METHODS OF USING GENETIC MARKERS ASSOCIATED WITH ENDOMETRIOSIS

Information

  • Patent Application
  • 20210292841
  • Publication Number
    20210292841
  • Date Filed
    September 06, 2019
    5 years ago
  • Date Published
    September 23, 2021
    2 years ago
Abstract
Disclosed herein are methods of using genetic markers associated with endometriosis, for example via a computer-implemented program to predict risk of developing endometriosis, and methods of preventing or treating endometriosis or a symptom thereof.
Description
BRIEF SUMMARY

The methods and systems described herein provide an approach for sequencing a nucleic acid sample using high throughput methods to detect genetic variants. These methods provide improved methods in the field of diagnosis, assessment and treatment of endometriosis. For example, disclosed herein is the use of nanopore sequencing to detect one or more genetic variants in a nucleic acid sample, wherein the one or more genetic variants are listed in Table 1, Table 2 or Table 3.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned, disclosed or referenced in this specification are herein incorporated by reference in their entirety and to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A-1B is a set of bar charts showing distribution of predictive score using 775 rare variants among 917 endometriosis subjects and 917 controls generated through simulation using the ExAc published frequencies (All rare variants are assumed to be independent).



FIG. 2 is a boxplot of the predictive score across the clinical subtypes of endometriosis. Endoscore is uniform across the severity of endometriosis.



FIG. 3 is a pie chart showing diverse pathways implicated by these 729 genes. No pathway reaches statistical significance, but multiple genes implicated in the Wnt, cadherin, integrin, and inflammation medicated by cytokine signaling pathways.



FIG. 4 is a diagram showing three experimental design strategies. Sequencing nuclear families can help identify Mendelian segregation, whereas relative pairs can help uncover distant relationships with IBD. Unrelated individuals are typically studied to identify common variants with small effects.



FIG. 5 is a diagram showing a nuclear family with an IGF2 mutation on the left and an extended pedigree with a LONP1 mutation to the right.



FIG. 6 is a diagram of mutation patterns cis/trans/haplotypes.



FIG. 7 is a bar chart showing example of results: genes implicated in GWAS (genome-wide association studies) meta-analyses.



FIG. 8A-8C is a set of diagrams showing striking excess of pathogenic mutations (p<10−16).



FIG. 9 is a set of charts showing examples of FN1 and GREB1 in which multiple damaging mutations were found.



FIG. 10 is a diagram showing a computer-based system that may be programmed or otherwise configured to implement methods provided herein.



FIG. 11 is a diagram showing a method and system as disclosed herein.



FIG. 12 shows the whole exome sequencing method used in Example 9.



FIG. 13 shows the sample population of Example 9 of 137 women with surgically confirmed endometriosis and a common ancestor born in 1608.



FIG. 14 shows a common ancestor in GenDB 15-17 generations ago.



FIG. 15 shows a three generation family with 7 women affected with endometriosis is shown in FIG. 15A with a brief clinical description of their endometriosis-related symptoms tabularized in FIG. 15B. in addition, patient 1 has been diagnosed with 14 additional co-morbidities including: Crohn's disease, interstitial cystitis, urinary bladder diverticulum, bronchial asthma, osteoporosis, multinodual goiter, cardiovascular disease, gastroesophageal reflux disease, malignant tumor of urinary bladder, Barrett's esophagus, lupus erythematosus, ankylosing spondyitis, multiple sclerosis, and bilateral cataract.



FIG. 16 shows the chromosomal position and characteristics of the genetic variants surrounding the hemizygous deletions is shown to the left, and the genotypes for each of the seven affected women is shown to the right. Bold boarders indicate the extent of the deletion and the individual that carries the deletions. Thin boarders indicate possible carriers of the deletion.



FIG. 17 shows results of Example 11 including number and percentage of matched probands.



FIG. 18 shows the materials and methods of Example 11.



FIG. 19 shows percentage of affected subjects in both the index pedigree and unrelated pedigrees.



FIG. 20 shows the rate of surgically diagnosed endometriosis.





DETAILED DESCRIPTION

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of the ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the compositions or unit doses herein, some methods and materials are now described. Unless mentioned otherwise, the techniques employed or contemplated herein are standard methodologies. The materials, methods and examples are illustrative only and not limiting.


The details of one or more inventive instances are set forth in the accompanying drawings, the claims, and the description herein. Other features, objects, and advantages of the inventive instances disclosed and contemplated herein can be combined with any other instance unless explicitly excluded.


In some of many aspects, the disclosure provides methods of using genetic markers associated with endometriosis, for example via a computer-implemented program to predict risk of developing endometriosis, and methods of preventing or treating endometriosis or a symptom thereof. The methods disclosed herein can prevent or cancel an invasive procedure, such as a laparoscopy, that would otherwise have been performed on a subject but for the results, for example a (negative) diagnosis/prognosis, from the methods disclosed herein performed on the subject.


In some cases, genetic markers disclosed herein can be used for early diagnosis and prognosis of endometriosis, as well as early clinical intervention to mitigate progression of the disease. The use of these genetic markers can allow selection of subjects for clinical trials involving novel treatment methods. In some instances, genetic markers disclosed herein can be used to predict endometriosis and endometriosis progression, for example in treatment decisions for individuals who are recognized as having endometriosis. In some instances, genetic markers disclosed herein can enable prognosis of endometriosis in much larger populations compared with the populations which can currently be evaluated by using existing risk factors and biomarkers.


In some cases, disclosed herein is a method for endometriosis diagnosis/prognosis that can utilize detection of endometriosis associated biomarkers such as single nucleotide polymorphisms (SNPs), insertion deletion polymorphisms (indels), damaging mutation variants, loss of function variants, synonymous mutation variants, nonsynonymous mutation variants, nonsense mutations, recessive markers, splicing/splice-site variants, frameshift mutations, insertions, deletions, genomic rearrangements, stop-gain, stop-loss, Rare Variants (RVs), some of which are identified in Tables 1-4 (or diagnostically and predicatively functionally comparable biomarkers). In some instances, the method can comprise using a statistical assessment method such as Multi Dimensional Scaling analysis (MDS), logistic regression, machine learning, or Bayesian analysis.


Some of the variants listed in Table 1 can be splicing variants, for example TMED3(NM_007364:exon1:c.168+1G>A), NM_001276480:c.-160+1G>A, KCNK6(NM_004823:exon2:c.323-1G>A), RGPD4(NM_182588:exon19:c.2606-1G>T), NM_001001891:exon18:c.1988+1G>A, NM_001882:exon3:c.176-2->C. The NM number indicates that a particular GenBank cDNA reference sequence was used for reference. The “c” indicates that the nucleotide number which follows is based on coding DNA sequence. The numbers provide the position of the mutation in the DNA. For instance, 168+1G>A means one base after (+1) the 168th coding nucleotide at the end of the exon is mutated from a G to an A. Likewise for NM_182588:exon19:c.2606-1G>T, one base before (−1) the 2606th coding nucleotide. NM_001882:exon3:c.176-2->C involves an insertion of a C.


In some cases, disclosed herein is a treatment method to a subject determined to have or be predisposed to endometriosis. In some instances, the method can comprise administering to the subject a hormone therapy or an assisted reproductive technology therapy. In some instances, the method can comprise administering to the subject a therapy that at least partially compensates for endometriosis, prevents or reduces the severity of endometriosis that the subject would otherwise develop, or prevents endometriosis related complications, cancers, or associated disorders.


In some cases, provided herein is identification of new variants such as SNPs or indels, unique combinations of such variants, and haplotypes of variants that are associated with endometriosis and related pathologies. In some instances, the polymorphisms disclosed herein can be directly useful as targets for the design of diagnostic reagents and the development of therapeutic agents for use in the diagnosis and treatment of endometriosis and related pathologies. Based on the identification of variants associated with endometriosis, the disclosure can provide methods of detecting these variants as well as the design and preparation of detection reagents needed to accomplish this task. Provided herein are novel variants in genetic sequences involved in endometriosis, methods of detecting these variants in a test sample, methods of identifying individuals who have an altered risk of developing endometriosis and for suggesting treatment options for endometriosis based on the presence of a variant(s) disclosed herein or its encoded product and methods of identifying individuals who are more or less likely to respond to a treatment.


In some cases, provided herein are variants such as SNPs and indels associated with endometriosis, nucleic acid molecules containing variants, methods and reagents for the detection of the variants disclosed herein, uses of these variants for the development of detection reagents, and assays or kits that utilize such reagents. In some instances, the variants disclosed herein can be useful for diagnosing, screening for, and evaluating predisposition to endometriosis and progression of endometriosis. In some instances, the variants can be useful in the determining individual subject treatment plans and design of clinical trials of devices for possible use in the treatment of endometriosis. In some instances, the variants and their encoded products can be useful targets for the development of therapeutic agents. In some instances, the variants combined with other non-genetic clinical factors can be useful for diagnosing, screening, evaluating predisposition to endometriosis, assessing risk of progression of endometriosis, determining individual subject treatment plans and design of clinical trials of devices for possible use in the treatment of endometriosis. In some instances, the variants can be useful in the selection of recipients for an oral contraceptive type therapeutic.


Definitions

Unless otherwise indicated, open terms for example “contain,” “containing,” “include,” “including,” and the like mean comprising.


The singular forms “a”, “an”, and “the” are used herein to include plural references unless the context clearly dictates otherwise. Accordingly, unless the contrary is indicated, the numerical parameters set forth in this application are approximations that may vary depending upon the desired properties sought to be obtained by the present invention.


Unless otherwise indicated, some instances herein contemplate numerical ranges. When a numerical range is provided, unless otherwise indicated, the range includes the range endpoints. Unless otherwise indicated, numerical ranges include all values and subranges therein as if explicitly written out. Unless otherwise indicated, any numerical ranges and/or values herein, following or not following the term “about,” can be at 85-115% (i.e., plus or minus 15%) of the numerical ranges and/or values.


As used herein, “endometriosis” can refer to any nonmalignant disorder in which functioning endometrial tissue is present in a location in the body other than the endometrium of the uterus, i.e. outside the uterine cavity or is present within the myometrium of the uterus. For purposes herein it also includes conditions, such as adenomyosis/adenomyoma, that exhibit myometrial tissue in the lesions. Endometriosis can include endometriosis externa, endometrioma, adenomyosis, adenomyomas, adenomyotic nodules of the uterosacral ligaments, endometriotic nodules other than of the uterosacral ligaments, autoimmune endometriosis, mild endometriosis, moderate endometriosis, severe endometriosis, superficial (peritoneal) endometriosis, deep (invasive) endometriosis, ovarian endometriosis, endometriosis-related cancers, and/or “endometriosis-associated conditions”. Unless stated otherwise, the term endometriosis is used herein to describe any of these conditions.


As used herein, “treatment” includes one or more of: reducing the frequency and/or severity of symptoms, elimination of symptoms and/or their underlying cause, and improvement or remediation of damage. For example, treatment of endometriosis includes, for example, relieving the pain experienced by a woman suffering from endometriosis, and/or causing the regression or disappearance of endometriotic lesions.


As used herein, a “therapeutic” can include a medical device, a pharmaceutical composition, a medical procedure, or any combination thereof. In some embodiments, a medical device may comprise a spinal brace. In some embodiments a medical device may comprise an artificial disc device. A medical device may comprise a surgical implant. A pharmaceutical composition may comprise a muscle relaxant, an anti-depressant, a steroid, an opioid, a cannabis-based therapeutic, acetaminophen, a non-steroidal anti-inflammatory, a neuropathic agent, a cannabis, a progestin, a progesterone, or any combination thereof. A neuropathic agent may comprise gabapentin. A non-steroidal anti-inflammatory may comprise naproxen, ibuprofen, a COX-2 inhibitor, or any combination thereof. A pharmaceutical composition may comprises a biologic agent, cellular therapy, regenerative medicine therapy, a tissue engineering approach, a stem cell transplantation or any combination thereof. A medical procedure may comprise an epidural injection (such as a steroid injection), acupuncture, exercise, physical therapy, an ultrasound, a radiofrequency ablation, a surgical therapy, a chiropractic manipulation, an osteopathic manipulation, or any combination thereof. A therapeutic can include a regenerative therapy such as a protein, a stem cell, a cord blood cell, an umbilical cord tissue, a tissue, or any combination thereof. A therapeutic can include cannabis. A therapeutic can include a biosimilar.


“Haplotype” can mean a combination of genotypes on the same chromosome occurring in a linkage disequilibrium block. Haplotypes serve as markers for linkage disequilibrium blocks, and at the same time provide information about the arrangement of genotypes within the blocks. Typing of only certain variants which serve as tags can, therefore, reveal all genotypes for variants located within a block. Thus, the use of haplotypes greatly facilitates identification of candidate genes associated with diseases and drug sensitivity.


“Linkage disequilibrium” or “LD” can mean that a particular combination of alleles (alternative nucleotides) or genetic variants for example at two or more different SNP (or RV) sites are non-randomly co-inherited (i.e., the combination of alleles at the different SNP (or RV) sites occurs more or less frequently in a population than the separate frequencies of occurrence of each allele or the frequency of a random formation of haplotypes from alleles in a given population). The term “LD” can differ from “linkage,” which describes the association of two or more loci on a chromosome with limited recombination between them. LD can also be used to refer to any non-random genetic association between allele(s) at two or more different SNP (or RV) sites. In some instances, when a genetic marker (e.g. SNP or RV) is identified as the genetic marker associated with a disease (in this instance endometriosis), it can be the minor allele (MA) of the particular genetic marker that is associated with the disease. In some instances, if the Odds Ratio (OR) of the MA is greater than 1.0, the MA of the genetic marker (in this instance the endometriosis associated genetic marker) can be correlated with an increased risk of endometriosis in a case subject as compared to a control subject and can be considered a causative marker (C), and if the OR of the MA less than 1.0, the MA of the genetic marker can be correlated with a decreased risk of endometriosis in a case subject as compared to a control subject and can be considered a protective marker (P). “Linkage disequilibrium block” or “LD block” can mean a region of the genome that contains multiple variants located in proximity to each other and that are transmitted as a block.


Biological samples obtained from individuals (e.g., human subjects) may be any sample from which a genetic material (e.g., nucleic acid sample) may be derived. Samples/Genetic materials may be from buccal swabs, saliva, blood, hair, nail, skin, cell, or any other type of tissue sample. In some instances, the genetic material (e.g., nucleic acid sample) comprises mRNA, cDNA, genomic DNA, or PCR amplified products produced therefrom, or any combination thereof. In some instances, the genetic material (e.g., nucleic acid sample) comprises PCR amplified nucleic acids produced from cDNA or mRNA. In some instances, the genetic material (e.g., nucleic acid sample) comprises PCR amplified nucleic acids produced from genomic DNA.


As used herein, the term “cell-free” or “cell free” can refer to the condition of the nucleic acid sequence as it appeared in the body before the sample is obtained from the body. For example, circulating cell-free nucleic acid sequences in a sample may have originated as cell-free nucleic acid sequences circulating in the bloodstream of the human body. In contrast, nucleic acid sequences that are extracted from a solid tissue, such as a biopsy, are generally not considered to be “cell-free.” In some cases, cell-free DNA may comprise fetal DNA, maternal DNA, or a combination thereof. In some cases, cell-free DNA may comprise DNA fragments released into a blood plasma. In some cases, the cell-free DNA may comprise circulating tumor DNA. In some cases, cell-free DNA may comprise circulating DNA indicative of a tissue origin, a disease or a condition. A cell-free nucleic acid sequence may be isolated from a blood sample. A cell-free nucleic acid sequence may be isolated from a plasma sample. A cell-free nucleic acid sequence may comprise a complementary DNA (cDNA). In some cases, one or more cDNAs may form a cDNA library.


Analysis of Rare and Private Mutations in Sequenced Endometriosis Genes

In some cases, the disclosure provides an analysis to evaluate a coding region of a gene as a component of a genetic diagnostic or predictive test for endometriosis. In some instances, the analysis can comprise one or more of the approaches disclosed herein.


In some instances, the analysis can comprise performing DNA variant search on the next generation sequencing output file using a standard software designed for this purpose, for example Life Technologies TMAP algorithm with their default parameter settings, and Life Technologies Torrent Variant Caller software. ANNOVAR can be used to classify coding variants as synonymous, missense, frameshift, splicing, stop-gain, or stop-loss. Variants can be considered “loss-of-function” if the variant causes a stop-loss, stop-gain, splicing, or frame-shift insertion or deletion).


In some instances, the analysis can comprise evaluating prediction of an effect of each variant on protein function in silico using a variety of different software algorithms: Polyphen 2, Sift, Mutation Accessor, Mutation Taster, FATHMM, LRT, MetaLR, or any combination thereof. Missense variants can be deemed “damaging” if they are predicted to be damaging by at least one of the seven algorithms tested.


In some instances, the analysis can comprise searching population databases (e.g., gnomAD) and proprietary endometriosis allele frequency databases for the prevalence of any loss of function or damaging mutations identified by these analyses. The log of the odds ratio can be used to weight the marker when the variant has been previously observed in the reference databases. When a damaging variant or loss of function variant has never been reported in the reference databases, a default odds ratio of 10 can be used to weight the finding.


In some instances, the analysis can comprise incorporating findings into the Risk Score as with the other low-frequency alleles. Risk Score=Summation [log(OR)×Count], where count equals the number of low frequency alleles detected at each endometriosis associated locus. Risk scores can be converted to probability using a nomogram based on confirmed diagnoses.


In some instances, the methods of the disclosure can provide a high sensitivity of detecting gene mutations and diagnosing endometriosis that is greater than 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 95.5%, 96%, 96.5%, 97%, 97.5%, 98%, 98.5%, 99%, 99.5% or more. In some instances, the methods disclosed herein can provide a high specificity of detecting and classifying gene mutations and endometriosis, for example, greater than 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 95.5%, 96%, 96.5%, 97%, 97.5%, 98%, 98.5%, 99%, 99.5% or more. In some instances, a nominal specificity for the method disclosed herein can be greater than or equal to 70%. In some instances, a nominal Negative Predictive Value (NPV) for the method disclosed herein can be greater than or equal to 95%. In some instances, a NPV for the method disclosed herein can be about 95%, 95.5%, 96%, 96.5%, 97%, 97.5%, 98%, 98.5%, 99%, 99.5% or more. In some instances, a nominal Positive Predictive Value (PPV) for the method disclosed herein can be greater than or equal to 95%. In some instances, a PPV for the method disclosed herein can be about 95%, 95.5%, 96%, 96.5%, 97%, 97.5%, 98%, 98.5%, 99%, 99.5% or more. In some instances, the accuracy of the methods disclosed herein in diagnosing endometriosis can be greater than 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 95.5%, 96%, 96.5%, 97%, 97.5%, 98%, 98.5%, 99%, 99.5% or more.


Computer Implemented Methods


In some aspects, the disclosure provides methods for analysis of gene sequence data associated software and computer systems. The method, for example being computer implemented, can enable a clinical geneticist or other healthcare technician to sift through vast amounts of gene sequence data, to identify potential disease-causing genomic variants. In some cases, the gene sequence data is from a patient who may be suspected of having a genetic disorder such as endometriosis.


In some cases, provided herein is a method for identifying a genetic disorder such as endometriosis or predicting a risk thereof in an individual, or identifying a genetic variant that is causative of a phenotype in an individual. In some instances, the method can comprise determining gene sequence for a patient suspected of having a genetic disorder, identifying sequence variants, annotating the identified variants based on one or more criteria, and filtering or searching the variants at least partially based on the annotations, to thereby identify potential disease-causing variants.


In some instances, the gene sequence is obtained by use of a sequencing instrument, or alternatively, gene sequence data is obtained from another source, such as for example, a commercial sequencing service provider. Gene sequence can be chromosomal sequence, cDNA sequence, or any nucleotide sequence information that allows for detection of genetic disease. Generally, the amount of sequence information is such that computational tools are required for data analysis. For example, the sequence data may represent at least half of the individual's genomic or cDNA sequence (e.g., of a representative cell population or tissue), or the individuals entire genomic or cDNA sequence. In various embodiments, the sequence data comprises the nucleotide sequence for at least 1 million base pairs, at least 10 million base pairs, or at least 50 million base pairs. In certain embodiments, the DNA sequence is the individual's exome sequence or full exonic sequence component (i.e., the exome; sequence for each of the exons in each of the known genes in the entire genome). In some embodiments, the source of genomic DNA or cDNA may be any suitable source, and may be a sample particularly indicative of a disease or phenotype of interest, including blood cells (e.g, PBMCs, or a T-cell or B-cell population). In certain embodiments, the source of the sample is a tissue or sample that is potentially malignant.


In some instances, whole genome sequence can comprise the entire sequence (including all chromosomes) of an individual's germline genome. In some embodiments, the concatenated length for a whole genome sequence is approximately 3.2 Gbases or 3.2 billion nucleotides.


The term “subject,” as used herein, may be any animal or living organism. Animals can be mammals, such as humans, non-human primates, rodents such as mice and rats, dogs, cats, pigs, sheep, rabbits, and others. A subject may be a dog. A subject may be a human. Animals can be fish, reptiles, or others. Animals can be neonatal, infant, adolescent, or adult animals. Humans can be more than about: 1, 2, 5, 10, 20, 30, 40, 50, 60, 65, 70, 75, or about 80 years of age. The subject may have or be suspected of having a condition or a disease, such as endometriosis or related condition. The subject may be a patient, such as a patient being treated for a condition or a disease, such as a patient suffering from endometriosis. The subject may be predisposed to a risk of developing a condition or a disease such as endometriosis. The subject may be in remission from a condition or a disease, such as a patient recovering from endometriosis. The subject may be healthy. The subject may be a subject in need thereof. The subject may be a female subject or a male subject.


The term “sequencing” as used herein, may comprise high-throughput sequencing, next-gen sequencing, Maxam-Gilbert sequencing, massively parallel signature sequencing, Polony sequencing, 454 pyrosequencing, pH sequencing, Sanger sequencing (chain termination), Illumina sequencing, SOLiD sequencing, Ion Torrent semiconductor sequencing, DNA nanoball sequencing, Heliscope single molecule sequencing, single molecule real time (SMRT) sequencing, nanopore sequencing, shot gun sequencing, RNA sequencing, Enigma sequencing, sequencing-by-hybridization, sequencing-by-ligation, or any combination thereof. The sequencing output data may be subject to quality controls, including filtering for quality (e.g., confidence) of base reads. Exemplary sequencing systems include 454 pyrosequencing (454 Life Sciences), Illumina (Solexa) sequencing, SOLiD (Applied Biosystems), and Ion Torrent Systems' pH sequencing system. In some cases, a nucleic acid of a sample may be sequenced without an associated label or tag. In some cases, a nucleic acid of a sample may be sequenced, the nucleic acid of which may have a label or tag associated with it.


In some instances, the gene sequence may be determined by any suitable method. For example, the gene sequence may be a cDNA sequence determined by clonal amplification (e.g., emulsion PCR) and sequencing. Base calling may be conducted based on any available method, including Sanger sequencing (chain termination), pH sequencing, pyrosequencing, sequencing-by-hybridization, sequencing-by-ligation, etc. The sequencing output data may be subject to quality controls, including filtering for quality (e.g., confidence) of base reads. Exemplary sequencing systems include 454 pyrosequencing (454 Life Sciences), Illumina (Solexa) sequencing, SOLiD (Applied Biosystems), and Ion Torrent Systems' pH sequencing system. In some embodiment, sequencing can be performed by nanopore sequencing. For example, Oxford nanopore sequencing.


Nanopores may be used to sequence, a sample, a small portion (such as one full gene or a portion of one gene), a substantial portion (such as multiple genes or multiple chromosomes), or the entire genomic sequence of an individual. Nanopore sequencing technology may be commercially available or under development from Sequenom (San Diego, Calif.), Illumina (San Diego, Calif.), Oxford Nanopore Technologies LTD (Kidlington, United Kingdom), and Agilent Laboratories (Santa Clara, Calif.). Nanopore sequencing methods and apparatus are have been described in the art and for example are provided in U.S. Pat. No. 5,795,782, herein incorporated by reference in its entirety.


Nanopore sequencing can use electrophoresis to transport a sample through a pore. A nanopore system may contain an electrolytic solution such that when a constant electric field is applied, an electric current can be observed in the system. The magnitude of the electric current density across a nanopore surface may depend on the nanopore's dimensions and the composition of the sample that is occupying the nanopore. During nanopore sequencing, when a sample approaches and or goes through the nanopore, the samples cause characteristic changes in electric current density across nanopore surfaces, these characteristic changes in the electric current enables identification of the sample. Nanopores used herein may be solid-state nanopores, protein nanopores, or hybrid nanopores comprising protein nanopores or organic nanotubes such as carbon or graphene nanotubes, configured in a solid-state membrane, or like framework. In some embodiments, nanopore sequencing can be biological, a solid state nanopore or a hybrid biological/solid state nanopore.


In some instances, a biological nanopore can comprise transmembrane proteins that may be embedded in lipid membranes. In some embodiments, a nanopore described herein may comprise alpha hemolysin. In some embodiments, a nanopore described herein may comprise Mycobacterium smegmatis porin.


Solid state nanopores do not incorporate proteins into their systems. Instead, solid state nanopore technology uses various metal or metal alloy substrates with nanometer sized pores that allow samples to pass through. Solid state nanopores may be fabricated in a variety of materials including but not limited to, silicon nitride (Si3N4), silicon dioxide (SiO2), and the like. In some instances, nanopore sequencing may comprise use of tunneling current, wherein a measurement of electron tunneling through bases as sample (ssDNA) translocates through the nanopore is obtained. In some embodiments, a nanopore system can have solid state pores with single walled carbon nanotubes across the diameter of the pore. In some embodiments, nanoelectrodes may be used on a nanopore system described herein. In some embodiments, fluorescence can be used with nanopores, for example solid state nanopores and fluorescence. For example, In such a system the fluorescence sequencing method converts each base of a sample into a characteristic representation of multiple nucleotides which bind to a fluorescent probe strand-forming dsDNA (were the sample comprises DNA). Where a two color system is used, each base is identified by two separate fluorescence, and will therefore be converted into two specific sequences. Probes may consist of a fluorophore and quencher at the start and end of each sequence, respectively. Each fluorophore may be extinguished by the quencher at the end of the preceding sequence. When the dsDNA is translocating through a solid state nanopore, the probe strand may be stripped off, and the upstream fluorophore will fluoresce.


In some embodiments, a 1-100 nm channel or aperture may be formed through a solid substrate, usually a planar substrate, such as a membrane, through which an analyte, such as single stranded DNA, is induced to translocate. In other embodiments, a 2-50 nm channel or aperture is formed through a substrate; and in still other embodiments, a 2-30 nm, or a 2-20 nm, or a 3-30 nm, or a 3-20 nm, or a 3-10 nm channel or aperture if formed through a substrate.


In some embodiments, nanopores used in connection with the methods and devices of the invention are provided in the form of arrays, such as an array of clusters of nanopores, which may be disposed regularly on a planar surface. In some embodiments, clusters are each in a separate resolution limited area so that optical signals from nanopores of different clusters are distinguishable by the optical detection system employed, but optical signals from nanopores within the same cluster cannot necessarily be assigned to a specific nanopore within such cluster by the optical detection system employed.


In some instances, the gene sequence may be mapped with one or more reference sequences to identify sequence variants. For example, the base reads are mapped against a reference sequence, which in various embodiments is presumed to be a “normal” non-disease sequence. The DNS sequence derived from the Human Genome Project is generally used as a “premier” reference sequence. A number of mapping applications are known, and include TMAP, BWA, GSMAPPER, ELAND, MOSAIK, and MAQ. Various other alignment tools are known, and could also be implemented to map the base reads.


In some cases, based on the sequence alignments, and mapping results, sequence variants can be identified. Types of variants may include insertions, deletions, indels (a colocalized insertion and deletion), damaging mutation variants, loss of function variants, synonymous mutation variants, nonsynonymous mutation variants, nonsense mutations, recessive markers, splicing/splice-site variants, frameshift mutation, insertions, deletions, genomic rearrangements, stop-gain, stop-loss, Rare Variants (RVs), translocations, inversions, and substitutions. While the type of variants analyzed is not limited, the most numerous of the variant types will be single nucleotide substitutions, for which a wealth of data is currently available. In various embodiments, comparison of the test sequence with the reference sequence will produce at least 500 variants, at least 1000 variants, at least 3,000 variants, at least 5,000 variants, at least 10,000 variants, at least 20,000 variants, or at least 50,000 variants, but in some embodiments, will produce at least 1 million variants, at least 2 million variants, at least 3 million variants, at least 4 million variants, or at least 10 million variants. The tools provided herein enable the user to navigate the vast amounts of genetic data to identify potentially disease-causing variants.


In some cases, a wealth of data can be extracted for the identified variants, including one or more of conservation scores, genic/genomic location, zygosity, SNP ID, Polyphen, FATHMM, LRT, Mutation Accessor, and SIFT predictions, splice site predictions, amino acid properties, disease associations, annotations for known variants, variant or allele frequency data, and gene annotations. Data may be calculated and/or extracted from one or more internal or external databases. Since certain categories of annotations (e.g., amino acid properties/PolyPhen and SIFT data) are dependent on a nature of the region of the genome in which they are contained (e.g., whether a variant is contained within a region translated to give rise to an amino acid sequence in a resultant protein), these annotations can be carried out for each known transcript. Exemplary external databases include OMIM (Online Mendelian Inheritance in Man), HGMD (The Human Gene Mutation Databse), PubMed, PolyPhen, SIFT, SpliceSite, reference genome databases, the University of California Santa Cruz (UCSC) genome database, CLINVAR database, the BioBase biological databases, the dbSNP Short Genetic Variations database, the Rat Genome Database (RGD), and/or the like. Various other databases may be employed for extracting data on identified variants. Variant information may be further stored in a central data repository, and the data extracted for future sequence analyses.


In some instances, variants may be tagged by the user with additional descriptive information to aid subsequent analysis. For example, confidence in the existence of the variant can be recorded as confirmed, preliminary, or sequence artifact. Certain sequencing technologies have a tendency to produce certain types of sequence artifacts, and the method herein can allow such suspected artifacts to be recorded. The variants may be further tagged in basic categories of benign, pathogenic, or unknown, or as potentially of interest.


In some instances, queries can be run to identify variants meeting certain criteria, or variant report pages can be browsed by chromosomal position or by gene, the latter allowing researchers to focus on only those variations that exist in a particular set of genes of interest. In some embodiments, the user selects only variants with well-documented and published disease associations (e.g., by filtering based on HGMD or other disease annotation). Alternatively, the user can filter for variants not previously associated with disease, but of a type likely to be deleterious, such as those introducing frameshifts, non-synonymous substitutions (predicted by Polyphen or SIFT), or premature terminations. Further, the user can exclude from analysis those variants believed to be neutral (based on their frequency of occurrence in studies populations), for example, through exclusion of variants in dbSNP. Additional exclusion criteria include mode of inheritance (e.g., heterozygosity), depth of coverage, and quality score.


In certain embodiments, base calling is carried out to extract the sequence of the sequencing reads from an image file produced by an instrument scanner. Following base calling and base quality trimming/filtering, the reads are mapped against a reference sequence (assumed to be normal for the phenotype under analysis) to identify variations (variants) between the two with the assumption that one or more of these differences will be associated with phenotype of the individual whose DNA is under analysis. Subsequently, each variant is annotated with data that can be used to determine the likelihood that that particular variant is associated with the phenotype under analysis. The analysis may be fully or partially automated as described in detail below, and may include use of a central repository for data storage and analysis, and to present the data to analysts and clinical geneticists in a format that makes identification of variants with a high likelihood of being associated with the phenotypic difference more efficient and effective.


In some embodiments, a user can be provided with the ability to run cross sample queries where the variants from multiple samples are interrogated simultaneously. In such embodiments, for example, a user can build a query to return data on only those variants that are exactly shared across a user defined group of samples. This can be useful for family based analyses where the same variant is believed to be associated with disease in each of the affected family members. For another example, the user can also build a query to return only those variants that are present in genes where the gene contains at least one, but not necessarily the same, variant. This can be useful where a group of individuals with disease are not related (the variants associated with the disease are not necessary exactly the same, but result in a common alteration in normal function). For yet another example, the user can specify to ignore genes containing variants in a user defined group of samples. This can be useful to exclude polymorphisms (variants believed or confirmed not to be associated with disease) where the user has access to a user defined group of control individuals who are believed to not have the disease associated variant. For each of these queries a user can additionally filter the variants by specifying any or all of the previously discussed filters on top of the cross sample analyses. This allows a user to identify variants matching these criteria, which are shared between or segregated amongst samples.


For example, a variant analysis system can be implemented locally, or implemented using a host device and a network or cloud computing. For example, the variant analysis system can be software stored in memory of a personal computing device (PC) and implemented by a processor of the PC. In such embodiments, for example, the PC can download the software from a host device and/or install the software using any suitable device such as a compact disc (CD).


The method may employ a computer-readable medium, or non-transitory processor-readable medium. Some embodiments described herein relate to a computer storage product with a non-transitory computer-readable medium (also can be referred to as a non-transitory processor-readable medium) having instructions or computer code thereon for performing various computer-implemented operations. The computer-readable medium (or processor-readable medium) is non-transitory in the sense that it does not include transitory propagating signals per se (e.g., a propagating electromagnetic wave carrying information on a transmission medium such as space or a cable). The media and computer code (also can be referred to as code) may be those designed and constructed for the specific purpose or purposes. Examples of non-transitory computer-readable media include, but are not limited to: magnetic storage media such as hard disks, floppy disks, and magnetic tape; optical storage media such as Compact Disc/Digital Video Discs (CD/DVDs), Compact Disc-Read Only Memories (CD-ROMs), and holographic devices; magneto-optical storage media such as optical disks; carrier wave signal processing modules; and hardware devices that are specially configured to store and execute program code, such as Application-Specific Integrated Circuits (ASICs), Programmable Logic Devices (PLDs), Read-Only Memory (ROM) and Random-Access Memory (RAM) devices.


Examples of computer code can include, but are not limited to, micro-code or micro-instructions, machine instructions, such as produced by a compiler, code used to produce a web service, and files containing higher-level instructions that are executed by a computer using an interpreter. For example, embodiments may be implemented using Python, Java, C++, or other programming languages (e.g., object-oriented programming languages) and development tools. Additional examples of computer code can include, but are not limited to, control signals, encrypted code, and compressed code.


In some cases, variants provided herein may be “provided” in a variety of mediums to facilitate use thereof. As used in this section, “provided” can refer to a manufacture, other than an isolated nucleic acid molecule, that contains variant information of the disclosure. Such a manufacture provides the variant information in a form that allows a skilled artisan to examine the manufacture using means not directly applicable to examining the variants or a subset thereof as they exist in nature or in purified form. The variant information that may be provided in such a form includes any of the variant information provided by the disclosure such as, for example, polymorphic nucleic acid and/or amino acid sequence information, information about observed variant alleles, alternative codons, populations, allele frequencies, variant types, and/or affected proteins, or any other information provided herein.


In some instances, the variants can be recorded on a computer readable medium. As used herein, “computer readable medium” can refer to any medium that can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable media can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the disclosure. One such medium is provided with the present application, namely, the present application contains computer readable medium (CD-R) that has nucleic acid sequences (and encoded protein sequences) containing variants provided/recorded thereon in ASCII text format in a Sequence Listing along with accompanying Tables that contain detailed variant and sequence information.


As used herein, “recorded” can refer to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently known methods for recording information on computer readable medium to generate manufactures comprising the variant information of the disclosure. A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide or amino acid sequence of the disclosure. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide/amino acid sequence information of the disclosure on computer readable medium. For example, the sequence information can be represented in a word processing text file, formatted in commercially-available software such as WordPerfect and Microsoft Word, represented in the form of an ASCII file, or stored in a database application, such as OB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of data processor structuring formats (e.g., text file or database) in order to obtain computer readable medium having recorded thereon the variant information of the disclosure.


By providing the variants in computer readable form, a skilled artisan can access the variant information for a variety of purposes. Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. Examples of publicly available computer software include BLAST and BLAZE search algorithms.


In some cases, the disclosure can provide systems, particularly computer-based systems, which contain the variant information described herein. Such systems may be designed to store and/or analyze information on, for example, a large number of variant positions, or information on variant genotypes from a large number of individuals. The variant information of the disclosure represents a valuable information source. The variant information of the disclosure stored/analyzed in a computer-based system may be used for such computer-intensive applications as determining or analyzing variant allele frequencies in a population, mapping endometriosis genes, genotype-phenotype association studies, grouping variants into haplotypes, correlating variant haplotypes with response to particular treatments or for various other bioinformatic, pharmacogenomic or drug development.


As used herein, “a computer-based system” can refer to the hardware means, software means, and data storage means used to analyze the variant information of the disclosure. The minimum hardware means of the computer-based systems of the disclosure typically comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based systems are suitable for use in the disclosure. Such a system can be changed into a system of the disclosure by utilizing the variant information provided on the CD-R, or a subset thereof, without any experimentation.


As stated above, the computer-based systems can comprise a data storage means having stored therein variants of the disclosure and the necessary hardware means and software means for supporting and implementing a search means. As used herein, “data storage means” can refer to memory which can store variant information of the disclosure, or a memory access means which can access manufactures having recorded thereon the variant information of the disclosure.


As used herein, “search means” can refer to one or more programs or algorithms that are implemented on the computer-based system to identify or analyze variants in a target sequence based on the variant information stored within the data storage means. Search means can be used to determine which nucleotide is present at a particular variant position in the target sequence. As used herein, a “target sequence” can be any DNA sequence containing the variant position(s) to be searched or queried.


A variety of structural formats for the input and output means can be used to input and output the information in the computer-based systems of the disclosure. An exemplary format for an output means is a display that depicts the presence or absence of specified nucleotides (alleles) at particular variant positions of interest. Such presentation can provide a rapid, binary scoring system for many variants simultaneously.


In some cases, the disclosure provides computer-based systems that are programmed to implement methods of the disclosure. FIG. 10 shows a computer system 101 that can be programmed or configured for endometriosis diagnosis. The computer system 101 can regulate various aspects of detection of genetic variants associated with endometriosis of the disclosure. The computer system 101 can be an electronic device of a user or a computer system that is remotely located with respect to the electronic device. The electronic device can be a mobile electronic device.


The computer system 101 includes a central processing unit (CPU, also “processor” and “computer processor” herein) 105, which can be a single core or multi core processor, or a plurality of processors for parallel processing. The computer system 101 also includes memory or memory location 110 (e.g., random-access memory, read-only memory, flash memory), electronic storage unit 115 (e.g., hard disk), communication interface 120 (e.g., network adapter) for communicating with one or more other systems, and peripheral devices 125, such as cache, other memory, data storage and/or electronic display adapters. The memory 110, storage unit 115, interface 120 and peripheral devices 125 are in communication with the CPU 105 through a communication bus (solid lines), such as a motherboard. The storage unit 115 can be a data storage unit (or data repository) for storing data. The computer system 101 can be operatively coupled to a computer network (“network”) 130 with the aid of the communication interface 120. The network 130 can be the Internet, an internet and/or extranet, or an intranet and/or extranet that is in communication with the Internet. The network 130 in some cases is a telecommunication and/or data network. The network 130 can include one or more computer servers, which can enable distributed computing, such as cloud computing. The network 130, in some cases with the aid of the computer system 101, can implement a peer-to-peer network, which may enable devices coupled to the computer system 101 to behave as a client or a server.


The CPU 105 can execute a sequence of machine-readable instructions, which can be embodied in a program or software. The instructions may be stored in a memory location, such as the memory 110. The instructions can be directed to the CPU 105, which can subsequently program or otherwise configure the CPU 105 to implement methods of the disclosure. Examples of operations performed by the CPU 105 can include fetch, decode, execute, and writeback.


The CPU 105 can be part of a circuit, such as an integrated circuit. One or more other components of the system 101 can be included in the circuit. In some cases, the circuit is an application specific integrated circuit (ASIC).


The storage unit 115 can store files, such as drivers, libraries and saved programs. The storage unit 115 can store user data, e.g., user preferences and user programs. The computer system 101 in some cases can include one or more additional data storage units that are external to the computer system 101, such as located on a remote server that is in communication with the computer system 101 through an intranet or the Internet.


The computer system 101 can communicate with one or more remote computer systems through the network 130. For instance, the computer system 101 can communicate with a remote computer system of a user. Examples of remote computer systems include personal computers (e.g., portable PC), slate or tablet PC's (e.g., Apple® iPad, Samsung® Galaxy Tab), telephones, Smart phones (e.g., Apple® iPhone, Android-enabled device, Blackberry®), or personal digital assistants. The user can access the computer system 101 via the network 130.


Methods as described herein can be implemented by way of machine (e.g., computer processor) executable code stored on an electronic storage location of the computer system 101, such as, for example, on the memory 110 or electronic storage unit 115. The machine executable or machine readable code can be provided in the form of software. During use, the code can be executed by the processor 105. In some cases, the code can be retrieved from the storage unit 115 and stored on the memory 110 for ready access by the processor 105. In some situations, the electronic storage unit 115 can be precluded, and machine-executable instructions are stored on memory 110.


The code can be pre-compiled and configured for use with a machine having a processer adapted to execute the code, or can be compiled during runtime. The code can be supplied in a programming language that can be selected to enable the code to execute in a pre-compiled or as-compiled fashion.


Aspects of the systems and methods provided herein, such as the computer system 101, can be embodied in programming. Various aspects of the technology may be thought of as “products” or “articles of manufacture” typically in the form of machine (or processor) executable code and/or associated data that is carried on or embodied in a type of machine readable medium. Machine-executable code can be stored on an electronic storage unit, such as memory (e.g., read-only memory, random-access memory, flash memory) or a hard disk. “Storage” type media can include any or all of the tangible memory of the computers, processors or the like, or associated modules thereof, such as various semiconductor memories, tape drives, disk drives and the like, which may provide non-transitory storage at any time for the software programming. All or portions of the software may at times be communicated through the Internet or various other telecommunication networks. Such communications, for example, may enable loading of the software from one computer or processor into another, for example, from a management server or host computer into the computer platform of an application server. Thus, another type of media that may bear the software elements includes optical, electrical and electromagnetic waves, such as used across physical interfaces between local devices, through wired and optical landline networks and over various air-links. The physical elements that carry such waves, such as wired or wireless links, optical links or the like, also may be considered as media bearing the software. As used herein, unless restricted to non-transitory, tangible “storage” media, terms such as computer or machine “readable medium” refer to any medium that participates in providing instructions to a processor for execution.


Hence, a machine readable medium, such as computer-executable code, may take many forms, including but not limited to, a tangible storage medium, a carrier wave medium or physical transmission medium. Non-volatile storage media include, for example, optical or magnetic disks, such as any of the storage devices in any computer(s) or the like, such as may be used to implement the databases, etc. shown in the drawings. Volatile storage media include dynamic memory, such as main memory of such a computer platform. Tangible transmission media include coaxial cables; copper wire and fiber optics, including the wires that comprise a bus within a computer system. Carrier-wave transmission media may take the form of electric or electromagnetic signals, or acoustic or light waves such as those generated during radio frequency (RF) and infrared (IR) data communications. Common forms of computer-readable media therefore include for example: a floppy disk, a flexible disk, hard disk, magnetic tape, any other magnetic medium, a CD-ROM, DVD or DVD-ROM, any other optical medium, punch cards paper tape, any other physical storage medium with patterns of holes, a RAM, a ROM, a PROM and EPROM, a FLASH-EPROM, any other memory chip or cartridge, a carrier wave transporting data or instructions, cables or links transporting such a carrier wave, or any other medium from which a computer may read programming code and/or data. Many of these forms of computer readable media may be involved in carrying one or more sequences of one or more instructions to a processor for execution.


The computer system 101 can include or be in communication with an electronic display 135 that comprises a user interface (UI) 140 for providing, for example a monitor. Examples of UI's include, without limitation, a graphical user interface (GUI) and web-based user interface.


Methods and systems of the disclosure can be implemented by way of one or more algorithms. An algorithm can be implemented by way of software upon execution by the central processing unit 105. The algorithm can, for example, Polyphen 2, Sift, Mutation Accessor, Mutation Taster, FATHMM, LRT, MetaLR, or any combination thereof.


In some cases, as shown in FIG. 11, a sample 202 containing a genetic material may be obtained from a subject 201, such as a human subject. A sample 202 may be subjected to one or more methods as described herein, such as performing an assay. In some cases, an assay may comprise sequencing (such as nanopore sequencing), genotyping, hybridization, amplification, labeling, or any combination thereof. One or more results from a method may be input into a processor 204. One or more input parameters such as a sample identification, subject identification, sample type, a reference, or other information may be input into a processor 204. One or more metrics from an assay may be input into a processor 204 such that the processor may produce a result, such as a diagnosis of endometriosis or a recommendation for a treatment. A processor may send a result, an input parameter, a metric, a reference, or any combination thereof to a display 205, such as a visual display or graphical user interface. A processor 204 may (i) send a result, an input parameter, a metric, or any combination thereof to a server 207, (ii) receive a result, an input parameter, a metric, or any combination thereof from a server 207, (iii) or a combination thereof.


Methods of Detection of Variants


In some aspects, the disclosure provides methods to detect variants, e.g, detecting a genetic variant in a panel comprising two or more genetic variants defining a minor allele disclosed herein (e.g., in Table 1). In some instances, the detecting comprises, DNA sequencing, hybridization with a complementary probe, an oligonucleotide ligation assay, a PCR-based assay, or any combination thereof. In some instances, the panel comprises at least: 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 75, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, or more genetic variants defining minor alleles disclosed herein (e.g., in Table 1). In some instances, the genetic variant to detect or detected has an odds ratio (OR) of at least: 0.1, 1, 1.5, 2, 5, 10, 20, 50, 100, 127, 130, 140, 150, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, or more. In some embodiments, the OR is at least 127. In some instances, the panel to detect further comprises one or more protein damaging or loss of function variants in one or more genes selected from the group consisting of GAT2, CCDC169, CASP8AP2, POU2F3, CD19, IGSF3, GLI3, PEX26, OLIG3, CIB4, NKX3-2, CFTR, and any combinations thereof. In some instances, the panel further comprises one or more additional variants defining a minor allele listed in Table 4.


In some cases, variants of the disclosure may include single nucleotide polymorphisms (SNPs), insertion deletion polymorphisms (indels), damaging mutation variants, loss of function variants, synonymous mutation variants, nonsynonymous mutation variants, nonsense mutations, recessive markers, splicing/splice-site variants, frameshift mutation, insertions, deletions, genomic rearrangements, stop-gain, stop-loss, Rare Variants (RVs), translocations, inversions, and substitutions.


Variants for example SNPs are usually preceded and followed by highly conserved sequences that vary in less than 1/100 or 1/1000 members of the population. An individual may be homozygous or heterozygous for an allele at each SNP position. A SNP may, in some instances, be referred to as a “cSNP” to denote that the nucleotide sequence containing the SNP is an amino acid “coding” sequence. A SNP may arise from a substitution of one nucleotide for another at the polymorphic site. Substitutions can be transitions or transversions. A transition is the replacement of one purine nucleotide by another purine nucleotide, or one pyrimidine by another pyrimidine. A transversion is the replacement of a purine by a pyrimidine, or vice versa.


A synonymous codon change, or silent mutation is one that does not result in a change of amino acid due to the degeneracy of the genetic code. A substitution that changes a codon coding for one amino acid to a codon coding for a different amino acid (i.e., a non-synonymous codon change) is referred to as a missense mutation. A nonsense mutation results in a type of non-synonymous codon change in which a stop codon is formed, thereby leading to premature termination of a polypeptide chain and a truncated protein. A read-through mutation is another type of non-synonymous codon change that causes the destruction of a stop codon, thereby resulting in an extended polypeptide product. An indel that occur in a coding DNA segment gives rise to a frameshift mutation.


Causative variants are those that produce alterations in gene expression or in the structure and/or function of a gene product, and therefore are predictive of a possible clinical phenotype. One such class includes SNPs falling within regions of genes encoding a polypeptide product, i.e. cSNPs. These SNPs may result in an alteration of the amino acid sequence of the polypeptide product (i.e., non-synonymous codon changes) and give rise to the expression of a defective or other variant protein. Furthermore, in the case of nonsense mutations, a SNP may lead to premature termination of a polypeptide product. Such variant products can result in a pathological condition, e.g., genetic endometriosis.


An association study of a variant and a specific disorder involves determining the presence or frequency of the variant allele in biological samples from individuals with the disorder of interest, such as endometriosis, and comparing the information to that of controls (i.e., individuals who do not have the disorder; controls may be also referred to as “healthy” or “normal” individuals) who are for example of similar age and race. The appropriate selection of patients and controls is important to the success of variant association studies. Therefore, a pool of individuals with well-characterized phenotypes is extremely desirable.


