244521 | Bornzin et al. | Oct 2007 | A1 |
20070287950 | Kjeken et al. | Dec 2007 | A1 |
20070295336 | Nelson et al. | Dec 2007 | A1 |
20070295337 | Nelson et al. | Dec 2007 | A1 |
20080009102 | Yang et al. | Jan 2008 | A1 |
20080015571 | Rubinsky et al. | Jan 2008 | A1 |
20080021371 | Rubinsky et al. | Jan 2008 | A1 |
20080027314 | Miyazaki et al. | Jan 2008 | A1 |
20080027343 | Fields et al. | Jan 2008 | A1 |
20080033340 | Heller et al. | Feb 2008 | A1 |
20080033417 | Nields et al. | Feb 2008 | A1 |
20080045880 | Kjeken et al. | Feb 2008 | A1 |
20080052786 | Lin et al. | Feb 2008 | A1 |
20080065062 | Leung et al. | Mar 2008 | A1 |
20080071262 | Azure | Mar 2008 | A1 |
20080097139 | Clerc et al. | Apr 2008 | A1 |
20080097422 | Edwards et al. | Apr 2008 | A1 |
20080103529 | Schoenbach et al. | May 2008 | A1 |
20080121375 | Richason et al. | May 2008 | A1 |
20080125772 | Stone et al. | May 2008 | A1 |
20080132826 | Shadduck et al. | Jun 2008 | A1 |
20080132884 | Rubinsky et al. | Jun 2008 | A1 |
20080132885 | Rubinsky et al. | Jun 2008 | A1 |
20080140064 | Vegesna | Jun 2008 | A1 |
20080146934 | Czygan et al. | Jun 2008 | A1 |
20080154259 | Gough et al. | Jun 2008 | A1 |
20080167649 | Edwards et al. | Jul 2008 | A1 |
20080171985 | Karakoca | Jul 2008 | A1 |
20080190434 | Wai | Aug 2008 | A1 |
20080200911 | Long | Aug 2008 | A1 |
20080200912 | Long | Aug 2008 | A1 |
20080208052 | LePivert et al. | Aug 2008 | A1 |
20080210243 | Clayton et al. | Sep 2008 | A1 |
20080214986 | Ivorra et al. | Sep 2008 | A1 |
20080236593 | Nelson et al. | Oct 2008 | A1 |
20080249503 | Fields et al. | Oct 2008 | A1 |
20080262489 | Steinke | Oct 2008 | A1 |
20080269586 | Rubinsky et al. | Oct 2008 | A1 |
20080269838 | Brighton et al. | Oct 2008 | A1 |
20080275465 | Paul et al. | Nov 2008 | A1 |
20080281319 | Paul et al. | Nov 2008 | A1 |
20080283065 | Chang et al. | Nov 2008 | A1 |
20080288038 | Paul et al. | Nov 2008 | A1 |
20080300589 | Paul et al. | Dec 2008 | A1 |
20080306427 | Bailey | Dec 2008 | A1 |
20080312599 | Rosenberg | Dec 2008 | A1 |
20090018206 | Barkan et al. | Jan 2009 | A1 |
20090024075 | Schroeppel et al. | Jan 2009 | A1 |
20090029407 | Gazit et al. | Jan 2009 | A1 |
20090038752 | Weng et al. | Feb 2009 | A1 |
20090062788 | Long et al. | Mar 2009 | A1 |
20090062792 | Vakharia et al. | Mar 2009 | A1 |
20090062795 | Vakharia et al. | Mar 2009 | A1 |
20090081272 | Clarke et al. | Mar 2009 | A1 |
20090105703 | Shadduck | Apr 2009 | A1 |
20090114226 | Deem et al. | May 2009 | A1 |
20090125009 | Zikorus et al. | May 2009 | A1 |
20090138014 | Bonutti | May 2009 | A1 |
20090143705 | Danek et al. | Jun 2009 | A1 |
20090157166 | Singhal et al. | Jun 2009 | A1 |
20090163904 | Miller et al. | Jun 2009 | A1 |
20090171280 | Samuel et al. | Jul 2009 | A1 |
20090177111 | Miller et al. | Jul 2009 | A1 |
20090186850 | Kiribayashi et al. | Jul 2009 | A1 |
20090192508 | Laufer et al. | Jul 2009 | A1 |
20090198231 | Esser et al. | Aug 2009 | A1 |
20090228001 | Pacey | Sep 2009 | A1 |
20090247933 | Maor et al. | Oct 2009 | A1 |
20090248012 | Maor et al. | Oct 2009 | A1 |
20090269317 | Davalos | Oct 2009 | A1 |
20090275827 | Aiken et al. | Nov 2009 | A1 |
20090281477 | Mikus et al. | Nov 2009 | A1 |
20090292342 | Rubinsky et al. | Nov 2009 | A1 |
20090301480 | Elsakka et al. | Dec 2009 | A1 |
20090306544 | Ng et al. | Dec 2009 | A1 |
20090306545 | Elsakka et al. | Dec 2009 | A1 |
20090318905 | Bhargav et al. | Dec 2009 | A1 |
20090326366 | Krieg | Dec 2009 | A1 |
20090326436 | Rubinsky et al. | Dec 2009 | A1 |
20090326570 | Brown | Dec 2009 | A1 |
20100004623 | Hamilton, Jr. et al. | Jan 2010 | A1 |
20100006441 | Renaud et al. | Jan 2010 | A1 |
20100023004 | Francischelli et al. | Jan 2010 | A1 |
20100030211 | Davalos et al. | Feb 2010 | A1 |
20100049190 | Long et al. | Feb 2010 | A1 |
20100057074 | Roman et al. | Mar 2010 | A1 |
20100069921 | Miller et al. | Mar 2010 | A1 |
20100087813 | Long | Apr 2010 | A1 |
20100130975 | Long | May 2010 | A1 |
20100147701 | Field | Jun 2010 | A1 |
20100152725 | Pearson et al. | Jun 2010 | A1 |
20100160850 | Ivorra et al. | Jun 2010 | A1 |
20100168735 | Deno et al. | Jul 2010 | A1 |
20100174282 | Demarais et al. | Jul 2010 | A1 |
20100179530 | Long et al. | Jul 2010 | A1 |
20100196984 | Rubinsky et al. | Aug 2010 | A1 |
20100204560 | Salahieh et al. | Aug 2010 | A1 |
20100204638 | Hobbs et al. | Aug 2010 | A1 |
20100222677 | Placek et al. | Sep 2010 | A1 |
20100228234 | Hyde et al. | Sep 2010 | A1 |
20100228247 | Paul et al. | Sep 2010 | A1 |
20100241117 | Paul et al. | Sep 2010 | A1 |
20100249771 | Pearson et al. | Sep 2010 | A1 |
20100250209 | Pearson et al. | Sep 2010 | A1 |
20100255795 | Rubinsky et al. | Oct 2010 | A1 |
20100256628 | Pearson et al. | Oct 2010 | A1 |
20100256630 | Hamilton, Jr. et al. | Oct 2010 | A1 |
20100261994 | Davalos et al. | Oct 2010 | A1 |
20100286690 | Paul et al. | Nov 2010 | A1 |
20100298823 | Cao et al. | Nov 2010 | A1 |
20100331758 | Davalos et al. | Dec 2010 | A1 |
20110017207 | Hendricksen et al. | Jan 2011 | A1 |
20110034209 | Rubinsky et al. | Feb 2011 | A1 |
20110064671 | Bynoe | Mar 2011 | A1 |
20110092973 | Nuccitelli et al. | Apr 2011 | A1 |
20110106221 | Neal et al. | May 2011 | A1 |
20110112531 | Landis et al. | May 2011 | A1 |
20110118727 | Fish et al. | May 2011 | A1 |
20110118732 | Rubinsky et al. | May 2011 | A1 |
20110130834 | Wilson et al. | Jun 2011 | A1 |
20110144524 | Fish et al. | Jun 2011 | A1 |
20110144635 | Harper et al. | Jun 2011 | A1 |
20110144657 | Fish et al. | Jun 2011 | A1 |
20110152678 | Aljuri et al. | Jun 2011 | A1 |
20110166499 | Demarais et al. | Jul 2011 | A1 |
20110176037 | Benkley, III | Jul 2011 | A1 |
20110202053 | Moss et al. | Aug 2011 | A1 |
20110217730 | Gazit et al. | Sep 2011 | A1 |
20110251607 | Kruecker et al. | Oct 2011 | A1 |
20110301587 | Deem et al. | Dec 2011 | A1 |
20120034131 | Rubinsky et al. | Feb 2012 | A1 |
20120059255 | Paul et al. | Mar 2012 | A1 |
20120071870 | Salahieh et al. | Mar 2012 | A1 |
20120071872 | Rubinsky et al. | Mar 2012 | A1 |
20120071874 | Davalos et al. | Mar 2012 | A1 |
20120085649 | Sano et al. | Apr 2012 | A1 |
20120089009 | Omary et al. | Apr 2012 | A1 |
20120090646 | Tanaka et al. | Apr 2012 | A1 |
20120095459 | Callas et al. | Apr 2012 | A1 |
20120109122 | Arena et al. | May 2012 | A1 |
20120130289 | Demarais et al. | May 2012 | A1 |
20120150172 | Ortiz et al. | Jun 2012 | A1 |
20120165813 | Lee et al. | Jun 2012 | A1 |
20120179091 | Ivorra et al. | Jul 2012 | A1 |
20120226218 | Phillips et al. | Sep 2012 | A1 |
20120226271 | Callas et al. | Sep 2012 | A1 |
20120265186 | Burger et al. | Oct 2012 | A1 |
20120277741 | Davalos et al. | Nov 2012 | A1 |
20120303020 | Chornenky et al. | Nov 2012 | A1 |
20120310236 | Placek et al. | Dec 2012 | A1 |
20130023871 | Collins | Jan 2013 | A1 |
20130030239 | Weyh et al. | Jan 2013 | A1 |
20130090646 | Moss et al. | Apr 2013 | A1 |
20130108667 | Soikum et al. | May 2013 | A1 |
20130110106 | Richardson | May 2013 | A1 |
20130184702 | Neal et al. | Jul 2013 | A1 |
20130196441 | Rubinsky et al. | Aug 2013 | A1 |
20130197425 | Golberg et al. | Aug 2013 | A1 |
20130202766 | Rubinsky et al. | Aug 2013 | A1 |
20130218157 | Callas et al. | Aug 2013 | A1 |
20130253415 | Sano et al. | Sep 2013 | A1 |
20130281968 | Davalos et al. | Oct 2013 | A1 |
20130345697 | Garcia et al. | Dec 2013 | A1 |
20130345779 | Maor et al. | Dec 2013 | A1 |
20140017218 | Scott et al. | Jan 2014 | A1 |
20140039489 | Davalos et al. | Feb 2014 | A1 |
20140046322 | Callas et al. | Feb 2014 | A1 |
20140066913 | Sherman | Mar 2014 | A1 |
20140081255 | Johnson et al. | Mar 2014 | A1 |
20140088578 | Rubinsky et al. | Mar 2014 | A1 |
20140121663 | Pearson et al. | May 2014 | A1 |
20140121728 | Dhillon et al. | May 2014 | A1 |
20140163551 | Maor et al. | Jun 2014 | A1 |
20140207133 | Model et al. | Jul 2014 | A1 |
20140276748 | Ku et al. | Sep 2014 | A1 |
20140296844 | Kevin et al. | Oct 2014 | A1 |
20140309579 | Rubinsky et al. | Oct 2014 | A1 |
20140378964 | Pearson | Dec 2014 | A1 |
20150088120 | Garcia et al. | Mar 2015 | A1 |
20150088220 | Callas et al. | Mar 2015 | A1 |
20150112333 | Chorenky et al. | Apr 2015 | A1 |
20150126922 | Willis | May 2015 | A1 |
20150152504 | Lin | Jun 2015 | A1 |
20150164584 | Davalos et al. | Jun 2015 | A1 |
20150173824 | Davalos et al. | Jun 2015 | A1 |
20150201996 | Rubinsky et al. | Jul 2015 | A1 |
20150265349 | Moss et al. | Sep 2015 | A1 |
20150289923 | Davalos et al. | Oct 2015 | A1 |
20150320478 | Cosman, Jr. et al. | Nov 2015 | A1 |
20150320488 | Moshe et al. | Nov 2015 | A1 |
20150320999 | Nuccitelli et al. | Nov 2015 | A1 |
20150327944 | Robert et al. | Nov 2015 | A1 |
20160022957 | Hobbs et al. | Jan 2016 | A1 |
20160066977 | Neal et al. | Mar 2016 | A1 |
20160074114 | Pearson et al. | Mar 2016 | A1 |
20160113708 | Moss et al. | Apr 2016 | A1 |
20160143698 | Garcia et al. | May 2016 | A1 |
20160235470 | Callas et al. | Aug 2016 | A1 |
20160287313 | Rubinsky et al. | Oct 2016 | A1 |
20160287314 | Arena et al. | Oct 2016 | A1 |
20160338758 | Davalos et al. | Nov 2016 | A9 |
20160338761 | Chornenky et al. | Nov 2016 | A1 |
20160354142 | Pearson et al. | Dec 2016 | A1 |
20160367310 | Onik et al. | Dec 2016 | A1 |
20170035501 | Chornenky et al. | Feb 2017 | A1 |
20170086713 | Pushpala et al. | Mar 2017 | A1 |
20170189579 | Davalos | Jul 2017 | A1 |
20170209620 | Davalos et al. | Jul 2017 | A1 |
20170266438 | Sano | Sep 2017 | A1 |
20170319851 | Athos et al. | Nov 2017 | A1 |
20170348525 | Sano et al. | Dec 2017 | A1 |
20170360326 | Davalos | Dec 2017 | A1 |
20180028260 | Onik et al. | Feb 2018 | A1 |
20180036529 | Jaroszeski et al. | Feb 2018 | A1 |
20180071014 | Neal et al. | Mar 2018 | A1 |
20180125565 | Sano et al. | May 2018 | A1 |
20180132922 | Neal, II | May 2018 | A1 |
20180161086 | Davalos et al. | Jun 2018 | A1 |
20180177543 | You et al. | Jun 2018 | A1 |
20180198218 | Regan et al. | Jul 2018 | A1 |
20190023804 | Onik et al. | Jan 2019 | A1 |
20190029749 | Garcia et al. | Jan 2019 | A1 |
20190046255 | Davalos et al. | Feb 2019 | A1 |
20190069945 | Davalos et al. | Mar 2019 | A1 |
20190076528 | Soden et al. | Mar 2019 | A1 |
20190083169 | Single et al. | Mar 2019 | A1 |
20190133671 | Davalos et al. | May 2019 | A1 |
20190175248 | Neal, II | Jun 2019 | A1 |
20190175260 | Davalos | Jun 2019 | A1 |
20190223938 | Arena et al. | Jul 2019 | A1 |
20190232048 | Latouche et al. | Aug 2019 | A1 |
20190233809 | Neal et al. | Aug 2019 | A1 |
20190256839 | Neal et al. | Aug 2019 | A1 |
20190282294 | Davalos et al. | Sep 2019 | A1 |
20190328445 | Sano et al. | Oct 2019 | A1 |
20190351224 | Sano et al. | Nov 2019 | A1 |
20190376055 | Davalos et al. | Dec 2019 | A1 |
20200046432 | Garcia et al. | Feb 2020 | A1 |
20200046967 | Ivey et al. | Feb 2020 | A1 |
20200093541 | Neal et al. | Mar 2020 | A9 |
20200197073 | Sano et al. | Jun 2020 | A1 |
20200260987 | Davalos et al. | Aug 2020 | A1 |
20200323576 | Neal et al. | Oct 2020 | A1 |
20200405373 | O'Brien et al. | Dec 2020 | A1 |
20210022795 | Davalos et al. | Jan 2021 | A1 |
20210023362 | Lorenzo et al. | Jan 2021 | A1 |
20210052882 | Wasson et al. | Feb 2021 | A1 |
20210113265 | D'Agostino et al. | Apr 2021 | A1 |
20210137410 | O'Brien et al. | May 2021 | A1 |
20210186600 | Davalos et al. | Jun 2021 | A1 |
20210361341 | Neal et al. | Nov 2021 | A1 |
20210393312 | Davalos et al. | Dec 2021 | A1 |
20220151688 | Garcia et al. | May 2022 | A1 |
20220161027 | Aycock et al. | May 2022 | A1 |
20220290183 | Davalos et al. | Sep 2022 | A1 |
20220362549 | Sano et al. | Nov 2022 | A1 |
20230157759 | Garcia et al. | May 2023 | A1 |
20230212551 | Neal, II et al. | Jul 2023 | A1 |
20230248414 | Sano et al. | Aug 2023 | A1 |
20230355293 | Davalos et al. | Nov 2023 | A1 |
20230355968 | Davalos et al. | Nov 2023 | A1 |
20240008911 | Davalos et al. | Jan 2024 | A1 |
20240074804 | Neal et al. | Mar 2024 | A1 |
20240173063 | Neal, II et al. | May 2024 | A1 |
20240268878 | Davalos et al. | Aug 2024 | A1 |
20240277245 | Davalos et al. | Aug 2024 | A1 |
20240299076 | O'Brien et al. | Sep 2024 | A1 |
Number | Date | Country |
---|---|---|
7656800 | Apr 2001 | AU |
2002315095 | Dec 2002 | AU |
2003227960 | Dec 2003 | AU |
2005271471 | Feb 2006 | AU |
2006321570 | Jun 2007 | AU |
2006321574 | Jun 2007 | AU |
2006321918 | Jun 2007 | AU |
2009243079 | Jan 2011 | AU |
2015259303 | Nov 2016 | AU |
2297846 | Feb 1999 | CA |
2378110 | Feb 2001 | CA |
2445392 | Nov 2002 | CA |
2458676 | Mar 2003 | CA |
2487284 | Dec 2003 | CA |
2575792 | Feb 2006 | CA |
2631940 | Jun 2007 | CA |
2631946 | Jun 2007 | CA |
2632604 | Jun 2007 | CA |
2722296 | Nov 2009 | CA |
2751462 | Nov 2010 | CA |
1525839 | Sep 2004 | CN |
101534736 | Sep 2009 | CN |
102238921 | Nov 2011 | CN |
102421386 | Apr 2012 | CN |
106715682 | May 2017 | CN |
112807074 | May 2021 | CN |
863111 | Jan 1953 | DE |
4000893 | Jul 1991 | DE |
60038026 | Feb 2009 | DE |
0218275 | Apr 1987 | EP |
0339501 | Nov 1989 | EP |
0378132 | Jul 1990 | EP |
0533511 | Mar 1993 | EP |
0998235 | May 2000 | EP |
0528891 | Jul 2000 | EP |
1196550 | Apr 2002 | EP |
1439792 | Jul 2004 | EP |
1442765 | Aug 2004 | EP |
1462065 | Sep 2004 | EP |
1061983 | Nov 2004 | EP |
1493397 | Jan 2005 | EP |
1506039 | Feb 2005 | EP |
0935482 | May 2005 | EP |
1011495 | Nov 2005 | EP |
1796568 | Jun 2007 | EP |
1207797 | Feb 2008 | EP |
1406685 | Jun 2008 | EP |
1424970 | Dec 2008 | EP |
2280741 | Feb 2011 | EP |
2381829 | Nov 2011 | EP |
2413833 | Feb 2012 | EP |
2488251 | Aug 2012 | EP |
2642937 | Oct 2013 | EP |
1791485 | Dec 2014 | EP |
2373241 | Jan 2015 | EP |
1962710 | Aug 2015 | EP |
1962708 | Sep 2015 | EP |
1962945 | Apr 2016 | EP |
3143124 | Mar 2017 | EP |
3852868 | Jul 2021 | EP |
2300272 | Jun 2008 | ES |
2315493 | Apr 2009 | ES |
2001510702 | Aug 2001 | JP |
2003505072 | Feb 2003 | JP |
2003506064 | Feb 2003 | JP |
2004203224 | Jul 2004 | JP |
2004525726 | Aug 2004 | JP |
2004303590 | Oct 2004 | JP |
2005501596 | Jan 2005 | JP |
2005526579 | Sep 2005 | JP |
2008508946 | Mar 2008 | JP |
4252316 | Apr 2009 | JP |
2009518130 | May 2009 | JP |
2009518150 | May 2009 | JP |
2009518151 | May 2009 | JP |
2009532077 | Sep 2009 | JP |
2010503496 | Feb 2010 | JP |
2011137025 | Jul 2011 | JP |
2011137025 | Jul 2011 | JP |
2012510332 | May 2012 | JP |
2012515018 | Jul 2012 | JP |
2012521863 | Sep 2012 | JP |
2014501574 | Jan 2014 | JP |
2017518805 | Jul 2017 | JP |
6594901 | Oct 2019 | JP |
2019193668 | Nov 2019 | JP |
7051188 | Apr 2022 | JP |
101034682 | May 2011 | KR |
9104014 | Apr 1991 | WO |
9634571 | Nov 1996 | WO |
9639531 | Dec 1996 | WO |
9810745 | Mar 1998 | WO |
9814238 | Apr 1998 | WO |
9901076 | Jan 1999 | WO |
