METHODS OF USING GENETIC MARKERS ASSOCIATED WITH ENDOMETRIOSIS

Information

  • Patent Application
  • 20210115513
  • Publication Number
    20210115513
  • Date Filed
    March 15, 2018
    6 years ago
  • Date Published
    April 22, 2021
    3 years ago
Abstract
Disclosed herein are methods of using genetic markers associated with endometriosis, for example via a computer-implemented program to predict risk of developing endometriosis, and methods of preventing or treating endometriosis or a symptom thereof.
Description
BRIEF SUMMARY

The inventive embodiments provided in this Brief Summary are meant to be illustrative only and to provide an overview of selective embodiments disclosed herein. The Brief Summary, being illustrative and selective, does not limit the scope of any claim, does not provide the entire scope of inventive embodiments disclosed or contemplated herein, and should not be construed as limiting or constraining the scope of this disclosure or any claimed inventive embodiment.


In one of many aspects, provided herein is a method comprising: (a) hybridizing a nucleic acid probe to a nucleic acid sample from a human subject suspected of having or developing endometriosis; and (b) detecting a genetic variant in a panel comprising two or more genetic variants defining a minor allele listed in Table 1.


In another aspect, provided herein is a method comprising detecting one or more genetic variants defining a minor allele listed in Table 1 in genetic material from a human subject suspected of having or developing endometriosis.


In another aspect, provided herein is a method comprising: sequencing one or more genes selected from the group consisting of GAT2, CCDC169, CASP8AP2, POU2F3, CD19, IGSF3, GLI3, PEX26, OLIG3, CIB4, NKX3-2, CFTR, and any combinations thereof to identify one or more protein damaging or loss of function variants in a human subject suspected of having or developing endometriosis; and administering an endometriosis therapy to the human subject.


In another aspect, provided herein is a method of preventing endometriosis comprising administering a hormonal therapy to a human subject having at least one genetic variant defining a minor allele listed in Table 1.


In another aspect, provided herein is a method of treating endometriosis associated infertility comprising administering an assisted reproductive therapy to a human subject having at least one genetic variant defining a minor allele listed in Table 2.


In another aspect, provided herein is a method comprising administering a pain medication to a human subject having at least one genetic variant defining a minor allele listed in Table 3.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned, disclosed or referenced in this specification are herein incorporated by reference in their entirety and to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a set of bar charts showing distribution of predictive score using 775 rare variants among 917 endometriosis subjects and 917 controls generated through simulation using the ExAc published frequencies (All rare variants are assumed to be independent).



FIG. 2 is a boxplot of the predictive score across the clinical subtypes of endometriosis. Endoscore is uniform across the severity of endometriosis.



FIG. 3 is a pie chart showing diverse pathways implicated by these 729 genes. No pathway reaches statistical significance, but multiple genes implicated in the Wnt, cadherin, integrin, and inflammation medicated by cytokine signaling pathways.



FIG. 4 is a diagram showing three experimental design strategies. Sequencing nuclear families can help identify Mendelian segregation, whereas relative pairs can help uncover distant relationships with IBD. Unrelated individuals are typically studied to identify common variants with small effects.



FIG. 5 is a diagram showing a nuclear family with an IGF2 mutation on the left and an extended pedigree with a LONP1 mutation to the right.



FIG. 6 is a diagram of mutation patterns cis/trans/haplotypes.



FIG. 7 is a bar chart showing example of results: genes implicated in GWAS (genome-wide association studies) meta-analyses.



FIG. 8 is a set of diagrams showing striking excess of pathogenic mutations (p<10−16).



FIG. 9 is a set of charts showing examples of FN1 and GREB1 in which multiple damaging mutations were found.



FIG. 10 is a diagram showing a computer-based system that may be programmed or otherwise configured to implement methods provided herein.



FIG. 11 is a diagram showing a method and system as disclosed herein.





DETAILED DESCRIPTION

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of the ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the compositions or unit doses herein, some methods and materials are now described. Unless mentioned otherwise, the techniques employed or contemplated herein are standard methodologies. The materials, methods and examples are illustrative only and not limiting.


The details of one or more inventive instances are set forth in the accompanying drawings, the claims, and the description herein. Other features, objects, and advantages of the inventive instances disclosed and contemplated herein can be combined with any other instance unless explicitly excluded.


In some of many aspects, the present disclosure provides methods of using genetic markers associated with endometriosis, for example via a computer-implemented program to predict risk of developing endometriosis, and methods of preventing or treating endometriosis or a symptom thereof. The methods disclosed herein can prevent or cancel an invasive procedure, such as a laparoscopy, that would otherwise have been performed on a subject but for the results, for example a (negative) diagnosis/prognosis, from the methods disclosed herein performed on the subject.


In some cases, genetic markers disclosed herein can be used for early diagnosis and prognosis of endometriosis, as well as early clinical intervention to mitigate progression of the disease. The use of these genetic markers can allow selection of subjects for clinical trials involving novel treatment methods. In some instances, genetic markers disclosed herein can be used to predict endometriosis and endometriosis progression, for example in treatment decisions for individuals who are recognized as having endometriosis. In some instances, genetic markers disclosed herein can enable prognosis of endometriosis in much larger populations compared with the populations which can currently be evaluated by using existing risk factors and biomarkers.


In some cases, disclosed herein is a method for endometriosis diagnosis/prognosis that can utilize detection of endometriosis associated biomarkers such as single nucleotide polymorphisms (SNPs), insertion deletion polymorphisms (indels), damaging mutation variants, loss of function variants, synonymous mutation variants, nonsynonymous mutation variants, nonsense mutations, recessive markers, splicing/splice-site variants, frameshift mutations, insertions, deletions, genomic rearrangements, stop-gain, stop-loss, Rare Variants (RVs), some of which are identified in Tables 1-4 (or diagnostically and predicatively functionally comparable biomarkers). In some instances, the method can comprise using a statistical assessment method such as Multi Dimensional Scaling analysis (MDS), logistic regression, or Bayesian analysis.


Some of the variants listed in Table 1 can be splicing variants, for example TMED3 (NM_007364:exon1:c.168+1G>A), NM_001276480:c.-160+1G>A, KCNK6 (NM_004823:exon2:c.323-1G>A), RGPD4 (NM_182588:exon19:c.2606-1G>T), NM_001001891:exon18:c.1988+1G>A, NM_001882:exon3:c.176-2->C. The NM number indicates that a particular GenBank cDNA reference sequence was used for reference. The “c” indicates that the nucleotide number which follows is based on coding DNA sequence. The numbers provide the position of the mutation in the DNA. For instance, 168+1G>A means one base after (+1) the 168th coding nucleotide at the end of the exon is mutated form a G to an A. Likewise for NM_182588:exon19:c.2606-1G>T, one base before (−1) the 2606th coding nucleotide. NM_001882:exon3:c.176-2→C involves an insertion of a C.


In some cases, disclosed herein is a treatment method to a subject determined to have or be predisposed to endometriosis. In some instances, the method can comprise administering to the subject a hormone therapy or an assisted reproductive therapy. In some instances, the method can comprise administering to the subject a therapy that at least partially compensates for endometriosis, prevents or reduces the severity of endometriosis that the subject would otherwise develop, or prevents endometriosis related complications, cancers, or associated disorders.


In some cases, provided herein is identification of new variants such as SNPs or indels, unique combinations of such variants, and haplotypes of variants that are associated with endometriosis and related pathologies. In some instances, the polymorphisms disclosed herein can be directly useful as targets for the design of diagnostic reagents and the development of therapeutic agents for use in the diagnosis and treatment of endometriosis and related pathologies. Based on the identification of variants associated with endometriosis, the present disclosure can provide methods of detecting these variants as well as the design and preparation of detection reagents needed to accomplish this task. Provided herein are novel variants in genetic sequences involved in endometriosis, methods of detecting these variants in a test sample, methods of identifying individuals who have an altered risk of developing endometriosis and for suggesting treatment options for endometriosis based on the presence of a variant(s) disclosed herein or its encoded product and methods of identifying individuals who are more or less likely to respond to a treatment.


In some cases, provided herein are variants such as SNPs and indels associated with endometriosis, nucleic acid molecules containing variants, methods and reagents for the detection of the variants disclosed herein, uses of these variants for the development of detection reagents, and assays or kits that utilize such reagents. In some instances, the variants disclosed herein can be useful for diagnosing, screening for, and evaluating predisposition to endometriosis and progression of endometriosis. In some instances, the variants can be useful in the determining individual subject treatment plans and design of clinical trials of devices for possible use in the treatment of endometriosis. In some instances, the variants and their encoded products can be useful targets for the development of therapeutic agents. In some instances, the variants combined with other non-genetic clinical factors can be useful for diagnosing, screening, evaluating predisposition to endometriosis, assessing risk of progression of endometriosis, determining individual subject treatment plans and design of clinical trials of devices for possible use in the treatment of endometriosis. In some instances, the variants can be useful in the selection of recipients for an oral contraceptive type therapeutic.


Definitions

Unless otherwise indicated, open terms for example “contain,” “containing,” “include,” “including,” and the like mean comprising.


The singular forms “a”, “an”, and “the” are used herein to include plural references unless the context clearly dictates otherwise. Accordingly, unless the contrary is indicated, the numerical parameters set forth in this application are approximations that may vary depending upon the desired properties sought to be obtained by the present invention.


Unless otherwise indicated, some instances herein contemplate numerical ranges. When a numerical range is provided, unless otherwise indicated, the range includes the range endpoints. Unless otherwise indicated, numerical ranges include all values and subranges therein as if explicitly written out. Unless otherwise indicated, any numerical ranges and/or values herein, following or not following the term “about,” can be at 85-115% (i.e., plus or minus 15%) of the numerical ranges and/or values.


As used herein, “endometriosis” refers to any nonmalignant disorder in which functioning endometrial tissue is present in a location in the body other than the endometrium of the uterus, i.e. outside the uterine cavity or is present within the myometrium of the uterus. For purposes herein it also includes conditions, such as adenomyosis/adenomyoma, that exhibit myometrial tissue in the lesions. Endometriosis can include endometriosis externa, endometrioma, adenomyosis, adenomyomas, adenomyotic nodules of the uterosacral ligaments, endometriotic nodules other than of the uterosacral ligaments, autoimmune endometriosis, mild endometriosis, moderate endometriosis, severe endometriosis, superficial (peritoneal) endometriosis, deep (invasive) endometriosis, ovarian endometriosis, endometriosis-related cancers, and/or “endometriosis-associated conditions”. Unless stated otherwise, the term endometriosis is used herein to describe any of these conditions.


As used herein, “treatment” includes one or more of: reducing the frequency and/or severity of symptoms, elimination of symptoms and/or their underlying cause, and improvement or remediation of damage. For example, treatment of endometriosis includes, for example, relieving the pain experienced by a woman suffering from endometriosis, and/or causing the regression or disappearance of endometriotic lesions.


“Haplotype” can mean a combination of genotypes on the same chromosome occurring in a linkage disequilibrium block. Haplotypes serve as markers for linkage disequilibrium blocks, and at the same time provide information about the arrangement of genotypes within the blocks. Typing of only certain variants which serve as tags can, therefore, reveal all genotypes for variants located within a block. Thus, the use of haplotypes greatly facilitates identification of candidate genes associated with diseases and drug sensitivity.


“Linkage disequilibrium” or “LD” can mean that a particular combination of alleles (alternative nucleotides) or genetic variants for example at two or more different SNP (or RV) sites are non-randomly co-inherited (i.e., the combination of alleles at the different SNP (or RV) sites occurs more or less frequently in a population than the separate frequencies of occurrence of each allele or the frequency of a random formation of haplotypes from alleles in a given population). The term “LD” can differ from “linkage,” which describes the association of two or more loci on a chromosome with limited recombination between them. LD can also be used to refer to any non-random genetic association between allele(s) at two or more different SNP (or RV) sites. In some instances, when a genetic marker (e.g. SNP or RV) is identified as the genetic marker associated with a disease (in this instance endometriosis), it can be the minor allele (MA) of the particular genetic marker that is associated with the disease. In some instances, if the Odds Ratio (OR) of the MA is greater than 1.0, the MA of the genetic marker (in this instance the endometriosis associated genetic marker) can be correlated with an increased risk of endometriosis in a case subject as compared to a control subject and can be considered a causative marker (C), and if the OR of the MA less than 1.0, the MA of the genetic marker can be correlated with a decreased risk of endometriosis in a case subject as compared to a control subject and can be considered a protective marker (P). “Linkage disequilibrium block” or “LD block” can mean a region of the genome that contains multiple variants located in proximity to each other and that are transmitted as a block.


Biological samples obtained from individuals (e.g., human subjects) may be any sample from which a genetic material (e.g., nucleic acid sample) may be derived. Samples/Genetic materials may be from buccal swabs, saliva, blood, hair, nail, skin, cell, or any other type of tissue sample. In some instances, the genetic material (e.g., nucleic acid sample) comprises mRNA, cDNA, genomic DNA, or PCR amplified products produced therefrom, or any combination thereof. In some instances, the genetic material (e.g., nucleic acid sample) comprises PCR amplified nucleic acids produced from cDNA or mRNA. In some instances, the genetic material (e.g., nucleic acid sample) comprises PCR amplified nucleic acids produced from genomic DNA.


Analysis of Rare and Private Mutations in Sequenced Endometriosis Genes


In some cases, the present disclosure provides an analysis to evaluate a coding region of a gene as a component of a genetic diagnostic or predictive test for endometriosis. In some instances, the analysis can comprise one or more of the approaches disclosed herein.


In some instances, the analysis can comprise performing DNA variant search on the next generation sequencing output file using a standard software designed for this purpose, for example Life Technologies TMAP algorithm with their default parameter settings, and Life Technologies Torrent Variant Caller software. ANNOVAR can be used to classify coding variants as synonymous, missense, frameshift, splicing, stop-gain, or stop-loss. Variants can be considered “loss-of-function” if the variant causes a stop-loss, stop-gain, splicing, or frame-shift insertion or deletion).


In some instances, the analysis can comprise evaluating prediction of an effect of each variant on protein function in silico using a variety of different software algorithms: Polyphen 2, Sift, Mutation Accessor, Mutation Taster, FATHMM, LRT, MetaLR, or any combination thereof. Missense variants can be deemed “damaging” if they are predicted to be damaging by at least one of the seven algorithms tested.


In some instances, the analysis can comprise searching population databases (e.g., gnomAD) and proprietary endometriosis allele frequency databases for the prevalence of any loss of function or damaging mutations identified by these analyses. The log of the odds ratio can be used to weight the marker when the variant has been previously observed in the reference databases. When a damaging variant or loss of function variant has never been reported in the reference databases, a default odds ratio of 10 can be used to weight the finding.


In some instances, the analysis can comprise incorporating findings into the Risk Score as with the other low-frequency alleles. Risk Score=Summation [log(OR)×Count], where count equals the number of low frequency alleles detected at each endometriosis associated locus. Risk scores can be converted to probability using a nomogram based on confirmed diagnoses.


In some instances, the methods of the present disclosure can provide a high sensitivity of detecting gene mutations and diagnosing endometriosis that is greater than 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 95.5%, 96%, 96.5%, 97%, 97.5%, 98%, 98.5%, 99%, 99.5% or more. In some instances, the methods disclosed herein can provide a high specificity of detecting and classifying gene mutations and endometriosis, for example, greater than 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 95.5%, 96%, 96.5%, 97%, 97.5%, 98%, 98.5%, 99%, 99.5% or more. In some instances, a nominal specificity for the method disclosed herein can be greater than or equal to 70%. In some instances, a nominal Negative Predictive Value (NPV) for the method disclosed herein can be greater than or equal to 95%. In some instances, a NPV for the method disclosed herein can be about 95%, 95.5%, 96%, 96.5%, 97%, 97.5%, 98%, 98.5%, 99%, 99.5% or more. In some instances, a nominal Positive Predictive Value (PPV) for the method disclosed herein can be greater than or equal to 95%. In some instances, a PPV for the method disclosed herein can be about 95%, 95.5%, 96%, 96.5%, 97%, 97.5%, 98%, 98.5%, 99%, 99.5% or more. In some instances, the accuracy of the methods disclosed herein in diagnosing endometriosis can be greater than 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 95.5%, 96%, 96.5%, 97%, 97.5%, 98%, 98.5%, 99%, 99.5% or more.


Computer Implemented Methods


In some aspects, the present disclosure provides methods for analysis of gene sequence data associated software and computer systems. The method, for example being computer implemented, can enable a clinical geneticist or other healthcare technician to sift through vast amounts of gene sequence data, to identify potential disease-causing genomic variants. In some cases, the gene sequence data is from a patient who may be suspected of having a genetic disorder such as endometriosis.


In some cases, provided herein is a method for identifying a genetic disorder such as endometriosis or predicting a risk thereof in an individual, or identifying a genetic variant that is causative of a phenotype in an individual. In some instances, the method can comprise determining gene sequence for a patient suspected of having a genetic disorder, identifying sequence variants, annotating the identified variants based on one or more criteria, and filtering or searching the variants at least partially based on the annotations, to thereby identify potential disease-causing variants.


In some instances, the gene sequence is obtained by use of a sequencing instrument, or alternatively, gene sequence data is obtained from another source, such as for example, a commercial sequencing service provider. Gene sequence can be chromosomal sequence, cDNA sequence, or any nucleotide sequence information that allows for detection of genetic disease. Generally, the amount of sequence information is such that computational tools are required for data analysis. For example, the sequence data may represent at least half of the individual's genomic or cDNA sequence (e.g., of a representative cell population or tissue), or the individuals entire genomic or cDNA sequence. In various embodiments, the sequence data comprises the nucleotide sequence for at least 1 million base pairs, at least 10 million base pairs, or at least 50 million base pairs. In certain embodiments, the DNA sequence is the individual's exome sequence or full exonic sequence component (i.e., the exome; sequence for each of the exons in each of the known genes in the entire genome). In some embodiments, the source of genomic DNA or cDNA may be any suitable source, and may be a sample particularly indicative of a disease or phenotype of interest, including blood cells (e.g, PBMCs, or a T-cell or B-cell population). In certain embodiments, the source of the sample is a tissue or sample that is potentially malignant.


In some instances, whole genome sequence can comprise the entire sequence (including all chromosomes) of an individual's germline genome. In some embodiments, the concatenated length for a whole genome sequence is approximately 3.2 Gbases or 3.2 billion nucleotides.


In some instances, the gene sequence may be determined by any suitable method. For example, the gene sequence may be a cDNA sequence determined by clonal amplification (e.g., emulsion PCR) and sequencing. Base calling may be conducted based on any available method, including Sanger sequencing (chain termination), pH sequencing, pyrosequencing, sequencing-by-hybridization, sequencing-by-ligation, etc. The sequencing output data may be subject to quality controls, including filtering for quality (e.g., confidence) of base reads. Exemplary sequencing systems include 454 pyrosequencing (454 Life Sciences), Illumina (Solexa) sequencing, SOLiD (Applied Biosystems), and Ion Torrent Systems' pH sequencing system. 10052 In some instances, the gene sequence may be mapped with one or more reference sequences to identify sequence variants. For example, the base reads are mapped against a reference sequence, which in various embodiments is presumed to be a “normal” non-disease sequence. The DNS sequence derived from the Human Genome Project is generally used as a “premier” reference sequence. A number of mapping applications are known, and include TMAP, BWA, GSMAPPER, ELAND, MOSAIK, and MAQ. Various other alignment tools are known, and could also be implemented to map the base reads.


In some cases, based on the sequence alignments, and mapping results, sequence variants can be identified. Types of variants may include insertions, deletions, indels (a colocalized insertion and deletion), damaging mutation variants, loss of function variants, synonymous mutation variants, nonsynonymous mutation variants, nonsense mutations, recessive markers, splicing/splice-site variants, frameshift mutation, insertions, deletions, genomic rearrangements, stop-gain, stop-loss, Rare Variants (RVs), translocations, inversions, and substitutions. While the type of variants analyzed is not limited, the most numerous of the variant types will be single nucleotide substitutions, for which a wealth of data is currently available. In various embodiments, comparison of the test sequence with the reference sequence will produce at least 500 variants, at least 1000 variants, at least 3,000 variants, at least 5,000 variants, at least 10,000 variants, at least 20,000 variants, or at least 50,000 variants, but in some embodiments, will produce at least 1 million variants, at least 2 million variants, at least 3 million variants, at least 4 million variants, or at least 10 million variants. The tools provided herein enable the user to navigate the vast amounts of genetic data to identify potentially disease-causing variants.


In some cases, a wealth of data can be extracted for the identified variants, including one or more of conservation scores, genic/genomic location, zygosity, SNP ID, Polyphen, FATHMM, LRT, Mutation Accessor, and SIFT predictions, splice site predictions, amino acid properties, disease associations, annotations for known variants, variant or allele frequency data, and gene annotations. Data may be calculated and/or extracted from one or more internal or external databases. Since certain categories of annotations (e.g., amino acid properties/PolyPhen and SIFT data) are dependent on a nature of the region of the genome in which they are contained (e.g., whether a variant is contained within a region translated to give rise to an amino acid sequence in a resultant protein), these annotations can be carried out for each known transcript. Exemplary external databases include OMIM (Online Mendelian Inheritance in Man), HGMD (The Human Gene Mutation Databse), PubMed, PolyPhen, SIFT, SpliceSite, reference genome databases, the University of California Santa Cruz (UCSC) genome database, CLINVAR database, the BioBase biological databases, the dbSNP Short Genetic Variations database, the Rat Genome Database (RGD), and/or the like. Various other databases may be employed for extracting data on identified variants. Variant information may be further stored in a central data repository, and the data extracted for future sequence analyses.


In some instances, variants may be tagged by the user with additional descriptive information to aid subsequent analysis. For example, confidence in the existence of the variant can be recorded as confirmed, preliminary, or sequence artifact. Certain sequencing technologies have a tendency to produce certain types of sequence artifacts, and the method herein can allow such suspected artifacts to be recorded. The variants may be further tagged in basic categories of benign, pathogenic, or unknown, or as potentially of interest.


In some instances, queries can be run to identify variants meeting certain criteria, or variant report pages can be browsed by chromosomal position or by gene, the latter allowing researchers to focus on only those variations that exist in a particular set of genes of interest. In some embodiments, the user selects only variants with well-documented and published disease associations (e.g., by filtering based on HGMD or other disease annotation). Alternatively, the user can filter for variants not previously associated with disease, but of a type likely to be deleterious, such as those introducing frameshifts, non-synonymous substitutions (predicted by Polyphen or SIFT), or premature terminations. Further, the user can exclude from analysis those variants believed to be neutral (based on their frequency of occurrence in studies populations), for example, through exclusion of variants in dbSNP. Additional exclusion criteria include mode of inheritance (e.g., heterozygosity), depth of coverage, and quality score.


In certain embodiments, base calling is carried out to extract the sequence of the sequencing reads from an image file produced by an instrument scanner. Following base calling and base quality trimming/filtering, the reads are mapped against a reference sequence (assumed to be normal for the phenotype under analysis) to identify variations (variants) between the two with the assumption that one or more of these differences will be associated with phenotype of the individual whose DNA is under analysis. Subsequently, each variant is annotated with data that can be used to determine the likelihood that that particular variant is associated with the phenotype under analysis. The analysis may be fully or partially automated as described in detail below, and may include use of a central repository for data storage and analysis, and to present the data to analysts and clinical geneticists in a format that makes identification of variants with a high likelihood of being associated with the phenotypic difference more efficient and effective.


In some embodiments, a user can be provided with the ability to run cross sample queries where the variants from multiple samples are interrogated simultaneously. In such embodiments, for example, a user can build a query to return data on only those variants that are exactly shared across a user defined group of samples. This can be useful for family based analyses where the same variant is believed to be associated with disease in each of the affected family members. For another example, the user can also build a query to return only those variants that are present in genes where the gene contains at least one, but not necessarily the same, variant. This can be useful where a group of individuals with disease are not related (the variants associated with the disease are not necessary exactly the same, but result in a common alteration in normal function). For yet another example, the user can specify to ignore genes containing variants in a user defined group of samples. This can be useful to exclude polymorphisms (variants believed or confirmed not to be associated with disease) where the user has access to a user defined group of control individuals who are believed to not have the disease associated variant. For each of these queries a user can additionally filter the variants by specifying any or all of the previously discussed filters on top of the cross sample analyses. This allows a user to identify variants matching these criteria, which are shared between or segregated amongst samples.


For example, a variant analysis system can be implemented locally, or implemented using a host device and a network or cloud computing. For example, the variant analysis system can be software stored in memory of a personal computing device (PC) and implemented by a processor of the PC. In such embodiments, for example, the PC can download the software from a host device and/or install the software using any suitable device such as a compact disc (CD).


The method may employ a computer-readable medium, or non-transitory processor-readable medium. Some embodiments described herein relate to a computer storage product with a non-transitory computer-readable medium (also can be referred to as a non-transitory processor-readable medium) having instructions or computer code thereon for performing various computer-implemented operations. The computer-readable medium (or processor-readable medium) is non-transitory in the sense that it does not include transitory propagating signals per se (e.g., a propagating electromagnetic wave carrying information on a transmission medium such as space or a cable). The media and computer code (also can be referred to as code) may be those designed and constructed for the specific purpose or purposes. Examples of non-transitory computer-readable media include, but are not limited to: magnetic storage media such as hard disks, floppy disks, and magnetic tape; optical storage media such as Compact Disc/Digital Video Discs (CD/DVDs), Compact Disc-Read Only Memories (CD-ROMs), and holographic devices; magneto-optical storage media such as optical disks; carrier wave signal processing modules; and hardware devices that are specially configured to store and execute program code, such as Application-Specific Integrated Circuits (ASICs), Programmable Logic Devices (PLDs), Read-Only Memory (ROM) and Random-Access Memory (RAM) devices.


Examples of computer code can include, but are not limited to, micro-code or micro-instructions, machine instructions, such as produced by a compiler, code used to produce a web service, and files containing higher-level instructions that are executed by a computer using an interpreter. For example, embodiments may be implemented using Python, Java, C++, or other programming languages (e.g., object-oriented programming languages) and development tools. Additional examples of computer code can include, but are not limited to, control signals, encrypted code, and compressed code.


In some cases, variants provided herein may be “provided” in a variety of mediums to facilitate use thereof. As used in this section, “provided” refers to a manufacture, other than an isolated nucleic acid molecule, that contains variant information of the present disclosure. Such a manufacture provides the variant information in a form that allows a skilled artisan to examine the manufacture using means not directly applicable to examining the variants or a subset thereof as they exist in nature or in purified form. The variant information that may be provided in such a form includes any of the variant information provided by the present disclosure such as, for example, polymorphic nucleic acid and/or amino acid sequence information, information about observed variant alleles, alternative codons, populations, allele frequencies, variant types, and/or affected proteins, or any other information provided herein.


In some instances, the variants can be recorded on a computer readable medium. As used herein, “computer readable medium” refers to any medium that can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable media can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present disclosure. One such medium is provided with the present application, namely, the present application contains computer readable medium (CD-R) that has nucleic acid sequences (and encoded protein sequences) containing variants provided/recorded thereon in ASCII text format in a Sequence Listing along with accompanying Tables that contain detailed variant and sequence information.


As used herein, “recorded” can refer to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently known methods for recording information on computer readable medium to generate manufactures comprising the variant information of the present disclosure. A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide or amino acid sequence of the present disclosure. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide/amino acid sequence information of the present disclosure on computer readable medium. For example, the sequence information can be represented in a word processing text file, formatted in commercially-available software such as WordPerfect and Microsoft Word, represented in the form of an ASCII file, or stored in a database application, such as OB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of data processor structuring formats (e.g., text file or database) in order to obtain computer readable medium having recorded thereon the variant information of the present disclosure.


By providing the variants in computer readable form, a skilled artisan can access the variant information for a variety of purposes. Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. Examples of publicly available computer software include BLAST and BLAZE search algorithms.


In some cases, the present disclosure can provide systems, particularly computer-based systems, which contain the variant information described herein. Such systems may be designed to store and/or analyze information on, for example, a large number of variant positions, or information on variant genotypes from a large number of individuals. The variant information of the present disclosure represents a valuable information source. The variant information of the present disclosure stored/analyzed in a computer-based system may be used for such computer-intensive applications as determining or analyzing variant allele frequencies in a population, mapping endometriosis genes, genotype-phenotype association studies, grouping variants into haplotypes, correlating variant haplotypes with response to particular treatments or for various other bioinformatic, pharmacogenomic or drug development.


As used herein, “a computer-based system” can refer to the hardware means, software means, and data storage means used to analyze the variant information of the present disclosure. The minimum hardware means of the computer-based systems of the present disclosure typically comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based systems are suitable for use in the present disclosure. Such a system can be changed into a system of the present disclosure by utilizing the variant information provided on the CD-R, or a subset thereof, without any experimentation.


As stated above, the computer-based systems can comprise a data storage means having stored therein variants of the present disclosure and the necessary hardware means and software means for supporting and implementing a search means. As used herein, “data storage means” refers to memory which can store variant information of the present disclosure, or a memory access means which can access manufactures having recorded thereon the variant information of the present disclosure.


As used herein, “search means” can refer to one or more programs or algorithms that are implemented on the computer-based system to identify or analyze variants in a target sequence based on the variant information stored within the data storage means. Search means can be used to determine which nucleotide is present at a particular variant position in the target sequence. As used herein, a “target sequence” can be any DNA sequence containing the variant position(s) to be searched or queried.


A variety of structural formats for the input and output means can be used to input and output the information in the computer-based systems of the present disclosure. An exemplary format for an output means is a display that depicts the presence or absence of specified nucleotides (alleles) at particular variant positions of interest. Such presentation can provide a rapid, binary scoring system for many variants simultaneously.


In some cases, the present disclosure provides computer-based systems that are programmed to implement methods of the disclosure. FIG. 10 shows a computer system 101 that can be programmed or configured for endometriosis diagnosis. The computer system 101 can regulate various aspects of detection of genetic variants associated with endometriosis of the present disclosure. The computer system 101 can be an electronic device of a user or a computer system that is remotely located with respect to the electronic device. The electronic device can be a mobile electronic device.


The computer system 101 includes a central processing unit (CPU, also “processor” and “computer processor” herein) 105, which can be a single core or multi core processor, or a plurality of processors for parallel processing. The computer system 101 also includes memory or memory location 110 (e.g., random-access memory, read-only memory, flash memory), electronic storage unit 115 (e.g., hard disk), communication interface 120 (e.g., network adapter) for communicating with one or more other systems, and peripheral devices 125, such as cache, other memory, data storage and/or electronic display adapters. The memory 110, storage unit 115, interface 120 and peripheral devices 125 are in communication with the CPU 105 through a communication bus (solid lines), such as a motherboard. The storage unit 115 can be a data storage unit (or data repository) for storing data. The computer system 101 can be operatively coupled to a computer network (“network”) 130 with the aid of the communication interface 120. The network 130 can be the Internet, an internet and/or extranet, or an intranet and/or extranet that is in communication with the Internet. The network 130 in some cases is a telecommunication and/or data network. The network 130 can include one or more computer servers, which can enable distributed computing, such as cloud computing. The network 130, in some cases with the aid of the computer system 101, can implement a peer-to-peer network, which may enable devices coupled to the computer system 101 to behave as a client or a server.


The CPU 105 can execute a sequence of machine-readable instructions, which can be embodied in a program or software. The instructions may be stored in a memory location, such as the memory 110. The instructions can be directed to the CPU 105, which can subsequently program or otherwise configure the CPU 105 to implement methods of the present disclosure. Examples of operations performed by the CPU 105 can include fetch, decode, execute, and writeback.


The CPU 105 can be part of a circuit, such as an integrated circuit. One or more other components of the system 101 can be included in the circuit. In some cases, the circuit is an application specific integrated circuit (ASIC).


The storage unit 115 can store files, such as drivers, libraries and saved programs. The storage unit 115 can store user data, e.g., user preferences and user programs. The computer system 101 in some cases can include one or more additional data storage units that are external to the computer system 101, such as located on a remote server that is in communication with the computer system 101 through an intranet or the Internet.


The computer system 101 can communicate with one or more remote computer systems through the network 130. For instance, the computer system 101 can communicate with a remote computer system of a user. Examples of remote computer systems include personal computers (e.g., portable PC), slate or tablet PC's (e.g., Apple® iPad, Samsung® Galaxy Tab), telephones, Smart phones (e.g., Apple® iPhone, Android-enabled device, Blackberry®), or personal digital assistants. The user can access the computer system 101 via the network 130.


Methods as described herein can be implemented by way of machine (e.g., computer processor) executable code stored on an electronic storage location of the computer system 101, such as, for example, on the memory 110 or electronic storage unit 115. The machine executable or machine readable code can be provided in the form of software. During use, the code can be executed by the processor 105. In some cases, the code can be retrieved from the storage unit 115 and stored on the memory 110 for ready access by the processor 105. In some situations, the electronic storage unit 115 can be precluded, and machine-executable instructions are stored on memory 110.


The code can be pre-compiled and configured for use with a machine having a processer adapted to execute the code, or can be compiled during runtime. The code can be supplied in a programming language that can be selected to enable the code to execute in a pre-compiled or as-compiled fashion.


Aspects of the systems and methods provided herein, such as the computer system 101, can be embodied in programming. Various aspects of the technology may be thought of as “products” or “articles of manufacture” typically in the form of machine (or processor) executable code and/or associated data that is carried on or embodied in a type of machine readable medium. Machine-executable code can be stored on an electronic storage unit, such as memory (e.g., read-only memory, random-access memory, flash memory) or a hard disk. “Storage” type media can include any or all of the tangible memory of the computers, processors or the like, or associated modules thereof, such as various semiconductor memories, tape drives, disk drives and the like, which may provide non-transitory storage at any time for the software programming. All or portions of the software may at times be communicated through the Internet or various other telecommunication networks. Such communications, for example, may enable loading of the software from one computer or processor into another, for example, from a management server or host computer into the computer platform of an application server. Thus, another type of media that may bear the software elements includes optical, electrical and electromagnetic waves, such as used across physical interfaces between local devices, through wired and optical landline networks and over various air-links. The physical elements that carry such waves, such as wired or wireless links, optical links or the like, also may be considered as media bearing the software. As used herein, unless restricted to non-transitory, tangible “storage” media, terms such as computer or machine “readable medium” refer to any medium that participates in providing instructions to a processor for execution.


Hence, a machine readable medium, such as computer-executable code, may take many forms, including but not limited to, a tangible storage medium, a carrier wave medium or physical transmission medium. Non-volatile storage media include, for example, optical or magnetic disks, such as any of the storage devices in any computer(s) or the like, such as may be used to implement the databases, etc. shown in the drawings. Volatile storage media include dynamic memory, such as main memory of such a computer platform. Tangible transmission media include coaxial cables; copper wire and fiber optics, including the wires that comprise a bus within a computer system. Carrier-wave transmission media may take the form of electric or electromagnetic signals, or acoustic or light waves such as those generated during radio frequency (RF) and infrared (IR) data communications. Common forms of computer-readable media therefore include for example: a floppy disk, a flexible disk, hard disk, magnetic tape, any other magnetic medium, a CD-ROM, DVD or DVD-ROM, any other optical medium, punch cards paper tape, any other physical storage medium with patterns of holes, a RAM, a ROM, a PROM and EPROM, a FLASH-EPROM, any other memory chip or cartridge, a carrier wave transporting data or instructions, cables or links transporting such a carrier wave, or any other medium from which a computer may read programming code and/or data. Many of these forms of computer readable media may be involved in carrying one or more sequences of one or more instructions to a processor for execution.


The computer system 101 can include or be in communication with an electronic display 135 that comprises a user interface (UI) 140 for providing, for example a monitor. Examples of UI's include, without limitation, a graphical user interface (GUI) and web-based user interface.


Methods and systems of the present disclosure can be implemented by way of one or more algorithms. An algorithm can be implemented by way of software upon execution by the central processing unit 105. The algorithm can, for example, Polyphen 2, Sift, Mutation Accessor, Mutation Taster, FATHMM, LRT, MetaLR, or any combination thereof.


In some cases, as shown in FIG. 11, a sample 202 containing a genetic material may be obtained from a subject 201, such as a human subject. A sample 202 may be subjected to one or more methods as described herein, such as performing an assay. In some cases, an assay may comprise hybridization, amplification, sequencing, labeling, epigenetically modifying a base, or any combination thereof. One or more results from a method may be input into a processor 204. One or more input parameters such as a sample identification, subject identification, sample type, a reference, or other information may be input into a processor 204. One or more metrics from an assay may be input into a processor 204 such that the processor may produce a result, such as a diagnosis of endometriosis or a recommendation for a treatment. A processor may send a result, an input parameter, a metric, a reference, or any combination thereof to a display 205, such as a visual display or graphical user interface. A processor 204 may (i) send a result, an input parameter, a metric, or any combination thereof to a server 207, (ii) receive a result, an input parameter, a metric, or any combination thereof from a server 207, (iii) or a combination thereof.


Methods of Detection of Variants


In some aspects, the present disclosure provides methods to detect variants, e.g, detecting a genetic variant in a panel comprising two or more genetic variants defining a minor allele disclosed herein (e.g., in Table 1). In some instances, the detecting comprises, DNA sequencing, hybridization with a complementary probe, an oligonucleotide ligation assay, a PCR-based assay, or any combination thereof. In some instances, the panel comprises at least: 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 75, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, or more genetic variants defining minor alleles disclosed herein (e.g., in Table 1). In some instances, the genetic variant to detect or detected has an odds ratio (OR) of at least: 0.1, 1, 1.5, 2, 5, 10, 20, 50, 100, 127, 130, 140, 150, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, or more. In some embodiments, the OR is at least 127. In some instances, the panel to detect further comprises one or more protein damaging or loss of function variants in one or more genes selected from the group consisting of GAT2, CCDC169, CASP8AP2, POU2F3, CD19, IGSF3, GLI3, PEX26, OLIG3, CIB4, NKX3-2, CFTR, and any combinations thereof. In some instances, the panel further comprises one or more additional variants defining a minor allele listed in Table 4.


In some cases, variants of the present disclosure may include single nucleotide polymorphisms (SNPs), insertion deletion polymorphisms (indels), damaging mutation variants, loss of function variants, synonymous mutation variants, nonsynonymous mutation variants, nonsense mutations, recessive markers, splicing/splice-site variants, frameshift mutation, insertions, deletions, genomic rearrangements, stop-gain, stop-loss, Rare Variants (RVs), translocations, inversions, and substitutions.


Variants for example SNPs are usually preceded and followed by highly conserved sequences that vary in less than 1/100 or 1/1000 members of the population. An individual may be homozygous or heterozygous for an allele at each SNP position. A SNP may, in some instances, be referred to as a “cSNP” to denote that the nucleotide sequence containing the SNP is an amino acid “coding” sequence. A SNP may arise from a substitution of one nucleotide for another at the polymorphic site. Substitutions can be transitions or transversions. A transition is the replacement of one purine nucleotide by another purine nucleotide, or one pyrimidine by another pyrimidine. A transversion is the replacement of a purine by a pyrimidine, or vice versa.


A synonymous codon change, or silent mutation is one that does not result in a change of amino acid due to the degeneracy of the genetic code. A substitution that changes a codon coding for one amino acid to a codon coding for a different amino acid (i.e., a non-synonymous codon change) is referred to as a missense mutation. A nonsense mutation results in a type of non-synonymous codon change in which a stop codon is formed, thereby leading to premature termination of a polypeptide chain and a truncated protein. A read-through mutation is another type of non-synonymous codon change that causes the destruction of a stop codon, thereby resulting in an extended polypeptide product. An indel that occur in a coding DNA segment gives rise to a frameshift mutation.


Causative variants are those that produce alterations in gene expression or in the structure and/or function of a gene product, and therefore are predictive of a possible clinical phenotype. One such class includes SNPs falling within regions of genes encoding a polypeptide product, i.e. cSNPs. These SNPs may result in an alteration of the amino acid sequence of the polypeptide product (i.e., non-synonymous codon changes) and give rise to the expression of a defective or other variant protein. Furthermore, in the case of nonsense mutations, a SNP may lead to premature termination of a polypeptide product. Such variant products can result in a pathological condition, e.g., genetic endometriosis.


An association study of a variant and a specific disorder involves determining the presence or frequency of the variant allele in biological samples from individuals with the disorder of interest, such as endometriosis, and comparing the information to that of controls (i.e., individuals who do not have the disorder; controls may be also referred to as “healthy” or “normal” individuals) who are for example of similar age and race. The appropriate selection of patients and controls is important to the success of variant association studies. Therefore, a pool of individuals with well-characterized phenotypes is extremely desirable.


A variant may be screened in tissue samples or any biological sample obtained from an affected individual, and compared to control samples, and selected for its increased (or decreased) occurrence in a specific pathological condition, such as pathologies related to endometriosis. Once a statistically significant association is established between one or more variant(s) and a pathological condition (or other phenotype) of interest, then the region around the variant can optionally be thoroughly screened to identify the causative genetic locus/sequence(s) (e.g., causative variant/mutation, gene, regulatory region, etc.) that influences the pathological condition or phenotype. Association studies may be conducted within the general population and are not limited to studies performed on related individuals in affected families (linkage studies). For diagnostic and prognostic purposes, if a particular variant site is found to be useful for diagnosing a disease, such as endometriosis, other variant sites which are in LD with this variant site would also be expected to be useful for diagnosing the condition. Linkage disequilibrium is described in the human genome as blocks of variants along a chromosome segment that do not segregate independently (i.e., that are non-randomly co-inherited). The starting (5′ end) and ending (3′ end) of these blocks can vary depending on the criteria used for linkage disequilibrium in a given database, such as the value of D′ or r2 used to determine linkage disequilibrium.


In some instances, variants can be identified in a study using a whole-genome case-control approach to identify single nucleotide polymorphisms that were closely associated with the development of endometriosis, as well as variants found to be in linkage disequilibrium with (i.e., within the same linkage disequilibrium block as) the endometriosis-associated variants, which can provide haplotypes (i.e., groups of variants that are co-inherited) to be readily inferred. Thus, the present disclosure provides individual variants associated with endometriosis, as well as combinations of variants and haplotypes in genetic regions associated with endometriosis, methods of detecting these polymorphisms in a test sample, methods of determining the risk of an individual of having or developing endometriosis and for clinical sub-classification of endometriosis.


In some cases, the present disclosure provides variants associated with endometriosis, as well as variants that were previously known in the art, but were not previously known to be associated with endometriosis. Accordingly, the present disclosure provides novel compositions and methods based on the variants disclosed herein, and also provides novel methods of using the known but previously unassociated variants in methods relating to endometriosis (e.g., for diagnosing endometriosis. etc.).


In some instances, particular variant alleles of the present disclosure can be associated with either an increased risk of having or developing endometriosis, or a decreased risk of having or developing endometriosis. Variant alleles that are associated with a decreased risk may be referred to as “protective” alleles, and variant alleles that are associated with an increased risk may be referred to as “susceptibility” alleles, “risk factors”, or “high-risk” alleles. Thus, whereas certain variants can be assayed to determine whether an individual possesses a variant allele that is indicative of an increased risk of having or developing endometriosis (i.e., a susceptibility allele), other variants can be assayed to determine whether an individual possesses a variant allele that is indicative of a decreased risk of having or developing endometriosis (i.e., a protective allele). Similarly, particular variant alleles of the present disclosure can be associated with either an increased or decreased likelihood of responding to a particular treatment. The term “altered” may be used herein to encompass either of these two possibilities (e.g., an increased or a decreased risk/likelihood).


In some instances, nucleic acid molecules may be double-stranded molecules and that reference to a particular site on one strand refers, as well, to the corresponding site on a complementary strand. In defining a variant position, variant allele, or nucleotide sequence, reference to an adenine, a thymine (uridine), a cytosine, or a guanine at a particular site on one strand of a nucleic acid molecule also defines the complementary thymine (uridine), adenine, guanine, or cytosine (respectively) at the corresponding site on a complementary strand of the nucleic acid molecule. Thus, reference may be made to either strand in order to refer to a particular variant position, variant allele, or nucleotide sequence. Probes and primers may be designed to hybridize to either strand and variant genotyping methods disclosed herein may generally target either strand. Throughout the specification, in identifying a variant position, reference is generally made to the forward or “sense” strand, solely for the purpose of convenience. Since endogenous nucleic acid sequences exist in the form of a double helix (a duplex comprising two complementary nucleic acid strands), it is understood that the variants disclosed herein will have counterpart nucleic acid sequences and variants associated with the complementary “reverse” or “antisense” nucleic acid strand. Such complementary nucleic acid sequences, and the complementary variants present in those sequences, are also included within the scope of the present disclosure.


Genotyping Methods


In some cases, the process of determining which specific nucleotide (i.e., allele) is present at each of one or more variant positions, such as a variant position in a nucleic acid molecule characterized by a variant, is referred to as variant genotyping. The present disclosure provides methods of variant genotyping, such as for use in screening for endometriosis or related pathologies, or determining predisposition thereto, or determining responsiveness to a form of treatment, or in genome mapping or variant association analysis, etc.


Nucleic acid samples can be genotyped to determine which allele(s) is/are present at any given genetic region (e.g., variant position) of interest by methods well known in the art. The neighboring sequence can be used to design variant detection reagents such as oligonucleotide probes, which may optionally be implemented in a kit format. Common variant genotyping methods include, but are not limited to, TaqMan assays, molecular beacon assays, nucleic acid arrays, allele-specific primer extension, allele-specific PCR, arrayed primer extension, homogeneous primer extension assays, primer extension with detection by mass spectrometry, mass spectrometry with or with monoisotopic dNTPs (pyrosequencing, multiplex primer extension sorted on genetic arrays, ligation with rolling circle amplification, homogeneous ligation, OLA, multiplex ligation reaction sorted on genetic arrays, restriction-fragment length polymorphism, single base extension-tag assays, and the Invader assay. Such methods may be used in combination with detection mechanisms such as, for example, luminescence or chemiluminescence detection, fluorescence detection, time-resolved fluorescence detection, fluorescence resonance energy transfer, fluorescence polarization, mass spectrometry, electrospray mass spectrometry, and electrical detection.


Various methods for detecting polymorphisms can include, but are not limited to, methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA duplexes, comparison of the electrophoretic mobility of variant and wild type nucleic acid molecules, and assaying the movement of polymorphic or wild-type fragments in polyacrylamide gels containing a gradient of denaturant using denaturing gradient gel electrophoresis (DGGE). Sequence variations at specific locations can also be assessed by nuclease protection assays such as RNase and SI protection or chemical cleavage methods.


In some instances, a variant genotyping can be performed using the TaqMan assay, which is also known as the 5′ nuclease assay. The TaqMan assay detects the accumulation of a specific amplified product during PCR. The TaqMan assay utilizes an oligonucleotide probe labeled with a fluorescent reporter dye and a quencher dye. The reporter dye is excited by irradiation at an appropriate wavelength, it transfers energy to the quencher dye in the same probe via a process called fluorescence resonance energy transfer (FRET). When attached to the probe, the excited reporter dye does not emit a signal. The proximity of the quencher dye to the reporter dye in the intact probe maintains a reduced fluorescence for the reporter. The reporter dye and quencher dye may be at the 5′ most and the 3′ most ends, respectively, or vice versa. Alternatively, the reporter dye may be at the 5′ or 3′ most end while the quencher dye is attached to an internal nucleotide, or vice versa. In yet another embodiment, both the reporter and the quencher may be attached to internal nucleotides at a distance from each other such that fluorescence of the reporter is reduced. During PCR, the 5′ nuclease activity of DNA polymerase cleaves the probe, thereby separating the reporter dye and the quencher dye and resulting in increased fluorescence of the reporter. Accumulation of PCR product is detected directly by monitoring the increase in fluorescence of the reporter dye. The DNA polymerase cleaves the probe between the reporter dye and the quencher dye only if the probe hybridizes to the target variant-containing template which is amplified during PCR, and the probe is designed to hybridize to the target variant site only if a particular variant allele is present. TaqMan primer and probe sequences can readily be determined using the variant and associated nucleic acid sequence information provided herein. A number of computer programs, such as Primer Express (Applied Biosystems, Foster City, Calif.), can be used to rapidly obtain optimal primer/probe sets. It will be apparent to one of skill in the art that such primers and probes for detecting the variants of the present disclosure are useful in diagnostic assays for endometriosis and related pathologies, and can be readily incorporated into a kit format. The present disclosure also includes modifications of the Taqman assay well known in the art such as the use of Molecular Beacon probes and other variant formats.


In some instances, a method for genotyping the variants can be the use of two oligonucleotide probes in an OLA. In this method, one probe hybridizes to a segment of a target nucleic acid with its 3′ most end aligned with the variant site. A second probe hybridizes to an adjacent segment of the target nucleic acid molecule directly 3′ to the first probe. The two juxtaposed probes hybridize to the target nucleic acid molecule, and are ligated in the presence of a linking agent such as a ligase if there is perfect complementarity between the 3′ most nucleotide of the first probe with the variant site. If there is a mismatch, ligation would not occur. After the reaction, the ligated probes are separated from the target nucleic acid molecule, and detected as indicators of the presence of a variant.


In some instances, a method for variant genotyping is based on mass spectrometry. Mass spectrometry takes advantage of the unique mass of each of the four nucleotides of DNA. variants can be unambiguously genotyped by mass spectrometry by measuring the differences in the mass of nucleic acids having alternative variant alleles. MALDI-TOF (Matrix Assisted Laser Desorption Ionization-Time of Flight) mass spectrometry technology is exemplary for extremely precise determinations of molecular mass, such as variants. Numerous approaches to variant analysis have been developed based on mass spectrometry. Exemplary mass spectrometry-based methods of variant genotyping include primer extension assays, which can also be utilized in combination with other approaches, such as traditional gel-based formats and microarrays.


In some instances, a method for genotyping the variants of the present disclosure is the use of electrospray mass spectrometry for direct analysis of an amplified nucleic acid. In this method, in one aspect, an amplified nucleic acid product may be isotopically enriched in an isotope of oxygen (O), carbon (C), nitrogen (N) or any combination of those elements. In an exemplary embodiment the amplified nucleic acid is isotopically enriched to a level of greater than 99.9% in the elements of O16, C12 and N14 The amplified isotopically enriched product can then be analyzed by electrospray mass spectrometry to determine the nucleic acid composition and the corresponding variant genotyping. Isotopically enriched amplified products result in a corresponding increase in sensitivity and accuracy in the mass spectrum. In another aspect of this method an amplified nucleic acid that is not isotopically enriched can also have composition and variant genotype determined by electrospray mass spectrometry.


In some instances, variants can be scored by direct DNA sequencing. The nucleic acid sequences of the present disclosure enable one of ordinary skill in the art to readily design sequencing primers for such automated sequencing procedures. Commercial instrumentation, such as the Applied Biosystems 377, 3100, 3700, 3730, and 3730.times.1 DNA Analyzers (Foster City, Calif.), is commonly used in the art for automated sequencing.


Variant genotyping can include the steps of, for example, collecting a biological sample from a human subject (e.g., sample of tissues, cells, fluids, secretions, etc.), isolating nucleic acids (e.g., genomic DNA, mRNA or both) from the cells of the sample, contacting the nucleic acids with one or more primers which specifically hybridize to a region of the isolated nucleic acid containing a target variant under conditions such that hybridization and amplification of the target nucleic acid region occurs, and determining the nucleotide present at the variant position of interest, or, in some assays, detecting the presence or absence of an amplification product (assays can be designed so that hybridization and/or amplification will only occur if a particular variant allele is present or absent). In some assays, the size of the amplification product is detected and compared to the length of a control sample; for example, deletions and insertions can be detected by a change in size of the amplified product compared to a normal genotype.


In some instances, a variant genotyping can be used in applications that include, but are not limited to, variant-endometriosis association analysis, endometriosis predisposition screening, endometriosis diagnosis, endometriosis prognosis, endometriosis progression monitoring, determining therapeutic strategies based on an individual's genotype, and stratifying a patient population for clinical trials for a treatment such as minimally invasive device for the treatment of endometriosis.


Analysis of Genetic Association Between Variants and Phenotypic Traits


In some cases, genotyping for endometriosis diagnosis, endometriosis predisposition screening, endometriosis prognosis and endometriosis treatment and other uses described herein, can rely on initially establishing a genetic association between one or more specific variants and the particular phenotypic traits of interest.


In some instances, in a genetic association study, the cause of interest to be tested is a certain allele or a variant or a combination of alleles or a haplotype from several variants. Thus, tissue specimens (e.g., saliva) from the sampled individuals may be collected and genomic DNA genotyped for the variant(s) of interest. In addition to the phenotypic trait of interest, other information such as demographic (e.g., age, gender, ethnicity, etc.), clinical, and environmental information that may influence the outcome of the trait can be collected to further characterize and define the sample set. Specifically, in an endometriosis genetic association study, clinical information such as body mass index, age and diet may be collected. In many cases, these factors are known to be associated with diseases and/or variant allele frequencies. There are likely gene-environment and/or gene-gene interactions as well. Analysis methods to address gene-environment and gene-gene interactions (for example, the effects of the presence of both susceptibility alleles at two different genes can be greater than the effects of the individual alleles at two genes combined) are discussed below.


In some instances, after all the relevant phenotypic and genotypic information has been obtained, statistical analyses are carried out to determine if there is any significant correlation between the presence of an allele or a genotype with the phenotypic characteristics of an individual. For example, data inspection and cleaning are first performed before carrying out statistical tests for genetic association. Epidemiological and clinical data of the samples can be summarized by descriptive statistics with tables and graphs. Data validation is for example performed to check for data completion, inconsistent entries, and outliers. Chi-squared tests may then be used to check for significant differences between cases and controls for discrete and continuous variables, respectively. To ensure genotyping quality, Hardy-Weinberg disequilibrium tests can be performed on cases and controls separately. Significant deviation from Hardy-Weinberg equilibrium (HWE) in both cases and controls for individual markers can be indicative of genotyping errors. If HWE is violated in a majority of markers, it is indicative of population substructure that should be further investigated. Moreover, Hardy-Weinberg disequilibrium in cases only can indicate genetic association of the markers with the disease of interest.


In some instances, to test whether an allele of a single variant is associated with the case or control status of a phenotypic trait, one skilled in the art can compare allele frequencies in cases and controls. Standard chi-squared tests and Fisher exact tests can be carried out on a 2.times.2 table (2 variant alleles.times.2 outcomes in the categorical trait of interest). To test whether genotypes of a variant are associated, chi-squared tests can be carried out on a 3.times.2 table (3 genotypes.times.2 outcomes). Score tests are also carried out for genotypic association to contrast the three genotypic frequencies (major homozygotes, heterozygotes and minor homozygotes) in cases and controls, and to look for trends using 3 different modes of inheritance, namely dominant (with contrast coefficients 2, −1, −1), additive (with contrast coefficients 1, 0, −1) and recessive (with contrast coefficients 1, 1, −2). Odds ratios for minor versus major alleles, and odds ratios for heterozygote and homozygote variants versus the wild type genotypes are calculated with the desired confidence limits, usually 95%. In the present study a software algorithm, PLINK, has been applied to automate the calculation of Hardy-Weinberg equilibrium, chi-square, p-values and odds-ratios for very large numbers of variants and Case-Control individuals simultaneously.


In some instances, in order to control for confounding effects and to test for interactions a stepwise multiple logistic regression analysis using statistical packages such as SAS or R may be performed. Logistic regression is a model-building technique in which the best fitting and most parsimonious model is built to describe the relation between the dichotomous outcome (for instance, getting a certain endometriosis or not) and a set of independent variables (for instance, genotypes of different associated genes, and the associated demographic and environmental factors). The most common model is one in which the logit transformation of the odds ratios is expressed as a linear combination of the variables (main effects) and their cross-product terms (interactions). To test whether a certain variable or interaction is significantly associated with the outcome, coefficients in the model are first estimated and then tested for statistical significance of their departure from zero.


In some instances, in addition to performing association tests one marker at a time, haplotype association analysis may also be performed to study a number of markers that are closely linked together. Haplotype association tests can have better power than genotypic or allelic association tests when the tested markers are not the disease-causing mutations themselves but are in linkage disequilibrium with such mutations. The test will even be more powerful if the endometriosis is indeed caused by a combination of alleles on a haplotype. In order to perform haplotype association effectively, marker-marker linkage disequilibrium measures, both D′ and r2, are typically calculated for the markers within a gene to elucidate the haplotype structure. Variants within a gene can be organized in block pattern, and a high degree of linkage disequilibrium exists within blocks and very little linkage disequilibrium exists between blocks. Haplotype association with the endometriosis status can be performed using such blocks once they have been elucidated.


Haplotype association tests can be carried out in a similar fashion as the allelic and genotypic association tests. Each haplotype in a gene is analogous to an allele in a multi-allelic marker. One skilled in the art can either compare the haplotype frequencies in cases and controls or test genetic association with different pairs of haplotypes. Score tests can be done on haplotypes using the program “haplo.score”. In that method, haplotypes are first inferred by EM algorithm and score tests are carried out with a generalized linear model (GLM) framework that allows the adjustment of other factors.


In some instances, an important decision in the performance of genetic association tests is the determination of the significance level at which significant association can be declared when the p-value of the tests reaches that level. In an exploratory analysis where positive hits will be followed up in subsequent confirmatory testing, an unadjusted p-value <0.1 (a significance level on the lenient side) may be used for generating hypotheses for significant association of a variant with certain phenotypic characteristics of a endometriosis. It is exemplary that a p-value <0.05 (a significance level traditionally used in the art) is achieved in order for a variant to be considered to have an association with a endometriosis. It is more exemplary that a p-value <0.01 (a significance level on the stringent side) is achieved for an association to be declared. Permutation tests to control for the false discovery rates, FDR, can further be employed. Such methods to control for multiplicity would be exemplary when the tests are dependent and controlling for false discovery rates is sufficient as opposed to controlling for the experiment-wise error rates.


In some instances, since both genotyping and endometriosis status classification can involve errors, sensitivity analyses may be performed to see how odds ratios and p-values would change upon various estimates on genotyping and endometriosis classification error rates.


Once individual risk factors, genetic or non-genetic, have been found for the predisposition to endometriosis, the next step can be to set up a classification/prediction scheme to predict the category (for instance, endometriosis or no endometriosis) that an individual will be in depending on his genotypes of associated variants and other non-genetic risk factors. Logistic regression for discrete trait and linear regression for continuous trait are standard techniques for such tasks. Moreover, other techniques can also be used for setting up classification. Such techniques include, but are not limited to, MART, CART, neural network, and discriminant analyses that are suitable for use in comparing the performance of different methods.


Endometriosis Diagnosis and Predisposition Screening


In some cases, information on association/correlation between genotypes and endometriosis-related phenotypes can be exploited in several ways. For example, in the case of a highly statistically significant association between one or more variants with predisposition to a disease for which treatment is available, detection of such a genotype pattern in an individual may justify particular treatment, or at least the institution of regular monitoring of the individual. In the case of a weaker but still statistically significant association between a variant and a human disease, immediate therapeutic intervention or monitoring may not be justified after detecting the susceptibility allele or variant.


The variants disclosed herein may contribute to endometriosis in an individual in different ways. Some polymorphisms occur within a protein coding sequence and contribute to endometriosis phenotype by affecting protein structure. Other polymorphisms occur in noncoding regions but may exert phenotypic effects indirectly via influence on, for example, replication, transcription, and/or translation. A single variant may affect more than one phenotypic trait. Likewise, a single phenotypic trait may be affected by multiple variants in different genes.


The variants disclosed herein may contribute to endometriosis in an individual in different ways. Some polymorphisms occur within a protein coding sequence and contribute to endometriosis phenotype by affecting protein structure. Other polymorphisms occur in noncoding regions but may exert phenotypic effects indirectly via influence on, for example, replication, transcription, and/or translation. A single variant may affect more than one phenotypic trait. Likewise, a single phenotypic trait may be affected by multiple variants in different genes.


Haplotypes can be particularly useful in that, for example, fewer variants can be genotyped to determine if a particular genomic region harbors a locus that influences a particular phenotype, such as in linkage disequilibrium-based variant association analysis.


Linkage disequilibrium (LD) can refer to the co-inheritance of alleles (e.g., alternative nucleotides) at two or more different variant sites at frequencies greater than would be expected from the separate frequencies of occurrence of each allele in a given population. The expected frequency of co-occurrence of two alleles that are inherited independently is the frequency of the first allele multiplied by the frequency of the second allele. Alleles that co-occur at expected frequencies are said to be in “linkage equilibrium”. In contrast, LD refers to any non-random genetic association between allele(s) at two or more different variant sites, which is generally due to the physical proximity of the two loci along a chromosome. LD can occur when two or more variants sites are in close physical proximity to each other on a given chromosome and therefore alleles at these variant sites will tend to remain unseparated for multiple generations with the consequence that a particular nucleotide (allele) at one variant site will show a non-random association with a particular nucleotide (allele) at a different variant site located nearby. Hence, genotyping one of the variant sites will give almost the same information as genotyping the other variant site that is in LD.


For diagnostic purposes, if a particular variant site is found to be useful for diagnosing endometriosis, then the skilled artisan would recognize that other variant sites which are in LD with this variant site would also be useful for diagnosing the condition. Various degrees of LD can be encountered between two or more variants with the result being that some variants are more closely associated (i.e., in stronger LD) than others. Furthermore, the physical distance over which LD extends along a chromosome differs between different regions of the genome, and therefore the degree of physical separation between two or more variant sites necessary for LD to occur can differ between different regions of the genome.


For diagnostic applications, polymorphisms (e.g., variants and/or haplotypes) that are not the actual disease-causing (causative) polymorphisms, but are in LD with such causative polymorphisms, are also useful. In such instances, the genotype of the polymorphism(s) that is/are in LD with the causative polymorphism is predictive of the genotype of the causative polymorphism and, consequently, predictive of the phenotype (e.g., endometriosis) that is influenced by the causative variant(s). Thus, polymorphic markers that are in LD with causative polymorphisms are useful as diagnostic markers, and are particularly useful when the actual causative polymorphism(s) is/are unknown.


The contribution or association of particular variants and/or variant haplotypes with endometriosis phenotypes, such as endometriosis, can enable the variants of the present disclosure to be used to develop superior diagnostic tests capable of identifying individuals who express a detectable trait, such as endometriosis. as the result of a specific genotype, or individuals whose genotype places them at an increased or decreased risk of developing a detectable trait at a subsequent time as compared to individuals who do not have that genotype. As described herein, diagnostics may be based on a single variant or a group of variants. In some instances, combined detection of a plurality of variations, for example about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 25, 30, 32, 35, 40, 45, 48, 50, 55, 60, 64, 70, 75, 80, 85, 80, 96, 100, or any other number in-between, or more, of the variants provided herein can increase the probability of an accurate diagnosis. To further increase the accuracy of diagnosis or predisposition screening, analysis of the variants of the present disclosure can be combined with that of other polymorphisms or other risk factors of endometriosis, such as gender and age.


In some instances, the method herein can indicate a certain increased (or decreased) degree or likelihood of developing the endometriosis based on statistically significant association results. This information can be valuable to initiate earlier preventive treatments or to allow an individual carrying one or more significant variants or variant haplotypes to regularly scheduled physical exams to monitor for the appearance or change of their endometriosis in order to identify and begin treatment of the endometriosis at an early stage.


The diagnostic techniques herein may employ a variety of methodologies to determine whether a test subject has a variant or a variant pattern associated with an increased or decreased risk of developing a detectable trait or whether the individual suffers from a detectable trait as a result of a particular polymorphism/mutation, including, for example, methods which enable the analysis of individual chromosomes for haplotyping, family studies, single sperm DNA analysis, or somatic hybrids. The trait analyzed using the diagnostics of the disclosure may be any detectable trait that is commonly observed in pathologies and disorders related to endometriosis.


Another aspect of the present disclosure relates to a method of determining whether an individual is at risk (or less at risk) of developing one or more traits or whether an individual expresses one or more traits as a consequence of possessing a particular trait-causing or trait-influencing allele. These methods generally involve obtaining a nucleic acid sample from an individual and assaying the nucleic acid sample to determine which nucleotide(s) is/are present at one or more variant positions, wherein the assayed nucleotide(s) is/are indicative of an increased or decreased risk of developing the trait or indicative that the individual expresses the trait as a result of possessing a particular trait-causing or trait-influencing allele.


The variants herein can be used to identify novel therapeutic targets for endometriosis. For example, genes containing the disease-associated variants (“variant genes”) or their products, as well as genes or their products that are directly or indirectly regulated by or interacting with these variant genes or their products, can be targeted for the development of therapeutics that, for example, treat the endometriosis or prevent or delay endometriosis onset. The therapeutics may be composed of, for example, small molecules, proteins, protein fragments or peptides, antibodies, nucleic acids, or their derivatives or mimetics which modulate the functions or levels of the target genes or gene products.


The variants/haplotypes herein can be useful for improving many different aspects of the drug development process. For example, individuals can be selected for clinical trials based on their variant genotype. Individuals with variant genotypes that indicate that they are most likely to respond to or most likely to benefit from a device or a drug can be included in the trials and those individuals whose variant genotypes indicate that they are less likely to or would not respond to a device or a drug, or suffer adverse reactions, can be eliminated from the clinical trials. This not only improves the safety of clinical trials, but also will enhance the chances that the trial will demonstrate statistically significant efficacy. Furthermore, the variants of the present disclosure may explain why certain previously developed devices or drugs performed poorly in clinical trials and may help identify a subset of the population that would benefit from a drug that had previously performed poorly in clinical trials, thereby “rescuing” previously developed therapeutic treatment methods or drugs, and enabling the methods or drug to be made available to a particular endometriosis patient population that can benefit from it.


Detection Kits and Systems


In some instances, based on a variant such as SNP or indels and associated sequence information disclosed herein, detection reagents can be developed and used to assay any variant of the present disclosure individually or in combination, and such detection reagents can be readily incorporated into one of the established kit or system formats which are well known in the art. The terms “kits” and “systems” can refer to such things as combinations of multiple variant detection reagents, or one or more variant detection reagents in combination with one or more other types of elements or components (e.g., other types of biochemical reagents, containers, packages such as packaging intended for commercial sale, substrates to which variant detection reagents are attached, electronic hardware components, etc.). Accordingly, the present disclosure further provides variant detection kits and systems, including but not limited to, packaged probe and primer sets (e.g., TaqMan probe/primer sets), arrays/microarrays of nucleic acid molecules, and beads that contain one or more probes, primers, or other detection reagents for detecting one or more variants of the present disclosure. The kits/systems can optionally include various electronic hardware components; for example, arrays (“DNA chips”) and microfluidic systems (“lab-on-a-chip” systems) provided by various manufacturers typically comprise hardware components. Other kits/systems (e.g., probe/primer sets) may not include electronic hardware components, but may be comprised of, for example, one or more variant detection reagents (along with, optionally, other biochemical reagents) packaged in one or more containers.


In some instances, provided herein is a kit comprising one or more variant detection agents, and methods for detecting the variants disclosed herein by employing detection reagents and optionally a questionnaire of non-genetic clinical factors. In some instances, provided herein is a method of identifying an individual having an increased or decreased risk of developing endometriosis by detecting the presence or absence of a variant allele disclosed herein. In some instances, provided herein is a method for diagnosis of endometriosis by detecting the presence or absence of a variant allele disclosed herein is provided. In some instances, provided herein is a method for predicting endometriosis sub-classification by detecting the presence or absence of a variant allele. In some instances, the questionnaire would be completed by a medical professional based on medical history physical exam or other clinical findings. In some instances, the questionnaire would include any other non-genetic clinical factors known to be associated with the risk of developing endometriosis. In some instances, a reagent for detecting a variant in the context of its naturally-occurring flanking nucleotide sequences (which can be, e.g., either DNA or mRNA) is provided. In some instances, the reagent may be in the form of a hybridization probe or an amplification primer that is useful in the specific detection of a variant of interest. In some instances, a variant can be a genetic polymorphism having a Minor Allele Frequency (MAF) of at least 1% in a population (such as for instance the Caucasian population or the CEU population) and an RV is understood to be a genetic polymorphism having a Minor Allele Frequency (MAF) of less than 1% in a population (such as for instance the Caucasian population or the CEU population).


In some instances, a detection kit can contain one or more detection reagents and other components (e.g., a buffer, enzymes such as DNA polymerases or ligases, chain extension nucleotides such as deoxynucleotide triphosphates, and in the case of Sanger-type DNA sequencing reactions, chain terminating nucleotides, positive control sequences, negative control sequences, and the like) necessary to carry out an assay or reaction, such as amplification and/or detection of a variant-containing nucleic acid molecule. A kit may further contain means for determining the amount of a target nucleic acid, and means for comparing the amount with a standard, and can comprise instructions for using the kit to detect the variant-containing nucleic acid molecule of interest. In one embodiment of the present disclosure, kits are provided which contain the necessary reagents to carry out one or more assays to detect one or more variants disclosed herein. In an exemplary embodiment of the present disclosure, the detection kits/systems can be in the form of nucleic acid arrays, or compartmentalized kits, including microfluidic/lab-on-a-chip systems.


In some instances, variant detection kits/systems may contain, for example, one or more probes, or pairs of probes, that hybridize to a nucleic acid molecule at or near each target variant position. Multiple pairs of allele-specific probes may be included in the kit/system to simultaneously assay large numbers of variants, at least one of which is a variant of the present disclosure. In some kits/systems, the allele-specific probes are immobilized to a substrate such as an array or bead. For example, the same substrate can comprise allele-specific probes for detecting at least 1; 10; 100; 1000; 10,000; 100,000; 500,000 (or any other number in-between) or substantially all of the variants disclosed herein.


The terms “arrays,” “microarrays,” and “DNA chips” are used herein interchangeably to refer to an array of distinct polynucleotides affixed to a substrate, such as glass, plastic, paper, nylon or other type of membrane, filter, chip, or any other suitable solid support. The polynucleotides can be synthesized directly on the substrate, or synthesized separate from the substrate and then affixed to the substrate.


In some instances, any number of probes, such as allele-specific probes, may be implemented in an array, and each probe or pair of probes can hybridize to a different variant position. In the case of polynucleotide probes, they can be synthesized at designated areas (or synthesized separately and then affixed to designated areas) on a substrate using a light-directed chemical process. Each DNA chip can contain, for example, thousands to millions of individual synthetic polynucleotide probes arranged in a grid-like pattern and miniaturized (e.g., to the size of a dime). For example, probes are attached to a solid support in an ordered, addressable array.