A variant may be screened in tissue samples or any biological sample obtained from an affected individual, and compared to control samples, and selected for its increased (or decreased) occurrence in a specific pathological condition, such as pathologies related to endometriosis. Once a statistically significant association is established between one or more variant(s) and a pathological condition (or other phenotype) of interest, then the region around the variant can optionally be thoroughly screened to identify the causative genetic locus/sequence(s) (e.g., causative variant/mutation, gene, regulatory region, etc.) that influences the pathological condition or phenotype. Association studies may be conducted within the general population and are not limited to studies performed on related individuals in affected families (linkage studies). For diagnostic and prognostic purposes, if a particular variant site is found to be useful for diagnosing a disease, such as endometriosis, other variant sites which are in LD with this variant site would also be expected to be useful for diagnosing the condition. Linkage disequilibrium is described in the human genome as blocks of variants along a chromosome segment that do not segregate independently (i.e., that are non-randomly co-inherited). The starting (5′ end) and ending (3′ end) of these blocks can vary depending on the criteria used for linkage disequilibrium in a given database, such as the value of D′ or r2 used to determine linkage disequilibrium.


In some instances, variants can be identified in a study using a whole-genome case-control approach to identify single nucleotide polymorphisms that were closely associated with the development of endometriosis, as well as variants found to be in linkage disequilibrium with (i.e., within the same linkage disequilibrium block as) the endometriosis-associated variants, which can provide haplotypes (i.e., groups of variants that are co-inherited) to be readily inferred. Thus, the disclosure provides individual variants associated with endometriosis, as well as combinations of variants and haplotypes in genetic regions associated with endometriosis, methods of detecting these polymorphisms in a test sample, methods of determining the risk of an individual of having or developing endometriosis and for clinical sub-classification of endometriosis.


In some cases, the disclosure provides variants associated with endometriosis, as well as variants that were previously known in the art, but were not previously known to be associated with endometriosis. Accordingly, the disclosure provides novel compositions and methods based on the variants disclosed herein, and also provides novel methods of using the known but previously unassociated variants in methods relating to endometriosis (e.g., for diagnosing endometriosis. etc.).


In some instances, particular variant alleles of the disclosure can be associated with either an increased risk of having or developing endometriosis, or a decreased risk of having or developing endometriosis. Variant alleles that are associated with a decreased risk may be referred to as “protective” alleles, and variant alleles that are associated with an increased risk may be referred to as “susceptibility” alleles, “risk factors”, or “high-risk” alleles. Thus, whereas certain variants can be assayed to determine whether an individual possesses a variant allele that is indicative of an increased risk of having or developing endometriosis (i.e., a susceptibility allele), other variants can be assayed to determine whether an individual possesses a variant allele that is indicative of a decreased risk of having or developing endometriosis (i.e., a protective allele). Similarly, particular variant alleles of the disclosure can be associated with either an increased or decreased likelihood of responding to a particular treatment. The term “altered” may be used herein to encompass either of these two possibilities (e.g., an increased or a decreased risk/likelihood).


In some instances, nucleic acid molecules may be double-stranded molecules and that reference to a particular site on one strand refers, as well, to the corresponding site on a complementary strand. In defining a variant position, variant allele, or nucleotide sequence, reference to an adenine, a thymine (uridine), a cytosine, or a guanine at a particular site on one strand of a nucleic acid molecule also defines the complementary thymine (uridine), adenine, guanine, or cytosine (respectively) at the corresponding site on a complementary strand of the nucleic acid molecule. Thus, reference may be made to either strand in order to refer to a particular variant position, variant allele, or nucleotide sequence. Probes and primers may be designed to hybridize to either strand and variant genotyping methods disclosed herein may generally target either strand. Throughout the specification, in identifying a variant position, reference is generally made to the forward or “sense” strand, solely for the purpose of convenience. Since endogenous nucleic acid sequences exist in the form of a double helix (a duplex comprising two complementary nucleic acid strands), it is understood that the variants disclosed herein will have counterpart nucleic acid sequences and variants associated with the complementary “reverse” or “antisense” nucleic acid strand. Such complementary nucleic acid sequences, and the complementary variants present in those sequences, are also included within the scope of the disclosure.


Disclosed herein are methods for detecting genetic variants in a nucleic acid sample. The method can comprise sequencing a nucleic acid sample obtained from a subject having endometriosis or suspected of having endometriosis using a high throughput method. The high throughput method can comprise nanopore sequencing. The method can comprise detecting one or more genetic variants in a nucleic acid sample, wherein the one or more genetic variants are listed in Table 1, Table 2 or Table 3. The nucleic acid sample can comprise RNA. The RNA can comprise mRNA. The nucleic acid sample can comprise DNA. The DNA can comprise cDNA, genomic DNA, sheared DNA, cell free DNA, fragmented DNA, or PCR amplified products produced therefrom, or any combination thereof. The one or more genetic variants can comprise a genetic variant defining a minor allele. The one or more genetic variants can comprise at least about: 5, 10, 15, 20, 25, 50, 75, 100, 150, 200, 250, 500, or more genetic variants defining minor alleles. The detection of the one or more genetic variants can have an odds ratio (OR) for endometriosis of at least about: 1.5, 2, 5, 10, 20, 50, 100, or more. The one or more genetic variants can comprise a synonymous mutation, a non-synonymous mutation, a stop-gain mutation, a nonsense mutation, an insertion, a deletion, a splice-site variant, a frameshift mutation, or any combination thereof. The one or more genetic variants can comprise a protein damaging mutation. The one or more genetic variants can comprise a protein damaging or loss of function variant in one or more genes selected from the group consisting of GAT2, CCDC169, CASP8AP2, POU2F3, CD19, IGSF3, GLI3, PEX26, OLIG3, CIB4, NKX3-2, CFTR, and any combinations thereof. The one or more genetic variants can be comprised in GAT2, CCDC169, CASP8AP2, POU2F3, CD19, IGSF3, GLI3, PEX26, OLIG3, CIB4, NKX3-2, CFTR or a combination thereof. The method can comprise detecting one or more additional variants defining a minor allele listed in Table 4. The one or more genetic variants can be identified based on a predictive computer algorithm. The one or more genetic variants can be identified based on reference to a database. The method can further comprise identifying a subject as having endometriosis or being at risk of developing endometriosis. The method can comprise identifying a subject as having endometriosis or being at risk of developing endometriosis with a specificity of at least: 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%. The method can comprise identifying a subject as having endometriosis or being at risk of developing endometriosis with a sensitivity of at least: 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%. The method can comprise identifying a subject as having endometriosis or being at risk of developing endometriosis with an accuracy of at least: 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%. The method can comprise identifying a subject as having endometriosis. The subject can be asymptomatic for endometriosis. In some cases, the subject can have endometriosis and be asymptomatic. The subject can be symptomatic for endometriosis. The subject can be identified as being at risk of developing endometriosis. The method can further comprise administering a therapeutic to a subject. The therapeutic can comprise hormonal therapy, an advanced reproductive technology therapy, a pain managing medication, or any combination thereof. The therapeutic can comprise hormonal contraceptives, gonadotropin-releasing hormone (Gn-RH) agonists, gonadotropin-releasing hormone (Gn-RH) antagonists, progestin, danazol, or any combination thereof. The therapeutic can comprise a pain medication. The pain medication can comprise a nonsteroidal anti-inflammatory drug (NSAID), ibuprofen, naproxen, an opioid, a cannabis-based therapeutic, or any combination thereof. In some cases, the one or more genetic variants are listed in Table 1. In some cases, the one or more genetic variants are listed in Table 2. In some cases, the one or more genetic variants are listed in Table 3. The method can further comprise identifying a subject as having endometriosis-associated infertility or being at risk of developing endometriosis-associated infertility. The method can further comprise administering assisted reproductive technology therapy to a subject. The assisted reproductive technology therapy can comprise in vitro fertilization, gamete intrafallopian transfer, or any combination thereof. The method can further comprise administering, intrauterine insemination or ovulation induction. A subject described herein can be a mammal. The mammal can be a human. Nanopore sequencing can be performed with a biological nanopore, a solid state nanopore, or a hybrid nanopore. Methods disclosed herein can detect 1, 5, 10, 15, 20, 30, 50, 60, 100, 80, 90, 100, 200 or more variants disclosed herein. Genetic variants detected herein can indicate endometriosis or a risk of developing endometriosis. In some embodiments, one or more genetic variant listed in Table 1 are the only genetic variants detected. In some embodiments, one or more genetic variants listed in Table 2 are the only genetic variant detected. In some embodiments, one or more genetic variants listed in Table 3 are the only genetic variant detected. In some embodiments, one or more genetic variant listed in Table 4 are the only genetic variant detected. In other embodiments, one or more genetic variants are detected from two or more of Table 1, Table 2, Table 3 and Table 4.


Genotyping Methods


In some cases, the process of determining which specific nucleotide (i.e., allele) is present at each of one or more variant positions, such as a variant position in a nucleic acid molecule characterized by a variant, is referred to as variant genotyping. The disclosure provides methods of variant genotyping, such as for use in screening for endometriosis or related pathologies, or determining predisposition thereto, or determining responsiveness to a form of treatment, or in genome mapping or variant association analysis, etc.


Nucleic acid samples can be genotyped to determine which allele(s) is/are present at any given genetic region (e.g., variant position) of interest by methods well known in the art. The neighboring sequence can be used to design variant detection reagents such as oligonucleotide probes, which may optionally be implemented in a kit format. Common variant genotyping methods include, but are not limited to, TaqMan assays, molecular beacon assays, nucleic acid arrays, allele-specific primer extension, allele-specific PCR, arrayed primer extension, homogeneous primer extension assays, primer extension with detection by mass spectrometry, mass spectrometry with or with monoisotopic dNTPs (pyrosequencing, multiplex primer extension sorted on genetic arrays, ligation with rolling circle amplification, homogeneous ligation, OLA, multiplex ligation reaction sorted on genetic arrays, restriction-fragment length polymorphism, single base extension-tag assays, and the Invader assay. Such methods may be used in combination with detection mechanisms such as, for example, luminescence or chemiluminescence detection, fluorescence detection, time-resolved fluorescence detection, fluorescence resonance energy transfer, fluorescence polarization, mass spectrometry, electrospray mass spectrometry, and electrical detection.


Various methods for detecting polymorphisms can include, but are not limited to, methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA duplexes, comparison of the electrophoretic mobility of variant and wild type nucleic acid molecules, and assaying the movement of polymorphic or wild-type fragments in polyacrylamide gels containing a gradient of denaturant using denaturing gradient gel electrophoresis (DGGE). Sequence variations at specific locations can also be assessed by nuclease protection assays such as RNase and SI protection or chemical cleavage methods.


In some instances, a variant genotyping can be performed using the TaqMan assay, which is also known as the 5′ nuclease assay. The TaqMan assay detects the accumulation of a specific amplified product during PCR. The TaqMan assay utilizes an oligonucleotide probe labeled with a fluorescent reporter dye and a quencher dye. The reporter dye is excited by irradiation at an appropriate wavelength, it transfers energy to the quencher dye in the same probe via a process called fluorescence resonance energy transfer (FRET). When attached to the probe, the excited reporter dye does not emit a signal. The proximity of the quencher dye to the reporter dye in the intact probe maintains a reduced fluorescence for the reporter. The reporter dye and quencher dye may be at the 5′ most and the 3′ most ends, respectively, or vice versa. Alternatively, the reporter dye may be at the 5′ or 3′ most end while the quencher dye is attached to an internal nucleotide, or vice versa. In yet another embodiment, both the reporter and the quencher may be attached to internal nucleotides at a distance from each other such that fluorescence of the reporter is reduced. During PCR, the 5′ nuclease activity of DNA polymerase cleaves the probe, thereby separating the reporter dye and the quencher dye and resulting in increased fluorescence of the reporter. Accumulation of PCR product is detected directly by monitoring the increase in fluorescence of the reporter dye. The DNA polymerase cleaves the probe between the reporter dye and the quencher dye only if the probe hybridizes to the target variant-containing template which is amplified during PCR, and the probe is designed to hybridize to the target variant site only if a particular variant allele is present. TaqMan primer and probe sequences can readily be determined using the variant and associated nucleic acid sequence information provided herein. A number of computer programs, such as Primer Express (Applied Biosystems, Foster City, Calif.), can be used to rapidly obtain optimal primer/probe sets. It will be apparent to one of skill in the art that such primers and probes for detecting the variants of the disclosure are useful in diagnostic assays for endometriosis and related pathologies, and can be readily incorporated into a kit format. The disclosure also includes modifications of the Taqman assay well known in the art such as the use of Molecular Beacon probes and other variant formats.


In some instances, a method for genotyping the variants can be the use of two oligonucleotide probes in an OLA. In this method, one probe hybridizes to a segment of a target nucleic acid with its 3′ most end aligned with the variant site. A second probe hybridizes to an adjacent segment of the target nucleic acid molecule directly 3′ to the first probe. The two juxtaposed probes hybridize to the target nucleic acid molecule, and are ligated in the presence of a linking agent such as a ligase if there is perfect complementarity between the 3′ most nucleotide of the first probe with the variant site. If there is a mismatch, ligation would not occur. After the reaction, the ligated probes are separated from the target nucleic acid molecule, and detected as indicators of the presence of a variant.


In some instances, a method for variant genotyping is based on mass spectrometry. Mass spectrometry takes advantage of the unique mass of each of the four nucleotides of DNA. variants can be unambiguously genotyped by mass spectrometry by measuring the differences in the mass of nucleic acids having alternative variant alleles. MALDI-TOF (Matrix Assisted Laser Desorption Ionization-Time of Flight) mass spectrometry technology is exemplary for extremely precise determinations of molecular mass, such as variants. Numerous approaches to variant analysis have been developed based on mass spectrometry. Exemplary mass spectrometry-based methods of variant genotyping include primer extension assays, which can also be utilized in combination with other approaches, such as traditional gel-based formats and microarrays.


In some instances, a method for genotyping the variants of the disclosure is the use of electrospray mass spectrometry for direct analysis of an amplified nucleic acid. In this method, in one aspect, an amplified nucleic acid product may be isotopically enriched in an isotope of oxygen (O), carbon (C), nitrogen (N) or any combination of those elements. In an exemplary embodiment the amplified nucleic acid is isotopically enriched to a level of greater than 99.9% in the elements of O16, C12 and N14 The amplified isotopically enriched product can then be analyzed by electrospray mass spectrometry to determine the nucleic acid composition and the corresponding variant genotyping. Isotopically enriched amplified products result in a corresponding increase in sensitivity and accuracy in the mass spectrum. In another aspect of this method an amplified nucleic acid that is not isotopically enriched can also have composition and variant genotype determined by electrospray mass spectrometry.


In some instances, variants can be scored by direct DNA sequencing. The nucleic acid sequences of the disclosure enable one of ordinary skill in the art to readily design sequencing primers for such automated sequencing procedures. Commercial instrumentation, such as the Applied Biosystems 377, 3100, 3700, 3730, and 3730.times.1 DNA Analyzers (Foster City, Calif.), is commonly used in the art for automated sequencing.


Variant genotyping can include the steps of, for example, collecting a biological sample from a human subject (e.g., sample of tissues, cells, fluids, secretions, etc.), isolating nucleic acids (e.g., genomic DNA, mRNA or both) from the cells of the sample, contacting the nucleic acids with one or more primers which specifically hybridize to a region of the isolated nucleic acid containing a target variant under conditions such that hybridization and amplification of the target nucleic acid region occurs, and determining the nucleotide present at the variant position of interest, or, in some assays, detecting the presence or absence of an amplification product (assays can be designed so that hybridization and/or amplification will only occur if a particular variant allele is present or absent). In some assays, the size of the amplification product is detected and compared to the length of a control sample; for example, deletions and insertions can be detected by a change in size of the amplified product compared to a normal genotype.


In some instances, a variant genotyping can be used in applications that include, but are not limited to, variant-endometriosis association analysis, endometriosis predisposition screening, endometriosis diagnosis, endometriosis prognosis, endometriosis progression monitoring, determining therapeutic strategies based on an individual's genotype, and stratifying a patient population for clinical trials for a treatment such as minimally invasive device for the treatment of endometriosis.


Analysis of Genetic Association Between Variants and Phenotypic Traits


In some cases, genotyping for endometriosis diagnosis, endometriosis predisposition screening, endometriosis prognosis and endometriosis treatment and other uses described herein, can rely on initially establishing a genetic association between one or more specific variants and the particular phenotypic traits of interest.


In some instances, in a genetic association study, the cause of interest to be tested is a certain allele or a variant or a combination of alleles or a haplotype from several variants. Thus, tissue specimens (e.g., saliva) from the sampled individuals may be collected and genomic DNA genotyped for the variant(s) of interest. In addition to the phenotypic trait of interest, other information such as demographic (e.g., age, gender, ethnicity, etc.), clinical, and environmental information that may influence the outcome of the trait can be collected to further characterize and define the sample set. Specifically, in an endometriosis genetic association study, clinical information such as body mass index, age and diet may be collected. In many cases, these factors are known to be associated with diseases and/or variant allele frequencies. There are likely gene-environment and/or gene-gene interactions as well. Analysis methods to address gene-environment and gene-gene interactions (for example, the effects of the presence of both susceptibility alleles at two different genes can be greater than the effects of the individual alleles at two genes combined) are discussed below.


In some instances, after all the relevant phenotypic and genotypic information has been obtained, statistical analyses are carried out to determine if there is any significant correlation between the presence of an allele or a genotype with the phenotypic characteristics of an individual. For example, data inspection and cleaning are first performed before carrying out statistical tests for genetic association. Epidemiological and clinical data of the samples can be summarized by descriptive statistics with tables and graphs. Data validation is for example performed to check for data completion, inconsistent entries, and outliers. Chi-squared tests may then be used to check for significant differences between cases and controls for discrete and continuous variables, respectively. To ensure genotyping quality, Hardy-Weinberg disequilibrium tests can be performed on cases and controls separately. Significant deviation from Hardy-Weinberg equilibrium (HWE) in both cases and controls for individual markers can be indicative of genotyping errors. If HWE is violated in a majority of markers, it is indicative of population substructure that should be further investigated. Moreover, Hardy-Weinberg disequilibrium in cases only can indicate genetic association of the markers with the disease of interest.


In some instances, to test whether an allele of a single variant is associated with the case or control status of a phenotypic trait, one skilled in the art can compare allele frequencies in cases and controls. Standard chi-squared tests and Fisher exact tests can be carried out on a 2×2 table (2 variant alleles×2 outcomes in the categorical trait of interest). To test whether genotypes of a variant are associated, chi-squared tests can be carried out on a 3×2 table (3 genotypes×2 outcomes). Score tests are also carried out for genotypic association to contrast the three genotypic frequencies (major homozygotes, heterozygotes and minor homozygotes) in cases and controls, and to look for trends using 3 different modes of inheritance, namely dominant (with contrast coefficients 2, −1, −1), additive (with contrast coefficients 1, 0, −1) and recessive (with contrast coefficients 1, 1, −2). Odds ratios for minor versus major alleles, and odds ratios for heterozygote and homozygote variants versus the wild type genotypes are calculated with the desired confidence limits, usually 95%. In the present study a software algorithm, PLINK, has been applied to automate the calculation of Hardy-Weinberg equilibrium, chi-square, p-values and odds-ratios for very large numbers of variants and Case-Control individuals simultaneously.


In some instances, in order to control for confounding effects and to test for interactions a stepwise multiple logistic regression analysis using statistical packages such as SAS or R may be performed. Logistic regression is a model-building technique in which the best fitting and most parsimonious model is built to describe the relation between the dichotomous outcome (for instance, getting a certain endometriosis or not) and a set of independent variables (for instance, genotypes of different associated genes, and the associated demographic and environmental factors). The most common model is one in which the logit transformation of the odds ratios is expressed as a linear combination of the variables (main effects) and their cross-product terms (interactions). To test whether a certain variable or interaction is significantly associated with the outcome, coefficients in the model are first estimated and then tested for statistical significance of their departure from zero.


In some instances, in addition to performing association tests one marker at a time, haplotype association analysis may also be performed to study a number of markers that are closely linked together. Haplotype association tests can have better power than genotypic or allelic association tests when the tested markers are not the disease-causing mutations themselves but are in linkage disequilibrium with such mutations. The test will even be more powerful if the endometriosis is indeed caused by a combination of alleles on a haplotype. In order to perform haplotype association effectively, marker-marker linkage disequilibrium measures, both D′ and r2, are typically calculated for the markers within a gene to elucidate the haplotype structure. Variants within a gene can be organized in block pattern, and a high degree of linkage disequilibrium exists within blocks and very little linkage disequilibrium exists between blocks. Haplotype association with the endometriosis status can be performed using such blocks once they have been elucidated.


Haplotype association tests can be carried out in a similar fashion as the allelic and genotypic association tests. Each haplotype in a gene is analogous to an allele in a multi-allelic marker. One skilled in the art can either compare the haplotype frequencies in cases and controls or test genetic association with different pairs of haplotypes. Score tests can be done on haplotypes using the program “haplo.score”. In that method, haplotypes are first inferred by EM algorithm and score tests are carried out with a generalized linear model (GLM) framework that allows the adjustment of other factors.


In some instances, an important decision in the performance of genetic association tests is the determination of the significance level at which significant association can be declared when the p-value of the tests reaches that level. In an exploratory analysis where positive hits will be followed up in subsequent confirmatory testing, an unadjusted p-value<0.1 (a significance level on the lenient side) may be used for generating hypotheses for significant association of a variant with certain phenotypic characteristics of a endometriosis. It is exemplary that a p-value<0.05 (a significance level traditionally used in the art) is achieved in order for a variant to be considered to have an association with a endometriosis. It is more exemplary that a p-value<0.01 (a significance level on the stringent side) is achieved for an association to be declared. Permutation tests to control for the false discovery rates, FDR, can further be employed. Such methods to control for multiplicity would be exemplary when the tests are dependent and controlling for false discovery rates is sufficient as opposed to controlling for the experiment-wise error rates.


In some instances, since both genotyping and endometriosis status classification can involve errors, sensitivity analyses may be performed to see how odds ratios and p-values would change upon various estimates on genotyping and endometriosis classification error rates.


Once individual risk factors, genetic or non-genetic, have been found for the predisposition to endometriosis, the next step can be to set up a classification/prediction scheme to predict the category (for instance, endometriosis or no endometriosis) that an individual will be in depending on his genotypes of associated variants and other non-genetic risk factors. Logistic regression for discrete trait and linear regression for continuous trait are standard techniques for such tasks. Moreover, other techniques can also be used for setting up classification. Such techniques include, but are not limited to, MART, CART, neural network, and discriminant analyses that are suitable for use in comparing the performance of different methods.


Endometriosis Diagnosis and Predisposition Screening


In some cases, information on association/correlation between genotypes and endometriosis-related phenotypes can be exploited in several ways. For example, in the case of a highly statistically significant association between one or more variants with predisposition to a disease for which treatment is available, detection of such a genotype pattern in an individual may justify particular treatment, or at least the institution of regular monitoring of the individual. In the case of a weaker but still statistically significant association between a variant and a human disease, immediate therapeutic intervention or monitoring may not be justified after detecting the susceptibility allele or variant.


The variants disclosed herein may contribute to endometriosis in an individual in different ways. Some polymorphisms occur within a protein coding sequence and contribute to endometriosis phenotype by affecting protein structure. Other polymorphisms occur in noncoding regions but may exert phenotypic effects indirectly via influence on, for example, replication, transcription, and/or translation. A single variant may affect more than one phenotypic trait. Likewise, a single phenotypic trait may be affected by multiple variants in different genes.


The variants disclosed herein may contribute to endometriosis in an individual in different ways. Some polymorphisms occur within a protein coding sequence and contribute to endometriosis phenotype by affecting protein structure. Other polymorphisms occur in noncoding regions but may exert phenotypic effects indirectly via influence on, for example, replication, transcription, and/or translation. A single variant may affect more than one phenotypic trait. Likewise, a single phenotypic trait may be affected by multiple variants in different genes.


Haplotypes can be particularly useful in that, for example, fewer variants can be genotyped to determine if a particular genomic region harbors a locus that influences a particular phenotype, such as in linkage disequilibrium-based variant association analysis.


Linkage disequilibrium (LD) can refer to the co-inheritance of alleles (e.g., alternative nucleotides) at two or more different variant sites at frequencies greater than would be expected from the separate frequencies of occurrence of each allele in a given population. The expected frequency of co-occurrence of two alleles that are inherited independently is the frequency of the first allele multiplied by the frequency of the second allele. Alleles that co-occur at expected frequencies are said to be in “linkage equilibrium”. In contrast, LD can refer to any non-random genetic association between allele(s) at two or more different variant sites, which is generally due to the physical proximity of the two loci along a chromosome. LD can occur when two or more variants sites are in close physical proximity to each other on a given chromosome and therefore alleles at these variant sites will tend to remain unseparated for multiple generations with the consequence that a particular nucleotide (allele) at one variant site will show a non-random association with a particular nucleotide (allele) at a different variant site located nearby. Hence, genotyping one of the variant sites will give almost the same information as genotyping the other variant site that is in LD.


For diagnostic purposes, if a particular variant site is found to be useful for diagnosing endometriosis, then the skilled artisan would recognize that other variant sites which are in LD with this variant site would also be useful for diagnosing the condition. Various degrees of LD can be encountered between two or more variants with the result being that some variants are more closely associated (i.e., in stronger LD) than others. Furthermore, the physical distance over which LD extends along a chromosome differs between different regions of the genome, and therefore the degree of physical separation between two or more variant sites necessary for LD to occur can differ between different regions of the genome.


For diagnostic applications, polymorphisms (e.g., variants and/or haplotypes) that are not the actual disease-causing (causative) polymorphisms, but are in LD with such causative polymorphisms, are also useful. In such instances, the genotype of the polymorphism(s) that is/are in LD with the causative polymorphism is predictive of the genotype of the causative polymorphism and, consequently, predictive of the phenotype (e.g., endometriosis) that is influenced by the causative variant(s). Thus, polymorphic markers that are in LD with causative polymorphisms are useful as diagnostic markers, and are particularly useful when the actual causative polymorphism(s) is/are unknown.


The contribution or association of particular variants and/or variant haplotypes with endometriosis phenotypes, such as endometriosis, can enable the variants of the disclosure to be used to develop superior diagnostic tests capable of identifying individuals who express a detectable trait, such as endometriosis. as the result of a specific genotype, or individuals whose genotype places them at an increased or decreased risk of developing a detectable trait at a subsequent time as compared to individuals who do not have that genotype. As described herein, diagnostics may be based on a single variant or a group of variants. In some instances, combined detection of a plurality of variations, for example about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 25, 30, 32, 35, 40, 45, 48, 50, 55, 60, 64, 70, 75, 80, 85, 80, 96, 100, or any other number in-between, or more, of the variants provided herein can increase the probability of an accurate diagnosis. To further increase the accuracy of diagnosis or predisposition screening, analysis of the variants of the disclosure can be combined with that of other polymorphisms or other risk factors of endometriosis, such as gender and age.


In some instances, the method herein can indicate a certain increased (or decreased) degree or likelihood of developing the endometriosis based on statistically significant association results. This information can be valuable to initiate earlier preventive treatments or to allow an individual carrying one or more significant variants or variant haplotypes to regularly scheduled physical exams to monitor for the appearance or change of their endometriosis in order to identify and begin treatment of the endometriosis at an early stage.


The diagnostic techniques herein may employ a variety of methodologies to determine whether a test subject has a variant or a variant pattern associated with an increased or decreased risk of developing a detectable trait or whether the individual suffers from a detectable trait as a result of a particular polymorphism/mutation, including, for example, methods which enable the analysis of individual chromosomes for haplotyping, family studies, single sperm DNA analysis, or somatic hybrids. The trait analyzed using the diagnostics of the disclosure may be any detectable trait that is commonly observed in pathologies and disorders related to endometriosis.


Another aspect of the disclosure relates to a method of determining whether an individual is at risk (or less at risk) of developing one or more traits or whether an individual expresses one or more traits as a consequence of possessing a particular trait-causing or trait-influencing allele. These methods generally involve obtaining a nucleic acid sample from an individual and assaying the nucleic acid sample to determine which nucleotide(s) is/are present at one or more variant positions, wherein the assayed nucleotide(s) is/are indicative of an increased or decreased risk of developing the trait or indicative that the individual expresses the trait as a result of possessing a particular trait-causing or trait-influencing allele.


The variants herein can be used to identify novel therapeutic targets for endometriosis. For example, genes containing the disease-associated variants (“variant genes”) or their products, as well as genes or their products that are directly or indirectly regulated by or interacting with these variant genes or their products, can be targeted for the development of therapeutics that, for example, treat the endometriosis or prevent or delay endometriosis onset. The therapeutics may be composed of, for example, small molecules, proteins, protein fragments or peptides, antibodies, nucleic acids, or their derivatives or mimetics which modulate the functions or levels of the target genes or gene products.


The variants/haplotypes herein can be useful for improving many different aspects of the drug development process. For example, individuals can be selected for clinical trials based on their variant genotype. Individuals with variant genotypes that indicate that they are most likely to respond to or most likely to benefit from a device or a drug can be included in the trials and those individuals whose variant genotypes indicate that they are less likely to or would not respond to a device or a drug, or suffer adverse reactions, can be eliminated from the clinical trials. This not only improves the safety of clinical trials, but also will enhance the chances that the trial will demonstrate statistically significant efficacy. Furthermore, the variants of the disclosure may explain why certain previously developed devices or drugs performed poorly in clinical trials and may help identify a subset of the population that would benefit from a drug that had previously performed poorly in clinical trials, thereby “rescuing” previously developed therapeutic treatment methods or drugs, and enabling the methods or drug to be made available to a particular endometriosis patient population that can benefit from it.


Detection Kits and Systems


In some instances, based on a variant such as SNP or indels and associated sequence information disclosed herein, detection reagents can be developed and used to assay any variant of the disclosure individually or in combination, and such detection reagents can be readily incorporated into one of the established kit or system formats which are well known in the art. The terms “kits” and “systems” can refer to such things as combinations of multiple variant detection reagents, or one or more variant detection reagents in combination with one or more other types of elements or components (e.g., other types of biochemical reagents, containers, packages such as packaging intended for commercial sale, substrates to which variant detection reagents are attached, electronic hardware components, etc.). Accordingly, the disclosure further provides variant detection kits and systems, including but not limited to, packaged probe and primer sets (e.g., TaqMan probe/primer sets), arrays/microarrays of nucleic acid molecules, and beads that contain one or more probes, primers, or other detection reagents for detecting one or more variants of the disclosure. The kits/systems can optionally include various electronic hardware components; for example, arrays (“DNA chips”) and microfluidic systems (“lab-on-a-chip” systems) provided by various manufacturers typically comprise hardware components. Other kits/systems (e.g., probe/primer sets) may not include electronic hardware components, but may be comprised of, for example, one or more variant detection reagents (along with, optionally, other biochemical reagents) packaged in one or more containers.


In some instances, provided herein is a kit comprising one or more variant detection agents, and methods for detecting the variants disclosed herein by employing detection reagents and optionally a questionnaire of non-genetic clinical factors. In some instances, provided herein is a method of identifying an individual having an increased or decreased risk of developing endometriosis by detecting the presence or absence of a variant allele disclosed herein. In some instances, provided herein is a method for diagnosis of endometriosis by detecting the presence or absence of a variant allele disclosed herein is provided. In some instances, provided herein is a method for predicting endometriosis sub-classification by detecting the presence or absence of a variant allele. In some instances, the questionnaire would be completed by a medical professional based on medical history physical exam or other clinical findings. In some instances, the questionnaire would include any other non-genetic clinical factors known to be associated with the risk of developing endometriosis. In some instances, a reagent for detecting a variant in the context of its naturally-occurring flanking nucleotide sequences (which can be, e.g., either DNA or mRNA) is provided. In some instances, the reagent may be in the form of a hybridization probe or an amplification primer that is useful in the specific detection of a variant of interest. In some instances, a variant can be a genetic polymorphism having a Minor Allele Frequency (MAF) of at least 1% in a population (such as for instance the Caucasian population or the CEU population) and an RV is understood to be a genetic polymorphism having a Minor Allele Frequency (MAF) of less than 1% in a population (such as for instance the Caucasian population or the CEU population).


In some instances, a detection kit can contain one or more detection reagents and other components (e.g., a buffer, enzymes such as DNA polymerases or ligases, chain extension nucleotides such as deoxynucleotide triphosphates, and in the case of Sanger-type DNA sequencing reactions, chain terminating nucleotides, positive control sequences, negative control sequences, and the like) necessary to carry out an assay or reaction, such as amplification and/or detection of a variant-containing nucleic acid molecule. A kit may further contain means for determining the amount of a target nucleic acid, and means for comparing the amount with a standard, and can comprise instructions for using the kit to detect the variant-containing nucleic acid molecule of interest. In one embodiment of the disclosure, kits are provided which contain the necessary reagents to carry out one or more assays to detect one or more variants disclosed herein. In an exemplary embodiment of the disclosure, the detection kits/systems can be in the form of nucleic acid arrays, or compartmentalized kits, including microfluidic/lab-on-a-chip systems.


In some instances, variant detection kits/systems may contain, for example, one or more probes, or pairs of probes, that hybridize to a nucleic acid molecule at or near each target variant position. Multiple pairs of allele-specific probes may be included in the kit/system to simultaneously assay large numbers of variants, at least one of which is a variant of the disclosure. In some kits/systems, the allele-specific probes are immobilized to a substrate such as an array or bead. For example, the same substrate can comprise allele-specific probes for detecting at least 1; 10; 100; 1000; 10,000; 100,000; 500,000 (or any other number in-between) or substantially all of the variants disclosed herein.


The terms “arrays,” “microarrays,” and “DNA chips” are used herein interchangeably to refer to an array of distinct polynucleotides affixed to a substrate, such as glass, plastic, paper, nylon or other type of membrane, filter, chip, or any other suitable solid support. The polynucleotides can be synthesized directly on the substrate, or synthesized separate from the substrate and then affixed to the substrate.


In some instances, any number of probes, such as allele-specific probes, may be implemented in an array, and each probe or pair of probes can hybridize to a different variant position. In the case of polynucleotide probes, they can be synthesized at designated areas (or synthesized separately and then affixed to designated areas) on a substrate using a light-directed chemical process. Each DNA chip can contain, for example, thousands to millions of individual synthetic polynucleotide probes arranged in a grid-like pattern and miniaturized (e.g., to the size of a dime). For example, probes are attached to a solid support in an ordered, addressable array.


In some instances, a microarray can be composed of a large number of unique, single-stranded polynucleotides fixed to a solid support. Typical polynucleotides are for example about 6-60 nucleotides in length, more for example about 15-30 nucleotides in length, and most for example about 18-25 nucleotides in length. For certain types of microarrays or other detection kits/systems, it may be suitable to use oligonucleotides that are only about 7-20 nucleotides in length. In other types of arrays, such as arrays used in conjunction with chemiluminescent detection technology, exemplary probe lengths can be, for example, about 15-80 nucleotides in length, for example about 50-70 nucleotides in length, more for example about 55-65 nucleotides in length, and most for example about 60 nucleotides in length. The microarray or detection kit can contain polynucleotides that cover the known 5′ or 3′ sequence of the target variant site, sequential polynucleotides that cover the full-length sequence of a gene/transcript; or unique polynucleotides selected from particular areas along the length of a target gene/transcript sequence, particularly areas corresponding to one or more variants disclosed herein. Polynucleotides used in the microarray or detection kit can be specific to a variant or variants of interest (e.g., specific to a particular SNP allele at a target SNP site, or specific to particular SNP alleles at multiple different SNP sites), or specific to a polymorphic gene/transcript or genes/transcripts of interest.


In some instances, hybridization assays based on polynucleotide arrays rely on the differences in hybridization stability of the probes to perfectly matched and mismatched target sequence variants. For variant genotyping, it is generally suitable that stringency conditions used in hybridization assays are high enough such that nucleic acid molecules that differ from one another at as little as a single variant position can be differentiated (e.g., typical variant hybridization assays are designed so that hybridization will occur only if one particular nucleotide is present at a variant position, but will not occur if an alternative nucleotide is present at that variant position). Such high stringency conditions may be suitable when using, for example, nucleic acid arrays of allele-specific probes for variant detection. In some instances, the arrays are used in conjunction with chemiluminescent detection technology.


In some instances, a nucleic acid array can comprise an array of probes of about 15-25 nucleotides in length. In further embodiments, a nucleic acid array can comprise any number of probes, in which at least one probe is capable of detecting one or more variants disclosed herein and/or at least one probe comprises a fragment of one of the sequences selected from the group consisting of those disclosed herein, and sequences complementary thereto, said fragment comprising at least about 8 consecutive nucleotides, for example 10, 12, 15, 16, 18, 20, more for example 22, 25, 30, 40, 47, 50, 55, 60, 65, 70, 80, 90, 100, or more consecutive nucleotides (or any other number in-between) and containing (or being complementary to) a variant. In some embodiments, the nucleotide complementary to the variant site is within 5, 4, 3, 2, or 1 nucleotide from the center of the probe, more for example at the center of said probe.


In some instances, using such arrays or other kits/systems, the disclosure provides methods of identifying the variants disclosed herein in a test sample. Such methods typically involve incubating a test sample of nucleic acids with an array comprising one or more probes corresponding to at least one variant position of the disclosure, and assaying for binding of a nucleic acid from the test sample with one or more of the probes. Conditions for incubating a variant detection reagent (or a kit/system that employs one or more such variant detection reagents) with a test sample vary. Incubation conditions depend on such factors as the format employed in the assay, the detection methods employed, and the type and nature of the detection reagents used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification and array assay formats can readily be adapted to detect the variants disclosed herein.


In some instances, a detection kit/system may include components that are used to prepare nucleic acids from a test sample for the subsequent amplification and/or detection of a variant-containing nucleic acid molecule. Such sample preparation components can be used to produce nucleic acid extracts, including DNA and/or RNA, extracts from any bodily fluids. In an exemplary embodiment of the disclosure, the bodily fluid is blood, saliva or buccal swabs. The test samples used in the above-described methods will vary based on such factors as the assay format, nature of the detection method, and the specific tissues, cells or extracts used as the test sample to be assayed. Methods of preparing nucleic acids are well known in the art and can be readily adapted to obtain a sample that is compatible with the system utilized. In some instances, in addition to reagents for preparation of nucleic acids and reagents for detection of one of the variants of this disclosure, the kit may include a questionnaire inquiring about non-genetic clinical factors such as age, gender, or any other non-genetic clinical factors known to be associated with endometriosis.


In some instances, a form of kit can be a compartmentalized kit. A compartmentalized kit includes any kit in which reagents are contained in separate containers. Such containers include, for example, small glass containers, plastic containers, strips of plastic, glass or paper, or arraying material such as silica. Such containers allow one to efficiently transfer reagents from one compartment to another compartment such that the test samples and reagents are not cross-contaminated, or from one container to another vessel not included in the kit, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another or to another vessel. Such containers may include, for example, one or more containers which will accept the test sample, one or more containers which contain at least one probe or other variant detection reagent for detecting one or more variants of the disclosure, one or more containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and one or more containers which contain the reagents used to reveal the presence of the bound probe or other variant detection reagents. The kit can optionally further comprise compartments and/or reagents for, for example, nucleic acid amplification or other enzymatic reactions such as primer extension reactions, hybridization, ligation, electrophoresis (for example capillary electrophoresis), mass spectrometry, and/or laser-induced fluorescent detection. The kit may also include instructions for using the kit. In such microfluidic devices, the containers may be referred to as, for example, microfluidic “compartments”, “chambers”, or “channels”.


In some instances, microfluidic devices, which may also be referred to as “lab-on-a-chip” systems, biomedical micro-electro-mechanical systems (bioMEMs), or multicomponent integrated systems, are exemplary kits/systems of the disclosure for analyzing variants. Such systems miniaturize and compartmentalize processes such as probe/target hybridization, nucleic acid amplification, and capillary electrophoresis reactions in a single functional device. Such microfluidic devices typically utilize detection reagents in at least one aspect of the system, and such detection reagents may be used to detect one or more variants of the disclosure. One example of a microfluidic system is the integration of PCR amplification and capillary electrophoresis in chips. Exemplary microfluidic systems comprise a pattern of microchannels designed onto a glass, silicon, quartz, or plastic wafer included on a microchip. The movements of the samples may be controlled by electric, electroosmotic or hydrostatic forces applied across different areas of the microchip to create functional microscopic valves and pumps with no moving parts. Varying the voltage can be used as a means to control the liquid flow at intersections between the micro-machined channels and to change the liquid flow rate for pumping across different sections of the microchip. In some instances, for genotyping variants, a microfluidic system may integrate, for example, nucleic acid amplification, primer extension, capillary electrophoresis, and a detection method such as laser induced fluorescence detection.


Detection Kits and Systems


In some instances, based on a variant, detection reagents can be developed and used to assay any variant of the disclosure individually or in combination, and such detection reagents can be readily incorporated into one of the established kit or system formats which are well known in the art. The terms “kits” and “systems” can refer to such things as combinations of multiple variant detection reagents, or one or more variant detection reagents in combination with one or more other types of elements or components (e.g., other types of biochemical reagents, containers, packages such as packaging intended for commercial sale, substrates to which variant detection reagents are attached, electronic hardware components, etc.). Accordingly, the disclosure further provides variant detection kits and systems, including but not limited to, packaged probe and primer sets (e.g., TaqMan probe/primer sets), arrays/microarrays of nucleic acid molecules, and beads that contain one or more probes, primers, or other detection reagents for detecting one or more variants of the disclosure. The kits/systems can optionally include various electronic hardware components; for example, arrays (“DNA chips”) and microfluidic systems (“lab-on-a-chip” systems) provided by various manufacturers may comprise hardware components. Other kits/systems (e.g., probe/primer sets) may not include electronic hardware components, but may be comprised of, for example, one or more variant detection reagents (along with, optionally, other biochemical reagents) packaged in one or more containers.


Methods of Treatment


In some aspects, disclosed herein is a method of treating a select subject in need thereof. The use of these genetic markers can allow selection of subjects for clinical trials involving novel treatment methods. In some cases, genetic markers disclosed herein can be used for early diagnosis and prognosis of endometriosis, as well as early clinical intervention to mitigate progression of the disease. In some instances, genetic markers disclosed herein can be used to predict endometriosis and endometriosis progression, for example in treatment decisions for individuals who are recognized as having endometriosis.


In some cases, a treatment disclosed herein includes one or more of: reducing the frequency and/or severity of symptoms, elimination of symptoms and/or their underlying cause, and improvement or remediation of damage. For example, treatment of endometriosis includes, relieving the pain experienced by a woman suffering from endometriosis, and/or causing the regression or disappearance of endometriotic lesions.


In some cases, the treatment can be an advanced reproductive technology therapy such as in vitro in fertilization (IVF); a hormonal treatment; progestogen; progestin; an oral contraceptive; a hormonal contraceptive; danocrine; gentrinone; a gonadotrophin releasing hormone agonist; Lupron; danazol; an aromatase inhibitor; pentoxifylline; surgical treatment; laparoscopy; cauterization; or cystectomy. In some instances, the progestogen can be progesterone, desogestrel, etonogestrel, gestodene, levonorgestrel, medroxyprogesterone, norethisterone, norgestimate, megestrol, megestrol acetate, norgestrel, a pharmaceutically acceptable salt thereof (e.g., acetate), or any combination thereof. In some instances, a therapeutic used herein is selected from progestins, estrogens, antiestrogens, and antiprogestins, for example micronized danazol in a micro- or nanoparticulate formulation.


In some cases, a method of treatment disclosed herein comprises direct administration into or within an endometriotic lesion in a subject suffering from endometriosis of a pharmaceutical composition comprising a therapeutic disclosed herein. In some instances, the therapeutic is micronized in a suspension, e.g., non-oil based suspension. In some embodiments, the suspension comprises water, sodium sulfate, a quaternary ammonium wetting agent, glycerol, propylene glycol, polyethylene glycol, polypropylene glycol, a hydrophilic colloid, or any combination thereof.


The term “effective amount,” as used herein, can refer to a sufficient amount of a therapeutic being administered which relieve to some extent one or more of the symptoms of the disease or condition being treated. The result can be reduction and/or alleviation of the signs, symptoms, or causes of a disease, or any other desired alteration of a biological system. A therapeutic can be administered for prophylactic, enhancing, and/or therapeutic treatments. An appropriate “effective” amount in any individual case can be determined using techniques, such as a dose escalation study.


A treatment can comprise administering a therapeutic to a subject, intralesionally, transvaginally, intravenously, subcutaneously, intramuscularly, by inhalation, dermally, intra-articular injection, orally, intrathecally, transdermally, intranasally, via a peritoneal route, or directly onto or into a lesion/site, e.g., via endoscopically, open surgical administration, or injection route of application. In some instances, intralesional administration can mean administration into or within a pathological area. Administration can be effected by injection into a lesion and/or by instillation into a pre-existing cavity, such as in endometrioma. With reference to treatments for endometriosis provided herein, intralesional administration can refer to treatment within endometriotic tissue or a cyst formed by such tissue, such as by injection into a cyst. In some instances, intralesional administration can include administration into tissue in such close proximity to the endometriotic tissue such that the progestogen acts directly on the endometriotic tissue. In some instances, intralesional administration may or may not include administration to tissue remote from the endometriotic tissue that the progestogen acts on the endometriotic tissue through systemic circulation. In some instances, intralesional administration or delivery includes transvaginal, endoscopic or open surgical administration including, but are not limited to, via laparotomy. In some instances, transvaginal administration can refer to all procedures, including drug delivery, performed through the vagina, including intravaginal delivery and transvaginal sonography (ultrasonography through the vagina).


In some instances, administration is by injection into the endometriotic tissue or into a cyst formed by such tissue; or into tissue immediately surrounding the endometriotic tissue in such proximity that the progestogen acts directly on the endometriotic tissue. In some embodiments, the tissue is visualized, for example laparoscopically or by ultrasound, and the progestogen is administered by intralesional (intracystic) injection by, for example direct visualization under ultrasound guidance or by any other suitable methods. A suitable amount of the therapeutic, e.g., progestrogen expressed in terms of progesterone of about 1-2 gm per lesion/cyst, can be applied. Precise quantity generally is determined on case to case basis, depending upon parameters, such as the size of the endometriotic tissue mass, the mode of the administration, and the number and time intervals between treatments.


In some instances, methods herein can comprise intralesional delivery of the medicaments into the lesion. Intralesional delivery includes, for example, transvaginal, endoscopic or open surgical administration including via laparotomy. Delivery can be effected, for example, through a needle or needle like device by injection or a similar injectable or syringe-like device that can be delivered into the lesion, such as transvaginally, endoscopically or by open surgical administration including via laparotomy. In some embodiments, the method includes intravaginal and transvaginal delivery. For intravaginal/transvaginal delivery an ultrasound probe can be used to guide delivery of the needle from the vagina into lesions such as endometriomas and utero sacral nodules. Under ultrasound guidance the needle tip is placed in the lesion, the contents of the lesion aspirated if necessary and the formulation is injected into the lesion. In an exemplary delivery system a 17 to 20 gauge needle can be used for injection of the drug. Such system can be used for intralesional delivery including, but not limited to, transvaginal, endoscopic or open surgical administration including via laparotomy. For treatment of endometrioma 17 or 18 gauge needles are used under ultrasound guidance for aspiration of the thick contents of the lesion and delivery of the formulation. The length of the needle used depends on the depth of the lesion. Pre-loaded syringes and other administration systems, which obviate the need for reloading the drug can be used.


In some cases, a therapeutic (e.g., an active agent) used herein can be a solution, a suspension, liquid, a paste, aqueous, non-aqueous fluid, semi-solids, colloid, gel, lotion, cream, solid (e.g., tablet, powder, pellet, particulate, capsule, packet), or any combination thereof. In some instances, a therapeutic disclosed herein is formulated as a dosage form of tablet, capsule, gel, lollipop, parenteral, intraspinal infusion, inhalation, spray, aerosol, transdermal patch, iontophoresis transport, absorbing gel, liquid, liquid tannate, suppositories, injection, I.V. drip, or a combination thereof to treat subjects. In some instances, the active agents are formulated as single oral dosage form such as a tablet, capsule, cachet, soft gelatin capsule, hard gelatin capsule, extended release capsule, tannate tablet, oral disintegrating tablet, multi-layer tablet, effervescent tablet, bead, liquid, oral suspension, chewable lozenge, oral solution, lozenge, lollipop, oral syrup, sterile packaged powder including pharmaceutically-acceptable excipients, other oral dosage forms, or a combination thereof. In some instances, a therapeutic of the disclosure herein can be administered using one or more different dosage forms which are further disclosed herein. In some instances, therapeutics disclosed herein are provided in modified release dosage forms (such as immediate release, controlled release, or both),


The methods, compositions, and kits of this disclosure can comprise a method to prevent, treat, arrest, reverse, or ameliorate the symptoms of a condition of a subject, e.g., a patient. A subject can be, for example, an elderly adult, adult, adolescent, pre-adolescence, teenager, or child. A subject can be, for example, 10-50 years old, 10-40 years old, 10-30 years old, 10-25 years old, 10-21 years old, 10-18 years old, 10-16 years old, 18-25 years old, or 16-34 years old. The subject can be a female mammal, e.g., a female human being. In some instances, the human subject can be asymptomatic for endometriosis.