9904710 | Feb 1999 | WO |
0020554 | Apr 2000 | WO |
0107583 | Feb 2001 | WO |
0107584 | Feb 2001 | WO |
0107585 | Feb 2001 | WO |
0110319 | Feb 2001 | WO |
0148153 | Jul 2001 | WO |
2001048153 | Jul 2001 | WO |
0170114 | Sep 2001 | WO |
0181533 | Nov 2001 | WO |
02078527 | Oct 2002 | WO |
02089686 | Nov 2002 | WO |
02100459 | Dec 2002 | WO |
2003020144 | Mar 2003 | WO |
2003047684 | Jun 2003 | WO |
03099382 | Dec 2003 | WO |
2004037341 | May 2004 | WO |
2004080347 | Sep 2004 | WO |
2005065284 | Jul 2005 | WO |
2006017666 | Feb 2006 | WO |
2006031541 | Mar 2006 | WO |
2006130194 | Dec 2006 | WO |
2007067628 | Jun 2007 | WO |
2007067937 | Jun 2007 | WO |
2007067938 | Jun 2007 | WO |
2007067939 | Jun 2007 | WO |
2007067940 | Jun 2007 | WO |
2007067941 | Jun 2007 | WO |
2007067943 | Jun 2007 | WO |
2007070361 | Jun 2007 | WO |
2007100727 | Sep 2007 | WO |
2007123690 | Nov 2007 | WO |
2008063195 | May 2008 | WO |
2008034103 | Nov 2008 | WO |
2009046176 | Apr 2009 | WO |
2007137303 | Jul 2009 | WO |
2009134876 | Nov 2009 | WO |
2009135070 | Nov 2009 | WO |
2009137800 | Nov 2009 | WO |
2010064154 | Jun 2010 | WO |
2010080974 | Jul 2010 | WO |
2010117806 | Oct 2010 | WO |
2010118387 | Oct 2010 | WO |
2010132472 | Nov 2010 | WO |
2010151277 | Dec 2010 | WO |
2011047387 | Apr 2011 | WO |
2011062653 | May 2011 | WO |
2011072221 | Jun 2011 | WO |
2012051433 | Apr 2012 | WO |
2012071526 | May 2012 | WO |
2012071526 | May 2012 | WO |
2012088149 | Jun 2012 | WO |
2015175570 | Nov 2015 | WO |
2016100325 | Jun 2016 | WO |
2016164930 | Oct 2016 | WO |
2017117418 | Jul 2017 | WO |
2020061192 | Mar 2020 | WO |
2022066768 | Mar 2022 | WO |
2023172773 | Sep 2023 | WO |
2024081749 | Apr 2024 | WO |
Entry |
---|
Lackovic, I., et al., “Three-dimensional Finite-element Analysis of Joule Heating in Electrochemotherapy and in vivo Gene Electrotransfer”, Ieee Transactions on Dielectrics and Electrical Insulation, 16(5): p. 1338-1347 (2009). |
Latouche, E. L., M. B. Sano, M. F. Lorenzo, R. V. Davalos, and R. C. G. Martin, “Irreversible electroporation for the ablation of pancreatic malignancies: A patient-specific methodology,” J. Surg. Oncol., vol. 115, No. 6, pp. 711-717, 2017. |
Laufer et al., “Electrical impedance characterization of normal and cancerous human hepatic tissue.” Physiological Measurement, vol. 31, pp. 995-1009 (2010). |
Lebar et al., “Inter-pulse interval between rectangular voltage pulses affects electroporation threshold of artificial lipid bilayers.” IEEE Transactions on NanoBioscience, vol. 1 (2002) pp. 116-120. |
Lee, E. W. et al. Advanced Hepatic Ablation Technique for Creating Complete Cell Death : Irreversible Electroporation. Radiology 255, 426-433, doi:10.1148/radiol.10090337 (2010). |
Lee, E.W., et al., “Imaging guided percutaneous irreversible electroporation: ultrasound and immunohistological correlation”, Technol Cancer Res Treat 6: 287-294 (2007). |
Lee, R. C., D. J. Canaday, and S. M. Hammer. Transient and stable ionic permeabilization of isolated skeletal muscle cells after electrical shock. J. Burn Care Rehabil. 14:528-540, 1993. |
Li, W., et al., “The Effects of Irreversible Electroporation (IRE) on Nerves” PloS One, Apr. 2011, 6(4), e18831. |
Liu, et al., Measurement of Pharyngeal Transit Time by Electrical Impedance Tomography, Clin. Phys. Physiol. Meas., 1992, vol. 13, Suppl. A, pp. 197-200. |
Long, G., et al., “Targeted Tissue Ablation With Nanosecond Pulses”. Ieee Transactions on Biomedical Engineering, 58(8) (2011). |
Lundqvist, et al., Altering the Biochemical State of Individual Cultured Cells and Organelles with Ultramicroelectrodes, Proc. Natl. Acad. Sci. USA, vol. 95, pp. 10356-10360, Sep. 1998. |
Lurquin, Gene Transfer by Electroporation, Molecular Biotechnology, vol. 7, 1997. |
Lynn, et al., A New Method for the Generation and Use of Focused Ultrasound in Experimental Biology, The Journal of General Physiology, vol. 26, 179-193, 1942. |
Maček Lebar and Miklavčič, “Cell electropermeabilization to small molecules in vitro: control by pulse parameters.” Radiology and Oncology, vol. 35(3), pp. 193-202 (2001). |
Macherey, O. et al., “Asymmetric pulses in cochlear implants: Effects of pulse shape, polarity, and rate,” JARO—J. Assoc. Res. Otolaryngol., vol. 7, No. 3, 253-266, 2006, 14 pages. |
Mahmood, F., et al., “Diffusion-Weighted MRI for Verification of Electroporation-Based Treatments”, Journal of Membrane Biology 240: 131-138 (2011). |
Mahnic-Kalamiza, et al., “Educational application for visualization and analysis of electric field strength in multiple electrode electroporation,” BMC Med Educ, vol. 12:102, 13 pages, 2012. |
Malpica et al., “Grading ovarian serous carcinoma using a two-tier system.” The American Journal of Surgical Pathology, vol. 28, pp. 496-504 (2004). |
Maor et al., The Effect of Irreversible Electroporation on Blood Vessels, Tech. in Cancer Res. and Treatment, vol. 6, No. 4, Aug. 2007, pp. 307-312. |
Maor, E., A. Ivorra, and B. Rubinsky, Non Thermal Irreversible Electroporation: Novel Technology for Vascular Smooth Muscle Cells Ablation, PLoS ONE, 2009, 4(3): p. e4757. |
Maor, E., A. Ivorra, J. Leor, and B. Rubinsky, Irreversible electroporation attenuates neointimal formation after angioplasty, IEEE Trans Biomed Eng, Sep. 2008, 55(9): p. 2268-74. |
Marszalek et al., “Schwan equation and transmembrane potential induced by alternating electric field.” Biophysical Journal, vol. 58, pp. 1053-1058 (1990). |
Martin, n.R.C.G., et al., “Irreversible electroporation therapy in the management of locally advanced pancreatic adenocarcinoma.” Journal of the American College of Surgeons, 2012. 215(3): p. 361-369. |
Martinsen, O. G. and Grimnes, S., Bioimpedance and bioelectricity basics. Academic press, 2011. |
Marty, M., et al., “Electrochemotherapy—An easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: Results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study,” European Journal of Cancer Supplements, 4, 3-13, 2006. |
McIntyre, C. C. et al., “Modeling the excitability of mammalian nerve fibers: Influence of afterpotentials on the recovery cycle,” J. Neurophysiol., vol. 87, No. 2, 995-1006, 2002, 12 pages. |
McNeal, D. R., “Analysis of a Model for Excitation of Myelinated Nerve,” IEEE Trans. Biomed. Eng., vol. BME-23, No. 4, 329-337, 1976, 9 pages. |
Mercadal, B. et al., “Avoiding nerve stimulation in irreversible electroporation: A numerical modeling study,” Phys. Med. Biol., vol. 62, No. 20, 8060-8079, 2017, 28 pages. |
Miklavčič, D. et al., “The effect of high frequency electric pulses on muscle contractions and antitumor efficiency in vivo for a potential use in clinical electrochemotherapy,” Bioelectrochemistry, vol. 65, 121-128, 2004, 8 pages. |
Miklavčič, et al., A Validated Model of an in Vivo Electric Field Distribution in Tissues for Electrochemotherapy and for DNA Electrotransfer for Gene Therapy, Biochimica et Biophysica Acta 1523 (2000), pp. 73-83. |
Miklavčič, The Importance of Electric Field Distribution for Effective in Vivo Electroporation of Tissues, Biophysical Journal, vol. 74, May 1998, pp. 2152-2158. |
Miller, L., et al., Cancer cells ablation with irreversible electroporation, Technology in Cancer Research and Treatment 4 (2005) 699-706. |
Min, M., A. Giannitsis, R. Land, B. Cahill, U. Pliquett, T. Nacke, D. Frense, G. Gastrock, and D. Beckmann, “Comparison of rectangular wave excitations in broad band impedance spectroscopy for microfluidic applications,” in World Congress on Medical Physics and Biomedical Engineering, Sep. 7-12, 2009, Munich, Germany. Springer, 2009, pp. 85-88. |
Min, M., U. Pliquett, T. Nacke, A. Barthel, P. Annus, and R. Land, “Broadband excitation for short-time impedance spectroscopy,” Physiological measurement, vol. 29, No. 6, p. S185, 2008. |
Mir et al., “Mechanisms of Electrochemotherapy” Advanced Drug Delivery Reviews 35:107-118 (1999). |
Mir, et al., Effective Treatment of Cutaneous and Subcutaneous Malignant Tumours by Electrochemotherapy, British Journal of Cancer, vol. 77, No. 12, pp. 2336-2342, 1998. |
Mir, et al., Electrochemotherapy Potentiation of Antitumour Effect of Bleomycin by Local Electric Pulses, European Journal of Cancer, vol. 27, No. 1, pp. 68-72, 1991. |
Mir, et al., Electrochemotherapy, a Novel Antitumor Treatment: First Clinical Trial, C.R. Acad. Sci. Paris, Ser. III, vol. 313, pp. 613-618, 1991. |
Mir, L.M. and Orlowski, S., The basis of electrochemotherapy, in Electrochemotherapy, electrogenetherapy, and transdermal drug delivery: electrically mediated delivery of molecules to cells, M.J. Jaroszeski, R. Heller, R. Gilbert, Editors, 2000, Humana Press, p. 99-118. |
Mir, L.M., et al., Electric Pulse-Mediated Gene Delivery to Various Animal Tissues, in Advances in Genetics, Academic Press, 2005, p. 83-114. |
Mir, Therapeutic Perspectives of In Vivo Cell Electropermeabilization, Bioelectrochemistry, vol. 53, pp. 1-10, 2000. |
Mulhall et al., “Cancer, pre-cancer and normal oral cells distinguished by dielectrophoresis.” Analytical and Bioanalytical Chemistry, vol. 401, pp. 2455-2463 (2011). |
Narayan, et al., Establishment and Characterization of a Human Primary Prostatic Adenocarcinoma Cell Line (ND-1), The Journal of Urology, vol. 148, 1600-1604, Nov. 1992. |
Naslund, Cost-Effectiveness of Minimally Invasive Treatments and Transurethral Resection (TURP) in Benign Prostatic Hyperplasia (BPH), (Abstract), Presented at 2001 AUA National Meeting,, Anaheim, CA, Jun. 5, 2001. |
Naslund, Michael J., Transurethral Needle Ablation of the Prostate, Urology, vol. 50, No. 2, Aug. 1997. |
Neal II et al., “A Case Report on the Successful Treatment of a Large Soft-Tissue Sarcoma with Irreversible Electroporation,” Journal of Clinical Oncology, 29, pp. 1-6, 2011. |
Neal II et al., “Experimental Characterization and Numerical Modeling of Tissue Electrical Conductivity during Pulsed Electric Fields for Irreversible Electroporation Treatment Planning,” Biomedical Engineering, IEEE Transactions on Biomedical Engineering, vol. 59, pp. 1076-1085, 2012. |
Neal II, R. E. et al. In Vitro and Numerical Support for Combinatorial Irreversible Electroporation and Electrochemotherapy Glioma Treatment. Annals of Biomedical Engineering, Oct. 29, 2013, 13 pages. |
Neal II, R. E., et al., “Successful Treatment of a Large Soft Tissue Sarcoma with Irreversible Electroporation”, Journal of Clinical Oncology, 29:13, e372-e377 (2011). |
Neal II, R.E., et al., “Treatment of breast cancer through the application of irreversible electroporation using a novel minimally invasive single needle electrode.” Breast Cancer Research and Treatment, 2010. 123(1): p. 295-301. |
Pending Application No. CN 201580025135.6, First Office Action, dated Sep. 25, 2019 (Chinese and English Versions, each 6 pages). |
Pending Application No. CN 201580025135.6, Response to First Office Action, Feb. 7, 2020, (Chinese Vrsion, 13 pages, and English Version, 10 pages). |
Pending Application No. CN 201580025135.6, Second Office Action, dated Apr. 29, 2020 (Chinese Version, 4 pages, and English Version, 7 pages). |
Pending Application No. CN 202011281572.3, Amendment filed Sep. 8, 2021 (16 pages) with English Version of the Amended Claims (7 pages). |
Pending Application No. EP 09739678.2 Extended European Search Report dated May 11, 2012, 7 pages. |
Pending Application No. EP 09739678.2, Communication pursuant to Rule 94.3, Apr. 16, 2014, 3 pages. |
Pending Application No. EP 09739678.2, Office Action dated Apr. 16, 2014, 3 pages. |
Pending Application No. EP 09739678.2, Response to Extended European Search Report and Communication pursuant to Rules 70(2) and 70a(2) EPC, dated Dec. 10, 2012. |
Pending Application No. EP 10824248.8, Extended Search Report (Jan. 20, 2014), 6 pages. |
Pending Application No. EP 10824248.8, Invitation Pursuant to rule 62a(1) EPC (Sep. 25, 2013), 2 pages. |
Pending Application No. EP 10824248.8, Communication Pursuant to Rule 70(2) dated Feb. 6, 2014, 1 page. |
Pending Application No. EP 10824248.8, Response to Invitation Pursuant to rule 62a(1) EPC (Sep. 25, 2013), Response filed Nov. 18, 2013. |
Pending Application No. EP 11842994.3, Communication Pursuant to Rules 70(2) and 70a(2) EPC dated Apr. 28, 2014, 1 page. |
Pending Application No. EP 11842994.3, Extended European Search Report dated Apr. 9, 2014, 34 pages. |
Pending Application No. EP 15793361.5, Claim amendment filed Jul. 18, 2018, 13 pages. |
Pending Application No. EP 15793361.5, Communication Pursuant to Article 94(3) EPC, dated May 3, 2021, 4 pages. |
Pending Application No. EP 15793361.5, European Search Report dated Dec. 4, 2017, 9 pages. |
Pending Application No. EP 15793361.5, Response to May 3, 2021 Communication Pursuant to Article 94(3) EPC, dated Nov. 12, 2021, 12 pages. |
Pending Application No. JP 2013-541050, Voluntary Amendment filed Oct. 29, 2013, 4 pages (with English Version of the Claims, 2 pages). |
Pending Application No. JP 2016-567747 Amendment filed Jul. 18, 2019, 7 pgs. |
Pending Application No. JP 2016-567747 English translation of amended claims filed Jul. 18, 2019, 6 pgs. |
Pending Application No. JP 2016-567747, First Office Action (Translation) dated Feb. 21, 2019, 5 pages. |
Pending Application No. JP 2016-567747, First Office Action dated Feb. 21, 2019, 4 pages. |
Pending Application No. JP 2016-567747, Decision to Grant with English Version of allowed claims, 9 pages. |
Pending Application No. JP 2019-133057, amended claims (English language version) filed Aug. 14, 2019, 5 pages. |
Pending Application No. JP 2019-133057, Office Action dated Sep. 1, 2021, 3 pages (and English translation, 4 pages). |
Pending Application No. JP 2019-133057, Office Action dated Sep. 14, 2020, 5 pages (and English translation, 6 pages). |
Pending Application No. JP 2019-133057, Request for Amendment and Appeal filed Dec. 23, 2021 (8 pages) with English Translation of the Amended Claims (2 pages). |
Pending Application No. JP 2019-133057, Request for Appeal and Amended Claims (8 bages) with English translation of amended claims (2 pages) dated Dec. 23, 2021. |
Pending Application No. JP 2019-133057, Response to Sep. 14, 2020 Office Action filed Mar. 18, 2021 (6 pages) with English Version of claims and response (5 pages). |
Pending Application No. PCT/US21/51551, International Search Report and Written Opinion dated Dec. 29, 2021, 14 pages. |
Phillips, M., Maor, E. & Rubinsky, B. Non-Thermal Irreversible Electroporation for Tissue Decellularization. J. Biomech. Eng, doi:10.1115/1.4001882 (2010). |
Piñero, et al., Apoptotic and Necrotic Cell Death Are Both Induced by Electroporation in HL60 Human Promyeloid Leukaemia Cells, Apoptosis, vol. 2, No. 3, 330-336, Aug. 1997. |