In some instances, a microarray can be composed of a large number of unique, single-stranded polynucleotides fixed to a solid support. Typical polynucleotides are for example about 6-60 nucleotides in length, more for example about 15-30 nucleotides in length, and most for example about 18-25 nucleotides in length. For certain types of microarrays or other detection kits/systems, it may be suitable to use oligonucleotides that are only about 7-20 nucleotides in length. In other types of arrays, such as arrays used in conjunction with chemiluminescent detection technology, exemplary probe lengths can be, for example, about 15-80 nucleotides in length, for example about 50-70 nucleotides in length, more for example about 55-65 nucleotides in length, and most for example about 60 nucleotides in length. The microarray or detection kit can contain polynucleotides that cover the known 5′ or 3′ sequence of the target variant site, sequential polynucleotides that cover the full-length sequence of a gene/transcript; or unique polynucleotides selected from particular areas along the length of a target gene/transcript sequence, particularly areas corresponding to one or more variants disclosed herein. Polynucleotides used in the microarray or detection kit can be specific to a variant or variants of interest (e.g., specific to a particular SNP allele at a target SNP site, or specific to particular SNP alleles at multiple different SNP sites), or specific to a polymorphic gene/transcript or genes/transcripts of interest.


In some instances, hybridization assays based on polynucleotide arrays rely on the differences in hybridization stability of the probes to perfectly matched and mismatched target sequence variants. For variant genotyping, it is generally suitable that stringency conditions used in hybridization assays are high enough such that nucleic acid molecules that differ from one another at as little as a single variant position can be differentiated (e.g., typical variant hybridization assays are designed so that hybridization will occur only if one particular nucleotide is present at a variant position, but will not occur if an alternative nucleotide is present at that variant position). Such high stringency conditions may be suitable when using, for example, nucleic acid arrays of allele-specific probes for variant detection. In some instances, the arrays are used in conjunction with chemiluminescent detection technology.


In some instances, a nucleic acid array can comprise an array of probes of about 15-25 nucleotides in length. In further embodiments, a nucleic acid array can comprise any number of probes, in which at least one probe is capable of detecting one or more variants disclosed herein and/or at least one probe comprises a fragment of one of the sequences selected from the group consisting of those disclosed herein, and sequences complementary thereto, said fragment comprising at least about 8 consecutive nucleotides, for example 10, 12, 15, 16, 18, 20, more for example 22, 25, 30, 40, 47, 50, 55, 60, 65, 70, 80, 90, 100, or more consecutive nucleotides (or any other number in-between) and containing (or being complementary to) a variant. In some embodiments, the nucleotide complementary to the variant site is within 5, 4, 3, 2, or 1 nucleotide from the center of the probe, more for example at the center of said probe.


In some instances, using such arrays or other kits/systems, the present disclosure provides methods of identifying the variants disclosed herein in a test sample. Such methods typically involve incubating a test sample of nucleic acids with an array comprising one or more probes corresponding to at least one variant position of the present disclosure, and assaying for binding of a nucleic acid from the test sample with one or more of the probes. Conditions for incubating a variant detection reagent (or a kit/system that employs one or more such variant detection reagents) with a test sample vary. Incubation conditions depend on such factors as the format employed in the assay, the detection methods employed, and the type and nature of the detection reagents used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification and array assay formats can readily be adapted to detect the variants disclosed herein.


In some instances, a detection kit/system may include components that are used to prepare nucleic acids from a test sample for the subsequent amplification and/or detection of a variant-containing nucleic acid molecule. Such sample preparation components can be used to produce nucleic acid extracts, including DNA and/or RNA, extracts from any bodily fluids. In a exemplary embodiment of the disclosure, the bodily fluid is blood, saliva or buccal swabs. The test samples used in the above-described methods will vary based on such factors as the assay format, nature of the detection method, and the specific tissues, cells or extracts used as the test sample to be assayed. Methods of preparing nucleic acids are well known in the art and can be readily adapted to obtain a sample that is compatible with the system utilized. In some instances, in addition to reagents for preparation of nucleic acids and reagents for detection of one of the variants of this disclosure, the kit may include a questionnaire inquiring about non-genetic clinical factors such as age, gender, or any other non-genetic clinical factors known to be associated with endometriosis.


In some instances, a form of kit can be a compartmentalized kit. A compartmentalized kit includes any kit in which reagents are contained in separate containers. Such containers include, for example, small glass containers, plastic containers, strips of plastic, glass or paper, or arraying material such as silica. Such containers allow one to efficiently transfer reagents from one compartment to another compartment such that the test samples and reagents are not cross-contaminated, or from one container to another vessel not included in the kit, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another or to another vessel. Such containers may include, for example, one or more containers which will accept the test sample, one or more containers which contain at least one probe or other variant detection reagent for detecting one or more variants of the present disclosure, one or more containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and one or more containers which contain the reagents used to reveal the presence of the bound probe or other variant detection reagents. The kit can optionally further comprise compartments and/or reagents for, for example, nucleic acid amplification or other enzymatic reactions such as primer extension reactions, hybridization, ligation, electrophoresis (for example capillary electrophoresis), mass spectrometry, and/or laser-induced fluorescent detection. The kit may also include instructions for using the kit. In such microfluidic devices, the containers may be referred to as, for example, microfluidic “compartments”, “chambers”, or “channels”.


In some instances, microfluidic devices, which may also be referred to as “lab-on-a-chip” systems, biomedical micro-electro-mechanical systems (bioMEMs), or multicomponent integrated systems, are exemplary kits/systems of the present disclosure for analyzing variants. Such systems miniaturize and compartmentalize processes such as probe/target hybridization, nucleic acid amplification, and capillary electrophoresis reactions in a single functional device. Such microfluidic devices typically utilize detection reagents in at least one aspect of the system, and such detection reagents may be used to detect one or more variants of the present disclosure. One example of a microfluidic system is the integration of PCR amplification and capillary electrophoresis in chips. Exemplary microfluidic systems comprise a pattern of microchannels designed onto a glass, silicon, quartz, or plastic wafer included on a microchip. The movements of the samples may be controlled by electric, electroosmotic or hydrostatic forces applied across different areas of the microchip to create functional microscopic valves and pumps with no moving parts. Varying the voltage can be used as a means to control the liquid flow at intersections between the micro-machined channels and to change the liquid flow rate for pumping across different sections of the microchip. In some instances, for genotyping variants, a microfluidic system may integrate, for example, nucleic acid amplification, primer extension, capillary electrophoresis, and a detection method such as laser induced fluorescence detection.


Methods of Treatment


In some aspects, disclosed herein is a method of treating a select subject in need thereof. The use of these genetic markers can allow selection of subjects for clinical trials involving novel treatment methods. In some cases, genetic markers disclosed herein can be used for early diagnosis and prognosis of endometriosis, as well as early clinical intervention to mitigate progression of the disease. In some instances, genetic markers disclosed herein can be used to predict endometriosis and endometriosis progression, for example in treatment decisions for individuals who are recognized as having endometriosis.


In some cases, a treatment disclosed herein includes one or more of: reducing the frequency and/or severity of symptoms, elimination of symptoms and/or their underlying cause, and improvement or remediation of damage. For example, treatment of endometriosis includes, relieving the pain experienced by a woman suffering from endometriosis, and/or causing the regression or disappearance of endometriotic lesions.


In some cases, the treatment can be an advanced reproductive therapy such as in vitro in fertilization (IVF); a hormonal treatment; progestogen; progestin; an oral contraceptive; a hormonal contraceptive; danocrine; gentrinone; a gonadotrophin releasing hormone agonist; Lupron; danazol; an aromatase inhibitor; pentoxifylline; surgical treatment; laparoscopy; cauterization; or cystectomy. In some instances, the progestogen can be progesterone, desogestrel, etonogestrel, gestodene, levonorgestrel, medroxyprogesterone, norethisterone, norgestimate, megestrol, megestrol acetate, norgestrel, a pharmaceutically acceptable salt thereof (e.g., acetate), or any combination thereof. In some instances, a therapeutic used herein is selected from progestins, estrogens, antiestrogens, and antiprogestins, for example micronized danazol in a micro- or nanoparticulate formulation.


In some cases, a method of treatment disclosed herein comprises direct administration into or within an endometriotic lesion in a subject suffering from endometriosis of a pharmaceutical composition comprising a therapeutic disclosed herein. In some instances, the therapeutic is micronized in a suspension, e.g., non-oil based suspension. In some embodiments, the suspension comprises water, sodium sulfate, a quaternary ammonium wetting agent, glycerol, propylene glycol, polyethylene glycol, polypropylene glycol, a hydrophilic colloid, or any combination thereof.


The term “effective amount,” as used herein, can refer to a sufficient amount of a therapeutic being administered which relieve to some extent one or more of the symptoms of the disease or condition being treated. The result can be reduction and/or alleviation of the signs, symptoms, or causes of a disease, or any other desired alteration of a biological system. A therapeutic can be administered for prophylactic, enhancing, and/or therapeutic treatments. An appropriate “effective” amount in any individual case can be determined using techniques, such as a dose escalation study.


A treatment can comprise administering a therapeutic to a subject, intralesionally, transvaginally, intravenously, subcutaneously, intramuscularly, by inhalation, dermally, intra-articular injection, orally, intrathecally, transdermally, intranasally, via a peritoneal route, or directly onto or into a lesion/site, e.g., via endoscopically, open surgical administration, or injection route of application. In some instances, intralesional administration can mean administration into or within a pathological area. Administration can be effected by injection into a lesion and/or by instillation into a pre-existing cavity, such as in endometrioma. With reference to treatments for endometriosis provided herein, intralesional administration can refer to treatment within endometriotic tissue or a cyst formed by such tissue, such as by injection into a cyst. In some instances, intralesional administration can include administration into tissue in such close proximity to the endometriotic tissue such that the progestogen acts directly on the endometriotic tissue. In some instances, intralesional administration may or may not include administration to tissue remote from the endometriotic tissue that the progestogen acts on the endometriotic tissue through systemic circulation. In some instances, intralesional administration administration or delivery includes transvaginal, endoscopic or open surgical administration including, but are not limited to, via laparotomy. In some instances, transvaginal administration can refer to all procedures, including drug delivery, performed through the vagina, including intravaginal delivery and transvaginal sonography (ultrasonography through the vagina).


In some instances, administration is by injection into the endometriotic tissue or into a cyst formed by such tissue; or into tissue immediately surrounding the endometriotic tissue in such proximity that the progestogen acts directly on the endometriotic tissue. In some embodiments, the tissue is visualized, for example laparoscopically or by ultrasound, and the progestogen is administered by intralesional (intracystic) injection by, for example direct visualization under ultrasound guidance or by any other suitable methods. A suitable amount of the theraeputic, e.g., progestrogen expressed in terms of progestrone of about 1-2 gm per lesion/cyst, can be applied. Precise quantity generally is determined on case to case basis, depending upon parameters, such as the size of the endometriotic tissue mass, the mode of the administration, and the number and time intervals between treatments.


In some instances, methods herein can comprise intralesional delivery of the medicaments into the lesion. Intralesional delivery includes, for example, transvaginal, endoscopic or open surgical administration including via laparotomy. Delivery can be effected, for example, through a needle or needle like device by injection or a similar injectable or syringe-like device that can be delivered into the lesion, such as transvaginally, endoscopically or by open surgical administration including via laparotomy. In some embodiments, the method includes intravaginal and transvaginal delivery. For intravaginal/transvaginal delivery an ultrasound probe can be used to guide delivery of the needle from the vagina into lesions such as endometriomas and utero sacral nodules. Under ultrasound guidance the needle tip is placed in the lesion, the contents of the lesion aspirated if necessary and the formulation is injected into the lesion. In an exemplary delivery system a 17 to 20 gauge needle can be used for injection of the drug. Such system can be used for intralesional delivery including, but not limited to, transvaginal, endoscopic or open surgical administration including via laparotomy. For treatment of endometrioma 17 or 18 gauge needles are used under ultrasound guidance for aspiration of the thick contents of the lesion and delivery of the formulation. The length of the needle used depends on the depth of the lesion. Pre-loaded syringes and other administration systems, which obviate the need for reloading the drug can be used.


In some cases, a therapeutic (e.g., an active agent) used herein can be a solution, a suspension, liquid, a paste, aqueous, non-aqueous fluid, semi-solids, colloid, gel, lotion, cream, solid (e.g., tablet, powder, pellet, particulate, capsule, packet), or any combination thereof. In some instances, a therapeutic disclosed herein is formulated as a dosage form of tablet, capsule, gel, lollipop, parenteral, intraspinal infusion, inhalation, spray, aerosol, transdermal patch, iontophoresis transport, absorbing gel, liquid, liquid tannate, suppositories, injection, I.V. drip, or a combination thereof to treat subjects. In some instances, the active agents are formulated as single oral dosage form such as a tablet, capsule, cachet, soft gelatin capsule, hard gelatin capsule, extended release capsule, tannate tablet, oral disintegrating tablet, multi-layer tablet, effervescent tablet, bead, liquid, oral suspension, chewable lozenge, oral solution, lozenge, lollipop, oral syrup, sterile packaged powder including pharmaceutically-acceptable excipients, other oral dosage forms, or a combination thereof. In some instances, a therapeutic of the disclosure herein can be administered using one or more different dosage forms which are further disclosed herein. In some instances, therapeutics disclosed herein are provided in modified release dosage forms (such as immediate release, controlled release, or both),


The methods, compositions, and kits of this disclosure can comprise a method to prevent, treat, arrest, reverse, or ameliorate the symptoms of a condition of a subject, e.g., a patient. A subject can be, for example, an elderly adult, adult, adolescent, pre-adolescence, teenager, or child. A subject can be, for example, 10-50 years old, 10-40 years old, 10-30 years old, 10-25 years old, 10-21 years old, 10-18 years old, 10-16 years old, 18-25 years old, or 16-34 years old. The subject can be a female mammal, e.g., a female human being. In some instances, the human subject can be asymptomatic for endometriosis.


Treatment can be provided to the subject before clinical onset of disease. Treatment can be provided to the subject after clinical onset of disease. Treatment can be provided to the subject after 1 day, 1 week, 6 months, 12 months, or 2 years or more after clinical onset of the disease. Treatment may be provided to the subject for more than 1 day, 1 week, 1 month, 6 months, 12 months, 2 years or more after clinical onset of disease. Treatment may be provided to the subject for less than 1 day, 1 week, 1 month, 6 months, 12 months, or 2 years after clinical onset of the disease. Treatment can also include treating a human in a clinical trial.


A treatment, e.g., administration of a therapeutic, can occur 1, 2, 3, 4, 5, 6, 7, or 8 times daily. A treatment, e.g., administration of a therapeutic, can occur 1, 2, 3, 4, 5, 6, or 7 times weekly. A treatment, e.g., administration of a therapeutic, can occur 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 times monthly. A treatment, e.g., administration of a therapeutic, can occur 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 times yearly. In some instances, therapeutics disclosed herein are administered to a subject at about every 4 to about 6 hours, about every 12 hours, about every 24 hours, about every 48 hours, or more often. In some instances, therapeutics disclosed herein can be administered once, twice, three times, four times, five times, six times, seven times, eight times, or more often daily. In some instances, a dosage form disclosed herein provides an effective plasma concentration of an active agent at from about 1 minute to about 20 minutes after administration, such as about: 2 min, 3 min, 4 min, 5 min, 6 min, 7 min, 8 min, 9 min, 10 min, 11 min, 12 min, 13 min, 14 min, 15 min, 16 min, 17 min, 18 min, 19 min, 20 min, 21 min, 22 min, 23 min, 24 min, 25 min. In some instances, a dosage form of the disclosure herein provides an effective plasma concentration of an active agent at from about 20 minutes to about 24 hours after administration, such as about 20 minutes, 30 minutes, 40 minutes, 50 minutes, 1 hr, 1.2 hrs, 1.4 hrs, 1.6 hrs, 1.8 hrs, 2 hrs, 2.2 hrs, 2.4 hrs, 2.6 hrs, 2.8 hrs, 3 hrs, 3.2 hrs, 3.4 hrs, 3.6 hrs, 3.8 hrs, 4 hrs, 5 hrs, 6 hrs, 7 hrs, 8 hrs, 9 hrs, 10 hrs, 11 hrs, 12 hrs, 13 hrs, 14 hrs, 15 hrs, 16 hrs, 17 hrs, 18 hrs, 19 hrs, 20 hrs, 21 hrs, 22 hrs, 23 hrs, or 24 hrs following administration. In some instances, an active agent can be present in an effective plasma concentration in a subject for about 4 to about 6 hours, about 12 hours, about 24 hour, or 1 day to 30 days, including but not limited to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 days.


In some instances, a therapeutic (e.g., an active agent) is administered to a subject in a dosage of about 0.01 mg to about 500 mg per day, e.g., about 1-50 mg/day for an average person. In some embodiments, the daily dosage is from about 0.01 mg to about 5 mg, about 1 to about 10 mg, about 5 mg to about 20 mg, about 10 mg to about 50 mg, about 20 mg to about 100 mg, about 50 mg to about 150 mg, about 100 mg to about 250 mg, about 150 mg to about 300 mg, or about 250 mg to about 500 mg.


In some instances, each administration of a therapeutic (e.g., an active agent) is in an amount of about: 0.1-5 mg, 0.1-10 mg, 1-5 mg, 1-10 mg, 1-20 mg, 10-20 mg, 10-30 mg, 10-40 mg, 10-50 mg, 20-30 mg, 20-40 mg, 20-50 mg, 25-50 mg, 30-40 mg, 30-50 mg, 30-60 mg, 40-50 mg, 40-60 mg, 50-60 mg, 50-75 mg, 60-80 mg, 75-100 mg, or 80-100 mg, for example: about 0.5 mg, about 1 mg, about 1.5 mg, about 2 mg, about 2.5 mg, about 3 mg, about 3.5 mg, about 4 mg, about 4.5 mg, about 5 mg, about 5.5 mg, about 6 mg, about 6.5 mg, about 7 mg, about 7.5 mg, about 8 mg, about 8.5 mg, about 9 mg, about 9.5 mg, about 10 mg, about 10.5 mg, about 11 mg, about 11.5 mg, about 12 mg, about 12.5 mg, about 13 mg, about 13.5 mg, about 14 mg, about 14.5 mg, about 15 mg, about 15.5 mg, about 16 mg, about 16.5 mg, about 17 mg, about 17.5 mg, about 18 mg, about 18.5 mg, about 19 mg, about 19.5 mg, about 20 mg, about 22.5 mg, about 25 mg, about 27.5 mg, about 30 mg, about 32.5 mg, about 35 mg, about 37.5 mg, about 40 mg, about 42.5 mg, about 45 mg, about 47.5 mg, about 50 mg, about 55 mg, about 60 mg, about 65 mg, about 70 mg, about 75 mg, about 80 mg, about 85 mg, about 90 mg, about 95 mg, or about 100 mg.


In some instances, a therapeutic (e.g., an active agent) is administered to a subject in a dosage of about 0.01 g to about 100 g per day, e.g., about 1-10 g/day for an average person. In some embodiments, the daily dosage is from about 0.01 g to about 5 g, about 1 to about 10 g, about 5 g to about 20 g, about 10 g to about 50 g, about 20 g to about 100 g, or about 50 g to about 100 g.


In some instances, each administration of a therapeutic (e.g., an active agent) is in an amount of about: 0.01-1 g, 0.1-5 g, 0.1-10 g, 1-5 g, 1-10 g, 1-20 g, 10-20 g, 10-30 g, 10-40 g, 10-50 g, 20-30 g, 20-40 g, 20-50 g, 25-50 g, 30-40 g, 30-50 g, 30-60 g, 40-50 g, 40-60 g, 50-60 g, 50-75 g, 60-80 g, 75-100 g, or 80-100 g, for example: about 0.5 g, about 1 g, about 1.5 g, about 2 g, about 2.5 g, about 3 g, about 3.5 g, about 4 g, about 4.5 g, about 5 g, about 5.5 g, about 6 g, about 6.5 g, about 7 g, about 7.5 g, about 8 g, about 8.5 g, about 9 g, about 9.5 g, about 10 g, about 10.5 g, about 11 g, about 11.5 g, about 12 g, about 12.5 g, about 13 g, about 13.5 g, about 14 g, about 14.5 g, about 15 g, about 15.5 g, about 16 g, about 16.5 g, about 17 g, about 17.5 g, about 18 g, about 18.5 g, about 19 g, about 19.5 g, about 20 g, about 22.5 g, about 25 g, about 27.5 g, about 30 g, about 32.5 g, about 35 g, about 37.5 g, about 40 g, about 42.5 g, about 45 g, about 47.5 g, about 50 g, about 55 g, about 60 g, about 65 g, about 70 g, about 75 g, about 80 g, about 85 g, about 90 g, about 95 g, or about 100 g.


In some instances, a therapeutic (e.g., in a liquid) administered to a subject having an active agent concentration of about: 0.01-0.1, 0.1-1, 1-10, 1-20, 5-30, 5-40, 5-50, 10-20, 10-25, 10-30, 10-40, 10-50, 15-20, 15-25, 15-30, 15-40, 15-50, 20-30, 20-40, 20-50, 20-100, 30-40, 30-50, 30-60, 30-70, 30-80, 30-90, 30-100, 40-50, 40-60, 40-70, 40-80, 40-90, 40-100, 50-60, 50-70, 50-80, 50-90, 50-100, 50-150, 50-200, 50-300, 100-300, 100-400, 100-500, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, or 1000 μM, or any combination thereof.


In some cases, a therapeutic can comprise one or more active agents, administered to a subject at least about: 0.001 mg, 0.01 mg, 0.1 mg, 0.2 mg, 0.3 mg, 0.4 mg, 0.5 mg, 0.6 mg, 0.7 mg, 0.8 mg, 0.9 mg, 1 mg, 1.5 mg, 2 mg, 2.5 mg, 3 mg, 3.5 mg, 4 mg, 4.5 mg, 5 mg, 5.5 mg, 6 mg, 6.5 mg, 7 mg, 7.5 mg, 8 mg, 8.5 mg, 9 mg, 9.5 mg, or 10 mg, or per kg body weight of a subject in need thereof. The therapeutic may comprise a total dose of one or more active agents administered at about 0.1 to about 10.0 mg, for example, about 0.1-10.0 mg, about 0.1-9.0 mg, about 0.1-8.0 mg, about 0.1-7.0 mg, about 0.1-6.0 mg, about 0.1-5.0 mg, about 0.1-4.0 mg, about 0.1-3.0 mg, about 0.1-2.0 mg, about 0.1-1.0 mg, about 0.1-0.5 mg, about 0.2-10.0 mg, about 0.2-9.0 mg, about 0.2-8.0 mg, about 0.2-7.0 mg, about 0.2-6.0 mg, about 0.2-5.0 mg, about 0.24.0 mg, about 0.2-3.0 mg, about 0.2-2.0 mg, about 0.2-1.0 mg, about 0.2-0.5 mg, about 0.5-10.0 mg, about 0.5-9.0 mg, about 0.5-8.0 mg, about 0.5-7.0 mg, about 0.5-6.0 mg, about 0.5-5.0 mg, about 0.5-4.0 mg, about 0.5-3.0 mg, about 0.5-2.0 mg, about 0.5-1.0 mg, about 1.0-10.0 mg, about 1.0-5.0 mg, about 1.0-4.0 mg, about 1.0-3.0 mg, about 1.0-2.0 mg, about 2.0-10.0 mg, about 2.0-9.0 mg, about 2.0-8.0 mg, about 2.0-7.0 mg, about 2.0-6.0 mg, about 2.0-5.0 mg, about 2.0-4.0 mg, about 2.0-3.0 mg, about 5.0-10.0 mg, about 5.0-9.0 mg, about 5.0-8.0 mg, about 5.0-7.0 mg, about 5.0-6.0 mg, about 6.0-10.0 mg, about 6.0-9.0 mg, about 6.0-8.0 mg, about 6.0-7.0 mg, about 7.0-10.0 mg, about 7.0-9.0 mg, about 7.0-8.0 mg, about 8.0-10.0 mg, about 8.0-9.0 mg, or about 9.0-10.0 mg, or per kg body weight of a subject in need thereof.


In some cases, a method of treatment disclosed herein comprises administering a therapeutic. In some instances, the method comprises administering a therapeutic includes one or more of the following steps: a) obtaining a genetic material sample of a human female subject, b) identifying in the genetic material of the subject a genetic marker having an association with endometriosis, c) assessing the subject's risk of endometriosis or risk of endometriosis progression, d) identifying the subject as having an altered risk of endometriosis or an altered risk of endometriosis progression, e) administering to the subject a therapeutic, or any combination thereof.


In some instances, the subject may be endometriosis presymptomatic or the subject may exhibit endometriosis symptoms. In some instances, the assessment of risk may include non-genetic clinical factors. In some instances, the therapeutic is adapted to the specific subject so as to be a proper and effective amount of therapeutic for the subject. In some instances, the administration of the therapeutic may comprise multiple sequential instances of administration of the therapeutic and that such sequence instances may occur over an extended period of time or may occur on an indefinite on-going basis. In some instances, the therapeutic may be a gene or protein based therapy adapted to the specific needs of a select patient.


Hormonal Therapy


In some cases, a treatment method herein comprises supplementing the body with a hormone thereof such as a steroid hormone, for example a method of preventing endometriosis comprising administering a hormonal therapy to a human subject having at least one genetic variant defining a minor allele disclosed herein, e.g., listed in Table 1. In some instances, the hormone can be progestin, progestogen, progesterone, desogestrel, etonogestrel, gestodene, levonorgestrel, medroxyprogesterone, norethisterone, norgestimate, megestrol, megestrol acetate, norgestrel, a pharmaceutically acceptable salt thereof (e.g., acetate), or any combination thereof. In some instances, a therapeutic used herein is selected from progestins, estrogens, antiestrogens, and antiprogestins, for example micronized danazol in a micro- or nanoparticulate formulation. Methods and therapeutics presented herein can utilize an active agent in a freebase, salt, hydrate, polymorph, isomer, diastereomer, prodrug, metabolite, ion pair complex, or chelate form. An active agent can be formed using a pharmaceutically acceptable non-toxic acid or base, including an inorganic acid or base, or an organic acid or base. In some instances, an active agent that can be utilized in connection with the methods and compositions presented herein is a pharmaceutically acceptable salt derived from acids including, but not limited to, the following: acetic, alginic, anthranilic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethenesulfonic, formic, fumaric, furoic, galacturonic, gluconic, glucuronic, glutamic, glycolic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phenylacetic, phosphoric, propionic, salicylic, stearic, succinic, sulfanilic, sulfuric, tartaric acid, or p-toluenesulfonic acid. For further description of pharmaceutically acceptable salts that can be used in the methods described herein see, for example, S. M. Barge et al., “Pharmaceutical Salts,” 1977, J. Pharm. Sci. 66:1-19, which is incorporated herein by reference in its entirety.


In some instances, the therapeutic may take the form of a testosterone or a modified testosterone such as Danazol. In some instances, the therapeutic can be a hormonal treatment therapeutic which may be administered alone or in combination with a gene therapy. For instance, the therapeutic may be an estrogen containing composition, a progesterone containing composition, a progestin containing composition, a gonadotropin releasing-hormone (GnRH) agonist, a gonadotropin releasing-hormone (GnRH) antagonist, or other ovulation suppression composition, or a combination thereof. In some instances, the GnRH agonist may take the form of a GnRH agonist in combination with a patient specific substantially low dose of estrogen, progestin, or tibolone via an add-back administration. In some instances, in such add-back therapy, the dosage of estrogen, progestin, or tibolone is relatively small so as to not reduce the effectiveness of the GnRH agonist. In some instances, the therapeutic is an oral contraceptive (OC). In some instances, the OC is in a pill form that is comprised at least partially of estrogen, progesterone, or a combination thereof. In some instances, the progesterone component may be any of Desogestrel, Drospirenone, Ethynodiol, Levonorgestrel, Norethindrone, Norgestimate, and Norgestrel, and the estrogen component may further be any of Mestranol, Estradiol, and Ethinyl. In some instances, the OC may be any commercially available OC including ALESSE, APRI, ARANELLE, AVIANE, BREVICON, CAMILA, CESIA, CRYSELLE, CYCLESSA, DEMULEN, DESOGEN, ENPRESSE, ERRIN, ESTROSTEP, JOLIVETTE, JUNEL, KARIVA, LEENA, LESSINA, LEVLEN, LEVORA, LOESTRIN, LUTERA, MICROGESTIN, MICRONOR, MIRCETTE, MODICON, MONONESSA, NECON, NORA, NORDETTE, NORINYL, NOR-QD, NORTREL, OGESTREL, ORTHO-CEPT, ORTHO-CYCLEN, ORTHO-NOVUM, ORTHO-TRI-CYCLEN, OVCON, OVRAL, OVRETTE, PORTIA, PREVIFEM, RECLIPSEN, SOLIA, SPRINTEC, TRINESSA, TRI-NORINYL, TRIPHASIL, TRIVORA, VELIVET, YASMIN, AND ZOVIA (the preceding names are the registered trademarks of the respective providers).


Assisted Reproductive Therapy


In some cases, a method herein can comprise administering to a select subject assisted reproductive therapy (ART), for example a method of treating endometriosis associated infertility comprising administering ART to a select human subject having at least one genetic variant defining a minor allele disclosed herein, e.g., listed in Table 2. In some instances, ART can comprise in vitro fertilization (IVF), embryo transfer (ET), fertility medication, intracytoplasmic sperm injection (ICSI), cryopreservation, or any combination thereof. In some instances, ART can comprise surgically removing eggs from a woman's ovaries, combining them with sperm in the laboratory, and returning them to the woman's body or donating them to another woman.


In some instances, the in vitro fertilization (IVF) procedure can provide for a live birth event following the IVF procedure. In some instances, a method herein provides a probability of a live birth event occurring resulting from the first or subsequent in vitro fertilization cycle based at least in part on items of information from the female subjects.


In some instances, the IVF can comprise ovulation induction, utilizing fertility medication can comprise agents that stimulate the development of follicles in the ovary. Examples are gonadotropins and gonadotropin releasing hormone.


In some instances, IVF can comprise transvaginal ovum retrieval (OVR), which can be a process whereby a small needle is inserted through the back of the vagina and guided via ultrasound into the ovarian follicles to collect the fluid that contains the eggs.


In some instances, IVF can comprise embryo transfer, which can be the step in the process whereby one or several embryos are placed into the uterus of the female with the intent to establish a pregnancy.


In some instances, IVF can comprise assisted zona hatching (AZH), which can be performed shortly before the embryo is transferred to the uterus. A small opening can be made in the outer layer surrounding the egg in order to help the embryo hatch out and aid in the implantation process of the growing embryo.


In some instances, IVF can comprise artificial insemination, for example intrauterine insemination, intracervical insemination, intrauterine tuboperitoneal insemination, intratubal insemination, or any combination thereof.


In some instances, IVF can comprise intracytoplasmic sperm injection (ICSI), which can be beneficial in the case of male factor infertility where sperm counts are very low or failed fertilization occurred with previous IVF attempt(s). The ICSI procedure can involve a single sperm carefully injected into the center of an egg using a microneedle. With ICSI, only one sperm per egg is needed. Without ICSI, one may need between 50,000 and 100,000. In some embodiments, this method can be employed when donor sperm is used.


In some instances, IVF can comprise autologous endometrial coculture, which can be a possible treatment for patients who have failed previous IVF attempts or who have poor embryo quality. The patient's fertilized eggs can be placed on top of a layer of cells from the patient's own uterine lining, creating a more natural environment for embryo development.


In some instances, IVF can comprise zygote intrafallopian transfer (ZIFT), in which egg cells can be removed from the woman's ovaries and fertilized in the laboratory; the resulting zygote can be then placed into the fallopian tube.


In some instances, IVF can comprise cytoplasmic transfer, in which the contents of a fertile egg from a donor can be injected into the infertile egg of the patient along with the sperm.


In some instances, IVF can comprise egg donors, which are resources for women with no eggs due to surgery, chemotherapy, or genetic causes; or with poor egg quality, previously unsuccessful IVF cycles or advanced maternal age. In the egg donor process, eggs can be retrieved from a donor's ovaries, fertilized in the laboratory with the sperm from the recipient's partner, and the resulting healthy embryos can be returned to the recipient's uterus.


In some instances, IVF can comprise sperm donation, which may provide the source for the sperm used in IVF procedures where the male partner produces no sperm or has an inheritable disease, or where the woman being treated has no male partner.


In some instances, IVF can comprise preimplantation genetic diagnosis (PGD), which can involve the use of genetic screening mechanisms such as fluorescent in-situ hybridization (FISH) or comparative genomic hybridization (CGH) to help identify genetically abnormal embryos and improve healthy outcomes.


In some instances, IVF can comprise embryo splitting can be used for twinning to increase the number of available embryos.


In some instances, ART can comprise gamete intrafallopian transfer (GIFT), in which a mixture of sperm and eggs can be placed directly into a woman's fallopian tubes using laparoscopy following a transvaginal ovum retrieval.


In some instances, ART can comprise reproductive surgery, treating e.g. fallopian tube obstruction and vas deferens obstruction, or reversing a vasectomy by a reverse vasectomy. In surgical sperm retrieval (SSR) the reproductive urologist can obtain sperm from the vas deferens, epididymis or directly from the testis in a short outpatient procedure. By cryopreservation, eggs, sperm and reproductive tissue can be preserved for later IVF.


In some instances, a subject to treat can be a pre-in vitro fertilization (pre-IVF) procedure patient. In certain embodiments, the items of information relating to preselected patient variables for determining the probability of a live birth event for a pre-IVF procedure patient may include age, diminished ovarian reserve, 3 follicle stimulating hormone (FSH) level, body mass index, polycystic ovarian disease, season, unexplained female infertility, number of spontaneous miscarriages, year, other causes of female infertility, number of previous pregnancies, number of previous term deliveries, endometriosis, tubal disease, tubal ligation, male infertility, uterine fibroids, hydrosalpinx, and male infertility causes.


In some instances, a subject to treat can be a pre-surgical (pre-OR) procedure patient (pre-OR is also referred to herein as pre-oocyte retrieval). In certain embodiments, the items of information relating to preselected patient variables for determining the probability of a live birth event for a pre-OR procedure patient may include age, endometrial thickness, total number of oocytes, total amount of gonatropins administered, number of total motile sperm after wash, number of total motile sperm before wash, day 3 follicle stimulating hormone (FSH) level, body mass index, sperm collection, age of spouse, season number of spontaneous miscarriages, unexplained female infertility, number of previous term deliveries, year, number of previous pregnancies, other causes of female infertility, endometriosis, male infertility, tubal ligation, polycystic ovarian disease, tubal disease, sperm from donor, hydrosalpinx, uterine fibroids, and male infertility causes.


In some instances, a subject to treat can be a post-in vitro fertilization (post-IVF) procedure patient. In certain embodiments, the items of information relating to preselected patient variables for determining the probability of a live birth event for a post-IVF procedure patient may include blastocyst development rate, total number of embryos, total amount of gonatropins administered, endometrial thickness, flare protocol, average number of cells per embryo, type of catheter used, percentage of 8-cell embryos transferred, day 3 follicle stimulating hormone (FSH) level, body mass index, number of motile sperm before wash, number of motile sperm after wash, average grade of embryos, day of embryo transfer, season, number of spontaneous miscarriages, number of previous term deliveries, oral contraceptive pills, sperm collection, percent of unfertilized eggs, number of embryos arrested at 4-cell stage, compaction on day 3 after transfer, percent of normal fertilization, percent of abnormally fertilized eggs, percent of normal and mature oocytes, number of previous pregnancies, year, polycystic ovarian disease, unexplained female infertility, tubal disease, male infertility only, male infertility causes, endometriosis, other causes of female infertility, uterine fibroids, tubal ligation, sperm from donor, hydrosalpinx, performance of ICSI, or assisted hatching.


Pain Managing Medications


In some cases, a method disclosed herein can comprise administering a pain medication to a select subject, for example to a human subject having at least one genetic variant defining a minor allele listed in Table 3. In some instances, the pain medication comprises a nonsteroidal anti-inflammatory drug (NSAID), ibuprofen, naproxen, acetaminophen, an opioid, a cannabis-based therapeutic, or any combination thereof.


In some instances, the pain medication described herein can comprise an NSAID, for example amoxiprin, benorilate, choline magnesium salicylate, diflunisal, faislamine, methyl salicylate, magnesium salicylate, diclofenac, aceclofenac, acemetacin, bromfenac, etodolac, indometacin, nabumetone, sulindac, tolmetin, ibuprofen, carprofen, fenbuprofen, flubiprofen, ketaprofen, ketorolac, loxoprofen, naproxen, suprofen, mefenamic acid, meclofenamic acid, piroxicam, lomoxicam, meloxicam, tenoxicam, phenylbutazone, azapropazone, metamizole, oxyphenbutazone, or sulfinprazone, or a pharmaceutically acceptable salt thereof.


In some instances, the pain medication described herein can comprise an opioid analgesic, for example hydrocodone, oxycodone, morphine, diamorphine, codeine, pethidine, alfentanil, buprenorphine, butorphanol, dezocine, fentanyl, hydromorphone, levomethadyl acetate, levorphanol, meperidine, methadone, morphine sulfate, nalbuphine, oxymorphone, pentazocine, propoxyphene, remifentanil, sufentanil, or tramadol, or a pharmaceutically acceptable salt thereof.


In some instances, the pain medication described herein can comprise a cannabis-based therapeutic such as a cannabinoid for the treatment, reduction or prevention of pain. Exemplary cannabinoid for the treatment of pain include, without limitation, nabilone, dronabinol (THC), cannabidiol (CBD), cannabinol (CBN), cannabichromeme (CBC), cannabigerol (CBG), tetrahydrocannabivarin (THCV), tetrahydrocannabinolic acid (THCA), cannabidivarin (CBDV), cannadidiolic acid (CBDA), ajulemic acid, dexanabinol, cannabinor, HU 308, HU 331, and a pharmaceutically acceptable salt thereof.


Specific Embodiments

A number of methods and systems are disclosed herein. Specific exemplary embodiments of these methods and systems are disclosed below.


Embodiment 1. A method comprising: hybridizing a nucleic acid probe to a nucleic acid sample from a human subject suspected of having or developing endometriosis; and detecting a genetic variant in a panel comprising two or more genetic variants defining a minor allele listed in Table 1.


Embodiment 2. The method of embodiment 1, wherein the nucleic acid sample comprises mRNA, cDNA, genomic DNA, or PCR amplified products produced therefrom, or any combination thereof.


Embodiment 3. The method of embodiment 1 or 2, wherein the nucleic acid sample comprises PCR amplified nucleic acids produced from cDNA or mRNA.


Embodiment 4. The method of embodiment 1 or 2, wherein the nucleic acid sample comprises PCR amplified nucleic acids produced from genomic DNA.


Embodiment 5. The method of any one of embodiments 1-4, wherein the nucleic acid probe is a sequencing primer.


Embodiment 6. The method of any one of embodiments 1-4, wherein the nucleic acid probe is an allele specific probe.


Embodiment 7. The method of any one of embodiments 1-6, wherein the detecting comprises DNA sequencing, hybridization with a complementary probe, an oligonucleotide ligation assay, a PCR-based assay, or any combination thereof.


Embodiment 8. The method of any one of embodiments 1-7, wherein the panel comprises at least: 5, 10, 15, 20, 25, 50, 75, 100, 150, 200, 250, 500, or more genetic variants defining minor alleles listed in Table 1.


Embodiment 9. The method of any one of embodiments 1-8, wherein the genetic variant has an odds ratio (OR) of at least: 1.5, 2, 5, 10, 20, 50, 100, or more.


Embodiment 10. The method of any one of embodiments 1-9, wherein the genetic variant comprises a synonymous mutation, a non-synonymous mutation, a nonsense mutation, an insertion, a deletion, a splice-site variant, a frameshift mutation, or any combination thereof.


Embodiment 11. The method of any one of embodiments 1-9, wherein the genetic variant comprises a protein damaging mutation.


Embodiment 12. The method of any one of embodiments 1-10, wherein the panel further comprises one or more protein damaging or loss of function variants in one or more genes selected from the group consisting of GAT2, CCDC169, CASP8AP2, POU2F3, CD19, IGSF3, GLI3, PEX26, OLIG3, CIB4, NKX3-2, CFTR, and any combinations thereof.


Embodiment 13. The method of embodiment 12, further comprising sequencing the one or more genes to identify the one or more protein damaging or loss of function variants.


Embodiment 14. The method of embodiment 13, wherein the one or more protein damaging or loss of function variants are identified based on a predictive computer algorithm.


Embodiment 15. The method of embodiment 13 of 14, wherein the one or more protein damaging or loss of function variants are identified based on reference to a database.


Embodiment 16. The method of any one of embodiments 12-15, wherein the one or more protein damaging or loss of function variants comprise a stop-gain mutation, a spice-site mutation, a frameshift mutation, a missense mutation, or any combination thereof.


Embodiment 17. The method of any one of embodiments 1-16, wherein the panel further comprises one or more additional variants defining a minor allele listed in Table 4.


Embodiment 18. The method of any one of embodiments 1-17, wherein the panel is capable of identifying human subjects as having or being at risk of developing endometriosis with a specificity of at least: 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%.


Embodiment 19. The method of any one of embodiments 1-18, wherein the panel is capable of identifying human subjects as having or being at risk of developing endometriosis with a sensitivity of at least: 800%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%.


Embodiment 20. The method of any one of embodiments 1-19, wherein the panel is capable of identifying human subjects as having or being at risk of developing endometriosis with an accuracy of at least: 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%.


Embodiment 21. The method of any one of embodiments 1-20, further comprising administering a therapeutic to the human subject.


Embodiment 22. The method of embodiment 21, wherein the therapeutic comprises hormonal therapy, an advanced reproductive therapy, a pain managing medication, or any combination thereof.


Embodiment 23. The method of embodiment 21, wherein the therapeutic comprises hormonal contraceptives, gonadotropin-releasing hormone (Gn-RH) agonists, gonadotropin-releasing hormone (Gn-RH) antagonists, progestin, danazol, or any combination thereof.


Embodiment 24. The method of any one of embodiments 1-23, wherein the human subject is asymptomatic for endometriosis.


Embodiment 25. The method of any one of embodiments 1-24, wherein the human subject is a teenager.


Embodiment 26. A method comprising detecting one or more genetic variants defining a minor allele listed in Table 1 in genetic material from a human subject suspected of having or developing endometriosis.


Embodiment 27. The method of embodiment 26, wherein the genetic material comprises mRNA, cDNA, genomic DNA, or PCR amplified products produced therefrom, or any combination thereof.


Embodiment 28. The method of embodiment 26 or 27, wherein the detecting comprises DNA sequencing, hybridization with a complementary probe, an oligonucleotide ligation assay, a PCR-based assay, of any combination thereof.


Embodiment 29. The method of any one of embodiments 26-28, wherein the detecting comprises hybridizing a nucleic acid probe to the genetic material.


Embodiment 30. The method of any one of embodiments 26-29, wherein the detecting comprises testing for the presence or absence of at least: 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, 100, 150, 250, or 500 genetic variants defining a minor allele listed in Table 1.


Embodiment 31. The method of any one of embodiments 26-30, wherein the one or more genetic variants have an odds ratio (OR) of at least: 1.5, 2, 5, 10, 20, 50, 100, or more.


Embodiment 32. The method of any one of embodiments 26-31, further comprising administering a therapeutic to the human subject.


Embodiment 33. A method comprising: sequencing one or more genes selected from the group consisting of GAT2, CCDC169, CASP8AP2, POU2F3, CD19, IGSF3, GLI3, PEX26, OLIG3, CIB4, NKX3-2, CFTR, and any combinations thereof to identify one or more protein damaging or loss of function variants in a human subject suspected of having or developing endometriosis; and administering an endometriosis therapy to the human subject.


Embodiment 34. The method of embodiment 33, wherein the one or more protein damaging or loss of function variants are identified based on a predictive computer algorithm, reference to a database, or a combination thereof.


Embodiment 35. The method of embodiment 33 or 34, wherein the one or more protein damaging or loss of function variants comprise a stop-gain mutation, a spice-site mutation, a frameshift mutation, a missense mutation, or any combination thereof.


Embodiment 36. The method of any one of embodiments 33-35, wherein the endometriosis therapy comprises a hormonal therapy, an assisted reproductive therapy, a pain medication, or any combination thereof.


Embodiment 37. A method of preventing endometriosis comprising administering a hormonal therapy to a human subject having at least one genetic variant defining a minor allele listed in Table 1.


Embodiment 38. The method of embodiment 37, wherein the hormonal therapy comprises administration of hormonal contraceptives, gonadotropin-releasing hormone (Gn-RH) agonists, gonadotropin-releasing hormone (Gn-RH) antagonists, progestin, danazol, or any combination thereof.


Embodiment 39. A method of treating endometriosis associated infertility comprising administering an assisted reproductive therapy to a human subject having at least one genetic variant defining a minor allele listed in Table 2.


Embodiment 40. The method of embodiment 39, wherein the assisted reproductive therapy comprises in vitro fertilization, intrauterine insemination, ovulation induction, gamete intrafallopian transfer, or any combination thereof.


Embodiment 41. A method comprising administering a pain medication to a human subject having at least one genetic variant defining a minor allele listed in Table 3.


Embodiment 42. The method of embodiment 41, wherein the pain medication comprises a nonsteroidal anti-inflammatory drug (NSAID), ibuprofen, naproxen, an opioid, a cannabis-based therapeutic, or any combination thereof.


Embodiment 43. The method of any one of embodiment 37-42, further comprising detecting the at least one genetic variant in a genetic material from the human subject.


Embodiment 44. The method of embodiment 43, wherein the detecting comprises DNA sequencing, hybridization with a complementary probe, an oligonucleotide ligation assay, a PCR-based assay, or any combination thereof.


Embodiment 45. The method of embodiment 43, wherein the detecting comprises hybridizing a nucleic acid probe to the genetic material.


Embodiment 46. The method of embodiment 45, wherein the nucleic acid probe is a sequencing primer or an allele-specific probe.


Embodiment 47. The method of any one of embodiments 37-46, wherein the at least one genetic variant has an odds ratio (OR) of at least: 1.5, 2, 5, 10, 20, 50, 100, or more.


Embodiment 48. The method of any one of embodiments 37-47, wherein the at least one genetic variant comprises a synonymous mutation, a non-synonymous mutation, a nonsense mutation, an insertion, a deletion, a splice-site variant, a frameshift mutation, or any combination thereof.


EXAMPLES
Example 1. Low-Frequency, Damaging Mutations in Hundreds of Genes are Risk Factors for Endometriosis

This study performed exome-wide association analysis for rare low frequency mutations in the women with endometriosis. Rare exome variants associated with endometriosis were searched using an exome genotyping array and confirmatory whole exome sequencing (WES).


Consent and Medical Review


All subjects and controls were provided written informed consent in accordance with study protocols approved by Quorum Review IRB (Seattle, Wash. 98101). Trained OB/GYN clinicians performed the medical record review and clinical assessment of each patient.


Methods


Illumina Exome Human BeadChip. 1518 Caucasian patients with surgically confirmed endometriosis were tested for more than 200,000 rare non-synonymous variants (minor allele frequency <0.005). Allele frequencies were compared to the population datasets (genotyping dataset UK Michigan (n=50,000) and publicly available sequencing dataset Exac (n=33,000).


Affymetrix Axiom Custom Chip. 1888 Caucasian patients with surgically confirmed endometriosis were tested for more than 700,000 variants. Allele frequencies were compared to the population sequencing dataset Exac (n=33,000). Replication was performed on 530 endometriosis subjects with whole exome sequencing data. Association testing was performed using Fisher's exact test. Nominal threshold was selected for significance (p<0.05). Panther software was used to test gene ontologies. A predictive score (E) was estimated for each subject as follows: E=Σ log(L95ORj)*Cj, in which C is a count of risk allele, L950R is a lower limit of 95% CI of an odds ratio, and j is 1, 2, 3 . . . n, wherein n is the number of the associated variants.


Results


775 rare variants associated with endometriosis were identified, 561 of which were identified using Illumina Exome Beadchip, and 214 of which were identified using Affymetrix Axiom Custom Chip. FIG. 1 to FIG. 3 illustrate the results. Multiple low-frequency coding variants can be important in the genetic architecture of endometriosis. The relative risk of having endometriosis is significantly higher in women with multiple damaging variants, suggesting that they may serve as useful predictive or diagnostic markers. Genes involved with Wnt, cadherin, integrin, and inflammation medicated by cytokine signaling pathways are enriched, but trends did not reach significance.


Example 2. Genetic Variation Underlying the Clinical Heterogeneity of Endometriosis

The study investigated whether two of the typical symptoms-pain and infertility may be linked to distinct genetic factors. A pool of 2818 non-synonymous SNP markers were selected to classify markers associated with pain or infertility patients. In one group, cases were included that reported pain as their primary symptom but not infertility (n=727), and in the other group, cases were included with infertility as their primary symptom with only minimal or no pain (n=138). SNPs were then evaluated for significant variation between the two groups.


Methods


Genotyping. The samples were genotyped on a custom designed microarray using the Affymetrix Axiom platform per the manufacturer's instructions.


Statistical Analysis. Differences in allele frequencies between the two cohorts were tested for each SNP by a 1-degree-of-freedom Corchran-Armitage Trend test.


Ethnicity. Subjects were confirmed Caucasian ethnicity using principal component analysis.


Population Controls. The marker frequencies were compared to population control dataset of European Ethnicity (n=33,000; ExAc Database) to associate the marker to the respective group.


Consent and Medical Review


All subjects were provided written informed consent in accordance with study protocols approved by Quorum Review IRB (Seattle, Wash. 98101). Trained OB/GYN clinicians performed the medical record review and clinical assessment of each patient. Inclusion criteria in the endometriosis case population in the study were surgically confirmed diagnosis of endometriosis.


Results


The analysis identified nine SNP variants with differential prevalence between pelvic pain patients and infertility patients as shown in Table 5.

















AA
Allele Frequency
CPP vs. INF
















SNP
Gene
Chr
Pos
change
ExAC
GPP
INF
Ptrend
OR










Genes associated with chronic pain
















rs172562
TBX18
6
85,473,758
G48R
0.5706
0.4805
0.5766
0.0024
1.47


rs12339210
WHRN/
9
117,170,241
P562A
0.1636
0.1007
0.1606
0.0040
1.69



DFNB31


rs35471617
COL21A1
6
56,033,094
T343M
0.1274
0.0639
0.1159
0.0021
1.92


rs72899872
LPR1B
2
141,232,800
A3178T
0.0127
0
0.0109
0.0001








Genes associated with infertility
















rs8139422
CRELD2
22
50,315,363
D182E
0.0313
0.0282
0.0616
0.0040
2.27


rs78214713
OR51Q1
11
5,444,040
L204F
0.0066
0.0089
0.029
0.0259
3.33


rs7597367
SCLY
2
238,973,062
K60E
0.0006
0
0.0073
0.0011



rs35880972
BIRC8
19
53,793,162
A156T
0.0004
0
0.0072
0.0012



rs34505126
BMP3
4
81,967,240
T222M
0.0006
0
0.0072
0.0012










Table 5 summarizes the results from a comparison of endometriosis associated variants with significantly different allele frequencies between patients with pelvic pain or infertility. ExAc refers to frequencies reported by the ExAc consortium. CPP refers to chronic pelvic pain and INF to infertility. Italic front indicates frequencies deviant from the general population.


The analysis identified five genes (CRELD2, OR51Q1, SCLY, BIRC8, BMP3) associated with infertility and four genes (TBX18, WHRN, COL21A1, LRP1B) associated with chronic pain. There was a sufficient power (>0.8) to detect markers with OR greater than 1.5 at significance level of 0.05. A review of the function of the genes identified can implicate several of the genes in both the pain and infertility pathways. Both WHRN and TBX18 which show differential allele frequencies in patients with pelvic pain have been shown to be linked to pain-pathways. Mutations in WHRN have been linked to deafness and mechano- and thermo-sensitive deficiencies and can stabilize the paranodal region and axonal cytoskeleton in myelinated axons. TBX18 is an important development regulator of the pericardium, prostate, nephrons, urogenital tubes, and seminiferous tubules and mutations in TBX18 have been linked to pain in the chest, back, and flank. Conversely, CRELD2 which show differential allele frequencies in infertility patients is linked with fertility. CRELD2 is expressed in Oviductal epithelial cells in a manner that is very strongly correlated with the menstrual cycle and suggestive of an important reproductive role.


Pain and infertility can be two common but distinct clinical symptoms of endometriosis. In the present study, 9 non-synonymous variants were identified from a broad group of endometriosis associated variants that show distinct association with only one of the two symptoms and thus are suggestive of genetic classification of clinical subgroups of endometriosis.


Example 3. Novel High-Risk Damaging Mutations Discovered in Familial Endometriosis

Whole exome sequencing (WES) was used in endometriosis families to determine if inherited, rare, high-risk protein coding variants contribute to endometriosis. Endometriosis is a complex disease with underlying genetic and environmental factors. Array-based genotyping platforms are well suited for GWA studies detecting association with common variants (minor allele frequencies >3-5%), whereas sequencing is required to detect rare and low-frequency protein coding variants. Subjects with familial endometriosis tend to carry a higher burden of genetic variants; families can be less likely to have potentially confounding (population stratification) effects. Studying genetic variants located on the same DNA strand (haplotypes) can help resolve the inheritance pattern of a disease variant by determining if two individuals who carry the same genetic variant have inherited the variant via shared recent ancestry (same haplotype) or whether their variants are derived from two independent mutation events (different haplotypes).


Methods


WES was performed on 489 women with familial endometriosis and 530 unrelated women (confirmed with identity-by-descent test) with endometriosis. Wes was also performed using Ion Proton Instrument (FIG. 4) and AmpliSeq Exome Capture kit. All missense and protein truncating variants with a MAF<1% in ExAc databse (Broad Institute) were considered for downstream analysis. Variant frequencies were compared with population frequency in ExAc database (n=33,000) using Fisher's exact test (exac. broadinstitute.org). Several software packages were used to predict whether the identified mutation would damage the encoded protein.


Consent and Medical Review


All subjects were provided written informed consent in accordance with study protocols approved by Quorum Review IRB (Seattle, Wash. 98101). Inclusion criteria were surgically confirmed diagnosis.


Results


This study identified 4 protein damaging variants significantly more prevalent in familial endometriosis. The 4 high-risk variants also pass genome-wide significance as shown in Table 6 below. Association was verified for all but the BRD9 variant in the cohort of unrelated endometriosis patient.









TABLE 6







Four genes with low-frequency damaging mutations showing association to endometriosis.










Index mutation
Gene burden
















Gene
AAchange
EndoFrq
ExacFrq
P
OR
EndoFrq
ExacFrq
P
OR





LONP1
splice
0.0028
Not
4.2 × 10−19
Inf
0.0302
0.0199
2.6 × 10−2
1.5[1 − 2]  





seen


IGF2
Q33X
0.0048
0.0009
3.0 × 10−10
15[8 − 27]
0.0085
0.0014
3.0 × 10−5
6[3 − 12]


BRD9
K39R
0.0009
0.0017
5.6 × 10−9 
10[5 − 21]
0.0057
0.0101
2.1 × 10−1
 0.6[0.3 − 1.3]


SNAP91
T555A
0.0106
0.0050
1.1 × 10−8 
5[3 − 8]
0.0179
0.0045
1.3 × 10−6
4[2 − 6] 









LONP1 (Lon protease) is a nuclear encoded protease in the mitochondria responsible for the degradation of misfolded proteins. LONP1 is expressed in endometrium and endometrial cancer, and affects endothelial mesenchymal transition in a dose dependent manner. Using a Genealogy database (GenDB) a shared ancestor ˜13 generations ago was identified. All affected individuals shown with LONP1 variant in FIG. 5 share identical haplotype of ˜140 kb which is concordant with a single shared ancestor 11-15 generations in the past.


IGF2 (Insulin-like growth factor 2) has previously been implicated in endometriosis in Korean women. The IGF axis has been implicated in growth regulation of endometriosis. In blood, IGF2 is an imprinted gene expressed only from the paternal haplotype.


SNAP91 (Synaptosome Associated Protein 91) and BRD9 (Bromodomain Containing 9) are novel endometriosis candidates but little is known about their function.


This study identified low-frequency damaging protein mutations segregating in families with endometriosis. IGF2 is the second implicated gene identified associated with endometriosis after NLRP2. Only 50 imprinted genes are known in humans to date suggesting imprinting plays a role in endometriosis. LONP1 and IGF2 regulate EMT in the pathogenesis of endometriosis.


Example 4. CCDC168 and MUC12 Show Recessive Effects in Women with Endometriosis

Compound heterozygosity help identify genes involved in endometriosis. Whole Exome Sequencing (WES) was used on samples from 1,385 participants.


Samples


1019 Endometriosis samples were sequenced, 530 of which were for discovery, 301 of which were for replication, and 188 of which were related (2nd cousin or closer). 366 control samples were sequenced.


Variant and Gene selection


Protein-altering variants in discovery w frequency <1% in ExAC. 3039 genes were found individuals with 2+ variants per gene in the discovery set and thus can possibly be recessive genes. FIG. 6 illustrates mutation patterns cis/trans/haplotypes. Excess burden analysis of samples with 2+ protein-altering variants. Discovery (530 Endo vs 366 Ctl)—two genes with excess burden, PFisher<0.001. Replication (301 Endo vs 366 Ctl)—both genes replicate, PFisher<0.05.


Results


CCDC168 and MUC12 show significant excess variant count in endometriosis. Sample counts with rare protein-altering variants (ExACfreq<1%)









TABLE 7







Variant count of CCDC168











95 Unique variants
2+
0-1















Cases
31
988



Controls
0
366



gnomAD (0.05)
1
365

















TABLE 8







Variant count of MUC12











82 Unique variants
2+
0-1















Cases
47
970



Controls
1
365



gnomAD (0.14)
7
359










The variant counts of 2+ include all homozygotes, hemizygotes, and compound heterozygotes (cis and trans). Both genes show significant excess in endometriosis samples with 2+ hits also when compared with gnomAD.


The two novel genes, CCDC168 and MUC12, have large recessive effects in endometriosis and can be biologically relevant in endometriosis. 7.6% of endometriosis patients can have compound heterozygote mutations with 4-30 fold excess compared with control populations.


CCDC168 is a coiled-coil domain containing 168. CCDC168 can be differentially expressed in malignancies. Antibody staining can show prominent staining in various epithelial tissues. In some instances, CCDC168 is only present in placental animals (those with endometrium).


MUC12 is a transmembrane mucin expressed across many epithelial tissues including colon, pancreas, prostate or uterus. In some instances, transmembrane mucins are single-stranded proteins undergo proteolytic cleavage splitting TM and EC domains, lubricate epithelial surfaces, bind ligands, regulate epithelial wound healing, and/or extracellular domain detach with excess force (intracellular signaling and EMT). In some instances, a transmembrane mucin disclosed herein is MUC1, MUC4, MUC12, or MUC16. The extra cellular domain of MUC16 can be cancer antigen 125 (CA125), an important marker of ovarian cancer and endometriosis.


Example 5. Rare Synonymous Mutations Show Strong Association with Endometriosis

The study is to determine if rare synonymous variants might contribute to the genetic risk for developing endometriosis. Synonymous and non-synonymous DNA variants can occur within the protein-coding part of a gene. Synonymous variants do not affect the amino-acid sequence, and non-synonymous variants do affect the amino-acid sequence, due to the redundancy in the genetic code. GWAS intergenic SNP variants may be determined from eQTL fine mapping, and rare non-synonymous variants may be determined from Whole Exome Sequencing.


Methods


Whole exome sequencing was performed on 1,077 study participants with surgically diagnosed endometriosis. Saliva DNA underwent AmpliSeq sequencing on an Ion Proton, and sequence was assembled using the Torrent software. Variant frequencies were compared to frequencies in gnomAD, which was used as reference for population-wide variant frequencies. Synonymous variants with a minor allele frequency <0.01 in the general population were considered. Fisher's Exact test was used to calculate association statistics. PANTHER database was used for GO (Gene Ontology) term enrichment analysis.


Results


114,877 synonymous rare variants were identified among patients. 648 synonymous variants passed the nominal significance threshold (p<0.05) across 617 genes. Table 9 shows five variants strongly associated with endometriosis that pass the genome-wide significance threshold of p≤5×10−8.









TABLE 9







Five strongly associated synonymous variants













Gene
Chr
Position
P
OR
Nucl change
Amino Acid
















KRTAP5-1
11
1,606,402
2.0 × 10−11
43
C78T
S26S


GPR137
11
64,051,889
6.7 × 10−15
49
G51A
G17G


UBC
12
125,398,297
1.5 × 10−33
94
T21C
T7T


ADAMTS7
15
79,058,944
2.5 × 10−11
11
T3309A
A1103A


SYNE1
6
152,457,795
6.7 × 10−8 
5
G25617A
E8539E









17 genes have 2-or-more rare synonymous disease associated variants were found with only one expected by chance (p<0.001): ABCC5, ANK3, ATP8B4, CCDC147, CELSR1, DNAH3, EML6, HERC2, ITGA2, KIF23, LAMA5, PKD1, SLC22A20, SSPO, TENM2, TUBGCP2, VPS18. GO-term analysis show significant enrichment of a single GO term: “cytoskeletal structure and regulation” (OR=13.4). Rare intronic splice-junction variants were considered among the 17 genes, and 5 variants in CCDC147, LAMA5, and SSPO may affect the risk-burden.


This is the first time that rare synonymous variants may have been implicated in endometriosis. The genes may carry these mutations that are enriched for cytoskeletal function. Go-term and functional analysis implicate cytoskeletal regulation in the genetic predisposition of endometriosis. There variants may prove useful in developing a non-invasive test for endometriosis.


Example 6. Large Effect Mutations in Endometriosis Genes Implicated by GWAS

Genome-wide association studies (GWAS) implicate several chromosomal regions as genetic risk factors for endometriosis. These regions have been “tagged” by polymorphic markers located between genes or in non-coding introns. Sequenced were the exons of 16 genes in GWAS regions to search for causative mutations, i.e., to find gene mutations responsible for the association observed in 16 genes implicated by endometriosis GWAS.


Methods


AmpliSeq sequencing on Ion Protons was conducted on DNA samples from 1,019 women with confirmed endometriosis. After sequence assembly using Torrent software, variant annotation was performed using ANNOVAR (hg19 reference). Frequencies of coding variants were compared against a large reference dataset (sequence data from 63,369 non-Finnish Europeans in gnomAD). Variants were found using Torrent Variant Caller (UCSC hg19). Association statistics were calculated using Fisher's Exact test; linkage disequilibrium statistics were calculated using LDlink. Cases: n=1,019 European women with confirmed endometriosis. Controls: n=63,369 non-Finnish Europeans in gnomAD).


Results


571 variants were detected; 333 of these alter an amino acid in the encoded protein and 234 low-frequency (MAF<1%), missense mutations are predicted to be pathogenic (in-silico). Likely pathologic variants are uncommon in the reference data (which contains women with endometriosis and males carrying risk factors); but the identified variants were often seen in multiple endometriosis patients. The excess of pathogenic mutations in cases was striking (p<10−16). 4 mutations (see Table 10) have high odds ratios for endometriosis with p values well below a multiple testing threshold (p≤9×10−5). Mutations predicted to shorten the encoded protein (loss of function) were also detected (2 splicing changes, and 7 “stop” mutations). Stop mutations (seen in five genes: GREB1, NFE2L3, FN1, SYNE1 and VEZT) were more prevalent in the endometriosis cohort compared to the population data (p=1.7×10−13). There is no measureable linkage disequilibrium between any of the new variants and tagging GWAS markers. FIG. 7 to FIG. 9 further illustrate the results.









TABLE 10







Mutations with p values below multiple correction threshold. Inf


means that the variant was not observed in the control cohort.















Endome-





Protein
Control
triosis

Odds Ratio


Gene
change
Frequency
Frequency
p(fisher)
[L95-U05]





FN1
p.V527M
Not seen
0.00147
4.03E−06
Inf.


NFE2L3
p.I233V
Not seen
0.00147
4.03E−06
Inf.


SYNE1
p.E8539E
0.00206
0.00785
1.11E−05
3.84


VEZT
p.P712S
0.00005
0.00196
1.23E−05
41.50









This is the first comprehensive study of coding mutations in all 16 GWAS candidate genes. Coding variants may not explain the association observed in GWAS studies, thus regulatory mutations outside of the coding regions are likely to be involved. The mutations having large effects confirm an important role for these genes in the pathogenesis of endometriosis.


Example 7. Detailed Methods for Detection of Low Frequency Variants Medical Review

The inclusion criteria in the endometriosis case population in the present study were surgically confirmed diagnosis of endometriosis with laparoscopy being the preferred method. Trained OB/GYN clinicians performed the medical record review and clinical assessment of each individual patient. Patients were considered to be affected if they had biopsy-proven lesions or if operative reports revealed unambiguous gross lesions. Patients were further categorized by severity, clinical history of pelvic pain, infertility, dyspareunia or dysmenorrhea and family history. Patients were grouped into one of three classes of severity: mild, moderate or severe, following the general guidelines set forth by ASRM. This analysis compared cases with 100% prevalence of endometriosis to controls with the population prevalence of endometriosis (5-10%).


DNA Extraction.


Saliva samples were collected using the Oragene 300 saliva collection kit (DNA Genotek; Ottawa, Ontario, Canada) and DNA was extracted using an automated extraction instrument, AutoPure LS (Qiagen; Valencia, Calif.), and manufacturer's reagents and protocols. DNA quality was evaluated by calculation absorbance ratio OD260/OD280, and DNA quantification was measured using PicoGreenH (Life Technologies; Grand Island, N.Y.).


Microarray Genotyping.


The discovery set of 2019 endometriosis cases and 25476 population controls were genotyped using the Illumina Human OmniExpress Chip (Illumina; San Diego, Calif.) according to protocols provided by the manufacture. An additional 905 endometriosis cases were genotyped on a custom designed microarray using the Affymetrix GeneTitan platform according to the manufacturer's instructions.


Sample Quality Control.


Samples were excluded from the analysis if they missed any of the following quality thresholds:

    • a) Evidence of familial relationship closer that 3rd-degree (pi-hat>0.2) using genome-wide Identity-By-State (IBS) estimation implemented in PLINK
    • b) Samples with missing genotypes >0.02
    • c) Samples with non-European admixture >0.05 as determined by ADMIXTURE


SNP Quality Control.


SNPS were excluded from the analysis if they missed any of the following quality thresholds:

    • a) SNPs from copy number variant regions or regions with adjacent SNPs
    • b) SNPs failing Hardy-Weinberg Equilibrium (HWE) P<=10−3
    • c) SNPs with minor allele frequency (MAF)<=0.01 in the control population
    • d) SNP call rate <=98%


Admixture.


ADMIXTURE (ver. 1.22) was used to estimate the individual ancestry proportion. The software estimates the relative admixture proportions of a given number of a priori defined ancestral groups contributing to the genome of each individual. The POPRES dataset (Nelson M R et al. 2008) was used as a reference group to create a supervised set of 9 ancestral clusters. Seven of them belong to the European subgroups along with African and Asian groups. Since POPRES dataset utilized Affymetrix 5.0 chip, 105,079 autosomal SNPs that overlapped with the Illumina OmniExpress dataset were used. Among the 105,079 SNPs, a subset of 33,067 SNPs was selected that showed greater genetic variation (absolute difference in frequency) among the 9 reference groups. The pair-wise autosomal genetic distance determined by Fixation Index (FST) using 33,067 SNPs was calculated for the 9 reference groups as listed in POPRES dataset. Subsequently, a conditional test was used to estimate the admixture proportions in the unknown samples as described by Alexander et al. (2009).


Principal Component Analysis (PCA).


PCA was applied to account for population stratification among the European subgroups. The previously identified 33,067 SNPs were selected to infer the axes of variation using EIGENSTRAT. Only the top 10 eigenvectors were analyzed. Most of the variance among the European populations was observed in the first and second eigenvector. The first eigenvector accounts for the east-west European geographical variation while the second accounts for the north-south component. Only the top 10 eigenvectors showed population differences using Anova statistics (p<0.01). The PCA adjusted Armitrage trend P-values were calculated using the top 10 eigenvectors as covariates.


Association Analysis.


After the quality of all data was confirmed for accuracy, genetic association was determined using the whole-genome association analysis toolset, PLINK (ver. 1.07). Differences in allele frequencies between endometriosis patients and population controls were tested for each SNP by a 1 degrees of freedom Cochran-Armitrage Trend test. The allelic odds ratios were calculated with a confidence interval of 95%. SNPs that passed the quality control parameters were prioritized using the PCA adjusted cochran-Armitrage trend test P-values. The combined/metaanalysis of different datasets was performed using Cochran-Mantel-Hanszel method as well as using Cochran-Armitrage Trend test. Breslow Day test was used to determine between-cluster heterogeneity in the odds ratio for the disease/SNP association.


Software Used.


PLINK (version 1.07; http://pngu.mgh.harvard.edu/˜purcell/plink/index.shtml). R (version 2.15.0; http://www.r-project.org/). EIGENSTRAT (version 3.0; http://genepath.med.harvard.edu/˜reich/Software.htm).


Example 8. Detailed Methods for Gene Sequencing and Detection of Low-Frequency Damaging Variants

DNA Extraction and Genotyping.


DNA used in the present study was extracted from blood or saliva using standard extraction methods. Genotyping was performed using the Illumina HumanExome (Illumina, San Diego, Calif.) according to protocols provided by the manufactures.


Sample and SNP Quality Control


The discovery set of 1518 cases were genotyped using the Illumina Human Exome Chip (Illumina; San Diego, Calif.) per protocols provided by the manufacture.


Samples were excluded from the analysis if they missed any of the following quality thresholds:

    • a) Evidence of familial relationship closer that 3rd-degree ({circumflex over (π)}>0.2) using genome-wide Identity-By-State (IBS) estimation implemented in PLINK.
    • b) Samples with missing genotypes >0.02
    • c) Samples with non-European admixture >0.05 as determined by ADMIXTURE


SNPS were excluded from the analysis if they missed any of the following quality thresholds:

    • a) SNPs with Illumina GenTrain Score <0.65
    • b) SNPs from copy number variant regions or regions with adjacent SNPs
    • c) SNP call rate ≤98%


Exome Sequencing and Variant Discovery


Whole exome sequencing (WES) was performed on 2400 endometriosis cohort using Ion Proton Instrument as per the manufacturers protocol (Life Technologies, Carlsbad Calif.) using their AmpliSeq Exome Capture Kit. Sequence alignment and variant calling was performed against the reference human genome (UCSC hg19 version). The variant discovery was performed using Life Technologies TMAP algorithm with their default parameter settings, and Life Technologies Torrent Variant Caller was used to discover variants. The variants identified from the Torrent Variant Caller were taken further for downstream analysis. The variants included were single nucleotide variants, short insertions, or deletions. Variant annotation was performed using ANNOVAR. The coding variants were classified as missense, frameshift, splicing, stop-gain, or stop-loss. Variants were considered “loss-of-function” if they caused a stop-gain, splicing, or frame-shift insertion or deletion. Prediction of protein function was evaluated in silico using seven different algorithms (Polyphen 2, Sift, Mutation Accessor, Mutation Taster, FATHMM, LRT, and MetaLR. Missense variants were deemed “damaging missense” if they were predicted damaging by at least one of the seven algorithms tested. The genes that harbor these variants were also checked against the published “FLAGS” gene list (Shyr C et al. 2014) to understand whether the gene is frequently mutated in humans.