Treatment can be provided to the subject before clinical onset of disease. Treatment can be provided to the subject after clinical onset of disease. Treatment can be provided to the subject after 1 day, 1 week, 6 months, 12 months, or 2 years or more after clinical onset of the disease. Treatment may be provided to the subject for more than 1 day, 1 week, 1 month, 6 months, 12 months, 2 years or more after clinical onset of disease. Treatment may be provided to the subject for less than 1 day, 1 week, 1 month, 6 months, 12 months, or 2 years after clinical onset of the disease. Treatment can also include treating a human in a clinical trial.


A treatment, e.g., administration of a therapeutic, can occur 1, 2, 3, 4, 5, 6, 7, or 8 times daily. A treatment, e.g., administration of a therapeutic, can occur 1, 2, 3, 4, 5, 6, or 7 times weekly. A treatment, e.g., administration of a therapeutic, can occur 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 times monthly. A treatment, e.g., administration of a therapeutic, can occur 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 times yearly. In some instances, therapeutics disclosed herein are administered to a subject at about every 4 to about 6 hours, about every 12 hours, about every 24 hours, about every 48 hours, or more often. In some instances, therapeutics disclosed herein can be administered once, twice, three times, four times, five times, six times, seven times, eight times, or more often daily. In some instances, a dosage form disclosed herein provides an effective plasma concentration of an active agent at from about 1 minute to about 20 minutes after administration, such as about: 2 min, 3 min, 4 min, 5 min, 6 min, 7 min, 8 min, 9 min, 10 min, 11 min, 12 min, 13 min, 14 min, 15 min, 16 min, 17 min, 18 min, 19 min, 20 min, 21 min, 22 min, 23 min, 24 min, 25 min. In some instances, a dosage form of the disclosure herein provides an effective plasma concentration of an active agent at from about 20 minutes to about 24 hours after administration, such as about 20 minutes, 30 minutes, 40 minutes, 50 minutes, 1 hr, 1.2 hrs, 1.4 hrs, 1.6 hrs, 1.8 hrs, 2 hrs, 2.2 hrs, 2.4 hrs, 2.6 hrs, 2.8 hrs, 3 hrs, 3.2 hrs, 3.4 hrs, 3.6 hrs, 3.8 hrs, 4 hrs, 5 hrs, 6 hrs, 7 hrs, 8 hrs, 9 hrs, 10 hrs, 11 hrs, 12 hrs, 13 hrs, 14 hrs, 15 hrs, 16 hrs, 17 hrs, 18 hrs, 19 hrs, 20 hrs, 21 hrs, 22 hrs, 23 hrs, or 24 hrs following administration. In some instances, an active agent can be present in an effective plasma concentration in a subject for about 4 to about 6 hours, about 12 hours, about 24 hour, or 1 day to 30 days, including but not limited to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 days.


In some instances, a therapeutic (e.g., an active agent) is administered to a subject in a dosage of about 0.01 mg to about 500 mg per day, e.g., about 1-50 mg/day for an average person. In some embodiments, the daily dosage is from about 0.01 mg to about 5 mg, about 1 to about 10 mg, about 5 mg to about 20 mg, about 10 mg to about 50 mg, about 20 mg to about 100 mg, about 50 mg to about 150 mg, about 100 mg to about 250 mg, about 150 mg to about 300 mg, or about 250 mg to about 500 mg.


In some instances, each administration of a therapeutic (e.g., an active agent) is in an amount of about: 0.1-5 mg, 0.1-10 mg, 1-5 mg, 1-10 mg, 1-20 mg, 10-20 mg, 10-30 mg, 10-40 mg, 10-50 mg, 20-30 mg, 20-40 mg, 20-50 mg, 25-50 mg, 30-40 mg, 30-50 mg, 30-60 mg, 40-50 mg, 40-60 mg, 50-60 mg, 50-75 mg, 60-80 mg, 75-100 mg, or 80-100 mg, for example: about 0.5 mg, about 1 mg, about 1.5 mg, about 2 mg, about 2.5 mg, about 3 mg, about 3.5 mg, about 4 mg, about 4.5 mg, about 5 mg, about 5.5 mg, about 6 mg, about 6.5 mg, about 7 mg, about 7.5 mg, about 8 mg, about 8.5 mg, about 9 mg, about 9.5 mg, about 10 mg, about 10.5 mg, about 11 mg, about 11.5 mg, about 12 mg, about 12.5 mg, about 13 mg, about 13.5 mg, about 14 mg, about 14.5 mg, about 15 mg, about 15.5 mg, about 16 mg, about 16.5 mg, about 17 mg, about 17.5 mg, about 18 mg, about 18.5 mg, about 19 mg, about 19.5 mg, about 20 mg, about 22.5 mg, about 25 mg, about 27.5 mg, about 30 mg, about 32.5 mg, about 35 mg, about 37.5 mg, about 40 mg, about 42.5 mg, about 45 mg, about 47.5 mg, about 50 mg, about 55 mg, about 60 mg, about 65 mg, about 70 mg, about 75 mg, about 80 mg, about 85 mg, about 90 mg, about 95 mg, or about 100 mg.


In some instances, a therapeutic (e.g., an active agent) is administered to a subject in a dosage of about 0.01 g to about 100 g per day, e.g., about 1-10 g/day for an average person. In some embodiments, the daily dosage is from about 0.01 g to about 5 g, about 1 to about 10 g, about 5 g to about 20 g, about 10 g to about 50 g, about 20 g to about 100 g, or about 50 g to about 100 g.


In some instances, each administration of a therapeutic (e.g., an active agent) is in an amount of about: 0.01-1 g, 0.1-5 g, 0.1-10 g, 1-5 g, 1-10 g, 1-20 g, 10-20 g, 10-30 g, 10-40 g, 10-50 g, 20-30 g, 20-40 g, 20-50 g, 25-50 g, 30-40 g, 30-50 g, 30-60 g, 40-50 g, 40-60 g, 50-60 g, 50-75 g, 60-80 g, 75-100 g, or 80-100 g, for example: about 0.5 g, about 1 g, about 1.5 g, about 2 g, about 2.5 g, about 3 g, about 3.5 g, about 4 g, about 4.5 g, about 5 g, about 5.5 g, about 6 g, about 6.5 g, about 7 g, about 7.5 g, about 8 g, about 8.5 g, about 9 g, about 9.5 g, about 10 g, about 10.5 g, about 11 g, about 11.5 g, about 12 g, about 12.5 g, about 13 g, about 13.5 g, about 14 g, about 14.5 g, about 15 g, about 15.5 g, about 16 g, about 16.5 g, about 17 g, about 17.5 g, about 18 g, about 18.5 g, about 19 g, about 19.5 g, about 20 g, about 22.5 g, about 25 g, about 27.5 g, about 30 g, about 32.5 g, about 35 g, about 37.5 g, about 40 g, about 42.5 g, about 45 g, about 47.5 g, about 50 g, about 55 g, about 60 g, about 65 g, about 70 g, about 75 g, about 80 g, about 85 g, about 90 g, about 95 g, or about 100 g.


In some instances, a therapeutic (e.g., in a liquid) administered to a subject having an active agent concentration of about: 0.01-0.1, 0.1-1, 1-10, 1-20, 5-30, 5-40, 5-50, 10-20, 10-25, 10-30, 10-40, 10-50, 15-20, 15-25, 15-30, 15-40, 15-50, 20-30, 20-40, 20-50, 20-100, 30-40, 30-50, 30-60, 30-70, 30-80, 30-90, 30-100, 40-50, 40-60, 40-70, 40-80, 40-90, 40-100, 50-60, 50-70, 50-80, 50-90, 50-100, 50-150, 50-200, 50-300, 100-300, 100-400, 100-500, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, or 1000 μM, or any combination thereof.


In some cases, a therapeutic can comprise one or more active agents, administered to a subject at least about: 0.001 mg, 0.01 mg, 0.1 mg, 0.2 mg, 0.3 mg, 0.4 mg, 0.5 mg, 0.6 mg, 0.7 mg, 0.8 mg, 0.9 mg, 1 mg, 1.5 mg, 2 mg, 2.5 mg, 3 mg, 3.5 mg, 4 mg, 4.5 mg, 5 mg, 5.5 mg, 6 mg, 6.5 mg, 7 mg, 7.5 mg, 8 mg, 8.5 mg, 9 mg, 9.5 mg, or 10 mg, or per kg body weight of a subject in need thereof. The therapeutic may comprise a total dose of one or more active agents administered at about 0.1 to about 10.0 mg, for example, about 0.1-10.0 mg, about 0.1-9.0 mg, about 0.1-8.0 mg, about 0.1-7.0 mg, about 0.1-6.0 mg, about 0.1-5.0 mg, about 0.1-4.0 mg, about 0.1-3.0 mg, about 0.1-2.0 mg, about 0.1-1.0 mg, about 0.1-0.5 mg, about 0.2-10.0 mg, about 0.2-9.0 mg, about 0.2-8.0 mg, about 0.2-7.0 mg, about 0.2-6.0 mg, about 0.2-5.0 mg, about 0.2-4.0 mg, about 0.2-3.0 mg, about 0.2-2.0 mg, about 0.2-1.0 mg, about 0.2-0.5 mg, about 0.5-10.0 mg, about 0.5-9.0 mg, about 0.5-8.0 mg, about 0.5-7.0 mg, about 0.5-6.0 mg, about 0.5-5.0 mg, about 0.5-4.0 mg, about 0.5-3.0 mg, about 0.5-2.0 mg, about 0.5-1.0 mg, about 1.0-10.0 mg, about 1.0-5.0 mg, about 1.0-4.0 mg, about 1.0-3.0 mg, about 1.0-2.0 mg, about 2.0-10.0 mg, about 2.0-9.0 mg, about 2.0-8.0 mg, about 2.0-7.0 mg, about 2.0-6.0 mg, about 2.0-5.0 mg, about 2.0-4.0 mg, about 2.0-3.0 mg, about 5.0-10.0 mg, about 5.0-9.0 mg, about 5.0-8.0 mg, about 5.0-7.0 mg, about 5.0-6.0 mg, about 6.0-10.0 mg, about 6.0-9.0 mg, about 6.0-8.0 mg, about 6.0-7.0 mg, about 7.0-10.0 mg, about 7.0-9.0 mg, about 7.0-8.0 mg, about 8.0-10.0 mg, about 8.0-9.0 mg, or about 9.0-10.0 mg, or per kg body weight of a subject in need thereof.


In some cases, a method of treatment disclosed herein comprises administering a therapeutic. In some instances, the method comprises administering a therapeutic includes one or more of the following steps: a) obtaining a genetic material sample of a human female subject, b) identifying in the genetic material of the subject a genetic marker having an association with endometriosis, c) assessing the subject's risk of endometriosis or risk of endometriosis progression, d) identifying the subject as having an altered risk of endometriosis or an altered risk of endometriosis progression, e) administering to the subject a therapeutic, or any combination thereof.


In some instances, the subject may be endometriosis presymptomatic or the subject may exhibit endometriosis symptoms. In some instances, the assessment of risk may include non-genetic clinical factors. In some instances, the therapeutic is adapted to the specific subject so as to be a proper and effective amount of therapeutic for the subject. In some instances, the administration of the therapeutic may comprise multiple sequential instances of administration of the therapeutic and that such sequence instances may occur over an extended period of time or may occur on an indefinite on-going basis. In some instances, the therapeutic may be a gene or protein based therapy adapted to the specific needs of a select patient.


Hormonal Therapy


In some cases, a treatment method herein comprises supplementing the body with a hormone thereof such as a steroid hormone, for example a method of preventing endometriosis comprising administering a hormonal therapy to a human subject having at least one genetic variant defining a minor allele disclosed herein, e.g., listed in Table 1. In some instances, the hormone can be progestin, progestogen, progesterone, desogestrel, etonogestrel, gestodene, levonorgestrel, medroxyprogesterone, norethisterone, norgestimate, megestrol, megestrol acetate, norgestrel, a pharmaceutically acceptable salt thereof (e.g., acetate), or any combination thereof. In some instances, a therapeutic used herein is selected from progestins, estrogens, antiestrogens, and antiprogestins, for example micronized danazol in a micro- or nanoparticulate formulation. Methods and therapeutics presented herein can utilize an active agent in a freebase, salt, hydrate, polymorph, isomer, diastereomer, prodrug, metabolite, ion pair complex, or chelate form. An active agent can be formed using a pharmaceutically acceptable non-toxic acid or base, including an inorganic acid or base, or an organic acid or base. In some instances, an active agent that can be utilized in connection with the methods and compositions presented herein is a pharmaceutically acceptable salt derived from acids including, but not limited to, the following: acetic, alginic, anthranilic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethenesulfonic, formic, fumaric, furoic, galacturonic, gluconic, glucuronic, glutamic, glycolic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phenylacetic, phosphoric, propionic, salicylic, stearic, succinic, sulfanilic, sulfuric, tartaric acid, or p-toluenesulfonic acid. For further description of pharmaceutically acceptable salts that can be used in the methods described herein see, for example, S. M. Barge et al., “Pharmaceutical Salts,” 1977, J. Pharm. Sci. 66:1-19, which is incorporated herein by reference in its entirety.


In some instances, the therapeutic may take the form of a testosterone or a modified testosterone such as Danazol. In some instances, the therapeutic can be a hormonal treatment therapeutic which may be administered alone or in combination with a gene therapy. For instance, the therapeutic may be an estrogen containing composition, a progesterone containing composition, a progestin containing composition, a gonadotropin releasing-hormone (GnRH) agonist, a gonadotropin releasing-hormone (GnRH) antagonist, or other ovulation suppression composition, or a combination thereof. In some instances, the GnRH agonist may take the form of a GnRH agonist in combination with a patient specific substantially low dose of estrogen, progestin, or tibolone via an add-back administration. In some instances, in such add-back therapy, the dosage of estrogen, progestin, or tibolone is relatively small so as to not reduce the effectiveness of the GnRH agonist. In some instances, the therapeutic is an oral contraceptive (OC). In some instances, the OC is in a pill form that is comprised at least partially of estrogen, progesterone, or a combination thereof. In some instances, the progesterone component may be any of Desogestrel, Drospirenone, Ethynodiol, Levonorgestrel, Norethindrone, Norgestimate, and Norgestrel, and the estrogen component may further be any of Mestranol, Estradiol, and Ethinyl. In some instances, the OC may be any commercially available OC including ALESSE, APRI, ARANELLE, AVIANE, BREVICON, CAMILA, CESIA, CRYSELLE, CYCLESSA, DEMULEN, DESOGEN, ENPRESSE, ERRIN, ESTROSTEP, JOLIVETTE, JUNEL, KARIVA, LEENA, LESSINA, LEVLEN, LEVORA, LOESTRIN, LUTERA, MICROGESTIN, MICRONOR, MIRCETTE, MODICON, MONONESSA, NECON, NORA, NORDETTE, NORINYL, NOR-QD, NORTREL, OGESTREL, ORTHO-CEPT, ORTHO-CYCLEN, ORTHO-NOVUM, ORTHO-TRI-CYCLEN, OVCON, OVRAL, OVRETTE, PORTIA, PREVIFEM, RECLIPSEN, SOLIA, SPRINTEC, TRINESSA, TRI-NORINYL, TRIPHASIL, TRIVORA, VELIVET, YASMIN, AND ZOVIA (the preceding names are the registered trademarks of the respective providers).


Assisted Reproductive Technology Therapy


In some cases, a method herein can comprise administering to a select subject assisted reproductive technology therapy (ART), for example a method of treating endometriosis-associated infertility comprising administering ART to a select human subject having at least one genetic variant defining a minor allele disclosed herein, e.g., listed in Table 2. In some instances, ART can comprise in vitro fertilization (IVF), embryo transfer (ET), fertility medication, intracytoplasmic sperm injection (ICSI), cryopreservation, or any combination thereof. In some instances, ART can comprise surgically removing eggs from a woman's ovaries, combining them with sperm in the laboratory, and returning them to the woman's body or donating them to another woman.


In some cases, assisted reproductive technology therapy can comprises all treatments or procedures that include the handling of human eggs or embryos to help a woman become pregnant. For example, in vitro fertilization (IVF), gamete intrafallopian transfer (GIFT), zygote intrafallopian transfer (ZIFT), tubal embryo transfer, gg and embryo cryopreservation, egg and embryo donation and gestational surrogacy.


In some instances, the in vitro fertilization (IVF) procedure can provide for a live birth event following the IVF procedure. In some instances, a method herein provides a probability of a live birth event occurring resulting from the first or subsequent in vitro fertilization cycle based at least in part on items of information from the female subjects.


In some instances, the IVF can comprise ovulation induction, utilizing fertility medication can comprise agents that stimulate the development of follicles in the ovary. Examples are gonadotropins and gonadotropin releasing hormone.


In some instances, IVF can comprise transvaginal ovum retrieval (OVR), which can be a process whereby a small needle is inserted through the back of the vagina and guided via ultrasound into the ovarian follicles to collect the fluid that contains the eggs.


In some instances, IVF can comprise embryo transfer, which can be the step in the process whereby one or several embryos are placed into the uterus of the female with the intent to establish a pregnancy.


In some instances, IVF can comprise assisted zona hatching (AZH), which can be performed shortly before the embryo is transferred to the uterus. A small opening can be made in the outer layer surrounding the egg in order to help the embryo hatch out and aid in the implantation process of the growing embryo.


In some instances, IVF can comprise artificial insemination, for example intrauterine insemination, intracervical insemination, intrauterine tuboperitoneal insemination, intratubal insemination, or any combination thereof.


In some instances, IVF can comprise intracytoplasmic sperm injection (ICSI), which can be beneficial in the case of male factor infertility where sperm counts are very low or failed fertilization occurred with previous IVF attempt(s). The ICSI procedure can involve a single sperm carefully injected into the center of an egg using a microneedle. With IC SI, only one sperm per egg is needed. Without ICSI, one may need between 50,000 and 100,000. In some embodiments, this method can be employed when donor sperm is used.


In some instances, IVF can comprise autologous endometrial coculture, which can be a possible treatment for patients who have failed previous IVF attempts or who have poor embryo quality. The patient's fertilized eggs can be placed on top of a layer of cells from the patient's own uterine lining, creating a more natural environment for embryo development.


In some instances, IVF can comprise zygote intrafallopian transfer (ZIFT), in which egg cells can be removed from the woman's ovaries and fertilized in the laboratory; the resulting zygote can be then placed into the fallopian tube.


In some instances, IVF can comprise cytoplasmic transfer, in which the contents of a fertile egg from a donor can be injected into the infertile egg of the patient along with the sperm.


In some instances, IVF can comprise egg donors, which are resources for women with no eggs due to surgery, chemotherapy, or genetic causes; or with poor egg quality, previously unsuccessful IVF cycles or advanced maternal age. In the egg donor process, eggs can be retrieved from a donor's ovaries, fertilized in the laboratory with the sperm from the recipient's partner, and the resulting healthy embryos can be returned to the recipient's uterus.


In some instances, IVF can comprise sperm donation, which may provide the source for the sperm used in IVF procedures where the male partner produces no sperm or has an inheritable disease, or where the woman being treated has no male partner.


In some instances, IVF can comprise preimplantation genetic diagnosis (PGD), which can involve the use of genetic screening mechanisms such as fluorescent in-situ hybridization (FISH) or comparative genomic hybridization (CGH) to help identify genetically abnormal embryos and improve healthy outcomes.


In some instances, IVF can comprise embryo splitting can be used for twinning to increase the number of available embryos.


In some instances, ART can comprise gamete intrafallopian transfer (GIFT), in which a mixture of sperm and eggs can be placed directly into a woman's fallopian tubes using laparoscopy following a transvaginal ovum retrieval.


In some instances, ART can comprise reproductive surgery, treating e.g. fallopian tube obstruction and vas deferens obstruction, or reversing a vasectomy by a reverse vasectomy. In surgical sperm retrieval (SSR) the reproductive urologist can obtain sperm from the vas deferens, epididymis or directly from the testis in a short outpatient procedure. By cryopreservation, eggs, sperm and reproductive tissue can be preserved for later IVF.


In some instances, a subject to treat can be a pre-in vitro fertilization (pre-IVF) procedure patient. In certain embodiments, the items of information relating to preselected patient variables for determining the probability of a live birth event for a pre-IVF procedure patient may include age, diminished ovarian reserve, 3 follicle stimulating hormone (FSH) level, body mass index, polycystic ovarian disease, season, unexplained female infertility, number of spontaneous miscarriages, year, other causes of female infertility, number of previous pregnancies, number of previous term deliveries, endometriosis, tubal disease, tubal ligation, male infertility, uterine fibroids, hydrosalpinx, and male infertility causes.


In some instances, a subject to treat can be a pre-surgical (pre-OR) procedure patient (pre-OR is also referred to herein as pre-oocyte retrieval). In certain embodiments, the items of information relating to preselected patient variables for determining the probability of a live birth event for a pre-OR procedure patient may include age, endometrial thickness, total number of oocytes, total amount of gonatropins administered, number of total motile sperm after wash, number of total motile sperm before wash, day 3 follicle stimulating hormone (FSH) level, body mass index, sperm collection, age of spouse, season number of spontaneous miscarriages, unexplained female infertility, number of previous term deliveries, year, number of previous pregnancies, other causes of female infertility, endometriosis, male infertility, tubal ligation, polycystic ovarian disease, tubal disease, sperm from donor, hydrosalpinx, uterine fibroids, and male infertility causes.


In some instances, a subject to treat can be a post-in vitro fertilization (post-IVF) procedure patient. In certain embodiments, the items of information relating to preselected patient variables for determining the probability of a live birth event for a post-IVF procedure patient may include blastocyst development rate, total number of embryos, total amount of gonatropins administered, endometrial thickness, flare protocol, average number of cells per embryo, type of catheter used, percentage of 8-cell embryos transferred, day 3 follicle stimulating hormone (FSH) level, body mass index, number of motile sperm before wash, number of motile sperm after wash, average grade of embryos, day of embryo transfer, season, number of spontaneous miscarriages, number of previous term deliveries, oral contraceptive pills, sperm collection, percent of unfertilized eggs, number of embryos arrested at 4-cell stage, compaction on day 3 after transfer, percent of normal fertilization, percent of abnormally fertilized eggs, percent of normal and mature oocytes, number of previous pregnancies, year, polycystic ovarian disease, unexplained female infertility, tubal disease, male infertility only, male infertility causes, endometriosis, other causes of female infertility, uterine fibroids, tubal ligation, sperm from donor, hydrosalpinx, performance of ICSI, or assisted hatching.


Pain Managing Medications


In some cases, a method disclosed herein can comprise administering a pain medication to a select subject, for example to a human subject having at least one genetic variant defining a minor allele listed in Table 3. In some instances, the pain medication comprises a nonsteroidal anti-inflammatory drug (NSAID), ibuprofen, naproxen, acetaminophen, an opioid, a cannabis-based therapeutic, or any combination thereof.


In some instances, the pain medication described herein can comprise an NSAID, for example amoxiprin, benorilate, choline magnesium salicylate, diflunisal, faislamine, methyl salicylate, magnesium salicylate, diclofenac, aceclofenac, acemetacin, bromfenac, etodolac, indometacin, nabumetone, sulindac, tolmetin, ibuprofen, carprofen, fenbuprofen, flubiprofen, ketaprofen, ketorolac, loxoprofen, naproxen, suprofen, mefenamic acid, meclofenamic acid, piroxicam, lomoxicam, meloxicam, tenoxicam, phenylbutazone, azapropazone, metamizole, oxyphenbutazone, or sulfinprazone, or a pharmaceutically acceptable salt thereof.


In some instances, the pain medication described herein can comprise an opioid analgesic, for example hydrocodone, oxycodone, morphine, diamorphine, codeine, pethidine, alfentanil, buprenorphine, butorphanol, dezocine, fentanyl, hydromorphone, levomethadyl acetate, levorphanol, meperidine, methadone, morphine sulfate, nalbuphine, oxymorphone, pentazocine, propoxyphene, remifentanil, sufentanil, or tramadol, or a pharmaceutically acceptable salt thereof.


In some instances, the pain medication described herein can comprise a cannabis-based therapeutic such as a cannabinoid for the treatment, reduction or prevention of pain. Exemplary cannabinoid for the treatment of pain include, without limitation, nabilone, dronabinol (THC), cannabidiol (CBD), cannabinol (CBN), cannabichromeme (CBC), cannabigerol (CBG), tetrahydrocannabivarin (THCV), tetrahydrocannabinolic acid (THCA), cannabidivarin (CBDV), cannadidiolic acid (CBDA), ajulemic acid, dexanabinol, cannabinor, HU 308, HU 331, and a pharmaceutically acceptable salt thereof.


SPECIFIC EMBODIMENTS

A number of methods and systems are disclosed herein. Specific exemplary embodiments of these methods and systems are disclosed below.


Section 1 of Specific Embodiments
Embodiment 1

A method comprising: hybridizing a nucleic acid probe to a nucleic acid sample from a human subject suspected of having or developing endometriosis; and detecting a genetic variant in a panel comprising two or more genetic variants defining a minor allele listed in Table 1.


Embodiment 2

The method of embodiment 1, wherein the nucleic acid sample comprises mRNA, cDNA, genomic DNA, or PCR amplified products produced therefrom, or any combination thereof.


Embodiment 3

The method of embodiment 1 or 2, wherein the nucleic acid sample comprises PCR amplified nucleic acids produced from cDNA or mRNA.


Embodiment 4

The method of embodiment 1 or 2, wherein the nucleic acid sample comprises PCR amplified nucleic acids produced from genomic DNA.


Embodiment 5

The method of any one of embodiments 1-4, wherein the nucleic acid probe is a sequencing primer.


Embodiment 6

The method of any one of embodiments 1-4, wherein the nucleic acid probe is an allele specific probe.


Embodiment 7

The method of any one of embodiments 1-6, wherein the detecting comprises DNA sequencing, hybridization with a complementary probe, an oligonucleotide ligation assay, a PCR-based assay, or any combination thereof.


Embodiment 8

The method of any one of embodiments 1-7, wherein the panel comprises at least: 5, 10, 15, 20, 25, 50, 75, 100, 150, 200, 250, 500, or more genetic variants defining minor alleles listed in Table 1.


Embodiment 9

The method of any one of embodiments 1-8, wherein the genetic variant has an odds ratio (OR) of at least: 1.5, 2, 5, 10, 20, 50, 100, or more.


Embodiment 10

The method of any one of embodiments 1-9, wherein the genetic variant comprises a synonymous mutation, a non-synonymous mutation, a nonsense mutation, an insertion, a deletion, a splice-site variant, a frameshift mutation, or any combination thereof.


Embodiment 11

The method of any one of embodiments 1-9, wherein the genetic variant comprises a protein damaging mutation.


Embodiment 12

The method of any one of embodiments 1-10, wherein the panel further comprises one or more protein damaging or loss of function variants in one or more genes selected from the group consisting of GAT2, CCDC169, CASP8AP2, POU2F3, CD19, IGSF3, GLI3, PEX26, OLIG3, CIB4, NKX3-2, CFTR, and any combinations thereof.


Embodiment 13

The method of embodiment 12, further comprising sequencing the one or more genes to identify the one or more protein damaging or loss of function variants.


Embodiment 14

The method of embodiment 13, wherein the one or more protein damaging or loss of function variants are identified based on a predictive computer algorithm.


Embodiment 15

The method of embodiment 13 of 14, wherein the one or more protein damaging or loss of function variants are identified based on reference to a database.


Embodiment 16

The method of any one of embodiments 12-15, wherein the one or more protein damaging or loss of function variants comprise a stop-gain mutation, a spice-site mutation, a frameshift mutation, a missense mutation, or any combination thereof.


Embodiment 17

The method of any one of embodiments 1-16, wherein the panel further comprises one or more additional variants defining a minor allele listed in Table 4.


Embodiment 18

The method of any one of embodiments 1-17, wherein the panel is capable of identifying human subjects as having or being at risk of developing endometriosis with a specificity of at least: 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%.


Embodiment 19

The method of any one of embodiments 1-18, wherein the panel is capable of identifying human subjects as having or being at risk of developing endometriosis with a sensitivity of at least: 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%.


Embodiment 20

The method of any one of embodiments 1-19, wherein the panel is capable of identifying human subjects as having or being at risk of developing endometriosis with an accuracy of at least: 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%.


Embodiment 21

The method of any one of embodiments 1-20, further comprising administering a therapeutic to the human subject.


Embodiment 22

The method of embodiment 21, wherein the therapeutic comprises hormonal therapy, an advanced reproductive technology therapy, a pain managing medication, or any combination thereof.


Embodiment 23

The method of embodiment 21, wherein the therapeutic comprises hormonal contraceptives, gonadotropin-releasing hormone (Gn-RH) agonists, gonadotropin-releasing hormone (Gn-RH) antagonists, progestin, danazol, or any combination thereof.


Embodiment 24

The method of any one of embodiments 1-23, wherein the human subject is asymptomatic for endometriosis.


Embodiment 25

The method of any one of embodiments 1-24, wherein the human subject is a teenager.


Embodiment 26

A method comprising detecting one or more genetic variants defining a minor allele listed in Table 1 in genetic material from a human subject suspected of having or developing endometriosis.


Embodiment 27

The method of embodiment 26, wherein the genetic material comprises mRNA, cDNA, genomic DNA, or PCR amplified products produced therefrom, or any combination thereof.


Embodiment 28

The method of embodiment 26 or 27, wherein the detecting comprises DNA sequencing, hybridization with a complementary probe, an oligonucleotide ligation assay, a PCR-based assay, of any combination thereof.


Embodiment 29

The method of any one of embodiments 26-28, wherein the detecting comprises hybridizing a nucleic acid probe to the genetic material.


Embodiment 30

The method of any one of embodiments 26-29, wherein the detecting comprises testing for the presence or absence of at least: 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, 100, 150, 250, or 500 genetic variants defining a minor allele listed in Table 1.


Embodiment 31

The method of any one of embodiments 26-30, wherein the one or more genetic variants have an odds ratio (OR) of at least: 1.5, 2, 5, 10, 20, 50, 100, or more.


Embodiment 32

The method of any one of embodiments 26-31, further comprising administering a therapeutic to the human subject.


Embodiment 33

A method comprising: sequencing one or more genes selected from the group consisting of GAT2, CCDC169, CASP8AP2, POU2F3, CD19, IGSF3, GLI3, PEX26, OLIG3, CIB4, NKX3-2, CFTR, and any combinations thereof to identify one or more protein damaging or loss of function variants in a human subject suspected of having or developing endometriosis; and administering an endometriosis therapy to the human subject.


Embodiment 34

The method of embodiment 33, wherein the one or more protein damaging or loss of function variants are identified based on a predictive computer algorithm, reference to a database, or a combination thereof.


Embodiment 35

The method of embodiment 33 or 34, wherein the one or more protein damaging or loss of function variants comprise a stop-gain mutation, a spice-site mutation, a frameshift mutation, a missense mutation, or any combination thereof.


Embodiment 36

The method of any one of embodiments 33-35, wherein the endometriosis therapy comprises a hormonal therapy, an assisted reproductive technology therapy, a pain medication, or any combination thereof.


Embodiment 37

A method of preventing endometriosis comprising administering a hormonal therapy to a human subject having at least one genetic variant defining a minor allele listed in Table 1.


Embodiment 38

The method of embodiment 37, wherein the hormonal therapy comprises administration of hormonal contraceptives, gonadotropin-releasing hormone (Gn-RH) agonists, gonadotropin-releasing hormone (Gn-RH) antagonists, progestin, danazol, or any combination thereof.


Embodiment 39

A method of treating endometriosis-associated infertility comprising administering an assisted reproductive technology therapy to a human subject having at least one genetic variant defining a minor allele listed in Table 2.


Embodiment 40

The method of embodiment 39, wherein the assisted reproductive technology therapy comprises in vitro fertilization, gamete intrafallopian transfer, or any combination thereof.


The method can further comprise administering, intrauterine insemination or ovulation induction.


Embodiment 41

A method comprising administering a pain medication to a human subject having at least one genetic variant defining a minor allele listed in Table 3.


Embodiment 42

The method of embodiment 41, wherein the pain medication comprises a nonsteroidal anti-inflammatory drug (NSAID), ibuprofen, naproxen, an opioid, a cannabis-based therapeutic, or any combination thereof.


Embodiment 43

The method of any one of embodiment 37-42, further comprising detecting the at least one genetic variant in a genetic material from the human subject.


Embodiment 44

The method of embodiment 43, wherein the detecting comprises DNA sequencing, hybridization with a complementary probe, an oligonucleotide ligation assay, a PCR-based assay, or any combination thereof.


Embodiment 45

The method of embodiment 43, wherein the detecting comprises hybridizing a nucleic acid probe to the genetic material.


Embodiment 46

The method of embodiment 45, wherein the nucleic acid probe is a sequencing primer or an allele-specific probe.


Embodiment 47

The method of any one of embodiments 37-46, wherein the at least one genetic variant has an odds ratio (OR) of at least: 1.5, 2, 5, 10, 20, 50, 100, or more.


Embodiment 48

The method of any one of embodiments 37-47, wherein the at least one genetic variant comprises a synonymous mutation, a non-synonymous mutation, a nonsense mutation, an insertion, a deletion, a splice-site variant, a frameshift mutation, or any combination thereof.


Section 2 of Specific Embodiments
Embodiment 1

A method comprising: (a) sequencing or genotyping a nucleic acid sample obtained from a subject having endometriosis, suspected of having endometriosis, or suspected of having a risk of developing endometriosis using a high throughput method; and (b) detecting one or more genetic variants in said nucleic acid sample, wherein said one or more genetic variants are listed in Table 1, Table 2 or Table 3.


Embodiment 2

The method of embodiment 1, wherein said high throughput method comprises nanopore sequencing.


Embodiment 3

The method of embodiment 1 or 2, wherein said nucleic acid sample comprises RNA.


Embodiment 4

The method of embodiment 3, wherein said RNA comprises mRNA.


Embodiment 5

The method of embodiment 1 or 2, wherein said nucleic acid sample comprises DNA.


Embodiment 6

The method of embodiment 5, wherein said DNA comprises cDNA, genomic DNA, sheared DNA, cell free DNA, fragmented DNA, or PCR amplified products produced therefrom, or any combination thereof.


Embodiment 7

The method of embodiment 5, wherein said DNA comprises DNA from an endometriosis lesion or peritoneal fluid.


Embodiment 8

The method of any one of embodiments 1-7, wherein said one or more genetic variants comprise a genetic variant defining a minor allele.


Embodiment 9

The method of any one of embodiments 1-7, wherein said one or more genetic variants comprise at least about: 5, 10, 15, 20, 25, 50, 75, 100, 150, 200, 250, 500, or more genetic variants defining minor alleles.


Embodiment 10

The method of any one of embodiments 1-9, wherein detection of said one or more genetic variants has an odds ratio (OR) for endometriosis of at least about: 1.5, 2, 5, 10, 20, 50, 100, or more.


Embodiment 11

The method of any one of embodiments 1-10, wherein said one or more genetic variants comprise a synonymous mutation, a non-synonymous mutation, a stop-gain mutation, a nonsense mutation, an insertion, a deletion, a splice-site variant, a frameshift mutation, or any combination thereof.


Embodiment 12

The method of any one of embodiments 1-11, wherein said one or more genetic variants comprise a protein damaging mutation.


Embodiment 13

The method of any one of embodiments 12, wherein said one or more genetic variants further comprise a protein damaging or loss of function variant in one or more genes selected from the group consisting of GAT2, CCDC169, CASP8AP2, POU2F3, CD19, IGSF3, GLI3, PEX26, OLIG3, CIB4, NKX3-2, CFTR, and any combinations thereof.


Embodiment 14

The method of any one of embodiments 1-12, wherein said one or more genetic variants are comprised in GAT2, CCDC169, CASP8AP2, POU2F3, CD19, IGSF3, GLI3, PEX26, OLIG3, CIB4, NKX3-2, CFTR or a combination thereof.


Embodiment 15

The method of any one of embodiments 1-13, further comprising detecting one or more additional variants defining a minor allele listed in Table 4.


Embodiment 16

The method of any one of embodiment 1-15, wherein said one or more genetic variants are identified or weighted based on a predictive mathematical or computer programmed algorithm.


Embodiment 17

The method of any one of embodiments 1-16, wherein said one or more genetic variants are identified based on reference to a database.


Embodiment 18

The method of any one of embodiments 1-17, further comprising identifying said subject as having endometriosis or being at risk of developing endometriosis.


Embodiment 19

The method of embodiment 18, wherein said identifying said subject as having endometriosis or being at risk of developing endometriosis is with a specificity of at least: 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%.


Embodiment 20

The method of any one of embodiments 18-19, wherein said identifying said subject as having endometriosis or being at risk of developing endometriosis is with a sensitivity of at least: 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%.


Embodiment 21

The method of any one of embodiments 18-20, wherein said identifying said subject as having endometriosis or being at risk of developing endometriosis is with an accuracy of at least: 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%.


Embodiment 22

The method of any one of embodiments 18-21, wherein said subject is identified as having endometriosis.


Embodiment 23

The method of embodiment 22, wherein said subject is asymptomatic for endometriosis.


Embodiment 24

The method of embodiment 22, wherein said subject is symptomatic for endometriosis.


Embodiment 25

The method of any one of embodiments 18-21, wherein said subject is identified as being at risk of developing endometriosis.


Embodiment 26

The method of any one of embodiments 1-25, further comprising administering a therapeutic to said subject.


Embodiment 27

The method of embodiment 26, wherein said therapeutic comprises hormonal therapy, an advanced reproductive technology therapy, a pain managing medication, or any combination thereof.


Embodiment 28

The method of embodiment 26, wherein said therapeutic comprises hormonal contraceptives, gonadotropin-releasing hormone (Gn-RH) agonists, gonadotropin-releasing hormone (Gn-RH) antagonists, progestin, danazol, or any combination thereof.


Embodiment 29

The method of any one of embodiments 26-28, wherein said therapeutic comprises a pain medication.


Embodiment 30

The method of embodiment 29, wherein said pain medication comprises a nonsteroidal anti-inflammatory drug (NSAID), ibuprofen, naproxen, an opioid, a cannabis-based therapeutic, or any combination thereof.


Embodiment 31

The method of any one of embodiments 1-26, wherein said one or more genetic variants are listed in Table 1.


Embodiment 32

The method of any one of embodiments 1-26, wherein said one or more genetic variants are listed in Table 2.


Embodiment 33

The method of any one of embodiments 1-26, wherein said one or more genetic variants are listed in Table 3.


Embodiment 34

The method of any one of embodiments 1-33, further comprising identifying said subject as having endometriosis-associated infertility or being at risk of developing endometriosis-associated infertility.


Embodiment 35

The method of embodiment 34, further comprising administering assisted reproductive technology therapy to said subject.


Embodiment 36

The method of embodiment 35, wherein said assisted reproductive technology therapy comprises in vitro fertilization, gamete intrafallopian transfer, or any combination thereof.


Embodiment 37

The method of embodiment 34, further comprising administering intrauterine insemination or ovulation induction.


Embodiment 38

The method of any one of embodiments 1-37, wherein said subject is a mammal.


Embodiment 39

The method of embodiment 38, wherein said mammal is a human.


Embodiment 40

The method of any one of embodiments 2-39, wherein said nanopore sequencing is performed with a biological nanopore, a solid state nanopore, or a hybrid nanopore.


Embodiment 41

The method of any one of embodiments 1-40, wherein said one or more genetic variants further comprise a mutation in SEPT10, TNFRSF6B, UGT2B28, USP17L2 or any combination thereof.


Embodiment 42

The method of embodiment 41, wherein said one or more genetic variants comprise a mutation in SEPT10 and wherein said mutation comprises a missense mutation.


Embodiment 43

The method of embodiment 41, wherein said one or more genetic variants comprise a mutation in TNFRSF6B and wherein said mutation comprises a homozygous or hemizygous mutation.


Embodiment 44

The method of embodiment 41, wherein said one or more genetic variants comprise a mutation in UGT2B28 or USP17L2 and wherein said mutation comprises a hemizygous deletion.


Embodiment 45

The method of any one of embodiments 1-44, wherein the one or more variants are identified based on a predictive computer algorithm.


Embodiment 46

The method of embodiment 45, wherein said predictive computer algorithm is Polyphen 2, Sift, Mutation Accessor, Mutation Taster, FATHMM, LRT, or MetaLR.


Embodiment 47

The method of any one of embodiments 1-46, further comprising administering a hormonal therapy to said subject.


Embodiment 48

The method of embodiment 47, wherein the hormonal therapy comprises administration of hormonal contraceptives, gonadotropin-releasing hormone (GnRH) agonists, gonadotropin-releasing hormone (GnRH) antagonists, progestin, danazol, or any combination thereof.


Embodiment 49

The method of any one of embodiments 1-46, further comprising administering to the subject an assisted reproductive therapy.


Embodiment 50

The method of embodiment 49, wherein the assisted reproductive therapy comprises in vitro fertilization, intrauterine insemination, ovulation induction, gamete intrafallopian transfer, or any combination thereof.


Embodiment 51

The method of any one of embodiments 1-46, further comprising administering to the subject a pain medication.


Embodiment 52

The method of embodiment 51, wherein the pain medication comprises a nonsteroidal anti-inflammatory drug (NSAID), ibuprofen, naproxen, an opioid, a cannabis-based therapeutic, or any combination thereof.


Embodiment 53

The method of any one of embodiments 1-46, further comprising administering a therapeutic to the subject.


Embodiment 54

The method of embodiment 53, wherein the therapeutic comprises a regenerative therapy, a medical device, a pharmaceutical composition, a medical procedure, or any combination thereof.


Embodiment 55

The method of embodiment 53, wherein the therapeutic comprises a non-steroidal anti-inflammatory, a hormone treatment, a dietary supplement, a cannabis-derived therapeutic or any combination thereof.


Embodiment 56

The method of embodiment 53, wherein the therapeutic comprises the pharmaceutical composition, and wherein the pharmaceutical composition comprises an at least partially hemp-derived therapeutic, an at least partially cannabis-derived therapeutic, a cannabidiol (CBD) oil derived therapeutic, or any combination thereof.


Embodiment 57

The method of embodiment 53, wherein the therapeutic comprises the medical procedure, and wherein the medical procedure comprises a laparoscopy, a laser ablation procedure, a hysterectomy or any combination thereof.


Embodiment 58

The method of embodiment 53, wherein the therapeutic comprises the regenerative therapy, and wherein the regenerative therapy comprises a stem cell, a cord blood cell, a Wharton's jelly, an umbilical cord tissue, a tissue, or any combination thereof.


Embodiment 59

The method of embodiment 53, wherein the therapeutic comprises the pharmaceutical composition, and wherein the pharmaceutical composition comprises cannabis, cannabidiol oil, hemp, or any combination thereof.


Embodiment 60

The method of embodiment 53, wherein the therapeutic comprises the pharmaceutical composition, and wherein the pharmaceutical composition is formulated in a unit dose.


Embodiment 61

The method of embodiment 53, wherein the therapeutic comprises hormonal therapy, an advanced reproductive therapy, a pain managing medication, or any combination thereof.


Embodiment 62

The method of embodiment 53, wherein the therapeutic comprises a hormonal contraceptive, gonadotropin-releasing hormone (GnRH) agonist, gonadotropin-releasing hormone (GnRH) antagonist, progestin, danazol, or any combination thereof.


Embodiment 63

The method of any one of embodiments 1-62, wherein the subject is asymptomatic for endometriosis.


Embodiment 64

A kit comprising: one or more probes for detecting one or more genetic variants of Table 1, Table 2, Table 3, or any combination thereof in a sample.


Embodiment 65

The kit of embodiment 64, further comprising a control sample.


Embodiment 66

The kit of embodiment 64, wherein the control sample comprises one or more genetic variants of Table 1, Table 2, Table 3, or any combination thereof.


Embodiment 67

The kit of any one of embodiments 64-66, wherein the one or more probes comprise a hybridization probe or amplification primer.


Embodiment 68

The kit of any one of embodiments 64-67, wherein the one or more probes is configured to associate with a solid support.


Embodiment 69

The kit of any one of embodiments 64-68, wherein the kit further comprises instructions for use and wherein the instructions for use comprise high stringent hybridization conditions.


Embodiment 70

The kit of any one of embodiments 64-69, wherein the one or more probes is configured to hybridize to a target region of a nucleic acid of the sample, wherein the target region comprises one or more genetic variants.


Embodiment 71

A system comprising: (a) a computer processor configured to receive sequencing data obtained from assaying a sample, wherein the computer processor is configured to identify a presence or an absence of one or more genetic variants of Table 1, Table 2, Table 3 or any combination thereof in the sample, and (b) a graphical user interface configured to display a report comprising the identification of the presence or the absence of the one or more genetic variants in the sample.


Embodiment 72

The system of embodiment 71, wherein the computer processor comprises a trained algorithm.


Embodiment 73

The system of embodiment 71 or 72, wherein the computer processor communicates a result.


Embodiment 74

The system of embodiment 73, wherein the result comprises an identification of the presence or the absence of one or more genetic variants in the sample.


Embodiment 75

A method comprising: (a) sequencing or genotyping a nucleic acid sample obtained from a subject having endometriosis, suspected of having endometriosis, or suspected of having a risk of developing endometriosis using a high throughput method; and (b) detecting a genetic variant in said nucleic acid sample, wherein said genetic variant comprises a mutation in SEPT10, TNFRSF6B, UGT2B28, USP17L2 or any combination thereof.


Embodiment 76

The method of embodiment 75, wherein said genetic variant is a mutation in SEPT10 and wherein said mutation comprises a missense mutation.


Embodiment 77

The method of embodiment 75, wherein said genetic variant is a mutation in TNFRSF6B and wherein said mutation comprises a homozygous or hemizygous mutation.


Embodiment 78

The method of embodiment 75, wherein said genetic variant is a mutation in UGT2B28 or USP17L2 and wherein said mutation comprises a hemizygous deletion.


Embodiment 79

The method of embodiment 75, wherein said high throughput method comprises nanopore sequencing.


EXAMPLES
Example 1. Low-Frequency, Damaging Mutations in Hundreds of Genes are Risk Factors for Endometriosis

This study performed exome-wide association analysis for rare low frequency mutations in the women with endometriosis. Rare exome variants associated with endometriosis were searched using an exome genotyping array and confirmatory whole exome sequencing (WES).


Consent and Medical Review


All subjects and controls were provided written informed consent in accordance with study protocols approved by Quorum Review IRB (Seattle, Wash. 98101). Trained OB/GYN clinicians performed the medical record review and clinical assessment of each patient.


Methods


Illumina Exome Human BeadChip. 1518 Caucasian patients with surgically confirmed endometriosis were tested for more than 200,000 rare non-synonymous variants (minor allele frequency <0.005). Allele frequencies were compared to the population datasets (genotyping dataset UK Michigan (n=50,000) and publicly available sequencing dataset Exac (n=33,000).


Affymetrix Axiom Custom Chip. 1888 Caucasian patients with surgically confirmed endometriosis were tested for more than 700,000 variants. Allele frequencies were compared to the population sequencing dataset Exac (n=33,000). Replication was performed on 530 endometriosis subjects with whole exome sequencing data. Association testing was performed using Fisher's exact test. Nominal threshold was selected for significance (p<0.05). Panther software was used to test gene ontologies. A predictive score (E) was estimated for each subject as follows: E=Σ log(L95ORj)*Cj, in which C is a count of risk allele, L95OR is a lower limit of 95% CI of an odds ratio, and j is 1, 2, 3 . . . n, wherein n is the number of the associated variants.


Results


775 rare variants associated with endometriosis were identified, 561 of which were identified using Illumina Exome Beadchip, and 214 of which were identified using Affymetrix Axiom Custom Chip. FIG. 1A-1B to FIG. 3 illustrate the results. Multiple low-frequency coding variants can be important in the genetic architecture of endometriosis. The relative risk of having endometriosis is significantly higher in women with multiple damaging variants, suggesting that they may serve as useful predictive or diagnostic markers. Genes involved with Wnt, cadherin, integrin, and inflammation medicated by cytokine signaling pathways are enriched, but trends did not reach significance.


Example 2. Genetic Variation Underlying the Clinical Heterogeneity of Endometriosis

The study investigated whether two of the typical symptoms—pain and infertility may be linked to distinct genetic factors. A pool of 2818 non-synonymous SNP markers were selected to classify markers associated with pain or infertility patients. In one group, cases were included that reported pain as their primary symptom but not infertility (n=727), and in the other group, cases were included with infertility as their primary symptom with only minimal or no pain (n=138). SNPs were then evaluated for significant variation between the two groups.


Methods


Genotyping. The samples were genotyped on a custom designed microarray using the Affymetrix Axiom platform per the manufacturer's instructions.


Statistical Analysis. Differences in allele frequencies between the two cohorts were tested for each SNP by a 1-degree-of-freedom Corchran-Armitage Trend test.


Ethnicity. Subjects were confirmed Caucasian ethnicity using principal component analysis.


Population Controls. The marker frequencies were compared to population control dataset of European Ethnicity (n=33,000; ExAc Database) to associate the marker to the respective group.


