Claims
- 1. A method of treating a subterranean zone penetrated by a well bore comprising introducing into the subterranean zone an aqueous well treating fluid comprising water and a water soluble polymer complex fluid loss control additive that comprises 1 part by weight of a cationic, anionic or amphoteric polymer comprising 40 mole % of 2-acrylamido-2-methyl propane sulfonic acid, 30 mole % of acrylamide, 20 mole % of acrylic acid and 10 mole % of vinyl pyrrolidone and 1 part by weight of a nonionic host polymer comprising hydroxyethylcellulose having 1.5 moles of ethylene oxide substitution and wherein said cationic, anionic or amphoteric polymer is formed in the presence of said nonionic host polymer.
- 2. A method of treating a subterranean zone penetrated by a well bore comprising introducing into the subterranean zone an aqueous well treating fluid comprising water, a water soluble polymer complex fluid loss control additive that comprises a cationic, anionic or amphoteric polymer formed in the presence of a nonionic host polymer, a hydraulic cement, a gas in an amount sufficient to foam said aqueous well treating fluid, and a mixture of foaming and foam stabilizing surfactants, present in an effective amount, and comprising an ethoxylated alcohol ether sulfate surfactant, an alkyl or alkene amidopropyl betaine surfactant and an alkyl or alkene amidopropyl dimethyl amine oxide surfactant.
- 3. A method of treating a subterranean zone penetrated by a well bore comprising introducing into the subterranean zone an aqueous well treating fluid comprising water, a water soluble polymer complex fluid loss control additive that comprises a cationic, anionic or amphoteric polymer formed in the presence of a nonionic host polymer, a gelling agent for increasing the viscosity of said well treating fluid, and a cross-linking agent for cross-linking said gelling agent.
- 4. The method of claim 3 wherein said cross-linking agent is selected from the group consisting of borate releasing compounds, a source of titanium ions, a source of zirconium ions, a source of antimony ions and a source of aluminum ions.
- 5. The method of claim 3 wherein said cross-linking agent is present in said aqueous well treating fluid in an amount in the range of from about 0.1% to about 2% by weight of said gelling agent in said treating fluid.
- 6. The method of claim 3 wherein said aqueous well treating fluid further comprises a delayed breaker present in an amount sufficient to effect a reduction in the viscosity of said treating fluid after said treating fluid has been in said subterranean zone for a period of time.
- 7. The method of claim 6 wherein said delayed breaker is selected from the group consisting of alkali metal and ammonium persulfates which are delayed by being encapsulated in a material which slowly releases said breaker or by a breaker selected from the group consisting of alkali metal chlorites, alkali metal hypochlorites and calcium hypochlorites.
- 8. A method of cementing a subterranean zone penetrated by a well bore comprising introducing into the subterranean zone a cement composition comprising a hydraulic cement slurried with water and a water soluble polymer complex fluid loss control additive that comprises a cationic, anionic or amphoteric polymer formed in the presence of a nonionic host polymer, wherein said nonionic polymer is hydroxyethylcellulose having 1.5 moles of ethylene oxide substitution, said polymer complex fluid loss control additive being present in an amount in the range of from about 0.25% to about 5% by weight of cement in said composition.
- 9. A method of cementing a subterranean zone penetrated by a well bore comprising introducing into the subterranean zone a cement composition comprising a hydraulic cement slurried with water and a water soluble polymer complex fluid loss control additive that comprises a cationic, anionic or amphoteric polymer formed in the presence of a nonionic host polymer, wherein the monomer units forming said polymer comprise 2-acrylamido-2-methyl propane sulfonic acid monomer units present in said polymer in an amount in the range of from about 25 mole % to about 75 mole % and N,N-dimethylacrylamide monomer units present in said polymer in an amount in the range of from about 10 mole % to about 40 mole %, said polymer complex fluid loss control additive being present in an amount in the range of from about 0.25% to about 5% by weight of cement in said composition.