Polajžer, T. et al., “Cancellation effect is present in high-frequency reversible and irreversible electroporation,” Bioelectrochemistry, vol. 132, 2020, 11 pages. |
Polak et al., “On the Electroporation Thresholds of Lipid Bilayers: Molecular Dynamics Simulation Investigations.” The Journal of Membrane Biology, vol. 246, pp. 843-850 (2013). |
Pucihar et al., “Numerical determination of transmembrane voltage induced on irregularly shaped cells.” Annals of Biomedical Engineering, vol. 34, pp. 642-652 (2006). |
Qiao et al. Electrical properties of breast cancer cells from impedance measurement of cell suspensions, 2010, Journal of Physics, 224, 1-4 (2010). |
Rajagopal, V. and S.G. Rockson, Coronary restenosis: a review of mechanisms and management, The American Journal of Medicine, 2003, 115(7): p. 547-553. |
Reberšek, M. and D. Miklavčič, “Advantages and Disadvantages of Different Concepts of Electroporation Pulse Generation,” Automatika 52(2011) 1, 12-19. |
Reilly, J. P. et al., “Sensory Effects of Transient Electrical Stimulation—Evaluation with a Neuroelectric Model,” IEEE Trans. Biomed. Eng., vol. BME-32, No. 12, 1001-1011, 1985, 11 pages. |
Ringel-Scaia, V. M. et al., High-frequency irreversible electroporation is an effective tumor ablation strategy that Induces immunologic cell death and promotes systemic anti-tumor immunity. EBioMedicine, 2019, 44, 112-125. |
Rogers, W. R. et al., “Strength-duration curve an electrically excitable tissue extended down to near 1 nanosecond,” IEEE Trans. Plasma Sci., vol. 32, No. 4 II, 1587-1599, 2004, 13 pages. |
Rols, M.P., et al., Highly Efficient Transfection of Mammalian Cells by Electric Field Pulses: Application to Large Volumes of Cell Culture by Using a Flow System, Eur. J. Biochem. 1992, 206, pp. 115-121. |
Ron et al., “Cell-based screening for membranal and cytoplasmatic markers using dielectric spectroscopy.” Biophysical chemistry, 135 (2008) pp. 59-68. |
Rossmeisl et al., “Pathology of non-thermal irreversible electroporation (N-TIRE)-induced ablation of the canine brain.” Journal of Veterinary Science vol. 14, pp. 433-440 (2013). |
Rossmeisl, “New Treatment Modalities for Brain Tumors in Dogs and Cats.” Veterinary Clinics of North America: Small Animal Practice 44, pp. 1013-1038 (2014). |
Rossmeisl, John H. et al. Safety and feasibility of the NanoKnife system for irreversible electroporation ablative treatment of canine spontaneous intracranial gliomas. J. Neurosurgery 123.4 (2015): 1008-1025. |
Rubinsky et al., “Optimal Parameters for the Destruction of Prostate Cancer Using Irreversible Electroporation.” The Journal of Urology, 180 (2008) pp. 2668-2674. |
Rubinsky, B., “Irreversible Electroporation in Medicine”, Technology in Cancer Research and Treatment, vol. 6, No. 4, Aug. 1, 2007, pp. 255-259. |
Rubinsky, B., ed, Cryosurgery. Annu Rev. Biomed. Eng. vol. 2 2000. 157-187. |
Pending U.S. Appl. No. 14/686,380, Non-Final Office Action dated Nov. 22, 2017, 11 pages. |
Pending U.S. Appl. No. 14/686,380, Reply Brief, dated Apr. 12, 2022, 4 pages. |
Pending U.S. Appl. No. 14/686,380, Response to Feb. 13, 2020 Non-Final Office Action, filed Jul. 1, 2020, 8 pages. |
Pending U.S. Appl. No. 14/686,380, Response to Jul. 19, 2017 Restriction Requirement, dated Sep. 15, 2017, 2 pages. |
Pending U.S. Appl. No. 14/686,380, Response to May 9, 2018 Final Office Action with RCE, dated Aug. 30, 2018, 14 pages. |
Pending U.S. Appl. No. 14/686,380, Response to Non-Final Office Action Filed Aug. 1, 2019, 11 pages. |
Pending U.S. Appl. No. 14/686,380, Response to Nov. 22, 2017 Non-Final Office Action dated Mar. 28, 2018, 11 pages. |
Pending U.S. Appl. No. 14/686,380, Response to Oct. 6, 2020 Final Office Action with RCE, dated Jan. 6, 2020, 11 pages. |
Pending U.S. Appl. No. 14/686,380, Response to Sep. 3, 2019 Final Office Action, filed Jan. 3, 2020, 10 pages. |
Pending U.S. Appl. No. 14/686,380, Restriction Requirement Jul. 19, 2017, 7 pages. |
Pending U.S. Appl. No. 14/686,380, Amendment after Notice of Appeal, dated Oct. 12, 2021, 6 pages. |
Pending U.S. Appl. No. 14/686,380, Non-Final Office Action dated May 7, 2021, 17 pages. |
Pending U.S. Appl. No. 14/808,679, 3rd Renewed Petition, Dec. 9, 2019 and Petition Decision Dec. 18, 2019, 11 pages. |
Pending U.S. Appl. No. 14/808,679, Appeal Brief, filed Jun. 3, 2021, 25 pages. |
Pending U.S. Appl. No. 14/808,679, Appeal Decision dated Jul. 19, 2022, 8 pages. |
Pending U.S. Appl. No. 14/808,679, Examiner's Answer to Appeal Brief, dated Sep. 15, 2021, 6 pages. |
Pending U.S. Appl. No. 14/808,679, Final Office Action dated Dec. 28, 2020, 11 pages. |
Pending U.S. Appl. No. 14/808,679, Final Office Action dated Jan. 11, 2019, 12 pages. |
Pending U.S. Appl. No. 14/808,679, Interview Summary, Apr. 26, 2019, 3 pages. |
Pending U.S. Appl. No. 14/808,679, Non-Final Office Action dated Jun. 12, 2020, 10 pages. |
Pending U.S. Appl. No. 14/808,679, Non-Final Office Action dated Sep. 10, 2018, 12 pages. |
Pending U.S. Appl. No. 14/808,679, Notice of Allowance dated Aug. 17, 2022, 8 pages. |
Pending U.S. Appl. No. 14/808,679, Panel Decision from Pre-Appeal Brief Review, dated Apr. 26, 2021, 2 pages. |
Pending U.S. Appl. No. 14/808,679, Petition Decision, dated Oct. 1, 2019, 5 pages. |
Pending U.S. Appl. No. 14/808,679, Petition Decision, dated Oct. 23, 2019, 6 pages. |
Pending U.S. Appl. No. 14/808,679, Petition Decision, Dec. 3, 2019, 5 pages. |
Pending U.S. Appl. No. 14/808,679, Petition for Priority and Supplemental Response, filed May 8, 2019, 25 pages. |
Pending U.S. Appl. No. 14/808,679, Petition Supplement, Sep. 25, 2019, 10 pages. |
Pending U.S. Appl. No. 14/808,679, Petition, May 8, 2019, 2 pages. |
Pending U.S. Appl. No. 14/808,679, Pre-Appeal Brief Reasons for Request for Review, dated Mar. 29, 2021, 5 pages. |
Pending U.S. Appl. No. 14/808,679, Preliminary Amendment Jul. 24, 2015, 6 pages. |
Pending U.S. Appl. No. 14/808,679, Preliminary Amendment, filed Jul. 27, 2015, 9 pages. |
Pending U.S. Appl. No. 14/808,679, RCE filed Apr. 11, 2019, 8 pages. |
Pending U.S. Appl. No. 14/808,679, Renewed Petition, filed Oct. 9, 2019, 1 pages. |
Pending U.S. Appl. No. 14/808,679, Reply Brief, dated Nov. 15, 2021, 5 pages. |
Pending U.S. Appl. No. 14/808,679, Response to Mar. 19, 2018 Restriction Requirement dated May 21, 2018, 2 pages. |
Pending U.S. Appl. No. 14/808,679, Response to Non-Final Office Action dated Jun. 12, 2020, filed Sep. 14, 2020, 9 pages. |
Pending U.S. Appl. No. 14/808,679, Response to Sep. 10, 2018 Non-Final Office Action dated Dec. 10, 2018, 9 pages. |
Pending U.S. Appl. No. 14/808,679, Restriction Requirement dated Mar. 19, 2018, 7 pages. |
Pending U.S. Appl. No. 14/808,679, Second Renewed Petition, filed Oct. 31, 2019, 3 pages. |
Pending U.S. Appl. No. 14/808,679, Supplemental Response, May 8, 2019, 16 pages. |
Pending U.S. Appl. No. 16/152,743, Response to Notice to File Corrected Application Papers, filed Jan. 7, 2022, 8 pages. |
Pending U.S. Appl. No. 16/375,878, Applicant-Initiated Interview Summary dated Aug. 23, 2022, 7 pages. |
Pending U.S. Appl. No. 16/375,878, Final Office Action dated Apr. 15, 2022, 8 pages. |
Pending U.S. Appl. No. 16/375,878, Non-Final Office Action dated Jan. 23, 2023, 8 pages. |
Pending U.S. Appl. No. 16/375,878, Non-Final Office Action dated Jun. 24, 2021, 8 pages. |
Pending U.S. Appl. No. 16/375,878, Preliminary Amendment, filed Apr. 9, 2019, 9 pages. |
Pending U.S. Appl. No. 16/375,878, Response to Apr. 15, 2022 Final Office Action, dated Aug. 15, 2022, 8 pages. |
Pending U.S. Appl. No. 16/375,878, Response to Jun. 24, 2021 Non-Final Office Action, dated Dec. 22, 2021, 8 pages. |
Pending U.S. Appl. No. 16/375,878, Second Preliminary Amendment, filed Feb. 5, 2020, 3 pages. |
Davalos et al., “Electrical impedance tomography for imaging tissue electroporation,” IEEE Transactions on Biomedical Engineering, 51, pp. 761-767, 2004. |
Davalos et al., “Theoretical analysis of the thermal effects during in vivo tissue electroporation.” Bioelectrochemistry, vol. 61(1-2): pp. 99-107, 2003. |
Davalos, et al., A Feasibility Study for Electrical Impedance Tomography as a Means to Monitor T issue Electroporation for Molecular Medicine, IEEE Transactions on Biomedical Engineering, vol. 49, No. 4, Apr. 2002. |
Davalos, et al., Tissue Ablation with Irreversible Electroporation, Annals of Biomedical Engineering, vol. 33, No. 2, p. 223-231, Feb. 2005. |
Davalos, R. V. & Rubinsky, B. Temperature considerations during irreversible electroporation. International Journal of Heat and Mass Transfer 51, 5617-5622, doi:10.1016/j.ijheatmasstransfer.2008.04.046 (2008). |
Davalos, Real-Time Imaging for Molecular Medicine through Electrical Impedance Tomography of Electroporation, Dissertation for Ph.D. in Engineering-Mechanical Engineering, Graduate Division of University of California, Berkeley, 2002. |
De Senneville, B. D. et al., “MR thermometry for monitoring tumor ablation,” European radiology, vol. 17, No. 9, pp. 2401-2410, 2007. |
De Vuyst, E., et al., “In situ bipolar Electroporation for localized cell loading with reporter dyes and investigating gap functional coupling”, Biophysical Journal, 94(2): p. 469-479 (2008). |
Dean, Nonviral Gene Transfer to Skeletal, Smooth, and Cardiac Muscle in Living Animals, Am J. Physiol Cell Physiol 289: 233-245, 2005. |
Demirbas, M. F., “Thermal Energy Storage and Phase Change Materials: An Overview” Energy Sources Part B 1(1), 85-95 (2006). |
Dev, et al., Medical Applications of Electroporation, IEEE Transactions of Plasma Science, vol. 28, No. 1, pp. 206-223, Feb. 2000. |
Dev, et al., Sustained Local Delivery of Heparin to the Rabbit Arterial Wall with an Electroporation Catheter, Catheterization and Cardiovascular Diagnosis, Nov. 1998, vol. 45, No. 3, pp. 337-343. |
Duraiswami, et al., Boundary Element Techniques for Efficient 2-D and 3-D Electrical Impedance Tomography, Chemical Engineering Science, vol. 52, No. 13, pp. 2185-2196, 1997. |
Duraiswami, et al., Efficient 2D and 3D Electrical Impedance Tomography Using Dual Reciprocity Boundary Element Techniques, Engineering Analysis with Boundary Elements 22, (1998) 13-31. |
Duraiswami, et al., Solution of Electrical Impedance Tomography Equations Using Boundary Element Methods, Boundary Element Technology XII, 1997, pp. 226-237. |
Edd et al., “Mathematical modeling of irreversible electroporation for treatment planning.” Technology in Cancer Research and Treatment, vol. 6, No. 4, pp. 275-286 (2007). |
Edd, J., et al., In-Vivo Results of a New Focal Tissue Ablation Technique: Irreversible Electroporaton, IEEE Trans. Biomed. Eng. 53 (2006) p. 1409-1415. |
Ellis TL, Garcia PA, Rossmeisl JH, Jr., Henao-Guerrero N, Robertson J, et al., “Nonthermal irreversible electroporation for intracranial surgical applications. Laboratory investigation”, J Neurosurg 114: 681-688 (2011). |
Eppich et al., “Pulsed electric fields for selection of hematopoietic cells and depletion of tumor cell contaminants.” Nature Biotechnology 18, pp. 882-887 (2000). |
Erez, et al., Controlled Destruction and Temperature Distributions in Biological Tissues Subjected to Monoactive Electrocoagulation, Transactions of the ASME: Journal of Mechanical Design, vol. 102, Feb. 1980. |
Ermolina et al., “Study of normal and malignant white blood cells by time domain dielectric spectroscopy.” IEEE Transactions on Dielectrics and Electrical Insulation, 8 (2001) pp. 253-261. |
Esser, A.T., et al., “Towards solid tumor treatment by irreversible electroporation: intrinsic redistribution of fields and currents in tissue”. Technol Cancer Res Treat, 6(4): p. 261-74 (2007). |
Esser, A.T., et al., “Towards Solid Tumor Treatment by Nanosecond Pulsed Electric Fields”, Technology in Cancer Research & Treatment, 8(4): p. 289-306 (2009). |
Faroja, M., et al., “Irreversible Electroporation Ablation: Is the entire Damage Nonthermal?”, Radiology, 266(2), 462-470 (2013). |
Fischbach et al., “Engineering tumors with 3D scaffolds.” Nat Meth 4, pp. 855-860 (2007). |
Flanagan et al., “Unique dielectric properties distinguish stem cells and their differentiated progeny.” Stem Cells, vol. 26, pp. 656-665 (2008). |
Fong et al., “Modeling Ewing sarcoma tumors in vitro with 3D scaffolds.” Proceedings of the National Academy of Sciences vol. 110, pp. 6500-6505 (2013). |
Foster RS, “High-intensity focused ultrasound in the treatment of prostatic disease”, European Urology, 1993, vol. 23 Suppl 1, pp. 29-33. |
Foster, R.S., et al., Production of Prostatic Lesions in Canines Using Transrectally Administered High-Intensity Focused Ultrasound. Eur. Urol., 1993; 23: 330-336. |
Fox, et al., Sampling Conductivity Images via MCMC, Mathematics Department, Auckland University, New Zealand, May 1997. |
Frandsen, S. K., H. Gissel, P. Hojman, T. Tramm, J. Eriksen, and J. Gehl. Direct therapeutic applications of calcium electroporation to effectively induce tumor necrosis. Cancer Res. 72:1336-41, 2012. |
Freeman, S.A., et al., Theory of Electroporation of Planar Bilayer-Membranes—Predictions of the Aqueous Area, Change in Capacitance, and Pore-Pore Separation. Biophysical Journal, 67(1): p. 42-56 (1994). |
Garcia et al., “Irreversible electroporation (IRE) to treat brain cancer.” ASME Summer Bioengineering Conference, Marco Island, FL, Jun. 25-29, 2008, 2 pages. |
Garcia P.A., et al., “7.0-T Magnetic Resonance Imaging Characterization of Acute Blood-Brain-Barrier Disruption Achieved with Intracranial Irreversible Electroporation”, PLOS ONE, Nov. 2012, 7:11, e50482. |
Garcia P.A., et al., “Pilot study of irreversible electroporation for intracranial surgery”, Conf Proc IEEE Eng Med Biol Soc, 2009:6513-6516, 2009. |
Garcia, et al., “A Parametric Study Delineating Irreversible Electroporation from Thermal Damage Based on a Minimally Invasive Intracranial Procedure,” Biomed Eng Online, vol. 10:34, 22 pages, 2011. |
Garcia, P. A., et al., “Towards a predictive model of electroporation-based therapies using pre-pulse electrical measurements,” Conf Proc IEEE Eng Med Biol Soc, vol. 2012, pp. 2575-2578, 2012. |
Garcia, P. A., et al., “Non-thermal Irreversible Electroporation (N-TIRE) and Adjuvant Fractioned Radiotherapeutic Multimodal Therapy for Intracranial Malignant Glioma in a Canine Patient” Technol. Cancer Res. Treatment 10(1), 73- 33 (2011). |
Garcia, P. et al. Intracranial nonthermal irreversible electroporation: in vivo analysis. J Membr Biol 236, 127-136 (2010). |
Garcia, Paulo A., Robert E. Neal II and Rafael V. Davalos, Chapter 3, Non-Thermal Irreversible Electroporation for Tissue Ablation, In: Electroporation in Laboratory and Clinical Investigations ISBN 978-1-61668-327-6 Editors: Enrico P. Spugnini and Alfonso Baldi, 2010, 22 pages. |