Low Frequency Variants


Variants that pass the population control frequency (gnomAD) of MAF<1% were called “low frequency variants”. These variants were analyzed to test for association using Fisher's Exact Test. The low frequency variants were prioritized based on their Fisher's p value.


Gene Burden


The genetic burden was calculated for each gene by collapsing/combining all low frequency variants identified through WES. Fisher's Exact Test was used to determine excess gene burden in endometriosis subjects compared to the control population counts as observed in gnomAD database by generating 2×2 table per gene for the number of reference and alternative alleles. The genes were then prioritized based on their Fisher's p value.









TABLE 1







Variants associated with endometriosis. Inf means that the variant was not


observed in the control cohort.





















Alter-













nate












Ref-
Al-












er-
lele/

Amino










ence
Minor

Acid

Con-
p
OR

SEQ



Posi-
Al-
Al-

posi-
Case
trol
val-
L95-

ID


Chr
tion
lele
lele
Gene
tion
MAF
MAF
ue
[U95]
Context Sequence
NO





chr
113921
G
A
TNFRS
p.R175
0.006
0.004
2.97
1.57
CCTGGGGAGGGGCTGGCTGC
SEQ


1
6


F18
C
86
37
E−02
[1.07-
GGTCGGTGGCCCCGGAGGAC
ID











2.31]
[G/A]GCCAGGCTCACACCC
NO:












ACAGGTCTCCCAGCCGCCCC
1












TTCTC






chr
145259
T
C
ATAD3
p.W11
0.007
0.000
2.93
19.24
GCTGGAAGCCCTGAGCCTGC
SEQ


1
2


A
0R
35
38
E−22
[11.09-
TGCACACACTAGTCTGGGCA
ID











33.38]
[T/C]GGAGTCTCTGCCGTG
NO:












CCGGAGCCGTGCAGACACAG
2












GAGCG






chr
370358
C
T
LRRC4
p.V301
0.006
0.004
2.53
1.61
ACGTGCAGGACCCTGAGCAG
SEQ


1
9


7
M
62
12
E−02
[1.09-
CAGCCGGCCGGCATCTCCCA
ID











2.38]
[C/T]GTCCTGCTCCTCCCC
NO:












ATCACCACCTTCCCGCCTCT
3












GCTTC






chr
908311
G
T
SLC2A7
p.T59N
0.006
0.003
1.69
1.7
GAGCTTCCCGTCCATGAATG
SEQ


1
2




13
61
E−02
[1.14-
TTGCGTGTCGCTCAAAGTAG
ID











2.55]
[G/T]TTTCGTTGTAAAATG
NO:












ACTTGAAGACCTGGAAAACA
4












TTGCC






chr
105293
A
G
DFFA
p.I69T
0.007
0.005
4.67
1.46
ATTGGAAGGTAGACACAGAA
SEQ


1
26




60
20
E−02
[1.02-
AGTAATCGTCATCATCCACT
ID











2.1]
[A/G]TGGTGCCATCCTCTG
NO:












CCAGGACCAGGGTGACTGGT
5












GTCAG






chr
119833
C
T
KIAA20
p.E410
0.005
0.003
1.44
1.72
ATCTGCTGGACGGAGGACAG
SEQ


1
52


13
K
88
42
E−02
[1.14-
CCGCCCCGGCCACAGGTTCT
ID











2.61]
[C/T]GGCGTGCATGGTGGC
NO:












GTGCCCGCTGAAGCAGTGAT
6












CTTCA






chr
128559
A
G
PRAME
p.N42
0.005
0.003
3.74
1.63
TCCTGCCCCTGAGGAGAGTT
SEQ


1
96


F1
6D
39
31
E−02
[1.06-
TGAATTCCTTGGTTCGTGTC
ID











2.52]
[A/G]ATTGGGAGATCTTCA
NO:












CCCCACTTCGGGCTGAGCTG
7












ATGTG






chr
128560
C
T
PRAME
p.G453
0.014
0.003
6.69
4.78
CACTGAGGGAAGTCAGGCAG
SEQ


1
79


F1
G
22
01
E−20
[3.6-
CCCAAGAGGATCTTCATTGG
ID











6.33]
[C/T]CCCACCCCCTGCCCT
NO:












TCCTGTGGCTCATCACCGTC
8












TGAGG






chr
136692
C
T
PRAME
p.E352
0.006
0.000
5.37
201.46
TGGGAGTAGTGGATCTGACA
SEQ


1
76


F14
K
86
03
E−35
[61.22-
GCCCTCCAAGATGAGGGTTT
ID











662.92]
[C/T]GAGAGAGGCAGCAAT
NO:












TTTCTCTAGCAGAGCTCCGA
9












GGGGT






chr
159869
A
T
RSC1A
p.N20
0.005
0.002
2.92
1.78
AACATAGGGGACCTTGAGCT
SEQ


1
77


1
51
205
931
E−02
[1-
TCCTGAAGAAAGGCAACAGA
ID











2.94]
[A/T]TCAACACAAAATTGT
NO:












TGATTTGGAAGCTACGATGA
10












AAGGA






chr
176033
C
T
PADI3
p.H508
0.009
0.006
2.64
1.47
CCTGCTTCAAGCTCTTCCAG
SEQ


1
40



H
07
19
E−02
[1.05-
GAAAAGCAGAAGTGTGGCCA
ID











2.05]
[C/T]GGGAGGGCCCTCCTG
NO:












TTCCAGGGGGTTGTTGGTGG
11












GTAAC






chr
194511
A
T
UBR4
p.A314
0.011
0.008
4.27
1.38
TTTCTGTTAGAAGCTGAGTA
SEQ


1
76



9A
27
21
E−02
[1.02-
TAGGCCTCAAACACATCAGC
ID











1.86]
[A/T]GCATGACCCTGGGAG
NO:












AAGAAAATTTGCATGAGAAC
12












CTGTG






chr
195040
T
C
UBR4
p.M84
0.011
0.008
4.24
1.38
CGAGCCAAGATAAGCGGCAC
SEQ


1
62



4V
27
19
E−02
[1.03-
GAAGCGCATCTGAGCATCCA
ID











1.86]
[T/C]GTTGACGCTCAACTC
NO:












CTGGATGATCTGGACAAAAA
13












GCGAC






chr
195458
G
A
EMC1
p.Y961
0.011
0.008
2.81
1.4
TGGCAAAAACCAGGCCAAAG
SEQ


1
93



Y
52
23
E−02
[1.05-
AGGACGCTGCTGATTAACAC
ID











1.89]
[G/A]TAGTCATAGTCATCC
NO:












TTCAGAACGTCAAACTGCTT
14












GGATG






chr
204428
C
T
PLA2G
p.G45S
0.009
0.006
3.60
1.41
TCTTTGGGTTGGCCTCTGCC
SEQ


1
78


20

80
95
E−02
[1.03-
ACCTAGTCCGCAGTGACAGC
ID











1.95]
[C/T]GTAGGGCCAGTAGGA
NO:












GAGGATGGGCATTTTCCCAG
15












TCACT






chr
238455
A
T
E2F-2
p.A257
0.011
0.008
4.78
135
CCTTGACGGCAATCACTGTC
SEQ


1
89



A
52
56
E−02
[1.01-
TGCTCCTTAAAGTTGCCAAC
ID











1.81]
[A/T]GCACGGATATCCTGG
NO:












TAAGTCACATAGGCCAGCGT
16












AGGGC






chr
244881
C
T
IFNLR1
p.E137
0.009
0.006
3.42
1.46
TGCAGGGGGGCAGCTGGTAC
SEQ


1
31



E
31
39
E−02
[1.04-
GTGGCATTGGCACTCAGGAT
ID











2.05]
[C/T]TCCTCCGTCTGGGTG
NO:












AGCACCAGGACAGGTGGGGC
17












CGGCT






chr
266088
A
G
UBXN1
p.G490
0.008
0.000
5.67
44.62
CGGGACTGGGGCCGGGACCG
SEQ


1
83


1
G
82
20
E−34
[23.65-
GGACCGGGACTGGGGCCGGG
ID











84.2]
[A/G]CCGGGACCGGGACAG
NO:












GGACCAGGACTGAATTTCAG
18












GCTGG






chr
266714
G
C
AIM1L
p.P579
0.018
0.000
5.40
Inf
TGAGGCAGCAGGAGCACCAG
SEQ


1
13



R
63
00
E−89

GGCCCTTCACAACCTCTTTT
ID












[G/C]GGGTGGTGGACAAGG
NO:












CAGCAGGAGCACCAGACCCC
19












TGCAC






chr
266716
A
G
AIM1L
p.S508
0.025
0.000
4.40
127.41
CAGGAGCACTGGACCCCTGC
SEQ


1
25



S
98
21
E−88
[55.94-
ACCACCTCCTTCTGGGTGGG
ID











290.2]
[A/G]GATGAGGCAGCAGGA
NO:












GCACCAGGGCCCTTCACGAC
20












CTCTT






chr
276743
G
A
SYTL1
p.A126
0.005
0.000
1.34
Inf
CCCAGGAGACCAGGCTCCAG
SEQ


1
34



T
88
00
E−35

GCCACGACAGGGAGGCTGAG
ID












[G/A]CTGCTGTGAAAGAGA
NO:












AGGAAGAGGGGCCAGAGCCC
21












AGGTG






chr
289319
T
A
TAF12
p.T145
0.006
0.004
4.77
1.48
CCAGGGCTCTGGCATTTCCT
SEQ


1
01



S
86
65
E−02
[1.01-
CACCTGTTTGTGAGCTTCTG
ID











2.17]
[T/A]GGTGCAAGCTTTTTT
NO:












GTAGGGTCGGATTTCTTCAG
22












AGCCA






chr
294477
G
A
TMEM
p.C183
0.005
0.002
4.90
1.94
TACCCCGACGCGGGGACGGG
SEQ


1
92


200B
C
64
91
E−03
[1.27-
TCCCAGATTTCTGGCTCTGC
ID











2.97]
[G/A]CAGCCTACGGCTCGG
NO:












GGACTCCTAGGGCCGGGGCT
23












GGGAA






chr
314096
A
3
PUM1
p.A109
0.005
0.003
3.69
1.64
GGGGACCGTCGTTCATGGTG
SEQ


1
34



7A
39
29
E−02
[1.07-
CACACCTCATCGATGAGCAC
ID











2.53]
[A/G]GCGCGCTCCGTACGT
NO:












GAGGCGTGAGTAACACACTT
24












CTCCA






chr
353707
C
A
DLGAP
p.G83
0.013
0.000
1.13
301.95
TGGCCAGGGTACATCCTGGG
SEQ


1
38


3
W
24
04
E−63
[94.37-
GAAGGTGCTGCTACCCCCCC
ID











966.13]
[C/A]AACCCCGGCCCCCGC
NO:












TGGCCCTCCCTCAGGGCCTA
25












CCGAC






chr
405332
C
G
CAP1
p.C236
0.029
0.000
5.89
Inf
GACCCTCTGCCGGATCATGT
SEQ


1
89



W
90
00
E−

CCTCCTCCCCCTCCACCATG
ID










176

[C/G]CCCCCTCGTCCCCCA
NO:












GTCTCTACCATTTCATGCTC
26












ATATG






chr
407023
A
G
RLF
p.T656
0.011
0.007
3.11
1.41
TGAATGACCAAGCCAAAGGA
SEQ


1
42



T
03
87
E−02
[1.04-
GAGTCTCATGAATATGTCAC
ID











1.9]
[A/G]TTCAGCAAATTAGAA
NO:












GATTGCCACCTGCAAGACAG
27












AGATT






chr
409289
A
G
ZFP698
p.Q43
0.006
0.004
1.30
1.67
AGTAAAACCTTCAGCCATAG
SEQ


1
69



8R
86
12
E−02
[1.14-
TACATACCTAACTCAACACC
ID











2.45]
[A/G]GAGAACTCATACTGG
NO:












AGAAAGACCATATAAATGTA
28












AGGAA






chr
476914
G
C
TAL1
p.A27
0.005
0.000
6.06
460.35
CTCCTTGGCGACGCGGTTCA
SEQ


1
81



G
15
01
E−28
[61.91-
GCAGGACCAGGTGCGGGGGG
ID











3423.16]
[G/C]CCATGCTGGCCTCGG
NO:












CCGCGTCCCGTCCCTCTAGC
29












TGGGG






chr
477168
C
T
STIL
p.T126
0.009
0.006
4.22
1.41
AGAAGGTGCCTACTGAATTC
SEQ


1
89



2T
56
79
E−02
[1.02-
ATGCTATTCATCTGCTTTAG
ID











1.95]
[C/T]GTTTCAGAAGGTTGC
NO:












AAACTTTCAGGAAAAATTGT
30












AATGT






chr
556436
T
C
USP24
p.T158
0.007
0.004
4.65
1.51
GTTCTAAGGTCTGAAAACTT
SEQ


1
58



A
11
71
E−02
[1.03-
ACCAAGTCTTGCTAGGTAGG
ID











2.22]
[T/C]AGATGCCAACAGGCA
NO:












TTTGCCTAGTGATTCTTCTC
31












GCTTG






chr
953304
C
T
SLC44A
p.N42
0.006
0.004
2.78
1.57
TGGTGAGGATTCCGAGAATC
SEQ


1
40


3
4N
62
23
E−02
[1.06-
ATTGTCATGTACATGCAAAA
ID











2.32]
[C/T]GCACTGAAAGAACAG
NO:












GTAAGGCTACCTCCTGATAC
32












ACAGC






chr
109792
T
C
CELSR2
p.L17P
0.009
0.000
2.93
21.06
CCGGCCACCGGCGTCCCCCT
SEQ


1
751




80
47
E−32
[13.61-
CCCAACGCCGCCGCCGCCGC
ID











32.59]
[T/C]GCTGCTGCTGTTGCT
NO:












GCTGCTGCTGCCGCCGCCAC
33












TATTG






chr
110302
A
T
EPS8L3
p.F55I
0.006
0.003
3.20
1.92
AAGTCTTGGCTCCACACCCG
SEQ


1
392




13
20
E−03
[1.28-
GCCCTGTGCATCCATCTCGA
ID











2.88]
[A/T]CAGCTTCTGCAAGGC
NO:












ATCCTCGGGCCCCTGGACTC
34












TCTGA






chr
117122
T
C
IGSF3
p.K102
0.025
0.000
1.05
Inf
CTTTCCTCTTCCTGTTCTTC
SEQ


1
350



0E
25
00
E−

CAGGCCAGGGCTGCTCCTTT
ID










150

[T/C]CCCCCCAGCTTTAGT
NO:












CCTCAGGGAATACCAGGCCA
35












CAGCG






chr
120054
G
T
HSD3B
p.R71I
0.010
0.007
1.85
1.48
GTGCTGGAAGGAGACATTCT
SEQ


1
192


1

54
17
E−02
[1.08-
GGATGAGCCATTCCTGAAGA
ID











2.01]
[G/T]AGCCTGCCAGGACGT
NO:












CTCGGTCATCATCCACACCG
36












CCTGT






chr
144856
C
T
PDE4DI
p.A210
0.009
0.005
1.71
1.54
TTACCTCTGTGCCTTGGGCT
SEQ


1
852


P
5A
07
92
E−02
[1.1-
TCAAGGCCAGGGAAGCTGCA
ID











2.14]
[C/T]GCTGATCTCACAAGA
NO:












GACACTATCTTTTTGACCAG
37












CAGCT






chr
144912
G
T
PDE4DI
p.P695
0.005
0.002
5.35
2.39
ACAGGCAGTGGGGGTAACTT
SEQ


1
191


P
H
15
16
E−04
[1.53-
CAGCTTGTTGGTTAGAGATG
ID











3.74]
[G/T]GTGCTTGGGACATCA
NO:












GGGAGTCTCTCCCTCCTAAA
38












TATTG






chr
144930
A
C
PDE4DI
p.S244
0.007
0.004
7.25
1.73
CTTTCTGTTGTGGAGGGCTA
SEQ


1
977


P
S
35
27
E−03
[1.19-
GCCTGGACGCTTGCATCCAA
ID











2.5]
[A/C]GATTCCACAGAGGAA
NO:












CCAGGCGTCTCTTCCTCCAT
39












GCTTT






chr
145537
C
A
ITGA10
p.S841
0.009
0.006
2.01
1.5
CAACTCTGGAGAACAGAAAG
SEQ


1
513



R
31
22
E−02
[1.08-
GAAAATGCTTACAATACGAG
ID











2.09]
[C/A]CTGAGTCTCATCTTC
NO:












TCTAGAAACCTCCACCTGGC
40












CAGTC






chr
149897
G
A
SF3B4
p.P245
0.007
0.005
2.66
1.52
GGGGTATCCCAGGTGGGAGG
SEQ


1
906



P
84
17
E−02
[1.06-
GCTCCAGGAGGTGGCACTGG
ID











2.18]
[G/A]GGTGGGAAGGAGCCA
NO:












GGAGGAGGCATGCCTATAGA
41












GGAAA






chr
152080
C
T
TCHH
p.E180
0.010
0.000
2.67
Inf
TTCCGTCACGCTGTTGGGGG
SEQ


1
275



6E
54
00
E−63

CGCAGCTGCTGTTCTTCCCT
ID












[C/T]TCCTGGCGTAGCTGT
NO:












TCCTCCTCGCGGAATTTTCT
42












GTCAG






chr
152082
T
C
TCHH
p.K108
0.013
0.000
1.95
28.95
CTCAGCAGCTGCTCTTCCTC
SEQ


1
449



2E
24
46
E−48
[19.46-
CTGCTGCAGCTCCTCTTCCT
ID











43.05]
[T/C]CCGATATTGCCTCTC
NO:












CAGCTCCTGGCGCCTTCTCG
43












TCTCC






chr
152083
G
T
TCHH
p.P789
0.010
0.000
1.16
Inf
CTCCTCGGCCCTCAGCTGCC
SEQ


1
327



Q
29
00
E−61

TCTCCCGCTGCTCCCGCAAT
ID












[G/T]GGGGCCTGGCCGACA
NO:












GCCTCTGACGGCCCCTCTCG
44












CTCTT






chr
152083
G
T
TCHH
p.R622
0.019
0.000
1.65
Inf
TTCAGCAGCTGCTGGCGCCT
SEQ


1
829



S
36
00
E−

CTCTTCCTCCGGCTCCTCGC
ID










115

[G/T]CTTCAGCCGCTGCTC
NO:












GCGCCTCTCCTCCTGCTCGA
45












GTCTC






chr
152084
C
G
TCHH
p.E494
0.014
0.000
4.56
164.52
AGTTGCTGCTCGCGCCTCTC
SEQ


1
213



Q
71
09
E−70
[75.16-
CTGCTGCTCGCGCCTCTCCT
ID











360.14]
[C/G]CTCCTCGAGCTTCAG
NO:












CCAACGTTCGCGCCTCTCCT
46












CCTCC






chr
152325
G
C
FLG2
p.T169
0.007
0.000
1.95
799.16
TAATCCATGATGATAGTGGG
SEQ


1
166



9R
11
01
E−41
[108.84-
CATGTCTAGTGGTATCTCCT
ID











5868.08]
[G/C]TCTGTCCATGAGTAG
NO:












TTCCATGTCTCTCAGGAACT
47












ATGGA






chr
156011
G
A
UBQLN
p.P514
0.005
0.003
3.43
1.63
CTGTTGGAGAAGATGTGGCT
SEQ


1
387


4
P
15
16
E−02
[1.05-
GGCGTGGCTGGTGAGGAAGT
ID











2.54]
[G/A]GGGGCCTCGGGCGTA
NO:












GACCCTGCGTTGCTGCCTGC
48












TGAGG






chr
156046
T
C
MEX3A
p.G485
0.005
0.002
1.14
182
CGCAGATGCGTACTGCACAC
SEQ


1
473



G
15
83
E−02
[1.17-
TCCATGCAGAACAGGTTGTG
ID











2.84]
[T/C]CCGCAGGGCACAAGG
NO:












GCGGCAGTCACTTCGCTCTC
49












AAAGC






chr
156438
C
T
MEF2D
p.Q38
0.010
0.000
2.23
1107.97
GTTGCGGCTGCTGAGGCTGC
SEQ


1
664



5Q
05
01
E−58
[152.37-
TGTGGCTGTGGCTGCTGTGG
ID











8056.7]
[C/T]TGCGGTGGCTGCTGC
NO:












TGTGGAGGCTGTGGCTGCTG
50












CGGCT






chr
156521
C
T
IQGAP
p.A562
0.005
0.003
3.53
1.6
TGCCTTTTGGCTGCCACAAG
SEQ


1
547


3
T
88
68
E−02
[1.06-
GAGGAGATGGTACCGAGGGG
ID











2.42]
[C/T]GACAGGGAGGCTGAC
NO:












ATCATCTAGGCCAGCTGCAG
51












GAAGC






chr
156779
G
A
SH2D2
p.G293
0.006
0.003
1.36
1.7
CCACATAGATGTTGCTGGGG
SEQ


1
118


A
G
37
76
E−02
[1.14-
GCTTCCCCAGGGCTGCCCCG
ID











2.53]
[G/A]CCCATGGCATAGAAA
NO:












GCTATGGGTTCATCAGGCTC
52












ATTGT






chr
157069
G
A
ETV3L
p.S32L
0.012
0.008
3.56
137
GATGAAGTGCCACAGCTGGA
SEQ


1
134




25
99
E−02
[1.03-
TCTGCCGGGAGCCTGGGGAC
ID











1.82]
[G/A]ACTCGGCTTTGTAGG
NO:












CCCAATCAGGGAAGGCCAAC
53












CCTGG






chr
157738
G
T
FCRL2
p.L260
0.005
0.001
6.20
2.69
TATTTGCCGGCATCACTCTC
SEQ


1
309



M
21
94
E−04
[1.51-
TTTCACAGCTGGGATCTCCA
ID











4.48]
[G/T]CTCTGCTGACAGGGA
NO:












ACGCTGGGTTTTCTTTCCCA
54












TACTG






chr
158669
G
C
OR6K2
p.A224
0.005
0.000
3.16
596.28
TGTGCGGCGGCCTCCAGCTG
SEQ


1
772



G
39
01
E−31
[80.36-
AATGAATACGTAGAATTACA
ID











4424.77]
[G/C]CCACAATACCATCGT
NO:












AGGACATGAAGATGAGCATC
55












ACAGC






chr
161336
A
G
C1orf1
p.Y10Y
0.005
0.003
2.89
1.66
GAGACCAGTTCTGCAGATAC
SEQ


1
289


92

64
41
E−02
[1.09-
TTGGATGAGAAAGCCTTTTC
ID











2.53]
[A/G]TACTGTGGAGAGAAA
NO:












GATAAGTAGCCCTATGAGAC
56












TTCAA






chr
161476
C
T
FCGR2
p.S69S
0.005
0.003
4.84
1.61
CTGTGACTCTGACATGCCAG
SEQ


1
227


A

15
20
E−02
[1.04-
GGGGCTCGCAGCCCTGAGAG
ID











2.5]
[C/T]GACTCCATTCAGTGG
NO:












TTCCACAATGGGAATCTCAT
57












TCCCA






chr
161641
G
A
ECGR2
p.Q63
0.010
0.003
2.83
3.19
CTGTGCTGAAACTCGAGCCC
SEQ


1
237


B
Q
78
40
E−10
[2.33-
CAGTGGATCAACGTGCTCCA
ID











4.37]
[G/A]GAGGACTCTGTGACT
NO:












CTGACATGCCGGGGGACTCA
58












CAGCC






chr
169697
A
G
SELE
p.L404
0.005
0.003
3.16
1.67
TCCCCTGTGGGGCCACATTG
SEQ


1
268



L
15
10
E−02
[1.07-
GAGCCTTTTGGATCCCTTCA
ID











2.59]
[A/G]CACAAAACCCTGCTC
NO:












ACAGGAGAACTCACAGCTGG
59












ACCCA






chr
170115
G
C
METTL
p.D18
0.000
0.000
1.00
1
GGGAGCCCATTTTGCCTTTA
SEQ


1
300


11B
H
74
74
E+00
[0.31-
GATCCCGCTGGCAGAAGACC
ID











3.22]
[G/C]ACGATGAACTCTGTA
NO:












GACATAGCATGTCTTTTATC
60












CTTCA






chr
170129
T
C
METTL
p.M66
0.008
0.006
1.44
1.29
AAATTGTACGCTTTAACAAG
SEQ


1
701


11B
T
82
84
E−01
[0.92-
CCAAGTCATCAATGGTGAGA
ID











1.82]
[T/C]GCAGTTCTATGCCAG
NO:












AGCTAAACTTTTCTACCAAG
61












AAGTA






chr
170136
T
C
METTL
p.L277
0.010
0.010
1.00
0.99
GGCTTCCCAGAGCAGTGCAT
SEQ


1
876


11B
P
78
87
E+00
[0.73-
CCCCGTGTGGATGTTCGCAC
ID











1.35]
[T/C]GCACAGCGACAGACA
NO:












CTCCTGAAAAAGCAGTGGGA
62












ATGAA






chr
176563
G
A
PAPPA
p.V347
0.008
0.005
2.96
1.51
GCGGGATGCTCGCTTCTTCT
SEQ


1
779


2
M
09
37
E−02
[1.06-
TCTCCCTCTGCACCGACCGC
ID











2.15]
[G/A]TGAAGAAAGCCACCA
NO:












TCTTGATTAGCCACAGTCGC
63












TACCA






chr
176833
T
C
ASTN1
p.E129
0.006
0.003
1.03
1.72
TCATTCTGGCAGCAGCTCCC
SEQ


1
427



3G
62
85
E−02
[1.17-
TGGCCTTATGGTGCTAGATC
ID











2.54]
[T/C]CTTTGCTGTCCCCAT
NO:












AGTCGTTGTAGGGGATACTC
64












AGGGT






chr
176833
C
T
ASTN1
p.T127
0.006
0.004
4.58
1.52
CATAGTCGTTGTAGGGGATA
SEQ


1
480



5T
13
04
E−02
[1.02-
CTCAGGGTCTGCTCCTCACA
ID











2.28]
[C/T]GTCTTCCTGAGGTCC
NO:












CGGCTGAGCTCCGCCCAGTC
65












AAGTC






chr
176852
T
G
ASTN1
p.M10
0.006
0.003
4.39
1.54
GAGATGGTGGTGAGCTGCTT
SEQ


1
D74



95L
13
99
E−02
[1.03-
GTCCGGCACCTGAGATGGCA
ID











2.3]
[T/G]TGCACAAGGAGACTT
NO:












TGCTCCAGAGATGATGTCGT
66












CCACA






chr
186276
G
A
PRG4
p.E473
0.006
0.000
3.12
Inf
TACACCCACCACTCCCAAGG
SEQ


1
268



K
62
00
E−39

AGCCTGCACCCACCACCAAG
ID












[G/A]AGCCTGCACCCACCA
NO:












CTCCCAAAGAGCCTGCACCC
67












ACTGC






chr
198222
C
G
NEK7
p.R35
0.012
0.008
2.08
1.42
CTTACGACCGGATATGGGCT
SEQ


1
215



G
25
67
E−02
[1.07-
ATAATACATTAGCCAACTTT
ID











1.89]
[C/G]GAATAGAAAAGAAAA
NO:












TTGGTCGCGGACAATTTAGT
68












GAAGT






chr
201178
A
G
IGFN1
p.E155
0.009
0.000
6.26
Inf
GGGAGTAAGGCAGGTTTTAC
SEQ


1
688



6G
80
00
E−47

GGATGGTTTAGGAGGTTCTG
ID












[A/G]AGAAATGGGGTCAGT
NO:












GAATAAGGCAGGTTATAGGA
69












AGGAT






chr
201180
A
G
IGFN1
p.N20
0.008
0.000
6.77
476.2
TAGGGATGGTTTAGGGAGTT
SEQ


1
217



66D
58
02
E−40
[65.22-
CTGTAGAAATGGGGTCAGTG
ID











3476.77]
[A/G]ATGAGGCAGGTTATA
NO:












GGAAGGATTTAGGGGCTCCT
70












AAGGG






chr
203194
C
T
CHIT1
p. E74K
0.006
0.003
9.72
1.74
CACATCTTCTTCAGGCCATT
SEQ


1
834




62
80
E−03
[1.18-
GAACTCCTGGTAGAGAGTCT
ID











2.58]
[C/T]GTCATTCCACTCAGT
NO:












GGTGCTCAGCTGGTGGTTGG
71












TCATG






chr
203691
A
G
ATP2B
p.K940
0.005
0.002
4.39
2.02
ACTTAACCTCCAGTGCTTCT
SEQ


1
612


4
R
15
55
E−03
[1.3-
CCTCTCCCCACTAGGTGAGA
ID











3.15]
[A/G]ATTCTTTGATATTGA
NO:












TAGTGGGAGGAAGGCACCTC
72












TACAT






chr
204923
G
A
NFASC
p.D81
0.005
0.000
3.59
Inf
CCACTGGACACGAAACAGCA
SEQ


1
359



N
64
00
E−34

GATTCTTCAACATCGCCAAG
ID












[G/A]ACCCCCGGGTGTCCA
NO:












TGAGGAGGAGGTCTGGGACC
73












CTGGT






chr
204923
C
T
NFASC
p.R115
0.005
0.000
1.05
Inf
GCGGCCGGAGGAATATGAGG
SEQ


1
461



C
39
00
E−32

GGGAATATCAGTGCTTCGCC
ID












[C/T]GCAACAAATTTGGCA
NO:












CGGCCCTGTCCAATAGGATC
74












CGCCT






chr
206658
G
A
IKBKE
p.T514
0.010
0.006
2.08
1.47
AGCTAGCGGAGGTCCTCTCC
SEQ


1
569



T
05
84
E−02
[1.07-
AGATGCTCCCAAAATATCAC
ID











2.02]
[G/A]GAGACCCAGGAGAGC
NO:












CTGAGCAGCCTGAACCGGGA
75












GCTGG






chr
222712
G
T
HHIPL2
p.L487
0.010
0.006
1.35
1.71
ACTGACTTCCCCACTGCATG
SEQ


1
108



M
78
33
E−03
[1.26-
GCCATAAGCATAGATTGGCA
ID











2.32]
[G/T]AACATCATCTGTCCA
NO:












GGAGAGAGGAAAGAGAGTGA
76












GTGTC






chr
227843
T
A
ZNF67
p.F413
0.009
0.000
1.18
1063
GGAGAGAAACCCTACAAATG
SEQ


1
024


8
Y
56
01
E−55
[146.01-
TGAAGAATGTGGCAGAACCT
ID











7739.02]
[T/A]TACTCAATTCTCAAA
NO:












CCTCACTCAGCATAAAAGAA
77












TTCAT






chr
231057
C
T
TTC13
p.G553
0.012
0.000
5.31
Inf
TTTCTCAAAATATTCTAGGT
SEQ


1
248



D
99
00
E−75

ATCTCATGTTGATCACCTGA
ID












[C/T]CCCTATAAGGCAAAA
NO:












ATAATAAAATTAAGAATATT
78












TTTAT






chr
236144
G
T
NID1
p.S107
0.005
0.002
8.73
1.93
AGAGATGCACACACATATTT
SEQ


1
919



3S
15
68
E−03
[1.24-
ACACAAAGATACCCTCTCAC
ID











3]
[G/T]GAATCCGTTACAATG
NO:












CCTCTGGGATTCACCAAGTC
79












AGTCT






chr
236433
T
G
FRO1L
p.K63
0.005
0.003
3.47
1.62
ACCTTACCTTGTAATAACGA
SEQ


1
208


B
N
88
65
E−02
[1.07-
AAATAGTCTCTCTCTTGCAA
ID











2.44]
[T/G]TTTTTTATTTTGGGG
NO:












AAGATTTTGTAGGTATTGAA
80












GTTAT






chr
246907
A
G
SCCPD
p.I183
0.005
0.002
2.17
1.91
TCTTTTAGGTACTTTGACTG
SEQ


1
410


H
V
21
73
E−02
[1.08-
CTGTGGAAAGTTTCCTGACT
ID











3.17]
[A/G]TACATTCAGGACCTG
NO:












AGGTTGGTTTTTTGGTTTGT
81












CTTGT






chr
248436
G
A
OR2T3
p.N28
0.008
0.002
5.54
3.43
CTCCCTTCACCTCACTGTTC
SEQ


1
265


3
4N
33
45
E−09
[2.4-
TTCACACTGTAGATGAGGGG
ID











4.9]
[G/A]TTTAGTAAAGGGGTG
NO:












AACATAGTATAGAAGGCTGA
82












CACAA






chr
592504
G
A
ANKRD
p.F257
0.005
0.003
2.59
1.66
TGGCTCTCACATCTACATCG
SEQ


10
7


16
F
39
25
E−02
[1.08-
ACGCCAAGTTCAGAGACCAA
ID











2.56]
[G/A]AATCGGATGGCTTCG
NO:












TCCTGCCCTGTGACAGCTGC
83












CCTGT






chr
597922
C
3
FBXO1
p.A963
0.005
0.003
1.08
1.79
AGCGCACTGTGGAGAACATC
SEQ


10
2


8
A
64
16
E−02
[1.17-
GTACTGCCCCGGCATGAGGC
ID











2.73]
[C/G]CTGCTCTTCCTCGTC
NO:












TTCTGAGGACAAGGCGCACG
84












TTCTC






chr
777195
C
T
ITIH2
p.N44
0.006
0.003
2.30
1.61
AACTAAAACTGTCAAAAATT
SEQ


10
8



1N
37
96
E−02
[1.09-
CAGAAAAACGTTAAGGAGAA
ID











2.4]
[C/T]ATCCAAGACAATATC
NO:












TCCTTGTTCAGTTTGGGCAT
85












GGGAT






chr
210975
G
A
NEBL
p.S885
0.006
0.004
3.59
1.55
TGACCTGTCGTCTCCGAGAC
SEQ


10
46



F
37
13
E−02
[1.04-
CTGTACCGAAAGTACTGCTG
ID











2.3]
[G/A]AATGGGATCGAGACC
NO:












AGTGTCGCCTATAGTGACTC
86












GCCTT






chr
345587
C
T
PARD3
p.G101
0.005
0.002
1.96
1.74
CTAGCGTTGAGAGCCATGGA
SEQ


10
15



7R
15
97
E−02
[1.12-
ACCTTCATAAGAAGAAACTC
ID











2.7]
[C/T]CCCATACATTAACTC
NO:












ATCATCACAGCCAAATGTCC
87












GATGA






chr
353221
C
T
CUL2
p.M34
0.009
0.004
5.26
2.06
TACCATGCACTTCCAAAACT
SEQ


10
99



8I
778
78
E−04
[1.37-
GACTCCACAAATAGTGTTGG
ID











2.98]
[C/T]ATCTAAAAATGAAAT
NO:












ATAAGTACAAAACCACATTT
88












TAAGA






chr
454730
C
G
C10orf
p.M14
0.019
0.000
7.99
2197.65
CAGGCATCCTGGCTTCACAG
SEQ


10
44


10
5I
36
01
E−
[305.69-
AGCCTCCCTCTGGGGGCCCC
ID










114
15799.34]
[C/G]ATGGGCTTGCTGCTG
NO:












TCCATCTGTCTATGTGGACC
89












CCAGA






chr
469992
G
A
GPRIN
p.8110
0.007
0.005
3.98
1.46
AATGTGTCCACCATGGGCGG
SEQ


10
09


2
Q
84
38
E−02
[1.02-
CAGTGACCTGTGTCGCCTGC
ID











2.09]
[G/A]GGCCCCTAGTGCTGC
NO:












TGCTATGCAGAGGAGCCATT
90












CAGAC






chr
469993
A
G
GPRIN
p.A170
0.010
0.003
4.09
2.99
AGCCAGGTGGTACTTCTGGC
SEQ


10
90


2
A
29
47
E−09
[2.17-
CAGGGTGGCCAGGCCCCTGC
ID











4.12]
[A/G]GGCCTGGAAAGGGAC
NO:












CTGGCTCCTGAGGATGAGAC
91












TTCTA






chr
470872
G
C
LOC10
p.L172
0.006
0.003
3.19
1.88
GGATTGTGCTCATCTGGGTC
SEQ


10
99


09967
L
62
53
E−03
[1.27-
ATTGCCTGTGTCCTCTCCCT
ID






58




2.78]
[G/C]CCCTTCCTGGCCAAC
NO:












AGCATCCTGGAGAATGTCTT
92












CCACA






chr
518279
A
G
FAM21
p.P13P
0.022
0.002
5.96
9.18
TGCAGATGAACCGGACGACC
SEQ


10
00


A

30
48
E−49
[7.2-
CCCGACCAGGAGCTGGCGCC
ID











11.7]
[A/G]GCGTCGGAGCCCGTG
NO:












TGGGAGCGGCCGTGGTCGGT
93












GGAGG






chr
734648
G
A
CDH23
p.E960
0.008
0.004
2.90
1.94
GGTGGTCACCACCACCGAGC
SEQ


10
12



K
133
201
E−03
[1.24-
TGGACCGCGAGCGCATCGCG
ID











2.91]
[G/A]AGTACCAGCTGCGGG
NO:












TGGTGGCCAGTGATGCAGGC
94












ACGCC






chr
750106
G
C
MRPS1
p.T130
0.008
0.004
8.85
1.74
CTAAAGTCAGCTCATTTATG
SEQ


10
35


6
8
458
873
E−03
[1.13-
TTTCTGTAGCCTCTGTATCT
ID











2.59]
[G/C]TAGCTTCTGCATCTG
NO:












TTTTCTGAGAAGCTAACAGG
95












ACTTC






chr
795887
G
A
DLG5
p.A741
0.007
0.004
8.01
1.69
GGGACCCTTCTTTAGCGGCA
SEQ


10
06



A
35
35
E−03
[1.17-
GGGCTTCCAGGCAGCACAGC
ID











2.45]
[G/A]GCAGCATACACTCCA
NO:












TTCTCCAGACTGATGCCACT
96












GTCTG






chr
995312
C
T
SFRP5
p.D103
0.010
0.006
2.15
1.46
CAGACGGGCGCAAAGAGCGA
SEQ


10
84



N
05
89
E−02
[1.07-
GCACAGGAAGACCTGCGTAT
ID











2.01]
[C/T]CGAGTGGCAGCGCTT
NO:












GGCCAGCAGCGGCAGCCAGC
97












TGCTC






chr
999696
A
G
R3HCC
p.L593
0.006
0.003
2.22
1.9
TGTTTAACGATGATGGTGAC
SEQ


10
50


1L
L
86
60
E−03
1[1.3-
TGCCTGGATCCACGTCTTCT
ID











2.81]
[A/G]CAAGAGGTATGTTTA
NO:












ATTGAAATTGCTTGATGCTT
98












AGTTA






chr
102770
A
G
PDZD7
p.R777
0.011
0.000
2.35
126.17
ACTTGCCTTGACCCCGGCTG
SEQ


10
315



R
03
09
E−44
[45.36-
CTGCGGCTGCGGCTGCGGCT
ID











350.99]
[A/G]CGGCTGCGGCTACGG
NO:












CTCTGAGCCCGGCCCCGGAT
99












CTGGC






chr
104230
G
A
TMEM
p.T139
0.010
0.007
4.44
1.39
AGTTCTTGCTGTGCCTGTGC
SEQ


10
587


180
T
54
62
E−02
[1.02-
CTCTATGATGGCTTCCTGAC
ID











1.89]
[G/A]CTCGTGGACCTGCAC
NO:












CACCATGCCTTGCTGGCCGA
100












CCTGG






chr
125780
G
C
CHST1
p.P453
0.008
0.000
3.19
793.53
GCTCCTTCTGCCAGGGGCCA
SEQ


10
760


5
P
58
01
E−47
[108.69-
GCTCGGGGGGTACGGGGGGG
ID











5793.56]
[G/C]GGGGTACACACAGGC
NO:












ATGGCGTTGTTGAGGGTGTT
101












GTTGT






chr
135106
G
A
TUBGC
p.H360
0.005
0.003
2.61
1.66
CCTGCGCCTGGCTGTCCCCT
SEQ


10
137


P2
H
39
26
E−02
[1.08-
GTGTAGCTGAAGCTCCTGTC
ID











2.55]
[G/A]TGGAGCAGGCTCAGC
NO:












GTGGACCCCCCAAGACATTC
102












GCCTT






chr
135368
G
C
SYCE1
p.V289
0.008
0.005
2.96
1.51
GGCCAGCCTCTTCCTCTTGT
SEQ


10
906



V
09
37
E−02
[1.06-
GTGCTCTGGGCTTGGGCAGG
ID











2.15]
[G/C]ACTTGCATTCCATGC
NO:












TTTTCCAGCTCTTCCTTCAG
103












CCTGG






chr
394511
C
T
PKP3
p.A73
0.006
0.000
6.27
Inf
AGCCGCGGCACAACGGGGCC
SEQ


11




A
86
00
E−11

GCTGAGCCCGAGCCTGAGGC
ID












[C/T]GAGACTGCCAGAGGT
NO:












AGGCGGTGGGGACAGCGGCG
104












GGGAT






chr
610300
A
G
PHRF1
p.S145
0.006
0.003
2.18
1.93
CACAGGGGTCAGGCAGGTGT
SEQ


11




5G
86
57
E−03
[1.3-
TCTCCGAGCTGCCCTTTCCC
ID











2.85]
[A/G]GTCACGTGCTTCCGG
NO:












AACCCGGGTTCCCAGACACA
105












GACCC






chr
614967
C
G
IRF7
p.R88T
0.005
0.000
4.94
Inf
GCGCTCCGCAGTCTCAGCCT
SEQ


11





88
00
E−32

CGGGGGGCGGGCCACCTCCC
ID












[C/G]TGCTGCTAGGCGGCC
NO:












ACCTGCCGCGGGCCACAGCC
106












CAGGC






chr
764414
A
G
TALDO
p.K321
0.006
0.003
1.66
1.71
CTCTCTGACGGGATCCGCAA
SEQ


11



1
R
13
59
E−02
[1.14-
GTTTGCCGCTGATGCAGTGA
ID











2.56]
[A/G]GCTGGAGCGGATGCT
NO:












GACAGTGAGTCTTGTGTGTG
107












GGTAC






chr
101685
G
A
MUC6
p.P198
0.011
0.000
1.29
Inf
GGATAGGTAGTGGTGGTCTG
SEQ


11
4



3S
27
00
E−67

GAAGGATGTTGCAGTCATAG
ID












[G/A]ACCTGTGGAAGAGAA
NO:












GGGACTGCTCCCTGTAGGTG
108












GGGAG






chr
101708
G
A
MUC6
p.P190
0.007
0.001
3.28
4.53
GGTAGGGATGTAGAAGTTTT
SEQ


11
5



6S
84
74
E−11
[3.11-
GGCCGTGCTAAATGAGCTTG
ID











6.59]
[G/A]GGATTGGCTGGTCCC
NO:












ACTGGTGGTCGGTGTCATTG
109












GTGGG






chr
101754
G
A
MUC6
p.T175
0.025
0.000
8.09
Inf
GGTAGAAGTTGAGGTGACTT
SEQ


11
3



3I
25
00
E−

CAGGATGGTGTGTGGAGGAA
ID










151

[G/A]TGTGTGAATGTAGGG
NO:












ATGTAGAGGTTTTGGCCGTG
110












CTAAA






chr
101776
T
C
MUC6
p.Q16
0.009
0.000
1.12
180.29
GGGATGTAGAGGTTTTGGCT
SEQ


11
1



80Q
80
05
E−51
[76.39-
GTGTTTAATGAGCTCAGGGC
ID











425.47]
[T/C]TGGCTGGTCCCGCTG
NO:












GTGGTCAGCGTCATTGTTGG
111












CGCTG






chr
101778
C
T
MUC6
p.T167
0.009
0.000
1.86
27.78
TTAATGAGCTCAGGGCTTGG
SEQ


11
5



2T
80
36
E−36
[17.86-
CTGGTCCCGCTGGTGGTCAG
ID











43.24]
[C/T]GTCATTGTTGGCGCT
NO:












GTGTGGGTGGACCCTGTGGC
112












CTTGA






chr
101791
G
A
MUC6
p.T163
0.014
0.000
6.50
51.65
GGCAGAAGTGGCCATCTGTG
SEQ


11
2



0I
95
29
E−49
[26.44-
CATGGGTAGGGGTGATGACT
ID











100.88]
[G/A]TGTGAGTACTTGGAG
NO:












TCACCAAAGAGGTGGAGAAA
113












GGTGG






chr
101797
C
G
MUC6
p.Q16
0.007
0.000
2.56
15.72
AAGAGGTGGAGAAAGGTGGA
SEQ


11
4



09H
60
49
E−23
[10.08-
ACGTGAGTGGGAAGTGTGGT
ID











24.51]
[C/G]TGAGGGTGTGATGGG
NO:












GTTGGATAGGTAGTGGTGGT
114












CTTGA






chr
102362
G
A
MUC6
p.T113
0.009
0.007
4.58
1.4
GGCCTCCTGTGTGTACTGGT
SEQ


11
2



8M
80
03
E−02
[1.02-
ACTCGCCATGGCCGTCCTGC
ID











1.92]
[G/A]TGTGCGTGTTGTAGA
NO:












AGCCGCAGTAGATGGCTGGG
115












AGGAA






chr
109353
A
C
MUC2
p.K178
0.007
0.000
4.33
94.81
CACCACTACGATGACCCCAA
SEQ


11
7



6Q
11
08
E−27
[28.87-
CCCCAACACCCACCAGCACA
ID











311.37]
[A/C]AGAGTACAACCGTGA
NO:












CACCCATCACCACCACAACT
116












ACGGT






chr
126418
C
T
MUC5
p.T202
0.006
0.003
1.15
1.69
ACTCCAGAGACTGCCCACAC
SEQ


11
7


B
6M
62
93
E−02
[1.14-
CTCCACAGTGCTTACCGCCA
ID











2.49]
[C/T]GGCCACCACAACTGG
NO:












GGCCACCGGCTCTGTGGCCA
117












CCCCC






chr
126996
G
A
MUC5
p.T395
0.006
0.004
4.28
1.52
CCAGTGGTACTCCCCCATCA
SEQ


11
9


B
3T
86
53
E−02
[1.03-
CTGATCACCACGGCCACTAC
ID











2.24]
[G/A]ATCACGGCCACCGGC
NO:












TCCACCACCAACCCCTCCTC
118












AACTC






chr
127131
A
G
MUC5
p.T440
0.014
0.000
2.18
Inf
CGACCTGGATCCTCACAGAG
SEQ


11
3


B
1T
95
00
E−89

CTGACCACAGCAGCCACTAC
ID












[A/G]ACTGCAGCCACTGGC
NO:












CCCACGGCCACCCCGTCCTC
119












CACCC






chr
160615
G
A
KRTAP
p.G110
0.005
0.000
6.34
Inf
CACAGCCGGAACCACAGCCA
SEQ


11
0


5-1
G
39
00
E−31

CCCTTGGATCCCCCACAAGA
ID












[G/A]CCACAGCCCCCCTTG
NO:












GAGCCCCCACAGGAGCCACA
120












ACCCC






chr
160640
G
A
KRTAP
p.S26S
0.004
0.000
2.01
42.77
AGCCAGAACCTCCACAGCCA
SEQ


11
2


5-1

64
10
E−11
[16.27-
GAGCCACAGCCCCCACAGCC
ID











112.48]
[G/A]GAGCCACAGCCCCCA
NO:












CAGCCGGAGCCACAGCCCCC
121












ACAGC






chr
161943
A
G
KRTAP
p.C17C
0.012
0.000
1.27
137366
AGCCCCCACAGCCAGAGCCA
SEQ


11
0


5-2

25
01
E−71
[189.71-
CAACCCCCACAGCTGGAGCC
ID











9946.24]
[A/G]CAGCCCCCACAGCCG
NO:












GAGCCACAGCCTCTGGAGCA
122












GCCAC






chr
162916
G
A
KRTAP
p.C151
0.010
0.000
5.33
1023.61
AGCAGGGCTTACAGCAGCTG
SEQ


11
3


5-3
C
29
01
E−58
[140.85-
GACTGGGAGCAGCTGGGCTT
ID











7439.08]
[G/A]CAGCAGCTGGACTGG
NO:












CAGCAGGATGACCCACAGCC
123












TGAGG






chr
162936
C
A
KRTAP
p.K84
0.013
0.000
1.22
Inf
AGCAGCAGACGGGCACACAG
SEQ


11
4


5-3
N
48
00
E−80

CAGCTGGAGCCACAGCCCCC
ID












[C/A]TTGGAGCCTCCACAG
NO:












GAGCCACAGCCCCCCTTGCA
124












GCCCC






chr
164288
A
G
KRTAP
p.S148
0.011
0.000
1.28
Inf
TACAGCAGCTGGACTGGCAG
SEQ


11
0


5-4
S
27
00
E−67

CAGGATGACCCACAGCCTGA
ID












[A/G]GAGAAGCAGCAGGGC
NO:












TTACAGCAGCTGCACTGGGA
125












GCAGC






chr
165135
A
G
KRTAP
p.R97
0.027
0.000
1.04
Inf
CTGTGGCAAAGGGGGCTGTG
SEQ


11
9


5-5
G
94
00
E−

GCTCTTGCGGGGGCTCCAAG
ID










166

[A/G]GAGGCTGTGTCTCCT
NO:












GTGGGGTGTCCAAGGGGGCC
126












TGTGG






chr
216143
G
A
IGF2
p.Q33
0.016
0.000
9.89
19.8
CGTCTAAGTAGCTCGCCTTT
SEQ


11
0



X
68
90
E−16
[11.5-
GCGGCCCACCCAAAATATCT
ID











34.2]
[G/A]GATAATGGTTACCCC
NO:












GTCCTCAGTGCGTTGGACTT
127












GCATA






chr
438911
G
A
OR52B
p.T139
0.005
0.002
2.82
1.79
CAGAGAGACAGTCACACAAA
SEQ


11
0


4
I
21
91
E−02
[1.01-
TTTTCTTGATCAGAGCATTT
ID











2.96]
[G/A]TAAGAATGGTGGTGT
NO:












ACCTCAGTGGGTAGCATATG
128












GCAAT






chr
544404
C
T
ORS1Q
p.L204
0.008
0.005
1.36
1.57
CTGTGCTGACATCAGGCTCA
SEQ


11
0


1
F
58
50
E−02
[1.11-
ACAGCTGGTATGGATTTGCT
ID











2.2]
[C/T]TTGCCTTGCTCATTA
NO:












TTATCGTGGATCCTCTGCTC
129












ATTGT






chr
691328
T
C
OR2D2
p.S151
0.008
0.004
1.80
1.67
AGTATGAAGGTGGTGTCTAC
SEQ


11
1



G
133
873
E−02
[1.07-
CACAGACACCAGAATGCCAC
ID











2.5]
[T/C]GGTCCATGATCCTGT
NO:












TGCCAGCTGGACACACACTT
130












TCCAG






chr
694291
C
T
OR2D3
p.S228
0.014
0.010
5.32
1.47
ATCTTTTCAATGGGCGTGGT
SEQ


11
5



F
71
03
E−03
[1.13-
AATCCTCCTGGCCCCTGTCT
ID











1.92]
[C/T]CCTGATTCTTGGTTC
NO:












TTATTGGAATATTATCTCCA
131












CTGTT






chr
122463
G
A
MICAL
p. R559
0.008
0.005
2.51
1.5
CGCAGTGGGTTGGCCCTGTG
SEQ


11
55


2
Q
33
56
E−02
[1.06-
TGCCATCATCCACCGCTTCC
ID











2.13]
[G/A]GCCTGAGCTCATGTG
NO:












AGTCTGGGGCCCAGGCTGGC
132












CCCTG






chr
341650
G
A
NAT10
p.A983
0.008
0.003
5.80
2.17
TGAAGAGTGGAATGAAGTTT
SEQ


11
53



T
133
762
E−04
[1.39-
TGAACAAAGCTGGGCCGAAC
ID











3.26]
[G/A]CCTCGATCATCAGCC
NO:












TGAAAAGGTGAGGGCCCAGG
133












GTCTG






chr
354560
T
A
PAMR1
p.0534
0.007
0.005
3.47
1.49
CAAGCCCTCTCTTACCTGTA
SEQ


11
85



V
60
11
E−02
[1.04-
GGCTCTGGATGGTCTTCTCA
ID











2.14]
[T/A]CCCGGTCATCATCCC
NO:












GGTAGAATTTCCCCAAAACA
134












ACTTT






chr
474696
G
T
RAPSN
p.N88
0.005
0.002
5.29
1.96
TCTTGTGAAACTCGCACAGC
SEQ


11
31



K
15
63
E−03
[1.26-
TTCTCGTTGCTGCGTGCCAG
ID











3.06]
[G/T]TTCAGGTAGCTCTCC
NO:












AGGAGGAAGTCGGCATCCTC
135












CAGCT






chr
619595
A
C
SCGB1
p.N20T
0.005
0.002
1.60
2.21
TCCTTACACAAATTATATTT
SEQ


11
31


D1

15
33
E−03
[1.42-
TTATTCTTTTGCTCCAGCAA
ID











3.46]
[A/C]TGCAGTGGTCTGCCA
NO:












ACCTCTTGGTTCTGAAATCA
136












CAGGC






chr
622880
G
A
AHNAK
p.P462
0.007
0.004
2.38
1.54
GGACATCAATGTCCACTTTG
SEQ


11
14



5P
60
94
E−02
[1.07-
GGGTCCCTGATGTCAACTTC
ID











2.22]
[G/A]GGGCCCTTGAGGTCG
NO:












CCTTCCACTTTGGGCAGAGA
137












AATGT






chr
624339
C
T
METTL
p.R38
0.005
0.002
2.15
9.2
ACTGGCTGATAGTTGCCTGG
SEQ


11
12


12
W
21
72
E−02
[1.08-
CGGACCGCTGTCTCTGGGAT
ID











3.18]
[C/T]GGCTGCATGCCCAGC
NO:












CTCGTTTGGGCACTGTCCCC
138












ACCTT






chr
624443
C
G
UBXN1
p.E249
0.012
0.008
3.42
1.38
CTGAGCAATTGCACAGGGTC
SEQ


11
84



Q
25
88
E−02
[1.04-
CTGGCCCCCACCTAGTTCCT
ID











1.84]
[C/G]CCCACGGTGGAGCTC
NO:












CACATAGAGCCTCACAGCTG
139












CCAGC






chr
627608
C
T
SLC22A
p. R422
0.005
0.003
1.35
1.75
GGCCTTTTCCACCTCTGGCT
SEQ


11
00


8
Q
88
38
E−02
[1.15-
CCTGCTTTGGCTTCTTTGCC
ID











2.64]
[C/T]GCAGGGACCTAGGGA
NO:












CAGAGAGCTAAGGAAAAGCC
140












CTGGG






chr
634874
G
C
RTN3
p.0501
0.010
0.007
4.56
1.38
ATTGGGAGAAATCACAGAAG
SEQ


11
75



H
54
68
E−02
[1.01-
CTGATAGTTCTGGTGAGTCT
ID











1.87]
[G/C]ATGACACAGTAATAG
NO:












AGGACATCACAGCAGATACA
141












TCATT






chr
636815
C
T
RCOR2
p.T271
0.009
0.004
1.13
2.3
GGAGCGTGAGGTTGGCAAGG
SEQ


11
04



T
31
07
E−05
[1.65-
TCCGGGCTTCCTGACACTGC
ID











3.2]
[C/T]GTGAGGCCTTCAGGG
NO:












CTCAGGTACATGCCCTTGGG
142












TGGGC






chr
640518
G
A
GPR13
p.G17
0.006
0.000
6.66
48.83
CTGTGAGGACAAGATGTTAC
SEQ


11
89


7
G
04
10
E−15
[20.22-
GTAGTCAAGGCACAGCTGGG
ID











117.93]
[G/A]CCAACGGTGGCCCTG
NO:












GAAGGCAGAGGCAGGTACCC
143












CTGGC






chr
640832
G
T
ESRRA
p.R376
0.018
0.000
4.17
28.9
GAAGCCGGCCGGGCTGGCCC
SEQ


11
93



L
87
67
E−69
[20.87-
CGGAGGGGGTGCTGAGCGGC
ID











40]
[G/T]GCGGGCGGGCAGGCT
NO:












GCTGCTCACGCTACCGCTCC
144












TCCGC






chr
640833
G
A
ESRRA
p.A378
0.016
0.000
5.66
27.17
GCCGGGCTGGCCCCGGAGGG
SEQ


11
00



A
91
63
E−61
[19.38-
GGTGCTGAGCGGCGGCGGGC
ID











38.08]
[G/A]GGCAGGCTGCTGCTC
NO:












ACGCTACCGCTCCTCCGCCA
145












GACAG






chr
649850
G
A
SLC22A
p.A184
0.005
0.003
4.82
1.61
GGTCCTACCTGCAGCTGGCA
SEQ


11
72


20
A
15
20
E−02
[1.04-
GCTTCGGGGGCCGCCACAGC
ID











2.51]
[G/A]TATTTCAGCTCCTTC
NO:












AGTGCCTATTGCGTCTTCCG
146












GTTCC






chr
724060
C
T
ARAP1
p.V122
0.005
0.002
2.50
2.09
CAAGCCCAGCGTCACCCACC
SEQ


11
46



51
15
47
E−03
[1.34-
TGCCTCCTCCCTCTCGTTGA
ID











3.25]
[C/T]CTCAAAGCAGGTCCA
NO:












ATAGTCCTTCTCCCTGATGC
147












CCACG






chr
738439
C
T
C2CD3
p.R371
0.009
0.006
4.99
1.41
CAGTTGAAGGGAGGAGGTGA
SEQ


11
93



R
31
62
E−02
[1.02-
TCTTCAATGTGGTCTTTAAA
ID











1.96]
[C/T]CGATTCCTAGAAAAG
NO:












GCTCTGATCCTAAGGTGTGG
148












AAAAA






chr
740535
G
A
PGM2L
p.T522
0.005
0.002
4.03
2.06
ATATCCAGTGGTAACGTCCC
SEQ


11
73


1
I
15
51
E−03
[1.32-
GTACATGCAATATAGCAAAT
ID











3.21]
[G/A]TTCCACAAAATTTTG
NO:












GATATTCTTTTGGAGAATCA
149












AAATT






chr
747175
A
T
NEU3
p.X462
0.006
0.004
2.55
1.61
CCAGCCCTGGTAGGAACCCA
SEQ


11
37



Y
62
13
E−02
[1.09-
AGCCAATTCAAAAGCAATTA
ID











2.37]
[A/T]TTGGCTTAGGACCCA
NO:












ATTTCCATAGATGCAAATGG
150












CAGTT






chr
755093
C
T
DGAT2
p.F247
0.012
0.000
1.70
Inf
ACTCCTTTGGAGAGAATGAA
SEQ


11
32



F
25
00
E−73

GTGTACAAGCAGGTGATCTT
ID












[C/T]GAGGAGGGCTCCTGG
NO:












GGCCGATGGGTCCAGAAGAA
151












GTTCC






chr
755093
C
T
DGAT2
p.G250
0.018
0.000
1.61
Inf
GAGAGAATGAAGTGTACAAG
SEQ


11
41



G
14
00
E−

CAGGTGATCTTCGAGGAGGG
ID










108

[C/T]TCCTGGGGCCGATGG
NO:












GTCCAGAAGAAGTTCCAGAA
152












ATACA






chr
768348
C
A
CAPN5
p.L632
0.007
0.004
9.41
1.67
GCAGCCCAGCAACCTGCCAG
SEQ


11
87



I
60
56
E−03
[1.16-
GCACTGTGGCCGTGCACATT
ID











2.41]
[C/A]TCAGCAGCACCTCCC
NO:












TCATGGCTGTCTGACACCTG
153












CCCAC






chr
828797
C
T
PCF11
p.P795
0.007
0.005
3.85
1.47
GGACCTCCCACACCAGCTTC
SEQ


11
61



L
84
34
E−02
[1.03-
TCTTCGGTTTGATGGGTCAC
ID











2.11]
[C/T]AGGACAAATGGGGGG
NO:












AGGAGGCCCTTTGAGATTTG
154












AGGGG






chr
896073
C
T
TRIM6
p.E205
0.008
0.003
3.95
2.81
ATTCTCACTTGACTGTCTTG
SEQ


11
39


4B
K
82
16
E−07
[1.96-
TAGTTGTTGGAAAAGCTCTT
ID











4.02]
[C/T]TGCTTCTCTTTCCAG
NO:












TGCCTGCAGATGCCGTTGCT
155












CCTCC






chr
947598
G
A
KDM4E
p.C381
0.008
0.003
1.56
2.17
GCTCTGGGCCTGAGGCTTCT
SEQ


11
63



Y
09
74
E−04
[1.5-
CCCAAACCTCACAGCCCAGT
ID











3.14]
[G/A]TCCCACACAGCCTGT
NO:












GTCCTCAGGGCACTGTTACA
156












ACCCA






chr
961175
A
C
CCDC8
p.D125
0.006
0.002
2.43
2.96
TGTTGAGATCATTATCCTCT
SEQ


11
37


2
E
62
24
E−06
[1.99-
TGACTTAAATGTTTTTCCTG
ID











4.42]
[A/C]TCTTGTAAGTCAATA
NO:












TTCCTATGTTTGATTTTGTT
157












CGTTT






chr
107381
G
T
ALKBH
p.H474
0.006
0.004
2.37
1.63
AGAGAAAGAAAGACCATACT
SEQ


11
630


8
N
62
08
E−02
[1.09-
TACTGCTGTTGCAAAATGAT
ID











2.43]
[G/T]AATAACAGCAATGGA
NO:












GATGCAGGCATCACAAGACC
158












CACTG






chr
114451
T
C
NXPE4
p.I31V
0.005
0.003
3.81
1.62
ACAGGATTCCATGTGTTTCT
SEQ


11
010




39
33
E−02
[1.05-
CCAGACATGCCCACTGGGGA
ID











2.5]
[T/C]TGTGGATGTCATTCC
NO:












AAACTTGCATTTCTCTTTCA
159












TTGCA






chr
116744
A
G
SIK3
p.L518
0.005
0.003
3.98
1.6
TGTCTAGGTACCTTGTACTC
SEQ


11
648



L
39
38
E−02
[1.04-
AAGTTGCCCGGTTGGTTGCA
ID











2.46]
[A/G]GTTTTGCATAGGCAA
NO:












CAGGTTGTGCATGAAGTTCA
160












CATTA






chr
117054
G
A
SIDT2
p.8235
0.005
0.003
2.25
1.73
ATGATGATGAAGAAGATATT
SEQ


11
496



H
39
13
E−02
[1.12-
TATCATCATCATCCTGCAGC
ID











2.66]
[G/A]CAAAGACTTCCCCAG
NO:












CAACAGCTTTTATGTGGTGG
161












TGGTG






chr
117057
C
T
SIDT2
p.R333
0.005
0.000
3.63
533.81
ATGCAGGCAGAAGAAGAAGA
SEQ


11
334



X
64
01
E−31
[72.07-
CCCTGCTGGTGGCCATTGAC
ID











3953.67]
[C/T]GAGCCTGCCCAGAAA
NO:












GCGGTACCTCCAGGGGGCCT
162












GGGTG






chr
118516
G
A
pHLDB
p.A110
0.005
0.002
2.98
2.47
CCTGCCTGCGGGGCGGGAGC
SEQ


11
274


1
8T
39
19
E−04
[1.59-
GTGGGGAGGAGGGTGAGCAC
ID











3.82]
[G/A]CCTATGATACGCTGA
NO:












GTCTGGAGAGCTCTGACAGC
163












ATGGA






chr
118850
C
G
FOXR1
p.A153
0.005
0.000
7.54
287.7
GACAGCTCCTCTATGGCTCT
SEQ


11
225



G
15
02
E−29
[67.44-
CCCATCCCCTCACAAAAGGG
ID











1227.4]
[C/G]CCCCCTCCAGAGTCG
NO:












GAGGCTTCGGCAAGCCAGCA
164












GCCAG






chr
120188
T
A
POU2F
p.F422
0.018
0.000
5.03
2148.21
TCAAAATAACTCCAAAGCAG
SEQ


11
060


3
I
87
01
E−
[298.71-
CAGTGAACTCCGCCTCCAGT
ID










111
15448.88]
[T/A]TTAACTCTTCAGGGT
NO:












AAGGTGAAGGGGACGGTGCA
165












GAGAC






chr
123476
C
T
GRAM
p.A295
0.006
0.003
8.40
1.76
TCACCAACAGCACACTAACA
SEQ


11
177


D1B
A
37
64
E−03
[1.18-
TCCACAGGGAGCAGTGAGGC
ID











2.62]
[C/T]CCCGTCTCGGTATGG
NO:












GCAGTCAGCCTTTGACTTCT
166












ACCCC






chr
124266
A
G
OR8B3
p.P286
0.009
0.003
1.44
3.04
GTGCAACTTTGACATCCTTG
SEQ


11
390



P
31
09
E−08
[2.17-
TTCCTCAAACTGTAGATGAG
ID











4.25]
[A/G]GGATTGAGCATGGGC
NO:












ACCACATTAGTGTAGAAAAC
167












AGAAG






chr
124620
G
T
VSIG2
p.N97
0.005
0.000
6.91
288.96
CGTCAGTCAGTTTCAGTGTG
SEQ


11
746



K
15
02
E−29
[67.73-
GCCACCCCCACTGTGGGGGG
ID











1232.76]
[G/T]TTCTGAAGCAGGCTG
NO:












ACCCGCTTTGACTTAGAACC
168












AGTTG






chr
368928
T
C
SLC6A1
p.P97P
0.008
0.005
2.84
1.72
CCTCTAAGCGTCCTCCTACC
SEQ


12



3

82
15
E−03
[1.23-
TCCAGAATTCTATACATCTA
ID











2.41]
[T/C]GGGACTCCCCAGAGG
NO:












GGCCGTAAGTGCAGGAGATG
169












GAAGT






chr
704483
C
T
ATN1
p.Y136
0.011
0.007
1.73
1.46
ATATCGACCAGGACAACCGA
SEQ


12
8



Y
03
57
E−02
[1.08-
AGCACGTCCCCCAGTATCTA
ID











1.98]
[C/T]AGCCCTGGAAGTGTG
NO:












GAGAATGACTCTGACTCATC
170












TTCTG






chr
109594
C
A
TAS2R
p.R55I
0.007
0.004
1.11
1.65
TACAATGCCATTTACAACCA
SEQ


12
16


8

84
77
E−02
[1.15-
TTACACTGATCAAACAAATT
ID











2.36]
[C/A]TGGCGATAACTAAAT
NO:












TGGTAAGGATGTAGTCAACT
171












GTGGA






chr
114617
G
T
PRB4
p.P50T
0.026
0.006
4.29
3.98
TGTGGGGGTGGTCCTTGTGG
SEQ


12
69




72
86
E−29
[3.23-
CTTTCCTGGAGGAGGTGGGG
ID











4.9]
[G/T]ACGTTGGGGCTGGTT
NO:












TCCTCCTTGTGGGCGTCGTC
172












CTTCT






chr
130615
A
G
GPRC5
p.I134
0.013
0.009
1.04
1.45
CAAGCTCGTCCGGGGGAGGA
SEQ


12
83


A
V
48
32
E−02
[1.11-
AGCCCCTTTCCCTGTTGGTG
ID











1.91]
[A/G]TTCTGGGTCTGGCCG
NO:












TGGGCTTCAGCCTAGTCCAG
173












GATGT






chr
152623
C
T
RERG
p.V95V
0.009
0.006
1.84
1.49
TGGGCTTTTTGATCTCATCT
SEQ


12
59




80
58
E−02
[1.09-
AGGATGTTCTTAAGTGGCAG
ID











2.06]
[C/T]ACTTCCTCAAAACTT
NO:












CCTCGGTCAGTAATGTCGTA
174












GACCA






chr
482402
G
A
VDR
p.A353
0.005
0.003
1.83
1.71
GGAACTTGATGAGGGGCTCA
SEQ


12
33



A
64
30
E−02
[1.11-
ATCAGCTCCAGGCTGTGTCC
ID











2.64]
[G/A]GCTGTGAGAGACAAT
NO:












GGCCAGGTACTGCGGGCAGA
175












GCTGA






chr
494255
C
T
KMT2D
p.V430
0.005
0.002
1.83
2.1
TTTGGCTCTTGAGGGCTGGA
SEQ


12
75



5I
39
57
E−03
[1.36-
TGGTGGAGGTGTGGGATGGA
ID











3.25]
[C/T]AGGGCCAAGGACTGG
NO:












TCCTGTAGATAAGGCTCCTG
176












GTGGG






chr
504801
G
T
SMARC
p.Q11
0.007
0.004
8.42
1.8
CCCGCAAGAGACCTGCCCCT
SEQ


12
02


D1
2H
807
359
E−03
[1.14-
CAGCAGATCCAGCAGGTCCA
ID











2.71]
[G/T]CAGCAGGCGGTCCAA
NO:












AATCGAAACCACAAGTAAGA
177












TGATC






chr
507457
G
A
FAM18
p.A160
0.005
0.000
3.41
10.56
CTGGGCCTGCTGAGGGGTGA
SEQ


12
92


6A
8V
88
56
E−14
[6.19-
GAGGGATCCCCTGAGCCTGC
ID











18.02]
[G/A]CCTGCTGAGGGGTGA
NO:












GAGGGATCCCCAGTTCCTGC
178












GCCTG






chr
507468
A
G
FAM18
p.V126
0.025
0.000
7.89
399.44
CTGGGCCTGCTGAGGAGTAA
SEQ


12
36


6A
0A
74
07
E−
[126.72-
GAGGGATCCCCAGTTCCTGA
ID










110
1259.11]
[A/G]CCTGCTTAGGGGTGA
NO:












GAGTGATTCCGAGAGCCTGC
179












GCCTG






chr
507481
T
G
FAM18
p.K816
0.005
0.002
1.29
1.97
TCTTGCAAATATTGCTCCTG
SEQ


12
69


6A
Q
21
65
E−02
[1.11-
CCTTTGTTTTTCCTTCTCCT
ID











3.26]
[T/G]GTGGTCTTTCTGTAC
NO:












TGTTGAGACTGTTGGAATAT
180












CTCTT






chr
529608
C
A
KRT74
p.G507
0.005
0.002
9.47
2.09
GGCTGGGGTGCTCTTGCCCT
SEQ


12
23



V
21
49
E−03
[1.18-
GGGTGTCCTTGAGGTCTCCC
ID











3.47]
[C/A]CTCGCGCCTCTGTGG
NO:












TCTTGGTCTGCCCGCTCTGG
181












GTGCT






chr
529620
G
A
KRT74
p.R420
0.008
0.005
2.50
1.51
AGTTTCAGGCTCATGAGCTC
SEQ


12
50



W
33
55
E−02
[1.06-
CTGGTACTCGCGCAGCATCC
ID











2.13]
[G/A]CGCCAGCTCCTCCTT
NO:












GGCCTGGTGCAGGGCGCCCT
182












CCAGC






chr
534481
G
A
TENC1
p.T13T
0.005
0.003
1.35
1.79
TCATGGAGCGGCGCTGGGAC
SEQ


12
14




39
01
E−02
[1.16-
TTAGACCTCACCTACGTGAC
ID











2.77]
[G/A]GAGCGCATCTTGGCC
NO:












GCCGCCTTCCCCGCGCGGCC
183












CGATG






chr
535169
C
T
SOAT2
p.V455
0.010
0.007
2.52
1.45
TGGGGTTCTTCTATCCCGTC
SEQ


12
93



V
54
32
E−02
[1.06
ATGCTGATACTCTTCCTTGT
ID











1.97]
[C/T]ATTGGAGGTGAGCTG
NO:












GTCTCTGTGCCACTGGAAGG
184












GAGCC






chr
537144
G
T
AAAS
p.T57N
0.009
0.000
5.15
Inf
GATGAAGGCAGTTCTTGTGC
SEQ


12
30




31
00
E−56

CATGGTCCAGCCTTCCAGGG
ID












[G/T]TCTTTAGGGGATCCT
NO:












TTGTCAGTTGTAGGACAGGA
185












AGATT






chr
558464
C
A
OR6C2
p.L164
0.005
0.002
1.70
1.8
TGATGATCATTGTTCCACCA
SEQ


12
89



L
15
87
E−02
[1.16-
CTTAGCTTAGGCCTCCAGCT
ID











2.8]
[C/A]GAATTCTGTGACTCC
NO:












AATGCCATTGATCATTTTAG
186












CTGTG






chr
563509
C
C
PMEL
p.E370
0.005
0.002
5.00
2.3
CCTCTGAAACTGGCACCTTC
SEQ


12
77



D
88
57
E−04
[1.51-
TCAGGTGTCATACCTGTGCT
ID











3.49]
[C/G]TCTGCAGTTGGCATC
NO:












TGCACAGGTGCAGTGCTTAT
187












GACTT






chr
570092
G
A
BAZ2A
p.N10
0.007
0.004
4.23
1.48
GTCCCCCCGAGAACTGGGAG
SEQ


12
16



6N
35
97
E−02
[1.02-
AGAAGGGGTGGGTCCTTGAG
ID











2.14]
[G/A]TTGCTGCCAGGATTG
NO:












GCAGATGGGTACTGTGAGTA
188












GTTCC






chr
575693
G
A
LRP1
p.G121
0.008
0.005
8.35
1.64
GAAGGCATTGTGTGTTCCTG
SEQ


12
39



SE
58
26
E−03
[1.16-
CCCTCTGGGCATGGAGCTGG
ID











2.3]
[G/A]GCCCGACAACCACAC
NO:












CTGCCAGATCCAGAGCTACT
189












GTGCC






chr
667251
G
A
HELB
p.G959
0.005
0.003
2.31
1.66
TCGTTTGAAACATTTCTTGC
SEQ


12
38



S
88
56
E−02
[1.1-
AAAGTAAGCTCTCCTCTAGC
ID











2.51]
[G/A]GCGCACCTCCAGCAG
NO:












ATTTTCCGTCCCCACGGAAG
190












AGCTC






chr
856951
C
T
ALX1
p.N27
0.009
0.000
1.86
Inf
TTTCAAACCACCAGAACCAG
SEQ


12
06



8N
56
00
E−57

TTCAGCCACGTGCCCCTCAA
ID












[C/T]AATTTTTTCACTGAC
NO:












TCTCTTCTTACTGGGGCAAC
191












CAATG






chr
899169
G
A
POC1B-
p.I450I
0.006
0.004
3.83
1.55
GGTTGTTGTCAGGAGAATTA
SEQ


12
68


GALNT

62
28
E−02
[1.05-
TAATCTAAACATTCAGACGA
ID






4




2.29]
[G/A]ATCCCTCTACTGCGA
NO:












ATAGCCCCATGCCAGCCTGG
192












TCTAT






chr
956942
C
T
VEZT
p.P712
0.001
0.000
1.23
41.5
TGAACCACAAGCAGATGGAA
SEQ


12
43



S
96
05
E−05
[11.7-
GTGGTCTGACCACTGCCCCT
ID











147]
[C/T]CAACTCCCAGGGACT
NO:












CATTACAGCCCTCCATTAAG
193












CAGAG






chr
104144
C
T
STAB2
p.P217
0.006
0.003
1.77
1.68
CTATGTCGGAGATGGGCTGA
SEQ


12
426



0S
13
66
E−02
[1.12-
ACTGTGAGCCGGAGCAGCTG
ID











2.52]
[C/T]CCATTGACCGCTGCT
NO:












TACAGGACAATGGGCAGTGC
194












CATGC






chr
108920
G
A
SART3
p.F691
0.005
0.003
3.10
1.62
TGATGCTGTCCTTGCTGCTG
SEQ


12
173



D
64
48
E−02
[1.06-
TCGTGCAGCACCTTGGGCAT
ID











2.47]
[G/A]TCCCTCTTCAGGGAG
NO:












GCTGCCTTCTCCTTCTGCTT
195












CGAAG






chr
111317
T
C
CCDC6
p.L172
0.007
0.004
4.98
1.49
CTCCAGCACTGCCTGTTGAT
SEQ


12
855


3
S
11
78
E−02
[1.03-
GGAGAAGAAAACCATGAACT
ID











2.17]
[T/C]GGCCATTGAGCAATC
NO:












TTCTCAGGCCTATGAGCAGA
196












GGTGG






chr
119594
C
T
SRRM4
p.S529
0.013
0.000
4.82
Inf
CCATCCCCTACTATCGGCCC
SEQ


12
354



S
48
00
E−80

AGCCCCTCCTCATCCGGCAG
ID












[C/T]CTCAGCAGCACCTCC
NO:












TCCTGGTACAGCAGCAGCAG
197












TAGCC






chr
122361
C
T
WDR6
p.R188
0.012
0.008
5.94
1.53
TGAAAGGCAGCCCTCAGGAG
SEQ


12
711


6
W
25
07
E−03
[1.15-
AGCTTGAGGAGAAAACCGAC
ID











2.03]
[C/T]GGATGCCCCAAGATG
NO:












AACTGGGACAAGAAAGAAGG
198












GACTT






chr
122404
C
T
WDR6
P.R860
0.012
0.008
1.00
1.49
ACAAGTCCTCCCAGTGAGAA
SEQ


12
946


6
C
01
07
E−02
[1.12-
GCATGGCGGAGCTACAGAAA
ID











1.99]
[C/T]GCTACTTGGTGTTTA
NO:












TTAACAGAGACAAGGTAACA
199












GCGCT






chr
122676
A
G
L33C4
p.Y159
0.005
0.002
3.52
2.01
CCCGAAGGCCCTTTCATCAC
SEQ


12
056


3
C
39
69
E−03
[1.3-
TTACAACTATTACGTGACCT
ID











3.1]
[A/G]TGATTTTGTGAAAGA
NO:












TGAAGAAGGCGAAATGAATG
200












AGTCC






chr
123706
T
G
MPHO
p.S160
0.006
0.000
8.30
14.36
GTGGATTCAGGATAATGGAT
SEQ


12
313


SPH9
R
51
46
E−15
[7.8-
AACAGATTCATTTCTCTCAC
ID











25.78]
[T/G]GCTTAGAGAAAAAAA
NO:












ACCCATTTGAcTTTCCGAAG
201












ATACT






chr
124364
C
T
DNAH1
p.H273
0.007
0.004
1.93
1.59
GGGATCCCATATTGTTTGGA
SEQ


12
285


0
9H
35
64
E−02
[1.1-
GACTTCCAGATGGCTCTGCA
ID











2.3]
[C/T]GAAGGAGAACCACGC
NO:












ATTTATGAAGACATCCAGGA
202












CTACG






chr
125396
G
A
UBC
p.D495
0.028
0.012
4.07
2.27
CATCTTCCAGCTGTTTCCCA
SEQ


12
833



D
92
95
E−08
[1.69-
GCAAAGATCAACCTCTGCTG
ID











3.06]
[G/A]TCAGGAGGGATGCCT
NO:












TCCTTGTCTTGGATCTTTGC
203












CTTGA






chr
125397
T
C
UBC
p.025
0.005
0.000
1.03
71.98
AGATCAACCTCTGCTGGTCA
SEQ


12
541



9Q
15
07
E−24
[31.86-
GGAGGAATGCCTTCCTTGTC
ID











162.59]
[T/C]TGGATCTTTGCTTTG
NO:












ACGTTCTCGATAGTGTCACT
204












GGGCT






chr
125398
A
G
UBC
p.T7T
0.012
0.000
1.46
94.03
CACTGGGCTCAACCTCGAGG
SEQ


12
297




53
10
E−33
[44.17-
GTGATGGTCTTACCAGTCAG
ID











200.19]
[A/G]GTCTTCACGAAGATC
NO:












TGCATTGTCTAACAAAAAAG
205












CCAAA






chr
132625
G
A
DDX51
p.S487
0.022
0.000
2.59
2540.86
CCAGGACCAGGTGCAGGACG
SEQ


12
260



S
30
01
E−
[354-
ACCAGCGGCTTAGAGCTGAG
ID










131
18237.12]
[G/A]CTGCAGGGCACGTAG
NO:












TGGTGCTACAGGGACGGCAG
206












GGGGT






chr
368717
G
T
CCDC1
p.V25V
0.006
0.003
1.29
1.72
GGGACCCCACACCGCGCCGC
SEQ


13
82


69

37
72
E−02
[1.14-
CCGCCGACTCACTTCTTGCG
ID











2.59]
[G/T]ACTTCTTCCAGCAAC
NO:












TGCTGTTTCAGGCGGTTGGT
207












GCTCA






chr
423521
T
C
VWA8
p.M76
0.005
0.003
2.56
1.62
ACCAATAATAAGTGTTCTCC
SEQ


13
71



7V
88
63
E−02
[1.07-
AAGGAGAAAGTCTTTCAGCA
ID











2.45]
[T/C]ATCTTCCATCACTAT
NO:












CACATGCTAGAGAAAAAGGA
208












ACTAG






chr
492817
T
A
CYSLTR
p. L278
0.016
0.001
1.09
10.37
CACACTGAGGACCGTCCACT
SEQ


13
85


2
I
93
66
E−30
[7.32-
TGACGACATGGAAAGTGGGT
ID











14.5]
[T/A]TATGCAAAGACAGAC
NO:












TGCATAAAGCTTTGGTTATC
209












ACACT






chr
763816
T
C
LMO7
p.H187
0.008
0.004
7.04
1.9
TCCAAACATACTCTGATGAC
SEQ


13
79



H
82
66
E−04
[1.36-
ATCTTGTCTTCTGAAACACA
ID











2.67]
[T/C]ACCAAAATTGATCCC
NO:












ACTTCTGGCCCAAGGCTCAT
210












AACCC






chr
995404
G
T
DOCK9
p.P679
0.008
0.000
3.06
Inf
CGTAGGTGAACATATATTAA
SEQ


13
20



T
33
00
E−49

AAAAAAACAAACCTTAAGGG
ID












[G/T]CTGAGAGTCTTCCTC
NO:












ATCTGAATCTTTGAATTCAA
211












TGCAA






chr
103382
T
C
CCDC1
p.K699
0.000
0.000
1.26
14.31
TTTTCTTTCAGAATAGAAGT
SEQ


13
057


68
7R
25
02
E−01
[0.89-
TGATATCGTCATGATGAGGT
ID











228.77]
[T/C]TTGATGCTGATTTAT
NO:












GTTTGCTTTGGAAACAATCC
212












AATCT






chr
103382
G
A
CCDC1
p.T685
0.000
0.000
2.60
2.18
TCTATATTTCCTGCTTTTGT
SEQ


13
483


68
5I
49
22
E−01
[0.49-
GGGACTTACAGGAAGGTGGT
ID











9.67]
[G/A]TAATAATTAAGGTTT
NO:












CCTTTCTGCACTCTCTAGTA
213












CAATG






chr
103382
A
G
CCDC1
p.V679
0.009
0.008
4.27
1.13
TTCTGATTCCTGACTTAAAT
SEQ


13
660


68
6A
56
43
E−01
[0.82-
AAGAGTTGGCTTCCAGAAAC
ID











4.57]
[A/G]CACATTCCTCACTCT
NO:












CACTTACTTCAAGACATGAA
214












CACTC






chr
103382
C
T
CCDC1
p.E678
0.000
0.000
2.43
4.63
ACACATTCCTCACTCTCACT
SEQ


13
700


68
3K
25
05
E−01
[0.48-
TACTTCAAGACATGAACACT
ID











44.52]
[C/T]GTCCAAGTCAGCTGG
NO:












ACTCTCAATATCTGTCTGAA
215












TATCA






chr
103383
C
T
CCDC1
p.E660
0.000
0.000
1.87
7
TATTGTAAATCAAGATCTAT
SEQ


13
228


68
7K
25
04
E−01
[0.63-
TTGATGGAGAGATTTCTCCT
ID











77.21]
[C/T]AGAAAGTAACAAAAT
NO:












TCTGTTTTGTCGTTTTGGTC
216












CTGTG






chr
103383
T
C
CCDC1
p.R657
0.000
0.000
2.19
2.5
TTCTTTCTCTCATGAGCACT
SEQ


13
339


68
0G
49
20
E−01
[0.55-
GGTCATTGCATAAGATTCTC
ID











11.27]
[T/C]TACAATTCTGGGAAA
NO:












GGCTTTCATTTGTATCTCCA
217












ATGTT






chr
103383
T
G
CCDC1
p.E650
0.002
0.002
1.00
0.96
ATTTTCTAGCTTATTAATAC
SEQ


13
524


68
8A
70
81
E+00
[0.52-
TCTGTAGCTTTGTGATTGTC
ID











1.77]
[T/G]CCTCACTGTCACTTG
NO:












AAACATCAACAATCAGTGTC
218












TTCAT






chr
103383
A
C
CCDC1
p.S646
0.000
0.000
1.89
6.91
GTCCCTTCTAGAGACATAAA
SEQ


13
666


68
1A
25
04
E−01
[0.63-
GTTCATTGTTTTATGTCTAG
ID











76.19]
[A/C]ATAGAACCTCCAACT
NO:












GTTATCTTTTGAAATAGTCC
219












CTTTT






chr
103383
G
A
CCDC1
p.H641
0.002
0.000
1.49
9.81
ATCAGATTCAGTTGTATTTC
SEQ


13
792


68
9Y
94
30
E−07
[4.68-
AAGTGCTTTTGACTCTAAAT
ID











20.56]
[G/A]ACTAGTAAGCTTATT
NO:












TTTTTCTTTGGGAGTAAACT
220












GTTCT






chr
103383
T
G
CCDC1
p.E641
0.000
0.000
6.73
Inf
AAGTGCTTTTGACTCTAAAT
SEQ


13
812


68
2A
25
00
E−02
[NaN-
GACTAGTAAGCTTATTTTTT
ID











Inf]
[T/G]CTTTGGGAGTAAACT
NO:












GTTCTAAAAGGGATTTGTGC
221












TGCGT






chr
103383
C
T
CCDC1
p.D636
0.001
0.002
2.75
0.61
AAGTCGTCAGGCTTATAGGC
SEQ


13
951


68
6N
72
82
E−01
[0.28-
TTGTATGTTATCTAGTTTAT
ID











1.3]
[C/T]AGAAGAAACTTTGTC
NO:












TTGGATCATATTTTTAACCT
222












GGGAC






chr
103384
C
T
CCDC1
p.S632
0.000
0.000
4.28
1.98
ATGTTCTGCNTTTGTACTGT
SEQ


13
070


68
6N
25
12
E−01
[0.24-
CTGCAACTATTTTGACTTCG
ID











16.06]
[C/T]TACTTTTAACTTGAG
NO:












GCGGTATGGGCACAGTTCCT
223












GGGAA






chr
103384
G
A
CCDC1
p.T611
0.021
0.024
1.58
0.85
ATACTCTAATTTCTTTCTAT
SEQ


13
712


68
2M
32
94
E−01
[0.68-
TGCTTGGTGTACCACGCCCC
ID











1.06]
[G/A]TGATATTAAGCATCT
NO:












GTGGAATTGGGTGATTCTGG
224












ATTTT






chr
103385
T
C
CCDC1
p.K599
0.003
0.004
5.30
0.81
GGGTGTGCACTACTGCTTGT
SEQ


13
064


68
SE
43
24
E−01
[0.47-
GTCCATTCTTCCTCTCTCCT
ID











1.39]
[T/C]CTCCAGATTGGCAGT
NO:












CCTGGCCTTGTGCATCTCTG
225












TTTTC






chr
103385
G
A
CCDC1
p.P591
0.000
0.000
6.72
Inf
TGATTGAAATTGAAAAGTCC
SEQ


13
294


68
8L
25
00
E−02
[NaN-
AGGGAGGGAATAGGGACTTC
ID











Inf]
[G/A]GAAGAAATTCCAGAA
NO:












CACCTTCCTCTTGTTCTGAA
226












ATGAG






chr
103385
C
A
CCDC1
p.A590
0.000
0.000
4.26
1.99
AATTCCAGAACACCTTCCTC
SEQ


13
340


68
3S
25
12
E−01
[0.24-
TTGTTCTGAAATGAGCAATG
ID











16.16]
[C/A]CTGCTTCCTTCCCCC
NO:












TTTTGCAGGGTCAATCTCTG
227












TCATA






chr
103385
C
T
CCDC1
p.G584
0.000
0.000
1.31
13.75
GGAAACTTAGAAAGGATAGT
SEQ


13
520


68
3R
25
02
E−01
[0.86-
GTTCGTCCTGGTCTTGTGCC
ID











219.86]
[C/T]ATGTTCACACCGTCG
NO:












GATCACTTGCTTTTTCATGA
228












CAATA






chr
103385
G
T
CCDC1
p.S579
0.000
0.000
1.00
0.86
TTTGAGTGATCCCTTTGTCT
SEQ


13
654


68
8Y
25
28
E+00
[0.11-
GTGGTGCTAACACTTTGGGA
ID











6.5]
[G/T]AAAACATTTTGCTGA
NO:












TTCTATCATTACTTTGTCCA
229












TCTTC






chr
103386
C
T
CCDC1
p.V560
0.000
0.000
6.74
Inf
GCCTCTGGGCGGGGCACATA
SEQ


13
222


68
9I
25
00
E−02
[NaN-
CTGTTCTGCTTGCTTAACAA
ID











Inf]
[C/T]GTTTTTATCAACGCC
NO:












TTCAACTGAGTCTCTATTTG
230












TTATT






chr
103387
C
T
CCDC1
p.V534
0.000
0.000
2.98
3.42
TGCTTTTCATTTTTAACATC
SEQ


13
002


68
9I
25
07
E−01
[0.38-
TTTTGGGATATCACCAACGA
ID











30.56]
[C/T]GGACTCTCTATGTAC
NO:












AGTCTCCCCTATGTGTGATA
231












TTCTC






chr
103387
C
T
CCDC1
p.R533
0.002
0.004
1.64
0.63
GGACTCTCTATGTACAGTCT
SEQ


13
043


68
5Q
70
28
E−01
[0.34-
CCCCTATGTGTGATATTCTC
ID











1.15]
[C/T]GCAAAATAGGTCTTT
NO:












TAAGTCTTAGCATTTCATTA
232












CCTAA






chr
103387
G
A
CCDC1
p.P528
0.020
0.017
2.99
1.13
TTCACCTTCACATTCCTGCA
SEQ


13
196


68
4L
10
80
E−01
[0.9-
CCTTCTCTTCCTGATGTTTG
ID











1.42]
[G/A]GGAATATTAAGATGC
NO:












TTACTATTTGCACGTCATCC
233












TCTTC






chr
103387
C
A
CCDC1
p.G524
0.000
0.000
4.64
Inf
GATTAAAATATCACCAGCAA
SEQ


13
313


68
5V
49
00
E−03
[NaN-
TTGGCCTTATACATGTGCCT
ID











Inf]
[C/A]CCTCAGTATCTGGTG
NO:












ATACCTGGAGTTTTACTAGG
234












GGAAA






chr
103387
C
T
CCDC1
p.V509
0.000
0.000
5.68
6.92
GACCGTGACTGTGGGAGAGA
SEQ


13
767


68
4M
49
07
E−02
[1.27-
CACTTTTGCAATTCTTATCA
ID











37.81]
[C/T]GTTCTCCTGTCCTTC
NO:












TGTTGTATCAAACTTAAGAT
235












ATGGT






chr
103388
C
G
CCDC1
p.G501
0.035
0.034
7.24
1.03
TTTGTCTTCCATATCTATTC
SEQ


13
015


68
1A
78
78
E−01
[0.87-
TGAGTCCACCTTTCTCTTCT
ID











1.22]
[C/G]CCTGTGCTGTGGGTT
NO:












GCACTGGTCCTTTTGAGTTG
236












CTTAA






chr
103388
A
T
CCDC1
p.L490
0.000
0.000
1.30
13.83
CCATTGCATAGAAGTGCAAG
SEQ


13
343


68
2M
25
02
E−01
[0.87-
TGGGAGTGCCTCTGCCCTCA
ID











221.2]
[A/T]ATGTATCCTTTTGGG
NO:












GAGTATTCTACCTTCCCTGC
237












CTTCT






chr
103388
C
T
CCDC1
p.G489
0.002
0.003
3.31
0.7
CCTCAAATGTATCCTTTTGG
SEQ


13
378


68
00
45
50
E−01
[0.37-
GGAGTATTCTACCTTCCCTG
ID











1.32]
[C/T]CTTCTATTTTTACTC
NO:












TGTCCTTTGCCTCTTTATAT
238












GGCAT






chr
103388
G
A
CCDC1
p.P472
0.002
0.003
6.78
0.85
GTTTGCCTTGAAGGCAATGA
SEQ


13
877


68
4S
94
48
E−01
[0.47-
TTCCTGGATCTCAAGATGTG
ID











1.52]
[G/A]CATAAAGCTTCTTGT
NO:












TATTCGTGGTTCACCTTCCT
239












CTTCT






chr
103388
T
C
CCDC1
p.M47
0.043
0.041
5.14
1.05
TGCCTTGAAGGCAATGATTC
SEQ


13
880


68
23V
14
03
E−01
[0.9-
CTGGATCTCAAGATGTGGCA
ID











1.23]
[T/C]AAAGCTTCTTGTTAT
NO:












TCGTGGTTCACCTTCCTCTT
240












CTTTT






chr
103389
G
A
CCDC1
p.P465
0.001
0.000
6.03
7.86
TTCACCTGCAGTTCCTTTGT
SEQ


13
072


68
9S
96
25
E−05
[3.3-
TTTTAGTATATGGGAAAGGG
ID











18.75]
[G/A]TGATTTCTCTGCCTT
NO:












TACAGCTATGTACTCGGGAT
241












GCATT






chr
103389
T
G
CCDC1
p.K462
0.004
0.002
6.72
1.6
TGAAATATTTGCTTTATCCT
SEQ


13
164


68
8T
41
76
E−02
[0.98-
TTTGGATCTGGGCCATGTAT
ID











2.61]
[T/G]TTGTTCTGTTTGAAT
NO:












CACCTGTGATATCATTCAAA
242












TATGA






chr
103389
G
A
CCDC1
p.R458
0.000
0.000
2.68
2.13
GATCTTGTTACTCCTTGTTC
SEQ


13
306


68
1X
49
23
E−01
[0.48-
CTCTTTTTTGCCTGCTGTTC
ID











9.44]
[G/A]TTTGTCTAATTTACA
NO:












GTGAGATAGAGAAGGTATTG
243












TCAGA






chr
103389
A
G
CCDC1
p.C457
0.000
0.000
3.09
9.25
TGTTCCTCTTTTTTGCCTGC
SEQ


13
321


68
6R
98
11
E−03
[2.61-
TGTTCGTTTGTCTAATTTAC
ID











32.79]
[A/G]GTGAGATAGAGAAGG
NO:












TATTGTCAGAAACACATCCA
244












GTTCA






chr
103389
C
A
CCDC1
p.V448
0.000
0.000
1.89
6.93
TTGTATTCTTGTACTGTTTT
SEQ


13
594


68
5L
25
04
E−01
[0.63-
TACATCATTTGAGCTATCCA
ID











76.4]
[C/A]CCCAAAAGACTTTGT
NO:












ATGTGCTATTTTCCCTGCAT
245












CAAAT






chr
103389
A
G
CCDC1
p.L446
0.002
0.001
8.43
1.8
TATTTTCCCTGCATCAAATG
SEQ


13
656


68
45
45
36
E−02
[0.93-
ATTTCTGCTGCCTTAGTTGC
ID











3.48]
[A/G[AAGTAGCAGATTTTA
NO:












TTATTCCTTGTAAGTCTTCC
246












TCTCC






chr
103389
C
T
CCDC1
p.E439
0.000
0.000
1.30
13.87
TGTTGCTCTTCAGTTTCTCC
SEQ


13
867


68
4K
25
02
E−01
[0.87-
ATCCCTGTTCCCTTGCTCCT
ID











221.8]
[C/T]ACCTTCTCCGTCCTC
NO:












TTTCCCTTTCTCCTGGCCTT
247












CTCCA






chr
103389
T
G
CCDC1
p.K438
0.011
0.014
7.81
0.76
CCATCCCTGTTCCCTTGCTC
SEQ


13
885


68
8Q
27
80
E−02
[0.56-
CTCACCTTCTCCGTCCTCTT
ID











1.02]
[T/G]CCCTTGCTCCTGGCC
NO:












TTCTCCATCCCTTTTCCCTG
248












GCTCT






chr
103390
C
T
CCDC1
p.G432
0.004
0.003
2.99
1.27
ATGTAATCTTTTGCTTTTTG
SEQ


13
083


68
2S
90
86
E−01
[0.8-
TACTTCACTTGCGCTATCAC
ID











2.01]
[C/T]CTCACTGGGCACCCC
NO:












ATTTGCTTTTTTCCCTGTCT
249












CTGAT






chr
103390
C
T
CCDC1
p.E432
0.012
0.010
2.45
1.19
TAATCTTTTGCTTTTTGTAC
SEQ


13
086


68
1K
99
98
E−01
[0.89-
TTCACTTGCGCTATCACCCT
ID











1.57]
[C/T]ACTGGGCACCCCATT
NO:












TGCTTTTTTCCCTGTCTCTG
250












ATGAT






chr
103390
G
C
CCDC1
p.Q42
0.000
0.000
7.59
1.07
TGCCTTGGTTGTAAAATACC
SEQ


13
173


68
92E
74
69
E−01
[0.33-
AGGTCTGATTATTCCTTGTT
ID











3.46]
[G/C]GTCTTCCTCTCCTTC
NO:












TATTCTTGTGTCCAATATAT
251












AATGG






chr
103390
C
A
CCDC1
p.E426
0.000
0.000
2.94
3.47
AGAGAAGAATTGGAAGGCAA
SEQ


13
257


68
4X
25
07
E−01
[0.39-
ATATAGGAACAGAACTCTTT
ID











31.08]
[C/A]CTGTTCATTCTTGTC
NO:












TCCATCCATTTTCCCTTGCT
252












CTATG






chr
103390
T
C
CCDC1
p.E424
0.006
0.009
1.25
0.74
TTTCCCTTGCTCTATGCCTA
SEQ


13
322


68
26
86
27
E−01
[0.5-
CTCCATCTGCTTTCTGTTGC
ID











1.08]
[T/C]CTTCAACTTCGTGAT
NO:












CCATTTTCCCTTGCTCTTTG
253












TCTTC






chr
103390
C
T
CCDC1
p.E423
0.000
0.000
6.59
1.37
TCTATGCCTACTCCATCTGC
SEQ


13
332


68
9K
49
36
E−01
[0.32-
TTTCTGTTGCTCTTCAACTT
ID











5.87]
[C/T]GTGATCCATTTTCCC
NO:












TTGCTCTTTGTCTTCTCTAT
254












CAACC






chr
103390
T
C
CCDC1
p.I414
0.000
0.000
7.53
2.76
TGTTGCATGTAATCTTTTGC
SEQ


13
626


68
1V
98
36
E−02
[0.94-
TTTTTGTACTTTGATTGTGA
ID











8.07]
[T/C]ATCACCCTTACTGGC
NO:












CACTCCATCTGCTTTTTCCC
255












CTGCC






chr
103390
A
T
CCDC1
p.Y411
0.004
0.004
5.32
1.17
CCTGCCTCTGATGATTTTTG
SEQ


13
701


68
6N
90
21
E−01
[0.74-
GTGTGATAGTTCTGGAAGAT
ID











1.84]
[A/T]GTATCTTGTTATTTC
NO:












AGTGACATACTCTGCTTTTT
256












CTCTC






chr
103390
A
T
CCDC1
p.L403
0.000
0.000
1.00
0.6
GCCCTAATTTTTTCCATTTT
SEQ


13
938


68
7M
25
41
E+00
[0.08-
TTGCCTCTGTTCTTTTTGCA
ID











4.42]
[A/T]TATAGATTCTAGGGC
NO:












CTTTTTTACACTGTTTGAGA
257












TATTA






chr
103391
G
A
CCDC1
p.P391
0.000
0.000
6.02
1.14
TTTTTCCAAAGCCTTTTCCA
SEQ


13
300


68
6L
25
22
E−01
[0.15-
CTCTGTCTTTCTCTTTCTGC
ID











8.74]
[G/A]GCATATGTTTTGCTT
NO:












TTTCAATACTGCTTAAACTA
258












TCATC






chr
103391
T
A
CCDC1
p.K389
0.000
0.000
1.45
3.42
TTCAATACTGCTTAAACTAT
SEQ


13
357


68
71
49
14
E−01
[0.73-
CATCAATTGGCTGCTCACAT
ID











16.13]
[T/A]TTTCCATTGTATCTG
NO:












ATAATTCCTGCTGTGTTGAT
259












GATGA






chr
103392
C
G
CCDC1
p.G364
0.000
0.000
1.00
0.86
TATGTGTTGTTTTGTACTTT
SEQ


13
113


68
5A
25
29
E+00
[0.11-
TAACATTACTTGAGATCACC
ID











6.47]
[C/G]CATCAATTGTTTCTT
NO:












TATTCAATTTGAAGTGAGGT
260












AAAGA






chr
103392
C
A
CCDC1
p.M34
0.021
0.026
5.76
0.81
TTGATATTAAATCAAAGACC
SEQ


13
562


68
95I
08
02
E−02
[0.65-
TGTACCCCATCTGATGATTT
ID











1]
[C/A]ATTCCTTTTGGAAAT
NO:












AAGAGACTTGCATATTTTAT
261












AGTTT






chr
103392
G
C
CCDC1
p.P343
0.000
0.000
1.90
6.88
ATAGTGCTTAGCTGATCTGC
SEQ


13
735


68
8A
25
04
E−01
[0.62-
AGAAAACAAGTCTAGTCCTG
ID











75.88]
[G/C]TGTCCGGCTTGATAA
NO:












ATTACCTCCTTCTGATAATG
262












CTTCC






chr
103392
G
A
CCDC1
p.R343
0.008
0.008
9.31
1.01
CTTAGCTGATCTGCAGAAAA
SEQ


13
741


68
6W
82
75
E−01
[0.72-
CAAGTCTAGTCCTGGTGTCC
ID











1.42]
[G/A]GCTTGATAAATTACC
NO:












TCCTTCTGATAATGCTTCCT
263












TTTCC






chr
103393
A
T
CCDC1
p.D323
0.001
0.000
4.33
5.77
CTTTAATATTCAAATGTATT
SEQ


13
330


68
9E
23
21
E−03
[2.03-
CCTTCTGAACATGGAGGTTG
ID











16.38]
[A/T]TCCACCGGAATACCT
NO:












ACTTCATGTGATGCTTTCTC
264












TACCA






chr
103393
G
A
CCDC1
p.P323
0.000
0.000
5.03
1.54
ATTCAAATGTATTCCTTCTG
SEQ


13
337


68
7L
25
16
E−01
[0.19-
AACATGGAGGTTGATCCACC
ID











12.13]
[G/A]GAATACCTACTTCAT
NO:












GTGATGCTTTCTCTACCATT
265












GGGCT






chr
103393
C
G
CCDC1
p.V322
0.000
0.000
1.31
13.79
CCTACTTCATGTGATGCTTT
SEQ


13
383


68
2L
25
02
E−01
[0.86-
CTCTACCATTGGGCTTAGAA
ID











220.58]
[C/G]TTTTGAACTCATGAT
NO:












TTCTTCTGCTGAGCCTTCTT
266












TCTTG






chr
103393
T
C
CCDC1
p.Q31
0.000
0.000
2.20
2.49
TTTCTGTCTATTTGATTTTA
SEQ


13
580


68
56R
49
20
E−01
[0.55-
ATGTAATATCCAACTTTGAT
ID











11.26]
[T/C]GCTCTTTTCCCCAAA
NO:












GATTTTCATTGAAACTTTCA
267












GAGAT






chr
103393
C
T
CCDC1
p.V310
0.000
0.000
7.28
0.41
TCAGAATCCAGAATACTTTC
SEQ


13
731


68
6M
25
59
E−01
[0.06-
GGGAACATGATCTGGATTCA
ID











3.03]
[C/T]CTGTTCTTTCTGCTC
NO:












TGCAGGCACTTTGTGCTGTA
268












CCTCT






chr
103394
A
G
CCDC1
p.M29
0.000
0.000
2.44
4.6
TTCTCTAATATCTTGTTCCT
SEQ


13
336


68
04T
25
05
E−01
[0.48-
GTTTTCTAAGAATGCTGGAC
ID











44.19]
[A/G]TATCAGTACAACCTG
NO:












ACAATGACCTTTGCATTTCT
269












TTTAG






chr
103394
T
C
CCDC1
p.K287
0.003
0.004
6.99
0.85
TTCTCCAGCTTTGGCTGTGG
SEQ


13
421


68
6E
43
04
E−01
[0.49-
AAGAATGCATGTCCTGTCTT
ID











1.46]
[T/C]TGGCTTGTCTTTCTC
NO:












CATTTTTACTTCTGTAACCT
270












TTTTA






chr
103394
G
A
CCDC1
p.Q28
0.001
0.001
2.15
1.63
ACTCGATGTACTGCATTTTT
SEQ


13
544


68
35X
72
05
E−01
[0.74-
ACTCAGCTGGAATGACTTCT
ID











3.57]
[G/A]CTGCTGGATGTTACC
NO:












TCTCAGTTCTTTTTTATTGC
271












TTGCA






chr
103395
T
G
CCDC1
p.K256
0.002
0.003
5.88
0.8
TTTGTTTTTTTCTATTTTTA
SEQ


13
359


68
3T
94
69
E−01
[0.44-
CATTTTTTTCTGAATTCCCT
ID











1.43]
[T/G]TGTAAATCTGACTTT
NO:












TTGAGAAAAAAGTTTCTCCC
272












AAAAG






chr
103395
C
T
CCDC1
p.R254
0.001
0.001
5.07
1.28
AGTTTCTCCCAAAAGCACAT
SEQ


13
425


68
1H
72
34
E−01
[0.59-
CCTCTGATTTACCAAGATGA
ID











2.77]
[C/T]GATCCTTTCTAAGAT
NO:












ATGTGTTTGCCATGAAGTTT
273












TCTGC






chr
103395
G
C
CCDC1
p.L242
0.001
0.001
1.00
0.96
TGCCACATTGCTTTCAGTTT
SEQ


13
789


68
0V
23
28
E+00
[0.39-
GGTTTTTAAATTGGATTCAA
ID











2.38]
[G/C]TTTCTTCCTATGTTT
NO:












TGTAGTAAACTGCCCACTGA
274












TTTTA






chr
103396
T
C
CCDC1
p. K229
0.000
0.000
3.90
2.28
CTGTGAAATTGACGACTTCT
SEQ


13
163


68
5R
25
11
E−01
[0.27-
TTTCCTTCATAGTTAAACAT
ID











18.94]
[T/C]TGGCATTGAATATAA
NO:












TTTCTTTTTCTGATAACTGT
275












GCTGT






chr
103396
C
T
CCDC1
p.R214
0.003
0.005
1.77
0.68
ACTCATACTTTTCTTGCCTA
SEQ


13
628


68
0Q
68
37
E−01
[0.41-
TAAACTCTAATGTATAGCTC
ID











1.15]
[C/T]GGCTTTCATATTCAG
NO:












ATGACATGAGGCTGGAGAAA
276












TCTAA






chr
103397
C
T
CCDC1
p.R200
0.000
0.000
1.43
3.46
TTTGCAAGGGTCAGGATCTT
SEQ


13
030


68
6H
49
14
E−01
[0.73-
TCATTTGATGTGTACTGAAA
ID











16.3]
[C/T]GGAGGTGTTGACTAT
NO:












AGCATGGAACTGATTCTGTT
277












AACAT






chr
103397
C
T
CCDC1
p.D192
0.000
0.000
4.85
1.39
CCTTTACCTGAATTGTGCTG
SEQ


13
280


68
3N
74
53
E−01
[0.42-
TTCCCCCATACATTTCCTAT
ID











4.55]
[C/T]AGTTGGTACACCACG
NO:












TTTTATTGCACCAGTTAAAA
278












CTTCA






chr
103397
T
G
CCDC1
p.Q18
0.021
0.026
5.77
0.81
AGGAAGAAGTTTTGAATTTA
SEQ


13
387


68
87P
08
03
E−02
[0.65-
CTGTACATATTGTGCCATTT
ID











1]
[T/G]GGGTCTGGAGGCATT
NO:












TCTTTGTCTCCTCTCTTTGT
279












ATTGG






chr
103398
G
A
CCDC1
p.A167
0.000
0.000
6.79
Inf
TTTAGGTGTAGATAAAGCAG
SEQ


13
023


68
5V
25
00
E−02
[NaN-
GCATGCAGGAACCAAAAATC
ID











Inf]
[G/A]CTGTCTCTTTCTTTT
NO:












CAGTACCACCAGCCTCTTCC
280












TTTTG






chr
103398
T
C
CCDC1
p.T159
0.001
0.001
1.74
1.62
GTTTGTGTAAAATGTGTTTG
SEQ


13
261


68
6A
96
21
E−01
[0.78-
TGGTTGTACCTGAATATTTG
ID











3.37]
[T/C]ACTTCCTGGTTGGTT
NO:












CAGTTCCTCATCTGATTTGA
281












CAAGC






chr
103398
C
T
CCDC1
p.D157
0.000
0.000
1.00
0.66
AGCTCATTATCCTTCTGATA
SEQ


13
339


68
0N
25
37
E+00
[0.09-
TGCATTGAGTATTAAGCCAT
ID











4.91]
[C/T]GCTGTTCTCCAGAGC
NO:












CTGTAAAGCTTTGGGAGGTG
282












GAATC






chr
103398
C
A
CCDC1
p.G153
0.000
0.000
3.93
9.28
GTTTCGTTGGCTTTTTGTAG
SEQ


13
453


68
2C
49
05
E−02
[1.55-
TTCTTCAGCTTCTAAAGGAC
ID











55.53]
[C/A]CATTTGGAGACTAGT
NO:












CTCTAAAGTAGTTTGTTCAA
283












AACCT






chr
103399
G
A
CCDC1
p.T124
0.010
0.011
4.45
0.88
AGATAGTTCCATTATGGGAG
SEQ


13
313


68
5I
05
47
E−01
[0.64-
AAACAACAGACTCAATAATA
ID











1.2]
[G/A]TTTCTGTGAATGGGA
NO:












TTGGTTGATGCATTTCTTTC
284












TCTGT






chr
103399
A
G
CCDC1
p.I116
0.000
0.000
4.36
0.5
TTCTTCCCTTTCAATTTGCG
SEQ


13
553


68
51
49
99
E−01
[0.12-
ATTCCTCTTGGACTAGCTTG
ID











2.04]
[A/G]TATGACTGTGATTCT
NO:












CTGCATTTAATCTGCTATAC
285












ATTCT






chr
103399
A
T
CCDC1
p.N11
0.000
0.000
6.72
2.89
ATTCCTCTTGGACTAGCTTG
SEQ


13
573


68
58K
98
34
E−02
[0.98-
ATATGACTGTGATTCTCTGC
ID











8.48]
[A/T]TTTAATCTGCTATAC
NO:












ATTCTAGTATTAGGCAAAAT
286












AGACA






chr
103399
G
T
CCDC1
p.P109
0.006
0.007
5.66
0.87
GTACCACATATATTAATATA
SEQ


13
761


68
61
37
35
E−01
[0.58-
AGGCATCAGTGAGATTGCTG
ID











1.29]
[G/T]CTTCTTTACTTTCAT
NO:












AATTACATATTTGACACTGA
287












GTACA






chr
103399
A
G
CCDC1
p.Y106
0.000
0.000
1.89
6.91
GTTTCTGATAATTTTTTTTT
SEQ


13
848


68
7H
25
04
E−01
[0.63-
AATTTCCTGCCTTTTAAAAT
ID











76.19]
[A/G]TGGTAAAGTAAGCAA
NO:












GTGGTTATTGAAAGACCCCA
288












GGGCA






chr
103399
G
A
CCDC1
p.T103
0.000
0.000
2.94
3.47
TCTTTTTACATCTTCCTTTT
SEQ


13
943


68
5M
25
07
E−01
[0.39-
CTTCTGCAATATGACTATCC
ID











31.06]
[G/A]TTGTCTTTTGGAGGT
NO:












TTCCACCAAATGGGACACTA
289












TACTC






chr
103400
T
A
CCDC1
p.D100
0.000
0.000
9.71
4.61
AACTGGCAAGTTCTCTGGCA
SEQ


13
048


68
0V
49
11
E−02
[0.93-
TTGTAAGTGGATTCTTTGGA
ID











22.84]
[T/A]CTCCGGCACTCTCTC
NO:












TGTCTGTAGGTCTATCTGTG
290












CTTTG






chr
103400
T
G
CCDC1
p.K950
0.001
0.000
8.40
6.95
AAGAGTTTGTGGTTGGACTT
SEQ


13
198


68
T
47
21
E−04
[2.61-
CTTGCTCTTTATTTGGGGCT
ID











18.53]
[T/G]TACTACTTCCTGAAC
NO:












TGATCTGTTCCATTTGGAAT
291












TTGAC






chr
103400
C
G
CCDC1
p.0839
0.000
0.000
2.95
1.78
AGTTGAGAAATGGTAGTGTA
SEQ


13
532


68
H
98
55
E−01
[0.63-
AGTGGCACTGTGAAATGCAT
ID











5.05]
[C/G]AGACGTTTCTTTATC
NO:












TTGATGCATATTTGTTATGT
292












TACTT






chr
103400
C
A
CCDC1
p.D756
0.000
0.000
6.77
Inf
AAACCGACATTTGACAACTC
SEQ


13
781


68
Y
25
00
E−02
[NaN-
CAGAACAAGTTCCAAAAAAT
ID











Inf]
[C/A]TTTTTGTTTCTGTGT
NO:












ATTTTCCCTTGGAAAGCACC
293












TTTGC






chr
103400
T
C
CCDC1
p.Q75
0.000
0.000
2.95
3.45
TGACAACTCCAGAACAAGTT
SEQ


13
792


68
2R
25
07
E−01
[0.39-
CCAAAAAATCTTTTTGTTTC
ID











30.84]
[T/C]GTGTATTTTCCCTTG
NO:












GAAAGCACCTTTGCGTTTTT
294












GGTGT






chr
103400
T
A
CCDC1
p.K741
0.000
0.000
2.95
3.45
TTGTTTCTGTGTATTTTCCC
SEQ


13
825


68
I
25
07
E−01
[0.39-
TTGGAAAGCACCTTTGCGTT
ID











30.91]
[T/A]TTGGTGTACTGGTTG
NO:












GTAACTCCTCTCCATTTGAA
295












AGTTG






chr
103400
C
A
CCDC1
p.E734
0.000
0.000
1.82
2.18
GGAAAGCACCTTTGCGTTTT
SEQ


13
847


68
X
74
34
E−01
[0.65-
TGGTGTACTGGTTGGTAACT
ID











7.38]
[C/A]CTCTCCATTTCAAAG
NO:












TTGAAGATGGGAATTTTCTG
296












AACTT






chr
103401
C
G
CCDC1
p.E586
0.000
0.000
2.96
3.43
ATTCCTGTCTCCTCAAGAGG
SEQ


13
291


68
Q
25
07
E−01
[0.38-
ACCTGCATAATTGATTTTCT
ID











30.71]
[C/G]TGTATCTGGTGACTT
NO:












ATTTTGCTTCTGCAGAAAAT
297












GTCCA






chr
103401
T
C
CCDC1
p.N52
0.000
0.001
5.28
0.64
ATATCTTTCCTTTCATGTAA
SEQ


13
480


68
3D
98
54
E−01
[0.23-
TTCTTTCTTCTCAGTGTTAT
ID











1.74]
[T/C]CTTGCATCCTAACTC
NO:












ATTCCTATTTTTTAAAGTGT
298












GACAT






chr
103401
A
G
CCDC1
p.V373
0.001
0.001
8.33
1.01
CAGGCCCTTTACTGAATATT
SEQ


13
929


68
A
47
45
E−01
[0.44-
TTGCCTCAACAATTGATGGA
ID











2.33]
[A/G]CTTCAACAAAATGTT
NO:












GGTTCCTATCCAGATCTTGG
299












GACTG






chr
103402
A
G
CCDC1
p.Y169
0.000
0.000
5.95
1.16
TGCTCTGTATGGCTTAGACA
SEQ


13
542


68
H
25
21
E−01
[0.15-
CGTTTCCTCTACTTCTGAAT
ID











8.89]
[A/G]AAACAATGGCAAAGA
NO:












TGAGCTGATTCCATTTGAAG
300












ATGGC






chr
103402
A
G
CCDC1
p.L167
0.000
0.000
1.00
0.82
TGTATGGCTTAGACACGTTT
SEQ


13
547


68
S
25
30
E+00
[0.11-
CCTCTACTTCTGAATAAAAC
ID











6.13]
[A/G]ATGGCAAAGATGAGC
NO:












TGATTCCATTTGAAGATGGC
301












ACATG






chr
103402
A
G
CCDC1
p.W13
0.000
0.000
3.71
0.31
GAGGGACTTACTTGATCTTC
SEQ


13
638


68
7R
25
80
E−01
[0.04-
ACTTTCACTAGTACCTGACC
ID











2.22]
[A/G]TAGTATTTCACGTGA
NO:












GAATAAAATTCTATCTTCAA
302












AGTTA






chr
103411
G
A
CCDC1
p.A39
0.000
0.000
2.46
13.91
TATCTCAAAAATAATTCCTA
SEQ


13
167


68
V
49
04
E−02
[1.96-
GTAAAATTATAAAGAAAATT
ID











98.81]
[G/A]CCACCCAATCATTTT
NO:












GAATAATCCAGGACTCTAGA
303












AAGTC






chr
103514
C
T
BIVM-
p.H769
0.007
0.005
3.78
1.48
AAGTGGATTCAGAGTCTCTT
SEQ


13
444


ERCC5
H
84
31
E−02
[1.04-
CCTTCTTCCAGCAAAATGCA
ID











2.12]
[C/T]GGCATGTCTTTTGAC
NO:












GTGAAGTCATCTCCATGTGA
304












AAAAC






chr
103701
A
G
SLC10A
p.F304
0.005
0.003
3.18
1.61
ATCATGAAATGGGATTGGCA
SEQ


13
648


2
L
64
50
E−02
[1.06-
TGATTCCTTACATCCTAAGA
ID











2.46]
[A/G]TATTGCGGCAAAGGC
NO:












GAGCTGGAAAATGCTGTAGA
305












TGAGC






chr
110864
C
T
COL4A
p.E131
0.010
0.006
3.86
1.62
CAGCGAAACCAGGCAAGCCA
SEQ


13
264


1
E
29
37
E−03
[1.19-
GGAGGCCCGAGCGGCCCTCT
ID











2.22]
[C/T]TCCCCCTGGGGAGAC
NO:












AGGAGAGCATCATTCATACG
306












CACTG






chr
113201
C
T
TUBGC
p.R413
0.011
0.000
1.08
14.5
GGGAAAGACGCGCGTGGGAA
SEQ


13
864


P3
H
52
80
E−30
[9.66-
AGACGTGCATGGGAAAGTCG
ID











21.75]
[C/T]GCGTGGGAAAGTCGC
NO:












GCGTGGGAAAGTCGCGCGTG
307












GGAAA






chr
114175
G
A
TMCO
p.P436
0.012
0.008
3.24
1.39
CGCAGGACGTGCAGCTCGGG
SEQ


13
013


3
P
01
69
E−02
[1.04-
CTCTTCATGGCCGTCATGCC
ID











1.85]
[G/A]ACTCTCATACAGGCG
NO:












GGCGCCAGTGCATCTTCTAG
308












GTAAA






chr
212161
G
A
EDDM
p.V133
0.007
0.004
1.38
1.62
CTTCAGCTACATTGAATTCC
SEQ


14
36


3A
I
35
56
E−02
[1.12-
ATTGTGGCGTAGATGGATAT
ID











2.34]
[G/A]TTGATAACATAGAAG
NO:












ACCTGAGGATTATAGAACCT
309












ATCAG






chr
233538
G
A
REM2
p.T39T
0.009
0.004
1.55
2.02
TTTCTTTGCCCTCCCATTTT
SEQ


14
96




07
52
E−04
[1.44-
ATTTTAGAAGCAGATGCCAC
ID











2.82]
[G/A]CTACTAAAGAAGTCA
NO:












GAGAAACTGTTGGCAGAGTT
310












GGACC






chr
244643
C
T
DHRS4
p.T29T
0.008
0.001
3.09
7.44
CTGCTGTCAACCCTTTCTTT
SEQ


14
24


L2

33
13
E−17
[5.09-
GGAAGCCTAATGGATGTCAC
ID











10.89]
[C/T]GAGGAGGTGTGGGAC
NO:












AAGGTGAGAGGGGATTAAAG
311












AAGCG






chr
247723
C
T
NOP9
p.R413
0.007
0.004
3.19
1.61
GGGCCACCCAGGGGTAGTCA
SEQ


14
73



C
482
658
E−02
[1.01-
TTGCCCTGGTGGGGGCCTGT
ID











2.45]
[C/T]GCAGAGTTGGGGCCT
NO:












ACCAAGCCAAGGTCCTACAG
312












CTCTT






chr
449751
G
A
FSCB
p.P363
0.010
0.000
7.71
Inf
AGGAGACTTTTCAGCTGGTG
SEQ


14
03



L
29
00
E−62

GAGGCAGAATTTCAGCAGGA
ID












[G/A]GCTCTTCTGAAGGGG
NO:












ACTCTTCAGCTGATGGAGGC
313












AGAAT






chr
449751
G
A
FSCB
p. P359
0.024
0.000
1.52
2806.41
AGCTGGTGGAGGCAGAATTT
SEQ


14
15



L
51
01
E−
[391.38-
CAGCAGGAGGCTCTTCTGAA
ID










144
20123.7]
[G/A]GGGACTCTTCAGCTG
NO:












ATGGAGGCAGAATTTCAGCC
314












AGAAG






chr
505810
A
C
VCPKM
p.Y188
0.010
0.006
2.01
1.48
ACTACAAAGATAATAGAGTA
SEQ


14
11


T
D
05
79
E−02
[1.08-
CTTAATACTTACCTCAAAAT
ID











2.04]
[A/C]TTTTTTCTCAATTTC
NO:












TGGATTTTTCCCCATTGTTC
315












GTTGT






chr
524954
C
T
NID2
p.8830
0.005
0.003
4.83
1.61
GATGCAAGTATGCCGGTCAT
SEQ


14
81



Q
15
20
E−02
[1.04-
CTGCAAACTCATAACCACTC
ID











2.51]
[C/T]GGCACTCACACCTGT
NO:












AGCTTCCAGGCAAGTTGATA
316












CATAC






chr
524963
T
C
NID2
p.D756
0.011
0.007
2.33
1.44
CATGTGGCTCCCATCATAGC
SEQ


14
99



G
03
71
E−02
[1.06-
AAGGATTCCCCGGAGTGGGG
ID











1.94]
[T/C]CTGAATCCTCTGCAT
NO:












GAGTAGAGGGGAAATAAAAG
317












CACAA






chr
525096
C
T
NID2
p.R493
0.011
0.008
4.93
1.35
AGTGGCATAGTCCGTGCAGA
SEQ


14
01



K
76
72
E−02
[1.01-
AGGCATGCCGGGAGCATTGT
ID











1.81]
[C/T]TGTGGTTGTGTTCAC
NO:












AGGTTTCCTTGTTGGCAGCA
318












TTATA






chr
609218
T
G
Cl4orf
p.E462
0.006
0.004
4.35
1.52
TAAGAAAAGAAAGTCCAGGG
SEQ


14
36


39
D
86
52
E−02
[1.04-
GATTCCTTTTCTGTTTGAAC
ID











2.23]
[T/G[TCAGGTACTGCATTT
NO:












CTATTTCTGTTACTGAGAAA
319












TAAGA






chr
622448
C
T
SNAPC
p.T253
0.005
0.003
4.52
1,72
AATGATGGAGAAGAAAAAAT
SEQ


14
54


1
M
21
03
E−02
[0.97-
GGAAGGAAATTCACAAGAAA
ID











2.84]
[C/T]GGAGGTCAGAAAACT
NO:












TTGCAATTCATATTATGTGT
320












GGCTG






chr
695216
C
T
DCAF5
p.R589
0.006
0.003
7.18
1.78
TGGGGCACTGGGCTTGTCTT
SEQ


14
37



H
86
88
E−03
[1.21-
CTCGGGTTGTCTTCTGTCGG
ID











2.6]
[C/T]GCCGCATGGCATTCC
NO:












GCTGCCAGGTAGAGGCTCGG
321












CGTTC






chr
704189
C
T
SMOC1
p.P77L
0.005
0.003
3.93
1.61
GAGTCCATGTGTGAGTACCA
SEQ


14
85




39
36
E−02
[1.04-
GCGAGCCAAGTGCCGAGACC
ID











2.47]
[C/T]GACCCTGGGCGTGGT
NO:












GCATCGAGGTAGATGCAAAG
322












GTGAG






chr
751512
C
T
AREL1
p.V50
0.007
0.004
1.58
1.74
GAGACTTTGCAAGACCGGGG
SEQ


14
52



M
157
135
E−02
[1.08-
ATCCAGGTAATTTCCCCGCA
ID











2.67]
[C/T]GTAGTCATAAATAGT
NO:












CCGGTCCCCTCGGCGCTCGC
323












GGTCC






chr
860881
C
A
FLRT2
p.L107
0.006
0.003
2.85
1.61
CTACCTGTATGGCAACCAAC
SEQ


14
77



I
13
82
E−02
[1.07-
TGGACGAATTCCCCATGAAC
ID











2.41]
[C/A]TTCCCAAGAATGTCA
NO:












GAGTTCTCCATTTGCAGGAA
324












AACAA






chr
888929
C
T
SPATA
p.8211
0.005
0.003
4.13
1.59
CTGAACTCTTTTCTAACAAA
SEQ


14
32


7
R
39
41
E−02
[1.03-
CAATTGCCATTCACTCCTCG
ID











2.44]
[C/T]ACTTTAAAAACAGAA
NO:












GCAAAATCTTTCCTGTCACA
325












GTATC






chr
891108
T
C
EML5
p.V136
0.009
0.006
3.12
1.45
AGTGAGTTTTCCTTACCTCT
SEQ


14
01



1V
56
63
E−02
[1.05-
ATAGGTCTCTTTTTCTTGCC
ID











2]
[T/C]ACATTGTTTGTCTGG
NO:












AGTTTCTCTGGCTGTGGTGG
326












GGCCC






chr
101004
A
G
BEGAI
p.F568
0.005
0.000
2.13
607.53
CTGTCCTTGCGGCTCAGCCC
SEQ


14
386


N
L
88
01
E−33
[82.17-
CGAGCCACCAGTCCGCGGAA
ID











4491.9]
[A/G]GGCCTGCTGGGGGCT
NO:












GAGGCGGGCGGCAGGATGCA
327












TTTCC






chr
103593
T
A
TNFAIP
p.V79E
0.009
0.000
1.74
Inf
GTGGGCTGGGGCCGGGGCTG
SEQ


14
342


2

80
00
E−07

ACGCGGCTTTCCCGGCGCAG
ID












[T/A]GGAGGAGCTGAAGGC
NO:












GGCGCTGGAGCGCGGGCAGC
328












TGGAG






chr
105415
C
T
AHNAK
p.K218
0.011
0.000
4.90
43.07
GGTCCCCCTGCATGGAGGGG
SEQ


14
242


2
2K
27
26
E−47
[27.03-
AGACTCATGTCGGCCTCCAC
ID











68.62]
[C/T]TTGGGTGGAGACACA
NO:












TCCACCGAGGCCTCGATGGA
329












CTTGC






chr
105415
T
C
AHNAK
p.K215
0.019
0.000
7.30
21.36
CACCCCAAACGACGGCATCT
SEQ


14
333


2
2R
61
94
E−63
[15.62-
TGAACTTGGGCATTTTGAAC
ID











29.19]
[T/C]TGCTGTCTTTGGTAG
NO:












TCAGGTCCTTGTTGGCCAGG
330












GTCAG






chr
105415
A
T
AHNAK
p.D201
0.005
0.003
1.74
1.74
AGGGGAGACTCACGTCGGCC
SEQ


14
752


2
2E
64
25
E−02
[1.14-
TCCACCTTGGGTGCAGGCAC
ID











2.65]
[A/T]TCCACCGAGGCCTCG
NO:












ATGGACCTCCCTGGGGCCGA
331












TACCC






chr
105418
G
C
AHNAK
p.L120
0.008
0.001
3.11
4.88
GGTCAGCGGAAGGGGGCTGA
SEQ


14
170


2
6L
82
82
E−13
[3.41-
ATGCTGAGGTCAGTGGTCTT
ID











6.97]
[G/C]AGGTCCCCCTGCATG
NO:












GAGGGGAGACTCACGTCGGC
332












CTCCA






chr
315155
G
A
LOC28
p.L124
0.011
0.000
2.03
Inf
TGGGATCAGTGCGGCCTGTC
SEQ


15
19


3710
F
52
00
E−51

GTCTGCTGTTGTCATGTGGA
ID












[G/A]CTCAGCAAACGGTGG
NO:












GAGTCCTAGGGGACAACATA
333












CACAG






chr
387768
T
A
FAM98
p.G425
0.007
0.000
7.32
61.29
ATCCATATGGAGGAGGTGGT
SEQ


15
33


B
G
35
12
E−27
[23.77-
GGTGGTGGTGGTGGTGGTGG
ID











158.06]
[T/A]GGAGGAGGTGGATAT
NO:












AGAAGATACTAAAAACTATA
334












AAAAT






chr
418623
G
A
TYRO3
p.T458
0.008
0.005
1.15
1.6
CCCTGGCCCTCATCCTGCTT
SEQ


15
46



T
33
24
E−02
[1.13-
CGAAAGAGACGGAAAGAGAC
ID











2.26]
[G/A]CGGTTTGGGTAAGGG
NO:












GATGGGGATETGGAGGGAGA
335












GGCAG






chr
436533
C
T
ZSCAN
p.R842
0.005
0.003
4.15
1.58
AGGGGCTTACTTGGGAGCTG
SEQ


15
05


29
Q
39
41
E−02
[1.03-
ACTGTGTCAGAAGCTTTTCC
ID











2.44]
[C/T]GTGCATGGATTTCTC
NO:












CGTGCTTATTAAGGGCAGAG
336












CTTTT






chr
484704
G
T
MYEF2
p.A2E
0.026
0.000
2.09
Inf
GCCACCAGTGGCCCCGGGCA
SEQ


15
30




23
00
E−39

CCTCGGCCTTGTTGGCGTCC
ID












[G/T]CCATCCCGCCGCCGC
NO:












TGCCTCCGCCTCGGCCGCCT
337












GAGCT






chr
525101
A
G
MYO5
p.L129
0.005
0.003
3.12
1.67
TTACACTTGACTTCACTTTC
SEQ


15
96


C
2L
15
08
E−02
[1.08-
AGTTTCAAATTGTTTCTTCA
ID











2.6]
[A/G]GTGGTCACTGGCCTC
NO:












CTGCATTTCTTGAATCTTAT
338












CAATC






chr
651578
G
A
PLEKH
p.S420
0.010
0.007
1.60
1.47
AACGGCTATATCGGGCCCAG
SEQ


15
74


O2
S
78
36
E−02
[1.08-
CTGGAGGTGAAGGTGGCCTC
ID











1.99]
[G/A]GAACAGACGGAGAAA
NO:












CTGTTGAACAAGGTGCTGGG
339












CAGTG






chr
720235
G
A
THSD4
p.V526
0.005
0.003
2.01
1.83
GATACACCAGCAGCCAAACC
SEQ


15
02



M
53
02
E−02
[1.05-
CAGGCGTGCACTACGAGTAC
ID











2.99]
[G/A]TGATCATGGGGACCA
NO:












ACGCCATCAGCCCCCAGGTG
340












CCACC






chr
721922
C
G
MYO9
p.R109
0.005
0.002
2.23
1.89
GTAATCTCTCCATTTCTGCT
SEQ


15
05


A
8P
21
75
E−02
[1.07-
GGATAACGATGGCTGCAGCC
ID











3.13]
[C/G]GTAACTCCAAGTACC
NO:












GCTGCCTCTCTAAGTGAGCA
341












CGCCA






chr
725021
T
C
PKM
p.N15
0.005
0.003
3.24
1.61
CACCACCTTGCAGATGTTCT
SEQ


15
15



5S
64
52
E−02
[1.05-
TGTAGTCCAGCCACAGGATG
ID











2.45]
[T/C]TCTCGTCACACTTTT
NO:












CCATGTAGGCGTTATCCAGC
342












GTGAT






chr
725136
T
A
PKM
p.T36S
0.017
0.011
2.57
1.5
CTTGGCCTCACTAGCAAAGA
SEQ


15
12




16
53
E−03
[1.16-
CCGCTCAGAGCTGAATACGG
ID











1.93]
[T/A]GTGCCCTGGAGAGCT
NO:












GCACAAGGATTAAGGAAAAA
343












GCTGA






chr
759815
C
A
CSPG4
p.G632
0.005
0.000
7.77
Inf
TCCATCGCTGACCCGGAACG
SEQ


15
11



V
15
00
E−31

TCAAGTCCTGTGCAGGACCA
ID












[C/A]CGCGGTGGACATAGA
NO:












CTAGGCTGCCGGCCTCCAAC
344












TCCCG






chr
759820
A
G
CSPG4
p.H451
0.006
0.004
4.39
1.52
TGCGCAGCTCAGCCTCCATC
SEQ


15
53



H
86
53
E−02
[1.04-
AGGTCCAGCGTGGGCTGCAC
ID











2.23]
[A/G]TGCCTCCACTCAAGC
NO:












CAGGCTGTGCCCCCCTCGGC
345












CACCA






chr
784613
C
T
IDH3A
p.R360
0.006
0.003
7.88
1.74
AGGCAATGCAAAATGCTCAG
SEQ


15
24



C
86
96
E−03
[1.18-
ACTTCACAGAGGAAATCTGT
ID











2.55]
[C/T]GCCGAGTAAAAGATT
NO:












TAGATTAACACTTCTACAAC
346












TGGCA






chr
790589
A
T
ADAM
p.A110
0.007
0.000
2.49
10.56
GAGGCTCTGTGGCAGGCACG
SEQ


15
44


TS7
3A
89
80
E−11
[6.04-
GGGCTACCCGTGGAGGGCGC
ID











18.49]
[A/T]GCAGGATGGCTGTGT
NO:












GGTGGGGGTGTCCGGTCCCC
347












TGTCC






chr
796037
G
A
TMED3
TMED
0.006
0.004
3.23
1.54
GGAGGTGGAGCAGGGCGTGA
SEQ


15
60



3(NM_
86
47
E−02
[1.05-
AGTTCTCCCTGGATTACCAG
ID







00736



2.26]
[G/A]TGAGGCCGGGCGCCC
NO:







4:exon




GGCAGCGCTCCCTTCTCCCT
348







1:c.16




CCACT








8 + 













1G > A)











chr
891697
G
A
AEN
p.G100
0.006
0.004
2.72
1.58
TGGATCTGGCAGTGCCCCAT
SEQ


15
38



R
62
20
E−02
[1.07-
GCAGCAGAAGGCCTGCTCCC
ID











2.33]
[G/A]GGAAAGCCTCAGGGC
NO:












CCTTGCCCAGCAAGTGTGTG
349












GCTAT






chr
102346
C
T
OR4F6
p.R54C
0.005
0.003
2.56
1.62
GGGAAATCTCCTCATTGTGC
SEQ


15
082




88
63
E−02
[1.07-
TAACTGTGACCTCTGACCCT
ID











2.45]
[C/T]GTTTACAGTCCCCCA
NO:












TGTACTTCCTGCTGGCCAAC
350












CTTTC






chr
315001
C
T
ITFG3
p.R547
0.005
0.003
3.86
1.62
AGACAGTGACCAAGCCATCA
SEQ


16




W
39
35
E−02
[1.05-
GGGACCGGTTCTCCCGGCTG
ID











2.49]
[C/T]GGTACCAGAGTGAGG
NO:












CGTAGAGGCACGCCAGCCAG
351












AGCCT






chr
863362
C
G
PRR25
p.P237
0.020
0.000
1.86
Inf
GACATCCCCTCTGCTATTGC
SEQ


16




R
34
00
E−

TGCGGGACCGGCAAGGACGC
ID










108

[C/G]GGACCGACACGGCCT
NO:












CCCCATCCCTGGGTCCACCC
352












CGACT






chr
225857
G
A
MLST8
p.G275
0.005
0.002
7.86
1.86
GAGCGGCAACCCCGGGGAGT
SEQ


16
5



S
39
90
E−03
[1.21-
CCTCCCGCGGCTGGATGTGG
ID











2.88]
[G/A]GCTGCGCCTTCTCGG
NO:












GGGACTCCCAGTACATCGTC
353












ACTGG






chr
228764
A
C
DNASE
p.D197
0.005
0.003
3.19
1.61
TACGACGTGTACCTGGACGT
SEQ


16
9


1L2
A
64
51
E−02
[1.06-
GATCGACAAGTGGGGCACCG
ID











2.46]
[A/C]CGTAAGCCCACCCCT
NO:












CGGTCCCGGGGTCCCTGCAG
354












GCGCG






chr
236959
C
T
ABCA3
p.R288
0.014
0.009
1.71
1.56
GAGTGTTGGGGAGCCAAAGC
SEQ


16
2



K
46
32
E−03
[1.2-
GGGCAGTCACCTTCAGCCTC
ID











2.03]
[C/T]TTTCCTTCTCCTGCA
NO:












CGACAGCACGGGCAATGGTG
355












AGCGC






chr
284851
G
T
PRSS41
p.A10
0.016
0.000
6.97
Inf
GAGAGGAGGCCATGGGCGCG
SEQ


16
5



A
67
00
E−73

CGCGGGGCGCTGCTGCTGGC
ID












[G/T]CTGCTGCTGGCTCGG
NO:












GCTGGACTCGGGAAGCCGGG
356












TGAGC






chr
363905
C
T
SLX4
p.P152
0.005
0.002
4.17
2.04
CTTCGGGCTTCTGAGCTCCA
SEQ


16
8



7P
15
53
E−03
[1.31-
CCAGCGCTTGGCATCTGGGC
ID











3.18]
[C/T]GGAGGAGGGGTCTCT
NO:












GGAGGCCTCTGCTCTTCCCC
357












GTCCC






chr
363937
T
A
SLX4
p.I142
0.011
0.001
8.31
11.09
GAGAGGGGCTCCATGTGCCA
SEQ


16
8



1F
76
07
E−30
[7.9-
GCAGCAGTCGTCAATTGGAA
ID











15.56]
[T/A]TGGGGGGTCACTGTC
NO:












CAGTGGGGGGCTTCTGTTGG
358












CCTGA






chr
364081
C
G
SLX4
p.E942
0.005
0.002
1.53
2.14
TGGCCAAGCGCCTCCTCTGG
SEQ


16
5



Q
39
53
E−03
[1.39-
CGCCTCCTGCTCAGGGGCCT
ID











3.31]
[C/G]TGCTCCCCGTGCCCC
NO:












TGAGTGCTGGCCCTGGGGTG
359












GCGGG






chr
370719
G
A
DNASE
p.V185
0.008
0.004
4.80
1.69
CGCATGTCCCAGGGCCACAG
SEQ


16
1


1
I
33
95
E−03
[1.19-
GCAGCGTTTCCTGGTAGGAC
ID











2.39]
[G/A]TCATGTTGATGGGCG
NO:












ACTTCAATGCGGGCTGCAGC
360












TATGT






chr
373608
C
T
TRAP1
p.R128
0.005
0.002
9.00
1.91
CATTTCTGGCAGTGCTTGGC
SEQ


16
5



H
15
70
E−03
[1.22-
CGTCAGACACCAGTTTGTGA
ID











2.97]
[C/T]GCAGTTTTTCCAAGG
NO:












CATCGCTGGCATTGGAGATC
361












AGCTC






chr
491077
A
G
UBN1
p.R262
0.024
0.000
1.26
2748.75
GCTAAAGAAATTTCAGAAAG
SEQ


16
7



G
02
01
E−
[383.26-
AGAAAGAGGCTCAGAAAAAA
ID










141
19714.18]
[A/G]GGGAGGAGGAGCATA
NO:












AGCCTGTTGCGGTCCCATCA
362












GCGGA






chr
209965
G
A
DNAH3
p.D251
0.006
0.004
4.15
1.51
CGATGTCAGCCTTCTCGTCA
SEQ


16
25



3D
62
39
E−02
[1.03-
GCAGGGAAGATGTTAGGCAC
ID











2.23]
[G/A]TCACCTGTGTTCAGA
NO:












AGCATGTTGATGTCCTCCAC
363












GAATG






chr
209965
G
A
DNAH3
p.A249
0.007
0.004
1.02
1.68
TGATGTCCTCCACGAATGAT
SEQ


16
88



2A
11
23
E−02
[1.16-
TCATCCTTGATCTGGTTGTC
ID











2.45]
[G/A]GCGAAGAGGAACACG
NO:












GTGCTCTTGGTGGCCACACC
364












GACCT






chr
217476
A
C
OTOA
p.T706
0.007
0.000
5.19
75.13
CCTTCTGCAAGCAGCTTCCA
SEQ


16
33



P
35
10
E−35
[37.62-
AGATGGCCAGGACCCTGCCC
ID











150.01]
[A/C]CTAAAGAATTCCTCT
NO:












GGGCTGTCTTTCAGTCTGTT
365












CGGAA






chr
217476
G
T
OTOA
p.E708
0.007
0.000
1.12
413.18
GCAAGCAGCTTCCAAGATGG
SEQ


16
39



X
35
02
E−41
[98.71-
CCAGGACCCTGCCCACTAAA
ID











1729.48]
[G/T]AATTCCTCTGGGCTG
NO:












TCTTTCAGTCTGTTCGGAAC
366












AGCAG






chr
217476
G
A
OTOA
p.Q71
0.007
0.000
5.17
136.27
GGACCCTGCCCACTAAAGAA
SEQ


16
62



5Q
35
05
E−38
[56.69-
TTCCTCTGGGCTGTCTTTCA
ID











327.58]
[G/A]TCTGTTCGGAACAGC
NO:












AGTGATAAGATCCCCAGCTA
367












TGACC






chr
289438
C
G
CD19
p.P102
0.019
0.000
1.99
Inf
CAACAGATGGGGGGCTTCTA
SEQ


16
83



R
36
00
E−

CCTGTGCCAGCCGGGGCCCC
ID










114

[C/G]CTCTGAGAAGGCCTG
NO:












GCAGCCTGGCTGGACAGTCA
368












ATGTG






chr
289962
G
C
LAT
p.L15F
0.017
0.000
7.89
Inf
AGGCCACGGCTGCCAGCTGG
SEQ


16
27




89
00
E−80

CAGGTGGCTGTCCCCGTCTT
ID












[G/C]GGGGGGGCCAGCAGA
NO:












CCCTTGGTGAGTGCCTGGGG
369












TGGCT






chr
307932
C
G
ZNF62
p.Q79
0.014
0.000
4.59
1291.24
CTGCCTCTGGAGGGGGGTCC
SEQ


16
73


9
2H
22
01
E−78
[178.81-
TCGGGATTGGGGGGTTTTTC
ID











9324.5]
[C/G]TGGGTGTGGGTTTCT
NO:












TGGTGCCGGGTGAGGGCCAC
370












GCGGT






chr
307942
G
T
ZNF62
p.T481
0.022
0.000
7.33
Inf
AGCTCTTGCCGCACTCGGGG
SEQ


16
06


9
T
55
00
E−

CACTTGTAGGGCTTCTCGCC
ID










134

[G/T]GTGTGCGTGCGGCGG
NO:












TGCTGGATAAGGTGGGAGCT
371












GCGGA






chr
620552
G
A
CDH8
p.P24S
0.015
0.000
1.88
451.14
ACTTGAGACTGATTCATCGG
SEQ


16
38




93
04
E−89
[164.28-
AGCCATGTAAATGCAAGGGG
ID











1238.87]
[G/A]AAGAGTAATCCATAA
NO:












TATTATTAATGGAGTCCAGA
372












GATCC






chr
672368
C
T
ELMO3
p.T600
0.006
0.004
4.80
1.48
CTGATCCGCCAGCAGCGCTT
SEQ


16
72



M
86
65
E−02
[1.01-
GCTCCGCCTCTGTGAGGGGA
ID











2.16]
[C/T]GCTCTTCCGCAAGAT
NO:












CAGCAGCCGGCGGCGCCAGG
373












GTCTC






chr
689615
C
T
TANGO
p.R745
0.008
0.006
3.26
1.45
ATACCCTGATCCGGTCATCC
SEQ


16
76


6
C
82
09
E−02
[1.04-
AAGAACTCGCTGTTGATCTC
ID











2.03]
[C/T]GCATCACCATCTCTA
NO:












CCCATGGAGCCTTTGCCACT
374












GAGGC






chr
705088
A
G
FUK
p.T772
0.009
0.006
1.39
1.54
TGAGCTGTGGCTGGCGGTGG
SEQ


16
51



A
31
05
E−02
[1.11-
GGCCTCGGCAGGATGAGATG
ID











2.15]
[A/G]CTGTGAAGATAGTGT
NO:












GCCGGTGCCTGGCTGACCTG
375












CGGGA






chr
708947
C
T
HYDIN
p.P393
0.025
0.000
4.43
656.67
GGCAGATGGGCAAGGTGCTC
SEQ


16
71



7P
98
04
E−89
[91.63-
CGCCCTTTTGCTACCAGGAC
ID











4706.3]
[C/T]GGACCTTGCTCTCCA
NO:












GGTGGCAGGTTGGGAATCCT
376












GAGAG






chr
708970
C
T
HYDIN
p.8383
0.005
0.000
1.11
Inf
TGAGGTATCTTCTGAGACCC
SEQ


16
62



2H
39
00
E−32

AGCTGAATTCCAGCTGGACA
ID












[C/T]GTCCTGAATTAATCA
NO:












CATCGAACCTGCAAATCGAT
377












CAGGG






chr
709350
C
T
HYDIN
p.8295
0.005
0.002
9.20
2.95
AGGCCACAGGCAGGAGCGTG
SEQ


16
93



48
88
00
E−06
[1.93-
ACATTGCGGAGAAGAACTAC
ID











4.51]
[C/T]CTGGATTCCTGTCTG
NO:












CAGAGACAAAAGGAAAGTTG
378












CAATT






chr
709550
G
A
HYDIN
p.I240
0.017
0.000
2.60
Inf
TCTCAGACATTGTTTGTTCC
SEQ


16
79



0I
40
00
E−94

CTAACAGATATTTTCCTTTC
ID












[G/A]ATTGTCTCCATCTTG
NO:












ACATCCACTTTGGTGAGCGG
379












AGGAA






chr
709960
G
A
HYDIN
p.S193
0.006
0.001
1.77
5.05
CGATGTCCTCTTTGTGCTAT
SEQ


16
23



6L
37
27
E−09
[3.17-
TGGAGGTTCCCTGATCTGAT
ID











8.05]
[G/A]AGGTTATATCTTCCT
NO:












CTTCTGCCAGGTAGCAAAGG
380












ATGAA






chr
711012
G
A
HYDIN
p.A713
0.005
0.000
2.94
93.92
AGAGCAAGCTGGGGAGCAAT
SEQ


16
11



V
88
06
E−29
[40.44-
ACCTTGCTGTAATTAAGAGC
ID











218.1]
[G/A]CCAGCACCTCTTCTC
NO:












CGATGCCCTCCACGTCCACC
381












ACGAG






chr
851007
C
T
KIAA05
p.D40
0.005
0.001
1.06
3.2
CACCCCCTGTGCTGCAGGAC
SEQ


16
97


13
D
15
61
E−05
[2.03-
GGCGATGGCTCCCTGGGGGA
ID











5.03]
[C/T]GGTGCATCAGAGAGT
NO:












GAGACCACTGAGTCTGCGGA
382












CAGTG






chr
887197
T
c
MVD
p.K368
0.011
0.007
1.19
1.51
CTGGGTGAGCCCCAGGCCTC
SEQ


16
26



K
03
34
E−02
[1.11-
ACCTGAGTGACAATGATGTA
ID











2.04]
[T/C]TTGACCCCACCGGGG
NO:












GTCGGCTCCATGGCCAGCGC
383












AGCCT






chr
168710
C
T
SMYD4
p.V645
0.006
0.003
2.00
1.95
TGTAGGTCCTGTAACCGAGA
SEQ


17
7



I
86
53
E−03
[1.33-
GACCAGGTGGTCCCTGCTGA
ID











2.87]
[C/T]GGCGGATTCTGCACA
NO:












AGATCTGCTGCCACAGCGCA
384












GCACG






chr
227571
G
C
SGSM2
p.R530
0.005
0.000
8.71
571.47
TGTCGGCGCTGGTGCACCAT
SEQ


17
9



R
88
01
E−33
[77.29-
AGCGTTATCCCACCTGACCG
ID











4225.3]
[G/C]CCCCCGGGGGCCTCC
NO:












GCGGGCCTCACCAAGGACGT
385












GTGGA






chr
319577
A
T
OR3A1
p.F34I
0.011
0.006
5.13
1.74
CTGAGGTTGCCCCTGACCGT
SEQ


17
7




76
79
E−04
[1.3-
GACCAGGTAGGCAAAGAGGA
ID











2.33]
[A/T]GACCACAAAGACAAC
NO:












TGGCTGCAGCCCTGGCGCCT
386












CCAGC






chr
722237
G
A
NEURL
p.L122
0.006
0.003
1.18
1.72
CCTGGTCCTGTTCCTTCTCT
SEQ


17
4


4
5F
13
57
E−02
[1.15-
CTGGCTCCTACTCACCTTGA
ID











2.58]
[G/A]ACCGTTGTGGAAGAC
NO:












CCCACGGCCCCGCAGCAGCC
387












AGGCT






chr
819320
G
A
RANGR
p.Q17
0.005
0.003
9.03
1.78
ATCTGTCACCTGCACCCTGG
SEQ


17
3


F
0Q
88
31
E−03
[1.18-
AGCCTGGGTGACTTTGAACA
ID











2.69]
[G/A]CTGGTGACCAGTCTG
NO:












ACCCTTCACGATCCTAACAT
388












CTTTG






chr
117846
C
T
DNAH9
p.A358
0.008
0.005
4.28
1.45
TCACCGTGACCAGGGATGGC
SEQ


17
88



8A
09
58
E−02
[1.02-
CTGGAGGACCAGTTGCTGGC
ID











2.07]
[C/T]GCTGTGGTCAGCATG
NO:












GAGAGGCCAGACTTGGAGCA
389












GCTGA






chr
142048
C
T
HS3ST
p.C11C
0.005
0.002
3.72
2
GGCAGCGCATGGGGCAGCGC
SEQ


17
68


381

39
71
E−03
[1.29-
CTGAGTGGCGGCAGATCTTG
ID











3.1]
[C/T]CTCGATGTCCCCGGC
NO:












CGGCTCCTACCGCAGCCGCC
390












GCCGC






chr
171844
C
T
COPS3
p.A2A
0.008
0.005
4.22
1.46
AGAGCTGTCGGACACTGTTC
SEQ


17
95




09
56
E−02
[1.03-
ACGAACTGCTCCAGGGCAGA
ID











2.07]
[C/T]GCCATGTTTTCCCCC
NO:












GGGCGGCCCGAGCGGCGAAG
391












GCAGC






chr
188746
C
T
FAM83
p.D819
0.011
0.000
1.70
1177.01
TGGCTCCAGGCTGGGACATG
SEQ


17
89


G
N
03
01
E−63
[162.21-
CTGCTAGGGGTCTTTGCGGT
ID











8540.78]
[C/T]CCGGGGGGCTTGAGC
NO:












CCTCCGTTTAGAATCCGATG
392












AGGCC






chr
212039
G
A
MAP2K
p.M90I
0.009
0.004
9.33
2.28
TGGTAGAGAAGGTGCGGCAC
SEQ


17
61


3

56
22
E−06
[1.64-
GCCCAGAGCGGCACCATCAT
ID











3.16]
[G/A]GCCGTGAAGGTGAGC
NO:












AGGGCCTGGAGGCAGCTGGG
393












AGGGC






chr
212154
C
G
MAP2K
p.T273
0.005
0.002
1.78
2.05
AGATGGCCATCCTGCGGTTC
SEQ


17
98


3
T
88
88
E−03
[1.35-
CCTTACGAGTCCTGGGGGAC
ID











3.11]
[C/G]CCGTTCCAGCAGCTG
NO:












AAGCAGGTGGTGGAGGAGCC
394












GTCCC






chr
213186
G
A
KCNJ1
p.R61
0.012
0.002
2.45
4.42
AGCCAGGGTCCCCCAACCCC
SEQ


17
71


8

04
75
E−12
[3.02-
CGGGATGACCGCGGCCAGCC
ID











6.32]
[G/A]GGCCAACCCCTACAG
NO:












CATCGTGTCATCGGAGGAGG
395












ACGGG






chr
213188
G
A
KCNJ1
p.A58T
0.017
0.000
4.39
49.8
CCGCTTCGTCAAGAAGAATG
SEQ


17
26


2

16
35
E−73
[33.51-
GCCAGTGCAACATTGAGTTC
ID











74.01]
[G/A]CCAACATGGACGAGA
NO:












AGTCACAGCGCTACCTGGCT
396












GACAT






chr
213197
G
A
KCNJ1
p.E380
0.010
0.000
9.65
31.56
GTTCCTGCTGCCCAGCGCCA
SEQ


17
92


2
K
05
32
E−39
[20.08-
ACTCCTTCTGCTACGAGAAC
ID











49.6]
[G/A]AGCTGGCCTTCCTGA
NO:












GCCGTGACGAGGAGGATGAG
397












GCGGA






chr
275807
G
A
CRYBA
p.G159
0.006
0.004
4.80
1.53
CCCCTCCTTGCAAGCCATGG
SEQ


17
75


1
S
37
16
E−02
[1.03-
GCTGGTTCAACAACGAAGTC
ID











2.28]
[G/A]GCTCCATGAAGATAC
NO:












AAAGTGGGGCGTAAGTACAA
398












AAACA






chr
276138
T
C
NUFIP
p.T392
0.006
0.004
3.46
1.56
GCTGACATAGGGACCTGGGA
SEQ


17
38


2
A
37
10
E−02
[1.05-
TAAGCGACTTGATGATTGGG
ID











2.32]
[T/C]CTGAGTTTCCCCGGT
NO:












AGATGATGAAGATGATGAAG
399












ATGAA






chr
368296
A
C
C17orf
p.M35
0.020
0.000
2.25
Inf
GAATTTGAGGCCAGGGGGCT
SEQ


17
76


96
88
34
00
E−80

CAGGGACAGCGGGACCCCCC
ID












[A/C]TCTGCCACCTCCACA
NO:












GCGGGTGGGCGGGCGGGGGC
400












TTAGA






chr
389534
G
C
KRT28
p.P251
0.019
0.000
7.38
2199.94
CGCTCGCATGTTGTTCAACA
SEQ


17
72



R
36
01
E−
[306.01-
AAACCGCGAGGTCTACGCCC
ID










114
15815.81]
[G/C]GGGCGGCGTTCATCT
NO:












CCACGTTCACGTTGCCCCCA
401












GCCGC






chr
391908
A
G
KRTAP
p.S59S
0.006
0.000
1.98
Inf
GCTGGCAGCAGCTGGTCTCA
SEQ


17
97


1-3

86
00
E−41

CAGCAGCTTGGCTGGCAGCA
ID












[A/G]CTGGAGCTGCAGGTC
NO:












CCACTAGTTGAGAAGCTAGG
402












AAATC






chr
392743
C
T
KRTAP
p.R66
0.005
0.000
3.87
143.18
GCAGCTGGGGCGACAGCAGC
SEQ


17
71


4-11
H
15
04
E−27
[49.13-
TGGAGATGCAGCATCTGGGG
ID











417.29]
[C/T]GGCAGCAGGTGGGCT
NO:












GGCAGCACACAGACTGGCAG
403












CACTG






chr
392744
T
A
KRTAP
p.S48C
0.015
0.000
1.04
Inf
TGGCAGCACACAGACTGGCA
SEQ


17
26


4-11

20
00
E−90

GCACTGGGGCCTGCAGCAGC
ID












[T/A]GGACACACAGCAGCT
NO:












GGGGCGACAGTAGGTGGTCC
404












TGCAG






chr
392744
A
T
KRTAP
p.C45S
0.005
0.000
3.82
Inf
ACAGACTGGCAGCACTGGGG
SEQ


17
35


441

64
00
E−34

CCTGCAGCAGCTGGACACAC
ID












[A/T]GCAGCTGGGGCGACA
NO:












GTAGGTGGTCCTGCAGCAGG
405












TGGTC






chr
392744
C
T
KRTAP
p.C44Y
0.005
0.000
3.08
Inf
AGACTGGCAGCACTGGGGCC
SEQ


17
37


4-11

15
00
E−31

TGCAGCAGCTGGACACACAG
ID












[C/T]AGCTGGGGCGACAGT
NO:












AGGTGGTCCTGCAGCAGGTG
406












GTCTC






chr
393166
C
T
KRTAP
p.R107
0.011
0.000
4.62
Inf
AGCAGGTGGGCTGGCAGCAC
SEQ


17
23


4-4
R
52
00
E−69

ACAGACTGGCAGCACTGGGG
ID












[C/T]CTGCAGCAGCTGGGG
NO:












CGGCAGCAGGTGGTCCTACA
407












GCAGG






chr
393462
A
C
KRTAP
p.T21T
0.005
0.000
6.33
577.37
GCTGTCAGCCTACATGCTGC
SEQ


17
01


9-1

15
01
E−30
[77.65-
AGGACCACCTGCTGCAGGAC
ID











4293.3]
[A/C]ACCTGCTGGAAGCCC
NO:












ACCACTGTGACCACCTGCAG
408












CAGCA






chr
393465
A
C
KRTAP
p.N14
0.024
0.000
2.06
Inf
TGCTGCCAGCCTACCTGCTG
SEQ


17
75


9-1
6T
51
OD
E−

CCAGCCCACCTGCTGCAGGA
ID










133

[A/C]CACCTCTTGCCAGCC
NO:












CACCTGCTGTGGGTCCAGCT
409












GCTGC






chr
422392
A
G
C17orf
p.S645
0.007
0.004
2.63
1.55
ACTCCTGAGTGAGCTTCCTG
SEQ


17
92


53
G
11
60
E−02
[1.06-
AAGACTTCTTCTGTGGGACC
ID











2.25]
[A/G]GTAGTTGAGACTGCC
NO:












CCAACGCAGGACAACCCACC
410












ATGAG






chr
428829
G
A
GJC1
p.L71L
0.008
0.004
3.63
1.74
CCACCAGGATGATCTGGAAC
SEQ


17
73




09
66
E−03
[1.22-
ACCCAGAAGCGTACATGGGA
ID











2.48]
[G/A]AGAGGTGCAAACGCA
NO:












TCATAACAGACATTCTCACA
411












GCCCG






chr
439234
C
T
SPPL2C
p.L380
0.011
0.007
4.61
1.59
TGTGCGGCTGCCCACTCTCA
SEQ


17
10



L
27
13
E−03
[1.18-
AGAACTGCTCCTCCTTCCTG
ID











2.14]
[C/T]TGGCCCTGCTGGCCT
NO:












TTGATGTCTTCTTTGTCTTC
412












GTCAC






chr
452145
A
C
CDC27
p.N57
0.022
0.000
2.16
Inf
ATACGACTTTGTCTTTGTAC
SEQ


17
23



5K
55
00
E−

TTCATTACCACTTACCATGC
ID










134

[A/C]TTATAATGTCTAGGA
NO:












TTGACTCTGATAGCATTTCG
413












AAAAC






chr
452146
C
T
CDC27
p.A532
0.005
0.000
1.38
Inf
AGAGTATAGGCATAAGCGTA
SEQ


17
54



T
88
00
E−35

ATTTGGATCAACTTGGATAG
ID












[C/T]TCTCTGGAAGAATTT
NO:












AATTGCAATATCATGTTCCC
414












GTTGC






chr
452146
T
C
CDC27
p.S517
0.015
0.000
3.52
Inf
TGGAAGAATTTAATTGCAAT
SEQ


17
99



G
93
00
E−95

ATCATGTTCCCGTTGCAGAC
ID












[T/C]GAAACAGTTCCCTGC
NO:












AGCACACCAGGCCTTAAAAA
415












AATGG






chr
452162
A
G
CDC27
p.Y470
0.008
0.000
1.83
Inf
GCCAAAGTGTTGTAGAGTAG
SEQ


17
16



Y
58
00
E−51

ATCTCCATGCCTTCAACTCT
ID












[A/G]TAATTCTCAATCCTT
NO:












CTAACCTCTGAGAATATTCT
416












TTCAG






chr
452192
T
C
CDC27
p.Y435
0.015
0.000
2.76
Inf
ATAGGCCCTTCCAATTTGGC
SEQ


17
83



C
93
00
E−95

ACAGTACCCAACCAGTATTG
ID












[T/C]AGTGGTGAGAAGGTA
NO:












GATGGCTCAAAATATTTATA
417












GCTTC






chr
452292
A
G
CDC27
p.T266
0.028
0.000
3.43
1102.44
CTCGGCTATTTCCACTCTGT
SEQ


17
61



T
92
03
E−
[350.36-
GAGAAGACAGACTTTGTTCC
ID










167
3468.91]
[A/G]GTTTGGCCGATTCTG
NO:












GCAACAGACTGTAAAACACG
418












AAAAG






chr
452342
G
C
CDC27
p.L214
0.017
0.000
6.35
2015.93
AAAGTATCTTGTTTGACTTA
SEQ


17
98



V
89
01
E−
[280.13-
CCTTGGGGTTAATGGACTAA
ID










105
14507.61]
[G/C]AGCTGCTGGTCCTCC
NO:












TAATAAACTTCGACCAGTTT
419












TTGGT






chr
452493
T
G
CDC27
p.A54
0.005
0.000
1.90
32,69
TAGTACAACTGTGTCCTTTC
SEQ


17
72



A
64
17
E−22
[17.63-
AAGAGTCTATATGCTTTATA
ID











60.62]
[T/G]GCCTTTCCTGAGCGG
NO:












TAATAACAGGTTGCCAGTAA
420












AAACA






chr
486534
G
C
CACNA
p.G548
0.010
0.000
1.36
Inf
CCACCACCCTCGACGCCTGC
SEQ


17
06


1G
A
05
00
E−53

CCTCTCCGGGGCCCCCCCTG
ID












[G/C]TGGCGCAGAGTCTGT
NO:












GCACAGCTTCTACCATGCCG
421












ACTGC






chr
559172
G
A
MRPS2
p.H142
0.012
0.007
1.02
1.65[
CACTCAAGTGTTCGGATTTC
SEQ


17
91


3
H
50
59
E−03
1.25-
CGGGAAACGTGACTACCTCC
ID











2.2]
[G/A]TGTTGCTTAAAAGAC
NO:












CAGATTTAAGTATCACAGAG
422












ATGTT






chr
560566
C
T
VEZF1
p.Q34
0.010
0.000
2.60
18.2
TCCCTGGCCAGCTTGTCACA
SEQ


17
07



8Q
29
57
E−32
[12.13-
TGTTGTTGTTGTTGTTGTTG
ID











27.32]
[C/T]TGCTGCTGCTGCTGC
NO:












TGCTGCTGCTGCTGCTGCTG
423












CTTTT






chr
615685
C
T
ACE
p.T342
0.009
0.006
1.34
1.52
CCCCAGTTTGGGCAGAACTC
SEQ


17
77



M
80
47
E−02
[1.1-
CCTCTGCTTGCAGGGCTGGA
ID











2.09]
[C/T]GCCCAGGAGGATGTT
NO:












TAAGGAGGCTGATGATTTCT
424












TCACC






chr
616837
T
C
TACO1
p.H166
0.006
0.003
4.17
1.84
TATCTAACAGTAGCCACAAG
SEQ


17
83



H
86
75
E−03
[1.25-
TGCCAAGCAGACATTAGACA
ID











2.69]
[T/C]ATCCTGAATAAGAAT
NO:












GGGTAAGTGTGCGTCTGGGA
425












GGAGT






chr
620386
T
C
SCN4A
p.H599
0.007
0.004
3.76
1.5
CACAGTGAGCACGTTGTCAA
SEQ


17
02



R
11
73
E−02
[1.03-
AGTGCTCCGTCATGGGGTAA
ID











2.19]
[T/C]GTTCCATGGCCATGA
NO:












AGAGGGTGTTGAGCACGATG
426












CAGAT






chr
742881
G
A
QRICH
p.D721
0.009
0.000
2.53
1105.65
AACCAGGCTGATCTGCACCA
SEQ


17
47


2
D
80
01
E−57
[151.96-
GGTTGGATCAAACCACGCTG
ID











8044.57]
[G/A]TCCATTCCAGGTTGG
NO:












ACCAAACCACGCTGATCCAC
427












TCCAG






chr
742881
C
I
QRICH
p.R713
0.006
0.000
5.40
Inf
GATCAAACCACGCTGGTCCA
SEQ


17
72


2
H
62
00
E−40

TTCCAGGTTGGACCAAACCA
ID












[C/T]GCTGATCCACTCCAG
NO:












GTTGCACCAAACCACGCTGA
428












TCCAC






chr
742882
C
T
QRICH
p.R703
0.017
0.000
8.11
407
GACCAAACCACGCTGATCCA
SEQ


17
02


2
H
89
04
E−
[164.39-
CTCCAGGTTGCACCAAACCA
ID










100
1007.67]
[C/T]GCTGATCCACTCCAG
NO:












GTTGGACCAAACCACGCTGA
429












TCTGC






chr
742884
A
T
QRICH
p.V631
0.009
0.000
5.96
Inf
ACCACGCTGAACTGCACCAG
SEQ


17
18


2
D
31
00
E−56

GTTGCACCAAACCACGCTGA
ID












[A/T]CTATACCAGGTTGCA
NO:












CCAAACTACGCTGAACTTCA
430












CCAGG






chr
742885
C
T
QRICH
p.R572
0.007
0.000
1.92
799.67
CAAACCACGCTGATGATCTG
SEQ


17
95


2
H
11
01
E−41
[108.91-
CACGAGGTTGTGCCAAACCA
ID











5871.76]
[C/T]GCTGATCTACTCCAG
NO:












GTTGGACCAAACCATGCTGA
431












ACTGC






chr
743831
T
C
SPHK1
p.R285
0.005
0.002
1.15
1.82
GTCTGGGGGAGATGCGCTTC
SEQ


17
09



R
15
84
E−02
[1.17-
ACTCTGGGCACCTTCCTGCG
ID











2.83]
[T/C]CTGGCAGCCCTGCGC
NO:












ACCTACCGCGGCCGACTGGC
432












CTACC






chr
768883
G
A
LOC10
p.G89
0.010
0.007
4.44
1.39
TCCACAGCTTGGCATCCGCT
SEQ


17
19


06535
G
78
79
E−02
[1.02-
CTTCTCTGCAGAGCGAGATC
ID






15




1.9]
[G/A]CCTTTGCCCCGGGCT
NO:












TGTAGCAATTTGTGCTTTTT
433












CCTCC






chr
792545
C
T
SLC38A
p.V169
0.006
0.003
1.29
1.72
CACTGCCCACTGAAGAGGCC
SEQ


17
30


10
M
37
72
E−02
[1.15-
GTGCTTGAGAGAGGAGAGCA
ID











2.56]
[C/T]GATCTGCAGAGGGAG
NO:












AGGGGAGAGAGCACGGGGCA
434












GGTCA






chr
796820
T
C
SLC25A
p.I57T
0.005
0.002
1.51
2.24
ATGACGGGCATGGCGCTGCG
SEQ


17
59


10

15
31
E−03
[1.43-
GGTGGTGCGTACCGACGGCA
ID











3.5]
[T/C]CCTGGCACTCTACAG
NO:












CGGCCTGAGCGCCTCGCTGT
435












GCAGA






chr
798471
G
A
ALYREF
p.R148
0.005
0.003
1.10
1.78
GCTCAAAGTGCACGTCTGCT
SEQ


17
52



R
64
17
E−02
[1.17-
GTTCCTAAGCTGCGACCAGA
ID











2.72]
[G/A]CGATCATAGTGCACA
NO:












GCCGCCTTCTTCAGCGTTCC
436












AAATT






chr
799545
G
A
ASPSC
p.L252
0.018
0.000
1.09
2063.13
CTGCCCCCTTTGTTCCTTTC
SEQ


17
45


R1
L
38
01
E−
[286.79-
TCGGGTGGGGGACAGAGACT
ID










107
14842.01]
[G/A]GGGGGCCCTCCTGGG
NO:












CCCACGAGGCCTCTGACATC
437












ATCTT






chr
805296
G
T
FOXK2
p.P259
0.009
0.006
1.23
1.55
GTTTTGTGTTTGTTTTTTAA
SEQ


17
14



P
80
35
E−02
[1.12-
ATACAGGATGATTCAAAGCC
ID











2.14]
[G/T]CCTTACTCCTACGCG
NO:












CAGCTGATAGTTCAGGCGAT
438












TACGA






chr
808993
T
C
TBCD
p.L118
0.011
0.006
3.07
1.62
AACCGTCTGTGTGACCTTCT
SEQ


17
49



5P
27
98
E−03
[1.2-
GGGCGTACCCAGGCCCCAGC
ID











2.19]
[T/C]GGTGCCCCAGGTAAC
NO:












CCTGTCACCTTCACAGCATG
439












AGGTG






chr
345222
T
C
TGIF1
p.P82P
0.006
0.000
1.05
9.21
CGACCCCCTCTGCGCTCCTG
SEQ


18
3




13
67
E−14
[5.81-
GGGTCCTCCTGCGCCCCCCC
ID











14.59]
[T/C]CCTCCACCGGCGCGC
NO:












TGCCCACAGCCGCGTGCCCT
440












CTCCC






chr
939652
C
T
TWSG1
p.A157
0.006
0.003
4.36
1.54
CACCACCAGAATGTGTCTGT
SEQ


18
4



V
13
99
E−02
[1.03-
CCCCAGCAATAATGTTCACG
ID











2.31]
[C/T]GCCTTATTCCAGTGA
NO:












CAAAGGTAACTGCCAACAGT
441












TGACT






chr
988737
C
A
TXNDC
p.L232
0.010
0.000
4.36
99.44
CAAGTCCCCAGAAGAAGCCA
SEQ


18
1


2
I
29
10
E−49
[49.86-
TCCAGCCCAAGGAGGGTGAC
ID











198.33]
[C/A]TCCCCAAGTCCCTAG
NO:












AGGAAGCCATCCAGCCCAAG
442












GAGGG






chr
125467
A
G
SPIRE1
p.A46
0.005
0.002
1.16
1.82
CTTCTTCTGCAGCCTCATAG
SEQ


18
78



A
15
84
E−02
[1.17-
CCCTCATCATTGCTACCGTC
ID











2.83]
[A/G]GCTTCCACCGTGTTG
NO:












GCCATGTGATCGATAAGCTG
443












CTCTA






chr
189642
G
A
GREB1
p.E93K
0.007
0.004
1.32
1.65
CAATCTAACAGTTAATGAAA
SEQ


18
86


L

60
61
E−02
[1.14-
TGGAAGATGATGAAGACGAT
ID











2.4]
[G/A]AAGAAATGTCTGATT
NO:












CAAACAGCCCACCAATTCCC
444












TATTC






chr
289343
A
G
DSG1
p.I739
0.011
0.007
8.43
1.54
TGTAGGTTCCCCTGCTGGCT
SEQ


18
74



V
03
18
E−03
[1.14-
CTGTGGGTTGTTGTAGCTTC
ID











2.09]
[A/G]TTGGAGAAGACCTGG
NO:












ATGACAGCTTCTTGGATACC
445












CTGGG






chr
337850
G
A
MOCO
p.Q35
0.012
0.009
1.86
1.42
GAATGGAGAATATAAAGCAG
SEQ


18
83


S
4Q
75
01
E−02
[1.07-
CACACCTTCACCTTGGCTCA
ID











1.88]
[G/A]TATACCTACGTGGCC
NO:












CTGTCCTCTCTCCAGTACCC
446












CAATG






chr
641789
C
A
CDH19
p.V487
0.005
0.000
1.39
618.95
ATGGATTCATCTCTATCCAC
SEQ


18
22



L
88
01
E−33
[83.71-
TGCACTGATAGTCTGAATTA
ID











4576.34]
[C/A]CTAAAAAAAAAGGGG
NO:












GATAGATTTTTGTTGTTGTT
447












TGGAT






chr
721140
G
A
FAM69
p.A221
0.006
0.003
1.29
1.75
TGCCCTGTGGTGGGGGCTGC
SEQ


18
55


C
V
62
79
E−02
[1.16-
CCGCGGCCAGGAACTCCACC
ID











2.65]
[G/A]CGTAGAAGTGGCCGC
NO:












AGGAACCCAGCACGGGCAGC
448












ACGTG






chr
723467
T
C
ZNF40
p.G124
0.008
0.005
1.66
1.56
ATTGTGAGGGTGAAGGAGGA
SEQ


18
01


7
2G
33
35
E−02
[1.1-
AACGCAGGAGACGGTGGAGG
ID











2.21]
[T/C]GTTGTCCCCCACAGA
NO:












CACCTGTGCCCTGTGACGCT
449












CGATG






chr
287703
G
A
PPAP2
p.R85C
0.010
0.006
9.91
1.53
ACCTTGTATACAGCAGCCAC
SEQ


19



C

54
93
E−03
[1.12-
GTAGTTGTTGAAGTCCGAGC
ID











2.08]
[G/A]AGAATAGAGCCGGTC
NO:












TGTGTACACCAGGTAGGCTT
450












CCCCG






chr
474688
T
G
ODF3L
p.R20R
0.012
0.006
1.39
1.85
ACTTCCTCAGGCCGGTCTCC
SEQ


19



2

25
67
E−04
[1.38-
GGAATCTGGCCCTCCGTCAC
ID











2.47]
[T/G]CGCCGGCCAAGGGGG
NO:












GCTGTGGCCAGCCGTGGGGT
451












GGAGT






chr
104374
C
T
ABCA7
p.L318
0.005
0.003
1.35
1.79
GGGGGTGCTGTCCACAGGTG
SEQ


19
7



L
39
01
E−02
[1.16-
AACCGGACCTTCGAGGAGCT
ID











2.76]
[C/T]ACCCTGCTGAGGGAT
NO:












GTCCGGGAGGTGTGGGAGAT
452












GCTGG






chr
143033
C
T
DAZAP
p.F280
0.007
0.000
5.26
Inf
TGTCCACCCCTCCTGGAGGC
SEQ


19
0


1
F
11
00
E−40

TTTCCCCCTCCCCAGGGCTT
ID












[C/T]CCTCAGGGCTACGGT
NO:












GCCCCGCCACAGTTCAGTAA
453












GTCTA






chr
145711
C
A
APC2
p.P359
0.029
0.000
8.67
2568.75
CGCGCCAACGCGGCGCTGCA
SEQ


19
1



Q
90
01
E−
[358.86-
CAACATCGTCTTCTCGCAGC
ID










162
18387.26]
[C/A]GGACCAGGGCCTGGC
NO:












GCGCAAGGAGATGCGCGTCC
454












TGCAC






chr
162098
G
T
TCF3
p.P360
0.015
0.000
1.11
103.81
TCCCCTCCCCCCAAAACCCT
SEQ


19
0



P
20
15
E−64
[51.56-
CACAGACCTGCCAGGCCCTG
ID











209.02]
[G/T]GGGGAGCCCACGGGG
NO:












GTAGAAGGGCTGGACGAGAA
455












GTTAT






chr
177540
C
G
ONECU
p.G483
0.006
0.000
1.74
Inf
TGAACCGCTGGGCTGAGGAG
SEQ


19
8


T3
G
13
00
E−27

CCCAGCACGGCCCCCGGGGG
ID












[C/G]CCCGCCGGCGCCACG
NO:












GCCACTTTCTCCAAGGCCTG
456












AGGCG






chr
224844
A
G
SF3A2
p.N43
0.012
0.000
3.76
Inf
CCTGGGGTCCACCCTCAGCC
SEQ


19
5



2S
25
00
E−47

TCCGGGAGTTCACCCCTCAA
ID












[A/G]TCCTGGGGTGCACCC
NO:












CCCAACTCCCATGCCCCCAA
457












TGCTG






chr
225042
A
G
AMH
p.Y167
0.007
0.000
2.29
171.42
GGAGGAGCTGGCCCCCCAGA
SEQ


19
3



C
84
05
E−36
[52.47-
GCTGGCGCTGCTGGTGCTGT
ID











560.02]
[A/G]CCCTGGGCCTGGCCC
NO:












TGAGGTCACTGTGACGAGGG
458












CTGGG






chr
287732
C
T
ZNF55
p.R122
0.008
0.005
4.26
1.46
AAGGGTGGAGAGACCATGTA
SEQ


19
0


6
C
09
57
E−02
[1.02-
AAAGCAGTAAAGGTAATAAA
ID











2.07]
[C/T]GTGGAAGAACCTTCA
NO:












GAAAGACTCGAAATTGTAAT
459












CGTCA






chr
395944
G
A
DAPK3
p.R340
0.007
0.005
2.43
1.55
CCACGTCCTCGTGGCAGAGC
SEQ


19
4



8
84
07
E−02
[1.08-
CGCCGGCTGCGCTGCAGCTC
ID











2.24]
[G/A]CGCAGGCCCTCCTCG
NO:












GCGGCCGCCGCCTCCTCCAG
460












CACCT






chr
451121
C
G
PLIN4
p.S906
0.007
0.000
3.99
Inf
ACTGCAGACGGTGTCCTTGG
SEQ


19
3



T
84
00
E−45

TACCGGTCAGGACAGTCTTG
ID












[C/G]TGGTGTCCACGCCGG
NO:












TCTGGACAGTCCCTTTGGCC
461












AAGTT






chr
451351
C
T
PLIN4
p.K137
0.006
0.000
1.43
681.44
GGACAGCCTTCGAGGTGTCC
SEQ


19
9



K
13
01
E−35
[92.31-
AGACCCCCTTGGACGGCCCC
ID











5030.26]
[C/T]TTAGCCATGTCCATG
NO:












GCCCCTGTGACCCCGCTGGA
462












CACCA






chr
572022
C
T
LONP1
NM_0
0.012
not
2.62
Inf
CGCCGCGAAACGCACGTGAC
SEQ


19
9



01276
76
found
E−24

GCCCGGCGCGTGCCTCGGTA
ID







480:c.-




[C/T]CCGATGGGCGCGTGG
NO:







160 + 




CTCGAAACAGCCGCTTCAGG
463







1G > A




GAGCT






chr
583160
G
A
FUT6
p.T324
0.009
0.006
1.69
1.5[
GCAGAAAGCGAGTGCCCAGC
SEQ


19
8



M
56
38
E−02
1.09-
TGAAGGAGCGAGGCCGCAGC
ID











2.08]
[G/A]TCTCCCGCCAGCGAA
NO:












AGTAGCTCAGGTAGCGGGCG
464












TGGTC






chr
813810
C
T
FBN3
p.11259
0.007
0.004
9.73
1.66
CCCCCGAGGGCCTGATCAAA
SEQ


19
4



4I
60
59
E−03
[1.15-
GTCAAAGCCAGAGGGGCAGA
ID











2.39]
[C/T]GCAGCGGAAGCCACC
NO:












AAGAGTGTTGCGACAGGAGG
465












CGCTC






chr
815480
G
A
FBN3
p.P207
0.006
0.000
1.44
Inf
TGGGTGAGGGGCTCACCTTC
SEQ


19
2



6S
86
00
E−40

TCGGGAGTCATCCGGGCCTG
ID












[G/A]GACTGCCCCGTGGCC
NO:












AAAGGGGCAGAGCTCCTGAA
466












AGGCA






chr
837316
C
T
CD320
p.G4D
0.006
0.003
2.31
1.77
CAGAGCCCCTGTTCGCCACG
SEQ


19
4




51
69
E−02
[1.07-
CTCCAACCTGCGCCATCCAA
ID











2.78]
[C/T]CGCCGCTCATGCTGT
NO:












CCCCACAGCGGCGCCGGCCA
467












CGCGC






chr
839896
A
G
KANK3
p.D489
0.022
0.000
1.53
Inf
AGCTACCCGGGGGCTCGGCG
SEQ


19
1



D
30
00
E−

CCACCGTTCTCGCTGTCGCC
ID










101

[A/G]TCGCTGTCGCTGGCG
NO:












TCCTCGCTGGAGGAGCTCTC
468












GTACC






chr
856436
G
T
PRAM1
p.P109
0.006
0.000
1.85
373.54
CAGTTTGGACGGCTTCTTGG
SEQ


19
6



Q
86
02
E−38
[88.96-
GGAGGTCAGTGACCTCAGGC
ID











1568.57]
[G/T]GCGGGGGCTTCTTGG
NO:












GGAGGTCAGTGACCTCAGGC
469












GGCGG






chr
905982
A
G
MUC1
p.S920
0.013
0.009
9.32
1.47
GTATCTGTAGTGACTTCAGT
SEQ


19
7


6
7P
24
05
E−03
[1.11-
GATGGCCAGTATTTCAGCTG
ID











1.93]
[A/G]GGTGCTGCTCAAATT
NO:












TGGGGGTGAACTGGTTTCAG
470












GTTCT






chr
907288
G
C
MUC1
p.P485
0.005
0.003
4.88
1.54
ATGGTGGAGGTGGTAACATT
SEQ


19
6


6
4A
64
66
E−02
[1.01-
TGGAGATGTGACTTTAGATG
ID











2.35]
[G/C]CTCTGGGTAAGCTGA
NO:












GACAGTAGAATGTGATTCAA
471












ATGCT






chr
923755
G
A
OR7G3
p.P25S
0.008
0.004
1.80
1.67
GTGGCCAGGTACATGGACAG
SEQ


19
4




133
873
E−02
[1.07-
GAACAGCATGAAGAGGATGG
ID











2.5]
[G/A]CTGCAGCTCCGGATC
NO:












CCCTGACAATCCCAAGAGAA
472












AGAAT






chr
114887
G
A
EPOR
p.P488
0.005
0.003
2.60
1.66
GGCAGAGGCTCAGCGGCTGG
SEQ


19
25



S
39
25
E−02
[1.08-
GATAAGGCTGTTCTCATAAG
ID











2.56]
[G/A]GTTGGAGTAGGGGCC
NO:












ATCGGATAAGCCCCCTTGGG
473












CTCCC






chr
120606
A
G
ZNF70
p.Q59
0.005
0.000
4.11
6.32
AAAGGACTCACACTGGAGAG
SEQ


19
27


0
6Q
15
82
E−10
[3.93-
AAACCCTATGAGTGTAAGCA
ID











10.16]
[A/G]TGTGGGAAAGCCTTC
NO:












AGTTGTGCCTCAAACCTTCG
474












AAAGC






chr
121556
A
G
ZNF87
p.C173
0.007
0.000
2.32
Inf
GAACAGAACTGGGAAAACTG
SEQ


19
97


8
C
35
00
E−44

AATGCTTTCCCACACTGCTT
ID












[A/G]CATTCATAGGGTTTT
NO:












TTTGCAGAGTGGATTCTTTC
475












ATGTC






chr
125014
C
T
ZNF79
p.P587
0.005
0.000
1.69
115.34
TGAGAGAAGCAAATGCTTTC
SEQ


19
51


9
P
15
04
E−26
[43.47-
CCACATTCCTTACATTCATA
ID











306.02]
[C/T]GGGTTCTCTCCAGTA
NO:












TGAGTTTTTTCATGTCCTTG
476












AAGAA






chr
125411
C
T
ZNF44
p.P615
0.013
0.000
1.75
1489.83
TGAGAGAAGCAAATGCTTTC
SEQ


19
41


3
P
24
01
E−77
[206.05-
CCACATTCCTTACATTCATA
ID











10771.89]
[C/T]GGGTTCTCTCCAGTA
NO:












TGAGTTTTTTCATGTCCTTG
477












AAGAA






chr
141045
G
C
RFX1
p.P34A
0.006
0.000
9.57
Inf
GCAGCGGTGGGTGGCTGCGG
SEQ


19
56




37
00
E−37

GGGCTGGGGTGCCGCTGGGG
ID












[G/C]TGGTGGCGGTGGCGG
NO:












CTGGGGCTGGGCTTGTGGCG
478












GGGCC






chr
153539
G
A
BRD4
p.P982
0.017
0.000
8.48
Inf
CGTGGAGGGGGCTGATGCTG
SEQ


19
36



S
65
00
E−60

CTGCTGGGGTGGAGGCTGGG
ID












[G/A]CTGGGGTGGTGGGGG
NO:












TGGTGGCGGCTGCTGCTGCA
479












GCTGC






chr
162756
C
T
CIB3
p.G139
0.007
0.000
3.10
88.16
ACCTTCTCACATACCAGGCT
SEQ


19
56



R
84
09
E−38
[43.31-
CACCTCCTCGGCACTCAGCC
ID











179.45]
[C/T]CCCCCGCGTCAGTTT
NO:












GGTCACCGTCTGCTCCAGGT
480












CCCAC






chr
170390
A
C
CPAM
p.S110
0.005
0.003
2.24
1.67
GGCCTCGGGAGGGTCCAGGC
SEQ


19
23


D8
3A
88
53
E−02
[1.11-
CACAATGACAGACTCATTGG
ID











2.53]
[A/C]TGGCTCTGGACCATG
NO:












GCCAACCTGGAAAAAGAAAC
481












CAAGG






chr
178816
G
A
FCHO1
p.R186
0.009
0.006
4.21
1.41
GAGAGCCTGCGGCGCTCAGT
SEQ


19
68



Q
56
78
E−02
[1.02-
GGAAAAATACAACTCAGCCC
ID











1.95]
[G/A]AGCTGACTTTGAGCA
NO:












GAAGATGCTGGACTCAGCCC
482












TGGTA






chr
178889
A
G
FCHO1
p.E423
0.006
0.004
4.13
1.51
AGAAGCAGCCCTCTTGGCCT
SEQ


19
54



G
62
38
E−02
[1.03-
CACCCTCTCTAGCTGTGCAG
ID











2.23]
[A/G]GAGATTGCAGTCAGA
NO:












GGAGCAGGTGTCCAAGAACC
483












TCTTT






chr
197446
C
T
GMIP
p.E795
0.009
0.005
8.03
1.61
AGGCCCTCTCCATAGCTGTG
SEQ


19
14



K
07
65
E−03
[1.15-
GGCCCAGTGGGTTCTTACCT
ID











2.26]
[C/T]GGTAGGTGTGGCCGT
NO:












GGGATGCTGCTCCAGGGTAC
484












TGTGG






chr
202294
C
A
ZNF90
p.G347
0.018
0.000
3.39
Inf
TCCATACTGGAGAGAAACCC
SEQ


19
04



G
14
00
E−

TACAAATGTGAAGAATGTGG
ID










108

[C/A]AAAGCCTTCAGGCGC
NO:












TCCTTAGTCCTTCGTACACA
485












TAAGA






chr
202295
C
A
ZNF90
p.G403
0.008
0.000
2.64
Inf
GTCATAGTGAAAAGAAACCC
SEQ


19
72



G
82
00
E−52

TACAAATGTGAAGAATGTGG
ID












[C/A]AAAGCCTTCAAGCGC
NO:












TCCTCAACACTTACTATACA
486












TAAGA






chr
212400
T
C
ZNF43
p.F298
0.011
0.000
4.36
Inf
TGGAGAGAAACCCTACAGAT
SEQ


19
06


0
L
03
00
E−66

GTGAAGAATGTGGCAAAACC
ID












[T/C]TTAACCGGTCCTCAC
NO:












ACCTTACTACACATAAAAGA
487












ATTCA






chr
217194
T
A
ZNF42
p.H195
0.010
0.007
3.83
1.41
TTTGCATGCTTTCACAACTA
SEQ


19
40


9
Q
05
15
E−02
[1.03-
ACTCAACATAAGAAAATTCA
ID











1.93]
[T/A]ATTAGAGAGAATACC
NO:












TACAGATGTAAAGAATTTGG
488












CAATG






chr
221543
A
C
ZNF20
p.V116
0.024
0.000
1.90
Inf
AAAGCCTTTGCCACATTCTT
SEQ


19
42


8
5G
02
00
E−

CACATTTGTAGGGTTTCTCT
ID










142

[A/C]CAGTATGAATTTTCT
NO:












TATGATAACTAAGGGTTGAG
489












GACCA






chr
221548
A
T
ZNF20
p.C100
0.005
0.003
4.87
1.54
AGGTTTGATGACCAGTTGAA
SEQ


19
29


8
3S
64
66
E−02
[1.01-
AGCTTTGCCACATTCTTCAC
ID











2.35]
[A/T]TTTGTAGGGTTTCTC
NO:












TCCAGTATGAATTACCTTAT
490












GTTTA






chr
221556
A
G
ZNF20
p.H715
0.017
0.000
2.21
1917.14
TTTTGCCACATTCTTCACAT
SEQ


19
91


8
H
65
01
E−
[266.35-
TTGTAGGGTTTCTCTCCAGT
ID










102
13799.28]
[A/G]TGAATTCTCTTATGT
NO:












TCCATAAGGTTTGAGGACCA
491












GTTGA






chr
222719
G
A
ZNF25
p.E456
0.014
0.000
6.24
Inf
GTCTTCATACCTTATTCGAC
SEQ


19
18


7
K
71
00
E−88

ATAAGATAATTCATACTGGA
ID












[G/A]AGAAACCCTACAAAT
NO:












GTGAAGAGTGTGGCAAAGCC
492












TTTAA






chr
222720
A
G
LNF25
p.I507
0.016
0.000
8.46
926.98
CAAAGCCTTTAACCGGTCTT
SEQ


19
71


7
V
42
02
E−95
[227.04-
CACACCTTTCTCAACATAAG
ID











3784.7]
[A/G]TAATTCATACTGGAG
NO:












AGAAACCCTACAAATGTGAA
493












GAATG






chr
228476
G
A
ZNF49
p.K391
0.008
0.000
2.33
Inf
CACACCTTACTACACATAAG
SEQ


19
44


2
K
09
00
E−48

AGAATTCATACTGGAGAGAA
ID












[G/A]CCCTACAAATGTGAA
NO:












GAATGTGGCAAAGCTTTTAA
494












CCTAT






chr
351753
G
A
ZNF30
p.D122
0.008
0.004
4.44
1.71
ATTTTCAAATTCTAATAAGA
SEQ


19
06


2
N
33
89
E−03
[1.21-
ATTTGGAATATACAGAATGC
ID











2.42]
[G/A]ACACATTTAGAAGCA
NO:












CCTTTCATTCAAAGTCTACT
495












CTTTC






chr
360024
T
C
DMKN
p.S276
0.006
0.001
1.79
6.01
CTGCCACCACTGCTGCCGCC
SEQ


19
05



G
37
07
E−11
[3.87-
ACTGCTGCCGCCACTGCTGC
ID











9.32]
[T/C]GCCACTGCTGCTGCC
NO:












ACCACTGCTGCTGCCATTGT
496












TGTTG






chr
383774
C
T
WDR8
p.E229
0.009
0.000
5.77
Inf
CCTCCTCCTTCCTTTCCTCC
SEQ


19
17


7
8E
07
00
E−42

TCCTCCTCCCTTACCTCCTC
ID












[C/T]TCCTCCCTTTCCTCT
NO:












TCTTCCTCCCTTTCCTCCTC
497












CTCCT






chr
383792
C
T
WDR8
p.A169
0.005
0.003
8.94
1.86
ATTTCTTGGCCAGTTTCTTC
SEQ


19
29


7
4A
64
03
E−03
[1.21-
CTTTTCTGGGCCAATTTCTC
ID











2.88]
[C/T]GCCTCCTGGCTTAGC
NO:












TTCTCCCCTCTTTGGGCCAG
498












TGTTT






chr
388172
G
A
KCNK6
KCNK6
0.006
0.000
1.69
108.13
AAAAGAAAAAGATTTACCCT
SEQ


19
32



(NM_0
86
06
E−34
[47.2-
TTACTCTCTTTACTCCCCTA
ID







04823:



247.68]
[G/A]GCTATGGGTACACAA
NO:







exon2:




CGCCACTGACTGATGCGGGC
499







c.323-




AAGGC








1G > A)











chr
404084
G
A
FCGBP
p.S147
0.006
0.000
6.61
702.38
AATCTTTCAAGGGACCCTGG
SEQ


19
20



3S
37
01
E−37
[95.29-
GGATCCACCAGCTTGTGGCA
ID











5177.19]
[G/A]GAGGACAGTGGCCCT
NO:












GTGGGGCTGGAGAGGAGCCC
500












ACAGA






chr
404086
T
A
FCGBP
p.Q13
0.006
0.003
8.36
2.11
CTTGGGGTCGCCGTTGTAGT
SEQ


19
85



85L
37
03
E−04
[1.41-
TCCCACACAGGCCACACATC
ID











3.15]
[T/A]GCTGGTAGTAGTTTC
NO:












CGGGGACGGTGACCCGCACA
501












TAGTA






chr
405805
A
T
ZN78
p.C615
0.006
0.004
2.82
1.57
AGCTGGGTGGGAAGACTAAA
SEQ


19
06


0A
S
62
24
E−02
[1.06-
AACCTTTCCACATTCCTTAC
ID











2.31]
[A/T]TTCAAAGGGTTTCTC
NO:












ACCAGTATGCAATTTCTGAT
502












GTCGA






chr
413558
A
G
CYP2A
p.L73L
0.005
0.002
1.18
2.55
GCATCATGTCCACACAGCAC
SEQ


19
49


6

88
32
E−04
[1.67-
CACGACCCGCCGGGGCCCCA
ID











3.88]
[A/G]GTGAATGGTGAACAC
NO:












GGGGCCATAGCGCTCACTGA
503












TCTGA






chr
416339
A
G
CYP2F1
p.P472
0.008
0.004
1.79
1.84
TGCAGCCGCTGGGTGCGCCC
SEQ


19
27



P
09
41
E−03
[1.29-
GAGGACATCGACGTGACCCC
ID











2.62]
[A/G]CTCAGCTCAGGTCTT
NO:












GGCAATTTGCCGCGGCCTTT
504












CCAGC






chr
428553
C
T
MEGF8
p.P847
0.009
0.000
3.25
Inf
TGGGGTTCTGACTCCTCTGC
SEQ


19
73



P
31
00
E−47

CCAACTGACCCCCAGGACCC
ID












[C/T]TTCTGTGAGTGGCAT
NO:












CAGAGCACCAGCCGCAAAGG
505












GGACG






chr
434117
C
T
PSG6
p.L325
0.005
0.001
8.18
3.69
CTGGCCCACAGAGGAACAAA
SEQ


19
38



L
39
47
E−07
[2.36-
GGATACTCACAGAGGACATT
ID











5.76]
[C/T]AGGGTGACTGGGTTA
NO:












CTGCGGATGCCACCATATCG
506












GTCCC






chr
434117
G
A
PSG6
p.T324
0.005
0.001
2.40
4.64
CCCACAGAGGAACAAAGGAT
SEQ


19
42



I
39
17
E−08
[2.95-
ACTCACAGAGGACATTCAGG
ID











7.29]
[G/A]TGACTGGGTTACTGC
NO:












GGATGCCACCATATCGGTCC
507












CGTAT






chr
440651
C
T
XRCC21
p.E50E
0.006
0.004
2.90
1.56
CATCATTCCCAATGTCCACA
SEQ


19
67




62
26
E−02
[1.06-
CTGTGTATCTGCTCCTCCTT
ID











2.3]
[C/T]TCCAACTGTGGGCAG
NO:












AGAGAGAGGCCACTGTCAGT
508












GCCTG






chr
445006
A
T
ZNF15
p.Q22
0.005
0.002
1.84
1.76
GGCAAGGAATTTAGTCAAAG
SEQ


19
77


5
3L
15
93
E−02
[1.13-
CTCACATCTGCAAACTCATC
ID











2.74]
[A/T]GAGAGTCCACACTGG
NO:












AGAGAAACCATTCAAATGTG
509












AGCAA






chr
448906
A
G
ZNF28
p.L578
0.008
0.005
1.46
1.57
TTATAATGTTTCTCTCTGCT
SEQ


19
74


5
P
82
64
E−02
[1.12-
CATGTAGTCTTTGATGAGTC
ID











2.2]
[A/G]GAAGGTCCTTTCCAC
NO:












GCTCACAATGTGTGTACTGT
510












GTCTC






chr
458987
A
G
PPP1R
p.P435
0.008
0.000
1.83
26.8
CAGGGGGCCATGTCTGTTGG
SEQ


19
43


13L
P
33
31
E−22
[12.4-
GGATGCTGGGGGGCTGGGGT
ID











57.93]
[A/G]GGGGTTTGGGGTTGG
NO:












GTCTGGGGCTGTGGGGGCAG
511












CTGGG






chr
461377
G
A
EML2
p.R213
0.006
0.000
1.59
Inf
TCCCCGGTGGGCAGCAAATA
SEQ


19
13



X
62
00
E−39

AAGGTTGGCCCGGCAGTCTC
ID












[G/A]GCCACGGTAGCCATA
NO:












GCTGGAGCCACCCAGGGGCT
512












GGTTA






chr
462154
G
C
FBXO4
p.P420
0.005
0.000
3.35
595.7
GCCGGGCGCAGTGGCCGGGG
SEQ


19
95


6
R
88
01
E−33
[80.57-
AGTCGGCCGGGGGTGGCTCC
ID











4404.4]
[G/C]GGGGCCCGTCCGGCC
NO:












CGCGGTTCTGGAGAAAGAAG
513












AGCTG






chr
463139
C
G
RSPH16
p.A277
0.006
0.003
3.10
1.58
CCTGTTCGCCTTCAGTGCCG
SEQ


19
18


A
A
13
90
E−02
[1.05-
CCTCCACTCCGGGTGAACAG
ID











2.36]
[C/G]GCCTTCTGTTTCTCC
NO:












GCCATCTTGTAGGTGGGCTG
514












CATCT






chr
472042
C
T
PRKD2
p.V324
0.011
0.008
4.45
1.36
TTGTCAGCCTCGCTGAAATC
SEQ


19
07



M
27
30
E−02
[1.01-
GGTGGCCTCCTCCATCGGCA
ID











1.83]
[C/T]ATCTGTGGGGACGGA
NO:












GGCATCAGAGGGGTCTCCAC
515












CCAGT






chr
475752
A
G
ZC3H4
p.H629
0.005
0.002
4.03
2.49
CAGGGTGCATGTCCGGGTGC
SEQ


19
94



H
15
07
E−04
[1.58-
ATGTCGGGGTGCATGTCAGG
ID











3.93]
[A/G]TGCATTGGACCGCCC
NO:












ATTGGCCCTGGGGGTCCCAT
516












GTTGG






chr
486245
C
T
LIG1
p.V685
0.013
0.009
1.28
1.44
AGGTAGGCGCCGATCACCAC
SEQ


19
55



M
24
24
E−02
[1.09-
CAGGTCCAGGGTGTCACCCA
ID











1.89]
[C/T]GCCATCAAGGTAGTC
NO:












CTTCTTCAGCTGGGAGAAGG
517












GGAGG






chr
486433
G
A
LIg1
p.L304
0.005
0.002
1.28
1.97
CCAAGCTCCAGGCCCTGCTG
SEQ


19
12



F
21
65
E−02
[1.11-
GGGTGGCCCAAGGTGGTTGA
ID











3.26]
[G/A]GCTGAGGTAGAGGAC
NO:












AGGGAGGAGGTCTGGAGGCG
518












ACAGG






chr
499318
T
G
GFY
p.L456
0.006
0.001
1.97
3.86
CCAGAGATGACCACGCCCCT
SEQ


19
84



V
37
66
E−07
[2.44-
TTGCACCCACAGTTCTGCAT
ID











6.11]
[T/G]TGGACGCCCCGAAAG
NO:












ACCCCTACGACCTCTACTTT
519












TATGC






chr
515180
T
C
KLK10
p.N27
0.013
0.000
4.10
525.15
CATAACATCTGGATCAGCTG
SEQ


19
60



6S
97
03
E−79
[164.39-
GAGCGTAGCATCTGGATCAG
ID











1677.55]
[T/C]TGGAGCGTATGACTT
NO:












TATTGATCCAGGACATGTAT
520












TTGCA






chr
516283
G
T
SIGLEC
p.G54
0.009
0.000
5.23
Inf
TGCTCCTTCTCCTACCCCTC
SEQ


19
92


9
V
31
00
E−56

GCATGGCTGGATTTACCCTG
ID












[G/T]CCCAGTAGTTCATGG
NO:












CTACTGGTTCCGGGAAGGGG
521












CCAAT






chr
519197
C
A
LOC10
p.C38X
0.005
0.002
3.44
1.98
GTGTGGACCAGACGCCATTC
SEQ


19
82


01290

88
98
E−03
[1.3-
CCATCCCCCTCCCAGGGCTG
ID






83




3.02]
[C/A]GGCGGCATCCTGGGA
NO:












CCCCACAGCTTCCTCTCCCT
522












GGATG






chr
519197
G
C
LOC10
p.G39
0.005
0.002
3.33
1.99
GTGGACCAGACGCCATTCCC
SEQ


19
84


01290
A
88
97
E−03
[1.3-
ATCCCCCTCCCAGGGCTGCG
ID






83




3.04]
[G/C]CGGCATCCTGGGACC
NO:












CCACAGCTTCCTCTCCCTGG
523












ATGCT






chr
519198
G
A
LOC1
p.A58T
0.008
0.005
3.85
1.72
CCACAGCTTCCTCTCCCTGG
SEQ


19
40


01290

82
15
E−03
[1.23-
ATGCTCCTGAGCTGGGAGCC
ID






83




2.42]
[G/A]CTCACTGTCCCACTG
NO:












GGCTCCTCCACCTCCCCACC
524












CACCG






chr
528880
T
A
ZNF88
p.F1399
0.018
0.000
1.62
106.63
GCAAGGTCTTCAGGCACAAG
SEQ


19
30


0
Q
63
18
E−81
[57.96-
TTTTGTCTAACCAATCATCA
ID











196.18]
[T/A]AGAATCCACACGGGA
NO:












GAGCAACCTTACAAATGTAA
525












TGAAT






chr
528880
A
G
ZNF88
p.M40
0.018
0.000
5.01
102.4
GGTCTTCAGGCACAAGTTTT
SEQ


19
34


0
1V
87
19
E−81
[55.69-
GTCTAACCAATCATCATAGA
ID











188.29]
[A/G]TGCACACGGGAGAGC
NO:












AACCTTACAAATGTAATGAA
526












TGTGG






chr
528880
G
T
ZNF88
p.M40
0.019
0.000
1.04
99.05
TCTTCAGGCACAAGTTTTGT
SEQ


19
36


0
1I
85
20
E−84
[55.1-
CTAACCAATCATCATAGAAT
ID











178.05]
[G/T]CACACGGGAGAGCAA
NO:












CCTTACAAATGTAATGAATG
527












TGGCA






chr
531165
C
T
ZNF83
p.G435
0.007
0.004
2.91
1.65
CCGATGATGTGCTAGGGATG
SEQ


19
14



E
482
537
E−02
[1.04-
AGTTTAGACCGAAGACCTTC
ID











2.52]
[C/T]CACATTCATTACATT
NO:












TATAAGCTTTTTCTCCAGTA
528












TGAAT






chr
532689
G
A
ZNF60
p.P693
0.012
0.000
4.13
1466.88
CTGCTTGCTAAAGGCTTTGC
SEQ


19
31


0
L
99
01
E−76
[202.81-
CACACTCATTACACTTGTAA
ID











10609.54]
[G/A]GTTTCTCTCCAGTGT
NO:












GAAGTCCAGTATGTTGTTTC
529












AGGTG






chr
536445
C
T
ZNF34
p.K512
0.007
0.000
3.82
264.49
TTTGAGTGAAGACCTTGCCA
SEQ


19
48


7
K
35
03
E−40
[80.69-
CATTCATTACATTTGTAAGG
ID











866.98]
[C/T]TTTTCTCCAGTATGG
NO:












ATGACCTGATGGGTAGTTAG
530












GTTTG






chr
537931
C
T
BIRC8
p.A156
0.000
0.000
3.71
Inf
GAAGTCTGATTCAATTCATT
SEQ


19
62



T
25
00
E−02
[NaN-
TTCTGTAGTGTCTTTCTGAG
ID











Inf]
[C/T]GCTCACTAGATCTGC
NO:












AACAAGAACCTCAAGCGTTT
531












TATAG






chr
552392
C
T
KIR3DL
p.H172
0.009
0.000
1.52
829.79
GGATCACTGAGGACCCCTTG
SEQ


19
37


3
H
80
01
E−52
[114.05-
CGCCTCGTTGGACAGCTCCA
ID











6037.46]
[C/T]GATGCGGGTTCCCAG
NO:












GTCAACTATTCCATGGGTCC
532












CATGA






chr
552509
C
A
KIR2DL
p.P21T
0.010
0.000
8.87
Inf
ATCTTTCTTTCCAGGGTTCT
SEQ


19
79


3

29
00
E−55

TCTTGCTGCAGGGGGCCTGG
ID












[C/A]CACATGAGGGTGAGT
NO:












CCTTCTCCAAACCTTCGGGT
533












GTCAT






chr
552848
G
A
KIR2DL
p.G36
0.005
0.002
7.72
2.26
CTAGGAGTCCACAGAAAACC
SEQ


19
21


1
D
64
50
E−04
[1.47-
TTCCCTCCTGGCCCACCCAG
ID











3.49]
[G/A]TCGCCTGGTGAAATC
NO:












AGAAGAGACAGTCATCCTGC
534












AGTGT






chr
552867
G
T
KIR2DL
p.G174
0.007
0.002
4.86
3.64
TCCAGGGAAGGGGAGGCCCA
SEQ


19
67


1
V
84
17
E−09
[2.5-
TGAACGTAGGCTCCCTGCAG
ID











5.28]
[G/T]GCCCAAGGTCAACGG
NO:












AACATTCCAGGCTGACTTTC
535












CTCTG






chr
552951
A
G
KIR2DL
p.T301
0.006
0.003
1.28
2.04
CTCTCCAGGACTCTGATGAA
SEQ


19
21


1
T
62
25
E−03
[1.37-
CAAGACCCTCAGGAGGTGAC
ID











3.04]
[A/G]TACACACAGTTGAAT
NO:












CACTGCGTTTTCACACAGAG
536












AAAAA






chr
553300
G
A
KIR3DL
p.V113
0.026
0.000
5.79
69.95
CCCACACTCCCCCACTGGGT
SEQ


19
36


1
M
23
38
E−
[48.58-
GGTCGGCACCCAGCAACCCC
ID










118
100.73]
[G/A]TGGTGATCATGGTCA
NO:












CAGGTCAGAGGCTTTCCGTC
537












TGGGC






chr
553330
C
T
KIR3DL
p.P220
0.028
0.000
9.70
1523.42
AGAACCTCCCTGAGGAAACT
SEQ


19
23


1
L
68
02
E−
[376.4-
GCCTCTTCTCCTTCCAGGTC
ID










164
6165.8]
[C/T]ATATGAGAAACCTTC
NO:












TCTCTCAGCCCAGCCGGGCC
538












CCAAG






chr
554941
T
G
NLRP2
p.I330
0.007
0.001
8.85
4.3
AGGGCCCTGAGGGACCTCCG
SEQ


19
21



S
85
80
E−04
[2.1-
GATCCTGGCGGAGGAGCCGA
ID











8.8]
[T/G]CTACATAAGGGTGGA
NO:












GGGCTTCCTGGAGGAGGACA
539












GGAGG






chr
560296
A
C
SSC5D
p.T132
0.016
0.000
1.11
Inf
CCACCACTACTCCTGATCCC
SEQ


19
21



6T
67
00
E−80

ACCACGACCCCTCACCCCAC
ID












[A/C]ACTCCTGACCCTTCC
NO:












TCAACCCCTGTCATCACTAC
540












TGTGT






chr
564163
G
A
NLRP1
p.A860
0.006
0.003
4.86
1.79
CTCCAGTCTCTCTAAGGCAC
SEQ


19
47


3
V
86
84
E−03
[1.22-
ACTTGGGGTGAGTCAGGGCC
ID











2.63]
[G/A]CACACAATAGCTTTA
NO:












TGCCATCATCTTGGAGCCGA
541












TTAAA






chr
579108
T
G
ZNF54
p.F402
0.007
0.000
8.20
Inf
TGGAGAAAGGCCTTATAAAT
SEQ


19
59


8
V
60
00
E−46

GCAGTGAATGTGGGAAATCA
ID












[T/G]TTAGGTACCACTGCA
NO:












GGCTCATTAGACACCAGAGA
542












GTCCA






chr
581183
T
C
ZNF53
p.S499
0.005
0.000
3.59
Inf
CTGGAGAAAGGCCTTATGAG
SEQ


19
90


0
S
64
00
E−34

TGCAGTGTATGTGGGAAATC
ID












[T/C]TTTATCCGAAAAACC
NO:












CACCTCATTCGACACCAGAC
543












TGTTC






chr
583862
T
C
ZNF81
p.A158
0.017
0.009
3.97
1.86
AGACAGATGACTCCCCTGAC
SEQ


19
84


4
A
16
32
E−06
[1.45-
ACATGCAACTTACACCTCTT
ID











2.37]
[T/C]GCAAACAACGCCTCC
NO:












TCAACACTCCCTCTGTAGGG
544












TTTCT






chr
584385
C
T
ZNF41
p.G348
0.007
0.000
6.65
Inf
GTTGATGTTGAATGAGATTG
SEQ


19
05


8
G
11
00
E−43

CCCTTCTGAGTAAAACATTT
ID












[C/T]CCACATTCTTCACAC
NO:












TCATAAGGTCTTTCTCCAGT
545












GTGAA






chr
587723
C
A
ZNF54
p.P117
0.005
0.002
1.59
1.93
ATCCCACCACGTGGAAGTGT
SEQ


19
21


4
T
53
866
E−02
[.1.11-
ACAGGAGTGGACCGGAGGAG
ID











3.15]
[C/A]CACCCTCTTTGGTAT
NO:












TAGGAAAAGTGCAAGATCAG
546












AGCAA






chr
141821
G
A
TPO
p.T10T
0.009
0.005
3.81
1.69
TTAATTTTAGAATGAGAGCG
SEQ


2
0




31
53
E−03
[1.22-
CTCGCTGTGCTGTCTGTCAC
ID











2.35]
[G/A]CTGGTTATGGCCTGC
NO:












ACAGAAGCCTTCTTCCCCTT
547












CATCT






chr
100450
A
T
TAF1B
p.K279
0.005
0.000
2.18
201.64
TCTTTTATTTCAGTCTTGGC
SEQ


2
15



X
39
03
E−29
[60.33-
CTGACTACGAGGACATCTAC
ID











673.95]
[A/T]AAAAAACAGTAGAAG
NO:












TTGGAACATTTTTAGATTTG
548












CCTCG






chr
117744
C
T
GREB1
p.S171
0.001
0.000
3.24
11.75
TCCAGCAAGACCCGGGCCAG
SEQ


2
03



3F
47
13
E−03
[3.37-
CGAGGTGCAAGAGCCCTTCT
ID











40.92]
[C/T]CCGCTGCCACGTGCA
NO:












CAACTTCATCATCCTGAACG
549












TGGAC






chr
179980
C
T
MSGN
p.G72
0.005
0.002
8.49
1.84
CTCCCTGTCCAGCTGTGGCT
SEQ


2
01


1
G
39
93
E−03
[1.2-
GGGCTGCCCTGTGAGCACGG
ID











2.84]
[C/T]GGGGCCAGCAGTGGG
NO:












GGCAGCGAAGGCTGCAGTGT
550












CGGTG






chr
239295
C
T
KLHL29
p.C865
0.011
0.008
4.80
138
TCCTCCCCCACATGCCCTGC
SEQ


2
01



C
03
04
E−02
[1.01-
CCTGTGTTCAGACACGGCTG
ID











1.87]
[C/T]GTCGTGATAAAGAAA
NO:












TATATTCAAAGCGGCTGACA
551












TCAGC






chr
243023
G
A
TP53I3
p.R258
0.003
0.000
2.03
16.4
TTGTCCCTAGACCTCAGCAA
SEQ


2
58



X
93
20
E−04
[5.5-
ACTGGTGATCAGACTTCCTC
ID











49.2]
[G/A]CTTAAAAAGTAGCTT
NO:












TGAAAACAGGGGCCCATTGA
552












TGTCA






chr
249302
C
T
NCOA1
p.A641
0.009
0.006
3.26
1.43
AAACCAGTCACAAACTAGTG
SEQ


2
62



A
56
69
E−02
[1.04-
CAGCTTTTGACAACAACTGC
ID











1.98]
[C/T]GAACAGCAGTTACGG
NO:












CATGCTGATATAGACACAAG
553












CTGCA






chr
264151
G
A
HADHA
p.L661
0.010
0.007
3.77
1.41
TAGCCACTCAAACGGACTTA
SEQ


2
98



L
05
13
E−02
[1.03-
CACTTCAGACTTAGGAGGCA
ID











1.94]
[G/A]CTTCAGACTCGCTAA
NO:












AATACTATCCATGTCAGAAT
554












TCAAA






chr
266633
C
T
DRC1
p.T331
0.005
0.003
1.29
1.91
TACAACTTGCAGGTGCTGAA
SEQ


2
49



I
856
08
E−02
[1.11-
GAAGAGAGATGAAGAAAGCA
ID











3.07]
[C/T]AGTAATTAAATCCCA
NO:












GCAGAAGAGGAAGATCAATC
555












GGTAA






chr
268523
C
G
CIB4
p.G42
0.017
0.000
2.59
Inf
ACCTGGTCCATGGTGAGCGT
SEQ


2
40



R
40
00
E−95

TGCCTCCTTGTAGTACTTCC
ID












[C/G]AGGAGGGCAGAGCTT
NO:












CAGGAAGGTGTCATGGATGC
556












TGAAA






chr
292460
G
A
FAM17
p.V536
0.005
0.003
4.86
1.55
AGGTCCTCACCGGGAACCTG
SEQ


2
48


9A
V
64
66
E−02
[1.01-
CACGACGTGTGCTTGGTGGT
ID











2.36]
[G/A]ACTGGGGAGGTGAGG
NO:












CCCCCCAGCCTGTGTGCTGT
557












GCATT






chr
315951
C
T
XDH
p.R607
0.005
0.003
3.21
1.61
TCACTTGATCTTGGCGTGGG
SEQ


2
30



Q
64
51
E−02
[1.06-
CCCGGGTGCTGGTGACCAGC
ID











2.45]
[C/T]GGAGAGACAGCTCAT
NO:












TCTCGTAGCGAGGAATGTCG
558












TCACA






chr
322890
C
T
SPAST
p.P34P
0.021
0.000
3.17
2161.13
CTCCCAGGCCTCCGCCCCCT
SEQ


2
02




81
01
E−
[301.02-
TGCCTGGCCCCCGCCCCTCC
ID










123
15515.36]
[C/T]GCCGCCGGGCCGGCC
NO:












CCTCCGCCCGAGTCGCCGCA
559












TAAGC






chr
489827
A
T
LHCGR
p.L16Q
0.008
0.000
3.94
29.63
GAGCGCCTCGCGCAGCGCTC
SEQ


2
64




58
29
E−28
[15.93-
GTGGCAGCGGCGGCTGCAGC
ID











55.12]
[A/T]GCAGCAGCAGCTTCA
NO:












GCAGCTGCAGCGCCGAGAAC
560












CGCTG






chr
624498
C
T
B3GNT
p.N17
0.008
0.006
3.07
1.47
GAAGGCAAGCAATCCGGGAA
SEQ


2
65


2
0N
82
00
E−02
[1.05-
TCCTGGGGCCAAGAAAGCAA
ID











2.06]
[C/T]GCAGGGAACCAAACG
NO:












GTGGTGCGAGTCTTCCTGCT
561












GGGCC






chr
743265
C
T
TET3
p.P115
0.019
0.000
5.92
2204.62
AGGTGCTCACCGCCTTCCCC
SEQ


2
94



3P
61
01
E−
[306.7-
CGCGAGGTCCGACGCCTGCC
ID










115
15847.05]
[C/T]GAGCCTGCCAAGTCC
NO:












TGCCGCCAGCGGCAGCTGGA
562












AGCCA






chr
744793
G
A
SLC4A5
p.S472
0.006
0.003
7.75
1.78
CCCCGATTTCATGCATGGCT
SEQ


2
68



S
37
58
E−03
[1.2-
GGCATCTCTCCATCATCCCC
ID











2.66]
[G/A]CTGCTTGTTCCGCCG
NO:












GCCCCGCCACTGCCAGCCCC
563












GCCGC






chr
747513
G
C
DQX1
p.T158
0.005
0.003
2.25
1.67
CCTCATCTAGTACCAGCACG
SEQ


2
92



T
88
53
E−02
[1.1-
CCCCAGGCTCCAGTGCCTCG
ID











2.52]
[G/C]GTCGAGGCCACCTCC
NO:












TGCAGAAGCAGCCTGTCCCA
564












GCAGA






chr
868317
G
C
RNF10
p.L421
0.006
0.003
5.86
1.8
CTCTTCTTCTCAAAGTAATC
SEQ


2
51


3
V
62
69
E−03
[1.22-
AATTAGTAAACCATGACCAA
ID











2.66]
[G/C]GTATGTACTGAGAAA
NO:












CAGGGCTGGGTGTGAAGAGT
565












AAAAC






chr
959456
G
A
PROM
p.G450
0.005
0.000
8.10
571.38
CTATTCGTGGTGCTCTGCAA
SEQ


2
67


2
D
64
01
E−32
[77.15-
CCTGCTGGGCCTCAATCTGG
ID











4231.98]
[G/A]CATCTGGGGCCTGTC
NO:












TGCCAGGGACGACCCCAGCC
566












ACCCA






chr
981282
G
C
ANKRD
p.L102
0.007
0.000
4.61
Inf
GTCTTTGCCTGCTCTCTCTT
SEQ


2
58


36B
1L
35
00
E−27

TGCTTCTCCAGTTTGGAACG
ID












[G/C]AGCGTTGTGTTTTCA
NO:












TCTGTCAGAGCAGCAAGCTG
567












TCCAC






chr
981283
G
A
ANKRD
p.T100
0.017
0.000
7.10
240.02
ATCTGTCAGAGCAGCAAGCT
SEQ


2
13


36B
3M
16
07
E−60
[58.84-
GTCCACTATAACAGGCTATC
ID











979.16]
[G/A]TTTTTGCTAATGTTT
NO:












CCCCATTCCGTTTTAGAGCC
568












TTTTG






chr
996517
G
A
TSGA1
p.S503
0.005
0.001
1.76
3.76
TAATACAGAGTTCCCTAGTA
SEQ


2
98


0
S
21
39
E−05
[2.09-
GAAGACAAATCTGCAAGAGC
ID











6.31]
[G/A]GACACTTTTTCAAAC
NO:












TGAACCTTCTGAAGCTCCTC
569












TTCCA






chr
108486
G
T
RGPD4
RGPD4
0.025
0.000
1.47
67.6
ACTTTAACAGTGTTTTCTTT
SEQ


2
338



(NM_1
25
38
E−74
[34.18-
CTTTTCTTTTTTTTTTTTTA
ID







82588:



133.72]
[G/T]TTGCAACTACTGGCC
NO:







exon1




CTTCAGTATATTATAGTCAG
570







9:c.26




TCACC








06-













1G > T)











chr
109347
T
G
RANBP
p.L96L
0.014
0.000
1.94
Inf
ATTAGCGTTCAGTGGAATTA
SEQ


2
813


2

95
00
E−89

AACCCAACACAAAAAGATCT
ID












[T/G]GTGTTGAAGATTGCA
NO:












GAATTGCTTTGTAAAAATGA
571












TGTTA






chr
112922
C
G
FBLN7
p.P87A
0.007
0.004
7.23
1.73
TCCATCTCTCCTTACAGTTT
SEQ


2
601




35
26
E−03
[1.19-
CCTGCCCGGCTCTGAACACC
ID











2.51]
[C/G]CCGCAGACGGCAGAA
NO:












AGTTTGGAAGCAAGTACTTA
572












GTGGA






chr
113940
G
A
PSD4
p.A52T
0.022
0.000
6.94
2577.18
CCATGAGGATCCACCGGAGC
SEQ


2
187




55
01
E−
[359.1-
CTTTCGAGGAGCAAACCTGG
ID










133
18495.63]
[G/A]CCACTGACCCTCCTG
NO:












AACCTACCAGACAAAATGTT
573












CCTCC






chr
114500
C
T
SLC35F
p.E224
0.009
0.006
4.53
1.43
GCAGTAAGTTTCCCCACAGT
SEQ


2
349


5
K
07
35
E−02
[1.03-
TTTCAGTATGGATTCTTGTT
ID











1.99]
[C/T]TTTCACAGGATATGA
NO:












CATGCGAGACAACTTTGCTT
574












CCAAT






chr
132238
T
C
TUBA3
p.A278
0.007
0.004
2.79
1.55
TCCACTTCCCCCTGGCCACC
SEQ


2
100


D
A
35
75
E−02
[1.07-
TATGCCCCAGTCATCTCAGC
ID











2.25]
[T/C]GAGAAGGCCTACCAC
NO:












GAGCAGCTGTCTGTGGCCGA
575












GATCA






chr
136418
A
G
R3HD)
p.H596
0.005
0.002
1.00
2.18
TTATGATCCTAGATGCCAGC
SEQ


2
868


M1
R
64
60
E−03
[1.42-
CTGTTATTGCGCTCCAGGCC
ID











3.33]
[A/G]CTATCACTCCAGCCA
NO:












ACCTCAGTATCGCCCAGTCC
576












CTTCT






chr
141232
C
T
LRP1B
p.A317
0.007
0.011
2.07
0.67
GCCCAGTAGAGTCTACGATT
SEQ


2
800



8T
84
71
E−02
[0.47-
AACATAATCTATTGTTAGTG
ID











0.95]
[C/T]CATAGGTCTAGAAAT
NO:












CTTGGTTTCTATGACAACAC
577












TCTGA






chr
152982
T
C
STAM2
p.M39
0.006
0.003
9.98
1.73
ATAATTTAGAAAATGTTCTC
SEQ


2
745



2V
62
83
E−03
[1.17-
AAAAAACATGCTCACCTGCA
ID











2.56]
[T/C]TGGAACCCCAGATGA
NO:












TGCAGGTGGGTAATGTGCTG
578












GAGGG






chr
165984
C
T
SCN3A
p.V108
0.012
0.007
7.31
1.71
GGGTTGTTTATGAATGACAT
SEQ


2
284



41
25
22
E−04
[1.28-
ATAATCATTTTCATCGATTA
ID











2.27]
[C/T]GTATTTTTCAACACT
NO:












GCTTCCAGTACCTACACCAC
579












TGGTG






chr
171070
G
A
MYO3
p.G139
0.005
0.003
4.93
1.68
CCAGCGGTTGGATGAAGCAA
SEQ


2
982


B
R
205
108
E−02
[0.95-
TGATCTCATACATCTTGTAC
ID











2.77]
[G/A]GGGCCCTCTTGGTAA
NO:












GAACATCTATCAAATGGGGT
580












ATGAC






chr
178096
G
A
NFE2L
p.L286
0.005
0.003
6.39
1.86
AGATCAGAAACATCAATGGG
SEQ


2
406


2
F
64
04
E−03
[1.22-
CCCATTTAGAAGTTCAGAGA
ID











2.84]
[G/A]TGAATGGCTTAAAGT
NO:












AGCAGGTGAGGGCATGCTGT
581












TGCTG






chr
186661
A
G
FSIP2
p.R333
0.006
0.003
1.12
1.72
ATCGTGTTCTACTAGAAACA
SEQ


2
602



6G
86
99
E−02
[1.16-
AAGTACAAGACCACAGACCA
ID











2.56]
[A/G]GGGAATCTAACTTTG
NO:












GTAGTTTTGATCAGACCATG
582












AAAGG






chr
186678
A
T
FSIP2
p.K680
0.025
0.000
3.65
Inf
TTTCTCCTAAGTCAACACTA
SEQ


2
577



0N
49
00
E−

AGCACGAGCAGCCTGAAAAA
ID










151

[A/T]TTTTTGTCACTAAGT
NO:












AAATGTTGTCAGACCACAGC
583












CAGTG






chr
187605
G
A
FAM17
p.R95
0.007
0.004
2.40
1.58
GTATTTATGTTGAAAGTCCA
SEQ


2
000


1B
H
11
51
E−02
[1.09-
GGTGAATGACATCATCAGTC
ID











2.3]
[G/A]TCAGTACCTGAGCCA
NO:












AGCAGTTGTAGAAGTGTTTG
584












TAAAC






chr
209302
G
A
PTH2R
p.S82S
0.006
0.000
1.50
743.52
GACTCATTTGTTGGCCCAGA
SEQ


2
329




62
01
E−38
[101.01-
GGAACAGTGGGGAAAATATC
ID











5472.96]
[G/A]GCTGTTCCATGCCCT
NO:












CCTTATATTTATGACTTCAA
585












CCATA






chr
211068
C
A
ACADL
p.R311
0.007
0.002
4.63
3.5
AACTGTTTTGCCAAAAGCTT
SEQ


2
107



M
11
04
E−08
[2.37-
TTCTTTGTTTAACATAGTTC
ID











5.16]
[C/A]TGGTTTCTTCAAACA
NO:












TGAATTCACTAGCTGAAATT
586












GCCAC






chr
216285
C
T
FN1
p.V527
0.001
not
4.03
Inf
ATGTGCCCCTCTTCATGACG
SEQ


2
492



M
47
found
E−06

CTTGTGGAATGTGTCGTTCA
ID












[C/T]ATTGTAAGTGATGTC
NO:












ATCAACAATGCACTGATCTG
587












TTTAG






chr
233246
A
G
ALPP
p.E451
0.006
0.004
8.56
1.71
AGCCCCGAGTATCGGCAGCA
SEQ


2
249



G
86
01
E−03
[1.17-
GTCAGCAGTGCCCCTGGACG
ID











2.52]
[A/G]AGAGACCCACGCAGG
NO:












CGAGGACGTGGCGGTGTTCG
588












CGCGC






chr
233498
C
G
EFHD1
p.P34R
0.010
0.000
2.59
Inf
GAGAGTGGCCCCCAGCTGGC
SEQ


2
515




05
00
E−36

TCCCCTCGGCGCCCCAGCCC
ID












[C/G]GGAGCCCAAGCCCGA
NO:












GCCCGAGCCTCCCGCCCGTG
589












CGCCC






chr
234229
C
T
SAG
p.T125
0.005
0.003
1.25
1.78
CTTAAAAAGCTGGGGAGCAA
SEQ


2
468



M
88
32
E−02
[1.17-
CACGTACCCCTTTCTCCTGA
ID











2.7]
[C/T]GGTGGGTGACTCCTC
NO:












CGGCCAGCCCTGCTTCCTTC
590












ACCCG






chr
237029
C
T
AGAP1
p.C711
0.025
0.000
9.57
943.45
TGCTGGCACACGGCTCCCGG
SEQ


2
013



C
25
03
E−
[299.22-
GACGAGGTGAACGAGACCTG
ID










145
2974.8]
[C/T]GGGGAGGGAGACGGC
NO:












CGCACGGCGCTGCATCTGGC
591












CTGCC






chr
238973
A
H
SCLY
p.K60E
0.002
0.000
5.74
4.37
AACGACTCCCCTGGAGCCAG
SEQ


2
062




94
67
E−05
[2.37-
AAGTTATCCAGGCCATGACC
ID











8.05]
[A/G]AGGCCATGTGGGAAG
NO:












CCTGGGGAAATCCCAGCAGC
592












CCGTA






chr
240982
G
A
PRR21
p.R53
0.021
0.000
1.26
480.79
GGGTGAAGAGCCGTGGATGA
SEQ


2
243



W
32
05
E−
[176.38-
AGGGCCGTGGGTGAAGAGCC
ID










112
1310.53]
[G/A]TGGATGAAGGGCCAT
NO:












GGGTGAAGAGCCGTGGATGA
593












AGGGC






chr
242154
G
A
ANO7
NM_0
0.005
0.000
3.42
7.1
GCAAGCAGGTCATCAACAAC
SEQ


2
318



01001
89
80
E−04
[3-
ATGCAGGAGGTCCTCATCCC
ID







891:ex



16.5]
[G/A]TGAGTCCCCCACTCC
NO:







on18:c




TCCCTGGGTGGCATCCAAGG
594







.1988 +




ACCGA








1G > A











chr
242207
T
A
HDLBP
p.T14S
0.009
0.006
4.29
1.43
ACCACACACCTCTTAATGCT
SEQ


2
024




07
34
E−02
[1.02-
TACAAAATGCATCATGACAG
ID











2.02]
[T/A]TGCTACAAAAAGCCA
NO:












GCGGTCTCTCTCTGCAAGGT
595












GCATC






chr
242312
C
T
FARP2
p.H45Y
0.008
0.006
4.12
1.45
TGGGCAGACTCTCTTGCCCA
SEQ


2
655




82
12
E−02
[1.03-
GAATGCAAGAGAAGCACCTG
ID











2.03]
[C/T]ACCTCAGAGTAAAGC
NO:












TGCTGGACAACACCATGGAA
596












ATATT






chr
314753
G
A
LZTS3
p.L93L
0.009
0.006
1.14
1.55
CACTGCCCCGCAGCTCACCA
SEQ


20
1




56
19
E−02
[1.12-
TTGAGGTAGAGGGAGTTGGC
ID











2.14]
[G/A]AGACCCTTGTCCTCT
NO:












GAGGGGTAGCGGCCCGGCCT
597












CTCCC






chr
468011
T
C
PRNP
p.S55P
0.005
0.000
1.14
314.81
GTGGCTGGGGGCAGCCCCAT
SEQ


20
8




64
02
E−31
[74.2-
GGTGGTGGCTGGGGACAGCC
ID











1335.71]
[T/C]CATGGTGGTGGCTGG
NO:












GGTCAAGGAGGTGGCACCCA
598












CAGTC






chr
317569
C
T
BPIFA2
p.G12
0.005
0.002
9.96
1.86
AAAAGATGCTTCAGCTTTGG
SEQ


20
87



G
15
77
E−03
[1.2-
AAACTTGTTCTCCTGTGCGG
ID











2.9]
[C/T]GTGCTCACTGGGACC
NO:












TCAGAGTCTCTTCTTGACAA
599












TCTTG






chr
340785
G
A
CEP25
p.E881
0.010
0.007
4.80
1.37
CTGGCACCAGCAGGAGCTGG
SEQ


20
17


0
K
78
88
E−02
[1.01-
CAAAGGCTCTGGAGAGCTTA
ID











1.86]
[G/A]AAAGGGAAAAAATGG
NO:












AGCTGGAAATGAGGCTAAAG
600












GAGCA






chr
341303
T
C
ERGIC3
p.F76F
0.007
0.000
3.01
79.93
CGCGGGGAGATAAACTGAAG
SEQ


20
30




11
09
E−34
[38.93-
ATCAACATCGATGTACTTTT
ID











164.12]
[T/C]CCGCACATGCCTTGT
NO:












GCCTGTGAGTACCTCACCAT
601












GGGTG






chr
462798
G
A
NCOA3
p.Q12
0.011
0.000
5.51
Inf
GGGTGGCTATGATGATGCAG
SEQ


20
39



55Q
27
00
E−65

CAGCAGCAGCAGCAGCAACA
ID












[G/A]CAGCAGCAGCAGCAG
NO:












CAGCAGCAGCAACAGCAACA
602












GCAAC






chr
485033
G
A
SLC9A8
p.S519
0.009
0.006
3.58
1.44
GGCCGCCTTTCCTCCCTGCT
SEQ


20
06



S
07
33
E−02
[1.03-
CAGGGCAACACTGTGGAGTC
ID











2]
[G/A]GAGCACCTGTCGGAG
NO:












CTCACGGAGGAGGAGTACGA
603












GGCCC






chr
491978
G
A
PTPN1
p.G308
0.005
0.002
6.45
2.14
CACTGAAGTTAGAAGTCGGG
SEQ


20
54



S
541
6
E−03
[1.23-
TCGTGGGGGGAAGTCTTCGA
ID











3.49]
[G/A]GTGCCCAGGCTGCCT
NO:












CCCCAGCCAAAGGGGAGCCG
604












TCACT






chr
609019
C
T
LAMA5
p.V173
0.011
0.007
2.52
1.43
ACCCTGCCACATCATCTCAG
SEQ


20
32



5M
27
93
E−02
[1.06-
CTCCCTCACCTGCAGCACCA
ID











1.92]
[C/T]ATCCGGCCTGCTCTC
NO:












CATGGGGACAAAGACATCTC
605












CCCGC






chr
612963
C
A
SLCO4
p.G401
0.011
0.008
4.76
1.35
TCTGCCTGGCCGGGGCCACC
SEQ


20
67


A1
G
52
55
E−02
[1.01-
GAGGCCACTCTCATCACCGG
ID











1.81]
[C/A]ATGTCCACGTTCAGC
NO:












CCCAAGTTCTTGGAGTCCCA
606












GTTCA






chr
622005
C
T
HELZ2
p.S334
0.005
0.003
3.47
1.63
GGTGCATCCTCTGCCGATAG
SEQ


20
87



S
15
16
E−02
[1.05-
TTGGTTGGTGAGATGGGGCC
ID











2.54]
[C/T]GAGGCCACGCTGCTG
NO:












CGGTTGAACTCCAGGGCCAG
607












GGCAG






chr
109429
T
G
TPTE
p.Q17
0.005
0.000
9.09
14.43
ACTTACCCGCCTTCTTATCA
SEQ


21
55



3P
88
41
E−18
[8.78-
GCTTTTCAAGTTGTCTTTTT
ID











23.7]
[T/G]GATGAAACAGATGAA
NO:












AAATTCTTAACAGAATAATA
608












AGTCG






chr
109429
C
A
TPTE
p.L164
0.012
0.000
1.16
16.39
CAAGTTGTCTTTTTTGATGA
SEQ


21
81



L
75
79
E−38
[11.59-
AACAGATGAAAAATTCTTAA
ID











23.17]
[C/A]AGAATAATAAGTCGT
NO:












AGAAGTCGAAGTAAATGTGT
609












CCATC






chr
149827
A
C
POTED
p.R58
0.022
0.000
8.43
216.23
CACTTCTGGAGACCACGACG
SEQ


21
21



G
79
11
E−67
[53.26-
ACTCCTTTATGAAGATGCTC
ID











877.86]
[A/G]GGAGCAAGATGGGCA
NO:












AGTGTTGCCGCCACTGCTTC
610












CCCTG






chr
349274
C
G
SON
p.R196
0.008
0.000
2.93
Inf
GCATTTCCCCAAGCCGCCGC
SEQ


21
26



3R
33
00
E−36

AGCCGCACCCCCAGCCGCCG
ID












[C/G]AGCCGCACCCCCAGC
NO:












CGCCGCAGCCGCACCCCCAG
611












CCGCC






chr
427708
G
A
MX2
p.G408
0.010
0.006
1.46
1.51
GGAGAGCCACCAGAAGGCGA
SEQ


21
96



R
05
66
E−02
[1.1-
CCGAGGAGCTGCGGCGTTGC
ID











2.08]
[G/A]GGGCTGACATCCCCA
NO:












GCCAGGAGGCCGACAAGATG
612












TTCTT






chr
434126
G
C
ZBTB2
p.A522
0.007
0.005
3.45
1.49
ACCAAATTCGTCTTTATTCA
SEQ


21
40


1
G
60
10
E−02
[1.04-
AATCAGAATCTGGAAAATCT
ID











2.15]
[G/C]CATCAAGGAGAGTAG
NO:












GGCTTGAGCCTTCCTCAAAA
613












TTATC






chr
456707
G
A
DNMT
p.S276
0.024
0.000
1.25
2810.21
GCACCAGATTGTCCACGAAC
SEQ


21
74


3L
S
75
01
E−
[391.94-
ATCCAGAAGAAGGGCCTGGG
ID










145
20149]
[G/A]CTGCCTGGCTTGGGC
NO:












CGTGCGTACTGCAGGAGCCG
614












GTGGA






chr
457866
G
A
TRPM2
p.V153
0.008
0.005
3.32
1.49[
CCCGCAGTACGTCCGAGTCT
SEQ


21
70



M
33
61
E−02
1.05-
CCCAGGACACGCCCTCCAGC
ID











2.11]
[G/A]TGATCTACCACCTCA
NO:












TGACCCAGCACTGGGGGCTG
615












GACGT






chr
459947
T
C
KRTAP
p.P378
0.011
0.000
1.15
1313.63
GCCGCCCCGTGTGCAGGCCC
SEQ


21
69


10-4
P
76
01
E−68
[181.28-
GCCTGCTGCGTGCCCGTCCC
ID











9519.28]
[T/C]TCCTGCTGTGCTCCC
NO:












ACCTCCTCCTGCCAACCCAG
616












CTGCT






chr
459998
T
A
KRTAP
p.T197
0.008
0.000
4.27
Inf
CAGCAAGCCGGCTGACAGCT
SEQ


21
67


10-5
S
82
00
E−53

AGACTGCTGGCAGCATGAAG
ID












[T/A]GGAAGCCCCAGAGCA
NO:












GACGGGCACACAGCAGATGG
617












GTTTCG






chr
460000
G
A
KRTAP
p.P138
0.026
0.000
3.02
Inf
ATGAAGAGGAATCCTCAGAA
SEQ


21
42


10-5
P
47
00
E−

CAGGTGGGCACACAGCACAC
ID










158

[G/A]GGCTTGCAGCAGACA
NO:












GGCACACAGCAGGACTGCTG
618












GCAGG






chr
460206
C
T
KRTAP
p.C42C
0.012
0.001
7.61
10.24
CCGACTCCTGGCAGGTGGAC
SEQ


21
47


10-7

75
26
E−31
[7.43-
GACTGCCCAGAGAGCTGCTG
ID











14.12]
[C/T]GAGCCCCCCTGCTGC
NO:












GCCCCCAGCTGCTGCGCCCC
619












GGCCC






chr
460324
T
C
KRTAP
p.S153
0.014
0.000
3.77
Inf
TGGAGCTTCCTCCCCATGCT
SEQ


21
74


10-8
P
22
00
E−85

GCCAGCAGTCTAGCTGCCAG
ID












[T/C]CAGCTTGCTGCACCT
NO:












TCTCCCCATGCCAACAGGCC
620












TGCTG






chr
461174
T
C
KRTAP
p.S98P
0.017
0.000
3.00
1974.74
CTGCCAGCAGTCTAGCTGCC
SEQ


21
08


10-12

40
01
E−
[274.3-
AGCCGGCTTGCTGCACCTCC
ID










102
14216.51]
[T/C]CCCCCTGCCAGCAGG
NO:












CCTGCTGCGTGCCCGTCTGC
621












TGCAA






chr
461914
G
A
UBE2G
p.P60P
0.008
0.005
3.46
1.47
ACATTTTGGACGCATCCACG
SEQ


21
00


2

33
68
E−02
[1.04-
TTAGCTCCACTTTCGTCATT
ID











2.08]
[G/A]GGCTCTGAAAGAAAA
NO:












GGGAACACCCTCCATGTAAA
622












AGGGA






chr
465964
G
A
ADARB
p.K281
0.008
0.005
2.59
1.5
TCGTGGATGGTCAGTTCTTT
SEQ


21
59


1
K
33
59
E−02
[1.06-
GAAGGCTCGGGGAGAAACAA
ID











2.12]
[G/A]AAGCTTGCCAAGGCC
NO:












CGGGCTGCGCAGTCTGCCCT
623












GGCCG






chr
185627
T
C
PEX26
p.Y109
0.005
0.002
2.61
1.82
AATGGATCGGTGGCAAGAAG
SEQ


22
34



H
21
87
E−02
[1.03-
TCCTCTCCTGGGTCCTTCAG
ID











3.01]
[T/C]ATTACCAGGTCCCTG
NO:












AAAAGCTACCCCCCAAAGTC
624












CTGGA






chr
240867
G
A
ZNF70
p.C198
0.013
0.000
4.80
1525.31
TGAGGGCTGAGCTCTGGCGG
SEQ


22
34



C
48
01
E−79
[211.03-
AAGGCCTTCCCACACTCCCG
ID











11024.83]
[G/A]CACTCGTAGGGCTTC
NO:












TCCCCGGTGTGGATGATCTG
625












GTGCC






chr
250071
G
A
GGT1
p.A42T
0.008
0.002
5.51
3.34
AGCCTCCAAGGAACCTGACA
SEQ


22
72




82
66
E−09
[2.34-
ACCATGTGTACACCAGGGCT
ID











4.76]
[G/A]CCGTGGCCGCGGATG
NO:












CCAAGCAGTGCTCGAAGATT
626












GGGAG






chr
250072
A
G
GGT1
p.K52E
0.008
0.002
2.23
3.52
CACCAGGGCTGCCGTGGCCG
SEQ


22
02




82
52
E−09
[2.45-
CGGATGCCAAGCAGTGCTCG
ID











5.05]
[A/G]AGATTGGGAGGTGAG
NO:












CAGGGCAGGGCATGGGACAT
627












GGGCC






chr
268799
A
G
SRRD
p.R37R
0.007
0.000
1.96
Inf
CTCGACGGCCGCGGCGGAGG
SEQ


22
67




11
00
E−08

GAGGCGGCGCCCCGGGGGAG
ID












[A/G]GAGGCGGCGCCCCGG
NO:












GGGAGAGAGGCGGCGCCCCG
628












GGGCC






chr
299132
C
T
THOC5
p.V523
0.010
0.007
4.97
1.38
ACTCCTTCACCTACCATGTA
SEQ


22
78



M
05
25
E−02
[1.01-
ATCCTCATGGGCAACTGTCA
ID











1.9]
[C/T]CCATTTCACCAGGCG
NO:












AGAGACAACCTTGGCAGGGA
629












AGAGG






chr
325904
C
T
RFPL2
p.R50
0.005
0.003
3.92
1.56
GGGCCTTTTATTGGTGAGAT
SEQ


22
48



H
88
78
E−02
[1.03-
TCCCACCTCCCACTGGGTCA
ID











2.35]
[C/T]GCCCTTCCACACCCT
NO:












CTAACCTGATGAGGCTTTGA
630












TTTAA






chr
325904
G
A
RFPL2
p.I42I
0.005
0.003
3.59
1.96
CACCTCCCACTGGGTCACGC
SEQ


22
71




88
01
E−03
[1.29-
CCTTCCACACCCTCTAACCT
ID











2.97]
[G/A]ATGAGGCTTTGATTT
NO:












AATTATAACAGGGAATTAGG
631












TTTTT






chr
381203
C
G
TRIOBP
p.T599
0.008
0.000
4.23
966.49
AGAGCCTCCTCTCCCAATAG
SEQ


22
59



R
58
01
E−50
[132.38-
AGCTACACGAGACAACCCCA
ID











7056.38]
[C/G]AACATCCTGTGCCCA
NO:












GCGGGACAATCCCAGAGCCT
632












CCAGA






chr
381208
C
T
TRIOBP
p.P754
0.021
0.000
3.86
2405.39
CGAGACAACCCCAGAACATC
SEQ


22
24



L
08
01
E−
[334.92-
CTGTGCCCAGCGGGACAATC
ID










124
17275.56]
[C/T]CAGAGCCTCCTCTCC
NO:












TAACAGAACCATCCAACAAG
633












AGAAC






chr
381224
G
T
TRIOBP
p.G129
0.026
0.000
4.02
Inf
GGCCCAGAGACAGCCAGGGC
SEQ


22
49



6W
23
00
E−

CCCAGGCGCAGTGCAGCAGC
ID










141

[G/T]GGGGCCGCACCCACA
NO:












GCCCTGGCCGTGCAGAGGTG
634












GAGCG






chr
425646
G
A
TCF20
p.S195
0.015
0.000
1.36
Inf
ACTGCCCCCCTCACCCCCGC
SEQ


22
89



1S
44
00
E−91

TCCGACTGCTCTGTGCTGAG
ID












[G/A]CTGCCTTTCGCGGTC
NO:












TTGTTCTGCAAGGGGGGGAG
635












AGGGC






chr
466578
T
C
PKDREJ
p.R447
0.006
0.002
2.21
2.21
ATGTGTGCTATGGCTTTTGG
SEQ


22
81



G
51
96
E−03
[1.33-
TCCTTGGAGCACGTGGACCC
ID











3.47]
[T/C]CTTATCAGAAAACGC
NO:












TGTCCTAGAGTCCTTCCGAA
636












TCACC






chr
503153
C
A
CRELD
p.D182
0.035
0.027
4.33
1.29
ACATGGGGTACCAGGGCCCG
SEQ


22
63


2
E
54
77
E−03
[1.09-
CTGTGCACTGACTGCATGGA
ID











1.53]
[C/A]GGCTACTTCAGCTCG
NO:












CTCCGGAACGAGACCCACAG
637












CATCT






chr
507212
T
C
PLXNB
p.M95
0.009
0.006
2.76
1.47
TTGGGCACGGGGGACCCCCC
SEQ


22
52


2
9V
31
34
E−02
[1.06-
GTAGGAGACCTCCAGAAGCA
ID











2.04]
[T/C]CTGGCCCCGTGTCGC
NO:












CTGGGGGCCAGTGACACACT
638












GGAGC






chr
126965
G
A
CNTN6
p.K113
0.007
0.005
1.83
1.57
GCCTGGCCACCAATCTTCTG
SEQ


3
8



K
84
02
E−02
[1.1-
GGGACAATTCTGAGTCGGAA
ID











2.24]
[G/A]GCAAAGCTCCAATTT
NO:












GCATGTGAGTTTGGGGTAAA
639












TTTTG






chr
109768
C
T
SLC6A1
p.C564
0.005
0.003
3.50
1.63
ATGGCATTGGCTGGCTCATG
SEQ


3
31


1
C
15
17
E−02
[1.05-
GCCCTGTCCTCCATGCTCTG
ID











2.53]
[C/T]ATCCCGCTCTGGATC
NO:












TGCATCACAGTGTGGAAGAC
640












GGAGG






chr
147246
C
T
C3orf2
p.L26L
0.009
0.006
5.92
1.61
ACAGGTTTCAGCAGCAGTCC
SEQ


3
64


0

80
11
E−03
[1.17-
ATCCACCTGCTGACGGAGCT
ID











2.22]
[C/T]CTCAGACTGAAGATG
NO:












AAGGCCATGGTGGAGTCTAT
641












GTCGG






chr
324094
C
T
CMTM
p.A122
0.008
0.005
1.57
1.54
TGTGCTTTAACGGCAGTGCC
SEQ


3
08


8
A
82
74
E−02
[1.1-
TTCGTCTTGTACCTCTCTGC
ID











2.16]
[C/T]GCTGTTGTAGATGCA
NO:












TCTTCCGTCTCCCCTGAGAG
642












GGACA






chr
367800
C
T
DCLK3
p.R24
0.012
0.009
4.43
1.36
TGGAGAAGGGGCACGGCTGT
SEQ


3
80



Q
50
21
E−02
[1.02-
GCTGGGCCAGTGTCAGGGCC
ID











1.81]
[C/T]GGGCTTTGTTGGGGT
NO:












ACAGTTCTTCTACAGCCACC
643












TGAAT






chr
383476
C
T
SLC22A
p.L55F
0.009
0.006
3.16
1.44
GAGGGCTGTCCACACCAAGC
SEQ


3
80


14

56
64
E−02
[1.04-
AGGATGACAAGTTTGCCAAC
ID











1.99]
[C/T]TCCTGGATGCGGTGG
NO:












GGGAGTTTGGCACATTCCAG
644












CAGAG






chr
386718
G
A
SCN5A
p.H118
0.005
0.002
2.12
2.01
ATGAGTGAACCAGAATCTTC
SEQ


3
40



H
88
94
E−03
[1.33-
ACAGCCGCTCTCCGGATGGG
ID











3.05]
[G/A]TCGAAGGGACTGAGG
NO:












ACATACAAGGCGTTGGTGGC
645












ACTGA






chr
419493
G
A
ULK4
p.P391
0.008
0.005
2.71
1.5
TAGGAAGAAAATTTCCCAAG
SEQ


3
48



S
58
74
E−02
[1.06-
TCTGCTCACCTTGGTCAGAG
ID











2.11]
[G/A]AGAAGTCTTCTGTGG
NO:












TGAACAGTGAGTCATATCCT
646












CACCA






chr
427750
G
A
CCDC1
p.R471
0.007
0.000
8.25
88.72
CTGGGTCCTCCAGGAACTGG
SEQ


3
60


3
R
11
08
E−35
[41.97-
GTATAGGCAGGGCTGACCTC
ID











187.53]
[G/A]CGGCCACTGGACCCC
NO:












TCACCCACTCCTTTATTCCG
647












AAGAT






chr
455420
C
T
LARS2
p.A564
0.006
0.003
1.03
2.02
GGATGCCTGTGGATTTGTAC
SEQ


3
03



A
86
41
E−03
[1.38-
ATTGGAGGGAAAGAACATGC
ID











2.97]
[C/T]GTCATGCACTTGTTC
NO:












TATGCAAGATTCTTTAGTCA
648












TTTTT






chr
460629
G
A
XCR1
p.S173
0.009
0.005
1.02
1.57
GGAGGTGAGGTACCACGTGA
SEQ


3
22



L
31
97
E−02
[1.13-
GTTCGGAATAATCACAGCCC
ID











2.17]
[G/A]AAGAAAGCACCTTGT
NO:












GGAAGATGGTGTCGAGGATG
649












GAGGA






chr
464969
G
A
LTF
p.A174
0.007
0.004
2.66
1.55
GGTTGGGGAACTGTCCTTTA
SEQ


3
10



A
11
61
E−02
[1.06-
TCTGCACCGGGAACACAGCT
ID











2.25]
[G/A]GCTGAGAAGAACCTG
NO:












GCCACAGCTGTTAAACACAG
650












AGAAG






chr
495691
G
A
DAG1
p.V411
0.006
0.002
7.27
2.16
CTGGCCAGATTCGCCCAACG
SEQ


3
77



V
37
96
E−04
[1.45-
ATGACCATTCCTGGCTATGT
ID











3.22]
[G/A]GAGCCTACTGCAGTT
NO:












GCTACCCCTCCCACAACCAC
651












CACCA






chr
497288
A
G
RNF12
p.E32G
0.009
0.006
2.22
1.49
CTTTTCTCCCTTCTGACTTG
SEQ


3
70


3

56
43
E−02
[1.08-
TGGCTCAGGCATTGTGCAGG
ID











2.06]
[A/G]GAAGCTGCTGAATGA
NO:












CTACCTGAACCGCATCTTTT
652












CCTCT






chr
503345
C
T
NAT6
p.V141
0.008
0.005
2.17
1.53
TGGTTCAGCACCCGTGACAG
SEQ


3
40



I
09
29
E−02
[1.07-
GCGGGCATGGCCCACCACAA
ID











2.18]
[C/T]GGGTGCTGCTTCAAG
NO:












TGTGGGGTGGGGGCTTAGCA
653












GCATC






chr
520056
G
A
ABHD1
p.R8C
0.007
0.005
4.86
1.45
AAGAAGAGGGCCTGGCCCTG
SEQ


3
65


4B

60
26
E−02
[1.01-
CACCTGGATGGTGCCCTCGC
ID











2.08]
[G/A]CTGCTCCACGCTTGC
NO:












TGCCATGCCTGCTGCTGCTG
654












TGCTG






chr
525408
C
T
STAB1
p.S655
0.006
0.004
2.53
1.61
TGCCCCCGACCATCCTGCCC
SEQ


3
42



S
62
12
E−02
[1.09-
ATCCTGCCCAAGCACTGCAG
ID











2.38]
[C/T]GAGGAGCAGCACAAG
NO:












ATTGTGGCGGTGAGCCTCGC
655












CTGCA






chr
757862
A
G
ZNF71
p.S855
0.005
0.000
1.25
89.92
TTTTCTCCTGTGTGTGTTCT
SEQ


3
11


7
P
15
06
E-14
[12.09-
CTGATGTATACTGAGGCCTG
ID











668.7]
[A/G]CTTCTGGGAGAAAGT
NO:












TTTCCTACATTCATTACATC
656












TAAAG






chr
757869
C
A
ZNF71
p.R611
0.008
0.000
1.48
Inf
ACATTCATTACATTCATAGG
SEQ


3
42


7
I
58
00
E−41

GTCTTTCCCCTGTGTGAGTT
ID












[C/A]TCTTGTGTATCCCAA
NO:












GGTTTAACTTATTGATAAAG
657












GTTTT






chr
757872
G
T
ZNF71
p.P506
0.011
0.000
9.28
Inf
TTACAGCGAAAGGTTTTCCC
SEQ


3
58


7
T
52
00
E−35

ACATTCATTGCATTCGTAGG
ID












[G/T]TTTTTCCCCTGTGTG
NO:












AGTCCATTGATGGATAGTGA
658












GGAAT






chr
757875
G
C
ZNF71
p.L410
0.027
0.000
3.86
Inf
TAGGGCTTTTCCCCTGTGTG
SEQ


3
46


7
V
45
00
E−62

AGTTCTATGATGTATTGTGA
ID












[G/C]GTATGACTTCTGGCT
NO:












AAAGGTTTTTCCACATTCAC
659












TACAC






chr
757881
G
C
ZNF71
p.L206
0.007
0.000
3.87
Inf
TTGAAGGTTTTCCCTTGTTC
SEQ


3
58


7
V
35
00
E−34

ATTACATTGAAAAGTCTGCA
ID












[G/C]CAGAGTTTGAATCTT
NO:












GTGATGCTGAGTAAGATGTT
660












CATGA






chr
757882
T
A
ZNF71
p.D161
0.006
0.000
7.04
14.75
TGTCTCCCCAGGCTTAATAG
SEQ


3
92


7
V
13
42
E−12
[6.04-
GGAAAAGCATGTTCTGGCAA
ID











35.97]
[T/A]CATTAAACTGCCCAG
NO:












GCTTCATTCCTGAACTGTTT
661












CCATT






chr
999985
G
C
TBC1D
p.C31S
0.008
0.005
4.33
1.45
AGGGAAAAAGATCTTGAAGA
SEQ


3
31


23

09
59
E−02
[1.02-
AGCTCTGGAAGCAGGAGGTT
ID











2.06]
[G/C]TGATCTTGAAACGTT
NO:












GAGAAATATAATTCAAGGAA
662












GACCG






chr
113052
G
C
WDR5
p.P118
0.006
0.004
4.42
1.5
TTCCTCTTCCTTCTTGGCAG
SEQ


3
314


2
5R
86
57
E−02
[1.02-
CATTTATTCTCATGTGCTCA
ID











2.23]
[G/C]GTATCTTGTAGTCTG
NO:












GGGCTGTCTTCAGATTGAAA
663












TCTCC






chr
124578
C
G
ITGB5
p.E80
0.009
0.006
3.42
1.45
GGCAGGCTCCTCAGGACATG
SEQ


3
212



Q
07
25
E−02
[1.04-
GAAGCTGCTGGCTGGGCTCT
ID











2.03]
[C/G]TATCTCACCTCCACA
NO:












GCCATTTTTGACAAGGTTTG
664












CCCTC






chr
124646
G
A
MUC1
p.T66I
0.006
0.004
3.25
1.59
GGAGGAACTATGTGTACTAA
SEQ


3
693


3

37
03
E−02
[1.07-
TTATGGGGGGAGCAGGTGAA
ID











2.36]
[G/A]TAGCTGTTGGGAAAG
NO:












GTGTATTTGCTGTGGTGCTA
665












GCAGT






chr
129196
C
T
IFT122
p.R366
0.008
0.005
3.60
1.46
CTATGAGTTGTATTCAGAGG
SEQ


3
984



W
33
73
E−02
[1.03-
ACTTATCAGACATGCATTAC
ID











2.06]
[C/T]GGGTAAAGGAGAAGA
NO:












TTATCAAGAAGTTTGAGTGC
666












AACCT






chr
132198
G
A
DNAJC
p.R912
0.006
0.003
1.75
1.68
ATTTATTTCAATAGTGCACA
SEQ


3
097


13
R
13
65
E−02
[1.12-
GATAAACTTGAACGAGATAG
ID











2.53]
[G/A]TTGATTCTCTTCCTT
NO:












AACAAGTTGATCCTTAATAA
667












GGTAC






chr
132247
T
G
DNAJC
p.L217
0.006
0.004
1.27
1.68
GCTCAGATTGTTAAAGCTCT
SEQ


3
160


13
0W
86
09
E−02
[1.15-
CAAGGCAATGACTCGAAGTT
ID











2.47]
[T/G]GCAGTATGGAGAACA
NO:












GGTGAGTCTGCATAGAGTCA
668












ACTTT






chr
136664
A
T
NCK1
p.S139
0.011
0.008
4.08
1.38
AAGTGTTGCATGTGGTACAG
SEQ


3
807



S
03
02
E−02
[1.02-
GCTCTTTACCCATTCAGCTC
ID











1.86]
[A/T]TCTAATGATGAAGAA
NO:












CTTAATTTCGAGAAAGGAGA
669












TGTAA






chr
137849
G
T
A4GNT
p.P97P
0.008
0.005
2.16
1.52
TTGCTGACAGGAAGGAAAAA
SEQ


3
808




82
83
E−02
[1.08-
GCTGGGTATGTGGAGTTTGA
ID











2.13]
[G/T]GGCATCGGTGTGGAA
NO:












TCAGTAAGACCCTTCATAAA
670












GAACA






chr
186953
C
T
MASP1
p.P582
0.009
0.005
1.70
1.54
AGATGCCCCAGCCGGCCACC
SEQ


3
913



P
07
90
E−02
[1.11-
AGGCCCAGCATGTGGGGGGC
ID











2.15]
[C/T]GGGCCTTCAGGCTCA
NO:












AGCCTTGGCAGGCAGACAGG
671












CATAA






chr
192980
C
T
HRASL
p.S160
0.008
0.005
7.49
1.64
AATTCTACTTTATAGATGGC
SEQ


3
784


S
S
33
09
E−03
[1.16-
AATTCCTGCGTCCTTTACAAG
ID











2.33]
[C/T]GCCAAGTCTGTATTC
NO:












AGCAGTAAGGCCCTGGTGAA
672












AATGC






chr
195306
A
G
APOD
p.F1.5S
0.009
0.005
9.46
1.59
GCACTTCCCAAGATGAAATG
SEQ


3
289




31
89
E−03
[1.14-
CTTGTCCCTCTGCCGCACCG
ID











2.2]
[A/G]AGAGGCCAGCCAGTG
NO:












CGGAAAGCAGCAGCAGCAGC
673












ATCAC






chr
195505
C
G
MUC4
p.V422
0.025
0.000
6.23
Inf
GGGGTGGCGTGACCTGTGGA
SEQ


3
772



7L
74
00
E−

TACTGAGGAAAGGCTGGTGA
ID










146

[C/G]AGGAAGAGGGGTGGC
NO:












GTGACCTGTGGATGCTGAGG
674












AAGTG






chr
195508
G
C
MUC4
p.L342
0.009
0.000
2.06
51.16
GCGTGACCGGTGGATGCTGA
SEQ


3
178



5V
80
19
E−37
[26.23-
GGAAGTGCTGGTGACAGGAA
ID











99.79]
[G/C]AGGGGTGGCGTGACC
NO:












TGTGGATGCTGAGGAAGGGC
675












TAGTG






chr
195508
G
C
MUC4
p.T341
0.016
0.000
6.58
38.6
CTGAGGAAGTGCTGGTGACA
SEQ


3
194



91
42
43
E−58
[24.19-
GGAAGAGGGGTGGCGTGACC
ID











61.59]
[T/G]GTGGATGCTGAGGAA
NO:












GGGCTAGTGACAGGAAGAGG
676












CATGG






chr
195512
T
C
MUC4
p.S205
0.015
0.000
2.79
68.26
GGAAGAGGCGTGGTGTCACC
SEQ


3
294



3G
20
23
E−60
[37.51-
TGTGGATACTGAGGAAAGGC
ID











124.21]
[T/C]GGTGACAGGAAGAGG
NO:












GGTGTCCTGACCTGTGGATG
677












CTGAG






chr
195512
C
G
MUC4
p.Q20
0.011
0.000
1.51
32.71
TGGATACTGAGGAAAGGCTG
SEQ


3
316



45H
27
35
E−38
[19.15-
GTGACAGGAAGAGGGGTGTC
ID











55.88]
[C/G]TGACCTGTGGATGCT
NO:












GAGGAAGTATCGGTGACAGG
678












AAGCG






chr
195512
G
A
MUC4
p.P182
0.011
0.000
3.64
352
TCACCTGTGGATGCTGAGGA
SEQ


3
981



4S
52
03
E−54
[85.47-
AGCGTCGGTGACAGGAAGAG
ID











1449.66]
[G/A]GGTGGTGTCACCTGT
NO:












GGATGCTGAGGAAGGGCTGG
679












TGACA






chr
196214
C
T
RNF16
p.R164
0.023
0.000
6.42
388.53
GTTCCTCATCACTTTTCAGT
SEQ


3
336


8
R
77
06
E−
[180.3-
TGTTCTTCCATCGCTCTTCG
ID










132
837.21]
[C/T]CTTTTTTCTGCCTGT
NO:












CTTTTTTCCTCTTCTTCCTC
680












CTCTG






chr
196214
T
C
RNF16
p.R164
0.009
0.000
1.81
Inf
TCCTCATCACTTTTCAGTTG
SEQ


3
338


8
G
56
00
E−57

TTCTTCCATCGCTCTTCGCC
ID












[T/C]TTTTTCTGCCTGTCT
NO:












TTTTTCCTCTTCTTCCTCCT
681












CTGCC






chr
265813
A
T
ZNF73
p.F277
0.022
0.000
2.19
492.83
TGAGGATGAGGTAATGATTT
SEQ


4



2
Y
30
05
E−
[200.2-
TGCCACATTCTTCACATGTG
ID










124
1213.19]
[A/T]AGGGTTTCTCTTCAG
NO:












CATGAATTCTCTTATGCTTA
682












GTAAG






chr
265825
T
C
ZNF73
p.E273
0.011
0.000
2.01
Inf
AATGATTTTGCCACATTCTT
SEQ


4



2
G
52
00
E−68

CACATGTGAAGGGTTTCTCT
ID












[T/C]CAGCATGAATTCTCT
NO:












TATGCTTAGTAAGGGTTGAG
683












GACCT






chr
265829
C
T
ZNF73
p.A272
0.018
0.000
1.83
Inf
ATTTTGCCACATTCTTCACA
SEQ


4



2
T
14
00
E−

TGTGAAGGGTTTCTCTTCAG
ID










107

[C/T]ATGAATTCTCTTATG
NO:












CTTAGTAAGGGTTGAGGACC
684












TATTA






chr
436337
G
A
ZNF72
p.P640
0.008
0.000
4.30
Inf
TGATGGGGCAAAGGCTTTGC
SEQ


4



1
L
82
00
E−53

CACACTCTTCACATTTGTAA
ID












[G/A]GTTTCTCCCCAGTGT
NO:












AAATTTTCTTCTGTTGATTC
685












AGGTC






chr
436390
A
G
ZNF72
p.F622
0.005
0.000
3.07
660.68
TGTAAATTTTCTTCTGTTGA
SEQ


4



1
F
88
01
E−34
[89.36-
TTCAGGTCCGTGTACCATAC
ID











4884.86]
[A/G]AAGTCTTTGCCACAC
NO:












TCTTCACATTTGTAAAGTTT
686












CTCTC






chr
437293
A
G
ZNF72
p.Y7321
0.013
0.000
1.88
103.33
ATGTGTAGGGTTTCTCTCCA
SEQ


4



1
Y
73
13
E−67
[58.4-
GTATGAATTCTCCTATGTAC
ID











182.84]
[A/G]TAAAGGTTTGCGGAC
NO:












TGTCTAAAGGCTTTGCCACA
687












TACTT






chr
676125
G
C
MFSD7
p.S434
0.007
0.004
9.52
1.71
GGCGCCGGTATGGGGTGTGG
SEQ


4




R
11
18
E−03
[1.16-
AAGAAGACCGCCAGGATGCA
ID











2.51]
[G/C]CTGAAGAAGGTGCAC
NO:












AGGCCGGCCATCAGCAGCAG
688












AGACA






chr
138836
G
A
CRIPAK
p.A24T
0.006
0.000
1.22
109.46
GGAGTGCCCGCCTGCTCACA
SEQ


4
9




86
06
E−34
[47.78-
CGTGCCCATGTGGAGTGCCC
ID











250.72]
[G/A]CCTGCTCATGTGCCC
NO:












ATGTGGAGTGCCCGCCTGCT
689












CACAC






chr
138941
C
T
CRIPAK
p.P373
0.006
0.000
5.30
238.42
GAGTGCCCGCCTGCTCACAC
SEQ


4
7



L
37
03
E−35
[72.13-
ACGTGCCCATGTGGAGTGCC
ID











788.02]
[C/T]GCCTGCTCACACGTG
NO:












CCCATGTGGAGTGCCTGCCT
690












GCTCA






chr
180550
C
T
FGFR3
p.T338
0.007
0.003
1.52
1.9
CCTTGCACAACGTCACCTTT
SEQ


4
2



T
35
89
E−03
[1.31-
GAGGACGCCGGGGAGTACAC
ID











2.75]
[C/T]TGCCTGGCGGGCAAT
NO:












TCTATTGGGTTTTCTCATCA
691












CTCTG






chr
341781
C
T
RGS12
p.A149
0.010
0.006
1.19
1.52
ATCGACAGCCAGGCCCAGCT
SEQ


4
1



V
29
78
E−02
[1.11-
AGCAGACGACGTCCTCCGCG
ID











2.08]
[C/T]ACCTCACCCAGACAT
NO:












GTTCAAGGAGCAGCAGCTGC
692












AGGTA






chr
351988
C
T
LRPAP
p.D211
0.005
0.003
4.80
1.62
AGCTCCGTGTGCCTGCTGTG
SEQ


4
1


1
N
15
19
E−02
[1.04-
CAGGACGCTGCCCTTGATGT
ID











2.51]
[C/T]GCTCAGGTCCGAGGG
NO:












GCTAATGACGTTCTCGTGGA
693












TTTCT






chr
700663
6
C
TBC1D
p.E166
0.006
0.004
2.71
1.58
AGCCAAGGAGAGGTGGCGGT
SEQ


4
6


14
Q
62
20
E−02
[1.07-
CCCTTAGCACAGGAGGCTCT
ID











2.33]
[G/C]AAGTGGAGAACGAAG
NO:












GTAGAATGTCTTCTAAAACC
694












AGCGG






chr
135457
C
G
NKX3-2
p.A113
0.005
0.000
8.15
Inf
CCGAGGCTCAAGGATCCCCC
SEQ


4
02



P
15
00
E−28

CGCAAGGCCGGCCCCGCTGG
ID












[C/G]CCCCCGCGCGTCCGC
NO:












GCAGCGCCGCCTGCTCTCGT
695












TCTCC






chr
165042
T
G
LDB2
p.N36
0.020
0.000
1.23
2373.68
CTGGTGCCGATCATCTTATT
SEQ


4
91



6T
83
01
E−
[330.46-
GGGAAGCCTGGGGTGGGGGG
ID










122
17050.06]
[T/G]TTTCTGATTTGGTCT
NO:












CTTGAGTGGCGGGAGGTTTA
696












CTGTT






chr
577972
A
G
REST
p.I747
0.010
0.000
4.04
Inf
CTCCTCCCATGGAGGTGGTC
SEQ


4
65



M
05
00
E−60

CAGAAGGAGCCTGTTCAGAT
ID












[A/G]GAGCTGTCTCCTCCC
NO:












ATGGAGGTGGTCCAGAAGGA
697












ACCTG






chr
629360
C
A
LPHN3
p.N12
0.006
0.004
3.32
1.65
GTGAACAGAACAGGAATCTG
SEQ


4
92



92K
831
163
E−02
[1.01-
ATGAACAAGCTGGTGAATAA
ID











2.55]
[C/A]CTTGGCAGTGGAAGG
NO:












GAAGATGATGCCATTGTCCT
698












GGATG






chr
694337
T
A
UGT2B
p.D147
0.009
0.006
1.90
1.48
CAGCTCACCACAGGGATTAA
SEQ


4
63


17
V
80
63
E−02
[1.08-
CGGCATCTGCCAGAAGGACA
ID











2.04]
[T/A]CAAATTTTGACTCTT
NO:












GTAGTTTTCTCATAAGTTTC
699












TTGTT






chr
698747
T
C
UGT2B
p.T134
0.010
0.000
4.99
27.9
AACAATGGAATGCCCACCAT
SEQ


4
38


10
A
78
39
E−40
[18.31-
AGGGATCCCATGGTAGATTG
ID











42.53]
[T/C]CTCGTAGATGCCATT
NO:












GGCTCCACCATGAGTTATAA
700












AAGCT






chr
698747
G
A
UGT2B
p.Y132
0.011
0.000
1.22
26.17
ATGGAATGCCCACCATAGGG
SEQ


4
42


10
Y
76
45
E−42
[17.59-
ATCCCATGGTAGATTGTCTC
ID











38.94]
[G/A]TAGATGCCATTGGCT
NO:












CCACCATGAGTTATAAAAGC
701












TCTGG






chr
712325
C
A
SIMR3A
p.S79Y
0.007
0.000
8.43
Inf
CCCCTTTCTCCACCCTATGG
SEQ


4
42




60
00
E−46

TCCAGGGAGAATCCCACCAT
ID












[C/A]CCCTCCTCCACCCTA
NO:












TGGTCCAGGGAGAATTCAAT
702












CACAC






chr
723385
A
G
SLC4A4
p.K602
0.007
0.003
7.37
2.04
TCCTCTCTGATTAGCTTCAT
SEQ


4
89



R
11
50
E−04
[1.4-
CTTTATCTATGATGCTTTCA
ID











2.98]
[A/G]GAAGATGATCAAGCT
NO:












TGCAGATTACTACCCCATCA
703












ACTCC






chr
772045
C
T
FAM47
p.R283
0.010
0.006
1.10
1.54
TTAGTTCCTTGAGAATATGT
SEQ


4
70


E
C
29
72
E−02
[1.12-
ATATCGGGAAGGAATGTAAA
ID











2.12]
[C/T]GTGCATGTAATAAGA
NO:












CTCCTATAAAACGAACTCAA
704












GCATA






chr
797921
G
A
BMP2K
p.Q48
0.012
0.000
1.06
1376.85
AACAGCAACAGCAGCAGCAG
SEQ


4
48



1Q
75
01
E−73
[190.3-
CAACAGCAACAGCAGCAGCA
ID











9961.91]
[G/A]CAGCAGCAGCAGCAG
NO:












CACCACCACCACCACCACCA
705












CCACC






chr
819672
C
T
BMP3
p.T222
0.000
0.000
1.00
0.79
GCCAAAGAAAATGAAGAGTT
SEQ


4
40



M
49
62
E+00
[0.19-
CCTCATAGGATTTAACATTA
ID











3.22]
[C/T]GTCCAAGGGACGCCA
NO:












GCTGCCAAAGAGGAGGTTAC
706












CTTTT






chr
876662
A
G
PTPN1
p.H865
0.009
0.005
1.49
1.77
AAGATATGCCAGTACCTGCT
SEQ


4
25


3
R
31
28
E−03
[1.27-
GCACCTCTGCTCTTACCAGC
ID











2.46]
[A/G]TAAGTTCCAGCTACA
NO:












GATGAGAGCAAGACAGAGCA
707












ACCAA






chr
876722
G
T
PTPN1
p.D104
0.008
0.005
9.90
1.61
GAGTTTAAATAGAAGTCCTG
SEQ


4
35


3
2Y
82
50
E−03
[1.15-
AAAGGAGGAAACATGAATCA
ID











2.26]
[G/T]ACTCCTCATCCATTG
NO:












AAGACCCTGGGCAAGCATAT
708












GTTCT






chr
877491
G
A
SLC10A
p.H249
0.028
0.000
2.75
Inf
AGTTTATGGATAGTTTAACT
SEQ


4
62


6
Y
68
00
E−

ATACCTTTGCCAAGACTGGT
ID










171

[G/A]GGTAAAAAGTGCCAG
NO:












CAGAAAACCCGTGACATGGC
709












CAATC






chr
885375
C
T
DSPP
p.S124
0.010
0.000
3.86
Inf
AAAGCAGCGACAGCAGTGAC
SEQ


4
52



6S
78
00
E−52

AGCAGCGATAGCAGTGACAG
ID












[C/T]AGCAACAGCAGTGAC
NO:












AGCAGCGACAGCAGTGATAG
710












CAGTG






chr
885375
C
T
DSPP
p.N12
0.011
0.000
5.36
54.14
GCGACAGCAGTGACAGCAGC
SEQ


4
58



48N
52
22
E−43
[28.06-
GATAGCAGTGACAGCAGCAA
ID











104.46]
[C/T]AGCAGTGACAGCAGC
NO:












GACAGCAGTGATAGCAGTGA
711












CAGCA






chr
113303
A
6
ALPK1
p.Q67
0.011
0.007
2.92
1.61
GCAAAGGAAATGAAGTGGCC
SEQ


4
632



R
76
35
E−03
[1.2-
CTTCGTGCCTGAAAAGTGGC
ID











2.15]
[A/G]GTACAAACAAGCCGT
NO:












GGGCCCAGAGGACAAAACAA
712












ACCTG






chr
115997
T
C
NDST4
p.I283
0.012
0.009
3.24
1.37
AGCCTCTTCCCTGACAAGAA
SEQ


4
346



V
75
37
E−02
[1.03-
GGAGATGGCATCTATGAAGA
ID











1.81]
[T/C]GAGCTTGTGCAGCCA
NO:












AAAGTTCAAGTTGTTGCCAA
713












AAAGT






chr
125592
G
A
ANKRD
p.A521
0.011
0.008
3.46
1.39
CATTATCTAATAATGTCCGA
SEQ


4
869


50
A
27
16
E−02
[1.03-
ATGGAATCCTCTCTTTCTAA
ID











1.87]
[G/A]GCTTGTCGAACTATG
NO:












CATGATGTGCGATCGTCTTC
714












ACTGT






chr
153690
G
A
TIGD4
p.T477
0.005
0.003
1.38
1.74
ATCTTGACTTCTGAGAAATT
SEQ


4
727



I
88
39
E−02
[1.15-
TTTTCAGAGTATCTAAAGCA
ID











2.63]
[G/A]TTATTGCCTCAGATT
NO:












TTGATGGTAAAGGGAGTTCA
715












GTTCC






chr
165962
A
T
TRIM6
p.E422
0.006
0.003
2.13
1.64[
TAGTAAAACCCAGTAAAATT
SEQ


4
490


0
D
37
89
E−02
1.11-
GGTATTTTTCTGGACTATGA
ID











2.45]
[A/T]TTGGGTGATCTTTCC
NO:












TTTTATAATATGAATGATAG
716












GTCTA






chr
166300
T
C
CPE
p.F51L
0.005
0.000
4.59
Inf
GAGGCGGCGCCGGCGGCTGC
SEQ


4
524




15
00
E−30

AGCAAGAGGACGGCATCTCC
ID












[T/C]TCGAGTACCACCGCT
NO:












ACCCCGAGCTGCGCGAGGCG
717












CTCGT






chr
167656
A
T
SPOCK
p.X317
0.003
not
5.64
Inf
TTAGAAATGTAGAATTTATT
SEQ


4
074


3
R
93
found
E−08

GATTTCAACTGTCATCAATC
ID












[A/T]AATGTATACATCATG
NO:












GTCATCACCACCATCATCAT
718












CATCC






chr
170671
C
G
C4orf2
p.G82
0.005
0.003
4.94
1.6
TTCTTCGTTTTATGTTTTCC
SEQ


4
841


7
R
15
23
E−02
[1.03-
AGCAAGGATATCATAAGGAC
ID











2.48]
[C/G]AACTAATTGAAGTCC
NO:












AAGGCTTGCAGAAAGTGAAT
719












CTATA






chr
175898
T
C
ADAM
p.W73
0.006
0.000
1.43
33.53
TCAGCGTCGACCTCATGAGT
SEQ


4
879


29
5R
37
19
E−25
[18.85-
TACCTCCCCAGAGTCAACCT
ID











59.63]
[T/C]GGGTGATGCCTTCCC
NO:












AGAGTCAACCTCCTGTGACG
720












CCTTC






chr
175898
C
T
ADAM
p.S757
0.006
0.000
7.49
12.91
CTGTGACGCCTTCCCAGAGT
SEQ


4
947


29
S
62
52
E−19
[8.16-
CATCCTCAGGTGATGCCTTC
ID











20.42]
[C/T]CAGAGTCAACCTCCT
NO:












GTGACACCCTCCCAGAGTCA
721












ACCTC






chr
177083
G
A
WDR1
p.D933
0.006
0.004
1.23
1.7
GCACAAAGTCAGTAAAGAAC
SEQ


4
272


7
N
86
05
E−02
[1.16-
TGGCAGAATGGTATTTTCAA
ID











2.49]
[G/A]ATGGTCGAGCAGTAC
NO:












TAGCCGCATGTTGCCATCTT
722












GCCAT






chr
191718
C
G
LRRC1
p.A22
0.008
0.000
8.74
Inf
TTCATTTCTGCAGAAGCTCT
SEQ


5



4B
G
82
00
E−53

GGTGTCCCACCCCCAGGTGG
ID












[C/G]CCGGCAGAGCCTGGA
NO:












CAGCGTGGCCCACAACCTCT
723












ACCCA






chr
891400
T
C
BRD9
p. K39R
0.000
0.001
5.63
10
CCGTGTCACAGTGCTCCCTC
SEQ


5





90
70
E−09
[5-
TCTCGCTTCCGCTTCTTCTC
ID











21]
[T/C]TCCTGGGCGGCAGAG
NO:












TCAAGGGAGTGAGAAAGGCA
724












GGAGT






chr
739660
T
G
ADCY2
p.F65V
0.008
0.000
3.47
Inf
GCTCATCGTCATGGGCTCCT
SEQ


5
2




58
00
E−49

GCCTCGCCCTGCTCGCCGTC
ID












[T/G]TCTTCGCGCTCGGGC
NO:












TGGTGAGTGGCCTCCCCGCG
725












GGTCC






chr
369854
G
A
NIPBL
p.G720
0.005
0.000
9.80
628.63
GTGAAAGCCGGCCTGAGACT
SEQ


5
42



G
64
01
E−33
[84.88-
CCAAAACAAAAGAGTGATGG
ID











4655.98]
[G/A]CATCCTGAAACCCCA
NO:












AAACAGAAGGGTGATGGAAG
726












GCCTG






chr
523473
A
C
ITGA2
p.T252
0.008
0.005
2.65
1.51
CATCCCAGACATCCCAATAT
SEQ


5
66



T
58
69
E−02
[1.07-
GGTGGGGACCTCACAAACAC
ID











2.13]
[A/C]TTCGGAGCAATTCAA
NO:












TATGCAAGGTAAGTTTTGGT
727












GCTAA






chr
550836
G
T
DDX4
p.A199
0.005
0.000
2.43
603.79
GCAACTTAACTTCTAGGCGG
SEQ


5
98



S
39
01
E−31
[81.37-
CTTTTCTCCTACCAATTTTG
ID











4480.44]
[G/T]CTCATATGATGCATG
NO:












ATGGAATAACTGCCAGTCGT
728












TTTAA






chr
708062
C
A
BDP1
p.G110
0.008
0.000
1.09
Inf
TGGAAGAAACTGAAAGAGAA
SEQ


5
31



4G
09
00
E−48

ATATCCCCACAGGAAAATGG
ID












[C/A]CTAGAGGAGGTTAAG
NO:












CCTCTAGGTGAAATGCAAAC
729












AGATT






chr
715167
G
C
MRPS2
p.Q39
0.005
0.003
3.05
1.68
GCTTTCTGAGCCTGGTACTC
SEQ


5
95


7
6E
15
06
E−02
[1.08-
CTGCTTCGCTTGCTCCCTCT
ID











2.62]
[G/C]TTGCTGTTCTCTCTG
NO:












GATCAACTGTACAAGGTCTA
730












GATGC






chr
762495
G
A
CRHBP
p.P53P
0.010
0.007
4.12
1.4
TCAGCGCCAACCTGAAGCGG
SEQ


5
03




29
39
E−02
[1.02-
GAGCTGGCTGGGGAGCAGCC
ID











1.91]
[G/A]TACCGCCGCGCTCTG
NO:












CGTGAGTCGAGGCTGCCCGG
731












CTCGC






chr
762498
A
AC
CRH8P
NM_0
0.006
not
7.44
223.6
GCTGCAGCCCGGGACTTATT
SEQ


5
52



01882:
87
found
E−12
[46.4-
GCCCCATGCCCTCCTCCCCC
ID







exon3:



1077.6]
[A/AC]GGGTGCCTGGACAT
NO:







c.176-




GCTGAGCCTCCAGGGCCAGT
732







2- > C




TCACCT






chr
767606
C
T
WDR4
p.G61
0.005
0.003
3.47
1.62
ACACACCTGGGCATTCCACA
SEQ


5
20


1
D
88
65
E−02
[1.07-
CAACTACAATTCCATCATCA
ID











2.44]
[C/T]CAGCAGATGCAAATC
NO:












TGGTTAGGGAGAAAGGGTCA
733












AGAAA






chr
798548
A
G
ANKRD
p.V338
0.005
0.003
2.71
1.65
AAATATTGTCTGGTTAGAAT
SEQ


5
26


34B
A
39
28
E−02
[1.07-
CTGGGTCCTGGTCAACAGGG
ID











2.54]
[A/G]CTTCAATGCATTGCT
NO:












GATTTCCTTCTGAAAGATAA
734












GATTG






chr
899698
A
G
GPR98
p.I164
0.010
0.006
2.82
1.44
GCTTAGTGCCTCTGGATATT
SEQ


5
80



7V
05
98
E−02
[1.05-
TATATTTTTAGGTTCTGAAT
ID











1.98]
[A/G]TATATGTTCTTGATG
NO:












ATGATATTCCTGAACTTAAT
735












GAGTA






chr
899795
G
A
GPR98
p.D194
0.009
0.005
6.02
1.64
TATCACTGTGGAGATATTGC
SEQ


5
68



4N
31
69
E−03
[1.18-
CTGACGAAGACCCAGAACTG
ID











2.28]
[G/A]ATAAGGCATTCTCTG
NO:












TGTCAGTCCTCAGTGTTTCC
736












AGTGG






chr
929210
C
T
NR2F1
p.H97
0.029
0.000
1.83
838.44
TCGAGTGCGTGGTGTGCGGG
SEQ


5
20



H
66
04
E−
[309.51-
GACAAGTCGAGCGGCAAGCA
ID










169
2271.28]
[C/T]TACGGCCAATTCACC
NO:












TGCGAGGGCTGCAAAAGTTT
737












CTTCA






chr
1.34002
G
C
SEC24
p.A223
0.013
0.000
5.18
1523.15
TCATGGGCCCCCTCCAGCTG
SEQ


5
614


A
P
48
01
E−79
[210.73-
GAGGCCCACCCCCAGTGAGG
ID











11009.22]
[G/C]CCCTCACGCCCCTGA
NO:












CATCATCATATAGAGATGTA
738












CCCCA






chr
137621
C
T
CDC25
p.R388
0.006
0.003
2.71
1.63
TCATGGGCTCATGTCCTTCA
SEQ


5
421


C
Q
13
76
E−02
[1.09-
CCAGAAGGGCAATCTGCTCC
ID











2.45]
[C/T]GCAGCTGCCGCTCCC
NO:












CTTCCTGCACTTTGCTCTGG
739












CTTCG






chr
140209
G
A
PCDHA
p.R498
0.006
0.004
3.84
1.55
AGGAGAACGCGCTGGTGTCC
SEQ


5
170


6
R
62
29
E−02
[1.05-
TACTCGCTGGTGGAGCGGCG
ID











2.28]
[G/A]GTGGGCGAGCGCGCG
NO:












TTGTCGAGCTACATTTCGGT
740












GCACG






chr
140559
T
C
PCDHB
p.L576
0.007
0.003
8.04
2.02
CTGTACCCGCTGCAGAATGG
SEQ


5
342


8
P
11
53
E−04
[1.38-
CTCCGCGCCCTGCACCGAGC
ID











2.95]
[T/C]GGTGCCCCGGGCGGC
NO:












CGAGCCGGGCTACCTGGTGA
741












CCAAG






chr
141336
G
A
PCDH1
p.T261
0.009
0.005
7.37
1.6
GCCTTGGTCAGGGTCTGTGG
SEQ


5
635


2
M
56
98
E−03
[1.16-
CGGTCAGTTTTATGAGAAGC
ID











2.22]
[G/A]TACCAGGTGCAGCAT
NO:












CTTCTTGGATTTCCAGTGCC
742












AGTGA






chr
141694
G
T
SPRY4
p.S218
0.014
0.001
2.15
11.5
GCAGTTGGAGCGGGAGCAGG
SEQ


5
021



Y
31
26
E−28
[7.94-
AGCAGGGGTGGTCAGCGCAG
ID











16.41]
[G/T]AGCCCTCATCGTCCT
NO:












CATTCGTGCAGTGGTAGAAG
743












ATGCC






chr
148384
T
A
SH3TC
p.D122
0.007
0.004
2.62
1.84
GACCGCTGCTGCCAGGGCCA
SEQ


5
455


2
9V
35
02
E−03
[1.27-
GAAGGAAGTACTCAGTGGCA
ID











2.66]
[T/A]CATGGGCATCCTAAC
NO:












CCCGTGGTATGGGGGCAAAG
744












AAGAG






chr
149276
T
G
PDE6A
0.049
0.019
0.001
8.09
11.32
ATTTATTAATTTCGTATTTA
SEQ


5
063



29
52
76
E−37
[8.17-
TCTGCATCTGGCAGCTCCGC
ID











15.55]
[T/G]TGCTGTATAAGGAAT
NO:












AGAGTCAGGTGATTAGGAAA
745












CATGA






chr
149301
G
A
PDE6A
p.P293
0.007
0.004
3.83
1.5[
CCTGGGACCAGAGTAAGGTG
SEQ


5
253



L
11
75
E−02
1.03-
GAACTTCACCCATCAGAACC
ID











2.18]
[G/A]GCCACACATCAAAAA
NO:












ATTCCTAGGAATGAGAAAAA
746












CAATA






chr
149512
C
T
PDGFR
p.V316
0.006
0.004
1.88
1.64
TCAGCAAATTGTAGTGTGCC
SEQ


5
494


B
M
86
19
E−02
[1.11-
CACCTCTCCCAGGAGCCGCA
ID











2.43]
[C/T]GTAGCCGCTCTCTGC
NO:












AAGGGGTGACCGTCAGGGGC
747












GGGGC






chr
150905
G
T
FAT2
p.P347
0.006
0.000
4.42
Inf
CCTCCTGCTTAGGCCCTCAG
SEQ


5
399



9Q
13
00
E−37

CAGTCACCAGCCATCCATCC
ID












[G/T]GGGTCACTCGGAAGG
NO:












CAGAGCCGTTGTTCCCCTTG
748












GTGAT






chr
167689
C
A
TENM2
p.R257
0.005
0.003
2.93
1.71
CATCATTGGCAAAGGCATCA
SEQ


5
228



1R
15
02
E−02
[1.1-
TGTTTGCCATCAAAGAAGGG
ID











2.66]
[C/A]GGGTGACCACGGGCG
NO:












TGTCCAGCATCGCCAGCGAA
749












GATAG






chr
167881
A
T
WWC1
p.E862
0.011
0.000
5.03
Inf
GAGAATGAGGCAGTAGCCGA
SEQ


5
032



V
76
00
E−70

GGAAGAGGAGGAGGAGGTGG
ID












[A/T]GGAGGAGGAGGGAGA
NO:












AGAGGATGTTTTCACCGAGA
750












AAGCC






chr
168112
G
A
SLIT3
p.A118
0.005
0.002
1.12
2.16
AAGGGCAGGGCAGGGCGGGA
SEQ


5
707



0A
64
62
E−03
[1.41-
CACACCTGCAGGGAGATGTT
ID











3.31]
[G/A]GCCTGGGGTCGGACC
NO:












TTGGCGGAGGCCAGTTCCAC
751












GTAGG






chr
171661
T
C
UBTD2
p.489
0.009
0.006
3.47
1.45
CATGTGGTAATGTTATGTTT
SEQ


5
166



A
07
28
E−02
[1.04-
GCACCATCAATGATTGCTTG
ID











2.02]
[T/C]GCCAGTTCATGATCA
NO:












TTGCTCTCAAAAGCATGTGC
752












AGCAG






chr
178139
C
T
ZNF35
p.E498
0.020
0.002
8.40
8.69
GATTACTAAGTGATGAGTTA
SEQ


5
385


4A
E
34
38
E−44
[6.78-
CACCTGAATGTTTTCCCACA
ID











11.14]
[C/T]TCGTTACATTTATAG
NO:












GGTCTTTCTCCAGTATGCAT
753












TCTCT






chr
178139
T
C
ZNF35
p.K495
0.020
0.002
4.38
7.3
GTGATGAGTTACACCTGAAT
SEQ


5
394


4A
K
34
84
E−39
[5.72-
GTTTTCCCACACTCGTTACA
ID











9.32]
[T/C]TTATAGGGTCTTTCT
NO:












CCAGTATGCATTCTCTGATG
754












TTGAA






chr
179192
A
G
MAML
p.T110
0.010
0.007
4.35
1.4
AAGTCATTCTTTTCAATGTT
SEQ


5
341


1
T
54
57
E−02
[1.03-
TTTCAGCATCTTCATGATAC
ID











1.9]
[A/G]GTTAAGAGGAATCTT
NO:












GACAGCGCCACTTCCCCTCA
755












GAATG






chr
179192
C
T
MAML
p.Y130
0.010
0.007
4.35
1.4
CGCCACTTCCCCTCAGAATG
SEQ


5
401


1
Y
54
56
E−02
[1.03-
GCGATCAACAGAATGGCTA
ID











1.9]
[C/T]GGGGACCTCTTTCCT
NO:












GGGCATAAGAAGACTCGCCG
756












GGAGG






chr
117684
C
T
ADTRP
p.T96T
0.005
0.002
6.64
2.12
CACATTTCTGTTAGATTATG
SEQ


6
82




53
61
E−03
[1.22-
TACACATCTTTGAAACTTAC
ID











3.46]
[C/T]GTGGATACAGGAAAA
NO:












GCCAGAGTGGTGAAAAGCAG
757












GTCTC






chr
260322
C
T
HIST1H
p.K24K
0.007
0.000
8.79
Inf
TTTTCACGCCGCCGGTAGCC
SEQ


6
17


3B

11
00
E−43

GGCGCGCTCTTGCGAGCAGC
ID












[C/T]TTGGTAGCCAGCTGC
NO:












TTGCGTGGCGCTTTACCGCC
758












GGTGG






chr
294087
T
G
OR10C
p.M31
0.009
0.005
7.68
1.63
AAAGCTGCCCTAAAGAGAAC
SEQ


5
21


1
0R
07
59
E−03
[1.17-
CATCCAGAAAACGGTGCCTA
ID











2.27]
[T/G]GGAGATTTGAAAAGG
NO:












GGGCGATAGTGACTTCTGTG
759












CAGTG






chr
300389
C
T
RNF39
p.L337
0.005
0.003
3.63
1.59
GTACAATGCGGAGCGGAGCA
SEQ


6
42



L
88
72
E−02
[1.04-
CGAGGGTCGCAGGTGCAGAA
ID











2.41]
[C/T]AGCGGGAAGATGCGC
NO:












TCCCCCAGGGGGCCAGGCGC
760












CTGGA






chr
306732
G
A
MDC1
p.A122
0.011
0.000
4.12
264.73
AGGGGTCTTGACAGAGGATC
SEQ


6
80



7V
76
04
E−64
[105.33-
TATTTTTTCTTCCCCTAGTA
ID











665.33]
[G/A]CCTGAGAGGTGGGTT
NO:












CAGAGGTGACAGGTCGGTCG
761












GTGGA






chr
309171
G
A
DPCR1
p.G290
0.020
0.000
2.77
Inf
GAGCTCACACAATCTCTAGC
SEQ


6
10



E
59
00
E−

AGAGCCTACAGAACATGGAG
ID










100

[G/A]AAGGACAGCCAATGA
NO:












GAACAACACACCATCCCCAG
762












CAGAG






chr
309174
T
C
DPCR1
p.T392
0.006
0.000
2.15
78.33
AGCCTACAGAACATGGAGAA
SEQ


6
17



T
37
08
E−25
[27.32-
AGGACAGCCAATGAGAACAC
ID











224.54]
[T/C]ACACCATCCCCAGCA
NO:












GAGCCTACAGAACATGGAGA
763












AAGGA






chr
309178
A
G
DPCR1
p.E539
0.012
0.000
4.79
Inf
ACCCCACTGGCCAATGAGAA
SEQ


6
57



G
25
00
E−60

CACCACACCATCCCCAGCAG
ID












[A/G]GCCTACAGAAAATAG
NO:












AGAAAGGACAGCCAATGAGA
764












AGACC






chr
309181
G
A
DPCR1
p.G640
0.005
0.000
6.87
42.35
GAAAGGACAGCCAATGAGAA
SEQ


6
60



E
64
13
E−21
[18.16-
CACCACACCATCCCCAGCAG
ID











98.74]
[G/A]GCCTACAGAAAATAG
NO:












AGAAATGACAGCCAACGAGA
765












AGACC






chr
309207
A
C
DPCR1
p.Y134
0.005
0.002
4.32
1.75
GTTCTCATTCCTCCTTTCTC
SEQ


6
55



8S
21
99
E−02
[0.98-
ATCCCAATCACAGGTCTCCT
ID











2.88]
[A/C]TATGATGCGGACACG
NO:












CCGCACACTAACCCAGAACA
766












CCCAG






chr
309543
C
T
MUC2
p.S125
0.013
0.000
5.07
Inf
CAACCTCCAGTGGGGCCAGC
SEQ


6
27


1
S
24
O0
E−73

ACAGCCACCAACTCTGAGTC
ID












[C/T]AGCACACCCTCCAGT
NO:












GGGGCCAGCACAGCCACCAA
767












CTCTG






chr
309544
A
G
MUC2
p.S163
0.019
0.000
1.38
Inf
AGCCACCAACTCTGACTCCA
SEQ


6
39


1
G
61
00
E−

GCACAACCTCCAGTGAGGCC
ID










116

[A/G]GCACAGCCACCAACT
NO:












CTGAGTCCAGCACAACCTCC
768












AGTGG






chr
309956
C
T
MUC2
p.S809
0.009
0.000
5.89
Inf
CTACAGTTTCCACCACAGGC
SEQ


6
35


2
S
56
00
E−43

TTGGAGACCACCACCACTTC
ID












[C/T]ACTGAAGGCTCTGAG
NO:












ATGACTACAGTCTCCACCAC
769












AGGTG






chr
316916
C
A
C6orf2
p.G104
0.005
0.002
2.87
2.08
TCCGGCGGCTGGAGCTCCTC
SEQ


6
66


5
G
39
60
E−03
[1.35-
TTGAGCGCGGGGGACTCGGG
ID











3.22]
[C/A]ACTTTTTTCTGCAAG
NO:












GGCCGCCACGAGGACGAGAG
770












CCGTA






chr
317368
C
T
VWA7
p.R488
0.005
0.002
1.64
2.13
CAGGGCAGCCATGCTCTCCC
SEQ


6
35



Q
39
54
E−03
[1.38-
CAACAATGGCTGCCACGTCT
ID











3.29]
[C/T]GAATGTGCTGGTCTT
NO:












TGGTGAAGATCACCTCTCCT
771












CCTGA






chr
326342
A
G
HLA-
p.S35P
0.007
0.004
1.76
1.73
TGGCGGCTCTGGAGAGCAGC
SEQ


6
82


DQB1

48
33
E−02
[1.09-
TGCCCTGCACTTACCGGGAG
ID











2.64]
[A/G]GTCTCTGCCCTCAGC
NO:












CAGTAGGGAGCTCAGCATCG
772












CCAGC






chr
327136
C
A
HLA-
p.P128
0.006
0.000
1.10
Inf
GTCACAGTGTTTTCCAAGTT
SEQ


6
19


DQA2
H
62
00
E−39

TCCTGTGACGCTGGGTCAGC
ID












[C/A]CAACACCCTCATCTG
NO:












TCTTGTGGACAACATCTTTC
773












CTCCT






chr
327140
T
G
HLA-
p.L219
0.020
0.000
4.06
2275.46
GCCTGAGATTCCAGCCCCTA
SEQ


6
58


DQA2
V
59
01
E−
[316.74-
TGTCAGAGCTCACAGAGACT
ID










120
16346.8]
[T/G]TGGTCTGCGCCCTGG
NO:












GGTTGTCTGTGGGCCTCATG
774












GGCAT






chr
327141
C
G
HLA-
p.G235
0.012
0.000
1.19
Inf
CCCTGGGGTTGTCTGTGGGC
SEQ


6
08


DQA2
G
75
00
E−75

CTCATGGGCATTGTGGTGGG
ID












[C/G]ACTGTCTTCATCATC
NO:












CAAGGCCTGCGTTCAGTTGG
775












TGCTT






chr
327141
T
C
HLA-
p.T236
0.012
0.000
3.37
Inf
TGGGGTTGTCTGTGGGCCTC
SEQ


6
11


DQA2
T
50
00
E−74

ATGGGCATTGTGGTGGGCAC
ID












[T/C]GTCTTCATCATCCAA
NO:












GGCCTGCGTTCAGTTGGTGC
776












TTCCA






chr
327141
C
G
HLA-
p.F238
0.016
0.000
4.00
Inf
TGTCTGTGGGCCTCATGGGC
SEQ


6
17


DQA2
L
91
00
E−

ATTGTGGTGGGCACTGTCTT
ID










100

[C/G]ATCATCCAAGGCCTG
NO:












CGTTCAGTTGGTGCTTCCAG
777












ACACC






chr
328200
C
A
TAP1
p.V304
0.005
0.002
1.19
2.21
TGCACGTGGCCCATGGTGTT
SEQ


6
00



L
39
45
E−03
[1.43-
GTTATAGATCCCGTCACCCA
ID











3.42]
[C/A]GAACTCCAGCACTGC
NO:












ACTATAAAGAACCCGGAAAA
778












AAAGG






chr
333658
G
T
KIFC1
p.R5S
0.005
0.003
3.11
1.62
CTCCTGGGTATTGTCTTAAG
SEQ


6
08




64
49
E−02
[1.06-
GGTCTCTTTTCCCAACAGAG
ID











2.47]
[G/T]TCCCCCCTATTGGAA
NO:












GTAAAGGGGAACATAGAACT
779












GAAGA






chr
340039
C
T
GRM4
p.S520
0.005
0.003
4.08
1.59
AGCTGATGCTCATCCCTAGT
SEQ


6
28



S
39
40
E−02
[1.03-
CCCAGGAAGATTCGGCGCAG
ID











2.45]
[C/T]GAGCAGGTGCCAAGG
NO:












TCGGGCTCAGCGATCATGAG
780












GAAGG






chr
357150
C
T
ARMC1
p.I188I
0.005
0.002
1.08
1.84
AGGAACACTCCATCAAAGTA
SEQ


6
76


2

15
81
E−02
[1.18-
CTCGAACTGATCTCCACCAT
ID











2.86]
[C/T]TGGGACACGGAACTG
NO:












CACATTGCGGGCCTCAGACT
781












CCTCA






chr
367100
T
A
CPNE5
p.I593
0.006
0.000
5.82
Inf
CCCAGGCCCCAGCCACCTGC
SEQ


6
50



F
62
00
E−39

CTGCTGAGACCAGGTTCAGA
ID












[T/A]GTGCGTGTGCAGGGG
NO:












GGACGCAGGGGGCGTGCGGG
782












CTGGG






chr
392828
G
A
KCNK1
p.Q25
0.007
0.004
4.28
1.75
CCTCAGCTTCCCAGTCCTTT
SEQ


6
16


6
1X
84
49
E−03
[1.23-
CTTGGATATGGGGAAGTCCT
ID











2.51]
[G/A]GGGTGTGACTTGGAC
NO:












TCCTCTTGCTGCTGTAGAGC
783












CTCTC






chr
441438
G
A
CAPN1
p.A297
0.005
0.002
2.43
1.85
ACTGGAATCCATGACTGACA
SEQ


6
62


1
T
21
82
E−02
[1.04-
AGATGCTGGTGAGAGGGCAC
ID











3.06]
[G/A]CTTACTCTGTGACTG
NO:












GCCTTCAGGATGTGAGTCCT
784












GAGAA






chr
466559
C
G
TDRD6
p.A12
0.012
0.000
4.48
Inf
TCAAGATGTGCTCGACGCCC
SEQ


6
01



A
01
00
E−58

GGAATGCCGGCGCCGGGGGC
ID












[C/G]TCGCTGGCCCTGCGG
NO:












GTGTCCTTCGTGGACGTGCA
785












TCCCG






chr
560330
G
A
COL21
p.T343
0.067
0.071
3.19
0.94
TACTAAGAGACGAATTTGGT
SEQ


6
94


A1
M
40
69
E−01
[0.83-
GCCAGCCTTCATCAAACAAC
ID











1.06]
[G/A]TCTACAAAAAGAAAG
NO:












TGTGGAAGATTCATAAATAA
786












AGCCC






chr
767318
G
A
IMPG1
p.N13
0.010
0.007
3.74
1.39
AACTCTAGGAACTTCTTACT
SEQ


6
54



7N
78
76
E−02
[1.03-
GTTGTAGGCATCTTGGTGTC
ID











1.89]
[G/A]TTGAGTGTATTATCG
NO:












AGAATTTCATTGAGGAGGGT
787












GTCAT






chr
843032
T
C
SNAP9
p.T553
0.010
0.007
1.83
1.49
AAATTACCACCAAAGATATC
SEQ


6
30


1
A
78
26
E−02
[1.09-
TAGAGCAGGAGGAGCAGTGG
ID











2.04]
[T/C]GGCGGTGGCAGCGGA
NO:












GGTGGTGGTAGTGGTGGTGG
788












CAGCG






chr
854737
C
T
TBX18
p.G48
0.414
0.494
5.64
0.72
GCGCCGCCGCCGCGGCTGCA
SEQ


6
58



R
71
51
E−23
[0.68-
GCCTCCGTCGTCCACGGCCC
ID











0.77]
[C/T]CGCCGCCTCTTCGGC
NO:












GCCCAGTTTTCGCCGCTTCT
789












TCTGA






chr
861950
G
A
NT5E
p.V278
0.007
0.004
1.07
1.64
ATTCATAGTCACTTCTGATG
SEQ


6
33



I
60
66
E−02
[1.14-
ATGGGCGGAAGGTTCCTGTA
ID











2.35]
[G/A]TCCAGGCCTATGCTT
NO:












TTGGCAAATACCTAGGCTAT
790












CTGAA






chr
905721
G
A
CASP8
p.G237
0.005
0.003
2.39
1.69[
AATGGTGTTTGGTCACGTTC
SEQ


6
38


AP2
F
39
19
E−02
1.1-
TCATTATCAGGTTGGCGAGG
ID











2.61]
[G/A]TAGCTCAAATGAGGA
NO:












TAGTAGAAGAGGAAGAAAAG
791












ATATT






chr
108882
A
T
FOXO3
p.S26C
0.005
0.000
2.37
20.81
TCCGCTCGAAGTGGAGCTGG
SEQ


6
487




39
26
E−17
[10.92-
ACCCGGAGTTCGAGCCCCAG
ID











39.65]
[A/T]GCCGTCCGCGATCCT
NO:












GTACGTGGCCCCTGCAAAGG
792












CCGGA






chr
109867
T
C
AK9
p.E103
0.023
0.000
6.49
295.82
CGTTCTCAGAATCTTCCTCA
SEQ


6
190



SE
28
08
E−
[149.23-
AATTCAGGTCCCACTTTCTT
ID










127
586.43]
[T/C]TCAGTTTTGAGTAGT
NO:












AGTTTTTCTTGAAGAACTTC
793












TTCAA






chr
126073
T
G
HEY2
p.L74L
0.005
0.003
3.66
1.58
GGGATCGGATAAATAACAGT
SEQ


6
212




88
72
E−02
[1.05-
TTATCTGAGTTGAGAAGACT
ID











2.39]
[T/G]GTGCCAACTGCTTTT
NO:












GAAAAACAAGTAAGCTATCC
794












CCTCC






chr
136597
G
A
BCLAF
p.P497
0.005
0.002
2.13
2.47
TCAAAGAGGTCTTTGAGCTT
SEQ


6
174


1
S
64
29
E−04
[1.61-
TTCAGACTTTACCTGCTCAG
ID











3.78]
[G/A]TGACTGAGTTTCTTT
NO:












CTTTACTGTTATTCTTTCAG
795












AATTT






chr
136597
C
A
BCLAF
p.E403
0.008
0.004
1.21
1.83
AGGACTGACTTCCTGAACTG
SEQ


6
456


1
X
58
71
E−03
[1.3-
TCTATAATCCTCTGTCTCCT
ID











2.58]
[C/A]TGTGTCATCCCCTTC
NO:












TGAATCATTAAACTTTTGTT
796












TTCCA






chr
137814
G
T
OLIG3
p.I124I
0.024
0.000
1.52
2806.41
TGAGCATGAGGATGTAGTTT
SEQ


6
936




51
01
E−
[391.38-
CTGGCGAGCAGGAGTGTGGC
ID










144
20123.7]
[G/T]ATCTTGGAGAGCTTG
NO:












CGCACCGACGGCCCATGCGC
797












GTAGG






chr
139113
A
T
CCDC2
p.T271
0.008
0.002
7.18
3.81
ACAAAAACTCCATTTGGCAG
SEQ


6
926


8A
S
14
15
E−08
[2.41-
ATGCACAAGATGTTCCAAAT
ID











5.78]
[A/T]CTTCTGCTAGCTAAA
NO:












ATGAAATGTAGTTTGCTTTC
798












TTGTG






chr
152457
C
T
SYNE1
p.E853
0.008
0.001
6.73
5.3
GGCACTGCATCAGGGCATCC
SEQ


6
795



9E
36
60
E−08
[3.21-
TGCAGCAGGCCCCGCCACTC
ID











8.74]
[C/T]TCCAGCAGAGAGCAC
NO:












ACTCGGTCCCAGCGCCCATT
799












CATCT






chr
155143
A
G
SCAF8
p.T629
0.005
0.003
3.35
1.59
TCAGAGCCCAACTCCAGTTG
SEQ


6
502



A
64
54
E−02
[1.05-
AAAAGGAGACAGTGGTCACA
ID











2.43]
[A/G]CCCAGGCAGAGGTTT
NO:












TCCCTCCTCCTGTTGCTATG
800












TTGCA






chr
158487
T
C
SYNJ2
p.M29
0.009
0.005
9.88
1.57
CAGTCCGAATTCACAAATTT
SEQ


6
551



7T
31
94
E−03
[1.13-
CAAGCGGATCCGGATTGCTA
ID











2.18]
[T/C]GGGGACCTGGAACGT
NO:












GAACGGAGGAAAGCAGTTCC
801












GGAGC






chr
167728
T
C
UNC93
p.Y387
0.007
0.000
1.30
7.62
CGTTCTCTTTGAGAAGAGCA
SEQ


6
725


A
H
35
97
E−15
[5.08-
AGGAAGCTGCCTTCGCCAAT
ID











11.44]
[T/C]ACCGCCTGTGGGAGG
NO:












CCCTGGGCTTCGTCATTGCC
802












TTCGG






chr
331061
A
G
WI2-
p.K103
0.015
0.000
1.78
377.58
GCGCGCAGGTGCCGCGGTCC
SEQ


7



2373I1
K
69
04
E−52
[52.37-
GAGGGCCACGAGAAGGGCAA
ID






.2




2722.42]
[A/G]GGCAACTACTGGACG
NO:












TTCGCGGGCGGCTGCGAGTC
803












GCTGC






chr
102700
G
A
CYP2W
p.R328
0.023
0.000
9.98
1179.78
CCACCCTTTGCCCCAGGCCG
SEQ


7
7


1
H
77
02
E−
[290.79-
GGTGCAGGAGGAGCTAGACC
ID










133
4786.53]
[G/A]CGTGCTGGGCCCTGG
NO:












GCGGACTCCCCGGCTGGAGG
804












ACCAG






chr
102837
C
T
CYP2W
p.P464
0.010
0.007
2.76
1.43
CTGCAGAGGTACCGCCTGCT
SEQ


7
6


1
L
78
56
E−02
[1.05-
GCCCCCGCCTGGCGTCAGTC
ID











1.94]
[C/T]GGCCTCCCTGGACAC
NO:












CACGCCCGCCCGGGCTTTTA
805












CCATG






chr
178430
C
T
ELFN1
p.R26C
0.006
0.003
4.27
1.55
CGTGGCGGCCGCCACCCTGC
SEQ


7
8




13
97
E−02
[1.02-
TGCACGCTGGCGGCCTGGCC
ID











2.34]
[C/T]GCGCAGACTGCTGGC
NO:












TGATCGAGGGCGACAAGGGC
806












TTCGT






chr
225589
C
G
MAD1L
p.E236
0.007
0.004
1.35
1.62
CCAGCTCAGACTTCATGTTC
SEQ


7
3


1
D
35
54
E−02
[1.12-
TTCACAATCGCTGCATCCTG
ID











2.35]
[C/G]TCTTGCAGGGACAGC
NO:












TTCTGCTCCAGATCCTGATG
807












GAGGC






chr
418545
G
A
SDK1
p.P144
0.010
0.007
4.98
1.38
GCGCCACAGTGAGGCAGTTC
SEQ


7
7



4P
05
28
E−02
[1.01-
ACAGCCACCGACCTGGCCCC
ID











1.9]
[G/A]GAGTCCGCATACATC
NO:












TTCAGGCTGTCCGCCAAGAC
808












GAGGC






chr
485690
T
C
RADIL
p.Y565
0.009
0.006
2.59
1.47
GTGCACCTTGGAGACATAGT
SEQ


7
4



C
07
17
E−02
[1.06-
AGACGCACTGCTGGAAGGCG
ID











2.06]
[T/C]ACAGCACCACCTCCT
NO:












CCAGCACCGCCATGGCCTCC
809












TCGCT






chr
602682
G
C
PMS2
p.S523
0.006
0.003
1.88
1.66
CCTGAGAGTCCACATGTTCC
SEQ


7
7



S
13
70
E−02
[1.11-
TGCGAGCCCCTGTCCCCTGG
ID











2.49]
[G/C]GAGCTGGCCGCATAC
NO:












TCGCTGCTGCAGTGACTGCC
810












CGTGT






chr
232218
A
G
NUPL2
p.Q36
0.005
0.000
4.20
195.45
CCCGGTGCTAGGGGTGCAGG
SEQ


7
11



R
39
03
E−29
[58.48-
AGGAGGACGGCAGCAACCGC
ID











653.28]
[A/G]GCAGCAGCCTTCAGG
NO:












TGACTCTCCTCTGAATCCTC
811












CGCGG






chr
262176
A
G
NFE2L
p.I233
0.001
not
4.03
Inf
GGAGAACTCACTTCAGCAGA
SEQ


7
89


3
V
47
found
E−06

ATGATGATGATGAAAACAAA
ID












[A/G]TAGCAGAGAAACCTG
NO:












ACTGGGAGGCAGAAAAGACC
812












ACTGA






chr
309219
G
I
FAM18
p.R696
0.006
0.000
2.24
370.83
GCCTGCAGCCGGGGCTCCTG
SEQ


7
12


8B
S
62
02
E−37
[88.15-
CGTGACTGGAGGACTGAGAG
ID











1559.92]
[G/T]CTCTTTGACTTGTAC
NO:












TACTACGATGGCCTGGCCAA
813












CCAGC






chr
379885
G
T
EPDR1
p.G79
0.007
0.000
1.62
159.69
CATTCCTCAAAACTCCACCT
SEQ


7
90



W
11
04
E−37
[61.78-
TTGAAGACCAGTACTCCATC
ID











412.75]
[G/T]GGGGGCCTCAGGAGC
NO:












AGATCACCGTCCAGGAGTGG
814












TCGGA






chr
420072
T
C
GLI3
p.I808
0.006
0.002
4.10
2.47
CTGAGCAGATGCATGGTCTG
SEQ


7
01



M
86
79
E−05
[1.67-
ATGTAGAACTCACCATTTCC
ID











3.63]
[T/C]ATGAGAGGAGAGACC
NO:












GCAGGGGCTTTAGGGGGTAG
815












AATGG






chr
441544
G
A
POLD2
p.C447
0.006
0.004
4.50
1.53
CATCGTCCTCTGCCCCGAAG
SEQ


7
53



C
13
02
E−02
[1.02-
CCCGAGAAGCTGATGGGCTG
ID











2.29]
[G/A]CAGGCCAGGCTGCGC
NO:












AGGTTCACAAGGCAGGCGGT
816












CTGCG






chr
451239
C
T
NACAD
p.K618
0.005
0.000
6.20
47.37
CTTCAGCCTGCTGGGACACA
SEQ


7
25



K
15
11
E−19
[17.85-
ATCGTGGCTGCAGCCACAGG
ID











125.69]
[C/T]TTTGGGGCTGATGAG
NO:












AGATCTGTGTCTTGTAGGGG
817












CAGAG






chr
479255
C
T
PKD1L
p.R990
0.009
0.006
3.03
1.46
TGAAGTGGCAGGTTGGCCAA
SEQ


7
20


1
Q
56
56
E−02
[1.06-
GGGTCACGGGTGAAGGTTCC
ID











2.02]
[C/T]GTGAGAATGGTGTGG
NO:












TCGTTGCATCAGGATCTGCA
818












GTGCC






chr
505717
C
A
DDC
p.M23
0.005
0.003
3.84
1.62
TGTCAAAGGAGCAGCATGTT
SEQ


7
55



9I
39
34
E−02
[1.05-
GTGGTCCCCAGGGTGGCAAC
ID











2.49]
[C/A]ATCTAGAGGGTAAAA
NO:












AGCAGACAGCCTTTTATTCC
819












CCAGG






chr
506730
C
T
GRB10
p.P390
0.005
0.003
3.94
1.61
AGGCGTGGCCCTCCTCCAGG
SEQ


7
32



P
39
37
E−02
[1.04-
TGCTGCGCTCTGGGCCTCTGC
ID











2.47]
[C/T]GGATTCTCTATCACG
NO:












CGTCCTGTTTGCCCAGAAAA
820












ATCCA






chr
636803
C
A
ZNF73
p.G303
0.008
0.000
1.80
989.53
TTCATACTGGAGAGAGACCC
SEQ


7
38


5P
G
82
01
E−51
[135.64-
TACAAATGTGAAGAATGTGG
ID











7219.03]
[C/A]AAAGCCTTTAGCGTA
NO:












TCCTCAGCCCTCATTTACCA
821












CAAGA






chr
638092
C
A
ZNF73
p.I342I
0.014
0.000
8.84
Inf
GTAAACATAAGAGAATTCAT
SEQ


7
67


6

22
00
E−84

ACTGGAGAGAAACCCTACAT
ID












[C/A]TGTGAAGAATGTGGC
NO:












AAAGCCTTTACCCGCTCCTC
822












AACCC






chr
871606
G
A
ABCB1
p.L884
0.007
0.005
4.73
1.46
CTCACCTTCCCAGAACCTTC
SEQ


7
45



L
60
22
E−02
[1.02-
TAGTTCTTTCTTATCTTTCA
ID











2.1]
[G/A]TGCTTGTCCAGACAA
NO:












CATTTTCATTTCAACAACTC
823












CTGCT






chr
889655
C
T
ZNF80
p.T108
0.006
0.003
1.55
1.98
TTCCCTGGTGCTTTTCCGTC
SEQ


7
53


4B
6I
62
35
E−03
[1.34-
TAATAAATATACTGGTGTGA
ID











2.93]
[C/T]TGATTCAACAGAGAC
NO:












CCAAGAAGACCAAATAAATC
824












TAGAC






chr
916030
C
T
AKAP9
p.S27L
0.005
0.002
6.73
1.92
TTTTCTTAGCTTGCCCAGTT
SEQ


7
56




39
82
E−03
[1.24-
TCGACAAAGAAAAGCTCAGT
ID











2.96]
[C/T]GGATGGGCAGAGTCC
NO:












TTCCAAGAAGCAGAAAAAAA
825












AGAGA






chr
978223
G
A
LMTK2
p.A862
0.009
0.005
9.20
1.6
TGTCCCGGAGGACTGTCTCC
SEQ


7
61



T
31
85
E−03
[1.15-
ACCAGGACATCAGTCCAGAC
ID











2.22]
[G/A]CTGTGACTGTCCCGG
NO:












TTGAAATTCTCTCAACTGAT
826












GCCAG






chr
999995
T
C
ZCWP
p.R529
0.005
0.002
1.11
1.83
CCTGGCTGGTCAGAATCTGA
SEQ


7
51


W1
G
15
82
E−02
[1.17-
ATTCCCTTGGCCTTCTTTCC
ID











2.85]
[T/C]TCCCATTCTGGGTGC
NO:












AGGAGGAGCTGTGGATTTCC
827












TGCCT






chr
100228
G
T
TFR2
p.A376
0.006
0.004
2.67
1.58
ATAAGGGGAGCCTAGGAGGC
SEQ


7
655



D
62
19
E−02
[1.07-
TCCCCTGCCATTCTTGGGGG
ID











2.34]
[G/T]CCACAGGGCCTTTGA
NO:












GCTTCCTGGAGAGGAGGAAG
828












GCAGA






chr
100633
G
A
MUC1
p.G32S
0.005
0.006
9.17
0.95
CTCTCAAATCACAGGCTCAA
SEQ


7
938


2

88
17
E−01
[0.63-
CAGTAAACACCAGTATTGGA
ID











1.44]
[G/A]GTAATACAACTTCTG
NO:












CATCCACACCCAGTTCAAGC
829












GACCC






chr
100633
C
T
MUC1
p.T39I
0.000
0.000
1.85
7.1
GTAAACACCAGTATTGGAGG
SEQ


7
960


2

25
03
E−01
[0.64-
TAATACAACTTCTGCATCCA
ID











78.35]
[C/T]ACCCAGTTCAAGCGA
NO:












CCCTTTTACCACCTTTAGTG
830












ACTAT






chr
100634
G
A
MUC1
p.A101
0.002
0.001
1.71
1.59
CCCAGGTGCAACTGGAACAA
SEQ


7
145


2
T
70
70
E−01
[0.85-
CACTCTTCCCTTCCCACTCT
ID











2.96]
[G/A]CAACCTCAGTTTTTG
NO:












TTGGAGAACCTAAAACCTCA
831












CCCAT






chr
100634
C
T
MUC1
p.T122
0.000
0.000
1.84
7.15
CCTAAAACCTCACCCATCAC
SEQ


7
209


2
I
25
03
E−01
[0.65-
TTCAGCCTCAATGGAAACAA
ID











78.87]
[C/T]AGCGTTACCTGGCAG
NO:












TACCACAACAGCAGGCCTGA
832












GTGAG






chr
100634
C
G
MUC1
p.P153
0.000
0.000
1.00
0.92
TTCTACAGTAGCCCCAGATC
SEQ


7
302


2
R
49
53
E+00
[0.22-
ACCAGACAGAACACTCTCAC
ID











3.85]
[C/G]TGCCCGCACGACAAG
NO:












CTCAGGCGTCAGTGAAAAAT
833












CAACC






chr
100634
C
T
MUC1
p.P172
0.006
0.006
7.62
1.06
CTCAGGCGTCAGTGAAAAAT
SEQ


7
358


2
S
86
48
E−01
[0.72-
CAACCACCTCCCACAGCCGA
ID











1.56]
[C/T]CAGGCCCAACGCACA
NO:












CAATAGCGTTCCCTGACAGT
834












ACCAC






chr
100634
C
A
MUC1
p.T177
0.000
0.000
1.00
1.02
AAATCAACCACCTCCCACAG
SEQ


7
374


2
K
25
24
E+00
[0.13-
CCGACCAGGCCCAACGCACA
ID











7.75]
[C/A]AATAGCGTTCCCTGA
NO:












CAGTACCACCATGCCAGGCG
835












TCAGT






chr
100634
C
T
MUC1
p.P181
0.001
0.002
7.38
0.83
TCCCACAGCCGACCAGGCCC
SEQ


7
386


2
L
96
37
E−01
[0.41-
AACGCACACAATAGCGTTCC
ID











1.69]
[C/T]TGACAGTACCACCAT
NO:












GCCAGGCGTCAGTCAGGAAT
836












CTACA






chr
100634
T
G
MUC1
p.I199
0.000
0.000
5.26
1.42
ATGCCAGGCGTCAGTCAGGA
SEQ


7
440


2
S
25
17
E−01
[0.18-
ATCTACAGCTTCCCACAGCA
ID











11.13]
[T/G]CCCCGGCTCCACAGA
NO:












CACAACACTGTCCCCTGGCA
837












CTACC






chr
100634
G
C
MUC1
p.D286
0.005
0.005
1.00
0.99
GGGAGAACCTACCACCTTCC
SEQ


7
700


2
H
39
46
E+00
[0.64-
AGAGCTGGCCAAGCTCAAAG
ID











1.52]
[G/C]ACACTTCGCCTGCAC
NO:












CTTCTGGTACCACATCAGCC
838












TTTGT






chr
100634
C
T
MUC1
p.T315
0.000
0.000
5.28
1.42
TCTACAACTTATCACAGCAG
SEQ


7
788


2
I
25
17
E−01
[0.18-
CCCGAGCTCAACTCCAACAA
ID











11.07]
[C/T]CCACTTTTCTGCCAG
NO:












CTCCACAACCTTGGGCCATA
839












GTGAG






chr
100634
G
A
MUC1
p.R348
0.013
0.015
3.63
0.87
AGCAGCCCAGTTGCAACTGC
SEQ


7
887


2
H
97
95
E−01
[0.67-
AACAACACCCCCACCTGCCC
ID











1.14]
[G/A]CTCCGCGACCTCAGG
NO:












CCATGTTGAAGAATCTACAG
840












CCTAC






chr
100635
A
T
MUC1
p.K397
0.000
0.000
6.69
1.3
GAAGAATCAGCAACTTTCCA
SEQ


7
034


2
I
49
38
E−01
[0.31-
CGGCAGCACAACACACACAA
ID











5.53]
[A/T]ATCTTCAACTCCTAG
NO:












CACCACAGCTGCCCTAGCAC
841












ATACA






chr
100635
C
G
MUC1
p.T403
0.000
0.000
6.53
Inf
CACGGCAGCACAACACACAC
SEQ


7
052


2
S
25
00
E−02
[NaN-
AAAATCTTCAACTCCTAGCA
ID











Inf]
[C/G]CACAGCTGCCCTAGC
NO:












ACATACAAGCTACCACAGCA
842












GCCTG






chr
100635
T
C
MUC1
p.L416
0.000
0.000
1.00
0.89
ACCACAGCTGCCCTAGCACA
SEQ


7
091


2
P
49
55
E+00
[0.21-
TACAAGCTACCACAGCAGCC
ID











3.73]
[T/C]GGGCTCAACTGAAAC
NO:












AACACACTTCCGTGATAGCT
843












CCACA






chr
100635
C
G
MUC1
p.D464
0.000
0.001
6.61
0.7
TCTTACCTGCCGGCTCTACA
SEQ


7
236


2
E
98
41
E−01
[0.26-
CCCTCAGTTCTTGTTGGAGA
ID











1.9]
[C/G]TCGACGCCCTCACCC
NO:












ATCAGTTCAGGCTCAATGGA
844












AACCA






chr
100635
C
A
MUC1
p.P469
0.001
0.001
6.90
0.71
TCTACACCCTCAGTTCTTGT
SEQ


7
250


2
H
23
72
E−01
[0.29-
TGGAGACTCGACGCCCTCAC
ID











1.75]
[C/A]CATCAGTTCAGGCTC
NO:












AATGGAAACCACAGCGTTAC
845












CCGGC






chr
100635
A
C
MUC1
p.M47
0.000
0.000
3.33
2.86
TGTTGGAGACTCGACGCCCT
SEQ


7
267


2
5L
25
09
E−01
[0.33-
CACCCATCAGTTCAGGCTCA
ID











24.49]
[A/C]TGGAAACCACAGCGT
NO:












TACCCGGCAGTACCACAAAA
846












CCAGG






chr
100635
A
C
MUC1
p.S498
0.005
0.005
8.30
1.03
CACAAAACCAGGCCTCAGTG
SEQ


7
336


2
G
88
70
E−01
[0.68-
AGAAATCTACCACTTTCTAC
ID











1.56]
[A/G]GTAGCCCCAGATCAC
NO:












CAGACACAACACACTTACCT
847












GCCAG






chr
100635
C
G
MUC1
p.H525
0.000
0.000
4.92
1.59
TGACAAGCTCAGGCGTCAGT
SEQ


7
419


2
Q
25
15
E−01
[0.2-
GAAGAATCCACCACCTCCCA
ID











12.54]
[C/G]AGCCGACCAGGCTCA
NO:












ACACACACAACAGCATTCCC
848












TGGCA






chr
100635
C
A
MUC1
p.T533
0.000
0.000
1.26
14.32
GAATCCACCACCTCCCACAG
SEQ


7
442


2
K
25
02
E−01
[0.9-
CCGACCAGGCTCAACACACA
ID











228.9]
[C/A]AACAGCATTCCCTGG
NO:












CAGTACCACCATGCCAGGCC
849












TCAGT






chr
100635
C
G
MUC1
p.L602
0.000
0.000
1.00
0.71
AACAACACTCTTACCTGACA
SEQ


7
648


2
V
49
69
E+00
[0.17-
ACACCACAGCCTCAGGACTC
ID











2.95]
[C/G]TTGAAGCATCTATGC
NO:












CCGTCCACAGCAGCACCAGA
850












TCGCC






chr
100635
A
C
MUC1
p.E603
0.001
0.000
1.73
1.75
ACACTCTTACCTGACAACAC
SEQ


7
652


2
A
47
84
E−01
[0.75-
CACAGCCTCAGGACTCCTTG
ID











4.09]
[A/C]AGCATCTATGCCCGT
NO:












CCACAGCAGCACCAGATCGC
851












CACAC






chr
100635
G
A
MUC1
p.S614
0.005
0.003
3.40
1.68
TCCTTGAAGCATCTATGCCC
SEQ


7
686


2
S
39
22
E−02
[1.08-
GTCCACAGCAGCACCAGATC
ID











2.61]
[G/A]CCACACACAACACTG
NO:












TCCCCTGCCGGCTCTACAAC
852












CCGTC






chr
100635
C
T
MUC1
p.P657
0.004
0.003
7.98
1.04
AGGCCTGCACCTCCTACTAC
SEQ


7
814


2
L
17
99
E−01
[0.64-
CACATCAGCCTTTGTTGAGC
ID











1.71]
[C/T]ATCTACAACCTCCCA
NO:












CGGCAGCCCGAGCTCAATTC
853












CAACA






chr
100635
C
G
MUC1
p.H672
0.000
0.000
4.91
1.59
TACAACCTCCCACGGCAGCC
SEQ


7
858


2
D
25
15
E−01
[0.2-
CGAGCTCAATTCCAACAACC
ID











12.55]
[C/G]ACATTTCTGCCCGCT
NO:












CCACAACCTCAGGCCTCGTT
854












GAAGA






chr
100635
T
A
MUC1
p.S674
0.000
0.000
7.03
3.58
CTCCCACGGCAGCCCGAGCT
SEQ


7
864


2
T
74
21
E−02
[1.01-
CAATTCCAACAACCCACATT
ID











12.69]
[T/A]CTGCCCGCTCCACAA
NO:












CCTCAGGCCTCGTTGAAGAA
855












TCTAC






chr
100635
G
A
MUC1
p.R676
0.000
0.000
1.84
7.15
GGCAGCCCGAGCTCAATTCC
SEQ


7
871


2
H
25
03
E−01
[0.65-
AACAACCCACATTTCTGCCC
ID











78.87]
[G/A]CTCCACAACCTCAGG
NO:












CCTCGTTGAAGAATCTACGA
856












CCTAC






chr
100635
C
A
MUC1
p.T679
0.004
0.003
2.87
1.28[
AGCTCAATTCCAACAACCCA
SEQ


7
880


2
N
66
65
E−01
0.8-
CATTTCTGCCCGCTCCACAA
ID











2.04]
[C/A]CTCAGGCCTCGTTGA
NO:












AGAATCTACGACCTACCACA
857












GCAGC






chr
100635
C
G
MUC1
p.S695
0.000
0.000
3.71
Inf
CTCGTTGAAGAATCTACGAC
SEQ


7
928


2
X
25
00
E−02
[NaN-
CTACCACAGCAGCCCGGGCT
ID











Inf]
[C/G]AACTCAAACAATGCA
NO:












CTTCCCTGAAAGCGACACAA
858












CTTCA






chr
100636
C
A
MUC1
p.S910
0.005
0.016
8.63
0.35
AGCACCACCACCTCAGGCCC
SEQ


7
573


2
Y
64
13
E−09
[0.23-
CAGTCAGGAATCAACAACTT
ID











0.53]
[C/A]CCACAGCAGCTCAGG
NO:












TTCAACTGACACAGCACTGT
859












CCCCT






chr
100636
G
A
MUC1
p.R974
0.000
0.000
2.64
18.63
GAAGCATCTACACGCGTCCA
SEQ


7
765


2
H
49
03
E−02
[1.69-
CAGCAGCACTGGCTCACCAC
ID











205.52]
[G/A]CACAACACTGTCCCG
NO:












TGCCAGCTCCACAAGCCCTG
860












GACTT






chr
100636
C
G
MUC1
p.T996
0.000
0.000
2.81
2.12
ACAAGCCCTGGACTTCAGGG
SEQ


7
831


2
S
49
23
E−01
[0.46-
AGAATCTACTGCCTTCCAGA
ID











9.8]
[C/G]CCACCCAGCCTCAAC
NO:












TCACACAACGCCTTCACCTC
861












CTAGC






chr
100636
T
C
MUC1
p.S100
0.005
0.006
3.48
0.78
TGCCTTCCAGACCCACCCAG
SEQ


7
860


2
6P
15
58
E−01
[0.5-
CCTCAACTCACACAACGCCT
ID











1.22]
[T/C]CACCTCCTAGCACCG
NO:












CAACAGCCCCTGTTGAAGAA
862












TCTAC






chr
100637
C
G
MUC1
p.P113
0.006
0.000
5.46
250.3
CTGGGCGTCGGTGAAGAATC
SEQ


7
251


2
62
37
03
E−26
[33.96-
CACCACCTCCCGTAGCCAAC
ID











1844.95]
[C/G]AGGTTCTACTCACTC
NO:












AACAGTGTCACCTGCCAGCA
863












CCACC






chr
100637
C
G
MUC1
p.T118
0.001
0.001
4.55
1.37
CACAGCACCACAACCTCAGT
SEQ


7
407


2
8S
47
07
E−01
[0.58-
TCATGGTGAAGAGCCTACAA
ID











3.23]
[C/G]CTTCCACAGCCGGCC
NO:












AGCCTCAACTCACACAACAC
864












TGTTC






chr
100637
G
A
MUC1
p.G123
0.008
0.011
1.98
0.79
CCAAACAGGGTTACCTGCCA
SEQ


7
556


2
8S
82
19
E−01
[0.56-
CACTCACAACCGCAGACCTC
ID











1.11]
[G/A]GTGAGGAATCAACTA
NO:












CCTTTCCCAGCAGCTCAGGC
865












TCAAC






chr
100637
C
T
MUC1
p.P135
0.001
0.001
1.00
0.87
TTCCCTGACAGCACCACCAC
SEQ


7
902


2
3L
47
69
E+00
[0.37-
CTCAGACCTCAGTCAGGAAC
ID











2.04]
[C/T]TACAACTTCCCACAG
NO:












CAGCCAAGGCTCAACAGAGG
866












CAACA






chr
100638
C
G
MUC1
p.H158
0.006
0.000
1.36
Inf
CGACAAGCTCAGGCGTCAGT
SEQ


7
584


2
0Q
13
00
E−29

GAAGAATCCACCACCTCCCA
ID












[C/G]AGCCGACCAGGCTCA
NO:












ACGCACACAACAGCATTCCC
867












TGGCA






chr
100638
G
T
MUCl
p.S161
0.001
0.000
1.36
21.28
ATGCCAGGCGTCAGTCAGGA
SEQ


7
673


2
0I
47
07
E−05
[6-
ATCTACAGCTTCCCACAGCA
ID











75.44]
[G/T]CCCAGGCTCCACAGA
NO:












CACAACATTGTCCCCTGGCA
868












GTACC






chr
100638
G
A
MUC1
p.S163
0.000
0.000
2.36
14.25
ACAGCATCATCCCTTGGTCC
SEQ


7
754


2
7N
49
03
E−02
[2.01-
AGAATCTACTACTTTCCACA
ID











101.22]
[G/A]CAGCCCAGGCTCCAC
NO:












TGAAACAACACTCTTACCTG
869












ACAAC






chr
100638
C
T
MUC1
p.S166
0.000
0.000
6.13
1.1
CTCCTTGAAGCATCTACGCC
SEQ


7
850


2
9L
25
22
E−01
[0.14-
CGTCCACAGCAGCACTGGAT
ID











8.39]
[C/T]GCCACACACAACACT
NO:












GTCCCCTGCCGGCTCTACAA
870












CACGT






chr
100638
G
A
MUC1
p.R168
0.001
0.000
2.33
1.7[
TCGCCACACACAACACTGTC
SEQ


7
889


2
2H
23
72
E−01
0.67-
CCCTGCCGGCTCTACAACAC
ID











4.31]
[G/A]TCAGGGAGAATCTAC
NO:












CACCTTCCAGAGCTGGCCAA
871












GCTCA






chr
100638
G
A
MUC1
p.W16
0.000
0.000
1.84
7.15
TCTACAACACGTCAGGGAGA
SEQ


7
919


2
92X
25
03
E−01
[0.65-
ATCTACCACCTTCCAGAGCT
ID











78.9]
[G/A]GCCAAGCTCAAAGGA
NO:












CACTATGCCTGCACCTCCTA
872












CTACC






chr
100638
C
G
MUC1
p.P169
0.000
0.000
6.53
Inf
ACAACACGTCAGGGAGAATC
SEQ


7
922


2
3R
25
00
E−02
[NaN-
TACCACCTTCCAGAGCTGGC
ID











Inf]
[C/G]AAGCTCAAAGGACAC
NO:












TATGCCTGCACCTCCTACTA
873












CCACA






chr
100638
G
A
MUC1
p.S169
0.000
0.000
6.45
1.51
ACACGTCAGGGAGAATCTAC
SEQ


7
925


2
4N
49
33
E−01
[0.35-
CACCTTCCAGAGCTGGCCAA
ID











6.47]
[G/A]CTCAAAGGACACTAT
NO:












GCCTGCACCTCCTACTACCA
874












CATCA






chr
100638
C
G
MUC1
p.S169
0.000
0.000
3.71
Inf
CGTCAGGGAGAATCTACCAC
SEQ


7
928


2
5X
25
00
E−02
[NaN-
CTTCCAGAGCTGGCCAAGCT
ID











Inf]
[C/G]AAAGGACACTATGCC
NO:












TGCACCTCCTACTACCACAT
875












CAGCC






chr
100643
C
G
MUC1
p.H313
0.017
0.000
9.03
Inf
CGACAAGCTCAGGCGTCAGT
SEQ


7
255


2
7Q
16
00
E−84

GAAGAATCCACCACCTCCCA
ID












[C/G]AGCCGACCAGGCTCA
NO:












ACGCACACAACAGCATTCCC
876












TGGCA






chr
100643
G
A
MUC1
p.A318
0.005
0.001
2.43
3.89
AGGCTCCACAGACACAACAC
SEQ


7
388


2
2T
88
52
E−07
[2.47-
TGTCCCCTGGCAGTACCACA
ID











6.12]
[G/A]CATCATCCCTTGGTC
NO:












CAGAATCTACTACCTTCCAC
877












AGCGG






chr
100643
G
A
MUC1
p.R323
0.003
0.000
2.27
44.85
TCGCCACACACAACACTGTC
SEQ


7
560


2
9H
92
09
E−15
[16.42-
CCCTGCCGGCTCTACAACCC
ID











122.48]
[G/A]TCAGGGAGAATCTAC
NO:












CACCTTCCAGAGCTGGCCTA
878












ACTCG






chr
100643
A
G
MUC1
p.T324
0.000
0.000
3.74
9.54
ACTGTCCCCTGCCGGCTCTA
SEQ


7
574


2
4A
49
05
E−02
[1.59-
CAACCCGTCAGGGAGAATCT
ID











57.13]
[A/G]CCACCTTCCAGAGCT
NO:












GGCCTAACTCGAAGGACACT
879












ACCCC






chr
100643
C
T
MUC1
p.S329
0.000
0.000
6.47
1.48
TTTTCTGCCAGCTCCACAAC
SEQ


7
737


2
8L
49
33
E−01
[0.34-
CTTGGGCCGTAGTGAGGAAT
ID











6.34]
[C/T]GACAACAGTCCACAG
NO:












CAGCCCAGTTGCAACTGCAA
880












CAACA






chr
100643
G
A
MUC1
p.R331
0.008
0.000
1.03
36.59
AGCAGCCCAGTTGCAACTGC
SEQ


7
791


2
6H
09
22
E−28
[18.88-
AACAACACCCTCGCCTGCCC
ID











70.9]
[G/A]CTCCACAACCTCAGG
NO:












CCTCGTTGAAGAATCTACGA
881












CCTAC






chr
100646
G
A
MUC1
p.S424
0.000
0.000
4.92
1.36
ACCATGCCAGGCGTCAGTCA
SEQ


7
590


2
9N
74
54
E−01
[0.42-
GGAATCTACAGCTTCCCACA
ID











4.44]
[G/A]CAGCCCAGGCTCCAC
NO:












AGACACAACACTGTCCCCTG
882












GCAGT






chr
100646
A
C
MUC1
p.N42
0.021
0.051
5.47
0.4
CAGCAGCCCAGGCTCCACTG
SEQ


7
712


2
90H
08
65
E−22
[0.32-
AAACAACACTCTTACCTGAC
ID











0.49]
[A/C]ACACCACAGCCTCAG
NO:












GCCTCCTTGAAGCATCTACA
883












CCCGT






chr
100646
C
G
MUC1
p.P430
0.022
0.000
6.14
313.86
GACAACACCACAGCCTCAGG
SEQ


7
749


2
2R
55
07
E−92
[99.34-
CCTCCTTGAAGCATCTACAC
ID











991.56]
[C/G]CGTCCACAGCAGCAC
NO:












TGGATCGCCACACACAACAC
884












TGTCC






chr
100646
G
A
MUC1
p.R432
0.000
0.000
1.00
0.89
TCGCCACACACAACACTGTC
SEQ


7
809


2
2H
25
27
E+00
[0.12-
CCCTGCCGGCTCTACAACCC
ID











6.73]
[G/A]TCAGGGAGAATCTAC
NO:












CACCTTCCAGAGCTGGCCAA
885












ACTCG






chr
100646
C
T
MUC1
p.R437
0.002
0.002
8.75
0.89
TCCAACAACCCACTTTTCTG
SEQ


7
973


2
7C
45
75
E−01
[0.47-
CCAGCTCCACAACATTGGGC
ID











1.7]
[C/T]GTAGTGAGGAATCGA
NO:












CAACAGTCCACAGCAGCCCA
886












GTTGC






chr
100647
A
G
MUC1
p.R463
0.000
0.000
6.60
Inf
CCCTGAAAGCTCCACAGCTT
SEQ


7
735


2
1G
25
00
E−02
[NaN-
CAGGTCGTAGTGAAGAATCA
ID











Inf]
[A/G]GAACTTCCCACAGCA
NO:












GCACAACACACACAATATCT
887












TCACC






chr
100647
C
G
MUC1
p.P464
0.006
0.006
9.21
0.95
AAGAACTTCCCACAGCAGCA
SEQ


7
774


2
4A
37
73
E−01
[0.64-
CAACACACACAATATCTTCA
ID











1.41]
[C/G]CTCCTAGCACCACAT
NO:












CTGCCCTTGTTGAAGAACCT
888












ACCAG






chr
100647
C
G
MUC1
p.S471
0.005
0.003
1.60
1.37
TTACCTGCCCATTTTACTAC
SEQ


7
976


2
1C
39
95
E−01
[0.88-
CTCAGGCCGCATTGCAGAAT
ID











2.12]
[C/G]TACCACCTTCTATAT
NO:












CTCTCCAGGCTCAATGGAAA
889












CAACA






chr
100647
A
G
MUC1
p.Y471
0.000
0.000
2.36
14.27
TTTACTACCTCAGGCCGCAT
SEQ


7
988


2
5C
49
03
E−02
[2.01-
TGCAGAATCTACCACCTTCT
ID











101.32]
[A/G]TATCTCTCCAGGCTC
NO:












AATGGAAACAACATTAGCCA
890












GCACT






chr
100648
C
G
MUC1
p.L473
0.005
0.006
7.56
0.91
AATGGAAACAACATTAGCCA
SEQ


7
044


2
4V
64
19
E−01
[0.6-
GCACTGCCACAACACCAGGC
ID











1.39]
[C/G]TCAGTGCAAAATCTA
NO:












CCATCCTTTACAGTAGCTCC
891












AGATC






chr
100648
C
G
MUC1
p.S476
0.000
0.000
3.78
2.38
CCAGCATGACAAGCTCCAGC
SEQ


7
148


2
8R
25
10
E−01
[0.29-
ATCAGTGGAGAACCCACCAG
ID











19.75]
[C/G]TTGTATAGCCAAGCA
NO:












GAGTCAACACACACAACAGC
892












GTTCC






chr
100648
C
T
MUC1
p.A478
0.000
0.000
1.84
7.12
ACCAGCTTGTATAGCCAAGC
SEQ


7
183


2
0V
25
03
E−01
[0.65-
AGAGTCAACACACACAACAG
ID











78.55]
[C/T]GTTCCCTGCCAGCAC
NO:












CACCACCTCAGGCCTCAGTC
893












AGGAA






chr
100649
G
T
MUC1
p.C498
0.000
0.000
7.00
1.12
CACGGTGACTGCTGTGGATT
SEQ


7
758


2
8F
49
44
E−01
[0.27-
CTATCTCTCCACAGGGTTGT
ID











4.73]
[G/T]CCAGGAAGGACAAAT
NO:












TTGGAATGGAAAACAATGCG
894












TCTGT






chr
100649
G
C
MUC2
p.G500
0.000
0.000
2.41
4.67
TGGAATGGAAAACAATGCGT
SEQ


7
815


2
7A
25
05
E−01
[0.49-
CTGTCCCCAAGGCTACGTTG
ID











44.94]
[G/C]TTACCAGTGCTTGTC
NO:












CCCTCTGGAATCCTTCCCTG
895












TAGGT






chr
100649
C
T
MUC1
p.P501
0.000
0.000
2.59
0.29
CTACGTTGGTTACCAGTGCT
SEQ


7
847


2
85
25
86
E−01
[0.04-
TGTCCCCTCTGGAATCCTTC
ID











2.07]
[C/T]CTGTAGGTAATGACC
NO:












TTTTCTGAGACCTGCAGCTC
896












TTTGC






chr
100649
T
C
MUC1
p.V501
0.000
0.000
9.98
3
GTTGGTTACCAGTGCTTGTC
SEQ


7
851


2
9A
74
24
E−02
[0.86-
CCCTCTGGAATCCTTCCCTG
ID











10.46]
[T/C]AGGTAATGACCTTTT
NO:












CTGAGACCTGCAGCTCTTTG
897












CAGGC






chr
100651
C
T
MUC1
p.P502
0.000
0.000
4.29
1.69
GCTGTCTCACGCATACCATG
SEQ


7
921


2
2L
74
43
E−01
[0.51-
GCCTTTTCCCACAGAAACCC
ID











5.6]
[C/T]GGAAAAACTCAACGC
NO:












CACTTTAGGTATGACAGTGA
898












AAGTG






chr
100656
T
C
MUC1
p.L520
0.000
0.000
1.29
14.02
AAGTGCACCAAAGGAACGAA
SEQ


7
384


2
0P
25
02
E−01
[0.88-
GTCGCAAATGAACTGTAACC
ID











224.21]
[T/C]GGGCACATGTCAGCT
NO:












GCAACGCAGTGGCCCCCGCT
899












GCCTG






chr
100657
T
C
MUC1
p.I523
0.000
0.000
6.19
1.08
AACACACACTGGTACTGGGG
SEQ


7
247


2
1T
25
23
E−01
[0.14-
AGAGACCTGTGAATTCAACA
ID











8.25]
[T/C]CGCCAAGAGCCTCGT
NO:












GTATGGGATCGTGGGGGCTG
900












TGATG






chr
100678
G
A
MUC1
p.P140
0.018
0.000
2.01
1009.33
GAACCACTCCGTTAACAAGT
SEQ


7
918


7
7P
14
02
E−
[247.69-
ATACCTGTCAGCACCACGCC
ID










104
4112.96]
[G/A]GTAGTCAGTTCTGAG
NO:












GCTAGCACCCTTTCAGCAAC
901












TCCTG






chr
100681
C
T
MUC1
p.A217
0.012
0.000
8.18
Inf
CTCCTTTAACAAGTATGCCT
SEQ


7
219


7
4A
99
00
E−78

GTCAGCACCACAGTGGTGGC
ID












[C/T]AGTTCTGCAATCAGC
NO:












ACCCTTTCAACAACTCCTGT
902












TGACA






chr
100681
T
G
MUC1
p.S220
0.006
0.000
2.25
Inf
TGTGACCAATTCTACTGAAG
SEQ


7
310


7
5A
37
00
E−38

CCCGTTCATCTCCTACAACT
ID












[T/G]CTGAAGGTACCAGCA
NO:












TGCCAACCTCAACTCCTAGT
903












GAAGG






chr
100682
T
C
MUC1
p.S263
0.007
0.001
4.22
4.95
TACCAGCATGCCAATCTCAA
SEQ


7
597


7
4P
11
44
E−11
[3.33-
CTCCTAGTGAAGTAAGTACT
ID











7.38]
[T/C]CATTAACAAGTATAC
NO:












TTGTCAGCACCATGCCAGTG
904












GCCAG






chr
100682
T
C
MUC1
p.L263
0.006
0.000
2.08
14.32
TCAACTCCTAGTGAAGTAAG
SEQ


7
613


7
9P
86
48
E−20
[9.05-
TACTTCATTAACAAGTATAC
ID











22.65]
[T/C]TGTCAGCACCATGCC
NO:












AGTGGCCAGTTCTGAGGCTA
905












GCACC






chr
102087
C
T
ORAI2
p.L168
0.011
0.006
2.80
1.82
TGCTTGGCATCCTACTCTTC
SEQ


7
238



L
27
23
E−04
[1.35-
CTGGCCGAGGTGGTGCTGCT
ID











2.46]
[C/T]TGCTGGATCAAGTTC
NO:












CTCCCCGTGGATGCCCGGCG
906












CCAGC






chr
108112
A
G
PNPLA
p.D764
0.005
0.003
1.58
1.69
ATGGAAGTCCTTCATACATA
SEQ


7
902


8
D
88
48
E−02
[1.12-
TCAGTTTTTAATTTTATCCA
ID











2.56]
[A/G]TCATTAATTTTCTGC
NO:












AGAGTTGTTTTTTCTTGACT
907












TAATA






chr
111368
G
A
DOCK4
p.P191
0.009
0.005
2.33
1.74
CGCGGGCGGCTCCGACGTGA
SEQ


7
481



7L
31
38
E−03
[1.25-
CGGGGATGGAGAGGCTGTGA
ID











2.42]
[G/A]GTAGCGGGACGGGGC
NO:












GCCGCAGAGTCCGCTCGTAG
908












ACGCT






chr
117232
A
G
CFTR
p.E695
0.021
0.000
3.53
2406.22
ACAAAAAAACAATCTTTTAA
SEQ


7
305



G
32
01
E−
[335.08-
ACAGACTGGAGAGTTTGGGG
ID










125
17279.21]
[A/G]AAAAAGGAAGAATTC
NO:












TATTCTCAATCCAATCAACT
909












CTATA






chr
123143
G
A
IQUB
p.P278
0.007
0.004
1.12
1.65
ACATTACCTGCGTATCCCTA
SEQ


7
031



P
84
78
E−02
[1.15-
CAAAATATACTGAGTCTTTC
ID











2.36]
[G/A]GGAATCCTTTTAGGT
NO:












ACAGTTTGTGTTCCAGCATT
910












GTGAT






chr
141366
A
G
KIAA11
p.M23
0.006
0.004
4.89
1.52
GATGAGGATCTGTTCTCCAA
SEQ


7
203


47
5T
37
20
E−02
[1.02-
AGAACTTTATAAACTGAGAC
ID











2.26]
[A/G]TGCAGCCAGCTGGGT
NO:












GTGTGATCTGAAAAAATTGA
911












GGGGA






chr
141763
C
A
MGAM
p.P142
0.012
0.009
2.68
1.38
GAGGTATGTCTGTGTTTGGC
SEQ


7
311



41
99
45
E−02
[1.05-
ATTTCTAGGATATGAATGAA
ID











1.82]
[C/A]CATCAAGCTTCGTGA
NO:












ATGGGGCAGTTTCTCCAGGC
912












TGCAG






chr
141794
C
T
MGAM
p.F154
0.006
0.002
1.83
2.75
CTGTGCTTCTCGTTGCAGGC
SEQ


7
442



7F
13
24
E−05
[1.82-
ATGATGGAGTTCAGCCTCTT
ID











4.15]
[C/T]GGCATATCCTATGTG
NO:












AGTGTCCTTGGGATCCTCCT
913












AAGCA






chr
150069
G
A
REPIN1
p.K248
0.009
0.000
1.71
Inf
CCTTCCAGTGTGCCTGTTGT
SEQ


7
074



K
56
00
E−56

GGCAAGCGCTTCCGGCACAA
ID












[G/A]CCCAACTTGATCGCT
NO:












CACCGCCGCGTGCACACGGG
914












CGAGC






chr
150738
C
T
ABCB8
p.G405
0.005
0.002
5.50
1.9
TGCCCCCTGGCAAGATCGTG
SEQ


7
005



G
64
97
E−03
[1.24-
GCCCTCGTGGGCCAGTCTGG
ID











2.91]
[C/T]GGAGGTAAGGGGAGC
NO:












CCACCACCTCTTCACCCTCT
915












GACTC






chr
150840
A
T
AGAP3
p.E431
0.005
0.002
1.04
1.85
TCATGCCCTGATGGGCCTGT
SEQ


7
440



D
15
79
E−02
[1.19-
GGTTGCAGAGAGGAGAAGGA
ID











2.88]
[A/T]CGCTGGATACGGGCC
NO:












AAGTATGAACAGAAGCTCTT
916












CCTGG






chr
151078
C
T
WDR8
p.G313
0.006
0.003
8.14
1.73
GAGGGACCTACCTGGATGCA
SEQ


7
993


6
S
86
98
E−03
[1.18-
GTTGATGAATGAATGTGTGGC
ID











2.54]
[C/T]CCGGAACACCCTCCG
NO:












CAGCTCTCCAGACTGCGCGT
917












CGAAG






chr
151859
G
A
KMT2C
p.S358
0.005
0.003
4.53
1.58
TTTTTCCTCTGGGATTATAT
SEQ


7
899



8L
64
57
E−02
[1.04-
CAGAATACAACTGAATGAGC
ID











2.41]
[G/A]ATTGGGTTGATCCCG
NO:












GATAACTGTGTCCATGGGTT
918












ATAGT






chr
623435
G
A
ERICH1
p.P306
0.027
0.000
7.40
1561.55
CTCCCCGGAGTCTGCACCCT
SEQ


8




L
21
02
E−
[385.58-
CTTCCTCCCCAGCCCATGTC
ID










159
6324.12]
[G/A]GGTCTTCCTCGCTGG
NO:












CGTCCGCACCGTCCTCCTCC
919












CTGGT






chr
623519
A
C
ERICH1
p.I278
0.014
0.000
1.13
Inf
TTTACCGTCTTCCTCCCCGG
SEQ


8




S
71
00
E−87

CCCGTGTCAGGTCTTCCTCA
ID












[A/C]TGGTGTCCACACCGT
NO:












CCTCCTCCCTGGCGTCTTTA
920












ACGTC






chr
623675
A
C
ERICH1
p.V226
0.024
0.000
1.64
Inf
CTCGCTAGCGTCCGCACCAT
SEQ


8




G
51
00
E−

CTTCCTCCCTGGTATCTTTA
ID










145

[A/C]CGTCTTCCTCCCCGG
NO:












CCAGTGTCGGGTCTTCCTCG
921












CTGGT






chr
104660
A
C
RP1L1
p.0185
0.005
0.000
1.36
Inf
CTTCTGACTCTGGCTGGGCC
SEQ


8
31



9E
15
00
E−30

TCCCCTTCAGCCTCCTGGGC
ID












[A/C]TCCCCTTCTGCCTCT
NO:












GGGGCCTCTACACCTTCTGA
922












CTCTG






chr
171597
A
G
MTMR
p.M52
0.005
0.002
1.04
1.85
TAGTTCTTCCTCTAGCTGCT
SEQ


8
18


7
2T
15
79
E−02
[1.19-
GAGTTTCTTCCTTCACTGCC
ID











2.88]
[A/G]TTAGGTAATCTGTAA
NO:












CTGACTGTCGGGGCTGCATC
923












CCCTT






chr
180803
A
T
NAT1
p.D251
0.005
0.003
1.32
1.76
ACCCTCACCCATAGGAGATT
SEQ


8
08



V
88
35
E−02
[1.16-
CAATTATAAGGACAATACAG
ID











2.66]
[A/T]TCTAATAGAGTTCAA
NO:












GACTCTGAGTGAGGAAGAAA
924












TAGAA






chr
234289
C
G
SLC25A
p.T191
0.005
0.003
3.48
1.63
ACCGGTCAGCAATCAGCTGC
SEQ


8
24


37
T
15
17
E−02
[1.05-
ATCCGGACGGTGTGGAGGAC
ID











2.53]
[C/G]GAGGGGTTGGGGGCC
NO:












TTCTACCGGAGCTACACCAC
925












GCAGC






chr
251746
C
T
DOCK5
p.T469
0.010
0.007
4.77
1.38
GACAAAGGGAAGAAGAAGAC
SEQ


8
10



M
78
86
E−02
[1.01-
GCCAAAGAATGTGGAGGTGA
ID











1.87]
[C/T]GATGTCTGTGCACGA
NO:












TGAGGAGGGCAAGCTCTTGG
926












AGGTG






chr
267219
C
T
ADRA1
p.R166
0.006
0.003
2.42
1.74
GTTGATCTGGCAGATGGTCT
SEQ


8
90


A
K
506
743
E−02
[1.05-
CGTCCTCGGGGGCCGGCTGC
ID











2.73]
[C/T]TCCAGCCGAACAGGG
NO:












GTCCAATGGATATGACCAGG
927












GAGAG






chr
356480
G
A
UNC5D
p.T930
0.009
0.005
1.25
1.79
CCCTGGCCTGTGCCCTTGAA
SEQ


8
09



T
07
08
E−03
[1.28-
GAGATTGGGAGGACACACAC
ID











2.5]
[G/A]AAACTCTCAAACATT
NO:












TCAGAATCCCAGCTTGATGA
928












AGCCG






chr
367933
T
C
KCNU1
p.N11
0.005
0.002
8.09
2.24
TATCATCTCAGATACCTTTA
SEQ


8
75



29N
64
53
E−04
[1.46-
GGTGACAATGCAAAAGAAAA
ID











3.43]
[T/C]GAAAGGAAAACTTCA
NO:












GATGAGGTTTATGATGAGGA
929












TCCCT






chr
376997
G
A
GPR12
p.K130
0.005
0.000
9.89
Inf
CGTACCCGCTCAACGCCGCC
SEQ


8
77


4
7K
64
00
E−29

AGCCTAAACGGCGCCCCCAA
ID












[G/A]GGGGGCAAGTACGAC
NO:












GACGTCACCCTGATGGGCGC
930












GGAGG






chr
382600
C
T
LETM2
p.A331
0.006
0.003
4.19
1.56
AAGTTCCAACTGCATCCCTT
SEQ


8
50



V
13
94
E−02
[1.04-
ACATTTCTTTCAGATAATTG
ID











2.34]
[C/T]CAAGGAAGGGGTGAC
NO:












AGCATTGAGTGTATCAGAAC
931












TACAG






chr
382657
C
T
LETM2
p.T385
0.005
0.002
2.15
1.92
GTTTTTTACGCCTAGACACT
SEQ


8
55



M
205
716
E−02
[1.08-
CCAGGCCAAATCACAAATGA
ID











3.18]
[C/T]GGCCCAGAACAGCAA
NO:












GGCTAGTTCAAAAGGAGCAT
932












AAAGG






chr
523208
G
C
PXDNL
p.L111
0.007
0.004
4.90
1.54
TAAGCCGCGGAGAAGAGCCT
SEQ


8
32



8V
482
863
E−02
[0.97-
CTGGGTCAGCTCAGGACTGA
ID











2.34]
[G/C]AAGGTAGGAGGGTGC
NO:












CCGCCATTTAGCAGCCACGC
933












CAAAC






chr
550491
A
G
MRPL1
p.R57
0.012
0.008
4.23
1.36
GAGAAGAGGTAGAAAATGTG
SEQ


8
31


5
G
01
88
E−02
[1.02-
GCAGAGGCCATAAAGGAGAA
ID











1.81]
[A/G]GGCAAAGAGGAACCC
NO:












GGCCCCGCTTGGGCTTTGAG
934












GGAGG






chr
813991
C
T
ZBTB1
p.S36L
0.018
0.014
3.39
1.31
GGCGGCGGCTCCACGAACAA
SEQ


8
52


0

87
49
E−02
[1.03-
TAACGCTGGCGGGGAGGCCT
ID











1.67]
[C/T]AGCTTGGCCTCCGCA
NO:












GCCCCAGCCGAGACAGCCCC
935












CGCCG






chr
919530
G
A
NECAB
p.A271
0.007
0.004
1.54
1.74
GATGTCTGTGATAGAAGAGG
SEQ


8
77


1
T
16
12
E−02
[1.08-
ACCTGGAAGAATTCCAGCTC
ID











2.68]
[G/A]CTCTGAAACACTACG
NO:












TGGAGAGTGCTTCCTCCCAA
936












AGTGG






chr
947463
C
G
RBM12
p.E777
0.005
0.000
7.19
Inf
GGCCGCCTGAAATGCTCCTG
SEQ


8
10


B
Q
88
00
E−34

GGGCGGTCTCCGGAAGTGCT
ID












[C/G]CGGGGGCGGGCGCCT
NO:












GAAATGCTCTGGGGGTGGCC
937












GCCTG






chr
978921
G
A
CPQ
p.M24
0.008
0.004
1.07
1.75
CCTGTATTACGGTGGAAGAT
SEQ


8
19



5I
133
667
E−02
[1.12-
GCAGAAATGATGTCAAGAAT
ID











2.62]
[G/A]GCTTCTCATGGGATC
NO:












AAAATTGTCATTCAGCTAAA
938












GATGG






chr
989912
A
3
MATN
p.K356
0.006
0.000
2.40
Inf
CTTTGCCAGTGCCATGAAGG
SEQ


8
22


2
R
86
00
E−41

ATTTGCTCTTAACCCAGATA
ID












[A/G]AAAAACGTGCACAAG
NO:












TAAGTTACACACACATGCAC
939












ACACA






chr
100832
A
G
VPS13
p.N29
0.008
0.005
7.31
1.65
ACTTTGTTGATAGAACTTCT
SEQ


8
259


B
68S
33
07
E−03
[1.17-
GCCCTGGGCCCTGCTTATCA
ID











2.34]
[A/G]TGAATCCAAATGGGA
NO:












CCTCTGGCTATTTGAAGGAG
940












AGAAA






chr
103573
G
A
ODF1
p.S228
0.005
0.000
4.61
Inf
TGCAGCCCCTGCAACCCCTG
SEQ


8
042



N
64
00
E−34

CAGCCCCTGCAACCCGTGCA
ID












[G/A]GCCATATGATCCTTG
NO:












CAACCCGTGTTATCCCTGTG
941












GAAGC






chr
104897
G
A
RIMS2
p.R175
0.005
0.003
4.50
1.59
GGATCCATGCTGAAGTGTCC
SEQ


8
928



R
64
56
E−02
[1.04-
CGAGCACGGCATGAGAGAAG
ID











2.42]
[G/A]CATAGTGATGTTTCT
NO:












TTGGCAAATGCTGATCTGGA
942












AGATT






chr
125711
A
G
MTSS1
p.A62
0.009
0.006
1.95
1.52
CAGCCTCCATCTGCTTACCA
SEQ


8
789



A
31
16
E−02
[1.09-
CGTGTGTTGGTGGCCATGTC
ID











2.1]
[A/G]GCCACTTTCTGAAAG
NO:












GCGTCCAAGAAGGCAGCTGC
943












TGCTA






chr
144297
G
A
GPIHB
p.G159
0.005
0.000
1.65
Inf
GTCCAGGACCCAACAGGCAA
SEQ


8
314


P1
D
39
00
E−32

GGGGGCAGGCGGCCCCCGGG
ID












[G/A]CAGCTCCGAAACTGT
NO:












GGGCGCAGCCCTCCTGCTCA
944












ACCTC






chr
144874
G
C
SCRIB
p.P145
0.013
0.000
9.10
229.41
AGCTTTGGCCGTCCGCACCG
SEQ


8
555



0R
97
06
E−60
[71.81-
GGGCGCCACCTCCCAGGGGT
ID











732.85]
[G/C]GGGGGGACGCCGGGC
NO:












TCTGCCTGGGGAAGGGACAG
945












GACGT






chr
144940
C
T
EPPK1
p.A226
0.008
0.001
2.32
7.88
GCCTCAGGTTGCGCACGGGG
SEQ


8
621



7A
09
03
E−17
[5.34-
TCGATGACGAAGCCGGTGGC
ID











11.63]
[C/T]GCCTGCGCCTCCAGC
NO:












AGCACCAGGGCCGTGCCGGG
946












CCGCA






chr
144941
A
T
EPPK1
p.Y206
0.006
0.003
2.84
1.61
GTGTCCTCTTGTGGGCGGCA
SEQ


8
229



5N
13
82
E−02
[1.07-
CCTCTCCTGCAGCTCTCGGT
ID











2.41]
[A/T]CGAGACCTTCTCTTG
NO:












CGTGTTCGGGTCCACAAACC
947












GTTTC






chr
144993
G
A
PLEC
p.L359
0.008
0.006
3.15
1.46
TGCTCCTCGGGGATCAGGTC
SEQ


8
230



1L
82
04
E−02
[1.05-
CGACTGCATCACCTCCCACA
ID











2.05]
[G/A]GGACATGGTGGAGCC
NO:












GCCGTGGCTGCCGCCGCCGG
948












GAATG






chr
145736
C
G
RECQL
p.V119
0.011
0.000
2.26
1295.85
GTCAGCGGGCCACCTGCAGG
SEQ


8
853


4
6V
52
01
E−67
[178.75-
AGCTCTTCCGTGGCCAGGCC
ID











9394.47]
[C/G]ACCAGGGCATGGAAG
NO:












CTCAGGTGCAGGTATTTTCT
949












CCAGA






chr
146157
C
T
ZNF16
p.S303
0.005
0.003
4.01
1.6
CATGTGAGACTTTTGGTGCT
SEQ


8
265



N
39
38
E−02
[1.04-
TTTTAAGGCTCGAGTTCTGG
ID











2.46]
[C/T]TGAAGGCTTTTCCAC
NO:












ATTCATTACACATATAAGGC
950












CTCTC






chr
411793
C
G
GLIS3
p.E360
0.008
0.004
6.65
1.8
GCTGGTCGATGTGGACCTTC
SEQ


9
3



D
133
527
E−03
[1.15-
TCGATGTGCCGCACGAGCTC
ID











2.7]
[C/G]TCCTGCTGGTCGTAC
NO:












AGGGCGCTGCAGTCGATCCA
951












GCGGC






chr
601362
C
T
RANBP
p.D662
0.006
0.002
5.81
2.36
CTCTGCTGGTCTCCAAGATT
SEQ


9
4


6
N
831
903
E−04
[1.44-
TACAAATTGCCAGCCATCAT
ID











3.68]
[C/T]GTCACTCATATTTTC
NO:












CACATCCTGTGTGTCTAAGA
952












GAGCA






chr
154230
C
T
SNAPC
p.H43Y
0.013
0.000
1.53
117.22
TCCAGAGTATGAGCTTCCCG
SEQ


9
04


3

73
12
E−64
[59.77-
AGCTAAATACGCGCGCTTTC
ID











229.91]
[C/T]ATGTGGGCGCCTTTG
NO:












GGGAGCTGTGGCGGGGCCGT
953












CTGCG






chr
190503
G
A
RRAGA
p.Q22
0.007
0.004
1.55
1.64
CTACATTCTTGGTTATTTCC
SEQ


9
23



2Q
11
34
E−02
[1.13-
CACTACCAGTGCAAAGAGCA
ID











2.39]
[G/A]CGCGACGTCCACCGG
NO:












TTTGAGAAGATCAGCAACAT
954












CATCA






chr
337948
A
C
PRSS3
p.K12T
0.007
0.004
6.12
1.78
GACAGGATGCACATGAGAGA
SEQ


9
24




35
13
E−03
[1.22-
GACAAGTGGCTTCACATTGA
ID











2.62]
[A/C]GAAGGGGAGGAGTGC
NO:












GCCATTGGTTTTCCATCCTC
955












CAGAT






chr
337967
G
T
PRSS3
p.G106
0.005
0.000
3.09
Inf
CCCTACCAGGTGTCCCTGAA
SEQ


9
46



V
15
00
E−31

TTCTGGCTCCCACTTCTGCG
ID












[G/T]TGGCTCCCTCATCAG
NO:












CGAACAGTGGGTGGTATCAG
956












CAGCT






chr
356741
G
A
CA9
p.G79
0.014
0.001
1.18
10.67
GCCCAGTGAAGAGGATTCAC
SEQ


9
91



R
46
37
E−35
[7.89-
CCAGAGAGGAGGATCCACCC
ID











14.43]
[G/A]GAGAGGAGGATCTAC
NO:












CTGGAGAGGAGGATCTACCT
957












GGAGA






chr
358100
G
A
SPAG8
p.F433
0.005
0.003
2.25
1.67
GAGACAAGGGTACTGGTGTT
SEQ


9
94



F
88
53
E−02
[1.1-
GAGAAGCTGCAGTTCTTCCG
ID











2.52]
[G/A]AATGGTGTGTCCAAT
NO:












GTCCTGATGTTACTGACACC
958












CTGGA






chr
391092
C
T
CNTNA
p.A769
0.022
0.000
4.31
1284.01
GGCCCCAGTGTATAAGCTGC
SEQ


9
17


P3
T
55
02
E−
[316.24-
TTCGGAATGTGGTCGGCCTG
ID










131
5213.39]
[C/T]GTCTGTCATCACAAT
NO:












CTGAGTGACTGGCAGGTGCT
959












CCTTT






chr
776135
A
G
C9orf4
p.D295
0.009
0.006
3.33
1.44
TTGATTTGGACTTACTGCAT
SEQ


9
39


1
D
80
81
E−02
[1.05-
TCTGAATAAATCTCTTGAAA
ID











1.99]
[A/G]TCTCCTGCTGTCATA
NO:












GAAAAGTTAGAACCAGGAGG
960












AAGAC






chr
845625
A
G
SPATA
p.K779
0.012
0.000
2.19
Inf
GTGGGGAATTATCAGGGATG
SEQ


9
04


31D3
R
25
00
E−72

CAGCCAGGAGACTGCCCCAA
ID












[A/G]AAACCATCTCTTGCA
NO:












TGATCCGGAGACATCTTCAG
961












AGGAG






chr
941725
C
T
NFIL3
p.1M17
0.005
0.003
3.57
1.6
GTGGAGAGTGTTTAATGACA
SEQ


9
07



0I
88
69
E−02
[1.06-
GAAATACAACTACTTGACAC
ID











2.41]
[C/T]ATCGAGGGTTCGTGC
NO:












TCGTCCACAAATGAACTCAC
962












ATTGG






chr
960518
G
A
WNK2
p.A164
0.005
0.000
1.02
56.07
GCGGGGGGGACCTGGCCCTG
SEQ


9
69



8A
39
10
E−22
[23.94-
CCCCCAGTGCCTAAGGAGGC
ID











131.32]
[G/A]GTCTCAGGGCGTGTC
NO:












CAGCTGCCCCAGCCCTTGGT
963












GAGTA






chr
960814
C
T
C9orf1
p.R130
0.010
0.007
2.68
1.43
TGCCTGTGAATCCCTTCCTT
SEQ


9
33


29
H
54
41
E−02
[1.05-
GTACATGGTGGTCAGTGGCA
ID











1.94]
[C/T]GGAATCCCCAATAGA
NO:












TTGTATATCTGAAGGAGAAA
964












AATAA






chr
964390
C
A
PHF2
p.T992
0.022
0.001
8.06
20.02
CCTCCACCACGCCAGCCTCT
SEQ


9
19



T
30
14
E−65
[14.5-
ACCACCCCGGCCTCCACCAC
ID











27.65]
[C/A]CCGGCCTCCACCAGC
NO:












ACGGCCAGCAGCCAGGCCTC
965












GCAGG






chr
970809
A
C
NUTM
p.S689
0.007
0.000
5.91
16.69
AAGAGAGGTCGCTTCTTGGA
SEQ


9
53


2F
A
84
47
E−24
[10.5-
CTTGCTGGCAGGAGAAGGTG
ID











26.52]
[A/C]TGGGCTGAGGCCTCT
NO:












TTTCTGAGCACATGGAGACT
966












CAAGA






chr
106889
C
T
SMC2
p.S867
0.005
0.003
3.42
1.63
CCTCACCACATATTTTCTTT
SEQ


9
571



L
15
16
E−02
[1.05-
AATTTTTTTGTTTTAGGAGT
ID











2.54]
[C/T]AGTAAATAAAGCTCA
NO:












AGAAGAGGTGACCAAGCAAA
967












AAGAG






chr
113562
T
C
MUSK
p.V558
0.006
0.004
2.64
1.59
GAAACTGAGACTAACAGGGA
SEQ


9
589



A
62
17
E−02
[1.08-
TGGTCTTTTGGTTCCAGGAG
ID











2.35]
[T/C]GTGTGCTGTCGGGAA
NO:












GCCAATGTGCCTGCTCTTTG
968












AATAC






chr
117170
G
C
DFNB3
p.P562
0.119
0.117
6.55
1.02
AACCAAAGGGCCAGCCAGGG
SEQ


9
241


1
A
36
07
E−01
[0.93-
CCTTACCACGGACACATCTG
ID











1.13]
[G/C]GAGGGCGTTGATATT
NO:












GCCCTGGACAGCCTCGCCAG
969












TTTCC






chr
127623
G
A
RPL35
p.R32R
0.011
0.008
3.12
1.39
TAGAGAGCTTGGAGGCCGCA
SEQ


9
742




76
52
E−02
[1.03-
CCGCCTGTCACTTTGGCGAC
ID











1.85]
[G/A]CGCAGCTGGGACAGC
NO:












TCCACCTTCAGGTCGTCCAG
970












CTGTT






chr
131094
G
C
COQ4
p.E161
0.012
0.008
1.55
1.44
ATGATGAGGAGCTAGCGTAT
SEQ


9
512



D
25
51
E−02
[1.09-
GTGATTCAGCGGTACCGGGA
ID











1.92]
[G/C]GTGCACGACATGCTT
NO:












CACACCCTGCTGGGGATGCC
971












CACCA






chr
131258
G
C
ODF2
p.Q61
0.007
0.000
2.84
Inf
TAAACCAGTCTGTGTTCCTG
SEQ


9
331



7H
84
00
E−47

TCATTTTAGATCGAACACCA
ID












[G/C]GGGGACAAGCTGGAG
NO:












ATGGCGAGAGAGAAACATCA
972












GGCTT






chr
132630
G
A
USP20
p.S288
0.005
0.003
9.34
1.85
ACCGGAGCCCATCAGAAGAT
SEQ


9
457



S
64
05
E−03
[1.21-
GAGTTCTTGTCCTGTGACTC
ID











2.83]
[G/A]AGCAGTGACCGGGGT
NO:












GAGGGTGACGGGCAGGGGCG
973












TGGCG






chr
134353
G
A
PRRC2
p.E147
0.005
0.003
2.96
1.71
CTGGTTAACAAGATCCTCTT
SEQ


9
141


B
3K
15
03
E−02
[1.1-
TCCCTTACAGATCCCCAGAC
ID











2.65]
[G/A]AGGCCTTGCCTGGAG
NO:












GTCTTAGTGGCTGCAGCAGT
974












GGGAG






chr
135140
A
G
SETX
p.I254
0.008
0.005
2.68
1.5
GGGTTGTGGATCCCAAAGGA
SEQ


9
020



7T
58
72
E−02
[1.07-
ATATTCCTCCTTTGACCTCA
ID











2.12]
[A/G]TGCCCATCCTCTTCA
NO:












GCAGTCGTGGGTCCTGAAGT
975












TGGTC






chr
136419
G
A
ADAM
p.G421
0.023
0.000
1.28
Inf
CGAGCAGGCCGGCGGCGGGG
SEQ


9
800


TSL2
S
28
00
E−12

CCTGCGAGGGGCCCCCCAGG
ID












[G/A]GCAAGGGCTTCCGAG
NO:












GTAACCAGGAGGAGGGAGGC
976












ATGAG






chr
137309
G
A
RXRA
p.M25
0.006
0.003
2.76
1.62
CCGTGGAGCCCAAGACCGAG
SEQ


9
155



4I
13
79
E−02
[1.08-
ACCTACGTGGAGGCAAACAT
ID











2.43]
[G/A]GGGCTGAACCCCAGC
NO:












TCGGTGAGTTGCAGCCTGTG
977












CAGGG






chr
139333
G
C
INPP5E
p.G120
0.007
0.000
1.78
447.13
TCAGGCAGGGCGGGGAGCAG
SEQ


9
512



G
11
02
E−34
[60.89-
CTGTGGGCGGGGGCCCCGGG
ID











3283.17]
[G/C]CCCTCGCTCTGCACT
NO:












GAGCCCCTGGAGGGACTGGT
978












CCCAT






chr
139701
G
T
CCDC1
p.M45
0.005
0.003
4.82
1.63
GCGAGGGGAAGCTCACGTAC
SEQ


9
301
83
7I
856
603


E−02
[0.95-
CTGGCTGACAGAGTGCAGAT
ID











2.61]
[G/T]GTGTCCAGGACCGAG
NO:












GAGGTAGCCCCGGGCTGGGA
979












GGAAC






chr
139752
A
T
MAMD
p.T771
0.009
0.006
4.61
1.42
CTCGGGCCATGCTGCCTGGG
SEQ


9
023


C4
S
07
39
E−02
[1.02-
GCCCCCCAACAGACCATACC
ID











1.98]
[A/T]CTGAGACAGCCCAAG
NO:












GTATGGGGGCCTGGCAGGGG
980












CAGGG






chr
140008
G
A
DPP7
p.Q38
0.005
0.000
4.86
Inf
TTGTTGCCGAAGCGCTCGAA
SEQ


9
984



X
15
00
E−28

GTTGAAGTGGTCCAGACGCT
ID












[G/A]CTGGAAGAAGCGCTC
NO:












CTGGAAGCCGGGGTCCGGGG
981












CCCTG






chr
140120
G
T
CYSRT1
p.A148
0.011
0.000
2.82
Inf
AGCGCCAGGCCGGACTGACC
SEQ


9
397



A
03
00
E−52

TACGCTGGCCCTCCGCCCGC
ID












[G/T]GGGCGCGGGGATGAC
NO:












ATCGCCCACCACTGCTGCTG
982












CTGCC






chr
986397
C
CT
SHROO
p.L676
0.005
0.000
2.57
61.9
CTGGAGGGCCGGGTTGGGAG
SEQ


X
4


M2
fs
89
10
E−07
[12.5-
GTGGCACCCAGGAAGGACCC
ID











307.1]
[C/CT]TCGCTGGCACCTAT
NO:












AAAGACCACCTGAAAGAGGC
983












CCAAGC






chr
100856
C
T
WWC3
p.H520
0.006
0.003
4.13
1.56
GGGACGAAGACTTACCAGGC
SEQ


X
59



H
13
94
E−02
[1.03-
ATGGCGGCCCTTCAGCCACA
ID











2.36]
[C/T]GGGGTCCCCGGGGAT
NO:












GGGGAAGGGCCGCACGAGCG
984












AGGAC






chr
349618
G
A
FAM47
p.P297
0.005
0.000
6.33
473.89
GCCCGGAGCCTCCCGAGACT
SEQ


X
39


B
P
88
01
E−31
[64.09-
CGCGTATCTCATCTCCACCC
ID











3503.83]
[G/A]GAGCCTCCTGAGACT
NO:












GGAGTGTCCCATCTCCGCCC
985












AGAGC






chr
370279
C
G
FAM47
p.D492
0.006
0.000
5.71
Inf
CAGAGAAGGACGTATCTCAT
SEQ


X
59


C
E
86
00
E−37

CTCCGCCCAGAGCCTCCCGA
ID












[C/G]ACTGGAGTGTCCCAT
NO:












CTCTGCCCAGAGCCCCCCAA
986












GACAC






chr
370287
C
T
FAM47
p.R763
0.008
0.000
2.98
692.67
TCTCCGCCCAGAGCCTCTTG
SEQ


X
70


C
C
58
01
E−45
[94.87-
AGACTCGCGTATCTCATCTC
ID











5057.22]
[C/T]GCCCGGAGCCTCCTG
NO:












AGACTGGAGTGTCCCATCTC
987












CACCC






chr
436286
G
A
MAOB
p.T426
0.008
0.000
6.54
Inf
CAGCCCCCTCCATGTAGCCG
SEQ


X
23



T
82
00
E−48

CTCCAGTGTGTGGCAGTCTC
ID












[G/A]GTGCCTGCAAAGTAA
NO:












ATCCTGTCCACTGGCTGGCG
988












TAGAA






chr
474267
C
T
ARAF
p.A337
0.010
0.007
3.68
1.42
TTGGCACCGTGTTTCGAGGG
SEQ


X
57



A
05
11
E−02
[1.03-
CGGTGGCATGGCGATGTGGC
ID











1.95]
[C/T]GTGAAGGTGCTCAAG
NO:












GTGTCCCAGCCCACAGCTGA
989












GCAGG






chr
486648
C
T
HDAC6
p.Y171
0.005
0.002
1.98
2.04
ACATGAATGAGGGAGAACTC
SEQ


X
50



Y
88
90
E−03
[1.34-
CGTGTCCTAGCAGACACCTA
ID











3.1]
[C/T]GACTCAGTTTATCTG
NO:












CATCCGGTATGGATGAGAAC
990












TCTGC






chr
491059
G
A
CCDC2
p.D546
0.008
0.005
3.56
1.48
GCAGCCCACTGATACCTTTG
SEQ


X
70


2
N
58
80
E−02
[1.05-
AGGTCCCTGTGTCTGGTCAG
ID











2.09]
[G/A]ATGCCAAGAAGGACG
NO:












ATGCTGTTCGGAAGGCCTAT
991












AAGTA






chr
494559
C
T
PAGE1
p.G56
0.008
0.005
2.89
1.49
TTGGCTGAACCAGTTCCTGG
SEQ


X
76



G
82
92
E−02
[1.06-
CTATCAGCTTCAGGCTCCTG
ID











2.1]
[C/T]CCTTAAAGATAAAAC
NO:












AAAATTATCATTTTAAGCAG
992












CAACA






chr
531153
G
A
TSPYL2
p.E607
0.009
0.006
2.37
1.5
AAGGCAGCGATGATGACGAC
SEQ


X
95



E
07
06
E−02
[1.07-
AGAGACATTGAGTACTATGA
ID











2.1]
[G/A]AAAGTTATTGAAGAC
NO:












TTTGACAAGGATCAGGCTGA
993












CTACG






chr
562918
A
G
KLF8
p.I108
0.009
0.006
4.00
1.43
CAAGGCTCCTCTCCAGCCTG
SEQ


X
53



V
56
71
E−02
[1.03-
CTAGCATGCTACAAGCTCCA
ID











1.98]
[A/G]TACGTCCCCCCAAGC
NO:












CACAGTCTTCTCCCCAGACC
994












CTTGT






chr
708237
G
C
ACRC
p.K218
0.005
0.000
1.40
33.76
CCGACGACAACAGTGATGAT
SEQ


X
81



N
88
18
E−22
[17.45-
TCGGATGTTCCCGACGACAA
ID











65.31]
[G/C]AGTGATGATTCGGAT
NO:












GTTCCCGACGACAGCAGTGA
995












TGATT






chr
738116
G
A
RLIM
p.S501
0.009
0.000
1.61
Inf
ATGTCGACCCTCTCGCCTGG
SEQ


X
48



L
80
00
E−52

CACCTGATGAGCCTGATGAT
ID












[G/A]AGCTTCCTTCATTAC
NO:












TGCCTTCAAATAAATCTGAG
996












CTAGT






chr
738116
A
G
RLIM
p.S485
0.010
0.000
6.36
46.16
CTTCATTACTGCCTTCAAAT
SEQ


X
95



S
29
23
E−41
[26.25-
AAATCTGAGCTAGTTTCTGA
ID











81.16]
[A/G]CTTTCACCACCGGAA
NO:












CTGGAACTAGGACTGGAACT
997












GGAAC






chr
738117
C
T
RLIM
p.S453
0.010
0.000
2.96
825.58
ACTCGAACTGGAACTGGAAC
SEQ


X
92



N
29
01
E−54
[113.6-
TCGAACTGGAACCAGAACTA
ID











5999.93]
[C/T]TACCACCACCAGAAC
NO:












CTCCTCTTCCACTCCGTGAC
998












TCTGC






chr
100507
G
T
DRP2
p.L571
0.011
0.008
3.77
1.38
CCTGCTTCTTGACAGGCAGG
SEQ


X
675



L
76
56
E−02
[1.03-
GCCAGCAAAGGCAATAAGCT
ID











1.85]
[G/T]CACTACCCCATCATG
NO:












GAGTATTACACACCGGTATG
999












AAGCC






chr
100524
C
T
TAF7L
p.R372
0.011
0.007
2.26
1.44
TGTGGGCCACGCCAATGGCT
SEQ


X
197



H
03
69
E−02
[1.06-
CTCCTCACTTCTTCAGAAAA
ID











1.95]
[C/T]GCTGCAACTGTTCCT
NO:












GTAGGGAAATGAGCTGTAGG
1000












GAGAG






chr
100745
C
G
ARMC
p.A770
0.008
0.000
8.99
Inf
CAGGGTGAGGTCTTGCCTGG
SEQ


X
885


X4
G
33
00
E−34

TGCCAAAAATAAGGTCAAGG
ID












[C/G]CAATCTTAATGCTGT
NO:












GTCTAAGGCAGAAGCTGGGA
1001












TGGGT






chr
100746
G
C
ARMC
p.Q94
0.009
0.000
1.04
Inf
CTAAGGCAGAGGCTGGGGCA
SEQ


X
423


X4
9H
31
00
E−38

GGCATAATGGGCTCTGTCCA
ID












[G/C]GTCCAGGTTGTGGCC
NO:












AGTTTTCAGGGTGAGGTCTT
1002












GCCTG






chr
101971
C
T
ARMC
p.S721
0.011
0.007
5.08
1.58
TGACTATTGACTATCACACA
SEQ


X
960


X5-
S
52
33
E−03
[1.17-
CTGATTGCCAACTATATGTC
ID






GPRAS




2.13]
[C/T]GGGTTTCTCTCCTTA
NO:






P2





TTAACCACAGCCAATGCGAG
1003












AACGA






chr
102754
C
T
RAB40
p.E257
0.008
0.001
5.24
4.28
GTGCAGTTTTTGGGTGGGCT
SEQ


X
916


A
K
33
96
E−11
[2.95-
CTGGGGTGGGCAGACGATCT
ID











6.22]
[C/T]CACTTTGCAGAGGCT
NO:












GCTCTTGTGAGTGGAGCTGG
1004












TGGTG






chr
114425
G
A
RBMXL
p.R514
0.007
0.000
5.32
323.05
AGCGACCGCTACGGAGTAGG
SEQ


X
545


3
Q
60
02
E−32
[44.09-
AGGCCACTATGAGGAGAACC
ID











2367.01]
[G/A]AGGCCACTCTCTGGA
NO:












TGCCAACAGCGGAGGCCGTT
1005












CACCC






chr
114426
C
T
RBMXL
p.Y849
0.012
0.000
4.17
101.99
ACGCCTACAGTGGGGGCCGT
SEQ


X
551


3
Y
01
12
E−46
[40.62-
GACAGTTCCAGCAACAGTTA
ID











256.12]
[C/T]GACCGGAGCCACCGC
NO:












TATGGAGGAGGAGGCCACTA
1006












CGAAG






chr
120008
G
C
CT478
p.P182
0.012
0.000
1.16
1046.3
CGACGCAGCCTCCTGGATCA
SEQ


X
980


1
R
99
01
E−68
[144.66-
GGCCGAGGCCCTCGCCTTCT
ID











7567.63]
[G/C]GGGCTGCAGCCCCTG
NO:












CACCCAGCCTCTGGGACAGC
1007












AGCAG






chr
124455
G
C
LOC10
p.K430
0.017
0.000
8.76
Inf
ACAGCCACAGCATGAAGAAA
SEQ


X
258


01295
N
40
00
E−72

GATCCAGTGATGCCCCAGAA
ID






20





[G/C]ATGGTCCCCCTGGGG
NO:












GACAGCAACAGCCACAGTCT
1008












GAAGA






chr
140993
A
G
MACE
p.Q18
0.013
0.002
4.36
6.11
CTTTAGTGAGTATTTTCCAG
SEQ


X
751


C1
7Q
24
19
E−16
[3.92-
AGTTCCCCTGAGAGTACTCA
ID











9.52]
[A/G]AGTCCTTTTCAGGGT
NO:












TTTCCCCAGTCTCCACTCCA
1009












GATTC






chr
140994
T
A
MAGE
p.C501
0.014
0.000
9.16
Inf
CTCCTCCACTTTATTGAGTC
SEQ


X
691


C1
S
71
00
E−80

TTTTCCAGAGTTCCCCTGAG
ID












[T/A]GTACTCAAAGTACTT
NO:












TTGAGGGTTTTCCCCAGTCT
1010












CCTCT






chr
149100
C
T
CXorf4
p.G155
0.009
0.005
1.69
1.54
AACATTCCTTTCAGGAGCCC
SEQ


X
775


0B
E
07
92
E−02
[1.1-
ACACTTGTCACACTTCATGC
ID











2.15]
[C/T]CCAAAGGGATCAGGT
NO:












GCTCTGGGATGTCTACCTGG
1011












AATAC






chr
150908
G
T
CNGA2
p.G113
0.010
0.007
4.45
1.38
GGGCCTGAACTCCAGACTGT
SEQ


X
168



V
54
65
E−02
[1.01-
GACCACACAGGAGGGGGATG
ID











1.88]
[G/T]CAAAGGCGACAAGGA
NO:












TGGCGAGGACAAAGGCACCA
1012












AGTAC






chr
153295
C
T
MECP2
p.K443
0.018
0.000
3.45
Inf
TGGCGGCGGTGGCAACCGCG
SEQ


X
986



K
87
00
E−

GGCTGAGTCTTAGCTGGCTC
ID










102

[C/T]TTGGGGCAGCCGTCG
NO:












CTCTCCAGTGAGCCTCCTCT
1013












GGGCA
















TABLE 2







Variants associated with infertility symptom of endometriosis





















Alter-


Chron-










nate

Amino
ic









Refer-
Allele/

Acid
Pelvic
Infer-

OR





Posi-
ence
Minor

posi-
Pain
tility
p
[L95-

SEQ ID


Chr
tion
Allele
Allele
Gene
tion
MAF
MAF
value
U95]
Context Sequence
NO





chr
544404
C
T
OR51Q
p.L204
 0.008
 0.028
2.59
0.30
CTGTGCTGACATCAGGCTCA
SEQ ID


11
0


1
F
94
99
E−02

ACAGCTGGTATGGATTTGCT
NO: 129












[C/T]TTGCCTTGCTCATTA













TTATCGTGGATCCTCTGCTC













ATTGT






chr
537931
C
T
BIRC8
p.A156
 0.000
 0.007
1.16
0.00
GAAGTCTGATTCAATTCATT
SEQ ID


19
62



T
00
25
E−03

TTCTGTAGTGTCTTTCTGAG
NO: 531












[C/T]GCTCACTAGATCTGC













AACAAGAACCTCAAGCGTTT













TATAG






chr
238973
A
G
SCLY
p.K60E
 0.000
 0.007
1.11
0.00
AACGACTCCCCTGGAGCCAG
SEQ ID


2
062




00
30
E−03

AAGTTATCCAGGCCATGACC
NO: 592












[A/G]AGGCCATGTGGGAAG













CCTGGGGAAATCCCAGCAGC













CCGTA






chr
503153
C
A
CRELD
p.D182
 0.028
 0.061
4.03
0.44
ACATGGGGTACCAGGGCCCG
SEQ ID


22
63


2
E
20
59
E−03

CTGTGCACTGACTGCATGGA
NO: 637












[C/A]GGCTACTTCAGCTCG













CTCCGGAACGAGACCCACAG













CATCT






chr
819672
C
T
BMP3
p.T222
 0.000
 0.007
1.16
0.00
GCCAAAGAAAATGAAGAGTT
SEQ ID


4
40



M
00
25
E−03

CCTCATAGGATTTAACATTA
NO: 706












[C/T]GTCCAAGGGACGCCA













GCTGCCAAAGAGGAGGTTAC













CTTTT
















TABLE 3







Variants associated with pelvic pain symptom of endometriosis





















Alter-


Chron-










nate

Amino
ic









Refer-
Allele/

Acid
Pelvic
Infer-

OR





Posi-
ence
Minor

posi-
Pain
tility
p
[L95-

SEQ ID


Chr
tion
Allele
Allele
Gene
tion 
MAF
MAF
value
U95]
Context Sequence
NO





chr
141232
C
T
LRP1B
p.A317
 0.000
 0.010
7.31
0.00
GCCCAGTAGAGTCTACGATT
SEQ ID


2
800



8T
00
87
E−05

AACATAATCTATTGTTAGTG
NO: 577












[C/T]CATAGGTCTAGAAAT













CTTGGTTTCTATGACAACAC













TCTGA






chr
560330
G
A
COL21
p.T343
 0.063
 0.115
2.12
0.52
TACTAAGAGACGAATTTGGT
SEQ ID


6
94


A1
M
89
90
E−03

GCCAGCCTTCATCAAACAAC
NO: 786












[G/A]TCTACAAAAAGAAAGT













GTGGAAGATTCATAAATAAA













GCCC






chr
854737
C
T
TBX18
p.G48
 0.480
 0.576
2.41
0.68
GCGCCGCCGCCGCGGCTGCA
SEQ ID


6
58



R
50
60
E−03

GCCTCCGTCGTCCACGGCCC
NO: 789












[C/T]CGCCGCCTCTTCGGC













GCCCAGTTTTCGCCGCTTCT













TCTGA






chr
117170
0
C
DFNB3
p.P562
 0.100
 0.160
4.01
0.59
AACCAAAGGGCCAGCCAGGG
SEQ ID


9
241


1
A
70
60
E−03

CCTTACCACGGACACATCTG
NO: 969












[G/C]GAGGGCGTTGATATT













GCCCTGGACAGCCTCGCCAG













TTTCC
















TABLE 4







Additional variants associated with endometriosis.

























L95
U95














(low-
(up-














er
per










Local



lim-
lim-










popu-



it
it









Endo-
lat-



95%
95%









metri-
tion



con-
Con-









osis
Con-
gnomA


fi-
fi-









pa-
trol
D

OR
dence
dence


Base
mi-
ma-




tient
Fre-
Fre-
P
(odds
In-
In-


Pair
nor
jor

SEQ


Fre-
quen-
quen-
(Chisq
Ra-
ter-
ter-


Posi-
Al-
Al-

ID


quency
cy
cy
test)
tio)
val)
val)
CHR
SNP
tion
lele
lele
Context Sequence
NO





0.3055
 0.28
 0.288
4.49
1.13
1.07
1.20
1
rs3410
 16,08
C
T
GCATCAGGTATTTTTACCCA
SEQ




 3
E−05




8989
  2,127


CATTTACCCCACCAGATTCT
ID














[T/C]GCTATGAAGCCACAA
NO:














GGGACAAACCTGGGTTGGCA
1014














ACCCC






0.1844
 0.149
 0.159
1.75
1.29
1.20
1.38
1
rs2235
 22,45
T
C
AAGCATCTGTGCCCCTAAAG
SEQ



 4
 1
E−12




529
  0,487


CTGATGGCGGCTCCTCCAG
ID














[C/T]TTCTCTACCTGGTTC
NO:














TGGTGTCCAGCCCTTGGACT
1015














CCAGG






0.2294
 0.199
 0.208
5.07
1.20
1.12
1.28
1
rs1204
 22,47
A
G
CATGAGCCACCTTGCCTGGC
SEQ



 2
 6
E−08




2083
  2,732


CGGAAATTCTTAATGAGAAA
ID














[G/A]TCTCTTGGAGGAAAT
NO:














GCTCTTCTAACTTTCAAGAA
1016














CAGCC






0.4374
 0.404
 0.420
1.07
1.15
1.09
1.21
1
rs4623
 22,48
G
A
ATCTTCAGCCTCCTACCAGC
SEQ



 2
 5
E−06




666
  0,312


AACTATGCACACAGAAGCCC
ID














[A/G]GCCGGTATCCCCACA
NO:














GAGGCAGACGCCCCGGCACT
1017














GCCTT






0.1126
 0.096
 0.099
9.43
1.19
1.09
1.30
1
rs1206
 97,98
T
C
AGTTGAAACTCACAAACTGC
SEQ



37
15
E−05




1124
  9,751


AGGAATATAGTCATTGGGGT
ID














[C/T]CCTTAGATGCAGAAA
NO:














AGAAAATTAACTACAGCGAG
1018














TTATG






0.3216
 0.348
 0.338
3.65
0.89
0.84
0.94
2
rs2349
 49,24
T
C
AAAACTTTATTCATAAAAAC
SEQ



 7
 8
E−05




415
  7,832


AGGTGTCAGGCTGGATTTGA
ID














[T/C]CCATTGGCTGTAGTT
NO:














CAGTGACACTGTCCTAGATC
1019














GTGGA






0.0955
 0.077
 0.086
1.24
1.26
1.15
1.38
2
rs1702
 98,63
G
A
TCCGGGGAACACGATTCCAC
SEQ


9
47
25
E−06




5778
  7,504


CCATCACTGGGTGCTAGGTC
ID














[A/G]AGGGTTCAGTTCTAT
NO:














GTCCTTCAGCACTTATGAAA
1020














CTGAG






0.1044
 0.087
 0.090
2,55
1.21
1.11
1.32
2
rs1702
 98,67
A
G
GGATGAATGGAAACTTGATT
SEQ



78
62
E−05




6292
  7,164


CTCTTAATACAGTCCACTTG
ID














[G/A]GCTCCATTTGTCTTC
NO:














ACAGCAACCATTTGCTGGAT
1021














TTATT






0.4036
 0.374
 0.382
1.47
1.13
1.07
1.20
2
rs7555
135,1
A
G
TATGCTTAGGAAATATGTAT
SEQ



 4
 7
E−05




03
 44,45


ATATGGGATATCTCAAAATA
ID











  4


[A/G]GGAAAAGTTGGAGTG
NO:














AAGATTAAAATAGAAAATAA
1022














CAAAA






0.1662
 0.188
 0.182
4.81
0.86
0.80
0.93
2
rs1017
219,7
C
T
CTATGTGAATGTGACTGAAA
SEQ




 2
E−05




7996
 46,56


CATATCTGTGGGAGTGGGCT
ID











  1


[T/C]GTGGGGAACCCTGTG
NO:














TGTATGGGCATCTATTCCTG
1023














GGGAT






0.2852
 0.259
 0.263
1.47
1.14
1.08
1.21
2
rs3882
225,9
T
C
ACAGTTAATATTGACTGCTT
SEQ





E−05




08
 38,99


TGTTCATTGATACATTCCCT
ID











  6


[T/C]GACCTAGACCATTGC
NO:














TGGGCACATAGTAGGCTCTC
1024














AGTAA






0.1818
 0.161
 0.169
5.28
1.16
1.08
1.24
3
rs6792
  6,10
A
G
CTATTGATTTTTGAGGTAGA
SEQ



 3
 5
E−05




001
  6,251


TATTGATGCAATTAGAGATA
ID














[A/G]GCTTTAGGAAGATCT
NO:














TCCTGGAAGTGGTATATAAA
1025














TAGTT






0.2338
 0.258
 0.258
6.26
0.88
0.82
0.94
3
rs6777
  8,78
G
A
CACCCTTCAGATCATAAAAC
SEQ




 4
E−05




088
  6,487


AATAGAATTTGAGAGCTGCG
ID














[A/G]CTATAGCACTGCCAC
NO:














TAAGTCACTGTTGGCTTAAG
1026














CAAG






0.1513
 0.174
 0.168
1.05
0.84
0.78
0.91
3
rs4293
 25,91
T
C
AATTGACACACTACTGAAAA
SEQ



 4
 2
E−05




672
  3,415


GAAAAGAGAATTAGAACAAC
ID














[T/C]TGCCTGGAGTTAAAG
NO:














TCCCTTAGTTAATGGATAAG
1027














TCACC






0.1244
 0.146
 0.134
9.21
0.83
0.77
0.90
3
rs1684
100,8
G
T
TCTGGTGTCATTAAGGAAGC
SEQ




 4
E−06




3225
 01,25


AGGTTACAGGCCAGCATATC
ID











  7


[T/G]TCAAATAGCTACACA
NO:














GGTGTTAGAACTGCATGGTC
1028














TTATA






0.1405
 0.122
 0.126
8.98
1.17
1.08
1.27
3
rs4680
156,2
A
G
GTGCTAATTATCCAGAATCA
SEQ



 6

E−05




277
 45,78


GCTGCAGTTGCTACCATGGA
ID











  1


[A/G]GTAACCAGCTCTGCC
NO:














CAGTGGGTTCTCCIGTGCCC
1029














TACAG






0.1399
 0.120
 0.125
2.78E
1.18
1.09
1.28
3
rs6795
156,2
T
C
TAGTGAAGAAAACATCATGC
SEQ



 8
 9
E−05




731
 62,46


TGGTTATGTTACCATTTTTC
ID











  0


[C/T]CAGGCAACCAGGGTT
NO:














ATGGAAGAAAGGACTCATTA
1030














ATGGC






0.2683
 0.298
 0.288
1.43
0.86
0.81
0.92
4
rs1250
 56,00
A
C
GATGTGGTCATATGAAGGCT
SEQ



 8

E−06




5096
  6,102


TGACTGGGGCTGAAGAATAC
ID














[C/A]TTTCTGGTGTGACTC
NO:














ACTCACATGACTATTGGCAA
1031














GAGAA






0.2068
 0.182
 0.190
6.96
1.17
1.09
1.25
4
rs1001
161,3
A
G
CCTTGGAGAGTTCCTCCACT
SEQ



 6
 7
E−06




4285
 07,97


TCTCTCTGACAATTAAAATC
ID











  2


[G/A]GTGTTTGCTGAGATT
NO:














AGACATTTTTTTCTTCTCTG
1032














TTTAG






0.0461
 0.035
 0.032
5.50
1.31
1.15
1.49
4
rs1265
186,3
A
G
TGGTGGTAGGGAGACCTTTT
SEQ


1
63
 3
E−05




0364
 65,99


GGTGGTATTTGAATTAAACA
ID











  8


[G/A]TATCATTTTCTTTAA
NO:














AACCAACTCCACAGACTACA
1033














AAAAT






0.0548
 0.040
 0.047
1.06
1.39
1.23
1.57
4
rs4611
188,9
G
T
GTGTTGGTCGGTACAGTTCT
SEQ


1
 1
 9
E−07




976
 90,95


AGAAGGAAAGCTCTGAGCTG
ID











  5


[T/G]GCCCCTCTCTCCAGG
NO:














TGGAATTAGATTTTATATAT
1034














TCACT






0.3727
 0.346
 0.343
7.34
1.12
1.06
1.19
5
rs4128
 76,42
T
C
ATTCCCCATTCCTTTACAAT
SEQ



 6
 7
E−05




741
  3,967


TATAATTGCCTCCATATTGT
ID














[C/T]CAAGGACCATAGTTA
NO:














CCACTTGACCCAGAGCCTCT
1035














CCCTT






0.4173
 0.383
 0.393
6.02
1.15
1.09
1.22
5
rs1252
 76,42
A
C
AGCTGTTCTCAGATACCAGA
SEQ



 7
 9
E−07




1058
  6,987


CTGGAATAAACGAGAGACAT
ID














[C/A]TGGAGAAAGGAGACC
NO:














TCTTCCTATCCCAACAGGAC
1036














TGTGT






0.1807
 0.156
 0.164
1.77
1.19
1.11
1.28
6
rs6456
 19,76
G
A
GCTCACCAAGCAAGATTCCT
SEQ



 6
 5
E−06




259
  1,718


CTCATCCCCTGCCACTCCCT
ID














[A/G]TTTAATGCCTTTGTA
NO:














AAAACTGTAATTTGGTGAAT
1037














CCCAA






0.1874
 0.165
 0.161
2.88
1.16
1.08
1.24
6
rs5634
151,2
C
T
GCTACTCTTTTCTTCCAAAA
SEQ



 9
 5
E−05




40
 88,99


TACTCTCTCCTCAGCAGCCA
ID











  1


[T/C]AGAGACTGAAACCTA
NO:














ATGAAGCCCTGTTGCCTTCC
1038














TACTT






0.1003
 0.118
 0.126
6.95
0.83
0.76
0.91
6
rs9347
166,3
T
G
TCATTGGGAGTTATGAGCAC
SEQ




 2
E−05




099
 27,88


ATTTCATAAACATAATTCCA
ID











  6


[G/T]GGGTTCGCCTGTGAT
NO:














GACATCATTCCTTTTCACAA
1039














GGTTT






0.4488
 0.410
 0.415
2.01
1.17
1.11
1.23
7
rs1177
 27,20
G
T
CTCCCCCTGCCCCCAATTCC
SEQ



 7
 2
E−08




3804
  6,688


TAACAGAAAGCAGCGACTCC
ID














[T/G]AGAACAGGGGTAATC
NO:














AAATTCACGTGTGGATACTG
1040














TGCCT






0.1704
 0.191
 0.182
9.23
0.87
0.81
0.93
7
rs1153
 37,74
G
A
AGGAAAATAAATTATGGAGA
SEQ



 6
 9
E−05




5191
  7,276


CATTAAGTAAATTGCCCAAG
ID














[A/G]TGGCCCAGCTAGTAA
NO:














ATAATAAAGGCAAGATTTTA
1041














GAGCC






0.2479
 0.224
 0.198
5.67
1.14
1.07
1.21
8
rs1734
 60,82
G
A
TAATGAATCTGAGTGGGATA
SEQ



 6
 5
E−05




2242
  8,697


GTGATCAGAATAAGGAAGTA
ID














[A/G]GGCCAATAACATTTC
NO:














TGGGTAACTTGCCATGAGCC
1042














AAGCA






0.0619
 0.079
 0.08
2.88
0.77
0.69
0.86
9
rs9695
106,1
A
C
TTATAGTCCCAAGTAGTCAG
SEQ


9
25

E−06




167
 69,26


AGATGGACTGTATAATATGC
ID











  8


[C/A]GGGCACAGGGCAAAA
NO:














CAAGAATGAGGGAAGTTGTT
1043














GACAG






0.3579
 0.391
 0.386
4.64
0.87
0.82
0.92
10
rs1125
  5,422 
C
A
AGCTATCATTCCCCAGTGTG
SEQ



 9
 1
E−07




3141
  2,196


AACCTCAAGTCATCAGATTG
ID














[A/C]ATCTCCCCACCTGCC
NO:














ATTGTTTTTATCACCTACCA
1044














ACACC






0.1681
 0.142
 0.132
1.62
1.22
1.13
1.31
10
rs1125
  9,22
C
A
TGAAATTGAAGTGGTGTTTA
SEQ



 5
 7
E−07




6106
  2,228


TGAATCACATATGATAGATT
ID














[A/C]GGCAATTGAGTTATA
NO:














TTTTTATATCTGCTTATCTC
1045














TCTAA






0.4008
 0.373
 0.369
4.37
1.12
1.06
1.19
13
rs7997
 46,36
A
G
GGCTGGAGGTCGAAAGACTC
SEQ



 4
 4
E−05




707
  0,678


TAATCTGTTTCACTGTTTAC
ID














[G/A]TGTTCAGTCAGTTCT
NO:














CTCATTGGCAAAATATTTAT
1046














CTCAA






0.1636
 0.184
 0.172
7.49
0.86
0.80
0.93
13
rs9317
 66,13
C
T
TGTTAAGTTATTCCAATAAT
SEQ



 8
 6
E−05




519
  7,562


AAAATGTCATCCATAGGTTA
ID














[T/C]TGTCACGTTTTAATA
NO:














TAAGACTTCTAATCAAATTC
1047














CTGGG






0.1589
 0.139
 0.130
5.40
1.17
1.08
1.26
13
rs3362
110,4
T
C
TGGCTTCTTCGCAACTTGCA
SEQ



 5
 5
E−05




37
 96,41


TAGAGGCTACCTCTGTGTCC
ID











  0


[C/T]CTTATGGCTCGATAG
NO:














CTCATTTCTTTTTATCCCCA
1048














AATAA






0.3534
 0.326
 0.32
3.80
1.13
1.07
1.19
14
rs1049
 52,54
G
A
ATAAACATAGTTATGCTTCA
SEQ



 6

E−05




8441
  4,224


TTACTCTGGTACAGAAACCC
ID














[G/A]GTTCATTAGCCATTC
NO:














AGAATGATTGTGATATCCAA
1049














AATGA






0.3145
 0.287
 0.285
1.36
1.14
1.07
1.21
14
rs7157
 52,57
T
C
TGTATCCAACCATGGGAAAA
SEQ 



 1
 5
E−05




151
  1,583


AGACTTAGCTACATTGTATA
ID














[T/C]ATTTGATGAGTAACG
NO:














TGTTTATAATACAACAAAAA
1050














GTGAA






0.1256
 0.108
 0.113
9.94
1.18
1.08
1.28
14
rs1258
 71,18
T
C
TTGTGCTGCCTGAGAGGAGA
SEQ 



 7
 1
E−05




6828
  6,513


GGGAGCATCTCACCATCTCC
ID














[C/T]GCCTTGGTATCTTTT
NO:














ATTCTTTAGGACTCAGCTCA
1051














GGTTC






0.4297
 0.460
 0.457
5.73
0.88
0.83
0.93
14
rs1951
100,7
G
A
AATAAGTGAAAGAACTAGCA
SEQ 



 9
 2
E−06




521
 43,42


GTGCAGCTAGTAAATCTAAC
ID











  1


[G/A]TGGTTCTTTTTTGAC
NO:














AACTGACACCAGAACCCTTA
1052














ATCAT






0.3167
 0.343
 0.337
3.97
0.89
0.84
0.94
15
rs7181
 40,36
G
A
AAAAAACCCTTACATTAGCA
SEQ 



 6
 8
E−05




230
  0,741


TAAAATCTGTAACAGGAGTG
ID














[A/G]AATGGAAATACAAGT
NO:














TCTTGGAGAGAACGAAATAA
1053














TGTAA






0.5069
 0.479
 0.474
7.28
1.12
1.06
1.18
15
rs1244
 47,14
C
T
TTGCCTTTAGGACAGGACTG
SEQ 



 4
 6
E−05




2708
  4,386


TTCTTAGTCCTCTCCAGTTC
ID














[T/C]ACTCTATTGTAAAGT
NO:














TTCTGAAAGTGCCTCAGGTA
1054














TTTCA






0.4955
 0.466
 0.471
1.79
1.13
1.07
1.19
16
rs1085
 66,40
C
T
AGAATCTTAGGCTCATTTTG
SEQ 




 2
E−05




2432
  2,515


CCCACATGGACCCATGACTG
ID














[T/C]TCCCTGTATCCTCTC
NO:














TCTGCACCCCCTCAGTCACA
1055














CTGAA






0.1229
 0.104
 0.105
2.60
1.20
1.10
1.30
16
rs1528
 72,12
T
C
CAGTGTCTACATCACTGACC
SEQ 



 9
 6
E−05




28
  3,886


TCTGTGGTATTTCCTCCTGC
ID














[T/C]TATGACTGAGGGTAG
NO:














AATCCTCTGGTCCTTTTTTC
1056














CCCAA






0.3705
 0.343
 0.348
2.69
1.13
1.07
1.19
17
rs8076
 66,51
A
G
GAGCCAGGTCATAGATGTAG
SEQ




 8
E−05




465
  3,025


CTTGTTTTGAAGTCAAGTGC
ID














[A/G]TTCCTGGAGATCCGG
NO:














TTTTGAAATGGGTCACTGTA
1057














AGGTG






0.3709
 0.343
 0.347
2.45
1.13
1.07
1.19
17
rs2907
 66,53
A
G
CCCTTAGCTTGTCAAGTTAG
SEQ 



 2
 5
E−05




373
  3,655


CCTGGCCAGAGTCTGGGGCC
ID














[A/G]ACTGTTCCACTGGGC
NO:














CGTCGACTATGACACTCTGC
1058














TGTCC






0.2337
 0.210
 0.207
6.31
1.14
1.07
1.22
18
rs2175
 46,07
G
A
GACGGTGAGGAGCGGGTGAT
SEQ 



 9

E−05




565
  9,852


GGGGTAATTCCCGGAATGCA
ID














[G/A]ACTGTAACCAGGGCA
NO:














GTCAGAACAAGGATTGTTAA
1059














CCTGC






0.3788
 0.352
 0.361
7.47
1.12
1.06
1.18
18
rs3900
 74,73
T
C
GTGAGTCGCCACTGTTGGCT
SEQ 



 5
 7
E−05




176
  9,022


TATTTTATGTATTTGCATCG
ID














[T/C]TCCCATCTAAATGGG
NO:














GATTCCCAGACTTCATAGGC
1060














CAGTA






0.0717
 0.057
 0.061
2.35
1.26
1.13
1.40
20
rs6110
 15,69
G
A
GTACTTATAAAGCAGCGGAA
SEQ 


2
86
64
E−05




759
  3,977


TCTCCTGCTTTATGAACTTT
ID














[A/G]GTTCTGGGCTTCAGC
NO:














TCTGTATTAGTCTGTTCTCA
1061














CACTG






0.2432
 0.22
 0.230
5.67
1.14
1.07
1.21
20
rs6043
 16,45
C
A
AATTCTCAGATCCACCAGTG
SEQ 





E−05




979
  1,642


AGACAGAAAACATAGGAGAC
ID














[A/C]GGAAAAGAAGAATCA
NO:














AATGGGAAGTGGAAAAAAGA
1062














CAGGG






0.0277
 0.019
 0.016
8.72
1.46
1.24
1.73
21
rs1170
 41,90
T
C
AAATGCTCCTAGAACTGCAA
SEQ 


7
14
63
E−06




2826
  8,935


AACACCTAACTTATTCCAAA
ID














[C/T]TTTCCGGATGAAAAG
NO:














GCAGAGGATTTTCTACTCCC
1063














ATTTC






0.2375
 0.262
 0.248
4.68
0.88
0.82
0.93
22
rs1296
 18,02
G
A
TCTCTTTCCAGGTTAAATGT
SEQ 



 3

E−05




795
  1,760


TGTTCATTGCGTCCTTTCCC
ID














[A/G]AAGAGTCTGTTCCCA
NO:














TAGAGAAGCATGGCACAAAG
1064














TGTGC






0.077
 0.094
 0.090
1.61
0.80
0.73
0.89
22
rs7364
 45,33
T
C
CAGCCGATGGGCTCTGCCAG
SEQ 



21
76
E−05




90
  8,213


ATTCCTGATCCACAGTAGGA
ID














[C/T]CCTGGGGGCACCCTC
NO:














TGCCCGAGGACCCTGGAACA
1065














CACAG









While exemplary embodiments of the present disclosure have been shown and described herein, it will be apparent to those skilled in the art that such embodiments are provided by way of example only. It is not intended that the disclosure be limited by the specific examples provided within the specification. While the disclosure has been described with reference to the aforementioned specification, the descriptions and illustrations of the embodiments herein are not meant to be construed in a limiting sense. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the disclosure. Furthermore, it shall be understood that all embodiments of the disclosure are not limited to the specific depictions, configurations or relative proportions set forth herein which depend upon a variety of conditions and variables. It should be understood that various alternatives to the embodiments of the disclosure described herein may be employed in practicing the disclosure. It is therefore contemplated that the disclosure shall also cover any such alternatives, modifications, variations or equivalents. It is intended that the following claims define the scope of the disclosure and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. A method comprising: (a) hybridizing a nucleic acid probe to a nucleic acid sample from a human subject suspected of having or developing endometriosis; and(b) detecting a genetic variant in a panel comprising two or more genetic variants defining a minor allele listed in Table 1.
  • 2. The method of claim 1, wherein the nucleic acid sample comprises mRNA, cDNA, genomic DNA, or PCR amplified products produced therefrom, or any combination thereof.
  • 3. The method of claim 1, wherein the nucleic acid sample comprises PCR amplified nucleic acids produced from cDNA or mRNA.
  • 4. The method of claim 1, wherein the nucleic acid sample comprises PCR amplified nucleic acids produced from genomic DNA.
  • 5. The method of claim 1, wherein the nucleic acid probe is a sequencing primer.
  • 6. The method of claim 1, wherein the nucleic acid probe is an allele specific probe.
  • 7. The method of claim 1, wherein the detecting comprises DNA sequencing, hybridization with a complementary probe, an oligonucleotide ligation assay, a PCR-based assay, or any combination thereof.
  • 8. The method of claim 1, wherein the panel comprises at least: 5, 10, 15, 20, 25, 50, 75, 100, 150, 200, 250, 500, or more genetic variants defining minor alleles listed in Table 1.
  • 9. The method of claim 1, wherein the genetic variant has an odds ratio (OR) of at least: 1.5, 2, 5, 10, 20, 50, 100, or more.
  • 10. The method of claim 1, wherein the genetic variant comprises a synonymous mutation, a non-synonymous mutation, a nonsense mutation, an insertion, a deletion, a splice-site variant, a frameshift mutation, or any combination thereof.
  • 11. The method of claim 1, wherein the genetic variant comprises a protein damaging mutation.
  • 12. The method of claim 1, wherein the panel further comprises one or more protein damaging or loss of function variants in one or more genes selected from the group consisting of GAT2, CCDC169, CASP8AP2, POU2F3, CD19, IGSF3, GLI3, PEX26, OLIG3, CIB4, NKX3-2, CFTR, and any combinations thereof.
  • 13. The method of claim 12, further comprising sequencing the one or more genes to identify the one or more protein damaging or loss of function variants.
  • 14. The method of claim 13, wherein the one or more protein damaging or loss of function variants are identified based on a predictive computer algorithm.
  • 15. The method of claim 13, wherein the one or more protein damaging or loss of function variants are identified based on reference to a database.
  • 16. The method of claim 12, wherein the one or more protein damaging or loss of function variants comprise a stop-gain mutation, a spice-site mutation, a frameshift mutation, a missense mutation, or any combination thereof.
  • 17. The method of claim 1, wherein the panel further comprises one or more additional variants defining a minor allele listed in Table 4.
  • 18. The method of claim 1, wherein the panel is capable of identifying human subjects as having or being at risk of developing endometriosis with a specificity of at least: 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%.
  • 19. The method of claim 1, wherein the panel is capable of identifying human subjects as having or being at risk of developing endometriosis with a sensitivity of at least: 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%.
  • 20. The method of claim 1, wherein the panel is capable of identifying human subjects as having or being at risk of developing endometriosis with an accuracy of at least: 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%.
  • 21. The method of claim 1, further comprising administering a therapeutic to the human subject.
  • 22. The method of claim 21, wherein the therapeutic comprises hormonal therapy, an advanced reproductive therapy, a pain managing medication, or any combination thereof.
  • 23. The method of claim 21, wherein the therapeutic comprises hormonal contraceptives, gonadotropin-releasing hormone (Gn-RH) agonists, gonadotropin-releasing hormone (Gn-RH) antagonists, progestin, danazol, or any combination thereof.
  • 24. The method of claim 1, wherein the human subject is asymptomatic for endometriosis.
  • 25. The method of claim 1, wherein the human subject is a teenager.
  • 26. A method comprising detecting one or more genetic variants defining a minor allele listed in Table 1 in genetic material from a human subject suspected of having or developing endometriosis.
  • 27. The method of claim 26, wherein the genetic material comprises mRNA, cDNA, genomic DNA, or PCR amplified products produced therefrom, or any combination thereof.
  • 28. The method of claim 26, wherein the detecting comprises DNA sequencing, hybridization with a complementary probe, an oligonucleotide ligation assay, a PCR-based assay, of any combination thereof.
  • 29. The method of claim 26, wherein the detecting comprises hybridizing a nucleic acid probe to the genetic material.
  • 30. The method of claim 26, wherein the detecting comprises testing for the presence or absence of at least: 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, 100, 150, 250, or 500 genetic variants defining a minor allele listed in Table 1.
  • 31. The method of claim 26, wherein the one or more genetic variants have an odds ratio (OR) of at least: 1.5, 2, 5, 10, 20, 50, 100, or more.
  • 32. The method of claim 26, further comprising administering a therapeutic to the human subject.
  • 33. A method comprising: (a) sequencing one or more genes selected from the group consisting of GAT2, CCDC169, CASP8AP2, POU2F3, CD19, IGSF3, GLI3, PEX26, OLIG3, CIB4, NKX3-2, CFTR, and any combinations thereof to identify one or more protein damaging or loss of function variants in a human subject suspected of having or developing endometriosis; and(b) administering an endometriosis therapy to the human subject.
  • 34. The method of claim 33, wherein the one or more protein damaging or loss of function variants are identified based on a predictive computer algorithm, reference to a database, or a combination thereof.
  • 35. The method of claim 33, wherein the one or more protein damaging or loss of function variants comprise a stop-gain mutation, a spice-site mutation, a frameshift mutation, a missense mutation, or any combination thereof.
  • 36. The method of claim 33, wherein the endometriosis therapy comprises a hormonal therapy, an assisted reproductive therapy, a pain medication, or any combination thereof.
  • 37. A method of preventing endometriosis comprising administering a hormonal therapy to a human subject having at least one genetic variant defining a minor allele listed in Table 1.
  • 38. The method of claim 37, wherein the hormonal therapy comprises administration of hormonal contraceptives, gonadotropin-releasing hormone (Gn-RH) agonists, gonadotropin-releasing hormone (Gn-RH) antagonists, progestin, danazol, or any combination thereof.
  • 39. The method of claim 37, further comprising detecting the at least one genetic variant in a genetic material from the human subject.
  • 40. The method of claim 39, wherein the detecting comprises DNA sequencing, hybridization with a complementary probe, an oligonucleotide ligation assay, a PCR-based assay, or any combination thereof.
  • 41. The method of claim 39, wherein the detecting comprises hybridizing a nucleic acid probe to the genetic material.
  • 42. The method of claim 41, wherein the nucleic acid probe is a sequencing primer or an allele-specific probe.
  • 43. The method of claim 37, wherein the at least one genetic variant has an odds ratio (OR) of at least: 1.5, 2, 5, 10, 20, 50, 100, or more.
  • 44. The method of claim 37, wherein the at least one genetic variant comprises a synonymous mutation, a non-synonymous mutation, a nonsense mutation, an insertion, a deletion, a splice-site variant, a frameshift mutation, or any combination thereof.
  • 45. A method of treating endometriosis associated infertility comprising administering an assisted reproductive therapy to a human subject having at least one genetic variant defining a minor allele listed in Table 2.
  • 46. The method of claim 45, wherein the assisted reproductive therapy comprises in vitro fertilization, intrauterine insemination, ovulation induction, gamete intrafallopian transfer, or any combination thereof.
  • 47. The method of claim 45, further comprising detecting the at least one genetic variant in a genetic material from the human subject.
  • 48. The method of claim 47, wherein the detecting comprises DNA sequencing, hybridization with a complementary probe, an oligonucleotide ligation assay, a PCR-based assay, or any combination thereof.
  • 49. The method of claim 47, wherein the detecting comprises hybridizing a nucleic acid probe to the genetic material.
  • 50. The method of claim 49, wherein the nucleic acid probe is a sequencing primer or an allele-specific probe.
  • 51. The method of claim 45, wherein the at least one genetic variant has an odds ratio (OR) of at least: 1.5, 2, 5, 10, 20, 50, 100, or more.
  • 52. The method of claim 45, wherein the at least one genetic variant comprises a synonymous mutation, a non-synonymous mutation, a nonsense mutation, an insertion, a deletion, a splice-site variant, a frameshift mutation, or any combination thereof.
  • 53. A method comprising administering a pain medication to a human subject having at least one genetic variant defining a minor allele listed in Table 3.
  • 54. The method of claim 53, wherein the pain medication comprises a nonsteroidal anti-inflammatory drug (NSAID), ibuprofen, naproxen, an opioid, a cannabis-based therapeutic, or any combination thereof.
  • 55. The method of claim 53, further comprising detecting the at least one genetic variant in a genetic material from the human subject.
  • 56. The method of claim 55, wherein the detecting comprises DNA sequencing, hybridization with a complementary probe, an oligonucleotide ligation assay, a PCR-based assay, or any combination thereof.
  • 57. The method of claim 55, wherein the detecting comprises hybridizing a nucleic acid probe to the genetic material.
  • 58. The method of claim 57, wherein the nucleic acid probe is a sequencing primer or an allele-specific probe.
  • 59. The method of claim 53, wherein the at least one genetic variant has an odds ratio (OR) of at least: 1.5, 2, 5, 10, 20, 50, 100, or more.
  • 60. The method of claim 53, wherein the at least one genetic variant comprises a synonymous mutation, a non-synonymous mutation, a nonsense mutation, an insertion, a deletion, a splice-site variant, a frameshift mutation, or any combination thereof.
CROSS-REFERENCE

This application claims the benefit of U.S. Provisional Application No. 62/471,448, filed Mar. 15, 2017, U.S. Provisional Application No. 62/471,457, filed Mar. 15, 2017, U.S. Provisional Application No. 62/471,462, filed Mar. 15, 2017, U.S. Provisional Application No. 62/508,379, filed May 18, 2017, U.S. Provisional Application No. 62/588,265, filed Nov. 17, 2017, U.S. Provisional Application No. 62/588,268, filed Nov. 17, 2017, U.S. Provisional Application No. 62/639,711, filed Mar. 7, 2018, and U.S. Provisional Application No. 62/639,730, filed Mar. 7, 2018, which are hereby incorporated by reference in their entireties.

PCT Information
Filing Document Filing Date Country Kind
PCT/US18/22743 3/15/2018 WO 00
Provisional Applications (8)
Number Date Country
62471448 Mar 2017 US
62471457 Mar 2017 US
62471462 Mar 2017 US
62508379 May 2017 US
62588265 Nov 2017 US
62588268 Nov 2017 US
62639711 Mar 2018 US
62639730 Mar 2018 US