- 10. A method of cementing a subterranean zone penetrated by a well bore comprising introducing into the subterranean zone a cement composition comprising a hydraulic cement slurried with water and a water soluble polymer complex fluid loss control additive that comprises a cationic, anionic or amphoteric polymer formed in the presence of a nonionic host polymer, wherein the monomer units forming said polymer comprise 2-acrylamido-2-methyl propane sulfonic acid monomer units present in said polymer in an amount in the range of from about 25 mole % to about 75 mole % and vinyl pyrrolidone monomer units present in said polymer in an amount in the range of from about 5 mole % to about 20 mole %, said polymer complex fluid loss control additive being present in an amount in the range of from about 0.25% to about 5% by weight of cement in said composition.
- 11. A method of cementing a subterranean zone penetrated by a well bore comprising introducing into the subterranean zone a cement composition comprising a hydraulic cement slurried with water and a water soluble polymer complex fluid loss control additive that comprises 1 part by weight of a polymer comprising 70 mole % of 2-acrylamido-2-methyl propane sulfonic acid, 17 mole % of N,N-dimethylacrylamide and 13 mole % of acrylamide and 2 parts by weight of a nonionic host polymer comprising hydroxyethylcellulose having 1.5 moles of ethylene oxide substitution, wherein said polymer is formed in the presence of said nonionic host polymer, said polymer complex fluid loss control additive being present in an amount in the range of from about 0.25% to about 5% by weight of cement in said composition.
- 12. A method of cementing a subterranean zone penetrated by a well bore comprising introducing into the subterranean zone a cement composition comprising a hydraulic cement slurried with water and a water soluble polymer complex fluid loss control additive that comprises 1 part by weight of a polymer comprising 40 mole % of 2-acrylamido-2-methyl propane sulfonic acid, 30 mole % of acrylamide, 20 mole % of acrylic acid, and 10 mole % of vinyl pyrrolidone and 1 part by weight of a nonionic host polymer comprising hydroxyethylcellulose having 1.5 moles of ethylene oxide substitution, wherein said polymer is formed in the presence of said nonionic host polymer, said polymer complex fluid loss control additive being present in an amount in the range of from about 0.25% to about 5% by weight of cement in said composition.
- 13. A method of cementing a subterranean zone penetrated by a well bore comprising introducing into the subterranean zone a cement composition comprising a hydraulic cement slurried with water, a water soluble polymer complex fluid loss control additive that comprises a cationic, anionic or amphoteric polymer formed in the presence of a nonionic host polymer and present in an amount in the range of from about 0.25% to about 5% by weight of cement in said composition, a gas in an amount sufficient to foam said cement composition and a mixture of foaming and foam stabilizing surfactants present in an effective amount and comprising an ethoxylated alcohol ether sulfate surfactant, an alkyl or alkene amidopropyl betaine surfactant and an alkyl or alkene amidopropyl dimethyl amine oxide surfactant.
- 14. A method of treating a subterranean zone penetrated by a well bore comprising introducing into said subterranean zone an aqueous well treating fluid comprising water, a gelling agent present in an amount in the range of from about 0.125% to about 1.5% by weight of water in said aqueous well treating fluid, and a water soluble polymer complex fluid loss control additive that comprises 1 part by weight of a polymer comprising 70 mole % of 2-acrylamido-2-methyl propane sulfonic acid, 17 mole % of N,N-dimethylacrylamide and 13 mole % of acrylamide and 2 parts by weight of a nonionic host polymer comprising hydroxyethylcellulose having 1.5 moles of ethylene oxide substitution, wherein said polymer is formed in the presence of said nonionic host polymer, said polymer complex fluid loss control additive being present in an amount in the range of from about 0.1% to about 5% by weight of water in said aqueous well treating fluid.
- 15. A method of treating a subterranean zone penetrated by a well bore comprising introducing into said subterranean zone an aqueous well treating fluid comprising water, a gelling agent present in an amount in the range of from about 0.125% to about 1.5% by weight of water in said aqueous well treating fluid, and a water soluble polymer complex fluid loss control additive comprising 40 mole % of 2-acrylamido-2-methyl propane sulfonic acid, 30 mole % of acrylamide, 20 mole % of acrylic acid and 10 mole % of vinyl pyrrolidone and 1 part by weight of a nonionic host polymer comprising hydroxyethylcellulose having 1.5 moles of ethylene oxide substitution, wherein said polymer is formed in the presence of said nonionic host polymer, said polymer complex fluid loss control additive being present in an amount in the range of from about 0.1% to about 5% by weight of water in said aqueous well treating fluid.