García-Sánchez, T., A. Azan, I. Leray, J. Rosell-Ferrer, R. Bragos, and L. M. Mir, “Interpulse multifrequency electrical Impedance measurements during electroporation of adherent differentiated myotubes,” Bioelectrochemistry, vol. 105, pp. 123-135, 2015. |
Gascoyne et al., “Membrane changes accompanying the induced differentiation of Friend murine erythroleukemia cells studied by dielectrophoresis.” Biochimica et Biophysica Acta (BBA)—Biomembranes, vol. 1149, pp. 119-126 (1993). |
Gauger, et al., A Study of Dielectric Membrane Breakdown in the Fucus Egg, J. Membrane Biol., vol. 48, No. 3, pp. 249-264, 1979. |
Gawad, S., T. Sun, N. G. Green, and H. Morgan, “Impedance spectroscopy using maximum length sequences: Application to single cell analysis,” Review of Scientific Instruments, vol. 78, No. 5, p. 054301, 2007. |
Gehl, et al., In Vivo Electroporation of Skeletal Muscle: Threshold, Efficacy and Relation to Electric Field Distribution, Biochimica et Biphysica Acta 1428, 1999, pp. 233-240. |
Gençer, et al., Electrical Impedance Tomography: Induced-Current Imaging Achieved with a Multiple Coil System, IEEE Transactions on Biomedical Engineering, vol. 43, No. 2, Feb. 1996. |
Gilbert, et al., Novel Electrode Designs for Electrochemotherapy, Biochimica et Biophysica Acta 1334, 1997, pp. 9-14. |
Gilbert, et al., The Use of Ultrasound Imaging for Monitoring Cryosurgery, Proceedings 6th Annual Conference, IEEE Engineering in Medicine and Biology, 107-111, 1984. |
Gilbert, T. W., et al., “Decellularization of tissues and organs”, Biomaterials, Elsevier Science Publishers, Barking, GB, vol. 27, No. 19, Jul. 1, 2006, pp. 3675-3683. |
Gimsa et al., “Dielectric spectroscopy of single human erythrocytes at physiological ionic strength: dispersion of the cytoplasm.” Biophysical Journal, vol. 71, pp. 495-506 (1996). |
(Neal, Robert E. et al) Co-Pending U.S. Appl. No. 12/906,923, filed Oct. 18, 2010, Specification, Claims, Figures. |
(Neal, Robert E. et al.) Co-Pending U.S. Appl. No. 14/808,679, filed Jul. 24, 2015 and Published as U.S. Publication No. 2015/0327944 on Nov. 19, 2015, Specification, Claims, Figures. |
(Neal, Robert E. et al.) Co-pending U.S. Appl. No. 16/375,878, filed Apr. 5, 2019, which published on Aug. 1, 2019 as US 2019-0233809 A1, Specification, Claims, Figures. |
(Neal, Robert E. et al.) Co-pending U.S. Appl. No. 16/404,392, filed May 6, 2019, and published as U.S. Publication No. 2019/0256839 on Aug. 22, 2019, Specification, Claims, Figures. |
(Neal, Robert E. et al.) Co-pending U.S. Appl. No. 16/865,772, filed May 4, 2020, Specification, Claims, Figures. |
(Neal, Robert E. et al.) Co-Pending U.S. Appl. No. 13/550,307, filed Jul. 16, 2012, and published as U.S. Publication No. 2013/0184702 on Jul. 18, 2013, Specification, Claims, Figures. |
(Neal, Robert E. et al.) Co-Pending U.S. Appl. No. 14/940,863, filed Nov. 13, 2015 and Published as US 2016/0066977 on Mar. 10, 2016, Specification, Claims, Figures. |
(Neal, Robert E. et al.) Co-pending U.S. Appl. No. 16/280,511, filed Feb. 20, 2019, and published as U.S. Publication No. 2019/0175248 on Jun. 13, 2019, Specification, Claims, Figures. |
(Neal, Robert E. et al.) Co-pending U.S. Appl. No. 17/338,960, filed Jun. 4, 2021, Specification, Claims, Figures. |
(Neal, Robert et al.) Co-Pending Application No. EP 10824248.8, filed May 9, 2012, Amended Claims (3 pages), Specification and Figures (See PCT/US10/53077). |
(O'Brien, Timothy J. et al.) Co-Pending U.S. Appl. No. 16/915,760, filed Jun. 29, 2020, Specification, Claims, Figures. |
(O'Brien, Timothy J. et al.) Co-Pending U.S. Appl. No. 17/152,379, filed Jan. 19, 2021, Specification, Claims, Figures. |
(Pearson, Robert M. et al) Co-pending Application No. PCT/US2010/029243, filed Mar. 30, 2010, published as WO 2010/117806 on Oct. 14, 2010, Specification, Claims, Figures. |
(Pearson, Robert M. et al.) Co-pending U.S. Appl. No. 12/751,826, filed Mar. 31, 2010 (published as 2010/0250209 on Sep. 30, 2010), Specification, Claims, Figures. |
(Pearson, Robert M. et al.) Co-pending U.S. Appl. No. 12/751,854, filed Mar. 31, 2010 (published as 2010/0249771 on Sep. 30, 2010), Specification, Claims, Figures. |
(Sano, Michael B. et al) Co-Pending Application No. PCT/US2015/030429, Filed May 12, 2015, Published on Nov. 19, 2015 as WO 2015/175570, Specification, Claims, Figures. |
(Sano, Michael B. et al.) Co-Pending U.S. Appl. No. 13/989,175, filed May 23, 2013, and published as U.S. Publication No. 2013/0253415 on Sep. 26, 2013, Specification, Claims, Figures. |
(Sano, Michael B. et al.) Co-Pending U.S. Appl. No. 15/310,114, filed Nov. 10, 2016, and published as U.S. Publication No. 2017/0266438 on Sep. 21, 2017, Specification, Claims, Figures. |
(Sano, Michael B. et al.) Co-pending U.S. Appl. No. 15/843,888, filed Dec. 15, 2017, and published as U.S. Publication No. 2018/0125565 on May 10, 2018, Specification, Claims, Figures. |
(Sano, Michael B. et al.) Co-pending U.S. Appl. No. 16/443,351, filed Jun. 17, 2019 (published as 20190328445 on Oct. 31, 2019), Specification, Claims, Figures. |
(Sano, Michael B. et al.) Co-pending U.S. Appl. No. 16/520,901, filed Jul. 24, 2019, and published as U.S. Publication No. 2019/0351224 on Nov. 21, 2019, Specification, Claims, Figures. |
(Sano, Michael B. et al.) Co-Pending U.S. Appl. No. 16/747,219, filed Jan. 20, 2020, Specification, Claims, Figures. |
(Sano, Michael B. et al.) Co-pending U.S. Appl. No. 17/862,486, filed Jul. 12, 2022, Specification, Claims, Figures. |
(Sano, Michael B. et al.) Co-Pending Application No. AU 2015259303, filed Oct. 24, 2016, Specification, Figures, Claims. |
(Sano, Michael B. et al.) Co-Pending Application No. CN 201580025135.6, filed Nov. 14, 2016, Specification, Claims, Figures (Chinese language and english language versions). |
(Sano, Michael B. et al.) Co-Pending Application No. CN 202011281572.3, filed Nov. 16, 2020, Specification, Claims, Figures (Chinese version, 129 pages (see also WO 2015/175570), English Version of claims, 2 pages). |
(Sano, Michael B. et al.) Co-Pending Application No. EP 11842994.3, filed Jun. 24, 2013, Amended Claims (18 pages), Specification and Figures (See PCT/US11/62067). |
(Sano, Michael B. et al.) Co-Pending Application No. EP 15793361.5, filed Dec. 12, 2016, Specification, Claims, Figures. |
(Sano, Michael B. et al.) Co-pending application No. HK 17112121.8, filed Nov. 20, 2017 and published as Publication No. HK1238288 on Apr. 27, 2018, Specification, Claims, Figures (See PCT/US15/30429 for English Version of documents as filed). |
(Sano, Michael B. et al.) Co-Pending Application No. JP 2013-541050, filed May 22, 2013, Claims, Specification, and Figures (See PCT/US11/62067 for English Version). |
(Sano, Michael B. et al.) Co-Pending Application No. JP 2016-567747, filed Nov. 10, 2016, Specification, Claims, Figures (see PCT/US15/30429 for English Version of documents as filed). |
(Sano, Michael B. et al.) Co-pending Application No. JP 2019-133057 filed Jul. 18, 2019, 155 pgs, Specification, Claims, Figures (See PCT/US15/30429 for English Version of documents as filed). |
(Sano, Michael et al.) Co-Pending Application No. PCT/US11/62067, filed Nov. 23, 2011, Specification, Claims, Figures. |
(Wasson, Elisa M. et al.) Co-pending U.S. Appl. No. 17/000,049, filed Aug. 21, 2020, Specification, Claims, Figures. |
Abiror, I.G., et al., “Electric Breakdown of Bilayer Lipid-Membranes .1. Main Experimental Facts and Their Qualitative Discussion”, Bioelectrochemistry and Bioenergetics, 6(1): p. 37-52 (1979). |
Agerholm-Larsen, B., et al., “Preclinical Validation of Electrochemotherapy as an Effective Treatment for Brain Tumors”, Cancer Research 71: 3753-3762 (2011). |
Alberts et al., “Molecular Biology of the Cell,” 3rd edition, Garland Science, New York, 1994, 1 page. |
Alinezhadbalalami, N. et al., “Generation of Tumor-activated T cells Using Electroporation”, Bioelectrochemistry 142 (2021) 107886, Jul. 13, 2021, 11 pages. |
Al-Sakere et al., “Tumor ablation with irreversible electroporation,” PLoS ONE, 2, e1135, 2007, 8 pages. |
Amasha, et al., Quantitative Assessment of Impedance Tomography for Temperature Measurements in Microwave Hyperthermia, Clin. Phys. Physiol. Meas., 1998, Suppl. A, 49-53. |
Andreason, Electroporation as a Technique for the Transfer of Macromolecules into Mammalian Cell Lines, J. Tiss. Cult. Meth., 15:56-62, 1993. |
Appelbaum, L., et al., “US Findings after Irreversible Electroporation Ablation: Radiologic-Pathologic Correlation” Radiology 262(1), 117-125 (2012). |
Arena et al. “High-Frequency Irreversible Electroporation (H-FIRE) for Non-thermal Ablation without Muscle Contraction.” Biomed. Eng. Online, vol. 10, 20 pages (2011). |
Arena, C. B. et al., “Theoretical Considerations of Tissue Electroporation With High-Frequency Bipolar Pulses,” IEEE Trans. Biomed. Eng., vol. 58, No. 5, 1474-1482, 2011, 9 pages. |
Arena, C.B., et al., “A three-dimensional in vitro tumor platform for modeling therapeutic irreversible electroporation.” Biophysical Journal, 2012.103(9): p. 2033-2042. |
Arena, Christopher B., et al., “Towards the development of latent heat storage electrodes for electroporation-based therapies”, Applied Physics Letters, 101, 083902 (2012). |
Arena, Christopher B., et al.,“Phase Change Electrodes for Reducing Joule Heating During Irreversible Electroporation”. Proceedings of the ASME 2012 Summer Bioengineering Conference, SBC2012, Jun. 20-23, 2012, Fajardo, Puerto Rico. |
Asami et al., “Dielectric properties of mouse lymphocytes and erythrocytes.” Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1010 (1989) pp. 49-55. |
Bagla, S. and Papadouris, D., “Percutaneous Irreversible Electroporation of Surgically Unresectable Pancreatic Cancer: A Case Report” J. Vascular Int. Radiol. 23(1), 142-145 (2012). |
Baker, et al., Calcium-Dependent Exocytosis in Bovine Adrenal Medullary Cells with Leaky Plasma Membranes, Nature, vol. 276, pp. 620-622, 1978. |
Glidewell, et al., The Use of Magnetic Resonance Imaging Data and the Inclusion of Anisotropic Regions in Electrical Impedance Tomography, Biomed, Sci. Instrum. 1993; 29: 251-7. |
Golberg, A. and Rubinsky, B., “A statistical model for multidimensional irreversible electroporation cell death in tissue.” Biomed Eng Online, 9, 13 pages, 2010. |
Gothelf, et al., Electrochemotherapy: Results of Cancer Treatment Using Enhanced Delivery of Bleomycin by Electroporation, Cancer Treatment Reviews 2003: 29: 371-387. |
Gowrishankar T.R., et al., “Microdosimetry for conventional and supra-electroporation in cells with organelles”. Biochem Biophys Res Commun, 341(4): p. 1266-76 (2006). |
Granot, Y., A. Ivorra, E. Maor, and B. Rubinsky, “In vivo imaging of irreversible electroporation by means of electrical impedance tomography,” Physics in Medicine & Biology, vol. 54, No. 16, p. 4927, 2009. |
Griffiths, et al., A Dual-Frequency Electrical Impedance Tomography System, Phys. Med. Biol., 1989, vol. 34, No. 10, pp. 1465-1476. |
Griffiths, The Importance of Phase Measurement in Electrical Impedance Tomography, Phys. Med. Biol., 1987, vol. 32, No. 11, pp. 1435-1444. |
Griffiths, Tissue Spectroscopy with Electrical Impedance Tomography: Computer Simulations, IEEE Transactions on Biomedical Engineering, vol. 42, No. 9, Sep. 1995. |
Groen, M. H. A. et al., “In Vivo Analysis of the Origin and Characteristics of Gaseous Microemboli during Catheter-Mediated Irreversible Electroporation,” Europace, 2021, 23(1), 139-146. |
Guenther, E. et al., “Electrical breakdown in tissue electroporation,” Biochem. Biophys. Res. Commun., vol. 467, No. 4, 736-741, Nov. 2015, 15 pages. |
Gumerov, et al., The Dipole Approximation Method and Its Coupling with the Regular Boundary Element Method for Efficient Electrical Impedance Tomography, Boundary Element Technology XIII, 1999. |
Hapala, Breaking the Barrier: Methods for Reversible Permeabilization of Cellular Membranes, Critical Reviews in Biotechnology, 17(2): 105-122, 1997. |
Helczynska et al., “Hypoxia promotes a dedifferentiated phenotype in ductal breast carcinoma in situ.” Cancer Research, vol. 63, pp. 1441-1444 (2003). |
Heller, et al., Clinical Applications of Electrochemotherapy, Advanced Drug Delivery Reviews, vol. 35, pp. 119-129, 1999. |
Hjouj, M. et al., “Electroporation-Induced BBB Disruption and Tissue Damage Depicted by MRI,” Abstracts from 16th Annual Scientific Meeting of the Society for Neuro-Oncology in Conjunction with the AANS/CNS Section on Tumors, Nov. 17-20, 2011, Orange County California, Neuro-Oncology Supplement, vol. 13, Supplement 3, p. iii114. |
Hjouj, M., et al., “MRI Study on Reversible and Irreversible Electroporation Induced Blood Brain Barrier Disruption”, PLOS ONE, Aug. 2012, 7:8, e42817. |
Ho, et al., Electroporation of Cell Membranes: A Review, Critical Reviews in Biotechnology, 16(4): 349-362, 1996. |
Hoejholt, K. L. et al. Calcium electroporation and electrochemotherapy for cancer treatment: Importance of cell membrane composition investigated by lipidomics, calorimetry and in vitro efficacy. Scientific Reports (Mar. 18, 2019) 9:4758, p. 1-12. |
Holder, et al., Assessment and Calibration of a Low-Frequency System for Electrical Impedance Tomography (EIT), Optimized for Use in Imaging Brain Function in Ambulant Human Subjects, Annals of the New York Academy of Science, vol. 873, Issue 1, Electrical Bi, pp. 512-519, 1999. |
Hu, Q., et al., “Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electric pulse”, Physical Review E, 71(3) (2005). |
Huang, et al., Micro-Electroporation: Improving the Efficiency and Understanding of Electrical Permeabilization of Cells, Biomedical Microdevices, vol. 2, pp. 145-150, 1999. |
Hughes, et al., An Analysis of Studies Comparing Electrical Impedance Tomography with X-Ray Videofluoroscopy in the Assessment of Swallowing, Physiol. Meas. 15, 1994, pp. A199-A209. |
Ibey et al., “Selective cytotoxicity of intense nanosecond-duration electric pulses in mammalian cells.” Biochimica Et Biophysica Acta-General Subjects, vol. 1800, pp. 1210-1219 (2010). |
Issa, et al., The TUNA Procedure for BPH: Review of the Technology: The TUNA Procedure for BPH: Basic Procedure and Clinical Results, Reprinted from Infections in Urology, Jul./Aug. 1998 and Sep./Oct. 1998. |
Ivanuša, et al., MRI Macromolecular Contrast Agents as Indicators of Changed Tumor Blood Flow, Radiol. Oncol. 2001; 35(2): 139-47. |
Ivey, J. W., E. L. Latouche, M. B. Sano, J. H. Rossmeisl, R. V. Davalos, and S. S. Verbridge, “Targeted cellular ablation based on the morphology of malignant cells,” Sci. Rep., vol. 5, pp. 1-17, 2015. |