- 16. A method of treating a subterranean zone penetrated by a well bore comprising introducing into said subterranean zone an aqueous well treating fluid comprising water, a gelling agent present in an amount in the range of from about 0.125% to about 1.5% by weight of water in said aqueous well treating fluid, a water soluble polymer complex fluid loss control additive that comprises a cationic, anionic or amphoteric polymer formed in the presence of a nonionic host polymer and is present in an amount in the range of from about 0.1% to about 5% by weight of water in said aqueous well treating fluid, and a cross-linking agent for cross-linking said gelling agent.
- 17. The method of claim 16 wherein said cross-linking agent is selected from the group consisting of borate releasing compounds, a source of titanium ions, a source of zirconium ions, a source of antimony ions and a source of aluminum ions.
- 18. The method of claim 16 wherein said cross-linking agent is present in said aqueous well treating fluid in an amount in the range of from about 0.1% to about 2% by weight of said gelling agent in said treating fluid.
- 19. The method of claim 16 wherein said aqueous well treating fluid further comprises a delayed breaker present in an amount sufficient to effect a reduction in the viscosity of said treating fluid after said treating fluid has been in said subterranean zone for a period of time.
- 20. The method of claim 19 wherein said delayed breaker is selected from the group consisting of alkali metal and ammonium persulfates which are delayed by being encapsulated in a material which slowly releases said breaker or by a breaker selected from the group consisting of alkali metal chlorites, alkali metal hypochlorites and calcium hypochlorites.
- 21. A method of treating a subterranean zone penetrated by a well bore comprising introducing into the subterranean zone an aqueous well treating fluid comprising water, a water soluble polymer complex fluid loss control additive that comprises a cationic, anionic or amphoteric polymer formed in the presence of a nonionic host polymer, a gelling agent for increasing the viscosity of said fluid, and a delayed breaker present in an amount sufficient to effect a reduction in the viscosity of said treating fluid after said treating fluid has been in said subterranean zone for a period of time.
- 22. The method of claim 21 wherein said delayed breaker is selected from the group consisting of alkali metal and ammonium persulfates which are delayed by being encapsulated in a material which slowly releases said breaker or by a breaker selected from the group consisting of alkali metal chlorites, alkali metal hypochlorites and calcium hypochlorites.
- 23. A method of treating a subterranean zone penetrated by a well bore comprising introducing into said subterranean zone an aqueous well treating fluid comprising water, a gelling agent present in an amount in the range of from about 0.125% to about 1.5% by weight of water in said aqueous well treating fluid, and a water soluble polymer complex fluid loss control additive that comprises a cationic, anionic or amphoteric polymer formed in the presence of a nonionic host polymer and present in an amount in the range of from about 0.1% to about 5% by weight of water in said aqueous well treating fluid, and a delayed breaker present in an amount sufficient to effect a reduction in the viscosity of said treating fluid after said treating fluid has been in said subterranean zone for a period of time.
- 24. The method of claim 23 wherein said delayed breaker is selected from the group consisting of alkali metal and ammonium persulfates which are delayed by being encapsulated in a material which slowly releases said breaker or by a breaker selected from the group consisting of alkali metal chlorites, alkali metal hypochlorites and calcium hypochlorites.
CROSS-REFERENCES TO RELATED APPLICATIONS
This application claims the benefit of Provisional Application No. 60/284,043 entitled “Water Soluble Polymer Complexes” filed on Apr. 16, 2001.
US Referenced Citations (64)
Foreign Referenced Citations (1)
Number |
Date |
Country |
1 091 086 |
Oct 2000 |
EP |
Provisional Applications (1)
|
Number |
Date |
Country |
|
60/284043 |
Apr 2001 |
US |