Ivorra et al., “In vivo electric impedance measurements during and after electroporation of rat live.” Bioelectrochemistry, vol. 70, pp. 287-295 (2007). |
Ivorra et al., “In vivo electrical conductivity measurements during and after tumor electroporation: conductivity changes reflect the treatment outcome.” Physics in Medicine and Biology, vol. 54, pp. 5949-5963 (2009). |
Ivorra, “Bioimpedance monitoring for physicians: an overview.” Biomedical Applications Group, 35 pages (2002). |
Ivorra, A., ed. “Tissue Electroporation as a Bioelectric Phenomenon: Basic Concepts. Irreversible Electroporation”, ed. B. Rubinsky., Springer Berlin Heidelberg. 23-61 (2010). |
Jarm et al., “Antivascular effects of electrochemotherapy: implications in treatment of bleeding metastases.” Expert Rev Anticancer Ther. vol. 10, pp. 729-746 (2010). |
Jaroszeski, et al., In Vivo Gene Delivery by Electroporation, Advanced Drug Delivery Review, vol. 35, pp. 131-137, 1999. |
Jensen et al., “Tumor volume in subcutaneous mouse xenografts measured by microCT is more accurate and reproducible than determined by 18FFDG-microPET or external caliper.” BMC medical Imaging vol. 8:16, 9 Pages (2008). |
Jordan, D.W., et al., “Effect of pulsed, high-power radiofrequency radiation on electroporation of mammalian cells”. Ieee Transactions on Plasma Science, 32(4): p. 1573-1578 (2004). |
Jossinet et al., Electrical Impedance Endo-Tomography: Imaging Tissue From Inside, IEEE Transactions on Medical Imaging, vol. 21, No. 6, Jun. 2002, pp. 560-565. |
Katsuki, S., et al., “Biological effects of narrow band pulsed electric fields”, Ieee Transactions on Dielectrics and Electrical Insulation,. 14(3): p. 663-668 (2007). |
Kingham et al., “Ablation of perivascular hepatic malignant tumors with irreversible electroporation.” Journal of the American College of Surgeons, 2012. 215(3), p. 379-387. |
Kinosita and Tsong, “Formation and resealing of pores of controlled sizes in human erythrocyte membrane.” Nature, vol. 268 (1977) pp. 438-441. |
Kinosita and Tsong, “Voltage-induced pore formation and hemolysis of human erythrocytes.” Biochimica et Biophysica Acta (BBA)—Biomembranes, 471 (1977) pp. 227-242. |
Kinosita et al., “Electroporation of cell membrane visualized under a pulsed-laser fluorescence microscope.” Biophysical Journal, vol. 53, pp. 1015-1019 (1988). |
Kinosita, et al., Hemolysis of Human Erythrocytes by a Transient Electric Field, Proc. Natl. Acad. Sci. USA, vol. 74, No. 5, pp. 1923-1927, 1977. |
Kirson et al., “Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors.” Proceedings of the National Academy of Sciences vol. 104, pp. 10152-10157 (2007). |
Kolb, J.F., et al., “Nanosecond pulsed electric field generators for the study of subcellular effects”, Bioelectromagnetics, 27(3): p. 172-187 (2006). |
Kotnik and Miklavcic, “Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields.” Biophysical Journal, vol. 90(2), pp. 480-491 (2006). |
Kotnik et al., “Sensitivity of transmembrane voltage induced by applied electric fields—A theoretical analysis”, Bioelectrochemistry and Bioenergetics, vol. 43, Issue 2, 1997, pp. 285-291. |
Kotnik, T. and D. Miklavcic, “Theoretical evaluation of the distributed power dissipation in biological cells exposed to electric fields”, Bioelectromagnetics, 21(5): p. 385-394 (2000). |
Kotnik, T., et al., “Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses. Part II. Reduced electrolytic contamination”, Bioelectrochemistry, 54(1): p. 91-5 (2001). |
Kotnik, T., et al., “Role of pulse shape in cell membrane electropermeabilization”, Biochimica Et Biophysica Acta-Biomembranes, 1614(2): p. 193-200 (2003). |
Kranjc, M., S. Kranjc, F. Bajd, G. Sersa, I. Sersa, and D. Miklavcic, “Predicting irreversible electroporation-induced tissue damage by means of magnetic resonance electrical impedance tomography,” Scientific reports, vol. 7, No. 1, pp. 1-10, 2017. |
Labeed et al., “Differences in the biophysical properties of membrane and cytoplasm of apoptotic cells revealed using dielectrophoresis.” Biochimica et Biophysica Acta (BBA)—General Subjects, vol. 1760, pp. 922-929 (2006). |
Rubinsky, B., et al., “Irreversible Electroporation: A New Ablation Modality—Clinical Implications” Technol. Cancer Res. Treatment 6(1), 37-48 (2007). |
Rubinsky, L. et al., “Electrolytic Effects During Tissue Ablation by Electroporation,” Technol. Cancer Res. Treat., vol. 15, No. 5, NP95-103, 2016, 9 pages. |
Sabuncu et al., “Dielectrophoretic separation of mouse melanoma clones.” Biomicrofluidics, vol. 4, 7 pages (2010). |
SAI Infusion Technologies, “Rabbit Ear Vein Catheters”, https://www.sai-infusion.com/products/rabbit-ear-catheters, Aug. 10, 2017 webpage printout, 5 pages. |
Salford, L.G., et al., “A new brain tumour therapy combining bleomycin with in vivo electropermeabilization”, Biochem. Biophys. Res. Commun., 194(2): 938-943 (1993). |
Salmanzadeh et al., “Investigating dielectric properties of different stages of syngeneic murine ovarian cancer cells” Biomicrofluidics 7, 011809 (2013), 12 pages. |
Salmanzadeh et al., “Dielectrophoretic differentiation of mouse ovarian surface epithelial cells, macrophages, and fibroblasts using contactless dielectrophoresis.” Biomicrofluidics, vol. 6, 13 Pages (2012). |
Salmanzadeh et al., “Sphingolipid Metabolites Modulate Dielectric Characteristics of Cells in a Mouse Ovarian Cancer Progression Model.” Integr. Biol., 5(6), pp. 843-852 (2013). |
Sanchez, B., G. Vandersteen, R. Bragos, and J. Schoukens, “Basics of broadband impedance spectroscopy measurements using periodic excitations,” Measurement Science and Technology, vol. 23, No. 10, p. 105501, 2012. |
Sanchez, B., G. Vandersteen, R. Bragos, and J. Schoukens, “Optimal multisine excitation design for broadband electrical impedance spec-troscopy,” Measurement Science and Technology, vol. 22, No. 11, p. 115601, 2011. |
Sano et al., “Contactless Dielectrophoretic Spectroscopy: Examination of the Dielectric Properties of Cells Found in Blood.” Electrophoresis, 32, pp. 3164-3171, 2011. |
Sano et al., “In-vitro bipolar nano- and microsecond electro-pulse bursts for irreversible electroporation therapies.” Bioelectrochemistry vol. 100, pp. 69-79 (2014). |
Sano et al., “Modeling and Development of a Low Frequency Contactless Dielectrophoresis (cDEP) Platform to Sort Cancer Cells from Dilute Whole Blood Samples.” Biosensors & Bioelectronics, 8 pages (2011). |
Sano, M. B. et al., “Burst and continuous high frequency irreversible electroporation protocols evaluated in a 3D tumor model,” Phys. Med. Biol., vol. 63, No. 13, 2018, 17 pages. |
Sano, M. B. et al., “Reduction of Muscle Contractions During Irreversible Electroporation Therapy Using High-Frequency Bursts of Alternating Polarity Pulses: A Laboratory Investigation in an Ex Vivo Swine Model,” J. Vasc. Interv. Radiol., vol. 29, No. 6, 893-898.e4, Jun. 2018, 18 pages. |
Sano, M. B., et al., “Towards the creation of decellularized organ constructs using irreversible electroporation and active mechanical perfusion”, Biomedical Engineering Online, Biomed Central LTD, London, GB, vol. 9, No. 1, Dec. 10, 2010, p. 83. |
Saur et al., “CXCR4 expression increases liver and lung metastasis in a mouse model of pancreatic cancer.” Gastroenterology, vol. 129, pp. 1237-1250 (2005). |
Schmukler, Impedance Spectroscopy of Biological Cells, Engineering in Medicine and Biology Society, Engineering Advances: New Opportunities for Biomedical Engineers, Proceedings of the 16th Annual Internal Conference of the IEEE, vol. 1, p. A74, downloaded from IEEE Xplore website, 1994. |
Schoenbach et al., “Intracellular effect of ultrashort electrical pulses.” Bioelectromagnetics, 22 (2001) pp. 440-448. |
Seibert et al., “Clonal variation of MCF-7 breast cancer cells in vitro and in athymic nude mice.” Cancer Research, vol. 43, pp. 2223-2239 (1983). |
Seidler et al., “A Cre-loxP-based mouse model for conditional somatic gene expression and knockdown in vivo by using avian retroviral vectors.” Proceedings of the National Academy of Sciences, vol. 105, pp. 10137-10142 (2008). |
Sel, D. et al. Sequential finite element model of tissue electropermeabilization. IEEE Transactions on Biomedical Engineering 52, 816-827, doi:10.1109/tbme.2005.845212 (2005). |
Sel, D., Lebar, A. M. & Miklavcic, D. Feasibility of employing model-based optimization of pulse amplitude and electrode distance for effective tumor electropermeabilization. IEEE Trans Biomed Eng 54, 773-781 (2007). |
Sersa, et al., Reduced Blood Flow and Oxygenation in SA-1 Tumours after Electrochemotherapy with Cisplatin, British Journal of Cancer, 87, 1047-1054, 2002. |
Sersa, et al., Tumour Blood Flow Modifying Effects of Electrochemotherapy: a Potential Vascular Targeted Mechanism, Radiol. Oncol., 37(1): 43-8, 2003. |
Shao, Qi et al. Engineering T cell response to cancer antigens by choice of focal therapeutic conditions, International Journal of Hyperthermia, 2019, DOI: 10.1080/02656736.2018.1539253. |
Sharma, A. , et al., “Review on Thermal Energy Storage with Phase Change Materials and Applications”, Renewable Sustainable Energy Rev. 13(2), 318-345 (2009). |
Sharma, et al., Poloxamer 188 Decreases Susceptibility of Artificial Lipid Membranes to Electroporation, Biophysical Journal, vol. 71, No. 6, pp. 3229-3241, Dec. 1996. |
Shiina, S., et al, Percutaneous ethanol injection therapy for hepatocellular carcinoma: results in 146 patients. AJR, 1993, 160: p. 1023-8. |
Szot et al., “3D in vitro bioengineered tumors based on collagen I hydrogels.” Biomaterials vol. 32, pp. 7905-7912 (2011). |
Talele, S. and P. Gaynor, “Non-linear time domain model of electropermeabilization: Effect of extracellular conductivity and applied electric field parameters”, Journal of Electrostatics, 66(5-6): p. 328-334 (2008). |
Talele, S. and P. Gaynor, “Non-linear time domain model of electropermeabilization: Response of a single cell to an arbitrary applied electric field”, Journal of Electrostatics, 65(12): p. 775-784 (2007). |
Talele, S., et al., “Modelling single cell electroporation with bipolar pulse parameters and dynamic pore radii”. Journal of Electrostatics, 68(3): p. 261-274 (2010). |
Teissie, J. and T.Y. Tsong, “Electric-Field Induced Transient Pores in Phospholipid-Bilayer Vesicles”. Biochemistry, 20(6): p. 1548-1554 (1981). |
Tekle, Ephrem, R. Dean Astumian, and P. Boon Chock, Electroporation by using bipolar oscillating electric field: An improved method for DNA transfection of NIH 3T3 cells, Proc. Natl. Acad. Sci., vol. 88, pp. 4230-4234, May 1991, Biochemistry. |
Thompson, et al., To determine whether the temperature of 2% lignocaine gel affects the initial discomfort which may be associated with its instillation into the male urethra, BJU International (1999), 84, 1035-1037. |
Thomson et al., “Investigation of the safety of irreversible electroporation in humans,” J Vasc Interv Radiol, 22, pp. 611-621, 2011. |
Tibbitt et al., “Hydrogels as Extracellular Matrix Mimics for 3D Cell Culture”, Jul. 2009, Biotechnol Bioeng, 103(4),655-663. |
TUNA—Suggested Local Anesthesia Guidelines, no date available. |
U.S. Appl. No. 12/491,151 (U.S. Pat. No. 8,992,517), file history through Feb. 2015, 113 pages. |
U.S. Appl. No. 12/609,779 (U.S. Pat. No. 8,465,484), file history through May 2013, 100 pages. |
U.S. Appl. No. 12/757,901 (U.S. Pat. No. 8,926,606), file history through Jan. 2015, 165 pages. |
U.S. Appl. No. 12/906,923 (U.S. Pat. No. 9,198,733), file history through Nov. 2015, 55 pages. |
U.S. Appl. No. 13/332,133 (U.S. Pat. No. 10,448,989), file history through Sep. 2019, 226 pages. |
U.S. Appl. No. 13/550,307 (U.S. Pat. No. 10,702,326), file history through May 2020, 224 pages. |
U.S. Appl. No. 13/919,640 (U.S. Pat. No. 8,814,860), file history through Jul. 2014, 41 pages. |
U.S. Appl. No. 13/958,152, file history through Dec. 2019, 391 pages. |
U.S. Appl. No. 13/989,175 (U.S. Pat. No. 9,867,652), file history through Dec. 2017, 200 pages. |
U.S. Appl. No. 14/012,832 (U.S. Pat. No. 9,283,051), file history through Nov. 2015, 17 pages. |
U.S. Appl. No. 14/017,210 (U.S. Pat. No. 10,245,098), file history through Jan. 2019, 294 pages. |
U.S. Appl. No. 14/558,631 (U.S. Pat. No. 10,117,707), file history through Jul. 2018, 58 pages. |
U.S. Appl. No. 14/627,046 (U.S. Pat. No. 10,245,105), file history through Feb. 2019, 77 pages. |
U.S. Appl. No. 14/940,863 (U.S. Pat. No. 10,238,447), file history through Oct. 2019, 23 pages. |
U.S. Appl. No. 15/011,752 (U.S. Pat. No. 10,470,822), file history through Jul. 2019, 54 pages. |
U.S. Appl. No. 15/186,653 (U.S. Pat. No. 10,292,755), file history through Mar. 2019, 21 pages. |
U.S. Appl. No. 15/310,114 (U.S. Pat. No. 10,471,254), file history through Aug. 2019, 44 pages. |
U.S. Appl. No. 15/423,986 (U.S. Pat. No. 10,286,108), file history through Jan. 2019, 124 pages. |
U.S. Appl. No. 15/424,335 (U.S. Pat. No. 10,272,178), file history through Feb. 2019, 57 pages. |
U.S. Appl. No. 15/536,333 (U.S. Pat. No. 10,694,972), file history through Apr. 2020, 78 pages. |
U.S. Appl. No. 15/843,888 (U.S. Pat. No. 10,537,379), file history through Sep. 2019, 83 pages. |
U.S. Appl. No. 15/881,414 (U.S. Pat. No. 10,154,874), file history through Nov. 2018, 43 pages. |
U.S. Appl. No. 16/152,743 (U.S. Pat. No. 11,272,979), file history through Jan. 2022, 89 pages. |
U.S. Appl. No. 16/177,745 (U.S. Pat. No. 10,828,085), file history through Jun. 2020, 57 pages. |
U.S. Appl. No. 16/210,771 (U.S. Pat. No. 11,607,537), file history through Dec. 2022, 139 pages. |
U.S. Appl. No. 16/232,962 (U.S. Pat. No. 10,828,086), file history through Jun. 2020, 44 pages. |
U.S. Appl. No. 16/275,429 (U.S. Pat. No. 10,959,772), file history through Feb. 2021, 18 pages. |
U.S. Appl. No. 16/280,511, file history through Aug. 2021, 31 pages. |
U.S. Appl. No. 16/352,759 (U.S. Pat. No. 11,311,329), file history through Mar. 2022, 258 pages. |
U.S. Appl. No. 16/372,520 (U.S. Pat. No. 11,382,681), file history through Jun. 2022, 107 pages. |
U.S. Appl. No. 16/404,392 (U.S. Pat. No. 11,254,926), file history through Jan. 2022, 153 pages. |
U.S. Appl. No. 16/520,901 (U.S. Pat. No. 11,406,820), file history through May 2022, 39 pages. |
U.S. Appl. No. 16/535,451 (U.S. Pat. No. 11,453,873), file history through Aug. 2022, 85 pages. |
U.S. Appl. No. 16/655,845 (U.S. Pat. No. 11,607,271), file history through Jan. 2023, 68 pages. |
Valdez, C. M. et al., “The interphase interval within a bipolar nanosecond electric pulse modulates bipolar cancellation,” Bioelectromagnetics, vol. 39, No. 6, 441-450, 2018, 28 pages. |
Van Den Bos, W. et al., “MRI and contrast-enhanced ultrasound imaging for evaluation of focal irreversible electroporation treatment: results from a phase i-ii study in patients undergoing ire followed by radical prostatectomy,” European radiology, vol. 26, No. 7, pp. 2252-2260, 2016. |
Verbridge et al., “Oxygen-Controlled Three-Dimensional Cultures to Analyze Tumor Angiogenesis.” Tissue Engineering, Part A vol. 16, pp. 2133-2141 (2010). |
Verma, A. et al., “Primer on Pulsed Electrical Field Ablation: Understanding the Benefits and Limitations,” Circ. Arrhythmia Electrophysiol., No. September, pp. 1-16, 2021, 16 pages. |
Vernier, P.T., et al., “Nanoelectropulse-driven membrane perturbation and small molecule permeabilization”, Bmc Cell Biology, 7 (2006). |
Vidamed, Inc., Transurethral Needle Ablation (TUNA): Highlights from Worldwide Clinical Studies, Vidamed's Office TUNA System, 2001. |
Vižintin, A. et al., “Effect of interphase and interpulse delay in high-frequency irreversible electroporation pulses on cell survival, membrane permeabilization and electrode material release,” Bioelectrochemistry, vol. 134, Aug. 2020, 14 pages. |
Voyer, D., A. Silve, L. M. Mir, R. Scorretti, and C. Poignard, “Dynamical modeling of tissue electroporation,” Bioelectrochemistry, vol. 119, pp. 98-110, 2018. |
Wandel, A. et al. “Optimizing Irreversible Electroporation Ablation with a Bipolar Electrode,” Journal of Vascular and Interventional Radiology, vol. 27, Issue 9, 1441-1450.e2, 2016. |
Wasson, Elisa M. et al. The Feasibility of Enhancing Susceptibility of Glioblastoma Cells to IRE Using a Calcium Adjuvant. Annals of Biomedical Engineering, vol. 45, No. 11, Nov. 2017 pp. 2535-2547. |
Weaver et al., “A brief overview of electroporation pulse strength-duration space: A region where additional Intracellular effects are expected.” Bioelectrochemistry vol. 87, pp. 236-243 (2012). |
Weaver, Electroporation: A General Phenomenon for Manipulating Cells and Tissues, Journal of Cellular Biochemistry, 51: 426-435, 1993. |
Weaver, et al., Theory of Electroporation: A Review, Bioelectrochemistry and Bioenergetics, vol. 41, pp. 136-160, 1996. |
Weaver, J. C., Electroporation of biological membranes from multicellular to nano scales, IEEE Trns. Dielectr. Electr. Insul. 10, 754-768 (2003). |
Weaver, J.C., “Electroporation of cells and tissues”, IEEE Transactions on Plasma Science, 28(1): p. 24-33 (2000). |
Weisstein: Cassini Ovals. From MathWorld—A. Wolfram Web Resource; Apr. 30, 2010; http://mathworld.wolfram.com/ (updated May 18, 2011). |
Wimmer, Thomas, et al., “Planning Irreversible Electroporation (IRE) in the Porcine Kidney: Are Numerical Simulations Reliable for Predicting Empiric Ablation Outcomes?”, Cardiovasc Intervent Radiol. Feb. 2015 ; 38(1): 182-190. doi:10.1007/s00270-014-0905-2. |
Yang et al., “Dielectric properties of human leukocyte subpopulations determined by electrorotation as a cell separation criterion.” Biophysical Journal, vol. 76, pp. 3307-3314 (1999). |
Yao et al., “Study of transmembrane potentials of inner and outer membranes induced by pulsed-electric-field model and simulation.” IEEE Trans Plasma Sci, 2007. 35(5): p. 1541-1549. |
Yarmush, M. L. et al., “Electroporation-Based Technologies for Medicine: Principles, Applications, and Challenges,” Annu. Rev. Biomed. Eng., vol. 16, No. 1, 295-320, 2014, 29 pages. |
Zhang, Y., et al., MR imaging to assess immediate response to irreversible electroporation for targeted ablation of liver tissues: preclinical feasibility studies in a rodent model. Radiology, 2010. 256(2): p. 424-32. |
Zhao, J. et al. “Irreversible electroporation reverses resistance to immune checkpoint blockade in pancreatic cancer”, Nature Communications (2019) 10:899, 14 pages. |
Zhao, Y. et al., “Characterization of conductivity changes during high-frequency irreversible electroporation for treatment planning,” IEEE Transactions on Biomedical Engineering, vol. 65, No. 8, pp. 1810-1819, 2017. |
Zimmermann, et al., Dielectric Breakdown of Cell Membranes, Biophysical Journal, vol. 14, No. 11, pp. 881-899, 1974. |
Zlotta, et al., Long-Term Evaluation of Transurethral Needle Ablation of the Prostate (TUNA) for Treatment of Benign Prostatic Hyperplasia (BPH): Clinical Outcome After 5 Years. (Abstract) Presented at 2001 AUA National Meeting, Anaheim, CA—Jun. 5, 2001. |
Zlotta, et al., Possible Mechanisms of Action of Transurethral Needle Ablation of the Prostate on Benign Prostatic Hyperplasia Symptoms: a Neurohistochemical Study, Reprinted from Journal of Urology, vol. 157, No. 3, Mar. 1997, pp. 894-899. |
(Arena, Christopher B. et al.) Co-pending U.S. Appl. No. 15/186,653, filed Jun. 20, 2016, and published as U.S. Publication No. 2016/0287314 on Oct. 6, 2016, Specification, Claims, Figures. |
(Arena, Christopher B. et al.) Co-pending U.S. Appl. No. 16/372,520, filed Apr. 2, 2019, which published as 20190223938 on Jul. 25, 2019, Specification, Claims, Figures. |
(Arena, Christopher B. et al.) Co-Pending Application No. PCT/US11/66239, filed Dec. 20, 2011, Specification, Claims, Figures. |
(Arena, Christopher B. et al.) Co-Pending U.S. Appl. No. 13/332,133, filed Dec. 20, 2011 and published as U.S. Publication No. 2012/0109122 on May 3, 2012, Specification, Claims, Figures. |
(Aycock, Kenneth N. et al.) Co-pending U.S. Appl. No. 17/535,742, filed Nov. 26, 2021, Specification, Claims, and Figures. |
(Davalos, Rafael et al.) Co-Pending Application No. PCT/US21/51551, filed Sep. 22, 2021, Specification, Claims, Figures. |
(Davalos, Rafael et al.) Co-pending U.S. Appl. No. 10/571,162, filed Oct. 18, 2006 (published as 2007/0043345 on Feb. 22, 2007), Specification, Figures, Claims. |
(Davalos, Rafael et al.) Co-Pending U.S. Appl. No. 12/757,901, filed Apr. 9, 2010, Specification, Claims, Figures. |
(Davalos, Rafael et al.) Co-Pending Application No. PCT/US04/43477, filed Dec. 21, 2004, Specification, Claims, Figures. |
(Davalos, Rafael et al.) Co-Pending Application No. PCT/US23/15118, filed Mar. 13, 2023, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-Pending Application No. PCT/US10/53077, filed Oct. 18, 2010, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-Pending U.S. Appl. No. 12/491,151, filed Jun. 24, 2009, and published as U.S. Publication No. 2010/0030211 on Feb. 4, 2010, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-Pending U.S. Appl. No. 12/609,779, filed Oct. 30, 2009, and published as U.S. Publication No. 2010/0331758 on Dec. 30, 2010, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-Pending U.S. Appl. No. 13/919,640, filed Jun. 17, 2013, and published as U.S. Publication No. 2013/0281968 on Oct. 24, 2013, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-Pending U.S. Appl. No. 14/686,380, filed Apr. 14, 2015 and Published as US 2015/0289923 on Oct. 15, 2015, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 15/424,335, filed Feb. 3, 2017, and published as U.S. Publication No. 2017/0189579 on Jul. 6, 2017, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 15/536,333, filed Jun. 15, 2017, and published as U.S. Publication No. 2017/0360326 on Dec. 21, 2017, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 15/881,414, filed Jan. 26, 2018, and published as U.S. Publication No. 2018/0161086 on Jun. 14, 2018, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 16/177,745, filed Nov. 1, 2018, and published as U.S. Publication No. 2019/0069945 on Mar. 7, 2019, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 16/232,962, filed Dec. 26, 2018, and published as U.S. Publication No. 2019/0133671 on May 9, 2019, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 16/275,429, filed Feb. 14, 2019, which published as 2019/0175260 on Jun. 13, 2019, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 16/352,759, filed Mar. 13, 2019, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 16/535,451, filed Aug. 8, 2019, and Published as U.S. Publication No. 2019/0376055 on Dec. 12, 2019, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 16/865,031, filed May 1, 2020, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 17/069,359, filed Oct. 13, 2020, Specification, Claims, Drawings. |
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 17/172,731, filed Feb. 10, 2021, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 17/277,662, filed Mar. 18, 2021, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-pending Application No. 19861489.3 filed Apr. 16, 2021, Specification, figures (See PCT/US19/51731), and claims (3 pages). |
(Davalos, Rafael V. et al.) Co-Pending Application No. AU 2009243079, filed Apr. 29, 2009 (see PCT/US2009/042100 for documents as filed), Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-Pending Application No. PCT/US09/62806, filed Oct. 30, 2009, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-Pending Application No. PCT/US10/30629, filed Apr. 9, 2010, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-pending application No. PCT/US19/51731 filed Sep. 18, 2019, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-Pending U.S. Appl. No. 14/017,210, filed Sep. 3, 2013, and published as U.S. Publication No. 2014/0039489 on Feb. 6, 2014, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-Pending Application No. U.S. Appl. No. 14/627,046, filed Feb. 20, 2015, and published as U.S. Publication No. 2015/0164584 on Jun. 18, 2015, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-Pending International Application No. PCT/US15/65792, filed Dec. 15, 2015, Specification, Claims, Drawings. |
(Davalos, Rafael V.) Co-Pending U.S. Appl. No. 12/432,295, filed Apr. 29, 2009, and published as U. S. Publication No. 2009/0269317-A1 on Oct. 29, 2009, Specification, Figures, Claims. |
(Davalos, Rafael V.) Co-pending U.S. Appl. No. 15/423,986, filed Feb. 3, 2017, and published as U.S. Publication No. 2017/0209620 on Jul. 27, 2017, Specification, Claims, Figures. |
(Davalos, Rafael V.) Co-Pending Application No. CA 2,722,296, filed Apr. 29, 2009, Amended Claims (7 pages), Specification, Figures (See PCT/US2009/042100 for Specification and figures as filed). |
(Davalos, Rafael V.) Co-Pending Application No. EP 09739678.2 filed Apr. 29, 2009, Amended Claims (3 pages), Specification and Figures (See PCT/US2009/042100). |
(Davalos, Rafael V.) Co-Pending Application No. PCT/US09/42100, filed Apr. 29, 2009, Specification, Claims, Figures. |
(Garcia, Paulo A. et al.) Co-Pending U.S. Appl. No. 14/012,832, filed Aug. 28, 2013, and published as U.S. Publication No. 2013/0345697 on Dec. 26, 2013, Specification, Claims, Figures. |
(Garcia, Paulo A. et al.) Co-Pending U.S. Appl. No. 14/558,631, filed Dec. 2, 2014, and published as U.S. Publication No. 2015/0088120 on Mar. 26, 2015, Specification, Claims, Figures. |
(Garcia, Paulo A. et al.) Co-Pending U.S. Appl. No. 15/011,752, filed on Feb. 1, 2016, and published as U.S. Publication No. 2016/0143698 on May 26, 2016, Specification, Claims, Figures. |
(Garcia, Paulo A. et al.) Co-Pending U.S. Appl. No. 16/655,845, filed Oct. 17, 2019, Specification, Claims, Figures. |
(Garcia, Paulo A. et al.) Co-Pending U.S. Appl. No. 18/100,835, filed Jan. 24, 2023, Specification, Claims, Figures. |
(Garcia, Paulo A. et al.) Co-pending U.S. Appl. No. 16/152,743, filed Oct. 5, 2018, Specification, Claims, Figures. |
(Garcia, Paulo A. et al.) Co-pending U.S. Appl. No. 17/591,992, filed Feb. 3, 2022, Specification, Claims, Figures. |
(Latouche, Eduardo et al.) Co-pending U.S. Appl. No. 16/210,771, filed Dec. 5, 2018, and which published as US Patent Publication No. 2019/0232048 on Aug. 1, 2019, Specification, Claims, Figures. |
(Lorenzo, Melvin F. et al.) Co-pending U.S. Appl. No. 16/938,778, filed Jul. 24, 2020, Specification, Claims, Figures. |
(Mahajan, Roop L. et al.) Co-Pending U.S. Appl. No. 13/958,152, filed Aug. 2, 2013, Specification, Claims, Figures. |
Ball, C., K.R. Thomson, and H. Kavnoudias, “Irreversible electroporation: a new challenge in “out of-operating theater” anesthesia.” Anesth Analg, 2010. 110(5): p. 1305-9. |
Bancroft, et al., Design of a Flow Perfusion Bioreactor System for Bone Tissue-Engineering Applications, Tissue Engineering, vol. 9, No. 3, 2003, p. 549-554. |
Baptista et al., “The Use of Whole Organ Decellularization for the Generation of a Vascularized Liver Organoid,” Heptatology, vol. 53, No. 2, pp. 604-617 (2011). |
Barber, Electrical Impedance Tomography Applied Potential Tomography, Advances in Biomedical Engineering, Beneken and Thevenin, eds., IOS Press, pp. 165-173, 1993. |
Beebe, S.J., et al., “Diverse effects of nanosecond pulsed electric fields on cells and tissues”, DNA and Cell Biology, 22(12): 785-796 (2003). |
Beebe, S.J., et al., Nanosecond pulsed electric field (nsPEF) effects on cells and tissues: apoptosis induction and tumor growth inhibition. PPPS-2001 Pulsed Power Plasma Science 2001, 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference, Digest of Technical Papers (Cat. No. 01CH37251). IEEE, Part vol. 1, 2001, pp. 211-215, vol. I, Piscataway, NJ, USA. |
Beebe, S.J., et al.,, “Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells”, FASEB J, 17(9): p. 1493-5 (2003). |
Beitel-White, N., S. Bhonsle, R. Martin, and R. V. Davalos, “Electrical characterization of human biological tissue for irreversible electroporation treatments,” in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2018, pp. 4170-4173. |
Belehradek, J., et al., “Electropermeabilization of Cells in Tissues Assessed by the Qualitative and Quantitative Electroloading of Bleomycin”, Biochimica Et Biophysica Acta-Biomembranes, 1190(1): p. 155-163 (1994). |
Ben-David, E. et al., “Irreversible Electroporation: Treatment Effect Is Susceptible to Local Environment and Tissue Properties,” Radiology, vol. 269, No. 3, 2013, 738-747. |
Ben-David, E., et al., “Characterization of Irreversible Electroporation Ablation in In Vivo Procine Liver” Am. J. Roentgenol. 198(1), W62-W68 (2012). |
Benz, R., et al. “Reversible electrical breakdown of lipid bilayer membranes: a charge-pulse relaxation study”. J Membr Biol, 48(2): p. 181-204 (1979). |
Bhonsle, S. et al., “Characterization of Irreversible Electroporation Ablation with a Validated Perfused Organ Model,” J. Vasc. Interv. Radiol., vol. 27, No. 12, pp. 1913-1922.e2, 2016. |
Bhonsle, S. P. et al., “Mitigation of impedance changes due to electroporation therapy using bursts of high-frequency bipolar pulses,” Biomed. Eng. (NY)., vol. 14, No. Suppl 3, 14 pages, 2015. |
Bhonsle, S., M. F. Lorenzo, A. Safaai-Jazi, and R. V. Davalos, “Characterization of nonlinearity and dispersion in tissue impedance during high-frequency electroporation,” IEEE Transactions on Biomedical Engineering, vol. 65, No. 10, pp. 2190-2201, 2018. |
Blad, et al., Impedance Spectra of Tumour Tissue in Comparison with Normal Tissue; a Possible Clinical Application for Electrical Impedance Tomography, Physiol. Meas. 17 (1996) A105-A115. |
Bolland, F., et al., “Development and characterisation of a full-thickness acellular porcine bladder matrix for tissue engineering”, Biomaterials, Elsevier Science Publishers, Barking, GB, vol. 28, No. 6, Nov. 28, 2006, pp. 1061-1070. |
Bonakdar, M., E. L. Latouche, R. L. Mahajan, and R. V. Davalos, “The feasibility of a smart surgical probe for verification of IRE treatments using electrical impedance spectroscopy,” IEEE Trans. Biomed. Eng., vol. 62, No. 11, pp. 2674-2684, 2015. |
Bondarenko, A. and G. Ragoisha, Eis spectrum analyser (the program is available online at http://www.abc.chemistry.psu.by/vi/analyser/. |
Boone, K., Barber, D. & Brown, B. Review—Imaging with electricity: report of the European Concerted Action on Impedance Tomography. J. Med. Eng. Technol. 21, 201-232 (1997). |
Boussetta, N., N. Grimi, N. I. Lebovka, and E. Vorobiev, “Cold” electroporation in potato tissue induced by pulsed electric field, Journal of food engineering, vol. 115, No. 2, pp. 232-236, 2013. |
Bower et al., “Irreversible electroporation of the pancreas: definitive local therapy without systemic effects.” Journal of surgical oncology, 2011. 104(1): p. 22-28. |
BPH Management Strategies: Improving Patient Satisfaction, Urology Times, May 2001, vol. 29, Supplement 1. |
Brown, et al., Blood Flow Imaging Using Electrical Impedance Tomography, Clin. Phys. Physiol. Meas., 1992, vol. 13, Suppl. A, 175-179. |
Brown, S.G., Phototherapy of tumors. World J. Surgery, 1983. 7: p. 700-9. |
Buist et al., “Efficacy of multi-electrode linear irreversible electroporation,” Europace, vol. 23, No. 3, pp. 464-468, 2021, 5 pages. |
Bulvik, B. E. et al. “Irreversible Electroporation versus Radiofrequency Ablation□: A Comparison of Local and Systemic Effects in a Small Animal Model,” Radiology, vol. 280, No. 2, 2016, 413-424. |
Butikofer, R. et al., “Electrocutaneous Nerve Stimulation-I: Model and Experiment,” IEEE Trans. Biomed. Eng., vol. BME-25, No. 6, 526-531, 1978,6 pages. |
Butikofer, R. et al., “Electrocutaneous Nerve Stimulation-II: Stimulus Waveform Selection,” IEEE Trans. Biomed. Eng., vol. BME-26, No. 2, 69-75, 1979, abstract only, 2 pages. |
Cannon et al., “Safety and early efficacy of irreversible electroporation for hepatic tumors in proximity to vital structures.” Journal of Surgical Oncology, 6 pages (2012). |
Carpenter A.E. et al., “CellProfiler: image analysis software for identifying and quantifying cell phenotypes.” Genome Biol. 2006; 7(10): R100. Published online Oct. 31, 2006, 11 pages. |
Castellvi, Q., B. Mercadal, and A. Ivorra, “Assessment of electroporation by electrical impedance methods,” in Handbook of electroporation. Springer-Verlag, 2016, pp. 671-690. |
Cemazar M, Parkins CS, Holder AL, Chaplin DJ, Tozer GM, et al., “Electroporation of human microvascular endothelial cells: evidence for an anti-vascular mechanism of electrochemotherapy”, Br J Cancer 84: 565-570 (2001). |
Chandrasekar, et al., Transurethral Needle Ablation of the Prostate (TUNA)—a Propsective Study, Six Year Follow Up, (Abstract), Presented at 2001 National Meeting, Anaheim, CA, Jun. 5, 2001. |
Chang, D.C., “Cell Poration and Cell-Fusion Using an Oscillating Electric-Field”. Biophysical Journal, 56(4): p. 641-652 (1989). |
Charpentier, K.P., et al., “Irreversible electroporation of the pancreas in swine: a pilot study.” HPB: the official journal of the International Hepato Pancreato Biliary Association, 2010. 12(5): p. 348-351. |
Chen et al., “Classification of cell types using a microfluidic device for mechanical and electrical measurement on single cells.” Lab on a Chip, vol. 11, pp. 3174-3181 (2011). |
Chen, M.T., et al., “Two-dimensional nanosecond electric field mapping based on cell electropermeabilization”, PMC Biophys, 2(1):9 (2009). |
Clark et al., “The electrical properties of resting and secreting pancreas.” The Journal of Physiology, vol. 189, pp. 247-260 (1967). |
Coates, C.W.,et al., “The Electrical Discharge of the Electric Eel, Electrophorous Electricus,” Zoologica, 1937, 22(1), pp. 1-32. |
Cook, et al., ACT3: A High-Speed, High-Precision Electrical Impedance Tomograph, IEEE Transactions on Biomedical Engineering, vol. 41, No. 8, Aug. 1994. |
Corovic et al., “Analytical and numerical quantification and comparison of the local electric field in the tissue for different electrode configurations,” Biomed Eng Online, 6, 14 pages, 2007. |
Cosman, E. R. et al., “Electric and Thermal Field Effects in Tissue Around Radiofrequency Electrodes,” Pain Med., vol. 6, No. 6, 405-424, 2005, 20 pages. |
Cowley, Good News for Boomers, Newsweek, Dec. 30, 1996/Jan. 6, 1997. |
Cox, et al., Surgical Treatment of Atrial Fibrillation: A Review, Europace (2004) 5, S20-S-29. |
Creason, S. C., J. W. Hayes, and D. E. Smith, “Fourier transform faradaic admittance measurements iii. comparison of measurement efficiency for various test signal waveforms,” Journal of Electroanalytical chemistry and interfacial electrochemistry, vol. 47, No. 1, pp. 9-46, 1973. |
Crowley, Electrical Breakdown of Biomolecular Lipid Membranes as an Electromechanical Instability, Biophysical Journal, vol. 13, pp. 711-724, 1973. |
Dahl et al., “Nuclear shape, mechanics, and mechanotransduction.” Circulation Research vol. 102, pp. 1307-1318 (2008). |
Daskalov, I., et al, “Exploring new instrumentation parameters for electrochemotherapy—Attacking tumors with bursts of biphasic pulses instead of single pulses”, IEEE Eng Med Biol Mag, 18(1): p. 62-66 (1999). |
Daud, A.I., et al., “Phase I Trial of Interleukin-12 Plasmid Electroporation in Patients With Metastatic Melanoma,” Journal of Clinical Oncology, 26, 5896-5903, Dec. 20, 2008. |
Pending U.S. Appl. No. 16/443,351, Non-Final Office Action, dated Jun. 10, 2022, 15 pages. |
Pending U.S. Appl. No. 16/443,351, Notice of Allowance, dated Dec. 7, 2022, 8 pages. |
Pending U.S. Appl. No. 16/443,351, Preliminary amendment filed Feb. 3, 2020. |
Pending U.S. Appl. No. 16/443,351, Response to Jun. 10, 2022 Non-Final Office Action, dated Sep. 12, 2022, 7 pages. |
Pending U.S. Appl. No. 16/747,219, Applicant-Initiated Interview Summary dated Aug. 3, 2022, 4 pages. |
Pending U.S. Appl. No. 16/747,219, Final Office Action dated Nov. 10, 2022, 12 pages. |
Pending U.S. Appl. No. 16/747,219, Non-Final Office Action dated Mar. 31, 2022, 12 pages. |
Pending U.S. Appl. No. 16/747,219, Preliminary Amendment filed Jan. 20, 2020, 5 pages. |
Pending U.S. Appl. No. 16/747,219, Preliminary Amendment filed Jan. 4, 2021, 5 pages. |
Pending U.S. Appl. No. 16/747,219, Response to Mar. 31, 2022 Non-Final Office Action, dated Aug. 1, 2022, 8 pages. |
Pending U.S. Appl. No. 16/747,219, Response to Nov. 10, 2022 Final Office Action, dated Feb. 10, 2023, 6 pages. |
Pending U.S. Appl. No. 16/865,031, Non-Final Office Action dated Nov. 28, 2022, 16 pages. |
Pending U.S. Appl. No. 16/865,031, Preliminary Amendment filed May 1, 2020, 7 pages. |
Pending U.S. Appl. No. 16/865,031, Response to Nov. 28, 2022 Non-Final Office Action, dated Feb. 27, 2023, 10 pages. |
Pending U.S. Appl. No. 16/865,031, Second Preliminary Amendment, filed Sep. 17, 2021, 10 pages. |
Pending U.S. Appl. No. 16/865,772, Final Office Action dated Aug. 22, 2022, 18 pages. |
Pending U.S. Appl. No. 16/865,772, Non-Final Office Action dated Apr. 11, 2022, 16 pages. |
Pending U.S. Appl. No. 16/865,772, Non-Final Office Action dated Jan. 20, 2023, 17 pages. |
Pending U.S. Appl. No. 16/865,772, Preliminary Amendment filed May 4, 2020, 6 pages. |
Pending U.S. Appl. No. 16/865,772, Response to Apr. 11, 2022 Non-Final Office Action, dated Jul. 11, 2022, 8 pages. |
Pending U.S. Appl. No. 16/865,772, Response to Aug. 22, 2022 Final Office Action, dated Dec. 22, 2022, 8 pages. |
Pending U.S. Appl. No. 16/865,772, Second Preliminary Amendment filed Jun. 30, 2020, 4 pages. |
Pending U.S. Appl. No. 16/865,772, Third Preliminary Amendment, filed Sep. 17, 2021, 6 pages. |
Pending U.S. Appl. No. 16/915,760, Non-Final Office Action dated Jan. 19, 2023, 8 pages. |
Pending U.S. Appl. No. 16/915,760, Preliminary Amendment filed Jul. 6, 2020, 5 pages. |
Pending U.S. Appl. No. 16/915,760, Response to Sep. 20, 2022 Restriction Requirement, filed Nov. 21, 2022, 2 pages. |
Pending U.S. Appl. No. 16/915,760, Restriction Requirement dated Sep. 20, 2022, 6 pages. |
Pending U.S. Appl. No. 17/069,359, Non-Final Office Action dated Nov. 25, 2022, 7 pages. |
Pending U.S. Appl. No. 17/069,359, Preliminary Amendment, filed Sep. 17, 2021, 6 pages. |
Pending U.S. Appl. No. 17/069,359, Response to Nov. 25, 2022 Non-Final Office Action, dated Feb. 27, 2023, 7 pages. |
Pending U.S. Appl. No. 17/172,731, Non-Final Office Action dated Feb. 15, 2023, 7 pages. |
Pending U.S. Appl. No. 17/172,731, Preliminary Amendment, filed Jun. 27, 2022, 9 pages. |
Pending U.S. Appl. No. 17/172,731, Preliminary Amendment, filed Sep. 17, 2021, 7 pages. |
Pending U.S. Appl. No. 17/277,662 Preliminary Amendment filed Mar. 18, 2021, 8 pages. |
Pending U.S. Appl. No. 17/338,960, Response to Notice to File Missing Parts and Amendment, filed Aug. 16, 2021, 7 pages. |
Pending U.S. Appl. No. 18/100,835, Preliminary Amendment filed Jan. 26, 2023, 8 pages. |
Pending U.S. Appl. No. 18/100,835, Second Preliminary Amendment filed Feb. 6, 2023, 6 pages. |
Pending Application No. 19861489.3 Response to Communication pursuant to Rules 161(2) and 162 EPC, filed Nov. 16, 2021, 7 pages. |
Pending Application No. 19861489.3 Response to May 16, 2022 Extended European Search Report, dated Dec. 13, 2022, 136 pages. |
Pending Application No. AU 2009243079, First Examination Report, Jan. 24, 2014, 4 pages. |
Pending Application No. AU 2009243079, Voluntary Amendment filed Dec. 6, 2010, 35 pages. |
Pending Application No. AU 2015259303, Certificate of Grant dated Feb. 10, 2022, 1 page. |
Pending Application No. AU 2015259303, First Examination Report dated Oct. 26, 2020, 6 pages. |
Pending Application No. AU 2015259303, Notice of Acceptance and Allowed Claims, dated Oct. 15, 2021, 7 pages. |
Pending Application No. AU 2015259303, Response to First Examination Report dated Sep. 20, 2021, 126 pages. |
Pending Application No. CA 2,722,296 Examination Report dated Apr. 2, 2015, 6 pages. |
Pending Application No. CN 201580025135.6 English translation of Apr. 29, 2020 Office action, 7 pages. |
Pending Application No. CN 201580025135.6 English translation of Sep. 25, 2019 Office action. |
Pending Application No. CN 201580025135.6 Preliminary Amendment filed with application Nov. 14, 2016. |
Pending Application No. CN 201580025135.6 Response to Sep. 25, 2019 Office action, filed Feb. 10, 2020, English language version and original document. |
Neal II, Robert E. and R.V. Davalos, The Feasibility of Irreversible Electroporation for the Treatment of Breast Cancer and Other Heterogeneous Systems, Ann Biomed Eng, 2009, 37(12): p. 2615-2625. |
Neal Re II, et al. (2013) Improved Local and Systemic Anti-Tumor Efficacy for Irreversible Electroporation in Immunocompetent versus Immunodeficient Mice. PLoS ONE 8(5): e64559. https://doi.org/10.1371/journal.pone.0064559. |
Nesin et al., “Manipulation of cell volume and membrane pore comparison following single cell permeabilization with 60- and 600-ns electric pulses.” Biochimica et Biophysica Acta (BBA)—Biomembranes, vol. 1808, pp. 792-801 (2011). |
Neumann, et al., Gene Transfer into Mouse Lyoma Cells by Electroporation in High Electric Fields, J. Embo., vol. 1, No. 7, pp. 841-845, 1982. |
Neumann, et al., Permeability Changes Induced by Electric Impulses in Vesicular Membranes, J. Membrane Biol., vol. 10, pp. 279-290, 1972. |
Nikolova, B., et al., “Treatment of Melanoma by Electroporation of Bacillus Calmette-Guerin”. Biotechnology & Biotechnological Equipment, 25(3): p. 2522-2524 (2011). |
Nuccitelli, R., et al., “A new pulsed electric field therapy for melanoma disrupts the tumor's blood supply and causes complete remission without recurrence”, Int J Cancer, 125(2): p. 438-45 (2009). |
O'Brien et al., “Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity.” European Journal of Biochemistry, vol. 267, pp. 5421-5426 (2000). |
O'Brien, T. J. et al., “Effects of internal electrode cooling on irreversible electroporation using a perfused organ model,” Int. J. Hyperth., vol. 35, No. 1, pp. 44-55, 2018. |
Okino, et al., Effects of High-Voltage Electrical Impulse and an Anticancer Drug on In Vivo Growing Tumors, Japanese Journal of Cancer Research, vol. 78, pp. 1319-1321, 1987. |
Onik, et al., Sonographic Monitoring of Hepatic Cryosurgery in an Experimental Animal Model, AJR American J. of Roentgenology, vol. 144, pp. 1043-1047, May 1985. |
Onik, et al., Ultrasonic Characteristics of Frozen Liver, Cryobiology, vol. 21, pp. 321-328, 1984. |
Onik, G. and B. Rubinsky, eds. “Irreversible Electroporation: First Patient Experience Focal Therapy of Prostate Cancer. Irreversible Electroporation”, ed. B. Rubinsky 2010, Springer Berlin Heidelberg, pp. 235-247. |
Onik, G., P. Mikus, and B. Rubinsky, “Irreversible electroporation: implications for prostate ablation.” Technol Cancer Res Treat, 2007. 6(4): p. 295-300. |
Organ, L.W., Electrophysiological principles of radiofrequency lesion making, Apply. Neurophysiol., 1976. 39: p. 69-76. |
Ott, H. C., et al., “Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart”, Nature Medicine, Nature Publishing Group, New York, NY, US, vol. 14, No. 2, Feb. 1, 2008, pp. 213-221. |
Pakhomova, O. N., Gregory, B., Semenov I., and Pakhomov, A. G., BBA—Biomembr., 2014, 1838, 2547-2554. |
Partridge, B. R. et al., “High-Frequency Irreversible Electroporation for treatment of Primary Liver Cancer: A Proof-of-Principle Study in Canine Hepatocellular Carcinoma,” J. Vasc. Interv. Radiol., vol. 31, No. 3, 482-491.e4, Mar. 2020, 19 pages. |
Paszek et al., “Tensional homeostasis and the malignant phenotype.” Cancer Cell, vol. 8, pp. 241-254 (2005). |
Patent No. JP 7051188, Notice of Reasons for Revocation dated Jan. 30, 2023 (3 pages) with English translation (5 pages). |
Patent No. JP 7051188, Opposition dated Jul. 4, 2022 (16 pages) with English translation (13 pages). |
Pavselj, N. et al. The course of tissue permeabilization studied on a mathematical model of a subcutaneous tumor in small animals. IEEE Trans Biomed Eng 52, 1373-1381 (2005). |
Pavselj, N., et al., “A numerical model of skin electroporation as a method to enhance gene transfection in skin. 11th Mediterranean Conference on Medical and Biological Engineering and Computing”, vols. 1 and 2, 16(1-2): p. 597-601 (2007). |
PCT Application No. PCT/2011/062067, International Preliminary Report on Patentability dated May 28, 2013. |
PCT Application No. PCT/2011/066239, International Preliminary Report on Patentability dated Jun. 25, 2013. |
PCT Application No. PCT/US09/62806, International Search Report (Jan. 19, 2010), Written Opinion (Jan. 19, 2010), and International Preliminary Report on Patentability (Jan. 4, 2010), 15 pgs. |
PCT Application No. PCT/US10/53077, International Search Report (Aug. 2, 2011), Written Opinion (Aug. 2, 2011), and International Preliminary Report on Patentability (Apr. 17, 2012). |
PCT Application No. PCT/US15/30429, International Search Report and Written Opinion dated Oct. 16, 2015, 19 pages. |
PCT Application No. PCT/US15/30429, International Report on Patentability dated Nov. 15, 2016. |
PCT Application No. PCT/US15/65792, International Search Report (Feb. 9, 2016), Written Opinion (Feb. 9, 2016), and International Preliminary Report on Patentability (Jun. 20, 2017), 15 pages. |
PCT Application No. PCT/US19/51731, International Preliminary Report on Patentability dated Mar. 23, 2021, 13 pages. |
PCT Application No. PCT/US19/51731, International Search Report and Written Opinion dated Feb. 20, 2020, 19 pgs. |
PCT Application No. PCT/US19/51731, Invitation to Pay Additional Search Fees dated Oct. 28, 2019, 2 pgs. |
PCT Application No. PCT/US2004/043477, International Search Report (Aug. 26, 2005), Written Opinion (Aug. 26, 2005), and International Preliminary Report on Patentability (Jun. 26, 2006). |
PCT Application No. PCT/US2009/042100, International Search Report (Jul. 9, 2009), Written Opinion (Jul. 9, 2009), and International Preliminary Report on Patentability (Nov. 2, 2010). |
PCT Application No. PCT/US2010/029243, International Search Report, 4 pgs, (Jul. 30, 2010), Written Opinion, 7 pgs, (Jul. 30, 2010), and International Preliminary Report on Patentability, 8 pgs, (Oct. 4, 2011). |
PCT Application No. PCT/US2010/030629, International Search Report (Jul. 15, 2010), Written Opinion (Jul. 15, 2010), and International Preliminary Report on Patentability (Oct. 11, 2011). |
PCT Application No. PCT/US2011/062067, International Search Report and Written Opinion dated Jul. 25, 2012. |
PCT Application No. PCT/US2011/066239, International Search Report (Aug. 22, 2012), and Written Opinion (Aug. 22, 2012). |
Pending U.S. Appl. No. 14/686,380, Advisory Action dated Oct. 20, 2021, 3 pages. |
Pending U.S. Appl. No. 14/686,380, Appeal Brief filed Nov. 5, 2021, 21 pages. |
Pending U.S. Appl. No. 14/686,380, Appeal Decision dated Jan. 30, 2023, 15 pages. |
Pending U.S. Appl. No. 14/686,380, Applicant Initiated Interview Summary dated Feb. 9, 2021, 3 pages. |
Pending U.S. Appl. No. 14/686,380, Applicant Initiated Interview Summary dated Mar. 8, 2021, 2 pages. |
Pending U.S. Appl. No. 14/686,380, Examiner's Answer to Appeal Brief, dated Feb. 18, 2022, 16 pages. |
Pending U.S. Appl. No. 14/686,380, Final Office Action dated May 9, 2018, 14 pages. |
Pending U.S. Appl. No. 14/686,380, Final Office Action dated Oct. 6, 2020, 14 pages. |
Pending U.S. Appl. No. 14/686,380, Final Office Action dated Sep. 3, 2019, 28 pages. |
Pending U.S. Appl. No. 14/686,380, Non-Final Office Action dated Feb. 13, 2020, 11 pages. |
Pending U.S. Appl. No. 14/686,380, Non-Final Office Action dated May 1, 2019, 18 pages. |
Pending U.S. Appl. No. 17/172,731, Notice of Allowance dated Jun. 27, 2024, 7 pages. |
Pending U.S. Appl. No. 17/172,731, Response to Apr. 10, 2024 Final Office Action, dated Jun. 10, 2024, 6 pages. |
Pending U.S. Appl. No. 17/172,731, Response to Feb. 15, 2023 Non-Final Office Action, dated May 15, 2023, 8 pages. |
Pending U.S. Appl. No. 17/172,731, Response to Jul. 12, 2023 Final Office Action, dated Oct. 12, 2023, 10 pages. |
Pending U.S. Appl. No. 17/172,731, Response to Oct. 31, 2023 Non-Final Office Action, dated Jan. 31, 2024, 7 pages. |
Pending U.S. Appl. No. 17/277,662 Non-Final Office Action dated May 5, 2023, 9 pages. |
Pending U.S. Appl. No. 17/277,662 Notice of Allowance dated Oct. 2, 2023, 7 pages. |
Pending U.S. Appl. No. 17/277,662 Response to May 5, 2023 Non-Final Office Action, dated Aug. 7, 2023, 8 pages. |
Pending U.S. Appl. No. 17/338,960, Ex Parte Quayle Action dated May 24, 2023, 6 pages. |
Pending U.S. Appl. No. 17/338,960, Response to May 24, 2023 Ex Parte Quayle Action, dated Aug. 8, 2023, 6 pages. |
Pending U.S. Appl. No. 17/591,992, Final Office Action dated Jul. 30, 2024, 10 pages. |
Pending U.S. Appl. No. 17/591,992, Non-Final Office Action dated Feb. 23, 2024, 9 pages. |
Pending U.S. Appl. No. 17/591,992, Non-Final Office Action dated Jan. 24, 2024, 7 pages. |
Pending U.S. Appl. No. 17/591,992, Preliminary Amendment dated Sep. 20, 2023, 9 pages. |
Pending U.S. Appl. No. 17/591,992, Response to Feb. 23, 2024 Non-Final Office Action dated May 23, 2024, 10 pages. |
Pending U.S. Appl. No. 18/027,824, Preliminary Amendment dated Mar. 22, 2023, 8 pages. |
Pending U.S. Appl. No. 18/100,835, Restriction Requirement dated Jun. 28, 2024, 6 pages. |
Pending U.S. Appl. No. 18/123,719, Preliminary Amendment dated Jun. 6, 2023, 6 pages. |
Pending U.S. Appl. No. 18/130,330, Preliminary Amendment dated Jun. 20, 2023, 8 pages. |
Pending U.S. Appl. No. 18/130,330, Second Preliminary Amendment dated Feb. 26, 2024, 3 pages. |
Pending U.S. Appl. No. 18/348,605, Non-Final Office Action dated Sep. 5, 2024, 10 pages. |
Pending U.S. Appl. No. 18/348,605, Preliminary Amendment dated Oct. 31, 2023, 7 pages. |
Pending U.S. Appl. No. 18/402,231, Preliminary Amendment dated Mar. 5, 2024, 5 pages. |
Pending U.S. Appl. No. 18/404,473, Preliminary Amendment dated May 13, 2024, 6 pages. |
Pending U.S. Appl. No. 18/502,967, Non-Final Office Action dated Jun. 18, 2024, 25 pages. |
Pending U.S. Appl. No. 18/502,967, Preliminary Amendment filed Nov. 6, 2023, 6 pages. |
Pending U.S. Appl. No. 18/502,967, Response to Jun. 18, 2024 Non-Final Office Action dated Sep. 18, 2024, 12 pages. |
Pending U.S. Appl. No. 18/846,198 Preliminary Amendment dated Sep. 11, 2024, 8 pages. |
Pending Application No. 19861489.3 Extended European Search Report dated May 16, 2022 (8 pages). |
Pending Application No. EP 15793361.5, Brief Communication from the EPO, dated Aug. 19, 2024, 1 page. |
Pending Application No. EP 15793361.5, Communication dated Feb. 8, 2024, 4 pages. |
Pending Application No. EP 15793361.5, Communication Pursuant to Article 94(3) EPC, dated Apr. 4, 2023, 4 pages. |
Pending Application No. EP 15793361.5, EPO Result of Consultation, Aug. 12, 2024, 3 pages. |
Pending Application No. EP 15793361.5, Response to Apr. 4, 2023 Communication Pursuant to Article 94(3) EPC, dated Oct. 16, 2023, 13 pages. |
Pending Application No. EP 15793361.5, Response to Feb. 8, 2024 Communication, Filed Aug. 2, 2024, 40 pages. |
Pending Application No. EP 15793361.5, Supplemental Response to Feb. 8, 2024 Communication, Filed Aug. 16, 2024, 9 pages. |
Pending Application No. PCT/US23/15118, International Search Report and Written Opinion dated Jul. 31, 2023, 18 pages. |
Pending Application No. PCT/US23/15118, Invitation to Pay Additional Fees dated May 17, 2023, 3 pages. |
Pending Application No. PCT/US23/76626, International Search Report and Written Opinion, dated Apr. 17, 2024, 12 pages. |
Pending Application No. PCT/US23/76626, Invitation to Pay Additional Fees dated Feb. 21, 2024, 2 pages. |
Reti, I. M. and Davydow, D. S., “Electroconvulsive Therapy and Antibiotics: A Case Report”, J. Ect, vol. 23, No. 4, Dec. 2007, pp. 289-290. |
U.S. Appl. No. 14/686,380, file history through Dec. 2023, 265 pages. |
U.S. Appl. No. 14/808,679 (U.S. Pat. No. 11,655,466), file history through Aug. 2022, 253 pages. |
U.S. Appl. No. 16/443,351 (U.S. Pat. No. 11,638,603), file history through Mar. 2023, 114 pages. |
U.S. Appl. No. 16/865,772, file history through Aug. 2023, 110 pages. |
U.S. Appl. No. 17/069,359 (U.S. Pat. No. 11,737,810), file history through Apr. 2023, 27 pages. |
(Davalos, Rafael et al.) Co-Pending U.S. Appl. No. 18/846,198, filed Sep. 11, 2024, Specification, Claims, Figures. |
(Davalos, Rafael et al.) Co-Pending Application No. PCT/US23/76626, filed Oct. 11, 2023, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-Pending U.S. Appl. No. 18/027,824, filed Mar. 22, 2023, Specification, Claims, and Figures. |
(Davalos, Rafael V. et al.) Co-Pending U.S. Appl. No. 18/130,330, filed Apr. 3, 2023, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 18/348,605, filed Jul. 7, 2023, Specification, Claims, Drawings. |
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 18/402,231, filed Jan. 2, 2024, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 18/404,473, filed Jan. 4, 2024, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 18/767,746, filed Jul. 9, 2024, Specification, Claims, Figures. |
(Neal, Robert E. et al.) Co-pending U.S. Appl. No. 18/502,967, filed Nov. 6, 2023, Specification, Claims, Figures. |
(Neal, Robert et al.) Co-pending U.S. Appl. No. 18/528,051, filed Dec. 4, 2023, Specification, Claims, Figures. |
(O'Brien, Timothy J. et al.) Co-Pending U.S. Appl. No. 18/608,958, filed Mar. 19, 2024, Specification, Claims, Figures. |
(Sano, Michael B. et al.) Co-pending U.S. Appl. No. 18/123,719, filed Mar. 20, 2023, Specification, Claims, Figures. |
Korohoda, W. et al. “Reversible and Irreversible Electroporation of Cell Suspensions Flowing Through a Localized DC Electric Field”, Cellular & Molecular Biology Letters, vol. 18 (2013), pp. 102-119 (published Dec. 27, 2012). |
Lv, Y. et al. “The Englargement of Ablation Area by Electrolytic Irreversible Electroporation (E-IRE) Using Pulsed Field with Bias DC Field”, Annals of Biomedical Engineering, vol. 50, No. 12, Dec. 2022, 10 pages. |
Mercadal, Borja et al. “Dynamics of Cell Death After Conventional IRE and H-FIRE Treatments”, Annals of Biomedical Engineering, vol. 48, No. 5, 2020, p. 1451-1462. |
Patent No. JP 7051188, Response to Jan. 30, 2023 Notice of Reasons for Revocation, dated Apr. 27, 2023 (9 pages) with English translation (10 pages). |
Patent No. JP 7051188, Response to Opposition dated Aug. 22, 2023 (21 pages) with English translation (25 pages). |
Pending U.S. Appl. No. 16/375,878, Final Office Action dated Aug. 18, 2023, 11 pages. |
Pending U.S. Appl. No. 16/375,878, Notice of Allowance dated Nov. 15, 2023, 6 pages. |
Pending U.S. Appl. No. 16/375,878, Response to Aug. 18, 2023 Final Office Action, dated Oct. 18, 2023, 9 pages. |
Pending U.S. Appl. No. 16/375,878, Response to Jan. 23, 2023 Non-Final Office Action, dated Apr. 24, 2023, 10 pages. |
Pending U.S. Appl. No. 16/747,219, Non-Final Office Action dated May 25, 2023, 13 pages. |
Pending U.S. Appl. No. 16/747,219, Notice of Allowance dated Dec. 26, 2023, 12 pages. |
Pending U.S. Appl. No. 16/747,219, Response to May 25, 2023 Non-Final Office Action, dated Aug. 25, 2023, 9 pages. |
Pending U.S. Appl. No. 16/865,031, Final Office Action dated May 24, 2023, 18 pages. |
Pending U.S. Appl. No. 16/865,031, Notice of Allowance dated Oct. 4, 2023, 10 pages. |
Pending U.S. Appl. No. 16/865,031, Response to May 24, 2023 Final Office Action, dated Jul. 25, 2023, 8 pages. |
Pending U.S. Appl. No. 16/915,760, Applicant-Initiated Interview Summary dated Aug. 8, 2023, 2 pages. |
Pending U.S. Appl. No. 16/915,760, Final Office Action dated Aug. 10, 2023, 9 pages. |
Pending U.S. Appl. No. 16/915,760, Final Office Action dated Jun. 2, 2023, 8 pages. |
Pending U.S. Appl. No. 16/915,760, Notice of Allowance dated Nov. 29, 2023, 7 pages. |
Pending U.S. Appl. No. 16/915,760, Response to Aug. 10, 2023 Final Office Action, dated Nov. 10, 2023, 6 pages. |
Pending U.S. Appl. No. 16/915,760, Response to Jan. 19, 2023 Non-Final Office Action, dated Apr. 19, 2023, 8 pages. |
Pending U.S. Appl. No. 16/938,778, Interview Summary dated Jun. 21, 2024, 1 page. |
Pending U.S. Appl. No. 16/938,778, Non-Final Office Action dated Jan. 2, 2024, 12 pages. |
Pending U.S. Appl. No. 16/938,778, Notice of Allowance dated Jun. 21, 2024, 10 pages. |
Pending U.S. Appl. No. 16/938,778, Response to Jan. 2, 2024 Non-Final Office Action, dated Apr. 2, 2024, 13 pages. |
Pending U.S. Appl. No. 16/938,778, Response to Oct. 24, 2023 Restriction Requirement, dated Dec. 13, 2023, 3 pages. |
Pending U.S. Appl. No. 16/938,778, Restriction Requirement dated Oct. 24, 2023, 6 pages. |
Pending U.S. Appl. No. 17/000,049, Examiner Interview Summary dated Jul. 8, 2024, 7 pages. |
Pending U.S. Appl. No. 17/000,049, Final Office Action dated Mar. 29, 2024, 15 pages. |
Pending U.S. Appl. No. 17/000,049, Non-Final Office Action dated Dec. 11, 2023, 13 pages. |
Pending U.S. Appl. No. 17/000,049, Response to Dec. 11, 2023 Non-Final Office Action, dated Mar. 11, 2024, 9 pages. |
Pending U.S. Appl. No. 17/000,049, Response to Jul. 31, 2023 Restriction Requirement dated Nov. 9, 2023, 8 pages. |
Pending U.S. Appl. No. 17/000,049, Restriction Requirement dated Jul. 31, 2023, 6 pages. |
Pending U.S. Appl. No. 17/152,379, Non-Final Office Action dated Apr. 23, 2024, 14 pages. |
Pending U.S. Appl. No. 17/152,379, Response to Apr. 23, 2024 Non-Final Office Action, filed Aug. 23, 2024, 7 pages. |
Pending U.S. Appl. No. 17/172,731, Final Office Action dated Apr. 10, 2024, 5 pages. |
Pending U.S. Appl. No. 17/172,731, Final Office Action dated Jul. 12, 2023, 11 pages. |
Pending U.S. Appl. No. 17/172,731, Non-Final Office Action dated Oct. 31, 2023, 13 pages. |
Pending U.S. Appl. No. 17/591,992, Response to Jul. 30, 2024 Final Office Action, dated Sep. 30, 2024, 9 pages. |
Pending U.S. Appl. No. 18/100,835, Non-Final Office Action dated Oct. 23, 2024, 10 pages. |
Pending U.S. Appl. No. 18/100,835, Response to Jun. 28, 2024 Restriction Requirement, dated Aug. 28, 2024, 5 pages. |
Pending U.S. Appl. No. 18/767,746, Preliminary amendment dated Oct. 4, 2024, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20230212551 A1 | Jul 2023 | US |
Number | Date | Country | |
---|---|---|---|
61424872 | Dec 2010 | US | |
61285618 | Dec 2009 | US | |
61252445 | Oct 2009 | US | |
61171564 | Apr 2009 | US | |
61167997 | Apr 2009 | US | |
61075216 | Jun 2008 | US | |
61125840 | Apr 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12906923 | Oct 2010 | US |
Child | 14808679 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14808679 | Jul 2015 | US |
Child | 18120158 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13332133 | Dec 2011 | US |
Child | 14808679 | US | |
Parent | 12757901 | Apr 2010 | US |
Child | 13332133 | US | |
Parent | 12757901 | Apr 2010 | US |
Child | 12906923 | US | |
Parent | 12609779 | US | |
Child | 12906923 | US | |
Parent | 12491151 | Oct 2009 | US |
Child | 12906923 | US | |
Parent | 12432295 | Apr 2009 | US |
Child | 12757901 | US |