Consent and Medical Review


All subjects were provided written informed consent in accordance with study protocols approved by Quorum Review IRB (Seattle, Wash. 98101). Trained OB/GYN clinicians performed the medical record review and clinical assessment of each patient. Inclusion criteria in the endometriosis case population in the study were surgically confirmed diagnosis of endometriosis.


Results


The analysis identified nine SNP variants with differential prevalence between pelvic pain patients and infertility patients as shown in Table 5.

















AA
Allele Frequency
CPP vs. INF
















SNP
Gene
Chr
Pos
change
ExAC
GPP
INF
Ptrend
OR










Genes associated with chronic pain
















rs172562
TBX18
6
85,473,758
G48R
0.5706
0.4805
0.5766
0.0024
1.47


rs12339210
WHRN/
9
117,170,241
P562A
0.1636
0.1007
0.1606
0.0040
1.69



DFNB31


rs35471617
COL21A1
6
56,033,094
T343M
0.1274
0.0639
0.1159
0.0021
1.92


rs72899872
LPR1B
2
141,232,800
A3178T
0.0127
0
0.0109
0.0001








Genes associated with infertility
















rs8139422
CRELD2
22
50,315,363
D182E
0.0313
0.0282
0.0616
0.0040
2.27


rs78214713
OR51Q1
11
5,444,040
L204F
0.0066
0.0089
0.029
0.0259
3.33


rs7597367
SCLY
2
238,973,062
K60E
0.0006
0
0.0073
0.0011



rs35880972
BIRC8
19
53,793,162
A156T
0.0004
0
0.0072
0.0012



rs34505126
BMP3
4
81,967,240
T222M
0.0006
0
0.0072
0.0012










Table 5 summarizes the results from a comparison of endometriosis associated variants with significantly different allele frequencies between patients with pelvic pain or infertility. ExAc can refer to frequencies reported by the ExAc consortium. CPP can refer to chronic pelvic pain and INF to infertility. Italic front indicates frequencies deviant from the general population.


The analysis identified five genes (CRELD2, OR51Q1, SCLY, BIRC8, BMP3) associated with infertility and four genes (TBX18, WHRN, COL21A1, LRP1B) associated with chronic pain. There was a sufficient power (>0.8) to detect markers with OR greater than 1.5 at significance level of 0.05. A review of the function of the genes identified can implicate several of the genes in both the pain and infertility pathways. Both WHRN and TBX18 which show differential allele frequencies in patients with pelvic pain have been shown to be linked to pain-pathways. Mutations in WHRN have been linked to deafness and mechano- and thermo-sensitive deficiencies and can stabilize the paranodal region and axonal cytoskeleton in myelinated axons. TBX18 is an important development regulator of the pericardium, prostate, nephrons, urogenital tubes, and seminiferous tubules and mutations in TBX18 have been linked to pain in the chest, back, and flank. Conversely, CRELD2 which show differential allele frequencies in infertility patients is linked with fertility. CRELD2 is expressed in Oviductal epithelial cells in a manner that is very strongly correlated with the menstrual cycle and suggestive of an important reproductive role.


Pain and infertility can be two common but distinct clinical symptoms of endometriosis. In the present study, 9 non-synonymous variants were identified from a broad group of endometriosis associated variants that show distinct association with only one of the two symptoms and thus are suggestive of genetic classification of clinical subgroups of endometriosis.


Example 3. Novel High-Risk Damaging Mutations Discovered in Familial Endometriosis

Whole exome sequencing (WES) was used in endometriosis families to determine if inherited, rare, high-risk protein coding variants contribute to endometriosis. Endometriosis is a complex disease with underlying genetic and environmental factors. Array-based genotyping platforms are well suited for GWA studies detecting association with common variants (minor allele frequencies >3-5%), whereas sequencing is required to detect rare and low-frequency protein coding variants. Subjects with familial endometriosis tend to carry a higher burden of genetic variants; families can be less likely to have potentially confounding (population stratification) effects. Studying genetic variants located on the same DNA strand (haplotypes) can help resolve the inheritance pattern of a disease variant by determining if two individuals who carry the same genetic variant have inherited the variant via shared recent ancestry (same haplotype) or whether their variants are derived from two independent mutation events (different haplotypes).


Methods


WES was performed on 489 women with familial endometriosis and 530 unrelated women (confirmed with identity-by-descent test) with endometriosis. Wes was also performed using Ion Proton Instrument (FIG. 4) and AmpliSeq Exome Capture kit. All missense and protein truncating variants with a MAF<1% in ExAc database (Broad Institute) were considered for downstream analysis. Variant frequencies were compared with population frequency in ExAc database (n=33,000) using Fisher's exact test (exac. broadinstitute.org). Several software packages were used to predict whether the identified mutation would damage the encoded protein.


Consent and Medical Review


All subjects were provided written informed consent in accordance with study protocols approved by Quorum Review IRB (Seattle, Wash. 98101). Inclusion criteria were surgically confirmed diagnosis.


Results


This study identified 4 protein damaging variants significantly more prevalent in familial endometriosis. The 4 high-risk variants also pass genome-wide significance as shown in Table 6 below. Association was verified for all but the BRD9 variant in the cohort of unrelated endometriosis patient.









TABLE 6







Four genes with low-frequency damaging mutations showing association to endometriosis.










Index mutation
Gene burden
















Gene
AAchange
EndoFrq
ExacFrq
P
OR
EndoFrq
ExacFrq
P
OR




















LONP1
splice
0.0028
Not
4.2 × 10−19
Inf
0.0302
0.0199
2.6 × 10−2
1.5
[1-2]





seen


















IGF2
Q33X
0.0048
0.0009
3.0 × 10−10
15
[8-27]
0.0085
0.0014
3.0 × 10−5
6
[3-12]


BRD9
K39R
0.0009
0.0017
5.6 × 10−9 
10
[5-21]
0.0057
0.0101
2.1 × 10−1
0.6
[0.3-1.3]


SNAP91
T555A
0.0106
0.0050
1.1 × 10−8 
5
[3-8]
0.0179
0.0045
1.3 × 10−6
4
[2-6]









LONP1 (Lon protease) is a nuclear encoded protease in the mitochondria responsible for the degradation of misfolded proteins. LONP1 is expressed in endometrium and endometrial cancer, and affects endothelial mesenchymal transition in a dose dependent manner. Using a Genealogy database (GenDB) a shared ancestor ˜13 generations ago was identified. All affected individuals shown with LONP1 variant in FIG. 5 share identical haplotype of ˜140 kb which is concordant with a single shared ancestor 11-15 generations in the past.


IGF2 (Insulin-like growth factor 2) has previously been implicated in endometriosis in Korean women. The IGF axis has been implicated in growth regulation of endometriosis. In blood, IGF2 is an imprinted gene expressed only from the paternal haplotype.


SNAP91 (Synaptosome Associated Protein 91) and BRD9 (Bromodomain Containing 9) are novel endometriosis candidates but little is known about their function.


This study identified low-frequency damaging protein mutations segregating in families with endometriosis. IGF2 is the second implicated gene identified associated with endometriosis after NLRP2. Only 50 imprinted genes are known in humans to date suggesting imprinting plays a role in endometriosis. LONP1 and IGF2 regulate EMT in the pathogenesis of endometriosis.


Example 4. CCDC168 and MUC12 Show Recessive Effects in Women with Endometriosis

Compound heterozygosity help identify genes involved in endometriosis. Whole Exome Sequencing (WES) was used on samples from 1,385 participants.


Samples


1019 Endometriosis samples were sequenced, 530 of which were for discovery, 301 of which were for replication, and 188 of which were related (2nd cousin or closer). 366 control samples were sequenced.


Variant and Gene selection


Protein-altering variants in discovery w frequency <1% in ExAC. 3039 genes were found individuals with 2+ variants per gene in the discovery set and thus can possibly be recessive genes. FIG. 6 illustrates mutation patterns cis/trans/haplotypes. Excess burden analysis of samples with 2+ protein-altering variants. Discovery (530 Endo vs 366 Ctl)− two genes with excess burden, PFisher<0.001. Replication (301 Endo vs 366 Ctl)− both genes replicate, PFisher<0.05.


Results


CCDC168 and MUC12 show significant excess variant count in endometriosis. Sample counts with rare protein-altering variants (ExACfreq<1%)









TABLE 7







Variant count of CCDC168











95 Unique variants
2+
0-1















Cases
31
988



Controls
0
366



gnomAD (0.05)
1
365

















TABLE 8







Variant count of MUC12











82 Unique variants
2+
0-1















Cases
47
970



Controls
1
365



gnomAD (0.14)
7
359










The variant counts of 2+ include all homozygotes, hemizygotes, and compound heterozygotes (cis and trans). Both genes show significant excess in endometriosis samples with 2+ hits also when compared with gnomAD.


The two novel genes, CCDC168 and MUC12, have large recessive effects in endometriosis and can be biologically relevant in endometriosis. 7.6% of endometriosis patients can have compound heterozygote mutations with 4-30 fold excess compared with control populations.


CCDC168 is coiled-coil domain containing 168. CCDC168 can be differentially expressed in malignancies. Antibody staining can show prominent staining in various epithelial tissues. In some instances, CCDC168 is only present in placental animals (those with endometrium).


MUC12 is a transmembrane mucin expressed across many epithelial tissues including colon, pancreas, prostate or uterus. In some instances, transmembrane mucins are single-stranded proteins undergo proteolytic cleavage splitting TM and EC domains, lubricate epithelial surfaces, bind ligands, regulate epithelial wound healing, and/or extracellular domain detach with excess force (intracellular signaling and EMT). In some instances, a transmembrane mucin disclosed herein is MUC1, MUC4, MUC12, or MUC16. The extra cellular domain of MUC16 can be cancer antigen 125 (CA125), an important marker of ovarian cancer and endometriosis.


Example 5. Rare Synonymous Mutations Show Strong Association with Endometriosis

The study is to determine if rare synonymous variants might contribute to the genetic risk for developing endometriosis. Synonymous and non-synonymous DNA variants can occur within the protein-coding part of a gene. Synonymous variants do not affect the amino-acid sequence, and non-synonymous variants do affect the amino-acid sequence, due to the redundancy in the genetic code. GWAS intergenic SNP variants may be determined from eQTL fine mapping, and rare non-synonymous variants may be determined from Whole Exome Sequencing.


Methods


Whole exome sequencing was performed on 1,077 study participants with surgically diagnosed endometriosis. Saliva DNA underwent AmpliSeq sequencing on an Ion Proton, and sequence was assembled using the Torrent software. Variant frequencies were compared to frequencies in gnomAD, which was used as reference for population-wide variant frequencies. Synonymous variants with a minor allele frequency <0.01 in the general population were considered. Fisher's Exact test was used to calculate association statistics. PANTHER database was used for GO (Gene Ontology) term enrichment analysis.


Results


114,877 synonymous rare variants were identified among patients. 648 synonymous variants passed the nominal significance threshold (p<0.05) across 617 genes. Table 9 shows five variants strongly associated with endometriosis that pass the genome-wide significance threshold of p≤5×10−8.









TABLE 9







Five strongly associated synonymous variants













Gene
Chr
Position
P
OR
Nucl change
Amino Acid
















KRTAP5-1
11
1,606,402
2.0 × 10−11
43
C78T
S26S


GPR137
11
64,051,889
6.7 × 10−15
49
G51A
G17G


UBC
12
125,398,297
1.5 × 10−33
94
T21C
T7T


ADAMTS7
15
79,058,944
2.5 × 10−11
11
T3309A
A1103A


SYNE1
6
152,457,795
6.7 × 10−8 
5
G25617A
E8539E









17 genes have 2-or-more rare synonymous disease associated variants were found with only one expected by chance (p<0.001): ABCC5, ANK3, ATP8B4, CCDC147, CELSR1, DNAH3, EML6, HERC2, ITGA2, KIF23, LAMA5, PKD1, SLC22A20, SSPO, TENM2, TUBGCP2, VPS18. GO-term analysis show significant enrichment of a single GO term: “cytoskeletal structure and regulation” (OR=13.4). Rare intronic splice-junction variants were considered among the 17 genes, and 5 variants in CCDC147, LAMA5, and SSPO may affect the risk-burden.


This is the first time that rare synonymous variants may have been implicated in endometriosis. The genes may carry these mutations that are enriched for cytoskeletal function. Go-term and functional analysis implicate cytoskeletal regulation in the genetic predisposition of endometriosis. There variants may prove useful in developing a non-invasive test for endometriosis.


Example 6. Large Effect Mutations in Endometriosis Genes Implicated by GWAS

Genome-wide association studies (GWAS) implicate several chromosomal regions as genetic risk factors for endometriosis. These regions have been “tagged” by polymorphic markers located between genes or in non-coding introns. Sequenced were the exons of 16 genes in GWAS regions to search for causative mutations, i.e., to find gene mutations responsible for the association observed in 16 genes implicated by endometriosis GWAS.


Methods


AmpliSeq sequencing on Ion Protons was conducted on DNA samples from 1,019 women with confirmed endometriosis. After sequence assembly using Torrent software, variant annotation was performed using ANNOVAR (hg19 reference). Frequencies of coding variants were compared against a large reference dataset (sequence data from 63,369 non-Finnish Europeans in gnomAD). Variants were found using Torrent Variant Caller (UCSC hg19). Association statistics were calculated using Fisher's Exact test; linkage disequilibrium statistics were calculated using LDlink. Cases: n=1,019 European women with confirmed endometriosis. Controls: n=63,369 non-Finnish Europeans in gnomAD).


Results


571 variants were detected; 333 of these alter an amino acid in the encoded protein and 234 low-frequency (MAF<1%), missense mutations are predicted to be pathogenic (in-silico). Likely pathologic variants are uncommon in the reference data (which contains women with endometriosis and males carrying risk factors); but the identified variants were often seen in multiple endometriosis patients. The excess of pathogenic mutations in cases was striking (p<10−16). 4 mutations (see Table 10) have high odds ratios for endometriosis with p values well below a multiple testing threshold (p≤9×10−5). Mutations predicted to shorten the encoded protein (loss of function) were also detected (2 splicing changes, and 7 “stop” mutations). Stop mutations (seen in five genes: GREB1, NFE2L3, FN1, SYNE1 and VEZT) were more prevalent in the endometriosis cohort compared to the population data (p=1.7×10−13). There is no measureable linkage disequilibrium between any of the new variants and tagging GWAS markers. FIG. 7 to FIG. 9 further illustrate the results.









TABLE 10







Mutations with p values below multiple correction threshold. Inf


means that the variant was not observed in the control cohort.















Endo-





Protein
Control
metriosis

Odds Ratio


Gene
change
Frequency
Frequency
p(fisher)
[L95-U05]





FN1
p.V527M
Not seen
0.00147
4.03E−06
Inf.


NFE2L3
p.I233V
Not seen
0.00147
4.03E−06
Inf.


SYNE1
p.E8539E
0.00206
0.00785
1.11E−05
3.84


VEZT
p.P712S
0.00005
0.00196
1.23E−05
41.50









This is the first comprehensive study of coding mutations in all 16 GWAS candidate genes. Coding variants may not explain the association observed in GWAS studies, thus regulatory mutations outside of the coding regions are likely to be involved. The mutations having large effects confirm an important role for these genes in the pathogenesis of endometriosis.


Example 7. Detailed Methods for Detection of Low Frequency Variants

Medical Review.


The inclusion criteria in the endometriosis case population in the present study were surgically confirmed diagnosis of endometriosis with laparoscopy being the preferred method. Trained OB/GYN clinicians performed the medical record review and clinical assessment of each individual patient. Patients were considered to be affected if they had biopsy-proven lesions or if operative reports revealed unambiguous gross lesions. Patients were further categorized by severity, clinical history of pelvic pain, infertility, dyspareunia or dysmenorrhea and family history. Patients were grouped into one of three classes of severity: mild, moderate or severe, following the general guidelines set forth by ASRM. This analysis compared cases with 100% prevalence of endometriosis to controls with the population prevalence of endometriosis (5-10%).


DNA Extraction.


Saliva samples were collected using the Oragene 300 saliva collection kit (DNA Genotek; Ottawa, Ontario, Canada) and DNA was extracted using an automated extraction instrument, AutoPure LS (Qiagen; Valencia, Calif.), and manufacturer's reagents and protocols. DNA quality was evaluated by calculation absorbance ratio OD260/OD280, and DNA quantification was measured using PicoGreenH (Life Technologies; Grand Island, N.Y.).


Microarray Genotyping.


The discovery set of 2019 endometriosis cases and 25476 population controls were genotyped using the Illumina Human OmniExpress Chip (Illumina; San Diego, Calif.) according to protocols provided by the manufacture. An additional 905 endometriosis cases were genotyped on a custom designed microarray using the Affymetrix GeneTitan platform according to the manufacturer's instructions.


Sample Quality Control.


Samples were excluded from the analysis if they missed any of the following quality thresholds:

    • a) Evidence of familial relationship closer that 3rd-degree (pi-hat>0.2) using genome-wide Identity-By-State (IBS) estimation implemented in PLINK
    • b) Samples with missing genotypes >0.02
    • c) Samples with non-European admixture >0.05 as determined by ADMIXTURE


SNP Quality Control.


SNPS were excluded from the analysis if they missed any of the following quality thresholds:

    • a) SNPs from copy number variant regions or regions with adjacent SNPs
    • b) SNPs failing Hardy-Weinberg Equilibrium (HWE) P<=10−3
    • c) SNPs with minor allele frequency (MAF)<=0.01 in the control population
    • d) SNP call rate <=98%


Admixture.


ADMIXTURE (ver. 1.22) was used to estimate the individual ancestry proportion. The software estimates the relative admixture proportions of a given number of a priori defined ancestral groups contributing to the genome of each individual. The POPRES dataset (Nelson M R et al. 2008) was used as a reference group to create a supervised set of 9 ancestral clusters. Seven of them belong to the European subgroups along with African and Asian groups. Since POPRES dataset utilized Affymetrix 5.0 chip, 105,079 autosomal SNPs that overlapped with the Illumina OmniExpress dataset were used. Among the 105,079 SNPs, a subset of 33,067 SNPs was selected that showed greater genetic variation (absolute difference in frequency) among the 9 reference groups. The pair-wise autosomal genetic distance determined by Fixation Index (FST) using 33,067 SNPs was calculated for the 9 reference groups as listed in POPRES dataset. Subsequently, a conditional test was used to estimate the admixture proportions in the unknown samples as described by Alexander et al. (2009).


Principal Component Analysis (PCA).


PCA was applied to account for population stratification among the European subgroups. The previously identified 33,067 SNPs were selected to infer the axes of variation using EIGENSTRAT. Only the top 10 eigenvectors were analyzed. Most of the variance among the European populations was observed in the first and second eigenvector. The first eigenvector accounts for the east-west European geographical variation while the second accounts for the north-south component. Only the top 10 eigenvectors showed population differences using Anova statistics (p<0.01). The PCA adjusted Armitrage trend P-values were calculated using the top 10 eigenvectors as covariates.


Association Analysis.


After the quality of all data was confirmed for accuracy, genetic association was determined using the whole-genome association analysis toolset, PLINK (ver. 1.07). Differences in allele frequencies between endometriosis patients and population controls were tested for each SNP by a 1 degrees of freedom Cochran-Armitrage Trend test. The allelic odds ratios were calculated with a confidence interval of 95%. SNPs that passed the quality control parameters were prioritized using the PCA adjusted cochran-Armitrage trend test P-values. The combined/metaanalysis of different datasets was performed using Cochran-Mantel-Hanszel method as well as using Cochran-Armitrage Trend test. Breslow Day test was used to determine between-cluster heterogeneity in the odds ratio for the disease/SNP association.


Software Used.


PLINK (version 1.07). R (version 2.15.0). EIGENSTRAT (version 3.0).


Example 8. Detailed Methods for Gene Sequencing and Detection of Low-Frequency Damaging Variants

DNA Extraction and Genotyping.


DNA used in the present study was extracted from blood or saliva using standard extraction methods. Genotyping was performed using the Illumina HumanExome (Illumina, San Diego, Calif.) according to protocols provided by the manufactures.


Sample and SNP Quality Control


The discovery set of 1518 cases were genotyped using the Illumina Human Exome Chip (Illumina; San Diego, Calif.) per protocols provided by the manufacture.


Samples were excluded from the analysis if they missed any of the following quality thresholds:

    • a) Evidence of familial relationship closer that 3rd-degree ({circumflex over (π)}>0.2) using genome-wide Identity-By-State (IBS) estimation implemented in PLINK.
    • b) Samples with missing genotypes >0.02
    • c) Samples with non-European admixture >0.05 as determined by ADMIXTURE


SNPS were excluded from the analysis if they missed any of the following quality thresholds:

    • a) SNPs with Illumina GenTrain Score <0.65
    • b) SNPs from copy number variant regions or regions with adjacent SNPs
    • c) SNP call rate ≤98%


Exome Sequencing and Variant Discovery


Whole exome sequencing (WES) was performed on 2400 endometriosis cohort using Ion Proton Instrument as per the manufacturer's protocol (Life Technologies, Carlsbad Calif.) using their AmpliSeq Exome Capture Kit. Sequence alignment and variant calling was performed against the reference human genome (UCSC hg19 version). The variant discovery was performed using Life Technologies TMAP algorithm with their default parameter settings, and Life Technologies Torrent Variant Caller was used to discover variants. The variants identified from the Torrent Variant Caller were taken further for downstream analysis. The variants included were single nucleotide variants, short insertions, or deletions. Variant annotation was performed using ANNOVAR. The coding variants were classified as missense, frameshift, splicing, stop-gain, or stop-loss. Variants were considered “loss-of-function” if they caused a stop-gain, splicing, or frame-shift insertion or deletion. Prediction of protein function was evaluated in silico using seven different algorithms (Polyphen 2, Sift, Mutation Accessor, Mutation Taster, FATHMM, LRT, and MetaLR. Missense variants were deemed “damaging missense” if they were predicted damaging by at least one of the seven algorithms tested. The genes that harbor these variants were also checked against the published “FLAGS” gene list (Shyr C et al. 2014) to understand whether the gene is frequently mutated in humans.


Low Frequency Variants


Variants that pass the population control frequency (gnomAD) of MAF<1% were called “low frequency variants”. These variants were analyzed to test for association using Fisher's Exact Test. The low frequency variants were prioritized based on their Fisher's p value.


Gene Burden


The genetic burden was calculated for each gene by collapsing/combining all low frequency variants identified through WES. Fisher's Exact Test was used to determine excess gene burden in endometriosis subjects compared to the control population counts as observed in gnomAD database by generating 2×2 table per gene for the number of reference and alternative alleles. The genes were then prioritized based on their Fisher's p value.


Example 9. Whole Exome Sequencing Identifies Markers of Endometriosis

Twin and family studies show that heritability for endometriosis may be high, yet the GWAS markers and copy number variants identified explain about 5% of the heritability. Multigenerational pedigrees can be used to identify variants/genes with large effects in complex diseases. A large endometriosis family spanning 19 generations with 218 women with surgically confirmed disease was used for this study. For endometriosis, one cannot assume that all distant relatives share a single causative mutation. However, segregation analyses suggest that autosomal major gene effects may be likely. Referring to FIG. 12, whole exome sequencing (WES) was performed on 137 women with surgically confirmed endometriosis having a common ancestor born in 1608. The WES was utilized to search for pathogenic mutations. All coding variants were evaluated. Variants may be deemed damaging if they were predicted to be damaging “in-silico” by at least one algorithm of Polyphen 2, Sift, Mutation Accessor, Mutation Taster, FATHMM, LRT, or MetaLR. The excess variant burden in this family was compared against population controls (e.g. exome sequencing data for the non-Finnish European cohort in the gnomAD database, wherein n=55,860).


A damaging missense variant (p.T166I) in SEPT10 gene seen in about 0.18% of controls was seen in a 20 fold excess (3.6%) in the large endometriosis family (p=1.98×10−10; Odds Ratio (OR)=20.6 [10.8=39.30]. SEPTIN10 is a cytoskeletal protein that may have GTP-binding and GTPase activity. Referring to FIG. 13, septins may polymerize into heterooligomeric protein complexes that form filaments, and can associate with cellular membranes, actin filaments and microtubules.


Referring to FIG. 14, a TNFRSF6B haplotype (also called DcR3) which spans 41 kb was present in 76 of the 137 subjects with surgically confirmed endometriosis (p=1.7×10−8; Odds Ratio (OR)=2.11); 21 of the affected women were homozygous or hemizygous. These results suggest mutations in one or more genes—TNFRSF6B and SEPT10—may be diagnostic for predicting a risk of developing or confirming a presence of endometriosis.


Example 10. Whole Exome Sequencing Identifies Markers of Endometriosis

Endometriosis affects from about 6% to about 10% of women during their reproductive years with symptoms including pelvic pain, dyspareunia, dysmenorrhea, infertility, or any combination thereof. Twin and family studies show that heritability for endometriosis may be high; yet common genetic variations identified by genome-wide association studies only explain about 5% of the heritability. It is possible that rare and recent familial mutations, not detectable by GWAS, may be responsible for part of the missing heritability. Next generation sequencing gives the opportunity to look for less-common variants with large effects. In this study, we used whole exome sequencing (WES) to identify inherited deletion variants in a three generation family of seven affected women with surgically confirmed endometriosis.


Exome sequencing was performed using the AmpliSeq technology on Ion Proton platform (Thermo Fisher, Inc) according to manufacturers instructions. Variants were determined using Ion Proton protocol and confirmed using the GATK (Genome Analysis Toolkit) pipeline. Segmental deletions were identified by observing three-or-more homozygous neighboring variants in the matriarch that failed to segregate in a Mendellan manner in her daughters/grand-daughters.


A three-generation family with seven affected members is shown in FIG. 15 together with notable symptoms tabulated to the right of the pedigree.


Case 1 was the first individual in the family to be diagnosed with endometriosis and underwent surgical hysterectomy at age 32 due to stage IV bilateral ovarian endometriosis. Her mother (not shown in the pedigree) had four children with no gynecological problems. However, her three daughters (cases 2-4) and three grand-daughters (cases 5-7) all have been surgically diagnosed with endometriosis. In addition to endometriosis, case 1 has been diagnosed with 14 other morbidities including Crohn's disease, interstitial cystitis, bronchial asthma, cardiovascular diseases, lupus erythematosus and multiple sclerosis, all of which have been positively associated with endometriosis.


Referring to FIG. 16, we identified approximately 20,000 exonic variants in each of the seven individuals, and almost 34,000 variants combined across the pedigree, which is in line with expectations. IBD and segregation analysis confirmed all individual relationships and the overall pedigree structure. We identified two hemizygous deletions segregating in this three-generation family. A deletion was found in UGT2B28 (UDP Glucuronosyltransferase Family 2 Member B28), spanning seven informative sequence variants across at least 14 kb, a deletion in USP17L2 (Ubiquitin Specific Peptidase 17-Like Family Member 2) spans three informative variants across at least 2 kb. Both deletions are present in the affected grand-mother and segregate in as many as four and five of her descendants respectively. Further in-depth analysis of normally segregating rare variants is ongoing.


These results implicate UGT2B28 and USP17L2 in the pathogenesis of endometriosis. UGT2B28 is phase II detoxification gene involved in glucuronidation of many substrates including steroid hormones and lipid-soluble drugs. USP17L2 is a deubiquitinase that regulates key cellular processes like proliferation, migration and apoptosis through the activation of small GTPases like RAC1A, CDCl42 and RHOA, and the regulation of adherence junctions. USP17L2 plays a central role in the regulation of the transcription factors SNAIL, SLUG and TWIST which are key gate-keepers of epithelial-to-mesenchymal transition (EMT). Dosage dependent loss of USP17L2 may affect mesothelial integrity and may increase the risk for developing endometriosis.


Example 11. Segregation Analysis of Families: Dominant Genes Contribute to Pathogenesis of Endometriosis

The largest endometriosis family reported to date: spanning 19 generations with 218 women with surgically confirmed endometriosis were utilized in this study. An autosomal major gene effect may be likely in this family. Risk of endometriosis in 123 smaller families with probands selected from the same time period and unrelated to the index pedigree were examined. A genetic segregation analysis was performed to identify large pedigrees with familial endometriosis, observe segregation patterns for surgical endometriosis, and compare segregation patterns with dominant patters seen in the 137 subject index pedigree.


Referring to FIG. 18, over 1900 women from Intermountain West US with surgically confirmed endometriosis were included in the study. A 3-generation pedigree was obtained for each affected woman. A genealogy database (GenDB) was utilized to find common ancestors linking one or more grandparents of probands. Probands with no genealogy available were eliminated. Probands with a birth date between 1960 and 1995 were selected arriving at an index pedigree of 89 subjects having surgically confirmed endometriosis and unrelated pedigree of 123 subjects having surgically confirmed endometriosis. Percentage of affected subjects in both the index pedigree and unrelated pedigrees is shown in FIG. 19 and the rate of surgically diagnosed endometriosis is shown in FIG. 20.


Referring to FIG. 17, prevalence of endometriosis in close relatives is much higher than the 2-3% prevalence of surgically diagnosed endometriosis in the general population. The rates observed are also higher than expected with multifactorial polygenic inheritance.


Analysis of larger number of families confirms that autosomal dominant, high penetrance risk alleles for endometriosis segregate in families. The heritability of endometriosis may be higher than estimated by older twin studies.









TABLE 1







Variants associated with endometriosis. Inf means that the variant was not


observed in the control cohort.





















Alter-













nate












Refer-
Allele/

Amino



OR






ence
Minor

Acid
Case
Control
p
[L95-
Context
SEQ


Chr
Position
Allele
Allele
Gene
position
MAF
MAF
value
U95]
Sequence
ID NO





chr
113921
G
A
TNFRS
p.R175C
0.006
0.004
2.97
1.57
CCTGGGGAG
SEQ


1
6


F18

86
37
E-
[1.07-
GGGCTGGCT
ID










02
2.31]
GCGGTCGGT
No:












GGCCCCGGA
1












GGAC[G/A]G













CCAGGCTCA













CACCCACAG













GTCTCCCAG













CCGCCCCTT













CTC






chr
145259
T
C
ATAD3
p.W110R
0.007
0.000
2.93
19.2
GCTGGAAGC
SEQ


1
2


A

35
38
E-
4[11.
CCTGAGCCT
ID










22
09-
GCTGCACAC
NO:











33.3
ACTAGTCTG
2











8]
GGCA[T/C]GG













AGTCTCTGC













CGTGCCGGA













GCCGTGCAG













ACACAGGAG













CG






chr
370358
C
T
LRRC4
p.V301M
0.006
0.004
2.53
1.61
ACGTGCAGG
SEQ


1
9


7

62
12
E-
[1.09-
ACCCTGAGC
ID










02
2.38]
AGCAGCCGG
No:












CCGGCATCT
3












CCCA[C/T]GT













CCTGCTCCTC













CCCATCACC













ACCTTCCCG













CCTCTGCTTC






chr
908311
G
T
SLC2A
p.T59
0.006
0.003
1.69
1.7[1
GAGCTTCCC
SEQ


1
2


7
N
13
61
E-
.14-
GTCCATGAA
ID










02
2.55]
TGTTGCGTG
No:












TCGCTCAAA
4












GTAG[G/T]TT













TCGTTGTAA













AATGACTTG













AAGACCTGG













AAAACATTG













CC






chr
105293
A
G
DFFA
p.I69T
0.007
0.005
4.67
1.46
ATTGGAAGG
SEQ


1
26




60
20
E-
[1.02-
TAGACACAG
ID










02
2.1]
AAAGTAATC
No:












GTCATCATC
5












CACT[A/G]TG













GTGCCATCC













TCTGCCAGG













ACCAGGGTG













ACTGGTGTC













AG






chr
119833
C
T
KIAA2
p.E410
0.005
0.003
1.44
1.72
ATCTGCTGG
SEQ


1
52


013
K
88
42
E-
[1.14-
ACGGAGGAC
ID










02
2.61]
AGCCGCCCC
No:












GGCCACAGG
6












TTCT[C/T]GG













CGTGCATGG













TGGCGTGCC













CGCTGAAGC













AGTGATCTT













CA






chr
128559
A
G
PRAM
p.N42
0.005
0.003
3.74
1.63
TCCTGCCCCT
SEQ


1
96


EF1
6D
39
31
E-
[1.06-
GAGGAGAGT
ID










02
2.52]
TTGAATTCCT
No:












TGGTTCGTG
7












TC[A/G]ATTG













GGAGATCTT













CACCCCACT













TCGGGCTGA













GCTGATGTG






chr
128560
C
T
PRAM
p.G45
0.014
0.003
6.69
4.78
CACTGAGGG
SEQ


1
79


EF1
3G
22
01
E-
[3.6-
AAGTCAGGC
ID










20
6.33]
AGCCCAAGA
No:












GGATCTTCA
8












TTGG[C/T]CC













CACCCCCTG













CCCTTCCTGT













GGCTCATCA













CCGTCTGAG













G






chr
136692
C
T
PRAM
p.E352
0.006
0.000
5.37
201.
TGGGAGTAG
SEQ


1
76


EF14
K
86
03
E-
46[6
TGGATCTGA
ID










35
1.22-
CAGCCCTCC
No:











662.
AAGATGAGG
9











92]
GTTT[C/T]GA













GAGAGGCAG













CAATTTTCTC













TAGCAGAGC













TCCGAGGGG













T






chr
159869
A
T
RSC1A
p.N20
0.005
0.002
2.92
1.78
AACATAGGG
SEQ


1
77


1
51
205
931
E-
[1-
GACCTTGAG
ID










02
2.94]
CTTCCTGAA
NO:












GAAAGGCAA
10












CAGA[A/T]TC













AACACAAAA













TTGTTGATTT













GGAAGCTAC













GATGAAAGG













A






chr
176033
C
T
PADI3
p.H50
0.009
0.006
2.64
1.47
CCTGCTTCA
SEQ


1
40



8H
07
19
E-
[1.05-
AGCTCTTCC
ID










02
2.05]
AGGAAAAGC
NO:












AGAAGTGTG
11












GCCA[C/T]GG













GAGGGCCCT













CCTGTTCCA













GGGGGTTGT













TGGTGGGTA













AC






chr
194511
A
T
UBR4
p.A31
0.011
0.008
4.27
1.38
TTTCTGTTAG
SEQ


1
76



49A
27
21
E-
[1.02-
AAGCTGAGT
ID










02
1.86]
ATAGGCCTC
No:












AAACACATC
12












AGC[A/T]GCA













TGACCCTGG













GAGAAGAAA













ATTTGCATG













AGAACCTGT













G






chr
195040
T
C
UBR4
p.M84
0.011
0.008
4.24
1.38
CGAGCCAAG
SEQ


1
62



4V
27
1 9
E-
[1.03-
ATAAGCGGC
ID










02
1.86]
ACGAAGCGC
No:












ATCTGAGCA
13












TCCA[T/C]GT













TGACGCTCA













ACTCCTGGA













TGATCTGGA













CAAAAAGCG













AC






chr
195458
G
A
EMC1
p.Y96
0.011
0.008
2.81
1.4[1
TGGCAAAAA
SEQ


1
93



1Y
52
23
E-
.05-
CCAGGCCAA
ID










02
1.89]
AGAGGACGC
No:












TGCTGATTA
14












ACAC[G/A]TA













GTCATAGTC













ATCCTTCAG













AACGTCAAA













CTGCTTGGA













TG






chr
204428
C
T
PLA2G
p.G45
0.009
0.006
3.60
1.41
TCTTTGGGTT
SEQ


1
78


2D
S
80
95
E-
[1.03-
GGCCTCTGC
ID










02
1.95]
CACCTAGTC
No:












CGCAGTGAC
15












AGC[C/T]GTA













GGGCCAGTA













GGAGAGGAT













GGGCATTTT













CCCAGTCAC













T






chr
238455
A
T
E2F2
p.A25
0.011
0.008
4.78
1.35
CCTTGACGG
SEQ


1
89



7A
52
56
E-
[1.01-
CAATCACTG
ID










02
1.81]
TCTGCTCCTT
No:












AAAGTTGCC
16












AAC[A/T]GCA













CGGATATCC













TGGTAAGTC













ACATAGGCC













AGCGTAGGG













C






chr
244881
C
T
IFNLR
p.E137
0.009
0.006
3.42
1.46
TGCAGGGGG
SEQ


1
31


1
E
31
39
E-
[1.04-
GCAGCTGGT
ID










02
2.05]
ACGTGGCAT
No:












TGGCACTCA
17












GGAT[C/T]TC













CTCCGTCTG













GGTGAGCAC













CAGGACAGG













TGGGGCCGG













CT






chr
266088
A
G
UBXN
p.G49
0.008
0.000
5.67
44.6
CGGGACTGG
SEQ


1
83


11
0G
82
20
E-
2[23.
GGCCGGGAC
ID










34
65-
CGGGACCGG
NO:











84.2]
GACTGGGGC
18












CGGG[A/G]CC













GGGACCGGG













ACAGGGACC













AGGACTGAA













TTTCAGGCT













GG






chr
266714
G
C
AIM1L
p.P579
0.018
0.000
5.40
Inf
TGAGGCAGC
SEQ


1
13



R
63
00
E-

AGGAGCACC
ID










89

AGGGCCCTT
NO:












CACAACCTC
19












TTTT[G/C]GG













GTGGTGGAC













AAGGCAGCA













GGAGCACCA













GACCCCTGC













AC






chr
266716
A
G
AIM1L
p.S508
0.025
0.000
4.40
127.
CAGGAGCAC
SEQ


1
25



S
98
21
E-
41[5
TGGACCCCT
ID










88
5.94-
GCACCACCT
NO:











290.
CCTTCTGGG
20











2]
TGGG[A/G]G













ATGAGGCAG













CAGGAGCAC













CAGGGCCCT













TCACGACCT













CTT






chr
276743
G
A
SYTL1
p.A12
0.005
0.000
1.34
Inf
CCCAGGAGA
SEQ


1
34



6T
88
00
E-

CCAGGCTCC
ID










35

AGGCCACGA
NO:












CAGGGAGGC
21












TGAG[G/A]CT













GCTGTGAAA













GAGAAGGAA













GAGGGGCCA













GAGCCCAGG













TG






chr
289319
T
A
TAF12
p.T145
0.006
0.004
4.77
1.48
CCAGGGCTC
SEQ


1
01



S
86
65
E-
[1.01-
TGGCATTTC
ID










02
2.17]
CTCACCTGTT
NO:












TGTGAGCTT
22












CTG[T/A]GGT













GCAAGCTTT













TTTGTAGGG













TCGGATTTCT













TCAGAGCCA






chr
294477
G
A
TMEM
p.C183
0.005
0.002
4.90
1.94
TACCCCGAC
SEQ


1
92


200B
C
64
91
E-
[1.27-
GCGGGGACG
ID










03
2.97]
GGTCCCAGA
NO:












TTTCTGGCTC
23












TGC[G/A]CAG













CCTACGGCT













CGGGGACTC













CTAGGGCCG













GGGCTGGGA













A






chr
314096
A
G
PUM1
p.A10
0.005
0.003
3.69
1.64
GGGGACCGT
SEQ


1
34



97A
39
29
E-
[1.07-
CGTTCATGG
ID










02
2.53]
TGCACACCT
No:












CATCGATGA
24












GCAC[A/G]GC













GCGCTCCGT













ACGTGAGGC













GTGAGTAAC













ACACTTCTC













CA






chr
353707
C
A
DLGA
p.G83
0.013
0.000
1.13
301.
TGGCCAGGG
SEQ


1
38


P3
W
24
04
E-
95[9
TACATCCTG
ID










63
4.37-
GGGAAGGTG
No:











966.
CTGCTACCC
25











13]
CCCC[C/A]AA













CCCCGGCCC













CCGCTGGCC













CTCCCTCAG













GGCCTACCG













AC






chr
405332
C
G
CAP1
p.C236
0.029
0.000
5.89
Inf
GACCCTCTG
SEQ


1
89



W
90
00
E-

CCGGATCAT
ID










176

GTCCTCCTCC
No:












CCCTCCACC
26












ATG[C/G]CCC













CCTCCTCCCC













CAGTCTCTA













CCATTTCAT













GCTCATATG






chr
407023
A
G
RLF
p.T656
0.011
0.007
3.11
1.41
TGAATGACC
SEQ


1
42



T
03
87
E-
[1.04-
AAGCCAAAG
ID










02
1.9]
GAGAGTCTC
No:












ATGAATATG
27












TCAC[A/G]TT













CAGCAAATT













AGAAGATTG













CCACCTGCA













AGACAGAGA













TT






chr
409289
A
G
ZFP69
p.Q43
0.006
0.004
1.30
1.67
AGTAAAACC
SEQ


1
69


B
8R
86
12
E-
[1.14-
TTCAGCCAT
ID










02
2.45]
AGTACATAC
No:












CTAACTCAA
28












CACC[A/G]GA













GAACTCATA













CTGGAGAAA













GACCATATA













AATGTAAGG













AA






chr
476914
G
C
TAL1
p.A27
0.005
0.000
6.06
460.
CTCCTTGGC
SEQ


1
81



G
15
01
E-
35[6
GACGCCGTT
ID










28
1.91-
CAGCAGGAC
No:











3423
CAGGTGCGG
29











.16]
GGGG[G/C]CC













ATGCTGGCC













TCGGCCGCG













TCCCGTCCCT













CTAGCTGGG













G






chr
477168
C
T
STIL
p.T126
0.009
0.006
4.22
1.41
AGAAGGTGC
SEQ


1
89



2T
56
79
E-
[1.02-
CTACTGAAT
ID










02
1.95]
TCATGCTATT
No:












CATCTGCTTT
30












AG[C/T]GTTT













CAGAAGGTT













GCAAACTTT













CAGGAAAAA













TTGTAATGT






chr
556436
T
C
USP24
p.T158
0.007
0.004
4.65
1.51
GTTCTAAGG
SEQ


1
58



A
11
71
E-
[1.03-
TCTGAAAAC
ID










02
2.22]
TTACCAAGT
No:












CTTGCTAGG
31












TAGG[T/C]AG













ATGCCAACA













GGCATTTGC













CTAGTGATT













CTTCTCGCTT













G






chr
953304
C
T
SLC44
p.N42
0.006
0.004
2.78
1.57
TGGTGAGGA
SEQ


1
40


A3
4N
62
23
E-
[1.06-
TTCCGAGAA
ID










02
2.32]
TCATTGTCAT
No:












GTACATGCA
32












AAA[C/T]GCA













CTGAAAGAA













CAGGTAAGG













CTACCTCCT













GATACACAG













C






chr
109792
T
C
CELSR
p.L17P
0.009
0.000
2.93
21.0
CCGGCCACC
SEQ


1
751


2

80
47
E-
6[13.
GGCGTCCCC
ID










32
61-
CTCCCAACG
No:











32.5
CCGCCGCCG
33











9]
CCGC[T/C]GC













TGCTGCTGTT













GCTGCTGCT













GCTGCCGCC













GCCACTATT













G






chr
110302
A
T
EPS8L
p.F55I
0.006
0.003
3.20
1.92
AAGTCTTGG
SEQ


1
392


3

13
20
E-
[1.28-
CTCCACACC
ID










03
2.88]
CGGCCCTGT
No:












GCATCCATC
34












TCGA[A/T]CA













GCTTCTGCA













AGGCATCCT













CGGGCCCCT













GGACTCTCT













GA






chr
117122
T
C
IGSF3
p.K10
0.025
0.000
1.05
Inf
CTTTCCTCTT
SEQ


1
350



20E
25
00
E-

CCTGTTCTTC
ID










150

CAGGCCAGG
No:












GCTGCTCCTT
35












T[T/C]CCCCC













CAGCTTTAG













TCCTCAGGG













AATACCAGG













CCACAGCG






chr
120054
G
T
HSD3
p.R71I
0.010
0.007
1.85
1.48
GTGCTGGAA
SEQ


1
192


B1

54
17
E-
[1.08-
GGAGACATT
ID










02
2.01]
CTGGATGAG
NO:












CCATTCCTG
36












AAGA+G/T+A













GCCTGCCAG













GACGTCTCG













GTCATCATC













CACACCGCC













TGT






chr
144856
C
T
PDE4
p.A21
0.009
0.005
1.71
1.54
TTACCTCTGT
SEQ


1
852


DIP
05A
07
92
E-
[1.1-
GCCTTGGGC
ID










02
2.14]
TTCAAGGCC
NO:












AGGGAAGCT
37












GCA[C/T]GCT













GATCTCACA













AGAGACACT













ATCTTTTTGA













CCAGCAGCT






chr
144912
G
T
PDE4
p.P695
0.005
0.002
5.35
2.39
ACAGCCAGT
SEQ


1
191


DIP
H
15
16
E-
[1.53-
GGGGGTAAC
ID










04
3.74]
TTCAGCTTGT
NO:












TGGTTAGAG
38












ATG[G/T]GTG













CTTGGGACA













TCAGGGAGT













CTCTCCCTCC













TAAATATTG






chr
144930
A
C
PDE4
p.S244
0.007
0.004
7.25
1.73
CTTTCTGTTG
SEQ


1
977


DIP
S
35
27
E-
[1.19-
TGGAGGGCT
ID










03
2.5]
AGCCTGGAC
NO:












GCTTGCATC
39












CAA[A/C]GAT













TCCACAGAG













GAACCAGGC













GTCTCTTCCT













CCATGCTTT






chr
145537
C
A
ITGA10
p.S841
0.009
0.006
2.01
1.5[1
CAACTCTGG
SEQ


1
513



R
31
22
E-
.08-
AGAACAGAA
ID










02
2.09]
AGGAAAATG
NO:












CTTACAATA
40












CGAG[C/A]CT













GAGTCTCAT













CTTCTCTAG













AAACCTCCA













CCTGGCCAG













TC






chr
149897
G
A
SF3B4
p.P245
0.007
0.005
2.66
1.52
GGGGTATCC
SEQ


1
906



P
84
17
E-
[1.06-
CAGGTGGGA
ID










02
2.18]
GGGCTCCAG
NO:












GAGGTGGCA
41












CTGG[G/A]GG













TGGGAAGGA













GCCAGGAGG













AGGCATGCC













TATAGAGGA













AA






chr
152080
C
T
TCHH
p.E180
0.010
0.000
2.67
Inf
TTCCGTCAC
SEQ


1
275



6E
54
00
E-

GCTGTTGGG
ID










63

GGCGCAGCT
NO:












GCTGTTCTTC
42












CCT[C/T]TCC













TGGCGTAGC













TGTTCCTCCT













CGCGGAATT













TTCTGTCAG






chr
152082
T
C
TCHH
p.K10
0.013
0.000
1.95
28.9
CTCAGCAGC
SEQ


1
449



82E
24
46
E-
5[19.
TGCTCTTCCT
ID










48
46-
CCTGCTGCA
NO:











43.0
GCTCCTCTTC
43











5]
CT[T/C]CCGA













TATTGCCTCT













CCAGCTCCT













GGCGCCTTC













TCGTCTCC






chr
152083
G
T
TCHH
p.P789
0.010
0.000
1.16
Inf
CTCCTCGGC
SEQ


1
327



Q
29
00
E-

CCTCAGCTG
ID










61

CCTCTCCCG
NO:












CTGCTCCCG
44












CAAT[G/T]GG













GGCCTGGCC













GACAGCCTC













TGACGGCCC













CTCTCGCTCT













T






chr
152083
G
T
TCHH
p.R622
0.019
0.000
1.65
Inf
TTCAGCAGC
SEQ


1
829



S
36
00
E-

TGCTGGCGC
ID










115

CTCTCTTCCT
NO:












CCGGCTCCT
45












CGC[G/T]CTT













CAGCCGCTG













CTCGCGCCT













CTCCTCCTGC













TCGAGTCTC






chr
152084
C
G
TCHH
p.E494
0.014
0.000
4.56
164.
AGTTGCTGC
SEQ


1
213



Q
71
09
E-
52[7
TCGCGCCTC
ID










70
5.16-
TCCTGCTGCT
NO:











360.
CGCGCCTCT
46











14]
CCT[C/G]CTC













CTCGAGCTT













CAGCCAACG













TTCGCGCCT













CTCCTCCTCC






chr
152325
G
C
FLG2
p.T169
0.007
0.000
1.95
799.
TAATCCATG
SEQ


1
166



9R
11
01
E-
16[1
ATGATAGTG
ID










41
08.8
GGCATGTCT
No:











4-
AGTGGTATC
47











5868
TCCT[G/C]TC












.08]
TGTCCATGA













GTAGTTCCA













TGTCTCTCA













GGAACTATG













GA






chr
156011
G
A
UBQL
p.P514
0.005
0.003
3.43
1.63
CTGTTGGAG
SEQ


1
387


N4
P
15
16
E-
[1.05-
AAGATGTGG
ID










02
2.54]
CTGGCGTGG
No:












CTGGTGAGG
48












AAGT[G/A]G













GGGCCTCGG













GCGTAGACC













CTGCGTTGC













TGCCTGCTG













AGG






chr
156046
T
C
MEX3
p.G48
0.005
0.002
1.14
1.82
CGCAGATGC
SEQ


1
473


A
5G
15
83
E-
[1.17-
GTACTGCAC
ID










02
2.84]
ACTCCATGC
No:












AGAACAGGT
49












TGTG[T/C]CC













GCAGGGCAC













AAGGGCGGC













AGTCACTTC













GCTCTCAAA













GC






chr
156438
C
T
MEF2
p.Q38
0.010
0.000
2.23
1107
GTTGCGGCT
SEQ


1
664


D
5Q
05
01
E-
.97[1
GCTGAGGCT
ID










58
52.3
GCTGTGGCT
No:











7-
GTGGCTGCT
50











8056
GTGG[C/T]TG












.7]
CGGTGGCTG













CTGCTGTGG













AGGCTGTGG













CTGCTGCGG













CT






chr
156521
C
T
IQGAP
p.A56
0.005
0.003
3.53
1.6[1
TGCCTTTTGG
SEQ


1
547


3
2T
88
68
E-
.06-
CTGCCACAA
ID










02
2.42]
GGAGGAGAT
No:












GGTACCGAG
51












GGG[C/T]GAC













AGGGAGGCT













GACATCATC













TAGGCCAGC













TGCAGGAAG













C






chr
156779
G
A
SH2D2
p.G29
0.006
0.003
1.36
1.7[1
CCACATAGA
SEQ


1
118


A
3G
37
76
E-
.14-
TGTTGCTGG
ID










02
2.53]
GGGCTTCCC
No:












CAGGGCTGC
52












CCCG[G/A]CC













CATGGCATA













GAAAGCTAT













GGGTTCATC













AGGCTCATT













GT






chr
157069
G
A
ETV3L
p.S32L
0.012
0.008
3.56
1.37
GATGAAGTG
SEQ


1
134




25
99
E-
[1.03-
CCACAGCTG
ID










02
1.82]
GATCTGCCG
No:












GGAGCCTGG
53












GGAC[G/A]A













CTCGGCTTT













GTAGGCCCA













ATCAGGGAA













GGCCAACCC













TGG






chr
157738
G
T
FCRL2
p.L260
0.005
0.001
6.20
2.69
TATTTGCCG
SEQ


1
309



M
21
94
E-
[1.51-
GCATCACTC
ID










04
4.48]
TCTTTCACA
NO:












GCTGGGATC
54












TCCA[G/T]CT













CTGCTGACA













GGGAACGCT













GGGTTTTCTT













TCCCATACT













G






chr
158669
G
C
OR6K2
p.A22
0.005
0.000
3.16
596.
TGTGCGGCG
SEQ


1
772



4G
39
01
E-
28[8
GCCTCCAGC
ID










31
0.36-
TGAATGAAT
NO:











4424
ACGTAGAAT
55











.77]
TACA[G/C]CC













ACAATACCA













TCGTAGGAC













ATGAAGATG













AGCATCACA













GC






chr
161336
A
G
C1orf1
p.Y10
0.005
0.003
2.89
1.66
GAGACCAGT
SEQ


1
289


92
Y
64
41
E-
[1.09-
TCTGCAGAT
ID










02
2.53]
ACTTGGATG
NO:












AGAAAGCCT
56












TTTC[A/G]TA













CTGTGGAGA













GAAAGATAA













GTAGCCCTA













TGAGACTTC













AA






chr
161476
C
T
FCGR
p.S69S
0.005
0.003
4.84
1.61
CTGTGACTC
SEQ


1
227


2A

15
20
E-
[1.04-
TGACATGCC
ID










02
2.5]
AGGGGGCTC
NO:












GCAGCCCTG
57












AGAG[C/T]GA













CTCCATTCA













GTGGTTCCA













CAATGGGAA













TCTCATTCCC













A






chr
161641
G
A
FCGR
p.Q63
0.010
0.003
2.83
3.19
CTGTGCTGA
SEQ


1
237


2B
Q
78
40
E-
[2.33-
AACTCGAGC
ID










10
4.37]
CCCAGTGGA
NO:












TCAACGTGC
58












TCCA[G/A]GA













GGACTCTGT













GACTCTGAC













ATGCCGGGG













GACTCACAG













CC






chr
169697
A
G
SELE
p.L404
0.005
0.003
3.16
1.67
TCCCCTGTG
SEQ


1
268



L
15
10
E-
[1.07-
GGGCCACAT
ID










02
2.59]
TGGAGCCTT
NO:












TTGGATCCC
59












TTCA[A/G]CA













CAAAACCCT













GCTCACAGG













AGAACTCAC













AGCTGGACC













CA






chr
170115
G
C
METT
p.D18
0.000
0.000
1.00
1[0.3
GGGAGCCCA
SEQ


1
300


L11B
H
74
74
E+00
1-
TTTTGCCTTT
ID











3.22]
AGATCCCGC
NO:












TGGCAGAAG
60












ACC[G/C]ACG













ATGAACTCT













GTAGACATA













GCATGTCTTT













TATCCTTCA






chr
170129
T
C
METT
p.M66
0.008
0.006
1.44
1.29
AAATTGTAC
SEQ


1
701


L11B
T
82
84
E-
[0.92-
GCTTTAACA
ID










01
1.82]
AGCCAAGTC
NO:












ATCAATGGT
61












GAGA[T/C]GC













AGTTCTATG













CCAGAGCTA













AACTTTTCTA













CCAAGAAGT













A






chr
170136
T
C
METT
p.L277
0.010
0.010
1.00
0.99
GGCTTCCCA
SEQ


1
876


L11B
P
78
87
E+00
[0.73-
GAGCAGTGC
ID











1.35]
ATCCCCGTG
NO:












TGGATGTTC
62












GCAC[T/C]GC













ACAGCGACA













GACACTCCT













GAAAAAGCA













GTGGGAATG













AA






chr
176563
G
A
PAPP
p.V34
0.008
0.005
2.96
1.51
GCGGGATGC
SEQ


1
779


A2
7M
09
37
E-
[1.06-
TCGCTTCTTC
ID










02
2.15]
TTCTCCCTCT
NO:












GCACCGACC
63












GC[G/A]TGAA













GAAAGCCAC













CATCTTGATT













AGCCACAGT













CGCTACCA






chr
176833
T
C
ASTN1
p.E129
0.006
0.003
1.03
1.72
TCATTCTGG
SEQ


1
427



3G
62
85
E-
[1.17-
CAGCAGCTC
ID










02
2.54]
CCTGGCCTT
NO:












ATGGTGCTA
64












GATC[T/C]CT













TTGCTGTCCC













CATAGTCGT













TGTAGGGGA













TACTCAGGG













T






chr
176833
C
T
ASTN1
p.T127
0.006
0.004
4.58
1.52
CATAGTCGT
SEQ


1
480



5T
13
04
E-
[1.02-
TGTAGGGGA
ID










02
2.28]
TACTCAGGG
NO:












TCTGCTCCTC
65












ACA[C/T]GTC













TTCCTGAGG













TCCCGGCTG













AGCTCCGCC













CAGTCAAGT













C






chr
176852
T
G
ASTN1
p.M10
0.006
0.003
4.39
1.54
GAGATGGTG
SEQ


1
074



95L
13
99
E-
[1.03-
GTGAGCTGC
ID










02
2.3]
TTGTCCGGC
No:












ACCTGAGAT
66












GGCA[T/G]TG













CACAAGGAG













ACTTTGCTCC













AGAGATGAT













GTCGTCCAC













A






chr
186276
G
A
PRG4
p.E473
0.006
0.000
3.12
Inf
TACACCCAC
SEQ


1
268



K
62
00
E-

CACTCCCAA
ID










39

GGAGCCTGC
No:












ACCCACCAC
67












CAAG[G/A]A













GCCTGCACC













CACCACTCC













CAAAGAGCC













TGCACCCAC













TGC






chr
198222
C
G
NEK7
p.R35
0.012
0.008
2.08
1.42
CTTACGACC
SEQ


1
215



G
25
67
E-
[1.07-
GGATATGGG
ID










02
1.89]
CTATAATAC
No:












ATTAGCCAA
68












CTTT[C/G]GA













ATAGAAAAG













AAAATTGGT













CGCGGACAA













TTTAGTGAA













GT






chr
201178
A
G
IGFN1
p.E155
0.009
0.000
6.26
Inf
GGGAGTAAG
SEQ


1
688



6G
80
00
E-

GCAGGTTTT
ID










47

ACGGATGGT
No:












TTAGGAGGT
69












TCTG[A/G]AG













AAATGGGGT













CAGTGAATA













AGGCAGGTT













ATAGGAAGG













AT






chr
201180
A
G
IGFN1
p.N20
0.008
0.000
6.77
476.
TAGGGATGG
SEQ


1
217



66D
58
02
E-
2[65.
TTTAGGGAG
ID










40
22-
TTCTGTAGA
No:











3476
AATGGGGTC
70











.77]
AGTG[A/G]AT













GAGGCAGGT













TATAGGAAG













GATTTAGGG













GCTCCTAAG













GG






chr
203194
C
T
CHIT1
p.E74
0.006
0.003
9.72
1.74
CACATCTTCT
SEQ


1
834



K
62
80
E-
[1.18-
TCAGGCCAT
ID










03
2.58]
TGAACTCCT
No:












GGTAGAGAG
71












TCT[C/T]GTC













ATTCCACTC













AGTGGTGCT













CAGCTGGTG













GTTGGTCAT













G






chr
203691
A
G
ATP2B
p.K94
0.005
0.002
4.39
2.02
ACTTAACCT
SEQ


1
612


4
0R
15
55
E-
[1.3-
CCAGTGCTT
ID










03
3.15]
CTCCTCTCCC
No:












CACTAGGTG
72












AGA[A/G]ATT













CTTTGATATT













GATAGTGGG













AGGAAGGCA













CCTCTACAT






chr
204923
G
A
NFAS
p.D81
0.005
0.000
3.59
Inf
CCACTGGAC
SEQ


1
359


C
N
64
00
E-

ACGAAACAG
ID










34

CAGATTCTT
No:












CAACATCGC
73












CAAG[G/A]A













CCCCCGGGT













GTCCATGAG













GAGGAGGTC













TGGGACCCT













GGT






chr
204923
C
T
NFAS
p.R115
0.005
0.000
1.05
Inf
GCGGCCGGA
SEQ


1
461


C
C
39
00
E-

GGAATATGA
ID










32

GGGGGAATA
No:












TCAGTGCTT
74












CGCC[C/T]GC













AACAAATTT













GGCACGGCC













CTGTCCAAT













AGGATCCGC













CT






chr
206658
G
A
IKBKE
p.T514
0.010
0.006
2.08
1.47
AGCTAGCGG
SEQ


1
569



T
05
84
E-
[1.07-
AGGTCCTCT
ID










02
2.02]
CCAGATGCT
No:












CCCAAAATA
75












TCAC[G/A]GA













GACCCAGGA













GAGCCTGAG













CAGCCTGAA













CCGGGAGCT













GG






chr
222712
G
T
HHIPL
p.L487
0.010
0.006
1.35
1.71
ACTGACTTC
SEQ


1
108


2
M
78
33
E-
[1.26-
CCCACTGCA
ID










03
2.32]
TGGCCATAA
No:












GCATAGATT
76












GGCA[G/T]AA













CATCATCTG













TCCAGGAGA













GAGGAAAGA













GAGTGAGTG













TC






chr
227843
T
A
ZNF67
p.F413
0.009
0.000
1.18
1063
GGAGAGAAA
SEQ


1
024


8
Y
56
01
E-
[146.
CCCTACAAA
ID










55
01-
TGTGAAGAA
No:











7739
TGTGGCAGA
77











.02]
ACCT[T/A]TA













CTCAATTCTC













AAACCTCAC













TCAGCATAA













AAGAATTCA













T






chr
231057
C
T
TTC13
p.G55
0.012
0.000
5.31
Inf
TTTCTCAAA
SEQ


1
248



3D
99
00
E-

ATATTCTAG
ID










75

GTATCTCAT
No:












GTTGATCAC
78












CTGA[C/T]CC













CTATAAGGC













AAAAATAAT













AAAATTAAG













AATATTTTTA













T






chr
236144
G
T
NID1
p.S107
0.005
0.002
8.73
1.93
AGAGATGCA
SEQ


1
919



3S
15
68
E-
[1.24-
CACACATAT
ID










03
3]
TTACACAAA
No:












GATACCCTC
79












TCAC[G/T]GA













ATCCGTTAC













AATGCCTCT













GGGATTCAC













CAAGTCAGT













CT






chr
236433
T
G
ERO1L
p.K63
0.005
0.003
3.47
1.62
ACCTTACCTT
SEQ


1
208


B
N
88
65
E-
[1.07-
GTAATAACG
ID










02
2.44]
AAAATAGTC
No:












TCTCTCTTGC
80












AA[T/G]TTTT













TTATTTTGGG













GAAGATTTT













GTAGGTATT













GAAGTTAT






chr
246907
A
G
SCCP
p.I183
0.005
0.002
2.17
1.91
TCTTTTAGGT
SEQ


1
410


DH
V
21
73
E-
[1.08-
ACTTTGACT
ID










02
3.17]
GCTGTGGAA
No:












AGTTTCCTG
81












ACT[A/G]TAC













ATTCAGGAC













CTGAGGTTG













GTTTTTTGGT













TTGTCTTGT






chr
248436
G
A
OR2T3
p.N28
0.008
0.002
5.54
3.43
CTCCCTTCAC
SEQ


1
265


3
4N
33
45
E-
[2.4-
CTCACTGTTC
ID










09
4.9]
TTCACACTG
No:












TAGATGAGG
82












GG[G/A]TTTA













GTAAAGGGG













TGAACATAG













TATAGAAGG













CTGACACAA






chr
592504
G
A
ANKR
p.F257
0.005
0.003
2.59
1.66
TGGCTCTCA
SEQ


10
7


D16
F
39
25
E-
[1.08-
CATCTACAT
ID










02
2.56]
CGACGCCAA
No:












GTTCAGAGA
83












CCAA[G/A]A













ATCGGATGG













CTTCGTCCTG













CCCTGTGAC













AGCTGCCCT













GT






chr
597922
C
G
FBXO
p.A96
0.005
0.003
1.08
1.79
AGCGCACTG
SEQ


10
2


18
3A
64
16
E-
[1.17-
TGGAGAACA
ID










02
2.73]
TCGTACTGC
No:












CCCGGCATG
84












AGGC[C/G]CT













GCTCTTCCTC













GTCTTCTGA













GGACAAGGC













GCACGTTCT













C






chr
777195
C
T
ITIH2
p.N44
0.006
0.003
2.30
1.61
AACTAAAAC
SEQ


10
8



1N
37
96
E-
[1.09-
TGTCAAAAA
ID










02
2.4]
TTCAGAAAA
No:












ACGTTAAGG
85












AGAA[C/T]AT













CCAAGACAA













TATCTCCTTG













TTCAGTTTG













GGCATGGGA













T






chr
210975
G
A
NEBL
p.S885
0.006
0.004
3.59
1.55
TGACCTGTC
SEQ


10
46



F
37
13
E-
[1.04-
GTCTCCGAG
ID










02
2.3]
ACCTGTACC
No:












GAAAGTACT
86












GCTG[G/A]AA













TGGGATCGA













GACCAGTGT













CGCCTATAG













TGACTCGCC













TT






chr
345587
C
T
PARD
p.G10
0.005
0.002
1.96
1.74
CTAGCGTTG
SEQ


10
15


3
17R
15
97
E-
[1.12-
AGAGCCATG
ID










02
2.7]
GAACCTTCA
No:












TAAGAAGAA
87












ACTC[C/T]CC













CATACATTA













ACTCATCAT













CACAGCCAA













ATGTCCGAT













GA






chr
353221
C
T
CUL2
p.M34
0.009
0.004
5.26
2.06
TACCATGCA
SEQ


10
99



8I
778
78
E-
[1.37-
CTTCCAAAA
ID










04
2.98]
CTGACTCCA
No:












CAAATAGTG
88












TTGG[C/T]AT













CTAAAAATG













AAATATAAG













TACAAAACC













ACATTTTAA













GA






chr
454730
C
G
C10orf
p.M14
0.019
0.000
7.99
2197
CAGGCATCC
SEQ


10
44


10
5I
36
01
E-
.65[3
TGGCTTCAC
ID










114
05.6
AGAGCCTCC
No:











9-
CTCTGGGGG
89











1579
CCCC[C/G]AT












9.34]
GGGCTTGCT













GCTGTCCAT













CTGTCTATGT













GGACCCCAG













A






chr
469992
G
A
GPRIN
p.R110
0.007
0.005
3.98
1.46
AATGTGTCC
SEQ


10
09


2
Q
84
38
E-
[1.02-
ACCATGGGC
ID










02
2.09]
GGCAGTGAC
No:












CTGTGTCGC
90












CTGC[G/A]GG













CCCCTAGTG













CTGCTGCTA













TGCAGAGGA













GCCATTCAG













AC






chr
469993
A
G
GPRIN
p.A17
0.010
0.003
4.09
2.99
AGCCAGGTG
SEQ


10
90


2
0A
29
47
E-
[2.17-
GTACTTCTG
ID










09
4.12]
GCCAGGGTG
No:












GCCAGGCCC
91












CTGC[A/G]GG













CCTGGAAAG













GGACCTGGC













TCCTGAGGA













TGAGACTTC













TA






chr
470872
G
C
LOC10
p.L172
0.006
0.003
3.19
1.88
GGATTGTGC
SEQ


10
99


0996758
L
62
53
E-
[1.27-
TCATCTGGG
ID










03
2.78]
TCATTGCCT
No:












GTGTCCTCTC
92












CCT[G/C]CCC













TTCCTGGCC













AACAGCATC













CTGGAGAAT













GTCTTCCAC













A






chr
518279
A
G
FAM2
p.P13P
0.022
0.002
5.96
9.18
TGCAGATGA
SEQ


10
00


1A

30
48
E-
+7.2-
ACCGGACGA
ID










49
11.7
CCCCCGACC
No:












AGGAGCTGG
93












CGCC[A/G]GC













GTCGGAGCC













CGTGTGGGA













GCGGCCGTG













GTCGGTGGA













GG






chr
734648
G
A
CDH2
p.E960
0.008
0.004
2.90
1.94
GGTGGTCAC
SEQ


10
12


3
K
133
201
E-
[1.24-
CACCACCGA
ID










03
2.91]
GCTGGACCG
No:












CGAGCGCAT
94












CGCG[G/A]A













GTACCAGCT













GCGGGTGGT













GGCCAGTGA













TGCAGGCAC













GCC






chr
750106
G
C
MRPS
p.T130
0.008
0.004
8.85
1.74
CTAAAGTCA
SEQ


10
35


16
R
458
873
E-
[1.13-
GCTCATTTAT
ID










03
2.59]
GTTTCTGTA
No:












GCCTCTGTA
95












TCT[G/C]TAG













CTTCTGCATC













TGTTTTCTGA













GAAGCTAAC













AGGACTTC






chr
795887
G
A
DLG5
p.A74
0.007
0.004
8.01
1.69
GGGACCCTT
SEQ


10
06



1A
35
35
E-
[1.17-
CTTTAGCGG
ID










03
2.45]
CAGGGCTTC
No:












CAGGCAGCA
96












CAGC[G/A]GC













AGCATACAC













TCCATTCTCC













AGACTGATG













CCACTGTCT













G






chr
995312
C
T
SFRP5
p.D10
0.010
0.006
2.15
1.46
CAGACGGGC
SEQ


10
84



3N
05
89
E-
[1.07-
GCAAAGAGC
ID










02
2.01]
GAGCACAGG
No:












AAGACCTGC
97












GTAT[C/T]CG













AGTGGCAGC













GCTTGGCCA













GCAGCGGCA













GCCAGCTGC













TC






chr
999696
A
G
R3HC
p.L593
0.006
0.003
2.22
1.91
TGTTTAACG
SEQ


10
50


C1L
L
86
60
E-
[1.3-
ATGATGGTG
ID










03
2.81]
ACTGCCTGG
No:












ATCCACGTC
98












TTCT[A/G]CA













AGAGGTATG













TTTAATTGA













AATTGCTTG













ATGCTTAGT













TA






chr
102770
A
G
PDZD
p.R777
0.011
0.000
2.35
126.
ACTTGCCTT
SEQ


10
315


7
R
03
09
E-
17[4
GACCCCGGC
ID










44
5.36-
TGCTGCGGC
No:











350.
TGCGGCTGC
99











99]
GGCT[A/G]CG













GCTGCGGCT













ACGGCTCTG













AGCCCGGCC













CCGGATCTG













GC






chr
104230
G
A
THEM
p.T139
0.010
0.007
4.44
1.39
AGTTCTTGCT
SEQ


10
587


180
T
54
62
E-
[1.02-
GTGCCTGTG
ID










02
1.89]
CCTCTATGA
No:












TGGCTTCCT
100












GAC[G/A]CTC













GTGGACCTG













CACCACCAT













GCCTTGCTG













GCCGACCTG













G






chr
125780
G
C
CHST1
p.P453
0.008
0.000
3.19
793.
GCTCCTTCTG
SEQ


10
760


5
P
58
01
E-
53[1
CCAGGGGCC
ID










47
08.6
AGCTCGGGG
No:











9-
GGTACGGGG
101











5793
GGG[G/C]GG












.56]
GGTACACAC













AGGCATGGC













GTTGTTGAG













GGTGTTGTT













GT






chr
135106
G
A
TUBG
p.H36
0.005
0.003
2.61
1.66
CCTGCGCCT
SEQ


10
137


CP2
0H
39
26
E-
[1.08-
GGCTGTCCC
ID










02
2.55]
CTGTGTAGC
No:












TGAAGCTCC
102












TGTC[G/A]TG













GAGCAGGCT













CAGCGTGGA













CCCCCCAAG













ACATTCGCC













TT






chr
135368
G
C
SYCE1
p.V28
0.008
0.005
2.96
1.51
GGCCAGCCT
SEQ


10
906



9V
09
37
E-
[1.06-
CTTCCTCTTG
ID










02
2.15]
TGTGCTCTG
No:












GGCTTGGGC
103












AGG[G/C]ACT













TGCATTCCA













TGCTTTTCCA













GCTCTTCCTT













CAGCCTGG






chr
394511
C
T
PKP3
p.A73
0.006
0.000
6.27
Inf
AGCCGCGGC
SEQ


11




A
86
00
E-

ACAACGGGG
ID










11

CCGCTGAGC
No:












CCGAGCCTG
104












AGGC[C/T]GA













GACTGCCAG













AGGTAGGCG













GTGGGGACA













GCGGCGGGG













AT






chr
610300
A
G
PHRF
p.S145
0.006
0.003
2.18
1.93
CACAGGGGT
SEQ


11



1
5G
86
57
E-
[1.3-
CAGGCAGGT
ID










03
2.85]
GTTCTCCGA
No:












GCTGCCCTTT
105












CCC[A/G]GTC













ACGTGCTTC













CGGAACCCG













GGTTCCCAG













ACACAGACC













C






chr
614967
C
G
IRF7
p.R88
0.005
0.000
4.94
Inf
GCGCTCCGC
SEQ


11




T
88
00
E-

AGTCTCAGC
ID










32

CTCGGGGGG
No:












CGGGCCACC
106












TCCC[C/G]TG













CTGCTAGGC













GGCCACCTG













CCGCGGGCC













ACAGCCCAG













GC






chr
764414
A
G
TALDO1
p.K32
0.006
0.003
1.66
1.71
CTCTCTGAC
SEQ


11




1R
13
59
E-
[1.14-
GGGATCCGC
ID










02
2.56]
AAGTTTGCC
No:












GCTGATGCA
107












GTGA[A/G]GC













TGGAGCGGA













TGCTGACAG













TGAGTGTTG













TGTGTGGGT













AC






chr
101685
G
A
MUC6
p.P198
0.011
0.000
1.29
Inf
GGATAGGTA
SEQ


11
4



3S
27
00
E-

GTGGTGGTC
ID










67

TGGAAGGAT
NO:












GTTGCAGTC
108












ATAG[G/A]AC













CTGTGGAAG













AGAAGGGAC













TGCTCCCTGT













AGGTGGGGA













G






chr
101708
G
A
MUC6
p.P190
0.007
0.001
3.28
4.53
GGTAGGGAT
SEQ


11
5



6S
84
74
E-
[3.11-
GTAGAAGTT
ID










11
6.59]
TTGGCCGTG
NO:












CTAAATGAG
109












CTTG[G/A]GG













ATTGGCTGG













TCCCACTGG













TGGTCGGTG













TCATTGGTG













GG






chr
101754
G
A
MUC6
p.T175
0.025
0.000
8.09
Inf
GGTAGAAGT
SEQ


11
3



3I
25
00
E-

TGAGGTGAC
ID










151

TTCAGGATG
No:












GTGTGTGGA
110












GGAA[G/A]T













GTGTGAATG













TAGGGATGT













AGAGGTTTT













GGCCGTGCT













AAA






chr
101776
T
C
MUC6
p.Q16
0.009
0.000
1.12
180.
GGGATGTAG
SEQ


11
1



80Q
80
05
E-
29[7
AGGTTTTGG
ID










51
6.39-
CTGTGTTTA
No:











425.
ATGAGCTCA
111











47]
GGGC[T/C]TG













GCTGGTCCC













GCTGGTGGT













CAGCGTCAT













TGTTGGCGC













TG






chr
101778
C
T
MUC6
p.T167
0.009
0.000
1.86
27.7
TTAATGAGC
SEQ


11
5



2T
80
36
E-
8[17.
TCAGGGCTT
ID










36
86-
GGCTGGTCC
NO:











43.2
CGCTGGTGG
112











4]
TCAG[C/T]GT













CATTGTTGG













CGCTGTGTG













GGTGGACCC













TGTGGCCTT













GA






chr
101791
G
A
MUC6
p.T163
0.014
0.000
6.50
51.6
GGCAGAAGT
SEQ


11
2



0I
95
29
E-
5[26.
GGCCATCTG
ID










49
44-
TGCATGGGT
NO:











100.
AGGGGTGAT
113











88]
GACT[G/A]TG













TGAGTACTT













GGAGTCACC













AAAGAGGTG













GAGAAAGGT













GG






chr
101797
C
G
MUC6
p.Q16
0.007
0.000
2.56
15.7
AAGAGGTGG
SEQ


11
4



09H
60
49
E-
2[10.
AGAAAGGTG
ID










23
08-
GAACGTGAG
NO:











24.5
TGGGAAGTG
114











1]
TGGT[C/G]TG













AGGGTGTGA













TGGGGTTGG













ATAGGTAGT













GGTGGTCTT













GA






chr
102362
G
A
MUCC6
p.T113
0.009
0.007
4.58
1.4[1
GGCCTCCTG
SEQ


11
2



8M
80
03
E-
.02-
TGTGTACTG
ID










02
1.92]
GTACTCGCC
NO:












ATGGCCGTC
115












CTGC[G/A]TG













TGCGTGTTG













TAGAAGCCG













CAGTAGATG













GCTGGGAGG













AA






chr
109353
A
C
MUC2
p.K17
0.007
0.000
4.33
94.8
CACCACTAC
SEQ


11
7



86Q
11
08
E-
1[]28.
GATGACCCC
ID










27
87-
AACCCCAAC
No:











311.
ACCCACCAG
116











37
CACA[A/C]AG













AGTACAACC













GTGACACCC













ATCACCACC













ACAACTACG













GT






chr
126418
C
T
MUC5
p.T202
0.006
0.003
1.15
1.69
ACTCCAGAG
SEQ


11
7


B
6M
62
93
E-
[1.14-
ACTGCCCAC
ID










02
2.49]
ACCTCCACA
NO:












GTGCTTACC
117












GCCA[C/T]GG













CCACCACAA













CTGGGGCCA













CCGGCTCTG













TGGCCACCC













CC






chr
126996
G
A
MUC5
p.T395
0.006
0.004
4.28
1.52
CCAGTGGTA
SEQ


11
9


B
3T
86
53
E-
[1.03-
CTCCCCCAT
ID










02
2.24]
CACTGATCA
NO:












CCACGGCCA
118












CTAC[G/A]AT













CACGGCCAC













CGGCTCCAC













CACCAACCC













CTCCTCAAC













TC






chr
127131
A
G
MUC5
p.T440
0.014
0.000
2.18
Inf
CGACCTGGA
SEQ


11
3


B
1T
95
00
E-

TCCTCACAG
ID










89

AGCTGACCA
NO:












CAGCAGCCA
119












CTAC[A/G]AC













TGCAGCCAC













TGGCCCCAC













GGCCACCCC













GTCCTCCAC













CC






chr
160615
G
A
KRTA
p.G11
0.005
0.000
6.34
Inf
CACAGCCGG
SEQ


11
0


P5-1
0G
39
00
E-

AACCACAGC
ID










31

CACCCTTGG
NO:












ATCCCCCAC
120












AAGA[G/A]C













CACAGCCCC













CCTTGGAGC













CCCCACAGG













AGCCACAAC













CCC






chr
160640
G
A
KRTA
p.S26S
0.004
0.000
2.01
42.7
AGCCAGAAC
SEQ


11
2


P5-1

64
10
E-
7[16.
CTCCACAGC
ID










11
27-
CAGAGCCAC
NO:











112.
AGCCCCCAC
121











48]
AGCC[G/A]G













AGCCACAGC













CCCCACAGC













CGGAGCCAC













AGCCCCCAC













AGC






chr
161943
A
G
KRTA
p.C17
0.012
0.000
1.27
1373
AGCCCCCAC
SEQ


11
0


P5-2
C
25
01
E-
.66[1
AGCCAGAGC
ID










71
89.7
CACAACCCC
NO:











1-
CACAGCTGG
122











9946
AGCC[A/G]CA












.24]
GCCCCCACA













GCCGGAGCC













ACAGCCTCT













GGAGCAGCC













AC






chr
162916
G
A
KRTA
p.C151
0.010
0.000
5.33
1023
AGCAGGGCT
SEQ


11
3


P5-3
C
29
01
E-
.61[1
TACAGCAGC
ID










58
40.8
TGGACTGGG
NO:











5-
AGCAGCTGG
123











7439
GCTT[G/A]CA












.08]
GCAGCTGGA













CTGGCAGCA













GGATGACCC













ACAGCCTGA













GG






chr
162936
C
A
KRTA
p.K84
0.013
0.000
1.22
Inf
AGCAGCAGA
SEQ


11
4


P5-3
N
48
00
E-

CGGGCACAC
ID










80

AGCAGCTGG
NO:












AGCCACAGC
124












CCCC[C/A]TT













GGAGCCTCC













ACAGGAGCC













ACAGCCCCC













CTTGCAGCC













CC






chr
164288
A
G
KRTA
p.S148
0.011
0.000
1.28
Inf
TACAGCAGC
SEQ


11
0


P5-4
S
27
00
E-

TGGACTGGC
ID










67

AGCAGGATG
NO:












ACCCACAGC
125












CTGA[A/G]GA













GAAGCAGCA













GGGCTTACA













GCAGCTGCA













CTGGGAGCA













GC






chr
165135
A
G
KRTA
p.R97
0.027
0.000
1.04
Inf
CTGTGGCAA
SEQ


11
9


P5-5
G
94
00
E-

AGGGGGCTG
ID










166

TGGCTCTTG
No:












CGGGGGCTC
126












CAAG[A/G]G













AGGCTGTGT













CTCCTGTGG













GGTGTCCAA













GGGGGCCTG













TGG






chr
216143
G
A
IGF2
p.Q33
0.016
0.000
9.89
19.8
CGTCTAAGT
SEQ


11
0



X
68
90
E-
[11.5-
AGCTCGCCT
ID










16
34.2]
TTGCGGCCC
No:












ACCCAAAAT
127












ATCT[G/A]GA













TAATGGTTA













CCCCGTCCT













CAGTGCGTT













GGACTTGCA













TA






chr
438911
G
A
OR52B
p.T139
0.005
0.002
2.82
1.79
CAGAGAGAC
SEQ


11
0


4
I
21
91
E-
[1.01-
AGTCACACA
ID










02
2.96]
AATTTTCTTG
No:












ATCAGAGCA
128












TTT[G/A]TAA













GAATGGTGG













TGTACCTCA













GTGGGTAGC













ATATGGCAA













T






chr
544404
C
T
OR51
p.L204
0.008
0.005
1.36
1.57
CTGTGCTGA
SEQ


11
0


Q1
F
58
50
E-
[1.11-
CATCAGGCT
ID










02
2.2]
CAACAGCTG
No:












GTATGGATT
129












TGCT[C/T]TT













GCCTTGCTC













ATTATTATC













GTGGATCCT













CTGCTCATT













GT






chr
691328
T
C
OR2D
p.S151
0.008
0.004
1.80
1.67
AGTATGAAG
SEQ


11
1


2
G
133
873
E-
[1.07-
GTGGTGTCT
ID










02
2.5]
ACCACAGAC
No:












ACCAGAATG
130












CCAC[T/C]GG













TCCATGATC













CTGTTGCCA













GCTGGACAC













ACACTTTCC













AG






chr
694291
C
T
OR2D
p.S228
0.014
0.010
5.32
1.47
ATCTTTTCAA
SEQ


11
5


3
F
71
03
E-
[1.13-
TGGGCGTGG
ID










03
1.92]
TAATCCTCCT
No:












GGCCCCTGT
131












CT[C/T]CCTG













ATTCTTGGTT













CTTATTGGA













ATATTATCTC













CACTGTT






chr
122463
G
A
MICAL
p.R559
0.008
0.005
2.51
1.5[1
CGCAGTGGG
SEQ


11
55


2
Q
33
56
E-
.06-
TTGGCCCTG
ID










02
2.13]
TGTGCCATC
No:












ATCCACCGC
132












TTCC[G/A]GC













CTGAGCTCA













TGTGAGTCT













GGGGCCCAG













GCTGGCCCC













TG






chr
341650
G
A
NAT10
p.A98
0.008
0.003
5.80
2.17
TGAAGAGTG
SEQ


11
53



3T
133
762
E-
[1.39-
GAATGAAGT
ID










04
3.26]
TTTGAACAA
No:












AGCTGGGCC
133












GAAC[G/A]CC













TCGATCATC













AGCCTGAAA













AGGTGAGGG













CCCAGGGTC













TG






chr
354560
T
A
PAMR
p.D53
0.007
0.005
3.47
1.49
CAAGCCCTC
SEQ


11
85


1
4V
60
11
E-
[1.04-
TCTTACCTGT
ID










02
2.14]
AGGCTCTGG
No:












ATGGTCTTCT
134












CA[T/A]CCCG













GTCATCATC













CCGGTAGAA













TTTCCCCAA













AACAACTTT






chr
474696
G
T
RAPSN
p.N88
0.005
0.002
5.29
1.96
TCTTGTGAA
SEQ


11
31



K
15
63
E-
[1.26-
ACTCGCACA
ID










03
3.06]
GCTTCTCGTT
No:












GCTGCGTGC
135












CAG[G/T]TTC













AGGTAGCTC













TCCAGGAGG













AAGTCGGCA













TCCTCCAGC













T






chr
619595
A
C
SCGB1
p.N20
0.005
0.002
1.60
2.21
TCCTTACAC
SEQ


11
31


D1
T
15
33
E-
[1.42-
AAATTATAT
ID










03
3.46]
TTTTATTCTT
No:












TTGCTCCAG
136












CAA[A/C]TGC













AGTGGTCTG













CCAAGCTCT













TGGTTCTGA













AATCACAGG













C






chr
622880
G
A
AHNA
p.P462
0.007
0.004
2.38
1.54
GGACATCAA
SEQ


11
14


K
5P
60
94
E-
[1.07-
TGTCCACTTT
ID










02
2.22]
GGGGTCCCT
No:












GATGTCAAC
137












TTC[G/A]GGG













CCCTTGAGG













TCGCCTTCC













ACTTTGGGC













AGAGAAATG













T






chr
624339
C
T
METT
p.R38
0.005
0.002
2.15
1.92
ACTGGCTGA
SEQ


11
12


L12
W
21
72
E-
[1.08-
TAGTTGCCT
ID










02
3.18]
GGCGGACCG
No:












CTGTCTCTG
138












GGAT[C/T]GG













CTGCATGCC













CAGCCTCGT













TTGGGCACT













GTCCCCACC













TT






chr
624443
C
G
UBXN
p.E249
0.012
0.008
3.42
1.38
CTGAGCAAT
SEQ


11
84


1
Q
25
88
E-
[1.04-
TGCACAGGG
ID










02
1.84]
TCCTGGCCC
No:












CCACCTAGT
139












TCCT[C/G]CC













CACGGTGGA













GCTCCACAT













AGAGCCTCA













CAGCTGCCA













GC






chr
627608
C
T
SLC22
p.R422
0.005
0.003
1.35
1.75
GGCCTTTTCC
SEQ


11
00


A8
Q
88
38
E- 
[1.15-
ACCTCTGGC
ID










02
2.64]
TCCTGCTTTG
No:












GCTTCTTTGC
140












C[C/T]GCAGG













GACCTAGGG













ACAGAGAGC













TAAGGAAAA













GCCCTGGG






chr
634874
G
C
RTN3
p.D50
0.010
0.007
4.56
1.38
ATTGGGAGA
SEQ


11
75



1H
54
68
E-
[1.01-
AATCACAGA
ID










02
1.87]
AGCTGATAG
No:












TTCTGGTGA
141












GTCT[G/C]AT













GACACAGTA













ATAGAGGAC













ATCACAGCA













GATACATCA













TT






636815
chr
C
T
RCOR
p.T271
0.009
0.004
1.13
2.3[1
GGAGCGTGA
SEQ


11
04


2
T
31
07
E-
.65-
GGTTGGCAA
ID










05
3.2]
GGTCCGGGC
No:












TTCCTGACA
142












CTGC[C/T]GT













GAGGCCTTC













AGGGCTCAG













GTACATGCC













CTTGGGTGG













GC



chr
640518
G
A
GPR13
p.G17
0.006
0.000
6.66
48.8
CTGTGAGGA
SEQ


11
89


7
G
04
10
E-
3[20.
CAAGATGTT
ID










15
22-
ACGTAGTCA
No:











117.
AGGCACAGC
143











93]
TGGG[G/A]CC













AACGGTGGC













CCTGGAAGG













CAGAGGCAG













GTACCCCTG













GC






chr
640832
G
T
ESRRA
p.R376
0.018
0.000
4.17
28.9
GAAGCCGGC
SEQ


11
93



L
87
67
E-
[20.8
CGGGCTGGC
ID










69
7-
CCCGGAGGG
NO:











40]
GGTGCTGAG
144












CGGC[G/T]GC













GGGCGGGCA













GGCTGCTGC













TCACGCTAC













CGCTCCTCC













GC






chr
640833
G
A
ESRRA
p.A37
0.016
0.000
5.66
27.1
GCCGGGCTG
SEQ


11
00



8A
91
63
E-
7[19.
GCCCCGGAG
ID










61
38-
GGGGTGCTG
NO:











38.0
AGCGGCGGC
145











8]
GGGC[G/A]G













GCAGGCTGC













TGCTCACGC













TACCGCTCC













TCCGCCAGA













CAG






chr
649850
G
A
SLC22
p.A18
0.005
0.003
4.82
1.61
GGTCCTACC
SEQ


11
72


A20
4A
15
20
E-
[1.04-
TGCAGCTGG
ID










02
2.51]
CAGCTTCGG
NO:












GGGCCGCCA
146












CAGC[G/A]TA













TTTCAGCTCC













TTCAGTGCC













TATTGCGTCT













TCCGGTTCC






chr
724060
C
T
ARAP1
p.V12
0.005
0.002
2.50
2.09
CAAGCCCAG
SEQ


11
46



251
15
47
E-
[1.34-
CGTCACCCA
ID










03
3.25]
CCTGCCTCCT
NO:












CCCTCTCGTT
147












GA[C/T]CTCA













AAGCAGGTC













CAATAGTCC













TTCTCCCTGA













TGCCCACG






chr
738439
C
T
C2CD
p.R371
0.009
0.006
4.99
1.41
CAGTTGAAG
SEQ


11
93


3
R
31
62
E-
[1.02-
GGAGGAGGT
ID










02
1.96]
GATCTTCAA
NO:












TGTGGTCTTT
148












AAA[C/T]CGA













TTCCTAGAA













AAGGCTCTG













ATCCTAAGG













TGTGGAAAA













A






chr
740535
G
A
PGM2
p.T522
0.005
0.002
4.03
2.06
ATATCCAGT
SEQ


11
73


L1
I
15
51
E-
[1.32-
GGTAACGTC
ID










03
3.21]
CCGTACATG
NO:












CAATATAGC
149












AAAT[G/A]TT













CCACAAAAT













TTTGGATATT













CTTTTGGAG













AATCAAAAT













T






chr
747175
A
T
NEU3
p.X46
0.006
0.004
2.55
1.61
CCAGCCCTG
SEQ


11
37



2Y
62
13
E-
[1.09-
GTAGGAACC
ID










02
2.37]
CAAGCCAAT
No:












TCAAAAGCA
150












ATTA[A/T]TT













GGCTTAGGA













CCCAATTTC













CATAGATGC













AAATGGCAG













TT






chr
755093
C
T
DGAT
p.F247
0.012
0.000
1.70
Inf
ACTCCTTTG
SEQ


11
32


2
F
25
00
E-

GAGAGAATG
ID










73

AAGTGTACA
No:












AGCAGGTGA
151












TCTT[C/T]GA













GGAGGGCTC













CTGGGGCCG













ATGGGTCCA













GAAGAAGTT













CC






chr
755093
C
T
DGAT
p.G25
0.018
0.000
1.61
Inf
GAGAGAATG
SEQ


11
41


2
0G
14
00
E-

AAGTGTACA
ID










108

AGCAGGTGA
No:












TCTTCGAGG
152












AGGG[C/T]TC













CTGGGGCCG













ATGGGTCCA













GAAGAAGTT













CCAGAAATA













CA






chr
768348
C
A
CAPN
p.L632
0.007
0.004
9.41
1.67
GCAGCCCAG
SEQ


11
87


5
I
60
56
E-
[1.16-
CAACCTGCC
ID










03
2.41]
AGGCACTGT
No:












GGCCGTGCA
153












CATT[C/A]TC













AGCAGCACC













TCCCTCATG













GCTGTCTGA













CACCTGCCC













AC






chr
828797
C
T
PCF11
p.P795
0.007
0.005
3.85
1.47
GGACCTCCC
SEQ


11
61



L
84
34
E-
[1.03-
ACACCAGCT
ID










02
2.11]
TCTCTTCGGT
No:












TTGATGGGT
154












CAC[C/T]AGG













ACAAATGGG













GGGAGGAGG













CCCTTTGAG













ATTTGAGGG













G






chr
896073
C
T
TRIM6
p.E205
0.008
0.003
3.95
2.81
ATTCTCACTT
SEQ


11
39


4B
K
82
16
+E-
[1.96-
GACTGTCTT
ID










07
4.02]
GTAGTTGTT
No:












GGAAAAGCT
155












CTT[C/T]TGC













TTCTCTTTCC













AGTGCCTGC













AGATGCCGT













TGCTCCTCC






chr
947598
G
A
KDM4
p.C381
0.008
0.003
1.56
2.17
GCTCTGGGC
SEQ


11
63


E
Y
09
74
E-
[1.5-
CTGAGGCTT
ID










04
3.14]
CTCCCAAAC
No:












CTCACAGCC
156












CAGT[G/A]TC













CCACACAGC













CTGTGTCCTC













AGGGCACTG













TTACAACCC













A






chr
961175
A
C
CCDC
p.D12
0.006
0.002
2.43
2.96
TGTTGAGAT
SEQ


11
37


82
5E
62
24
E-
[1.99-
CATTATCCTC
ID










06
4.42]
TTGACTTAA
No:












ATGTTTTTCC
157












TG[A/C]TCTT













GTAAGTCAA













TATTCCTATG













TTTGATTTTG













TTCGTTT






chr
107381
G
T
ALKB
p.H47
0.006
0.004
2.37
1.63
AGAGAAAGA
SEQ


11
630


H8
4N
62
08
E-
[1.09-
AAGACCATA
ID










02
2.43]
CTTACTGCT
No:












GTTGCAAAA
158












TGAT[G/T]AA













TAACAGCAA













TGGAGATGC













AGGCATCAC













AAGACCCAC













TG






chr
114451
T
C
NXPE4
p.131V
0.005
0.003
3.81
1.62
ACAGGATTC
SEQ


11
010




39
33
E-
[1.05-
CATGTGTTTC
ID










02
2.5]
TCCAGACAT
No:












GCCCACTGG
159












GGA[T/C]TGT













GGATGTCAT













TCCAAACTT













GCATTTCTCT













TTCATTGCA






chr
116744
A
G
SIK3
p.L518
0.005
0.003
3.98
1.6[1
TGTCTAGGT
SEQ


11
648



L
39
38
E-
.04-
ACCTTGTAC
ID










02
2.46]
TCAAGTTGC
No:












CCGGTTGGT
160












TGCA[A/G]GT













TTTGCATAG













GCAACAGGT













TGTGCATGA













AGTTCACAT













TA






chr
117054
G
A
SIDT2
p.R235
0.005
0.003
2.25
1.73
ATGATGATG
SEQ


11
496



H
39
13
E-
[1.12-
AAGAAGATA
ID










02
2.66]
TTTATCATCA
No:












TCATCCTGC
161












AGC[G/A]CA













AAGACTTCC













CCAGCAACA













GCTTTTATGT













GGTGGTGGT













G






chr
117057
C
T
SIDT2
p.R333
0.005
0.000
3.63
533.
ATGCAGGCA
SEQ


11
334



X
64
01
E-
81[7
GAAGAAGAA
ID










31
2.07-
GACCCTGCT
No:











3953
GGTGGCCAT
162











.67]
TGAC[C/T]GA













GCCTGCCCA













GAAAGCGGT













ACCTCCAGG













GGGCCTGGG













TG






chr
118516
G
A
PHLD
p.A11
0.005
0.002
2.98
2.47
CCTGCCTGC
SEQ


11
274


B1
08T
39
19
E-
[1.59-
GGGGCGGGA
ID










04
3.82]
GCGTGGGGA
No:












GGAGGGTGA
163












GCAC[G/A]CC













TATGATACG













CTGAGTCTG













GAGAGCTCT













GACAGCATG













GA






chr
118850
C
G
FOXR
p.A15
0.005
0.000
7.54
287.
GACAGCTCC
SEQ


11
225


1
3G
15
02
E-
7[67.
TCTATGGCT
ID










29
44-
CTCCCATCC
No:











1227
CCTCACAAA
164











.4]
AGGG[C/G]CC













CCCTCCAGA













GTCGGAGGC













TTCGGCAAG













CCAGCAGCC













AG






chr
120188
T
A
POU2
p.F422
0.018
0.000
5.03
2148
TCAAAATAA
SEQ


11
060


F3
I
87
01
E-
.21[2
CTCCAAAGC
ID










111
98.7
AGCAGTGAA
No:











1-
CTCCGCCTC
165











1544
CAGT[T/A]TT












8.8]
AACTCTTCA













GGGTAAGGT













GAAGGGGAC













GGTGCAGAG













AC






chr
123476
C
T
GRAM
p.A29
0.006
0.003
8.40
1.76
TCACCAACA
SEQ


11
177


D1B
5A
37
64
E-
[1.18-
GCACACTAA
ID










03
2.62]
CATCCACAG
No:












GGAGCAGTG
166












AGGC[C/T]CC













CGTCTCGGT













ATGGGCAGT













CAGCCTTTG













ACTTCTACC













CC






chr
124266
A
G
OR8B3
p.P286
0.009
0.003
1.44
3.04
GTGCAACTT
SEQ


11
390



P
31
09
E-
[2.17-
TGACATCCT
ID










08
4.25]
TGTTCCTCA
No:












AACTGTAGA
167












TGAG[A/G]G













GATTGAGCA













TGGGCACCA













CATTAGTGT













AGAAAACAG













AAG






chr
124620
G
T
VSIG2
p.N97
0.005
0.000
6.91
288.
CGTCAGTCA
SEQ


11
746



K
15
02
E-
96[6
GTTTCAGTG
ID










29
7.73-
TGGCCACCC
No:











1232
CCACTGTGG
168











.76]
GGGG[G/T]TT













CTGAAGCAG













GCTGACCCG













CTTTGACTTA













GAACCAGTT













G






chr
368928
T
C
SLC6A
p.P97P
0.008
0.005
2.84
1.72
CCTCTAAGC
SEQ


12



13

8 2
15
E-
[1.23-
GTCCTCCTA
ID










03
2.41]
CCTCCAGAA
No:












TTCTATACAT
169












CTA[T/C]GGG













ACTCCCCAG













AGGGGCCGT













AAGTGCAGG













AGATGGAAG













T






chr
704483
C
T
ATN1
p.Y13
0.011
0.007
1.73
1.46
ATATCGACC
SEQ


12
8



6Y
03
57
E-
[1.08-
AGGACAACC
ID










02
1.98]
GAAGCACGT
No:












CCCCCAGTA
170












TCTA[C/T]AG













CCCTGGAAG













TGTGGAGAA













TGACTCTGA













CTCATCTTCT













G






chr
109594
C
A
TAS2R
p.R55I
0.007
0.004
1.11
1.65
TACAATGCC
SEQ


12
16


8

84
77
E-
[1.15-
ATTTACAAC
ID










02
2.36]
CATTACACT
No:












GATCAAACA
171












AATT[C/A]TG













GCGATAACT













AAATTGGTA













AGGATGTAG













TCAACTGTG













GA






chr
114617
G
T
PRB4
p.P50T
0.026
0.006
4.29
3.98
TGTGGGGGT
SEQ


12
69




72
86
E-
[3.23-
GGTCCTTGT
ID










29
4.9]
GGCTTTCCT
No:












GGAGGAGGT
172












GGGG[G/T]AC













GTTGGGGCT













GGTTTCCTCC













TTGTGGGCG













TCGTCCTTCT






chr
130615
A
G
GPRC
p.I134
0.013
0.009
1.04
1.45
CAAGCTCGT
SEQ


12
83


5A
V
48
32
E-
[1.11-
CCGGGGGAG
ID










02
1.91]
GAAGCCCCT
No:












TTCCCTGTTG
173












GTG[A/G]TTC













TGGGTCTGG













CCGTGGGCT













TCAGCCTAG













TCCAGGATG













T






chr
152623
C
T
RERG
p.V95
0.009
0.006
1.84
1.49
TGGGCTTTTT
SEQ


12
59



V
80
58
E-
[1.09-
GATCTCATC
ID










02
2.06]
TAGGATGTT
NO:












CTTAAGTGG
174












CAG[C/T]ACT













TCCTCAAAA













CTTCCTCGGT













CAGTAATGT













CGTAGACCA






chr
482402
G
A
VDR
p.A35
0.005
0.003
1.83
1.71
GGAACTTGA
SEQ


12
33



3A
64
30
E-
[1.11-
TGAGGGGCT
ID










02
2.64]
CAATCAGCT
NO:












CCAGGCTGT
175












GTCC[G/A]GC













TGTGAGAGA













CAATGGCCA













GGTACTGCG













GGCAGAGCT













GA






chr
494255
C
T
KMT2
p.V43
0.005
0.002
1.83
2.1[1
TTTGGCTCTT
SEQ


12
75


D
05I
39
57
E-
.36-
GAGGGCTGG
ID










03
3.25]
ATGGTGGAG
NO:












GTGTGGGAT
176












GGA[C/T]AGG













GCCAAGGAC













TGGTCCTGT













AGATAAGGC













TCCTGGTGG













G






chr
504801
G
T
SMAR
p.Q11
0.007
0.004
8.42
1.8[1
CCCGCAAGA
SEQ


12
02


CD1
2H
807
359
E-
.14-
GACCTGCCC
ID










03
2.71]
CTCAGCAGA
NO:












TCCAGCAGG
177












TCCA[G/T]CA













GCAGGCGGT













CCAAAATCG













AAACCACAA













GTAAGATGA













TC






chr
507457
G
A
FAM1
p.A16
0.005
0.000
3.41
10.5
CTGGGCCTG
SEQ


12
92


86A
08V
88
56
E-
6[6.1
CTGAGGGGT
ID










14
9-
GAGAGGGAT
NO:











18.0
CCCCTGAGC
178











2]
CTGC[G/A]CC













TGCTGAGGG













GTGAGAGGG













ATCCCCAGT













TCCTGCGCC













TG






chr
507468
A
G
FAM1
p.V12
0.025
0.000
7.89
399.
CTGGGCCTG
SEQ


12
36


86A
60A
74
07
E-
44[1
CTGAGGAGT
ID










110
26.7
AAGAGGGAT
NO:











2-
CCCCAGTTC
179











1259
CTGA[A/G]CC












.11]
TGCTTAGGG













GTGAGAGTG













ATTCCGAGA













GCCTGCGCC













TG






chr
507481
T
G
FAM1
p.K81
0.005
0.002
1.29
1.97
TCTTGCAAA
SEQ


12
69


86A
6Q
21
65
E-
[1.11-
TATTGCTCCT
ID










02
3.26]
GCCTTTGTTT
No:












TTCCTTCTCC
180












T[T/G]GTGGT













CTTTCTGTAC













TGTTGAGAC













TGTTGGAAT













ATCTCTT






chr
529608
C
A
KRT74
p.G50
0.005
0.002
9.47
2.09
GGCTGGGGT
SEQ


12
23



7V
21
49
E-
[1.18-
GCTCTTGCC
ID










03
3.47]
CTGGGTGTC
No:












CTTGAGGTC
181












TCCC[C/A]CT













CGCGCCTCT













GTGGTCTTG













GTCTGCCCG













CTCTGGGTG













CT






chr
529620
G
A
KRT74
p.R420
0.008
0.005
2.50
1.51
AGTTTCAGG
SEQ


12
50



W
33
55
E-
[1.06-
CTCATGAGC
ID










02
2.13]
TCCTGGTAC
No:












TCGCGCAGC
182












ATCC[G/A]CG













CCAGCTCCT













CCTTGGCCT













GGTGCAGGG













CGCCCTCCA













GC






chr
534481
G
A
TENC1
p.T13
0.005
0.003
1.35
1.79
TCATGGAGC
SEQ


12
14



T
39
01
E-
[1.16-
GGCGCTGGG
ID










02
2.77]
ACTTAGACC
No:












TCACCTACG
183












TGAC[G/A]GA













GCGCATCTT













GGCCGCCGC













CTTCCCCGC













GCGGCCCGA













TG






chr
535169
C
T
SOAT2
p.V45
0.010
0.007
2.52
1.45
TGGGGTTCT
SEQ


12
93



5V
54
32
E-
[1.06-
TCTATCCCGT
ID










02
1.97]
CATGCTGAT
No:












ACTCTTCCTT
184












GT[C/T]ATTG













GAGGTGAGC













TGGTCTCTGT













GCCACTGGA













AGGGAGCC






chr
537144
G
T
AAAS
p.T57
0.009
0.000
5.15
Inf
GATGAAGGC
SEQ


12
30



N
31
00
E-

AGTTCTTGT
ID










56

GCCATGGTC
No:












CAGCCTTCC
185












AGGG[G/T]TC













TTTAGGGGA













TCCTTTGTCA













GTTGTAGGA













CAGGAAGAT













T






chr
558464
C
A
OR6C2
p.L164
0.005
0.002
1.70
1.8[1
TGATGATCA
SEQ


12
89



L
15
87
E-
.16-
TTGTTCCACC
ID










02
2.8]
ACTTAGCTT
No:












AGGCCTCCA
186












GCT[C/A]GAA













TTCTGTGACT













CCAATGCCA













TTGATCATTT













TAGCTGTG






chr
563509
C
G
PMEL
p.E370
0.005
0.002
5.00
2.3[1
CCTCTGAAA
SEQ


12
77



D
88
57
E-
.51-
CTGGCACCT
ID










04
3.49]
TCTCAGGTG
No:












TCATACCTG
187












TGCT[C/G]TC













TGCAGTTGG













CATCTGCAC













AGGTGCAGT













GCTTATGAC













TT






chr
570092
G
A
BAZ2A
p.N10
0.007
0.004
4.23
1.48
GTCCCCCCG
SEQ


12
16



6N
35
97
E-
[1.02-
AGAACTGGG
ID










02
2.14]
AGAGAAGGG
No:












GTGGGTCCT
188












TGAG[G/A]TT













GCTGCCAGG













ATTGGCAGA













TGGGTACTG













TGAGTAGTT













CC






chr
575693
G
A
LRP1
p.G12
0.008
0.005
8.35
1.64
GAAGGCATT
SEQ


12
39



15E
58
26
E-
[1.16-
GTGTGTTCCT
ID










03
2.3]
GCCCTCTGG
No:












GCATGGAGC
189












TGG[G/A]GCC













CGACAACCA













CACCTGCCA













GATCCAGAG













CTACTGTGC













C






chr
667251
G
A
HELB
p.G95
0.005 
0.003
2.31
1.66
TCGTTTGAA
SEQ


12
38



9S
88
56
E-
[1.1-
ACATTTCTTG
ID










02
2.51]
CAAAGTAAG
No:












CTCTCCTCTA
190












GC[G/A]GCGC













ACCTCCAGC













AGATTTTCC













GTCCCCACG













GAAGAGCTC






chr
856951
C
T
ALX1
p.N27
0.009
0.000
1.86
Inf
TTTCAAACC
SEQ


12
06



8N
56
00
E-

ACCAGAACC
ID










57

AGTTCAGCC
No:












ACGTGCCCC
191












TCAA[C/T]AA













TTTTTTCACT













GACTCTCTTC













TTACTGGGG













CAACCAATG






chr
899169
G
A
POC1
p.I450I
0.006
0.004
3.83
1.55
GGTTGTTGT
SEQ


12
68


B-

62
28
E-
[1.05-
CAGGAGAAT
ID






GALN



02
2.29]
TATAATCTA
No:






T4





AACATTCAG
192












ACGA[G/A]AT













CCCTCTACT













GCGAATAGC













CCCATGCCA













GCCTGGTCT













AT






chr
956942
C
T
VEZT
p.P712
0.001
0.000
1.23
41.5
TGAACCACA
SEQ


12
43



S
96
05
E- 
[11.7-
AGCAGATGG
ID










05
147]
AAGTGGTCT
No:












GACCACTGC
193












CCCT[C/T]CA













ACTCCCAGG













GACTCATTA













CAGCCCTCC













ATTAAGCAG













AG






chr
104144
C
T
STAB2
p.P217
0.006
0.003
1.77
1.68
CTATGTCGG
SEQ


12
426



0S
13
66
E-
[1.12-
AGATGGGCT
ID










02
2.52]
GAACTGTGA
No:












GCCGGAGCA
194












GCTG[C/T]CC













ATTGACCGC













TGCTTACAG













GACAATGGG













CAGTGCCAT













GC






chr
108920
G
A
SART3
p.D69
0.005
0.003
3.10
1.62
TGATGCTGT
SEQ


12
173



1D
64
48
E-
[1.06-
CCTTGCTGCT
ID










02
2.47]
GTCGTGCAG
No:












CACCTTGGG
195












CAT[G/A]TCC













CTCTTCAGG













GAGGCTGCC













TTCTCCTTCT













GCTTCGAAG






chr
111317
T
C
CCDC
p.L172
0.007
0.004
4.98
1.49
CTCCAGCAC
SEQ


12
855


63
S
11
78
E-
[1.03-
TGCCTGTTG
ID










02
2.17]
ATGGAGAAG
No:












AAAACCATG
196












AACT[T/C]GG













CCATTGAGC













AATCTTCTC













AGGCCTATG













AGCAGAGGT













GG






chr
119594
C
T
SRRA1
p.5529
0.013
0.000
4.82
Inf
CCATCCCCT
SEQ


12
354


4
S
48
00
E-

ACTATCGGC
ID










80

CCAGCCCCT
No:












CCTCATCCG
197












GCAG[C/T]CT













CAGCAGCAC













CTCCTCCTG













GTACAGCAG













CAGCAGTAG













CC






chr
122361
C
T
WDR6
p.R188
0.012
0.008
5.94
1.53
TGAAAGGCA
SEQ


12
711


6
W
25
07
E-
[1.15-
GCCCTCAGG
ID










03
2.03]
AGAGCTTGA
No:












GGAGAAAAC
198












CGAC[C/T]GG













ATGCCCCAA













GATGAACTG













GGACAAGAA













AGAAGGGAC













TT






chr
122404
C
T
WDR6
p.R860
0.012
0.008
1.00
1.49
ACAAGTCCT
SEQ


12
946


6
C
01
07
E-
[1.12-
CCCAGTGAG
ID










02
1.99]
AAGCATGGC
No:












GGAGCTACA
199












GAAA[C/T]GC













TACTTGGTG













TTTATTAAC













AGAGACAAG













GTAACAGCG













CT






chr
122676
A
G
LRRC4
p.Y15
0.005
0.002
3.52
2.01
CCCGAAGGC
SEQ


12
056


3
9C
39
69
E-
[1.3-
CCTTTCATCA
ID










03
3.1]
CTTACAACT
No:












ATTACGTGA
200












CCT[A/G]TGA













TTTTGTGAA













AGATGAAGA













AGGCGAAAT













GAATGAGTC













C



chr
123706
T
G
MPHI
p.S160
0.006
0.000
8.30
14.3
GTGGATTCA
SEQ


12
313


SPH9
R
51
46
E-
6[7.8-
GGATAATGG
ID










15
25.7
ATAACAGAT
No:











8]
TCATTTCTCT
201












CAC[T/G]GCT













TAGAGAAAA













AAAACCCAT













TTGACTTTCC













GAAGATACT






chr
124364
C
T
DNAH
p.H27
0.007
0.004
1.93
1.59
GGGATCCCA
SEQ


12
285


10
39H
35
64
E-
[1.1-
TATTGTTTGG
ID










02
2.3]
AGACTTCCA
No:












GATGGCTCT
202












GCA[C/T]GAA













GGAGAACCA













CGCATTTAT













GAAGACATC













CAGGACTAC













G






chr
125396
G
A
UBC
p.D49
0.028
0.012
4.07
2.27
CATCTTCCA
SEQ


12
833



5D
92
95
E-
[1.69-
GCTGTTTCCC
ID










08
3.06]
AGCAAAGAT
No:












CAACCTCTG
203












CTG[G/A]TCA













GGAGGGATG













CCTTCCTTGT













CTTGGATCTT













TGCCTTGA






chr
125397
T
C
UBC
p.Q25
0.005
0.000
1.03
71.9
AGATCAACC
SEQ


12
541



9Q
15
07
E-
8[31.
TCTGCTGGT
ID










24
86-
CAGGAGGAA
NO:











162.
TGCCTTCCTT
204











59]
GTC[T/C]TGG













ATCTTTGCTT













TGACGTTCT













CGATAGTGT













CACTGGGCT






chr
125398
A
G
UBC
p.T7T
0.012
0.000
1.46
94.0
CACTGGGCT
SEQ


12
297




53
10
E-
3[44.
CAACCTCGA
ID










33
17-
GGGTGATGG
NO:











200.
TCTTACCAG
205











19]
TCAG[A/G]GT













CTTCACGAA













GATCTGCAT













TGTCTAACA













AAAAAGCCA













AA






chr
132625
G
A
DDX5
p.S487
0.022
0.000
2.59
2540
CCAGGACCA
SEQ


12
260


1
S
30
01
E-
.86[3
GGTGCAGGA
ID










131
54-
CGACCAGCG
NO:











1823
GCTTAGAGC
206











7.12]
TGAG[G/A]CT













GCAGGGCAC













GTAGTGGTG













CTACAGGGA













CGGCAGGGG













GT






chr
368717
G
T
CCDC
p.V25
0.006
0.003
1.29
1.72
GGGACCCCA
SEQ


13
82


169
V
37
72
E-
[1.14-
CACCGCGCC
ID










02
2.59]
GCCCGCCGA
NO:












CTCACTTCTT
207












GCG[G/T]ACT













TCTTCCAGC













AACTGCTGT













TTCAGGCGG













TTGGTGCTC













A






chr
423521
T
C
VWA8
p.M76
0.005
0.003
2.56
1.62
ACCAATAAT
SEQ


13
71



7V
88
63
E-
[1.07-
AAGTGTTCT
ID










02
2.45]
CCAAGGAGA
NO:












AAGTCTTTC
208












AGCA[T/C]AT













CTTCCATCA













CTATCACAT













GCTAGAGAA













AAAGGAACT













AG






chr
492817
T
A
CYSLT
p.L278
0.016
0.001
1.09
10.3
CACACTGAG
SEQ


13
85


R2
I
93
66
E-
7[7.3
GACCGTCCA
ID










30
2-
CTTGACGAC
NO:











14.5]
ATGGAAAGT
209












GGGT[T/A]TA













TGCAAAGAC













AGACTGCAT













AAAGCTTTG













GTTATCACA













CT






chr
763816
T
C
LMO7
p.H18
0.008
0.004
7.04
1.9[1
TCCAAACAT
SEQ


13
79



7H
82
66
E-
.36-
ACTCTGATG
ID










04
2.67]
ACATCTTGT
No:












CTTCTGAAA
210












CACA[T/C]AC













CAAAATTGA













TCCCACTTCT













GGCCCAAGG













CTCATAACC













C






chr
995404
G
T
DOCK
p.P679
0.008
0.000
3.06
Inf
CGTAGGTGA
SEQ


13
20


9
T
33
00
E-

ACATATATT
ID










49

AAAAAAAAA
No:












CAAACCTTA
211












AGGG[G/T]CT













GAGAGTCTT













CCTCATCTG













AATCTTTGA













ATTCAATGC













AA






chr
103382
T
C
CCDC
p.K69
0.000
0.000
1.26
14.3
TTTTCTTTCA
SEQ


13
057


168
97R
25
02
E-
1[0.8
GAATAGAAG
ID










01
9-
TTGATATCG
No:











228.
TCATGATGA
212











77]
GGT[T/C]TTG













ATGCTGATT













TATGTTTGCT













TTGGAAACA













ATCCAATCT






chr
103382
G
A
CCDC
p.T685
0.000
0.000
2.60
2.18
TCTATATTTC
SEQ


13
483


168
5I
49
22
E-
[0.49-
CTGCTTTTGT
ID










01
9.67]
GGGACTTAC
No:












AGGAAGGTG
213












GT[G/A]TAAT













AATTAAGGT













TTCCTTTCTG













CACTCTCTA













GTACAATG






chr
103382
A
G
CCDC
p.V67
0.009
0.008
4.27
1.13
TTCTGATTCC
SEQ


13
660


168
96A
56
43
E-
[0.82-
TGACTTAAA
ID










01
1.57]
TAAGAGTTG
No:












GCTTCCAGA
214












AAC[A/G]CAC













ATTCCTCACT













CTCACTTACT













TCAAGACAT













GAACACTC






chr
103382
C
T
CCDC
p.E678
0.000
0.000
2.43
4.63
ACACATTCC
SEQ


13
700


168
3K
25
05
E-
[0.48-
TCACTCTCA
ID










01
44.5
CTTACTTCA
No:











2]
AGACATGAA
215












CACT[C/T]GT













CCAAGTCAG













CTGGACTCT













CAATATCTG













TCTGAATAT













CA






chr
103383
C
T
CCDC
p.E660
0.000
0.000
1.87
7[0.6
TATTGTAAA
SEQ


13
228


168
7K
25
04
E-
3-
TCAAGATCT
ID










01
77.2
ATTTGATGG
No:











1]
AGAGATTTC
216












TCCT[C/T]AG













AAAGTAACA













AAATTCTGT













TTTGTCGTTT













TGGTCCTGT













G






chr
103383
T
C
CCDC
p.R657
0.000
0.000
2.19
2.5[0
TTCTTTCTCT
SEQ


13
339


168
0G
49
20
E-
.55-
CATGAGCAC
ID










01
11.2
TGGTCATTG
No:











7]
CATAAGATT
217












CTC[T/C]TAC













AATTCTGGG













AAAGGCTTT













CATTTGTATC













TCCAATGTT






chr
103383
T
G
CCDC
p.E650
0.002
0.002
1.00
0.96
ATTTTCTAGC
SEQ


13
524


168
8A
70
81
E+0
[0.52-
TTATTAATA
ID










0
1.77]
CTCTGTAGC
No:












TTTGTGATTG
218












TC[T/G]CCTC













ACTGTCACT













TGAAACATC













AACAATCAG













TGTCTTCAT






chr
103383
A
C
CCDC
p.S646
0.000
0.000
1.89
6.91
GTCCCTTCTA
SEQ


13
666


168
1A
25
04
E-
[0.63-
GAGACATAA
ID










01
76.1
AGTTCATTG
No:











9]
TTTTATGTCT
219












AG[A/C]ATAG













AACCTCCAA













CTGTTATCTT













TTGAAATAG













TCCCTTTT






chr
103383
G
A
CCDC
p.H64
0.002
0.000
1.49
9.81
ATCAGATTC
SEQ


13
792


168
19Y
94
30
E-
[4.68-
AGTTGTATTT
ID










07
20.5
CAAGTGCTT
No:











6]
TTGACTCTA
220












AAT[G/A]ACT













AGTAAGCTT













ATTTTTTTCT













TTGGGAGTA













AACTGTTCT






chr
103383
T
G
CCDC
p.E641
0.000
0.000
6.73
Inf
AAGTGCTTT
SEQ


13
812


168
2A
25
00
E-
[NaN-
TGACTCTAA
ID










02
Inf]
ATGACTAGT
No:












AAGCTTATT
221












TTTT[T/G]CT













TTGGGAGTA













AACTGTTCT













AAAAGGGAT













TTGTGCTGC













GT






chr
103383
C
T
CCDC
p.D63
0.001
0.002
2.75
0.61
AAGTCGTCA
SEQ


13
951


168
66N
72
82
E-
[0.28-
GGCTTATAG
ID










01
1.3]
GCTTGTATG
NO:












TTATCTAGTT
222












TAT[C/T]AGA













AGAAACTTT













GTCTTGGAT













CATATTTTTA













ACCTGGGAC






chr
103384
C
T
CCDC
p.S632
0.000
0.000
4.28
1.98
ATGTTCTGC
SEQ


13
070


168
6N
25
12
E-
[0.24-
ATTTGTACT
ID










01
16.0
GTCTGCAAC
No:











6]
TATTTTGACT
223












TCG[C/T]TAC













TTTTAACTTG













AGGCGGTAT













GGGCACAGT













TCCTGGGAA






chr
103384
G
A
CCDC
p.T611
0.021
0.024
1.58
0.85
ATACTCTAA
SEQ


13
712


168
2M
32
94
E-
[0.68-
TTTCTTTCTA
ID










01
1.06]
TTGCTTGGT
NO:












GTACCACGC
224












CCC[G/A]TGA













TATTAAGCA













TCTGTGGAA













TTGGGTGAT













TCTGGATTTT






chr
103385
T
C
CCDC
p.K59
0.003
0.004
5.30
0.81
GGGTGTGCA
SEQ


13
064


168
95E
43
24
E-
[0.47-
CTACTGCTT
ID










01
1.39]
GTGTCCATT
NO:












CTTCCTCTCT
225












CCT[T/C]CTC













CAGATTGGC













AGTCCTGGC













CTTGTGCAT













CTCTGTTTTC






chr
103385
G
A
CCDC
p.P591
0.000
0.000
6.72
Inf
TGATTGAAA
SEQ


13
294


168
8L
25
00
E-
[NaN-
TTGAAAAGT
ID










02
Inf]
CCAGGGAGG
NO:












GAATAGGGA
226












CTTC[G/A]GA













AGAAATTCC













AGAACACCT













TCCTCTTGTT













CTGAAATGA













G






chr
103385
C
A
CCDC
p.A59
0.000
0.000
4.26
1.99
AATTCCAGA
SEQ


13
340


168
03S
25
12
E-
[0.24-
ACACCTTCC
ID










01
16.1
TCTTGTTCTG
No:











6]
AAATGAGCA
227












ATG[C/A]CTG













CTTCCTTCCC













CCTTTTGCA













GGGTCAATC













TCTGTCATA






chr
103385
C
T
CCDC
p.G58
0.000
0.000
1.31
13.7
GGAAACTTA
SEQ


13
520


168
43R
25
02
E-
5[0.8
GAAAGGATA
ID










01
6-
GTGTTCGTC
NO:











219.
CTGGTCTTGT
228











86]
GCC[C/T]ATG













TTCACACCG













TCGGATCAC













TTGCTTTTTC













ATGACAATA






chr
103385
G
T
CCDC
p.S579
0.000
0.000
1.00
0.86
TTTGAGTGA
SEQ


13
654


168
8Y
25
28
E+0
[0.11-
TCCCTTTGTC
ID










0
6.5]
TGTGGTGCT
NO:












AACACTTTG
229












GGA[G/T]AA













AACATTTTG













CTGATTCTAT













CATTACTTTG













TCCATCTTC






chr
103386
C
T
CCDC
p.V56
0.000
0.000
6.74
Inf
GCCTCTGGG
SEQ


13
222


168
09I
25
00
E-
[NaN-
CGGGGCACA
ID










02
Inf]
TACTGTTCTG
NO:












CTTGCTTAA
230












CAA[C/T]GTT













TTTATCAAC













GCCTTCAAC













TGAGTCTCT













ATTTGTTATT






chr
103387
C
T
CCDC
p.V53
0.000
0.000
2.98
3.42
TGCTTTTCAT
SEQ


13
002


168
49I
25
07
E-
[0.38-
TTTTAACATC
ID










01
30.5
TTTTGGGAT
NO:











6]
ATCACCAAC
231












GA[C/T]GGAC













TCTCTATGTA













CAGTCTCCC













CTATGTGTG













ATATTCTC






chr
103387
C
T
CCDC
p.R533
0.002
0.004
1.64
0.63
GGACTCTCT
SEQ


13
043


168
5Q
70
28
E-
[0.34-
ATGTACAGT
ID










01
1.15]
CTCCCCTAT
NO:












GTGTGATAT
232












TCTC[C/T]GC













AAAATAGGT













CTTTTAAGTC













TTAGCATTTC













ATTACCTAA






chr
103387
G
A
CCDC
p.P528
0.020
0.017
2.99
1.13
TTCACCTTCA
SEQ


13
196


168
4L
10
80
E-
[0.9-
CATTCCTGC
ID










01
1.42]
ACCTTCTCTT
NO:












CCTGATGTTT
233












G[G/A]GGAA













TATTAAGAT













GCTTACTATT













TGCACGTCA













TCCTCTTC






chr
103387
C
A
CCDC
p.G52
0.000
0.000
4.64
Inf
GATTAAAAT
SEQ


13
313


168
45V
49
00
E-
[NaN-
ATCACCAGC
ID










03
Inf]
AATTGGCCT
No:












TATACATGT
234












GCCT[C/A]CC













TCAGTATCT













GGTGATACC













TGGAGTTTT













ACTAGGGGA













AA






chr
103387
C
T
CCDC
p.V50
0.000
0.000
5.68
6.92
GACCGTGAC
SEQ


13
767


168
94M
49
07
E-
[1.27-
TGTGGGAGA
ID










02
37.8
GACACTTTT
No:











1]
GCAATTCTT
235












ATCA[C/T]GT













TCTCCTGTCC













TTCTGTTGTA













TCAAACTTA













AGATATGGT






chr
103388
C
G
CCDC
p.G50
0.035
0.034
7.24
1.03
TTTGTCTTCC
SEQ


13
015


168
11A
78
78
E-
[0.87-
ATATCTATTC
ID










01
1.22]
TGAGTCCAC
No:












CTTTCTCTTC
236












T[C/G]CCTGT













GCTGTGGGT













TGCACTGGT













CCTTTTGAGT













TGCTTAA






chr
103388
A
T
CCDC
p.L490
0.000
0.000
1.30
13.8
CCATTGCAT
SEQ


13
343


168
2M
25
02
E-
3[0.8
AGAAGTGCA
ID










01
7-
AGTGGGAGT
No:











221.
GCCTCTGCC
237











2]
CTCA[A/T]AT













GTATCCTTTT













GGGGAGTAT













TCTACCTTCC













CTGCCTTCT






chr
103388
C
T
CCDC
p.G48
0.002
0.003
3.31
0.7[0
CCTCAAATG
SEQ


13
378


168
90D
45
50
E-
.37-
TATCCTTTTG
ID










01
1.32]
GGGAGTATT
No:












CTACCTTCCC
238












TG[C/T]CTTC













TATTTTTACT













CTGTCCTTTG













CCTCTTTATA













TGGCAT






chr
103388
G
A
CCDC
p.P472
0.002
0.003
6.78
0.85
GTTTGCCTTG
SEQ


13
877


168
4S
94
48
E-
[0.47-
AAGGCAATG
ID










01
1.52]
ATTCCTGGA
No:












TCTCAAGAT
239












GTG[G/A]CAT













AAAGCTTCT













TGTTATTCGT













GGTTCACCT













TCCTCTTCT






chr
103388
T
C
CCDC
p.M47
0.043
0.041
5.14
1.05
TGCCTTGAA
SEQ


13
880


168
23V
14
03
E-
[0.9-
GGCAATGAT
ID










01
1.23]
TCCTGGATC
NO:












TCAAGATGT
240












GGCA[T/C]AA













AGCTTCTTGT













TATTCGTGG













TTCACCTTCC













TCTTCTTTT






chr
103389
G
A
CCDC
p.P465
0.001
0.000
6.03
7.86
TTCACCTGC
SEQ


13
072


168
9S
96
25
E-
[3.3-
AGTTCCTTTG
ID










05
18.7
TTTTTAGTAT
No:











51]
ATGGGAAAG
241












GG[G/A]TGAT













TTCTCTGCCT













TTACAGCTA













TGTACTCGG













GATGCATT






chr
103389
T
G
CCDC
p.K46
0.004
0.002
6.72
1.6[0
TGAAATATT
SEQ


13
164


168
28T
41
76
E-
.98-
TGCTTTATCC
ID










02
2.61]
TTTTGGATCT
NO:












GGGCCATGT
242












AT[T/G]TTGT













TCTGTTTGA













ATCACCTGT













GATATCATT













CAAATATGA






chr
103389
G
A
CCDC
p.R458
0.000
0.000
2.68
2.13
GATCTTGTT
SEQ


13
306


168
1X
49
23
E-
[0.48-
ACTCCTTGTT
ID










01
9.44]
CCTCTTTTTT
NO:












GCCTGCTGT
243












TC[G/A]TTTG













TCTAATTTAC













AGTGAGATA













GAGAAGGTA













TTGTCAGA






chr
103389
A
G
CCDC
p.C457
0.000
0.000
3.09
9.25
TGTTCCTCTT
SEQ


13
321


168
6R
98
11
E-
[2.61-
TTTTGCCTGC
ID










03
32.7
TGTTCGTTTG
NO:











9]
TCTAATTTAC
244












[A/G]GTGAG













ATAGAGAAG













GTATTGTCA













GAAACACAT













CCAGTTCA






chr
103389
C
A
CCDC
p.V44
0.000
0.000
1.89
6.93
TTGTATTCTT
SEQ


13
594


168
85L
25
04
E-
[0.63-
GTACTGTTTT
ID










01
76.4]
TACATCATTT
NO:












GAGCTATCC
245












A[C/A]CCCAA













AAGACTTTG













TATGTGCTA













TTTTCCCTGC













ATCAAAT






chr
103389
A
G
CCDC
p.L446
0.002
0.001
8.43
1.8[0
TATTTTCCCT
SEQ


13
656


168
4S
45
36
E-
.93-
GCATCAAAT
ID










02
3.48]
GATTTCTGCT
No:












GCCTTAGTT
246












GC[A/G]AAGT













AGCAGATTT













TATTATTCCT













TGTAAGTCT













TCCTCTCC






chr
103389
C
T
CCDC
p.E439
0.000
0.000
1.30
13.8
TGTTGCTCTT
SEQ


13
867


168
4K
25
02
E-
7[0.8
CAGTTTCTCC
ID










01
7-
ATCCCTGTTC
No:











221.
CCTTGCTCCT
247











8]
[C/T]ACCTTC













TCCGTCCTCT













TTCCCTTGCT













CCTGGCCTT













CTCCA






chr
103389
T
G
CCDC
p.K43
0.011
0.014
7.81
0.76
CCATCCCTG
SEQ


13
885


168
88Q
27
80
E-
[0.56-
TTCCCTTGCT
ID










02
1.02]
CCTCACCTTC
No:












TCCGTCCTCT
248












T[T/G]CCCTT













GCTCCTGGC













CTTCTCCATC













CCTTTTCCCT













GGCTCT






chr
103390
C
T
CCDC
p.G43
0.004
0.003
2.99
1.27
ATGTAATCT
SEQ


13
083


168
22S
90
86
E-
[0.8-
TTTGCTTTTT
ID










01
2.01]
GTACTTCAC
No:












TTGCGCTAT
249












CAC[C/T]CTC













ACTGGGCAC













CCCATTTGCT













TTTTTCCCTG













TCTCTGAT






chr
103390
C
T
CCDC
p.E432
0.012
0.010
2.45
1.19
TAATCTTTTG
SEQ


13
086


168
1K
99
98
E-
[0.89-
CTTTTTGTAC
ID










01
1.57]
TTCACTTGC
No:












GCTATCACC
250












CT[C/T]ACTG













GGCACCCCA













TTTGCTTTTT













TCCCTGTCTC













TGATGAT






chr
103390
G
C
CCDC
p.Q42
0.000
0.000
7.59
1.07
TGCCTTGGTT
SEQ


13
173


168
92E
74
69
E-
[0.33-
GTAAAATAC
ID










01
3.46]
CAGGTCTGA
No:












TTATTCCTTG
251












TT[G/C]GTCT













TCCTCTCCTT













CTATTCTTGT













GTCCAATAT













ATAATGG






chr
103390
C
A
CCDC
p.E426
0.000
0.000
2.94
3.47
AGAGAAGAA
SEQ


13
257


168
4X
25
07
E-
[0.39-
TTGGAAGGC
ID










01
31.0
AAATATAGG
NO:











8]
AACAGAACT
252












CTTT[C/A]CT













GTTCATTCTT













GTCTCCATC













CATTTTCCCT













TGCTCTATG






chr
103390
T
C
CCDC
p.E424
0.006
0.009
1.25
0.74
TTTCCCTTGC
SEQ


13
322


168
2G
86
27
E-
[0.5-
TCTATGCCT
ID










01
1.08]
ACTCCATCT
NO:












GCTTTCTGTT
253












GC[T/C]CTTC













AACTTCGTG













ATCCATTTTC













CCTTGCTCTT













TGTCTTC






chr
103390
C
T
CCDC
p.E423
0.000
0.000
6.59
1.37
TCTATGCCT
SEQ


13
332


168
9K
49
36
E-
[0.32-
ACTCCATCT
ID










01
5.87]
GCTTTCTGTT
NO:












GCTCTTCAA
254












CTT[C/T]GTG













ATCCATTTTC













CCTTGCTCTT













TGTCTTCTCT













ATCAACC






chr
103390
T
C
CCDC
p.I414
0.000
0.000
7.53
2.76
TGTTGCATG
SEQ


13
626


168
1V
98
36
E-
[0.94-
TAATCTTTTG
ID










02
8.07]
CTTTTTGTAC
NO:












TTTGATTGTG
255












A[T/C]ATCAC













CCTTACTGG













CCACTCCAT













CTGCTTTTTC













CCCTGCC






chr
103390
A
T
CCDC
p.Y41
0.004
0.004
5.32
1.17
CCTGCCTCT
SEQ


13
701


168
16N
90
21
E-
[0.74-
GATGATTTTT
ID










01
1.84]
GGTGTGATA
NO:












GTTCTGGAA
256












GAT[A/T]GTA













TCTTGTTATT













TCAGTGACA













TACTCTGCTT













TTTCTCTC






chr
103390
A
T
CCDC
p.L403
0.000
0.000
1.00
0.6[0
GCCCTAATT
SEQ


13
938


168
7M
25
41
E+00
.08-
TTTTCCATTT
ID











4.42]
TTTGCCTCTG
NO:












TTCTTTTTGC
257












A[A/T]TATAG













ATTCTAGGG













CCTTTTTTAC













ACTGTTTGA













GATATTA






chr
103391
G
A
CCDC
p.P391
0.000
0.000
6.02
1.14
TTTTTCCAAA
SEQ


13
300


168
6L
25
22
E-
[0.15-
GCCTTTTCCA
ID










01
8.74]
CTCTGTCTTT
No:












GTCTTTCTGC
258












[G/A]GCATAT













GTTTTGCTTT













TTCAATACT













GCTTAAACT













ATCATC






chr
103391
T
A
CCDC
p.K38
0.000
0.000
1.45
3.42
TTCAATACT
SEQ


13
357


168
97I
49
14
E-
[0.73-
GCTTAAACT
ID










01
16.1
ATCATCAAT
No:











3]
TGGCTGCTC
259












ACAT[T/A]TT













TCCATTGTAT













CTGATAATT













CCTGCTGTG













TTGATGATG













A






chr
103392
C
G
CCDC
p.G36
0.000
0.000
1.00
0.86
TATGTGTTGT
SEQ


13
113


168
45A
25
29
E+00
[0.11-
TTTGTACTTT
ID











6.47]
TAACATTAC
No:












TTGAGATCA
260












CC[C/G]CATC













AATTGTTTCT













TTATTCAATT













TGAAGTGAG













GTAAAGA






chr
103392
C
A
CCDC
p.M34
0.021
0.026
5.76
0.81
TTGATATTA
SEQ


13
562


168
95I
08
02
E-
[0.65-
AATCAAAGA
ID










02
1]
CCTGTACCC
No:












CATCTGATG
261












ATTT[C/A]AT













TCCTTTTGGA













AATAAGAGA













CTTGCATATT













TTATAGTTT






chr
103392
G
C
CCDC
p.P343
0.000
0.000
1.90
6.88
ATAGTGCTT
SEQ


13
735


168
8A
25
04
E-
[0.62-
AGCTGATCT
ID










01
75.8
GCAGAAAAC
No:











8]
AAGTCTAGT
262












CCTG[G/C]TG













TCCGGCTTG













ATAAATTAC













CTCCTTCTGA













TAATGCTTC













C






chr
103392
G
A
CCDC
p.R343
0.008
0.008
9.31
1.01
CTTAGCTGA
SEQ


13
741


168
6W
82
75
E-
[0.72-
TCTGCAGAA
ID










01
1.42]
AACAAGTCT
No:












AGTCCTGGT
263












GTCC[G/A]GC













TTGATAAAT













TACCTCCTTC













TGATAATGC













TTCCTTTTCC






chr
103393
A
T
CCDC
p.D32
0.001
0.000
4.33
5.77
CTTTAATATT
SEQ


13
330


168
39E
23
21
E-
[2.03-
CAAATGTAT
ID










03
16.3
TCCTTCTGA
NO:











8]
ACATGGAGG
264












TTG[A/T]TCC













ACCGGAATA













CCTACTTCAT













GTGATGCTT













TCTCTACCA






chr
103393
G
A
CCDC
p.P323
0.000
0.000
5.03
1.54
ATTCAAATG
SEQ


13
337


168
7L
25
16
E-
[0.19-
TATTCCTTCT
ID










01
12.1
GAACATGGA
No:











3]
GGTTGATCC
265












ACC[G/A]GA













ATACCTACT













TCATGTGAT













GCTTTCTCTA













CCATTGGGC













T






chr
103393
C
G
CCDC
p.V32
0.000
0.000
1.31
13.7
CCTACTTCAT
SEQ


13
383


168
22L
25
02
E-
9[0.8
GTGATGCTT
ID










01
6-
TCTCTACCAT
No:











220.
TGGGCTTAG
266











58]
AA[C/G]TTTT













GAACTCATG













ATTTCTTCTG













CTGAGCCTT













CTTTCTTG






chr
103393
T
C
CCDC
p.Q31
0.000
0.000
2.20
2.49
TTTCTGTCTA
SEQ


13
580


168
56R
49
20
E-
[0.55-
TTTGATTTTA
ID










01
11.2
ATGTAATAT
NO:











6]
CCAACTTTG
267












AT[T/C]GCTC













TTTTCCCCAA













AGATTTTCA













TTGAAACTT













TCAGAGAT






chr
103393
C
T
CCDC
p.V31
0.000
0.000
7.28
0.41
TCAGAATCC
SEQ


13
731


168
06M
25
59
E-
[0.06-
AGAATACTT
ID










01
3.03]
TCGGGAACA
NO:












TGATCTGGA
268












TTCA[C/T]CT













GTTCTTTCTG













CTCTGCAGG













CACTTTGTG













CTGTACCTCT






chr
103394
A
G
CCDC
p.M29
0.000
0.000
2.44
4.6[0
TTCTCTAATA
SEQ


13
336


168
04T
25
05
E-
.48-
TCTTGTTCCT
ID










01
44.1
GTTTTCTAA
NO:











9]
GAATGCTGG
269












AC[A/G]TATC













AGTACAACC













TGACAATGA













CCTTTGCATT













TCTTTTAG






chr
103394
T
C
CCDC
p.K28
0.003
0.004
6.99
0.85
TTCTCCAGCT
SEQ


13
421


168
76E
43
04
E-
[0.49-
TTGGCTGTG
ID










01
1.46]
GAAGAATGC
NO:












ATGTCCTGT
270












CTT[T/C]TGG













CTTGTCTTTC













TCCATTTTTA













CTTCTGTAA













GCTTTTTA






chr
103394
G
A
CCDC
p.Q28
0.001
0.001
2.15
1.63
ACTCGATGT
SEQ


13
544


168
35X
72
05
E-
[0.74-
ACTGCATTTT
ID










01
3.57]
TACTCAGCT
NO:












GGAATGACT
271












TCT[G/A]CTG













CTGGATGTT













ACCTCTCAG













TTCTTTTTTA













TTGCTTGCA






chr
103395
T
G
CCDC
p.K25
0.002
0.003
5.88
0.8[0
TTTGTTTTTT
SEQ


13
359


168
63T
94
69
E-
.44-
TCTATTTTTA
ID










01
1.43]
CATTTTTTTC
NO:












TGAATTCCC
272












T[T/G]TGTAA













ATCTGACTTT













TTGAGAAAA













AAGTTTCTC













CCAAAAG






chr
103395
C
T
CCDC
p.R254
0.001
0.001
5.07
1.28
AGTTTCTCCC
SEQ


13
425


168
1H
72
34
E-
[0.59-
AAAAGCACA
ID










01
2.77]
TCCTCTGATT
NO:












TACCAAGAT
273












GA[C/T]GATC













CTTTCTAAG













ATATGTGTTT













GCCATGAAG













TTTTCTGC






chr
103395
G
C
CCDC
p.L242
0.001
0.001
1.00
0.96
TGCCACATT
SEQ


13
789


168
0V
23
28
E+00
[0.39-
GCTTTCAGTT
ID











2.38]
TGGTTTTTAA
NO:












ATTGGATTC
274












AA[G/C]TTTC













TTCCTATGTT













TTGTAGTAA













ACTGCCCAC













TGATTTTA






chr
103396
T
C
CCDC
p.K22
0.000
0.000
3.90
2.28
CTGTGAAAT
SEQ


13
163


168
95R
25
11
E-
[0.27-
TGACGACTT
ID










01
18.9
CTTTTCCTTC
No:











4]
ATAGTTAAA
275












CAT[T/C]TGG













CATTGAATA













TAATTTCTTT













TTCTGATAA













CTGTGCTGT






chr
103396
C
T
CCDC
p.R214
0.003
0.005
1.77
0.68
ACTCATACT
SEQ


13
628


168
0Q
68
37
E-
[0.41-
TTTCTTGCCT
ID










01
1.15]
ATAAACTCT
NO:












AATGTATAG
276












CTC[C/T]GGC













TTTCATATTC













AGATGACAT













GAGGCTGGA













GAAATCTAA






chr
103397
C
T
CCDC
p.R200
0.000
0.000
1.43
3.46
TTTGCAAGG
SEQ


13
030


168
6H
49
14
E-
[0.73-
GTCAGGATC
ID










01
16.3]
TTTCATTTGA
NO:












TGTGTACTG
277












AAA [C/T]GGA













GGTGTTGAC













TATAGCATG













GAACTGATT













CTGTTAACA













T






chr
103397
C
T
CCDC
p.D19
0.000
0.000
4.85
1.39
CCTTTACCTG
SEQ


13
280


168
23N
74
53
E-
[0.42-
AATTGTGCT
ID










01
4.55]
GTTCCCCCA
NO:












TACATTTCCT
278












AT[C/T]AGTT













GGTACACCA













CGTTTTATTG













CACCAGTTA













AAACTTCA






chr
103397
T
G
CCDC
p.Q18
0.021
0.026
5.77
0.81
AGGAAGAAG
SEQ


13
387


168
87P
08
03
E-
[0.65-
TTTTGAATTT
ID










02
1]
ACTGTACAT
NO:












ATTGTGCCA
279












TTT[T/G]GGG













TCTGGAGGC













ATTTCTTTGT













CTCCTCTCTT













TGTATTGG






chr
103398
G
A
CCDC
p.A16
0.000
0.000
6.79
Inf
TTTAGGTGT
SEQ


13
023


168
75V
25
00
E-
[NaN-
AGATAAAGC
ID










02
Inf]
AGGCATGCA
NO:












GGAACCAAA
280












AATC[G/A]CT













GTCTCTTTCT













TTTCAGTAC













CACCAGCCT













GTTCCTTTTG






chr
103398
T
C
CCDC
p.T159
0.001
0.001
1.74
1.62
GTTTGTGTA
SEQ


13
261


168
6A
96
21
E-
[0.78-
AAATGTGTT
ID










01
3.37]
TGTGGTTGT
NO:












ACCTGAATA
281












TTTG[T/C]AC













TTCCTGGTTG













GTTCAGTTC













CTCATCTGA













TTTGACAAG













C






chr
103398
C
T
CCDC
p.D15
0.000
0.000
1.00
0.66
AGCTCATTA
SEQ


13
339


168
70N
25
37
E+00
[0.09-
TCCTTCTGAT
ID











4.91]
ATGCATTGA
No:












GTATTAAGC
282












CAT[C/T]GCT













GTTCTCCAG













AGCCTGTAA













AGCTTTGGG













AGGTGGAAT













C






chr
103398
C
A
CCDC
p.G15
0.000
0.000
3.93
9.28
GTTTCGTTG
SEQ


13
453


168
32C
49
05
E-
[1.55-
GCTTTTTGTA
ID










02
55.5
GTTCTTCAG
No:











3]
CTTCTAAAG
283












GAC[C/A]CAT













TTGGAGACT













AGTCTCTAA













AGTAGTTTG













TTCAAAACC













T






chr
103399
G
A
CCDC
p.T124
0.010
0.011
4.45
0.88
AGATAGTTC
SEQ


13
313


168
5I
05
47
E-
[0.64-
CATTATGGG
ID










01
1.2]
AGAAACAAC
No:












AGACTCAAT
284












AATA[G/A]TT













TCTGTGAAT













GGGATTGGT













TGATGCATT













TCTTTCTCTG













T






chr
103399
A
G
CCDC
p.I116
0.000
0.000
4.36
0.5[0
TTCTTCCCTT
SEQ


13
553


168
5T
49
99
E-
.12-
TCAATTTGG
ID










01
2.04]
GATTCCTCTT
No:












GGACTAGCT
285












TG[A/G]TATG













ACTGTGATT













CTCTGCATTT













AATCTGCTA













TACATTCT






chr
103399
A
T
CCDC
p.N11
0.000
0.000
6.72
2.89
ATTCCTCTTG
SEQ


13
573


168
58K
98
34
E-
[0.98-
GACTAGCTT
ID










02
8.48]
GATATGACT
No:












GTGATTCTCT
286












GC[A/T]TTTA













ATCTGCTAT













ACATTCTAG













TATTAGGCA













AAATAGACA






chr
103399
G
T
CCDC
p.P109
0.006
0.007
5.66
0.87
GTACCACAT
SEQ


13
761


168
6T
37
35
E-
[0.58-
ATATTAATA
ID










01
1.29]
TAAGGCATC
No:












AGTGAGATT
287












GCTG[G/T]CT













TCTTTACTTT













CATAATTAC













ATATTTGAC













ACTGAGTAC













A






chr
103399
A
G
CCDC
p.Y10
0.000
0.000
1.89
6.91
GTTTCTGAT
SEQ


13
848


168
67H
25
04
E-
[0.63-
AATTTTTTTT
ID










01
76.1
TAATTTCCTG
NO:











9]
CCTTTTAAA
288












AT[A/G]TGGT













AAAGTAAGC













AAGTGGTTA













TTGAAAGAC













CCCAGGGCA






chr
103399
G
A
CCDC
p.T103
0.000
0.000
2.94
3.47
TCTTTTTACA
SEQ


13
943


168
5M
25
07
E-
[0.39-
TCTTCCTTTT
ID










01
31.0
CTTCTGCAA
No:











6]
TATGACTAT
289












CC[G/A]TTGT













CTTTTGGAG













GTTTCCACC













AAATGGGAC













ACTATACTC






chr
103400
T
A
CCDC
p.D10
0.000
0.000
9.71
4.61
AACTGGCAA
SEQ


13
048


168
00V
49
11
E-
[0.93-
GTTCTCTGG
ID










02
22.8
CATTGTAAG
No:











4]
TGGATTCTTT
290












GGA[T/A]CTC













CGGCACTCT













CTCTGTCTGT













AGGTCTATC













TGTGCTTTG






chr
103400
T
G
CCDC
p.K95
0.001
0.000
8.40
6.95
AAGAGTTTG
SEQ


13
198


168
0T
47
21
E-
[2.61-
TGGTTGGAC
ID










04
18.5
TTCTTGCTCT
NO:











3]
TTATTTGGG
291












GCT[T/G]TAC













TACTTCCTG













AACTGATCT













GTTCCATTTG













GAATTTGAC






chr
103400
C
G
CCDC
p.D83
0.000
0.000
2.95
1.78
AGTTGAGAA
SEQ


13
532


168
9H
98
55
E-
[0.63-
ATGGTAGTG
ID










01
5.05]
TAAGTGGCA
NO:












CTGTGAAAT
292












GCAT[C/G]AG













ACGTTTCTTT













ATCTTGATG













CATATTTGTT













ATGTTACTT






chr
103400
C
A
CCDC
p.D75
0.000
0.000
6.77
Inf
AAACCGACA
SEQ


13
781


168
6Y
25
00
E-
[NaN-
TTTGACAAC
ID










02
Inf]
TCCAGAACA
NO:












AGTTCCAAA
293












AAAT[C/A]TT













TTTGTTTCTG













TGTATTTTCC













CTTGGAAAG













CACCTTTGC






chr
103400
T
C
CCDC
p.Q75
0.000
0.000
2.95
3.45
TGACAACTC
SEQ


13
792


168
2R
25
07
E-
[0.39-
CAGAACAAG
ID










01
30.8
TTCCAAAAA
No:











4]
ATCTTTTTGT
294












TTC[T/C]GTG













TATTTTCCCT













TGGAAAGCA













CCTTTGCGTT













TTTGGTGT






chr
103400
T
A
CCDC
p.K74
0.000
0.000
2.95
3.45
TTGTTTCTGT
SEQ


13
825


168
1I
25
07
E-
[0.39-
GTATTTTCCC
ID










01
30.9
TTGGAAAGC
No:











11]
ACCTTTGCG
295












TT[T/A]TTGG













TGTACTGGT













TGGTAACTC













CTCTCCATTT













GAAAGTTG






chr
103400
C
A
CCDC
p.E734
0.000
0.000
1.82
2.18
GGAAAGCAC
SEQ


13
847


168
X
74
34
E-
[0.65-
CTTTGCGTTT
ID










01
7.38]
TTGGTGTAC
No:












TGGTTGGTA
296












ACT[C/A]CTC













TCCATTTGA













AAGTTGAAG













ATGGGAATT













TTCTGAACTT






chr
103401
C
G
CCDC
p.E586
0.000
0.000
2.96
3.43
ATTCCTGTCT
SEQ


13
291


168
Q
25
07
E-
[0.38-
CCTCAAGAG
ID










01
30.7
GACCTGCAT
No:











11]
AATTGATTTT
297












CT[C/G]TGTA













TCTGGTGAC













TTATTTTGCT













TCTGCAGAA













AATGTCCA






chr
103401
T
C
CCDC
p.N52
0.000
0.001
5.28
0.64
ATATCTTTCC
SEQ


13
480


168
3D
98
54
E-
[0.23-
TTTCATGTA
ID










01
1.74]
ATTCTTTCTT
No:












CTCAGTGTT
298












AT[T/C]CTTG













CATCCTAAC













TCATTCCTAT













TTTTTAAAGT













GTGACAT






chr
103401
A
G
CCDC
p.V37
0.001
0.001
8.33
1.01
CAGGCCCTT
SEQ


13
929


168
3A
47
45
E-
[0.44-
TACTGAATA
ID










01
2.33]
TTTTGCCTCA
No:












ACAATTGAT
299












GGA[A/G]CTT













CAACAAAAT













GTTGGTTCCT













ATCCAGATC













TTGGGACTG






chr
103402
A
G
CCDC
p.Y16
0.000
0.000
5.95
1.16
TGCTCTGTAT
SEQ


13
542


168
9H
25
21
E-
[0.15-
GGCTTAGAC
ID










01
8.89]
ACGTTTCCTC
No:












TACTTCTGA
300












AT[A/G]AAAC













AATGGCAAA













GATGAGCTG













ATTCCATTTG













AAGATGGC






chr
103402
A
G
CCDC
p.L167
0.000
0.000
1.00
0.82
TGTATGGCT
SEQ


13
547


168
S
25
30
E+00
[0.11-
TAGACACGT
ID











6.13]
TTCCTCTACT
No:












TCTGAATAA
301












AAC[A/G]ATG













GCAAAGATG













AGCTGATTC













CATTTGAAG













ATGGCACAT













G






chr
103402
A
G
CCDC
p.W13
0.000
0.000
3.71
0.31
GAGGGACTT
SEQ


13
638


168
7R
25
80
E-
[0.04-
ACTTGATCTT
ID










01
2.22]
CACTTTCACT
No:












AGTACCTGA
302












CC[A/G]TAGT













ATTTCACGT













GAGAATAAA













ATTCTATCTT













CAAAGTTA






chr
103411
G
A
CCDC
p.A39
0.000
0.000
2.46
13.9
TATCTCAAA
SEQ


13
167


168
V
49
04
E-
1[1.9
AATAATTCC
ID










02
6-
TAGTAAAAT
No:











98.8
TATAAAGAA
303











1]
AATT[G/A]CC













ACCCAATCA













TTTTGAATA













ATCCAGGAC













TCTAGAAAG













TC






chr
103514
C
T
BIVM-
p.H76
0.007
0.005
3.78
1.48
AAGTGGATT
SEQ


13
444


ERCC
9H
84
31
E-
[1.04-
CAGAGTCTC
ID






5



02
2.12]
TTCCTTCTTC
No:












CAGCAAAAT
304












GCA[C/T]GGC













ATGTCTTTTG













ACGTGAAGT













CATCTCCAT













GTGAAAAAC






chr
103701
A
G
SLC10
p.F304
0.005
0.003
3.18
1.61
ATCATGAAA
SEQ


13
648


A2
L
64
50
E-
[1.06-
TGGGATTGG
ID










02
2.46]
CATGATTCC
No:












TTACATCCT
305












AAGA[A/G]T













ATTGCGGCA













AAGGCGAGC













TGGAAAATG













CTGTAGATG













AGC






chr
110864
C
T
COL4
p.E131
0.010
0.006
3.86
1.62
CAGCGAAAC
SEQ


13
264


A1
E
29
37
E-
[1.19-
CAGGCAAGC
ID










03
2.22]
CAGGAGGCC
No:












CGAGCGGCC
306












CTCT[C/T]TC













CCCCTGGGG













AGACAGCAG













AGCATCATT













CATACGCAC













TG






chr
113201
C
T
TUBG
p.R413
0.011
0.000
1.08
14.5
GGGAAAGAC
SEQ


13
864


CP3
H
52
80
E-
[9.66-
GCGCGTGGG
ID










30
21.7
AAAGACGTG
No:











5]
CATGGGAAA
307












GTCG[C/T]GC













GTGGGAAAG













TCGCGCGTG













GGAAAGTCG













CGCGTGGGA













AA






chr
114175
G
A
TMCO
p.P436
0.012
0.008
3.24
1.39
CGCAGGACG
SEQ


13
013


3
P
01
69
E-
[1.04-
TGCAGCTCG
ID










02
1.85]
GGCTCTTCA
No:












TGGCCGTCA
308












TGCC[G/A]AC













TCTCATACA













GGCGGGCGC













CAGTGCATC













TTCTAGGTA













AA






chr
212161
G
A
EDDM
p.V13
0.007
0.004
1.38
1.62
CTTCAGCTA
SEQ


14
36


3A
3I
35
56
E-
[1.12-
CATTGAATT
ID










02
2.34]
CCATTGTGG
No:












CGTAGATGG
309












ATAT[G/A]TT













GATAACATA













GAAGACCTG













AGGATTATA













GAACCTATC













AG






chr
233538
G
A
REM2
p.T39
0.009
0.004
1.55
2.02
TTTCTTTGCC
SEQ


14
96



T
07
52
E-
[1.44-
CTCCCATTTT
ID










04
2.82]
ATTTTAGAA
No:












GCAGATGCC
310












AC[G/A]CTAC













TAAAGAAGT













CAGAGAAAC













TGTTGGCAG













AGTTGGACC






chr
244643
C
T
DHRS
p.T29
0.008
0.001
3.09
7.44
CTGCTGTCA
SEQ


14
24


4L2
T
33
13
E-
[5.09-
ACCCTTTCTT
ID










17
10.8
TGGAAGCCT
No:











9]
AATGGATGT
311












CAC[C/T]GAG













GAGGTGTGG













GACAAGGTG













AGAGGGGAT













TAAAGAAGC













G






chr
247723
C
T
NOP9
p.R413
0.007
0.004
3.19
1.61
GGGCCACCC
SEQ


14
73



C
482
658
E-
[1.01-
AGGGGTAGT
ID










02
2.45]
CATTGCCCT
No:












GGTGGGGGC
312












CTGT[C/T]GC













AGAGTTGGG













GCCTACCAA













GCCAAGGTC













CTACAGCTC













TT






chr
449751
G
A
FSCB
p.P363
0.010
0.000
7.71
Inf
AGGAGACTT
SEQ


14
03



L
29
00
E-

TTCAGCTGG
ID










62

TGGAGGCAG
No:












AATTTCAGC
313












AGGA[G/A]G













CTCTTCTGA













AGGGGACTC













TTCAGCTGA













TGGAGGCAG













AAT






chr
449751
G
A
FSCB
p.P359
0.024
0.000
1.52
2806
AGCTGGTGG
SEQ


14
15



L
51
01
E-
.41[3
AGGCAGAAT
ID










144
91.3
TTCAGCAGG
No:











8-
AGGCTCTTC
314











2012
TGAA[G/A]G












3.7]
GGACTCTTC













AGCTGATGG













AGGCAGAAT













TTCAGCCAG













AAG






chr
505810
A
C
VCPK
p.Y18
0.010
0.006
2.01
1.48
ACTACAAAG
SEQ


14
11


MT
8D
05
79
E-
[1.08-
ATAATAGAG
ID










02
2.04]
TACTTAATA
No:












CTTACCTCA
315












AAAT[A/C]TT













TTTTCTCAAT













TTCTGGATTT













TTCCCCATTG













TTCGTTGT






chr
524954
C
T
NID2
p.R830
0.005
0.003
4.83
1.61
GATGCAAGT
SEQ


14
81



Q
15
20
E-
[1.04-
ATGCCGGTC
ID










02
2.51]
ATCTGCAAA
No:












CTCATAACC
316












ACTC[C/T]GG













CACTCACAC













CTGTAGCTT













CCAGGCAAG













TTGATACAT













AC






chr
524963
T
C
NID2
p.D75
0.011
0.007
2.33
1.44
CATGTGGCT
SEQ


14
99



6G
03
71
E-
[1.06-
CCCATCATA
ID










02
1.94]
GCAAGGATT
No:












CCCCGGAGT
317












GGGG[T/C]CT













GAATCCTCT













GCATGAGTA













GAGGGGAAA













TAAAAGCAC













AA






chr
525096
C
T
NID2
p.R493
0.011
0.008
4.93
1.35
AGTGGCATA
SEQ


14
01



K
76
72
E-
[1.01-
GTCCGTGCA
ID










02
1.81]
GAAGGCATG
No:












CCGGGAGCA
318












TTGT[C/T]TG













TGGTTGTGTT













CACAGGTTT













CCTTGTTGG













CAGCATTAT













A






chr
609218
T
G
C14orf
p.E462
0.006
0.004
4.35
1.52
TAAGAAAAG
SEQ


14
36


39
D
86
52
E-
[1.04-
AAAGTCCAG
ID










02
2.23]
GGGATTCCT
No:












TTTCTGTTTG
319












AAC[T/G]TCA













GGTACTGCA













TTTCTATTTC













TGTTACTGA













GAAATAAGA






chr
622448
C
T
SNAP
p.T253
0.005
0.003
4.52
1.72
AATGATGGA
SEQ


14
54


C1
M
21
03
E-
[0.97-
GAAGAAAAA
ID










02
2.84]
ATGGAAGGA
No:












AATTCACAA
320












GAAA[C/T]GG













AGGTCAGAA













AACTTTGCA













ATTCATATT













ATGTGTGGC













TG






chr
695216
C
T
DCAF
p.R589
0.006
0.003
7.18
1.78
TGGGGCACT
SEQ


14
37


5
H
86
88
E-
[1.21-
GGGCTTGTC
ID










03
2.6]
TTCTCGGGTT
No:












GTCTTCTGTC
321












GG[C/T]GCCG













CATGGCATT













CCGCTGCCA













GGTAGAGGC













TCGGCGTTC






chr
704189
C
T
SMOC
p.P77L
0.005
0.003
3.93
1.61
GAGTCCATG
SEQ


14
85


1

39
36
E-
[1.04-
TGTGAGTAC
ID










02
2.47]
CAGCGAGCC
No:












AAGTGCCGA
322












GACC[C/T]GA













CCCTGGGCG













TGGTGCATC













GAGGTAGAT













GCAAAGGTG













AG






chr
751512
C
T
AREL1
p.V50
0.007
0.004
1.58
1.74
GAGACTTTG
SEQ


14
52



M
157
135
E-
[1.08-
CAAGACCGG
ID










02
2.67]
GGATCCAGG
No:












TAATTTCCCC
323












GCA[C/T]GTA













GTCATAAAT













AGTCCGGTC













CCCTCGGCG













CTCGCGGTC













C






chr
860881
C
A
FLRT2
p.L107
0.006
0.003
2.85
1.61
CTACCTGTA
SEQ


14
77



I
13
82
E-
[1.07-
TGGCAACCA
ID










02
2.41]
ACTGGACGA
No:












ATTCCCCAT
324












GAAC[C/A]TT













CCCAAGAAT













GTCAGAGTT













CTCCATTTGC













AGGAAAACA













A






chr
888929
C
T
SPATA
p.R211
0.005
0.003
4.13
1.59
CTGAACTCT
SEQ


14
32


7
R
39
41
E-
[1.03-
TTTCTAACA
ID










02
2.44]
AACAATTGC
No:












CATTCACTC
325












CTCG[C/T]AC













TTTAAAAAC













AGAAGCAAA













ATCTTTCCTG













TCACAGTAT













C






chr
891108
T
C
EML5
p.V13
0.009
0.006
3.12
1.45
AGTGAGTTT
SEQ


14
01



61V
56
63
E-
[1.05-
TCCTTACCTC
ID










02
2]
TATAGGTCT
No:












CTTTTTCTTG
326












CC[T/C]ACAT













TGTTTGTCTG













GAGTTTCTCT













GGCTGTGGT













GGGGCCC






chr
101004
A
G
BEGAI
p.F568
0.005
0.000
2.13
607.
CTGTCCTTGC
SEQ


14
386


N
L
88
01
E-
53[8
GGCTCAGCC
ID










33
2.17-
CCGAGCCAC
No:











4491
CAGTCCGCG
327











.9]
GAA[A/G]GG













CCTGCTGGG













GGCTGAGGC













GGGCGGCAG













GATGCATTT













CC






chr
103593
T
A
TNFAI
p.V79
0.009
0.000
1.74
Inf
GTGGGCTGG
SEQ


14
342


P2
E
80
00
E-

GGCCGGGGC
ID










07

TGACGCGGC
No:












TTTCCCGGC
328












GCAG[T/A]GG













AGGAGCTGA













AGGCGGCGC













TGGAGCGCG













GGCAGCTGG













AG






chr
105415
C
T
AHNA
p.K21
0.011
0.000
4.90
43.0
GGTCCCCCT
SEQ


14
242


K2
82K
27
26
E-
7[27.
GCATGGAGG
ID










47
03-
GGAGACTCA
No:











68.6
TGTCGGCCT
329











2]
CCAC[C/T]TT













GGGTGGAGA













CACATCCAC













CGAGGCCTC













GATGGACTT













GC






chr
105415
T
C
AHNA
p.K21
0.019
0.000
7.30
21.3
CACCCCAAA
SEQ


14
333


K2
52R
61
94
E-
6[15.
CGACGGCAT
ID










63
62-
CTTGAACTT
No:











29.1
GGGCATTTT
330











9]
GAAC[T/C]TG













CTGTCTTTGG













TAGTCAGGT













CCTTGTTGG













CCAGGGTCA













G






chr
105415
A
T
AHNA
p.D20
0.005
0.003
1.74
1.74
AGGGGAGAC
SEQ


14
752


K2
12E
64
25
E-
[1.14-
TCACGTCGG
ID










02
2.65]
CCTCCACCTT
No:












GGGTGCAGG
331












CAC[A/T]TCC













ACCGAGGCC













TCGATGGAC













CTCCCTGGG













GCCGATACC













C






chr
105418
G
C
AHNA
p.L120
0.008
0.001
3.11
4.88
GGTCAGCGG
SEQ


14
170


K2
6L
82
82
E-
[3.41-
AAGGGGGCT
ID










13
6.97]
GAATGCTGA
No:












GGTCAGTGG
332












TCTT[G/C]AG













GTCCCCCTG













CATGGAGGG













GAGACTCAC













GTCGGCCTC













CA






chr
315155
G
A
LOC28
p.L124
0.011
0.000
2.03
Inf
TGGGATCAG
SEQ


15
19


3710
F
52
00
E-

TGCGGCCTG
ID










51

TCGTCTGCT
No:












GTTGTCATG
333












TGGA[G/A]CT













CAGCAAACG













GTGGGAGTC













CTAGGGGAC













AACATACAC













AG






chr
387768
T
A
FAM9
p.G42
0.007
0.000
7.32
61.2
ATCCATATG
SEQ


15
33


8B
5G
35
12
E-
9[23.
GAGGAGGTG
ID










27
77-
GTGGTGGTG
No:











158.
GTGGTGGTG
334











06]
GTGG[T/A]GG













AGGAGGTGG













ATATAGAAG













ATACTAAAA













ACTATAAAA













AT






chr
418623
G
A
TYRO3
p.T458
0.008
0.005
1.15
1.6[1
CCCTGGCCC
SEQ


15
46



T
33
24
E-
.13-
TCATCCTGCT
ID










02
2.26]
TCGAAAGAG
No:












ACGGAAAGA
335












GAC[G/A]CG













GTTTGGGTA













AGGGGATGG













GGATGTGGA













GGGAGAGGC













AG






chr
436533
C
T
ZSCAN
p.R842
0.005
0.003
4.15
1.58
AGGGGCTTA
SEQ


15
05


29
Q
39
41
E-
[1.03-
CTTGGGAGC
ID










02
2.44]
TGACTGTGT
No:












CAGAAGCTT
336












TTCC[C/T]GT













GCATGGATT













TCTCCGTGCT













TATTAAGGG













CAGAGCTTT













T






chr
484704
G
T
MYEF
p.A2E
0.026
0.000
2.09
Inf
GCCACCAGT
SEQ


15
30


2

23
00
E-

GGCCCCGGG
ID










39

CACCTCGGC
No:












CTTGTTGGC
337












GTCC[G/T]CC













ATCCCGCCG













CCGCTGCCT













CCGCCTCGG













CCGCCTGAG













CT






chr
525107
A
G
MYO5
p.L129
0.005
0.003
3.12
1.67
TTACACTTG
SEQ


15
96


C
2L
15
08
E-
[1.08-
ACTTCACTTT
ID










02
2.6]
CAGTTTCAA
No:












ATTGTTTCTT
338












CA[A/G]GTGG













TCACTGGCC













TCCTGCATTT













CTTGAATCTT













ATCAATC






chr
651578
G
A
PLEK
p.S420
0.010
0.007
1.60
1.47
AACGGCTAT
SEQ


15
74


HO2
S
78
36
E-
[1.08-
ATCGGGCCC
ID










02
1.99]
AGCTGGAGG
No:












TGAAGGTGG
339












CCTC[G/A]GA













ACAGACGGA













GAAACTGTT













GAACAAGGT













GCTGGGCAG













TG






chr
720235
G
A
THSD4
p.V52
0.005
0.003
2.01
1.83
GATACACCA
SEQ


15
02



6M
53
02
E-
[1.05-
GCAGCCAAA
ID










02
2.99]
CCCAGGCGT
No:












GCACTACGA
340












GTAC[G/A]TG













ATCATGGGG













ACCAACGCC













ATCAGCCCC













CAGGTGCCA













CC






chr
721922
C
G
MYO9
p.R109
0.005
0.002
2.23
1.89
GTAATCTCT
SEQ


15
05


A
8P
21
75
E-
[1.07-
CCATTTCTGC
ID










02
3.13]
TGGATAACG
No:












ATGGCTGCA
341












GCC[C/G]GTA













ACTCCAAGT













ACCGCTGCC













TCTCTAAGT













GAGCACGCC













A






chr
725021
T
C
PKM
p.N15
0.005
0.003
3.24
1.61
CACCACCTT
SEQ


15
15



5S
64
52
E-
[1.05-
GCAGATGTT
ID










02
2.45]
CTTGTAGTC
No:












CAGCCACAG
342












GATG[T/C]TC













TCGTCACAC













TTTTCCATGT













AGGCGTTAT













CCAGCGTGA













T






chr
725136
T
A
PKM
p.T36S
0.017
0.011
2.57
1.5[1
CTTGGCCTC
SEQ


15
12




16
53
E-
.16-
ACTAGCAAA
ID










03
1.93]
GACCGCTCA
No:












GAGCTGAAT
343












ACGG[T/A]GT













GCCCTGGAG













AGCTGCACA













AGGATTAAG













GAAAAAGCT













GA






chr
759815
C
A
CSPG4
p.G63
0.005
0.000
7.77
Inf
TCCATCGCT
SEQ


15
11



2V
15
00
E-

GACCCGGAA
ID










31

CGTCAAGTC
No:












CTGTGCAGG
344












ACCA[C/A]CG













CGGTGGACA













TAGACTAGG













CTGCCGGCC













TCCAACTCC













CG






chr
759820
A
G
CSPG4
p.H45
0.006
0.004
4.39
1.52
TGCGCAGCT
SEQ


15
53



1H
86
53
E-
[1.04-
CAGCCTCCA
ID










02
2.23]
TCAGGTCCA
No:












GCGTGGGCT
345












GCAC[A/G]TG













CCTCCACTC













AAGCCAGGC













TGTGCCCCC













CTCGGCCAC













CA






chr
784613
C
T
IDH3A
p.R360
0.006
0.003
7.88
1.74
AGGCAATGC
SEQ


15
24



C
86
96
E-
[1.18-
AAAATGCTC
ID










03
2.55]
AGACTTCAC
No:












AGAGGAAAT
346












CTGT[C/T]GC













CGAGTAAAA













GATTTAGAT













TAACACTTC













TACAACTGG













CA






chr
790589
A
T
ADAM
p.A11
0.007
0.000
2.49
10.5
GAGGCTCTG
SEQ


15
44


TS7
03A
89
80
E-
6[6.0
TGGCAGGCA
ID










11
4-
CGGGGCTAC
No:











18.4
CCGTGGAGG
347











9]
GCGC[A/T]GC













AGGATGGCT













GTGTGGTGG













GGGTGTCCG













GTCCCCTGT













CC






chr
796037
G
A
TMED
TMED
0.006
0.004
3.23
1.54
GGAGGTGGA
SEQ


15
60


3
3(NM_
86
47
E-
[1.05-
GCAGGGCGT
ID







007364:


02
2.26]
GAAGTTCTC
No:







exon1:




CCTGGATTA
348







c.1




CCAG[G/A]TG








68 + 1




AGGCCGGGC








G > A)




GCCCGGCAG













CGCTCCCTTC













TCCCTCCACT






chr
891697
G
A
AEN
p.G10
0.006
0.004
2.72
1.58
TGGATCTGG
SEQ


15
38



0R
62
20
E-
[1.07-
CAGTGCCCC
ID










02
2.33]
ATGCAGCAG
No:












AAGGCCTGC
349












TCCC[G/A]GG













AAAGCCTCA













GGGCCCTTG













CCCAGCAAG













TGTGTGGCT













AT






chr
102346
C
T
OR4F6
p.R54
0.005
0.003
2.56
1.62
GGGAAATCT
SEQ


15
082



C
88
63
E-
[1.07-
CCTCATTGT
ID










02
2.45]
GCTAACTGT
No:












GACCTCTGA
350












CCCT[C/T]GT













TTACAGTCC













CCCATGTAC













TTCCTGCTG













GCCAACCTT













TC






chr
315001
C
T
ITFG3
p.R547
0.005
0.003
3.86
1.62
AGACAGTGA
SEQ


16




W
39
35
E-
[1.05-
CCAAGCCAT
ID










02
2.49]
CAGGGACCG
No:












GTTCTCCCG
351












GCTG[C/T]GG













TACCAGAGT













GAGGCGTAG













AGGCACGCC













AGCCAGAGC













CT






chr
863362
C
G
PRR25
p.P237
0.020
0.000
1.86
Inf
GACATCCCC
SEQ


16




R
34
00
E-

TCTGCTATTG
ID










108

CTGCGGGAC
No:












CGGCAAGGA
352












CGC[C/G]GGA













CCGACACGG













CCTCCCCAT













CCCTGGGTC













CACCCCGAC













T






chr
225857
G
A
MLST8
p.G27
0.005
0.002
7.86
1.86
GAGCGGCAA
SEQ


16
5



5S
39
90
E-
[1.21-
CCCCGGGGA
ID










03
2.88]
GTCCTCCCG
No:












CGGCTGGAT
353












GTGG[G/A]GC













TGCGCCTTCT













CGGGGGACT













CCCAGTACA













TCGTCACTG













G






chr
228764
A
C
DNAS
p.D19
0.005
0.003
3.19
1.6
TACGACGTG
SEQ


16
9


EIL2
7A
64
51
E-
[1.06-
TACCTGGAC
ID










02
2.46]
GTGATCGAC
NO:












AAGTGGGGC
354












ACCG[A/C]CG













TAAGCCCAC













CCCTCGGTC













CCGGGGTCC













CTGCAGGCG













CG






chr
236959
C
T
ABCA3
p.R288
0.014
0.009
1.71
1.56
GAGTGTTGG
SEQ


16
2



K
46
32
E-
[1.2-
GGAGCCAAA
ID










03
2.03]
GCGGGCAGT
NO:












CACCTTCAG
355












CCTC[C/T]TT













TCCTTCTCCT













GCACGACAG













CACGGGCAA













TGGTGAGCG













C






chr
284851
G
T
PRSS4
p.A10
0.016
0.000
6.97
Inf
GAGAGGAGG
SEQ


16
5


1
A
67
00
E-

CCATGGGCG
ID










73

CGCGCGGGG
NO:












CGCTGCTGC
356












TGGC[G/T]CT













GCTGCTGGC













TCGGGCTGG













ACTCGGGAA













GCCGGGTGA













GC






chr
363905
C
T
SLX4
p.P152
0.005
0.002
4.17
2.04
CTTCGGGCT
SEQ


16
8



7P
15
53
E-
[1.31-
TCTGAGCTC
ID










03
3.18]
CACCAGCGC
NO:












TTGGCATCT
357












GGGC[C/T]GG













AGGAGGGGT













CTCTGGAGG













CCTCTGCTCT













TCCCCGTCC













C






chr
363937
T
A
SLX4
p.I142
0.011
0.001
8.31
11.0
GAGAGGGGC
SEQ


16
8



1F
76
07
E-
9[7.9-
TCCATGTGC
ID










30
15.5
CAGCAGCAG
NO:











6[
TCGTCAATT
358












GGAA[T/A]TG













GGGGGTCAC













TGTCCAGTG













GGGGGCTTC













TGTTGGCCT













GA






chr
364081
C
G
SLX4
p.E942
0.005
0.002
1.53
2.14
TGGCCAAGC
SEQ


16
5



Q
39
53
E-
[1.39-
GCCTCCTCT
ID










03
3.31]
GGCGCCTCC
NO:












TGCTCAGGG
359












GCCT[C/G]TG













CTCCCCGTG













CCCCTGAGT













GCTGGCCCT













GGGGTGGCG













GG






chr
370719
G
A
DNAS
p.V18
0.008
0.004
4.80
1.69
CGCATGTCC
SEQ


16
1


E1
5I
33
95
E-
[1.19-
CAGGGCCAC
ID










03
2.39]
AGGCAGCGT
No:












TTCCTGGTA
360












GGAC[G/A]TC













ATGTTGATG













GGCGACTTC













AATGCGGGC













TGCAGCTAT













GT






chr
373608
C
T
TRAP1
p.R128
0.005
0.002
9.00
1.91
CATTTCTGG
SEQ


16
5



H
15
70
E-
[1.22-
CAGTGCTTG
ID










03
2.97]
GCCGTCAGA
No:












CACCAGTTT
361












GTGA[C/T]GC













AGTTTTTCCA













AGGCATCGC













TGGCATTGG













AGATCAGCT













C






chr
491077
A
G
UBN1
p.R262
0.024
0.000
1.26
2748
GCTAAAGAA
SEQ


16
7



G
02
01
E-
.75[3
ATTTCAGAA
ID










141
83.2
AGAGAAAGA
No:











6-
GGCTCAGAA
362











1971
AAAA[A/G]G












4.18]
GGAGGAGGA













GCATAAGCC













TGTTGCGGT













CCCATCAGC













GGA






chr
209965
G
A
DNAH
p.D25
0.006
0.004
4.15
1.51
CGATGTCAG
SEQ


16
25


3
13D
62
39
E-
[1.03-
CCTTCTCGTC
ID










02
2.23]
AGCAGGGAA
No:












GATGTTAGG
363












CAC[G/A]TCA













CCTGTGTTC













AGAAGCATG













TTGATGTCCT













CCACGAATG






chr
209965
G
A
DNAH
p.A24
0.007
0.004
1.02
1.68
TGATGTCCT
SEQ


16
88


3
92A
11
23
E-
[1.16-
CCACGAATG
ID










02
2.45]
ATTCATCCTT
No:












GATCTGGTT
364












GTC[G/A]GCG













AAGAGGAAC













ACGGTGCTC













TTGGTGGCC













ACACCGACC













T






chr
217476
A
C
OTOA
p.T706
0.007
0.000
5.19
75.1
CCTTCTGCA
SEQ


16
33



P
35
10
E-
3[37.
AGCAGCTTC
ID










35
62-
CAAGATGGC
No:











150.
CAGGACCCT
365











01]
GCCC[A/C]CT













AAAGAATTC













CTCTGGGCT













GTCTTTCAGT













CTGTTCGGA













A






chr
217476
G
T
OTOA
p.E708
0.007
0.000
1.12
413.
GCAAGCAGC
SEQ


16
39



X
35
02
E-
18[9
TTCCAAGAT
ID










41
8.71-
GGCCAGGAC
NO:











1729
CCTGCCCAC
366











.48]
TAAA[G/T]AA













TTCCTCTGG













GCTGTCTTTC













AGTCTGTTC













GGAACAGCA













G






chr
217476
G
A
OTOA
p.Q71
0.007
0.000
5.17
136.
GGACCCTGC
SEQ


16
62



5Q
35
05
E-
27[5
CCACTAAAG
ID










38
6.69-
AATTCCTCT
NO:











327.
GGGCTGTCT
367











58]
TTCA[G/A]TC













TGTTCGGAA













CAGCAGTGA













TAAGATCCC













CAGCTATGA













CC






chr
289438
C
G
CD19
p.P102
0.019
0.000
1.99
Inf
CAACAGATG
SEQ


16
83



R
36
00
E-

GGGGGCTTC
ID










114

TACCTGTGC
No:












CAGCCGGGG
368












CCCC[C/G]CT













CTGAGAAGG













CCTGGCAGC













CTGGCTGGA













CAGTCAATG













TG






chr
289962
G
C
LAT
p.L15F
0.017
0.000
7.89
Inf
AGGCCACGG
SEQ


16
27




89
00
E-

CTGCCAGCT
ID










80

GGCAGGTGG
NO:












CTGTCCCCG
369












TCTT[G/C]GG













GGGGGCCAG













CAGACCCTT













GGTGAGTGC













CTGGGGTGG













CT






chr
307932
C
G
ZNF62
p.Q79
0.014
0.000
4.59
1291
CTGCCTCTG
SEQ


16
73


9
2H
22
01
E-
.24[1
GAGGGGGGT
ID










78
78.8
CCTCGGGAT
NO:











1-
TGGGGGGTT
370











9324
TTTC[C/G]TG












.5]
GGTGTGGGT













TTCTTGGTGC













CGGGTGAGG













GCCACGCGG













T






chr
307942
G
T
ZNF62
p.T481
0.022
0.000
7.33
Inf
AGCTCTTGC
SEQ


16
06


9
T
55
00
E-

CGCACTCGG
ID










134

GGCACTTGT
NO:












AGGGCTTCT
371












CGCC[G/T]GT













GTGCGTGCG













GCGGTGCTG













GATAAGGTG













GGAGCTGCG













GA






chr
620552
G
A
CDH8
p.P24S
0.015
0.000
1.88
451.
ACTTGAGAC
SEQ


16
38




93
0 4
E-
14[1
TGATTCATC
ID










89
64.2
GGAGCCATG
No:











8-
TAAATGCAA
372











1238
GGGG[G/A]A












.87]
AGAGTAATC













CATAATATT













ATTAATGGA













GTCCAGAGA













TCC






chr
672368
C
T
ELMO
p.T600
0.006
0.004
4.80
1.48
CTGATCCGC
SEQ


16
72


3
M
86
65
E-
[1.01-
CAGCAGCGC
ID










02
2.16]
TTGCTCCGC
No:












CTCTGTGAG
373












GGGA[C/T]GC













TCTTCCGCA













AGATCAGCA













GCCGGCGGC













GCCAGGGTC













TC






chr
689615
C
T
TANG
p.R745
0.008
0.006
3.26
1.45
ATACCCTGA
SEQ


16
76


O6
C
82
09
E-
[1.04-
TCCGGTCAT
ID










02
2.03]
CCAAGAACT
No:












CGCTGTTGA
374












TCTC[C/T]GC













ATCACCATC













TCTACCCAT













GGAGCCTTT













GCCACTGAG













GC






chr
705088
A
G
FUK
p.T772
0.009
0.006
1.39
1.54
TGAGCTGTG
SEQ


16
51



A
31
05
E-
[1.11-
GCTGGCGGT
ID










02
2.15]
GGGGCCTCG
No:












GCAGGATGA
375












GATG[A/G]CT













GTGAAGATA













GTGTGCCGG













TGCCTGGCT













GACCTGCGG













GA






chr
708947
C
T
HYDIN
p.P393
0.025
0.000
4.43
656.
GGCAGATGG
SEQ


16
71



7P
98
04
E-
67[9
GCAAGGTGC
ID










89
1.63-
TCCGCCCTTT
No:











4706
TGCTACCAG
376











.3]
GAC[C/T]GGA













CCTTGCTCTC













CAGGTGGCA













GGTTGGGAA













TCCTGAGAG






chr
708970
C
T
HYDIN
p.R383
0.005
0.000
1.11
Inf
TGAGGTATC
SEQ


16
62



2H
39
00
E-

TTCTGAGAC
ID










32

CCAGCTGAA
No:












TTCCAGCTG
377












GACA[C/T]GT













CCTGAATTA













ATCACATCG













AACCTGCAA













ATCGATCAG













GG






chr
709350
C
T
HYDIN
p.R295
0.005
0.002
9.20
2.95
AGGCCACAG
SEQ


16
93



4R
88
00
E-
[1.93-
GCAGGAGCG
ID










06
4.51]
TGACATTGC
No:












GGAGAAGAA
378












CTAC[C/T]CT













GGATTCCTG













TCTGCAGAG













ACAAAAGGA













AAGTTGCAA













TT






chr
709550
G
A
HYDIN
p.I240
0.017
0.000
2.60
Inf
TCTCAGACA
SEQ


16
79



0I
40
00
E-

TTGTTTGTTC
ID










94

CCTAACAGA
No:












TATTTTCCTT
379












TC[G/A]ATTG













TCTCCATCTT













GACATCCAC













TTTGGTGAG













CGGAGGAA






chr
709960
G
A
HYDIN
p.S193
0.006
0.001
1.77
5.05
CGATGTCCT
SEQ


16
23



6L
37
27
E-
[3.17-
CTTTGTGCTA
ID










09
8.05]
TTGGAGGTT
No:












CCCTGATCT
380












GAT[G/A]AG













GTTATATCTT













CCTCTTCTGC













CAGGTAGCA













AAGGATGAA






chr
711012
G
A
HYDIN
p.A71
0.005
0.000
2.94
93.9
AGAGCAAGC
SEQ


16
11



3V
88
06
E-
2[40.
TGGGGAGCA
ID










29
44-
ATACCTTGC
No:











218.
TGTAATTAA
381











11]
GAGC[G/A]CC













AGCACCTCT













TCTCCGATG













CCCTCCACG













TCCACCACG













AG






chr
851007
C
T
KIAA0
p.D40
0.005
0.001
1.06
3.2[2
CACCCCCTG
SEQ


16
97


513
D
15
61
E-
.03-
TGCTGCAGG
ID










05
5.03]
ACGGCGATG
No:












GCTCCCTGG
382












GGGA[C/T]GG













TGCATCAGA













GAGTGAGAC













CACTGAGTC













TGCGGACAG













TG






chr
887197
T
C
MVD
p.K36
0.011
0.007
1.19
1.51
CTGGGTGAG
SEQ


16
26



8K
03
34
E-
[1.11-
CCCCAGGCC
ID










02
2.04]
TCACCTGAG
No:












TGACAATGA
383












TGTA[T/C]TT













GACCCCACC













GGGGGTCGG













CTCCATGGC













CAGCGCAGC













CT






chr
168770
C
T
SMYD
p.V64
0.006
0.003
2.00
1.95
TGTAGGTCC
SEQ


17
7


4
51
86
53
E-
[1.33-
TGTAACCGA
ID


03
2.87







2.87]
GAGACCAGG
NO:












TGGTCCCTG
384












CTGA[C/T]GG













CGGATTCTG













CACAAGATC













TGCTGCCAC













AGCGCAGCA













CG






chr
227571
G
C
SGSA1
p.R530
0.005
0.000
8.71
571.
TGTCGGCGC
SEQ


17
9


2
R
88
01
E-
47[7
TGGTGCACC
ID










33
7.29-
ATAGCGTTA
NO:











4225
TCCCACCTG
385











.3]
ACCG[G/C]CC













CCCGGGGGC













CTCCGCGGG













CCTCACCAA













GGACGTGTG













GA






chr
319577
A
T
OR3A1
p.F34I
0.011
0.006
5.13
1.74
CTGAGGTTG
SEQ


17
7




76
79
E-
[1.3-
CCCCTGACC
ID










04
2.33]
GTGACCAGG
NO:












TAGGCAAAG
386












AGGA[A/T]G













AGCACAAAG













ACAACTGGC













TGCAGCCCT













GGCGCCTCC













AGC






chr
722237
G
A
NEUR
p.L122
0.006
0.003
1.18
1.72
CCTGGTCCT
SEQ


17
4


L4
5F
13
57
E-
[1.15-
GTTCCTTCTC
ID










02
2.58]
TCTGGCTCCT
NO:












ACTCACCTT
387












GA[G/A]ACC













GTTGTGGAA













GACCCCACG













GCCCCGCAG













CAGCCAGGC













T






chr
819320
G
A
RANG
p.Q17
0.005
0.003
9.03
1.78
ATCTGTCAC
SEQ


17
3


RF
0Q
88
31
E-
[1.18-
CTGCACCCT
ID










03
2.69]
GGAGCCTGG
NO:












GTGACTTTG
388












AACA[G/A]CT













GGTGACCAG













TCTGACCCTT













CACGATCCT













AACATCTTT













G






chr
117846
C
T
DNAH
p.A35
0.008
0.005
4.28
1.45
TCACCGTGA
SEQ


17
88


9
88A
09
58
E-
[1.02-
CCAGGGATG
ID










02
2.07]
GCCTGGAGG
NO:












ACCAGTTGC
389












TGGC[C/T]GC













TGTGGTCAG













CATGGAGAG













GCCAGACTT













GGAGCAGCT













GA






chr
142048
C
T
HS3ST
p.C11
0.005
0.002
3.72
2[1.2
GGCAGCGCA
SEQ


17
68


3B1
C
39
71
E-
9-
TGGGGCAGC
ID










03
3.1]
GCCTGAGTG
NO:












GCGGCAGAT
390












CTTG[C/T]CT













CGATGTCCC













CGGCCGGCT













CCTACCGCA













GCCGCCGCC













GC






chr
171844
C
T
COPS3
p.A2A
0.008
0.005
4.22
1.46
AGAGCTGTC
SEQ


17
95




09
56
E-
[1.03-
GGACACTGT
ID










02
2.07]
TCACGAACT
NO:












GCTCCAGGG
391












CAGA[C/T]GC













CATGTTTTCC













CCCGGGCGG













CCCGAGCGG













CGAAGGCAG













C






chr
188746
C
T
FANTS
p.D81
0.011
0.000
1.70
1177
TGGCTCCAG
SEQ


17
89


3G
9N
03
01
E-
.01[1
GCTGGGACA
ID










63
62.2
TGCTGCTAG
No:











1-
GGGTCTTTG
392











8540
CGGT[C/T]CC












.78]
GGGGGGCTT













GAGCCCTCC













GTTTAGAAT













CCGATGAGG













CC






chr
212039
G
A
MAP2
p.M90
0.009
0.004
9.33
2.28
TGGTAGAGA
SEQ


17
61


K3
I
56
22
E-
[1.64-
AGGTGCGGC
ID










06
3.16]
ACGCCCAGA
NO:












GCGGCACCA
393












TCAT[G/A]GC













CGTGAAGGT













GAGCAGGGC













CTGGAGGCA













GCTGGGAGG













GC






chr
212154
C
G
MAP2
p.T273
0.005
0.002
1.78
2.05
AGATGGCCA
SEQ


17
98


K3
T
88
88
E-
[1.35-
TCCTGCGGT
ID










03
3.11]
TCCCTTACG
NO:












AGTCCTGGG
394












GGAC[C/G]CC













GTTCCAGCA













GCTGAAGCA













GGTGGTGGA













GGAGCCGTC













CC






chr
213186
G
A
KCNJ1
p.R6Q
0.012
0.002
2.45
4.42
AGCCAGGGT
SEQ


17
71


8

04
75
E-
[3.02-
CCCCCAACC
ID










12
6.32]
CCCGGGATG
NO:












ACCGCGGCC
395












AGCC[G/A]G













GCCAACCCC













TACAGCATC













GTGTCATCG













GAGGAGGAC













GGG






chr
213188
G
A
KCNJI
p.A58
0.017
0.000
4.39
49.8
CCGCTTCGT
SEQ


17
26


2
T
16
35
E-
[33.5
CAAGAAGAA
ID










73
1-
TGGCCAGTG
NO:











74.0
CAACATTGA
396











1]
GTTC[G/A]CC













AACATGGAC













GAGAAGTCA













CAGCGCTAC













CTGGCTGAC













AT






chr
213197
G
A
KCNJI
p.E380
0.010
0.000
9.65
31.5
GTTCCTGCT
SEQ


17
92


2
K
05
32
E-
6[20.
GCCCAGCGC
ID










39
08-
CAACTCCTT
NO:











49.6]
CTGCTACGA
397












GAAC[G/A]A













GCTGGCCTT













CCTGAGCCG













TGACGAGGA













GGATGAGGC













GGA






chr
275807
G
A
CRIB
p.G15
0.006
0.004
4.80
1.53
CCCCTCCTTG
SEQ


17
75


A1
9S
37
16
E-
[1.03-
CAAGCCATG
ID










02
2.28]
GGCTGGTTC
NO:












AACAACGAA
398












GTC[G/A]GCT













CCATGAAGA













TACAAAGTG













GGGCGTAAG













TACAAAAAC













A






chr
276138
T
C
NUFIP
p.T392
0.006
0.004
3.46
1.56
GCTGACATA
SEQ


17
38


2
A
37
10
E-
[1.05-
GGGACCTGG
ID










02
2.32]
GATAAGCGA
NO:












CTTGATGAT
399












TGGG[T/C]CT













GAGTTTCCC













CGGTAGATG













ATGAAGATG













ATGAAGATG













AA






chr
368296
A
C
C17orf
p.M35
0.020
0.000
2.25
Inf
GAATTTGAG
SEQ


17
76


96
8R
34
00
E-

GCCAGGGGG
ID










80

CTCAGGGAC
NO:












AGCGGGACC
400












CCCC[A/C]TC













TGCCACCTC













CACAGCGGG













TGGGCGGGC













GGGGGCTTA













GA






chr
389534
G
C
KRT28
p.P251
0.019
0.000
7.38
2199
CGCTCGCAT
SEQ


17
72



R
36
01
E-
.94[3
GTTGTTCAA
ID










114
06.0
CAAAACCGC
NO:











1-
GAGGTCTAC
401











1581
CCCC[G/C]GG












5.81]
GCCGCGTTC













ATCTCCACG













TTCACGTTG













CCCCCAGCC













GC






chr
391908
A
G
KRTA
p.S59S
0.006
0.000
1.98
Inf
GCTGGCAGC
SEQ


17
97


P1-3

86
00
E-

AGCTGGTCT
ID










41

CACAGCAGC
No:












TTGGCTGGC
402












AGCA[A/G]CT













GGAGCTGCA













GGTCCCACT













AGTTGAGAA













GCTAGGAAA













TC






chr
392743
C
T
KRTA
p.R66
0.005
0.000
3.87
143.
GCAGCTGGG
SEQ


17
71


P4-11
H
15
04
E-
18[4
GCGACAGCA
ID










27
9.13-
GCTGGAGAT
No:











417.
GCAGCATCT
403











29]
GGGG[C/T]GG













CAGCAGGTG













GGCTGGCAG













CACACAGAC













TGGCAGCAC













TG






chr
392744
T
A
KRTA
p.S48
0.015
0.000
1.04
Inf
TGGCAGCAC
SEQ


17
26


P4-11
C
20
00
E-

ACAGACTGG
ID










90

CAGCACTGG
No:












GGCCTGCAG
404












CAGC[T/A]GG













ACACACAGC













AGCTGGGGC













GACAGTAGG













TGGTCCTGC













AG






chr
392744
A
T
KRTA
p.C45
0.005
0.000
3.82
Inf
ACAGACTGG
SEQ


17
35


P4-11
S
64
00
E-

CAGCACTGG
ID










34

GGCCTGCAG
No:












CAGCTGGAC
405












ACAC[A/T]GC













AGCTGGGGC













GACAGTAGG













TGGTCCTGC













AGCAGGTGG













TC






chr
392744
C
T
KRTA
p.C44
0.005
0.000
3.08
Inf
AGACTGGCA
SEQ


17
37


P4-11
Y
15
00
E-

GCACTGGGG
ID










31

CCTGCAGCA
No:












GCTGGACAC
406












ACAG[C/T]AG













CTGGGGCGA













CAGTAGGTG













GTCCTGCAG













CAGGTGGTC













TC






chr
393166
C
T
KRTA
p.R107
0.011
0.000
4.62
Inf
AGCAGGTGG
SEQ


17
23


P4-4
R
52
00
E-

GCTGGCAGC
ID










69

ACACAGACT
No:












GGCAGCACT
407












GGGG[C/T]CT













GCAGCAGCT













GGGGCGGCA













GCAGGTGGT













CCTACAGCA













GG






chr
393462
A
C
KRTA
p.T21
0.005
0.000
6.33
577.
GCTGTCAGC
SEQ


17
01


P9-1
T
15
01
E-
37[7
CTACATGCT
ID










30
7.65-
GCAGGACCA
No:











4293
CCTGCTGCA
408











.3]
GGAC[A/C]AC













CTGCTGGAA













GCCCACCAC













TGTGACCAC













CTGCAGCAG













CA






chr
393465
A
C
KRTA
p.N14
0.024
0.000
2.06
Inf
TGCTGCCAG
SEQ


17
75


P9-1
6T
51
00
E-

CCTACCTGC
ID










133

TGCCAGCCC
No:












ACCTGCTGC
409












AGGA[A/C]C













ACCTCTTGC













CAGCCCACC













TGCTGTGGG













TCCAGCTGC













TGC






chr
422392
A
G
C17orf
p.S645
0.007
0.004
2.63
1.55
ACTCCTGAG
SEQ


17
92


53
G
11
60
E-
[1.06-
TGAGCTTCC
ID










02
2.25]
TGAAGACTT
No:












CTTCTGTGG
410












GACC[A/G]GT













AGTTGAGAC













TGCCCCAAC













GCAGGACAA













CCCACCATG













AG






chr
428829
G
A
GJC1
p.L71
0.008
0.004
3.63
1.74
CCACCAGGA
SEQ


17
73



L
09
66
E-
[1.22-
TGATCTGGA
ID










03
2.48]
ACACCCAGA
No:












AGCGTACAT
411












GGGA[G/A]A













GAGGTGCAA













ACGCATCAT













AACAGACAT













TCTCACAGC













CCG






chr
439234
C
T
SPPL2
p.L380
0.011
0.007
4.61
1.59
TGTGCGGCT
SEQ


17
10


C
L
27
13
E-
[1.18-
GCCCACTCT
ID










03
2.14]
CAAGAACTG
No:












CTCCTCCTTC
412












CTG[C/T]TGG













CCCTGCTGG













CCTTTGATGT













CTTCTTTGTC













TTCGTCAC






chr
452145
A
C
CDC2
p.N57
0.022
0.000
2.16
Inf
ATACGACTT
SEQ


17
23


7
5K
55
00
E-

TGTCTTTGTA
ID










134

CTTCATTACC
No:












ACTTACCAT
413












GC[A/C]TTAT













AATGTCTAG













GATTGACTC













TGATAGCAT













TTCGAAAAC






chr
452146
C
T
CDC2
p.A53
0.005
0.000
1.38
Inf
AGAGTATAG
SEQ


17
54


7
2T
88
00
E-

GCATAAGCG
ID










35

TAATTTGGA
No:












TCAACTTGG
414












ATAG[C/T]TC













TCTGGAAGA













ATTTAATTG













CAATATCAT













GTTCCCGTT













GC






chr
452146
T
C
CDC2
p.S517
0.015
0.000
3.52
Inf
TGGAAGAAT
SEQ


17
99


7
G
93
00
E-

TTAATTGCA
ID










95

ATATCATGT
No:












TCCCGTTGC
415












AGAC[T/C]GA













AACAGTTCC













CTGCAGCAC













ACCAGGCCT













TAAAAAAAT













GG






chr
452162
A
G
CDC2
p.Y47
0.008
0.000
1.83
Inf
GCCAAAGTG
SEQ


17
16


7
0Y
58
00
E-

TTGTAGAGT
ID










51

AGATCTCCA
No:












TGCCTTCAA
416












CTCT[A/G]TA













ATTCTCAAT













CCTTCTAAC













CTCTGAGAA













TATTCTTTCA













G






chr
452192
T
C
CDC2
p.Y43
0.015
0.000
2.76
Inf
ATAGGCCCT
SEQ


17
83


7
5C
93
00
E-

TCCAATTTG
ID










95

GCACAGTAC
No:












CCAACCAGT
417












ATTG[T/C]AG













TGGTGAGAA













GGTAGATGG













CTCAAAATA













TTTATAGCTT













C






chr
452292
A
G
CDC2
p.T266
0.028
0.000
3.43
1102
CTCGGCTAT
SEQ


17
61


7
T
92
03
E-
.44[3
TTCCACTCTG
ID










167
50.3
TGAGAAGAC
No:











6-
AGACTTTGT
418











3468
TCC[A/G]GTT












.91]
TGGCCGATT













CTGGCAACA













GACTGTAAA













ACACGAAAA













G






chr
452342
G
C
CDC2
p.L214
0.017
0.000
6.35
2015
AAAGTATCT
SEQ


17
98


7
V
89
01
E-
.93[2
TGTTTGACTT
ID










105
80.1
ACCTTGGGG
No:











3-
TTAATGGAC
419











1450
TAA[G/C]AGC












7.61]
TGCTGGTCC













TCCTAATAA













ACTTCGACC













AGTTTTTGGT






chr
452493
T
G
CDC2
p.A54
0.005
0.000
1.90
32.6
TAGTACAAC
SEQ


17
72


7
A
64
17
E-
9[17.
TGTGTCCTTT
ID










22
63-
CAAGAGTCT
No:











60.6
ATATGCTTT
420











2]
ATA[T/G]GCC













TTTCCTGAG













CGGTAATAA













CAGGTTGCC













AGTAAAAAC













A






chr
486534
G
C
CACN
p.G54
0.010
0.000
1.36
Inf
CCACCACCC
SEQ


17
06


A1G
8A
05
00
E-

TCGACGCCT
ID










53

GCCCTCTCC
No:












GGGGCCCCC
421












CCTG[G/C]TG













GCGCAGAGT













CTGTGCACA













GCTTCTACC













ATGCCGACT













GC






chr
559172
G
A
MRPS
p.H14
0.012
0.007
1.02
1.65
CACTCAAGT
SEQ


17
91


23
2H
50
59
E-
[1.25-
GTTCGGATT
ID










03
2.2]
TCCGGGAAA
No:












CGTGACTAC
422












CTCC[G/A]TG













TTGCTTAAA













AGACCAGAT













TTAAGTATC













ACAGAGATG













TT






chr
560566
C
T
VEZF1
p.Q34
0.010
0.000
2.60
18.2
TCCCTGGCC
SEQ


17
07



8Q
29
57
E-
[12.1
AGCTTGTCA
ID










32
3-
CATGTTGTT
NO:











27.3
GTTGTTGTTG
423











2]
TTG[C/T]TGC













TGCTGCTGC













TGCTGCTGC













TGCTGCTGC













TGCTGCTTTT









chr
615685
C
T
ACE
p.T342
0.009
0.006
1.34
1.52
CCCCAGTTT
SEQ


17
77



M
80
47
E-
[1.1-
GGGCAGAAC
ID










02
2.09]
TCCCTCTGCT
No:












TGCAGGGCT
424












GGA[C/T]GCC













CAGGAGGAT













GTTTAAGGA













GGCTGATGA













TTTCTTCACC






chr
616837
T
C
TACO
p.H16
0.006
0.003
4.17
1.84
TATCTAACA
SEQ


17
83


1
6H
86
75
E-
[1.25-
GTAGCCACA
ID










03
2.69]
AGTGCCAAG
No:












CAGACATTA
425












GACA[T/C]AT













CCTGAATAA













GAATGGGTA













AGTGTGCGT













CTGGGAGGA













GT






chr
620386
T
C
SCN4A
p.H59
0.007
0.004
3.76
1.5[1
CACAGTGAG
SEQ


17
02



9R
11
73
E-
.03-
CACGTTGTC
ID










02
2.19]
AAAGTGCTC
NO:












CGTCATGGG
426












GTAA[T/C]GT













TCCATGGCC













ATGAAGAGG













GTGTTGAGC













ACGATGCAG













AT






chr
742881
G
A
QRIC
p.D72
0.009
0.000
2.53
1105
AACCAGGCT
SEQ


17
47


H2
1D
80
01
E-
.65[1
GATCTGCAC
ID










57
51.9
CAGGTTGGA
NO:











6-
TCAAACCAC
427











8044
GCTG[G/A]TC












.57]
CATTCCAGG













TTGGACCAA













ACCACGCTG













ATCCACTCC













AG






chr
742881
C
T
QRIC
p.R713
0.006
0.000
5.40
Inf
GATCAAACC
SEQ


17
72


H2
H
62
00
E-

ACGCTGGTC
ID










40

CATTCCAGG
No:












TTGGACCAA
428












ACCA[C/T]GC













TGATCCACT













CCAGGTTGC













ACCAAACCA













CGCTGATCC













AC






chr
742882
C
T
QRIC
p.R703
0.017
0.000
8.11
407
GACCAAACC
SEQ


17
02


H2
H
89
04
E-
[164.
ACGCTGATC
ID










100
39-
CACTCCAGG
NO:











1007
TTGCACCAA
429











.67]
ACCA[C/T]GC













TGATCCACT













CCAGGTTGG













ACCAAACCA













CGCTGATCT













GC






chr
742884
A
T
QRIC
p.V63
0.009
0.000
5.96
Inf
ACCACGCTG
SEQ


17
18


H2
1D
31
00
E-

AACTGCACC
ID










56

AGGTTGCAC
NO:












CAAACCACG
430












CTGA[A/T]CT













ATACCAGGT













TGCACCAAA













CTACGCTGA













ACTTCACCA













GG






chr
742885
C
T
QRIC
p.R572
0.007
0.000
1.92
799.
CAAACCACG
SEQ


17
95


H2
H
11
01
E-
67[1
CTGATGATC
ID










41
08.9
TGCACGAGG
NO:











1-
TTGTGCCAA
431











5871
ACCA[C/T]GC












.76]
TGATCTACT













CCAGGTTGG













ACCAAACCA













TGCTGAACT













GC






chr
743831
T
C
SPHK1
p.R285
0.005
0.002
1.15
1.82
GTCTGGGGG
SEQ


17
09



R
15
84
E-
[1.17-
AGATGCGCT
ID










02
2.83]
TCACTCTGG
NO:












GCACCTTCC
432












TGCG[T/C]CT













GGCAGCCCT













GCGCACCTA













CCGCGGCCG













ACTGGCCTA













CC






chr
768883
G
A
LOC10
p.G89
0.010
0.007
4.44
1.39
TCCACAGCT
SEQ


17
19


065351
G
78
79
E-
[1.02-
TGGCATCCG
ID






5



02
1.9]
CTCTTCTCTG
NO:












CAGAGCGAG
433












ATC[G/A]CCT













TTGCCCCGG













GCTTGTAGC













AATTTGTGC













TTTTTCCTCC






chr
792545
C
T
SLC38
p.V16
0.006
0.003
1.29
1.72
CACTGCCCA
SEQ


17
30


A10
9M
37
72
E-
[1.15-
CTGAAGAGG
ID










02
2.56]
CCGTGCTTG
NO:












AGAGAGGAG
434












AGCA[C/T]GA













TCTGCAGAG













GGAGAGGGG













AGAGAGCAC













GGGGCAGGT













CA






chr
796820
T
C
SLC25
p.I57T
0.005
0.002
1.51
2.24
ATGACGGGC
SEQ


17
59


A10

15
31
E-
[1.43-
ATGGCGCTG
ID










03
3.5]
CGGGTGGTG
NO:












CGTACCGAC
435












GGCA[T/C]CC













TGGCACTCT













ACAGCGGCC













TGAGCGCCT













CGCTGTGCA













GA






798471
chr
G
A
ALYRE
p.R148
0.005
0.003
1.10
1.78
GCTCAAAGT
SEQ


17
52


F
R
64
17
E-
[1.17-
GCACGTCTG
ID










02
2.72]
CTGTTCCTA
NO:












AGCTGCGAC
436












CAGA[G/A]C













GATCATAGT













GCACAGCCG













CCTTCTTCAG













CGTTCCAAA













TT






chr
799545
G
A
ASPSC
p.L252
0.018
0.000
1.09
2063
CTGCCCCCTT
SEQ


17
45


R1
L
38
01
E-
.13[2
TGTTCCTTTC
ID










107
86.7
TCGGGTGGG
NO:











9-
GGACAGAGA
437











1484
CT[G/A]GGGG












2.01]
GCCCTCCTG













GGCCCACGA













GGCCTCTGA













CATCATCTT






chr
805296
G
T
FOXK
p.P259
0.009
0.006
1.23
1.55
GTTTTGTGTT
SEQ


17
14


2
P
80
35
E-
[1.12-
TGTTTTTTAA
ID










02
2.14]
ATACAGGAT
No:












GATTCAAAG
438












CC[G/T]CCTT













ACTCCTACG













CGCAGCTGA













TAGTTCAGG













CGATTACGA






chr
808993
T
C
TBCD
p.L118
0.011
0.006
3.07
1.62
AACCGTCTG
SEQ


17
49



5P
27
98
E-
[1.2-
TGTGACCTT
ID










03
2.19]
CTGGGCGTA
No:












CCCAGGCCC
439












CAGC[T/C]GG













TGCCCCAGG













TAACCCTGT













CACCTTCAC













AGCATGAGG













TG






chr
345222
T
C
TGIF1
p.P82P
0.006
0.000
1.05
9.21
CGACCCCCT
SEQ


18
3




13
67
E-
[5.81-
CTGCGCTCC
ID










14
14.5
TGGGGTCCT
No:











91]
CCTGCGCCC
440












CCCC[T/C]CC













TCCACCGGC













GCGCTGCCC













ACAGCCGCG













TGCCCTCTCC













C






chr
939652
C
T
TWSG
p.A15
0.006
0.003
4.36
1.54
CACCACCAG
SEQ


18
4


1
7V
13
99
E-
[1.03-
AATGTGTCT
ID










02
2.31]
GTCCCCAGC
No:












AATAATGTT
441












CACG[C/T]GC













CTTATTCCA













GTGACAAAG













GTAACTGCC













AACAGTTGA













CT






chr
988737
C
A
TXND
p.L232
0.010
0.000
4.36
99.4
CAAGTCCCC
SEQ


18
1


C2
I
29
10
E-
4[49.
AGAAGAAGC
ID










49
86-
CATCCAGCC
No:











198.
CAAGGAGGG
442











331]
TGAC[C/A]TC













CCCAAGTCC













CTAGAGGAA













GCCATCCAG













CCCAAGGAG













GG






chr
125467
A
G
SPIRE
p.A46
0.005
0.002
1.16
1.82
CTTCTTCTGC
SEQ


18
78


1
A
15
84
E-
[1.17-
AGCCTCATA
ID










02
2.83]
GCCCTCATC
No:












ATTGCTACC
443












GTC[A/G]GCT













TCCACCGTG













TTGGCCATG













TGATCGATA













AGCTGCTCT













A






chr
189642
G
A
GREB
p.E93
0.007
0.004
1.32
1.65
CAATCTAAC
SEQ


18
86


1L
K
60
61
E-
[1.14-
AGTTAATGA
ID










02
2.4]
AATGGAAGA
No:












TGATGAAGA
444












CGAT[G/A]AA













GAAATGTCT













GATTCAAAC













AGCCCACCA













ATTCCCTATT













C






chr
289343
A
G
DSG1
p.I739
0.011
0.007
8.43
1.54
TGTAGGTTC
SEQ


18
74



V
03
18
E-
[1.14-
CCCTGCTGG
ID










03
2.09]
CTCTGTGGG
No:












TTGTTGTAG
445












CTTC[A/G]TT













GGAGAAGAC













CTGGATGAC













AGCTTCTTG













GATACCCTG













GG






chr
337850
G
A
MOCO
p.Q35
0.012
0.009
1.86
1.42
GAATGGAGA
SEQ


18
83


S
4Q
75
01
E-
[1.07-
ATATAAAGC
ID










02
1.88]
AGCACACCT
No:












TCACCTTGG
446












CTCA[G/A]TA













TACCTACGT













GGCCCTGTC













CTCTCTCCA













GTACCCCAA













TG






chr
641789
C
A
CDH1
p.V48
0.005
0.000
1.39
618.
ATGGATTCA
SEQ


18
22


9
7L
88
01
E-
95[8
TCTCTATCCA
ID










33
3.71-
CTGCACTGA
No:











4576
TAGTCTGAA
447











.34]
TTA[C/A]CTA













AAAAAAAAG













GGGGATAGA













TTTTTGTTGT













TGTTTGGAT






chr
721140
G
A
FAM6
p.A22
0.006
0.003
1.29
1.75
TGCCCTGTG
SEQ


18
55


9C
1V
62
79
E-
[1.16-
GTGGGGGCT
ID










02
2.65]
GCCCGCGGC
No:












CAGGAACTC
448












CACC[G/A]CG













TAGAAGTGG













CCGCAGGAA













CCCAGCACG













GGCAGCACG













TG






chr
723467
T
C
ZNF40
p.G12
0.008
0.005
1.66
1.56
ATTGTGAGG
SEQ


18
01


7
42G
33
35
E-
[1.1-
GTGAAGGAG
ID










02
2.21]
GAAACGCAG
No:












GAGACGGTG
449












GAGG[T/C]GT













TGTCCCCCA













CAGACACCT













GTGCCCTGT













GACGCTCGA













TG






chr
287703
G
A
PPAP2
p.R85
0.010
0.006
9.91
1.53
ACCTTGTAT
SEQ


19



C
C
54
93
E-
[1.12-
ACAGCAGCC
ID










03
2.08]
ACGTAGTTG
No:












TTGAAGTCC
450












GAGC[G/A]A













GAATAGAGC













CGGTCTGTG













TACACCAGG













TAGGCTTCC













CCG






chr
474688
T
G
ODF3
p.R20
0.012
0.006
1.39
1.85
ACTTCCTCA
SEQ


19



L2
R
25
67
E-
[1.38-
GGCCGGTCT
ID










04
2.47]
CCGGAATCT
No:












GGCCCTCCG
451












TCAC[T/G]CG













CCGGCCAAG













GGGGGCTGT













GGCCAGCCG













TGGGGTGGA













GT






chr
104374
C
T
ABCA7
p.L318
0.005
0.003
1.35
1.79
GGGGGTGCT
SEQ


19
7



L
39
01
E-
[1.16-
GTCCACAGG
ID










02
2.76]
TGAACCGGA
No:












CCTTCGAGG
452












AGCT[C/T]AC













CCTGCTGAG













GGATGTCCG













GGAGGTGTG













GGAGATGCT













GG






chr
143033
C
T
DAZA
p.F280
0.007
0.000
5.26
Inf
TGTCCACCC
SEQ


19
0


P1
F
11
00
E-

CTCCTGGAG
ID










40

GCTTTCCCCC
No:












TCCCCAGGG
453












CTT[C/T]CCT













CAGGGCTAC













GGTGCCCCG













CCACAGTTC













AGTAAGTCT













A






chr
145711
C
A
APC2
p.P359
0.029
0.000
8.67
2568
CGCGCCAAC
SEQ


19
1



Q
90
01
E-
.75[3
GCGGCGCTG
ID










162
58.8
CACAACATC
No:











6-
GTCTTCTCGC
454











1838
AGC[C/A]GG












7.26]
ACCAGGGCC













TGGCGCGCA













AGGAGATGC













GCGTCCTGC













AC






chr
162098
G
T
TCF3
p.P360
0.015
0.000
1.11
103.
TCCCCTCCCC
SEQ


19
0



P
20
15
E-
81[5
CCAAAACCC
ID










64
1.56-
TCACAGACC
No:











209.
TGCCAGGCC
455











02]
CTG[G/T]GGG













GAGCCCACG













GGGGTAGAA













GGGCTGGAC













GAGAAGTTA













T






chr
177540
C
G
ONEC
p.G48
0.006
0.000
1.74
Inf
TGAACCGCT
SEQ


19
8


UT3
3G
13
00
E-

GGGCTGAGG
ID










27

AGCCCAGCA
NO:












CGGCCCCCG
456












GGGG[C/G]CC













CGCCGGCGC













CACGGCCAC













TTTCTCCAA













GGCCTGAGG













CG






chr
224844
A
G
SF3A2
p.N43
0.012
0.000
3.76
Inf
CCTGGGGTC
SEQ


19
5



2S
25
00
E-

CACCCTCAG
ID










47

CCTCCGGGA
NO:












GTTCACCCC
457












TCAA[A/G]TC













CTGGGGTGC













ACCCCCCAA













CTCCCATGC













CCCCAATGC













TG






chr
225042
A
G
ANIH
p.Y16
0.007
0.000
2.29
171.
GGAGGAGCT
SEQ


19
3



7C
84
05
E-
42[5
GGCCCCCCA
ID










36
2.47-
GAGCTGGCG
NO:











560.
CTGCTGGTG
458











02]
CTGT[A/G]CC













CTGGGCCTG













GCCCTGAGG













TCACTGTGA













CGAGGGCTG













GG






chr
287732
C
T
ZNF55
p.R122
0.008
0.005
4.26
1.46
AAGGGTGGA
SEQ


19
0


6
C
09
57
E-
[1.02-
GAGACCATG
ID










02
2.07]
TAAAAGCAG
NO:












TAAAGGTAA
459












TAAA[C/T]GT













GGAAGAACC













TTCAGAAAG













ACTCGAAAT













TGTAATCGT













CA






chr
395944
G
A
DAPK
p.R340
0.007
0.005
2.43
1.55
CCACGTCCT
SEQ


19
4


3
R
84
07
E-
[1.08-
CGTGGCAGA
ID










02
2.24]
GCCGCCGGC
NO:












TGCGCTGCA
460












GCTC[G/A]CG













CAGGCCCTC













CTCGGCGGC













CGCCGCCTC













CTCCAGCAC













CT






chr
451121
C
G
PLIN4
p.S906
0.007
0.000
3.99
Inf
ACTGCAGAC
SEQ


19
3



T
84
00
E-

GGTGTCCTT
ID










45

GGTACCGGT
NO:












CAGGACAGT
461












CTTG[C/G]TG













GTGTCCACG













CCGGTCTGG













ACAGTCCCT













TTGGCCAAG













TT






chr
451351
C
T
PLIN4
p.K13
0.006
0.000
1.43
681.
GGACAGCCT
SEQ


19
9



7K
13
01
E-
44[9
TCGAGGTGT
ID










35
2.31-
CCAGACCCC
No:











5030
CTTGGACGG
462











.26]
CCCC[C/T]TT













AGCCATGTC













CATGGCCCC













TGTGACCCC













GCTGGACAC













CA






chr
572022
C
T
LONP
NM_
0.012
not
2.62
Inf
CGCCGCGAA
SEQ


19
9


1
001276480:
76
found
E-

ACGCACGTG
ID







c.-


24

ACGCCCGGC
No:







160 + 1




GCGTGCCTC
463







G > A




GGTA[C/T]CC













GATGGGCGC













GTGGCTCGA













AACAGCCGC













TTCAGGGAG













CT






chr
583160
G
A
FUT6
p.T324
0.009
0.006
1.69
1.5[1
GCAGAAAGC
SEQ


19
8



M
56
38
E-
.09-
GAGTGCCCA
ID










02
2.08]
GCTGAAGGA
No:












GCGAGGCCG
464












CAGC[G/A]TC













TCCCGCCAG













CGAAAGTAG













CTCAGGTAG













CGGGCGTGG













TC






chr
813810
C
T
FBN3
p.V25
0.007
0.004
9.73
1.66
CCCCCGAGG
SEQ


19
4



94I
60
59
E-
[1.15-
GCCTGATCA
ID










03
2.39]
AAGTCAAAG
No:












CCAGAGGGG
465












CAGA[C/T]GC













AGCGGAAGC













CACCAAGAG













TGTTGCGAC













AGGAGGCGC













TC






chr
815480
G
A
FBN3
p.P207
0.006
0.000
1.44
Inf
TGGGTGAGG
SEQ


19
2



6S
86
00
E-

GGCTCACCT
ID










40

TCTCGGGAG
No:












TCATCCGGG
466












CCTG[G/A]GA













CTGCCCCGT













GGCCAAAGG













GGCAGAGCT













CCTGAAAGG













CA






chr
837316
C
T
CD320
p.G4D
0.006
0.003
2.31
1.77
CAGAGCCCC
SEQ


19
4




51
69
E-
[1.07-
TGTTCGCCA
ID










02
2.78]
CGCTCCAAC
No:












CTGCGCCAT
467












CCAA[C/T]CG













CCGCTCATG













CTGTCCCCA













CAGCGGCGC













CGGCCACGC













GC






chr
839896
A
G
KANK
p.D48
0.022
0.000
1.53
Inf
AGCTACCCG
SEQ


19
1


3
9D
30
00
E-

GGGGCTCGG
ID










101

CGCCACCGT
No:












TCTCGCTGTC
468












GCC[A/G]TCG













CTGTCGCTG













GCGTCCTCG













CTGGAGGAG













CTCTCGTAC













C






chr
856436
G
T
PRAM
p.P109
0.006
0.000
1.85
373.
CAGTTTGGA
SEQ


19
6


1
Q
86
02
E-
54[8
CGGCTTCTT
ID










38
8.96-
GGGGAGGTC
No:











1568
AGTGACCTC
469











.57]
AGGC[G/T]GC













GGGGGCTTC













TTGGGGAGG













TCAGTGACC













TCAGGCGGC













GG






chr
905982
A
G
MUC1
p.S920
0.013
0.009
9.32
1.47
GTATCTGTA
SEQ


19
7


6
7P
24
05
E-
[1.11-
GTGACTTCA
ID










03
1.93]
GTGATGGCC
No:












AGTATTTCA
470












GCTG[A/G]GG













TGCTGCTCA













AATTTGGGG













GTGAACTGG













TTTCAGGTTC













T






chr
907288
G
C
MUC1
p.P485
0.005
0.003
4.88
1.54
ATGGTGGAG
SEQ


19
6


6
4A
64
66
E-
[1.01-
GTGGTAACA
ID










02
2.35]
TTTGGAGAT
No:












GTGACTTTA
471












GATG[G/C]CT













CTGGGTAAG













CTGAGACAG













TAGAATGTG













ATTCAAATG













CT






chr
923755
G
A
OR7G
p.P25S
0.008
0.004
1.80
1.67
GTGGCCAGG
SEQ


19
4


3

133
873
E-
[1.07-
TACATGGAC
ID










02
2.5]
AGGAACAGC
No:












ATGAAGAGG
472












ATGG[G/A]CT













GCAGCTCCG













GATCCCCTG













ACAATCCCA













AGAGAAAGA













AT






chr
114887
G
A
EPOR
p.P488
0.005
0.003
2.60
1.66
GGCAGAGGC
SEQ


19
25



S
39
25
E-
[1.08-
TCAGCGGCT
ID










02
2.56]
GGGATAAGG
No:












CTGTTCTCAT
473












AAG[G/A]GTT













GGAGTAGGG













GCCATCGGA













TAAGCCCCC













TTGGGCTCC













C






chr
120606
A
G
ZNF70
p.Q59
0.005
0.000
4.11
6.32
AAAGGACTC
SEQ


19
27


0
6Q
15
82
E-
[3.93-
ACACTGGAG
ID










10
10.1
AGAAACCCT
NO:











6]
ATGAGTGTA
474












AGCA[A/G]TG













TGGGAAAGC













CTTCAGTTGT













GCCTCAAAC













CTTCGAAAG













C






chr
121556
A
G
ZNF87
p.C173
0.007
0.000
2.32
Inf
GAACAGAAC
SEQ


19
97


8
C
35
00
E-

TGGGAAAAC
ID










44

TGAATGCTT
NO:












TCCCACACT
475












GCTT[A/G]CA













TTCATAGGG













TTTTTTTGCA













GAGTGGATT













CTTTCATGTC






chr
125014
C
T
ZNF79
p.P587
0.005
0.000
1.69
115.
TGAGAGAAG
SEQ


19
51


9
P
15
04
E-
34[4
CAAATGCTT
ID










26
3.47-
TCCCACATT
No:











306.
CCTTACATTC
476











02]
ATA[C/T]GGG













TTCTCTCCAG













TATGAGTTTT













TTCATGTCCT













TGAAGAA






chr
125411
C
T
ZNF44
p.P615
0.013
0.000
1.75
1489
TGAGAGAAG
SEQ


19
41


3
P
24
01
E-
.83[2
CAAATGCTT
ID










77
06.0
TCCCACATT
NO:











5-
CCTTACATTC
477











1077
ATA[C/T]GGG












1.89]
TTCTCTCCAG













TATGAGTTTT













TTCATGTCCT













TGAAGAA






chr
141045
G
C
RFX1
p.P34
0.006
0.000
9.57
Inf
GCAGCGGTG
SEQ


19
56



A
37
00
E-

GGTGGCTGC
ID










37

GGGGGCTGG
NO:












GGTGCCGCT
478












GGGG[G/C]TG













GTGGCGGTG













GCGGCTGGG













GCTGGGCTT













GTGGCGGGG













CC






chr
153539
G
A
BRD4
p.P982
0.017
0.000
8.48
Inf
CGTGGAGGG
SEQ


19
36



S
65
00
E-

GGCTGATGC
ID










60

TGCTGCTGG
NO:












GGTGGAGGC
479












TGGG[G/A]CT













GGGGTGGTG













GGGGTGGTG













GCGGCTGCT













GCTGCAGCT













GC






chr
162756
C
T
CIB3
p.G13
0.007
0.000
3.10
88.1
ACCTTCTCA
SEQ


19
56



9R
84
09
E-
6[43.
CATACCAGG
ID










38
31-
CTCACCTCCT
No:











179.
CGGCACTCA
480











45]
GCC[C/T]CCC













CCGCGTCAG













TTTGGTCAC













CGTCTGCTC













CAGGTCCCA













C






chr
170390
A
C
CPAM
p.S110
0.005
0.003
2.24
1.67
GGCCTCGGG
SEQ


19
23


D8
3A
88
53
E-
[1.11-
AGGGTCCAG
ID










02
2.53]
GCCACAATG
No:












ACAGACTCA
481












TTGG[A/C]TG













GCTCTGGAC













CATGGCCAA













CCTGGAAAA













AGAAACCAA













GG






chr
178816
G
A
FCHO
p.R186
0.009
0.006
4.21
1.41
GAGAGCCTG
SEQ


19
68


1
Q
56
78
E-
[1.02-
CGGCGCTCA
ID










02
1.95]
GTGGAAAAA
No:












TACAACTCA
482












GCCC[G/A]AG













CTGACTTTG













AGCAGAAGA













TGCTGGACT













CAGCCCTGG













TA






chr
178889
A
G
FCHO
p.E423
0.006
0.004
4.13
1.51
AGAAGCAGC
SEQ


19
54


1
G
62
38
E-
[1.03-
CCTCTTGGC
ID










02
2.23]
CTCACCCTCT
No:












CTAGCTGTG
483












CAG[A/G]GA













GATTGCAGT













CAGAGGAGC













AGGTGTCCA













AGAACCTCT













TT






chr
197446
C
T
GAWP
p.E795
0.009
0.005
8.03
1.61
AGGCCCTCT
SEQ


19
14



K
07
65
E-
[1.15-
CCATAGCTG
ID










03
2.26]
TGGGCCCAG
No:












TGGGTTCTT
484












ACCT[C/T]GG













TAGGTGTGG













CCGTGGGAT













GCTGCTCCA













GGGTACTGT













GG






chr
202294
C
A
ZNF90
p.G34
0.018
0.000
3.39
Inf
TCCATACTG
SEQ


19
04



7G
14
00
E-

GAGAGAAAC
ID










108

CCTACAAAT
No:












GTGAAGAAT
485












GTGG[C/A]AA













AGCCTTCAG













GCGCTCCTT













AGTCCTTCG













TACACATAA













GA






chr
202295
C
A
ZNF90
p.G40
0.008
0.000
2.64
Inf
GTCATAGTG
SEQ


19
72



3G
82
00
E-

AAAAGAAAC
ID










52

CCTACAAAT
No:












GTGAAGAAT
486












GTGG[C/A]AA













AGCCTTCAA













GCGCTCCTC













AACACTTAC













TATACATAA













GA






chr
212400
T
C
ZNF43
p.F298
0.011
0.000
4.36
Inf
TGGAGAGAA
SEQ


19
06


0
L
03
00
E-

ACCCTACAG
ID










66

ATGTGAAGA
No:












ATGTGGCAA
487












AACC[T/C]TT













AACCGGTCC













TCACACCTT













ACTACACAT













AAAAGAATT













CA






chr
217194
T
A
ZNF42
p.H19
0.010
0.007
3.83
1.41
TTTGCATGCT
SEQ


19
40


9
5Q
05
15
E-
[1.03-
TTCACAACT
ID










02
1.93]
AACTCAACA
No:












TAAGAAAAT
488












TCA[T/A]ATT













AGAGAGAAT













ACCTACAGA













TGTAAAGAA













TTTGGCAAT













G






chr
221543
A
C
ZNF20
p.V11
0.024
0.000
1.90
Inf
AAAGCCTTT
SEQ


19
42


8
65G
02
00
E-

GCCACATTC
ID










142

TTCACATTTG
No:












TAGGGTTTC
489












TCT[A/C]CAG













TATGAATTTT













CTTATGATA













ACTAAGGGT













TGAGGACCA






chr
221548
A
T
ZNF20
p.C100
0.005
0.003
4.87
1.54
AGGTTTGAT
SEQ


19
29


8
3S
64
66
E-
[1.01-
GACCAGTTG
ID










02
2.35]
AAAGCTTTG
No:












CCACATTCTT
490












CAC[A/T]TTT













GTAGGGTTT













CTCTCCAGT













ATGAATTAC













CTTATGTTTA






chr
221556
A
G
ZNF20
p.H71
0.017
0.000
2.21
1917
TTTTGCCAC
SEQ


19
91


8
5H
65
01
E-
.14[2
ATTCTTCAC
ID










102
66.3
ATTTGTAGG
No:











5-
GTTTCTCTCC
491











1379
AGT[A/G]TGA












9.28]
ATTCTCTTAT













GTTCCATAA













GGTTTGAGG













ACCAGTTGA






chr
222719
G
A
ZNF25
p.E456
0.014
0.000
6.24
Inf
GTCTTCATA
SEQ


19
18


7
K
71
00
E-

CCTTATTCG
ID










88

ACATAAGAT
No:












AATTCATAC
492












TGGA[G/A]A













GAAACCCTA













CAAATGTGA













AGAGTGTGG













CAAAGCCTT













TAA






chr
222720
A
G
ZNF25
p.I507
0.016
0.000
8.46
926.
CAAAGCCTT
SEQ


19
71


7
V
42
02
E-
98[2
TAACCGGTC
ID










95
27.0
TTCACACCTT
No:











4-
TCTCAACAT
493











3784
AAG[A/G]TA












.7]
ATTCATACT













GGAGAGAAA













CCCTACAAA













TGTGAAGAA













TG






chr
228476
G
A
ZNF49
p.K39
0.008
0.000
2.33
Inf
CACACCTTA
SEQ


19
44


2
1K
09
00
E-

CTACACATA
ID










48

AGAGAATTC
No:












ATACTGGAG
494












AGAA[G/A]C













CCTACAAAT













GTGAAGAAT













GTGGCAAAG













CTTTTAACCT













AT






chr
351753
G
A
ZNF30
p.D12
0.008
0.004
4.44
1.71
ATTTTCAAA
SEQ


19
06


2
2N
33
89
E-
[1.21-
TTCTAATAA
ID










03
2.42]
GAATTTGGA
No:












ATATACAGA
495












ATGC[G/A]AC













ACATTTAGA













AGCACCTTT













CATTCAAAG













TCTACTCTTT













C






chr
360024
T
C
DMKN
p.S276
0.006
0.001
1.79
6.01
CTGCCACCA
SEQ


19
05



G
37
07
E-
[3.87-
CTGCTGCCG
ID










11
9.32]
CCACTGCTG
No:












CCGCCACTG
496












CTGC[T/C]GC













CACTGCTGC













TGCCACCAC













TGCTGCTGC













CATTGTTGTT













G






chr
383774
C
T
WDR8
p.E229
0.009
0.000
5.77
Inf
CCTCCTCCTT
SEQ


19
17


7
8E
07
00
E-

CCTTTCCTCC
ID










42

TCCTCCTCCC
No:












TTACCTCCTC
497












[C/T]TCCTCC













CTTTCCTCTT













CTTCCTCCCT













TTCCTCCTCC













TCCT






chr
383792
C
T
WDR8
p.A16
0.005
0.003
8.94
1.86
ATTTCTTGGC
SEQ


19
29


7
94A
64
03
E-
[1.21-
CAGTTTCTTC
ID










03
2.88]
CTTTTCTGGG
NO:












CCAATTTCTC
498












[C/T]GCCTCC













TGGCTTAGC













TTCTCCCCTC













TTTGGGCCA













GTGTTT






chr
388172
G
A
KCNK
KCNK6
0.006
0.000
1.69
108.
AAAAGAAAA
SEQ


19
32


6
(NM_
86
06
E-
13[4
AGATTTACC
ID







004823:


34
7.2-
CTTTACTCTC
No:







exon2:



247.
TTTACTCCCC
499







c.3



68]
TA[G/A]GCTA








23-




TGGGTACAC








1G > A)




AACGCCACT













GACTGATGC













GGGCAAGGC






chr
404084
G
A
FCGB
p.S147
0.006
0.000
6.61
702.
AATCTTTCA
SEQ


19
20


P
3S
37
01
E-
38[9
AGGGACCCT
ID










37
5.29-
GGGGATCCA
NO:











5177
CCAGCTTGT
500











.19]
GGCA[G/A]G













AGGACAGTG













GCCCTGTGG













GGCTGGAGA













GGAGCCCAC













AGA






chr
404086
T
A
FCGB
p.Q13
0.006
0.003
8.36
2.11
CTTGGGGTC
SEQ


19
85


P
85L
37
03
E-
[1.41-
GCCGTTGTA
ID










04
3.15]
GTTCCCACA
NO:












CAGGCCACA
501












CATC[T/A]GC













TGGTAGTAG













TTTCCGGGG













ACGGTGACC













CGCACATAG













TA






chr
405805
A
T
ZNF78
p.C615
0.006
0.004
2.82
1.57
AGCTGGGTG
SEQ


19
06


0A
S
62
24
E-
[1.06-
GGAAGACTA
ID










02
2.31]
AAAACCTTT
NO:












CCACATTCC
502












TTAC[A/T]TT













CAAAGGGTT













TCTCACCAG













TATGCAATT













TCTGATGTC













GA






chr
413558
A
G
CYP2A
p.L73
0.005
0.002
1.18
2.55
GCATCATGT
SEQ


19
49


6
L
88
32
E-
[1.67-
CCACACAGC
ID










04
3.88]
ACCACGACC
NO:












CGCCGGGGC
503












CCCA[A/G]GT













GAATGGTGA













ACACGGGGC













CATAGCGCT













CACTGATCT













GA






chr
416339
A
G
CYP2F
p.P472
0.008
0.004
1.79
1.84
TGCAGCCGC
SEQ


19
27


1
P
09
41
E-
+[1.29-
TGGGTGCGC
ID










03
2.62]
CCGAGGACA
No:












TCGACCTGA
504












CCCC[A/G]CT













CAGCTCAGG













TCTTGGCAA













TTTGCCGCG













GCCTTTCCA













GC






chr
428553
C
T
MEGF
p.P847
0.009
0.000
3.25
Inf
TGGGGTTCT
SEQ


19
73


8
P
31
00
E-

GACTCCTCT
ID










47

GCCCAACTG
No:












ACCCCCAGG
505












ACCC[C/T]TT













CTGTGAGTG













GCATCAGAG













CACCAGCCG













CAAAGGGGA













CG






chr
434117
C
T
PSG6
p.L325
0.005
0.001
8.18
3.69
CTGGCCCAC
SEQ


19
38



L
39
47
E-
[2.36-
AGAGGAACA
ID










07
5.76]
AAGGATACT
No:












CACAGAGGA
506












CATT[C/T]AG













GGTGACTGG













GTTACTGCG













GATGCCACC













ATATCGGTC













CC






chr
434117
G
A
PSG6
p.T324
0.005
0.001
2.40
4.64
CCCACAGAG
SEQ


19
42



I
39
17
E-
[2.95-
GAACAAAGG
ID










08
7.29]
ATACTCACA
No:












GAGGACATT
507












CAGG[G/A]TG













ACTGGGTTA













CTGCGGATG













CCACCATAT













CGGTCCCGT













AT






chr
440651
C
T
XRCC
p.E50
0.006
0.004
2.90
1.56
CATCATTCC
SEQ


19
67


1
E
62
26
E-
[1.06-
CAATGTCCA
ID










02
2.3]
CACTGTGTA
No:












TCTGCTCCTC
508












CTT[C/T]TCC













AACTGTGGG













CAGAGAGAG













AGGCCACTG













TCAGTGCCT













G






chr
445006
A
T
ZNF15
p.Q22
0.005
0.002
1.84
1.76
GGCAAGGAA
SEQ


19
77


5
3L
15
93
E-
[1.13-
TTTAGTCAA
ID










02
2.74]
AGCTCACAT
No:












CTGCAAACT
509












CATC[A/T]GA













GAGTCCACA













CTGGAGAGA













AACCATTCA













AATGTGAGC













AA






chr
448906
A
G
ZNF28
p.L578
0.008
0.005
1.46
1.57
TTATAATGTT
SEQ


19
74


5
P
82
64
E-
[1.12-
TCTCTCTGCT
ID










02
2.2]
CATGTAGTC
No:












TTTGATGAG
510












TC[A/G]GAAG













GTCCTTTCCA













CGCTCACAA













TGTGTGTAC













TGTGTCTC






chr
458987
A
G
PPP1R
p.P435
0.008
0.000
1.83
26.8
CAGGGGGCC
SEQ


19
43


13L
P
33
31
E-
[12.4-
ATGTCTGTT
ID










22
57.9
GGGGATGCT
No:











3]
GGGGGGCTG
511












GGGT[A/G]G













GGGTTTGGG













GTTGGGTCT













GGGGCTGTG













GGGGCAGCT













GGG






chr
461377
G
A
EML2
p.R213
0.006
0.000
1.59
Inf
TCCCCGGTG
SEQ


19
13



X
62
00
E-

GGCAGCAAA
ID










39

TAAAGGTTG
No:












GCCCGGCAG
512












TCTC[G/A]GC













CACGGTAGC













CATAGCTGG













AGCCACCCA













GGGGCTGGT













TA






chr
462154
G
C
FBXO
p.P420
0.005
0.000
3.35
595.
GCCGGGCGC
SEQ


19
95


46
R
88
01
E-
7[80.
AGTGGCCGG
ID










33
57-
GGAGTCGGC
No:











4404
CGGGGGTGG
513











.4[
CTCC[G/C]GG













GGCCCGTCC













GGCCCGCGG













TTCTGGAGA













AAGAAGAGC













TG






chr
463139
C
G
RSPH6
p.A27
0.006
0.003
3.10
1.58
CCTGTTCGC
SEQ


19
18


A
7A
13
90
E-
+[1.05-
CTTCAGTGC
ID










02
2.36]
CGCCTCCAC
No:












TCCGGGTGA
514












ACAG[C/G]GC













CTTCTGTTTC













TCCGCCATC













TTGTAGGTG













GGCTGCATC













T






chr
472042
C
T
PRKD
p.V32
0.011
0.008
4.45
1.36
TTGTCAGCC
SEQ


19
07


2
4M
27
30
E-
[1.01-
TCGCTGAAA
ID










02
1.83]
TCGGTGGCC
No:












TCCTCCATC
515












GGCA[C/T]AT













CTGTGGGGA













CGGAGGCAT













CAGAGGGGT













CTCCACCCA













GT






chr
475752
A
G
ZC3H4
p.H62
0.005
0.002
4.03
2.49
CAGGGTGCA
SEQ


19
94



9H
15
07
E-
[1.58-
TGTCCGGGT
ID










04
3.93]
GCATGTCGG
No:












GGTGCATGT
516












CAGG[A/G]TG













CATTGGACC













GCCCATTGG













CCCTGGGGG













TCCCATGTT













GG






chr
486245
C
T
LIG1
p.V68
0.013
0.009
1.28
1.44
AGGTAGGCG
SEQ


19
55



5M
24
24
E-
[1.09-
CCGATCACC
ID










02
1.89]
ACCAGGTCC
No:












AGGGTGTCA
517












CCCA[C/T]GC













CATCAAGGT













AGTCCTTCTT













CAGCTGGGA













GAAGGGGAG













G






chr
486433
G
A
LIG1
p.L304
0.005
0.002
1.28
1.97
CCAAGCTCC
SEQ


19
12



F
21
65
E-
[1.11-
AGGCCCTGC
ID










02
3.26]
TGGGGTGGC
No:












CCAAGGTGG
518












TTGA[G/A]GC













TGAGGTAGA













GGACAGGGA













GGAGGTCTG













GAGGCGACA













GG






chr
499318
T
G
GFY
p.L456
0.006
0.001
1.97
3.86
CCAGAGATG
SEQ


19
84



V
37
66
E-
[2.44-
ACCACGCCC
ID










07
6.11]
CTTTGCACC
No:












CACAGTTCT
519












GCAT[T/G]TG













GACGCCCCG













AAAGACCCC













TACGACCTC













TACTTTTATG













C






chr
515180
T
C
KLK10
p.N27
0.013
0.000
4.10
525.
CATAACATC
SEQ


19
60



6S
97
03
E-
15[1
TGGATCAGC
ID










79
64.3
TGGAGCGTA
No:











9-
GCATCTGGA
520











1677
TCAG[T/C]TG












.55]
GAGCGTATG













ACTTTATTG













ATCCAGGAC













ATGTATTTG













CA






chr
516283
G
T
SIGLE
p.G54
0.009
0.000
5.23
Inf
TGCTCCTTCT
SEQ


19
92


C9
V
31
00
E-

CCTACCCCT
ID










56

CGCATGGCT
No:












GGATTTACC
521












CTG[G/T]CCC













AGTAGTTCA













TGGCTACTG













GTTCCGGGA













AGGGGCCAA













T






chr
519197
C
A
LOC10
p.C38
0.005
0.002
3.44
1.98
GTGTGGACC
SEQ


19
82


012908
X
88
98
E-
[1.3-
AGACGCCAT
ID






3



03
3.02]
TCCCATCCC
No:












CCTCCCAGG
522












GCTG[C/A]GG













CGGCATCCT













GGGACCCCA













CAGCTTCCT













CTCCCTGGA













TG






chr
519197
G
C
LOC10
p.G39
0.005
0.002
3.33
1.99
GTGGACCAG
SEQ


19
84


012908
A
88
97
E-
[1.3-
ACGCCATTC
ID






3



03
3.04]
CCATCCCCC
No:












TCCCAGGGC
523












TGCG[G/C]CG













GCATCCTGG













GACCCCACA













GCTTCCTCTC













CCTGGATGC













T






chr
519198
G
A
LOC10
p.A58
0.008
0.005
3.85
1.72
CCACAGCTT
SEQ


19
40


012908
T
82
15
E-
[1.23-
CCTCTCCCTG
ID






3



03
2.42]
GATGCTCCT
No:












GAGCTGGGA
524












GCC[G/A]CTC













ACTGTCCCA













CTGGGCTCC













TCCACCTCC













CCACCCACC













G






chr
528880
T
A
ZNF88
p.H39
0.018
0.000
1.62
106.
GCAAGGTCT
SEQ


19
30


0
9Q
63
18
E-
63[5
TCAGGCACA
ID










81
7.96-
AGTTTTGTCT
No:











196.
AACCAATCA
525











18]
TCA[T/A]AGA













ATGCACACG













GGAGAGCAA













CCTTACAAA













TGTAATGAA













T






chr
528880
A
G
ZNF88
p.M40
0.018
0.000
5.01
102.
GGTCTTCAG
SEQ


19
34


0
1V
87
19
E-
4[55.
GCACAAGTT
ID










81
69-
TTGTCTAAC
No:











188.
CAATCATCA
526











29]
TAGA[A/G]TG













CACACGGGA













GAGCAACCT













TACAAATGT













AATGAATGT













GG






chr
528880
G
T
ZNF88
p.M40
0.019
0.000
1.04
99.0
TCTTCAGGC
SEQ


19
36


0
1I
85
20
E-
5[55.
ACAAGTTTT
ID










84
1-
GTCTAACCA
No:











178.
ATCATCATA
527











05]
GAAT[G/T]CA













CACGGGAGA













GCAACCTTA













CAAATGTAA













TGAATGTGG













CA






chr
531165
C
T
ZNF83
p.G43
0.007
0.004
2.91
1.65
CCGATGATG
SEQ


19
14



5E
482
537
E-
[1.04-
TGCTAGGGA
ID










02
2.52]
TGAGTTTAG
No:












ACCGAAGAC
528












CTTC[C/T]CA













CATTCATTA













CATTTATAA













GCTTTTTCTC













CAGTATGAA













T






chr
532689
G
A
ZNF60
p.P693
0.012
0.000
4.13
1466
CTGCTTGCT
SEQ


19
31


0
L
99
01
E-
.88]2
AAAGGCTTT
ID










76
02.8
GCCACACTC
NO:











1-
ATTACACTT
529











1060
GTAA[G/A]GT












9.54]
TTCTCTCCAG













TGTGAAGTC













CAGTATGTT













GTTTCAGGT













G






chr
536445
C
T
ZNF34
p.K51
0.007
0.000
3.82
264.
TTTGAGTGA
SEQ


19
48


7
2K
35
03
E-
49[8
AGACCTTGC
ID










40
0.69-
CACATTCAT
No:











866.
TACATTTGT
530











98]
AAGG[C/T]TT













TTCTCCAGT













ATGGATGAC













CTGATGGGT













AGTTAGGTT













TG






chr
537931
C
T
BIRC8
p.A15
0.000
0.000
3.71
Inf
GAAGTCTGA
SEQ


19
62



6T
25
00
E-
[NaN-
TTCAATTCAT
ID










02
Inf]
TTTCTGTAGT
NO:












GTCTTTCTGA
531












G[C/T]GCTCA













CTAGATCTG













CAACAAGAA













CCTCAAGCG













TTTTATAG






chr
552392
C
T
KIR3D
p.H17
0.009
0.000
1.52
829.
GGATCACTG
SEQ


19
37


L3
2H
80
01
E-
79[1
AGGACCCCT
ID










52
14.0
TGCGCCTCG
NO:











5-
TTGGACAGC
532











6037
TCCA[C/T]GA












.46]
TGCGGGTTC













CCAGGTCAA













CTATTCCAT













GGGTCCCAT













GA






chr
552509
C
A
KIR2D
p.P21T
0.010
0.000
8.87
Inf
ATCTTTCTTT
SEQ


19
79


L3

29
00
E-

CCAGGGTTC
ID










55

TTCTTGCTGC
NO:












AGGGGGCCT
533












GG[C/A]CACA













TGAGGGTGA













GTCCTTCTCC













AAACCTTCG













GGTGTCAT






chr
552848
G
A
KIR2D
p.G36
0.005
0.002
7.72
2.26
CTAGGAGTC
SEQ


19
21


L1
D
64
50
E-
[1.47-
CACAGAAAA
ID










04
3.49]
CCTTCCCTCC
NO:












TGGCCCACC
534












CAG[G/A]TCG













CCTGGTGAA













ATCAGAAGA













GACAGTCAT













CCTGCAGTG













T






chr
552867
G
T
KIR2D
p.G17
0.007
0.002
4.86
3.64
TCCAGGGAA
SEQ


19
67


L1
4V
84
17
E-
[2.5-
GGGGAGGCC
ID










09
5.28]
CATGAACGT
NO:












AGGCTCCCT
535












GCAG[G/T]GC













CCAAGGTCA













ACGGAACAT













TCCAGGCTG













ACTTTCCTCT













G






chr
552951
A
G
KIR2D
p.T301
0.006
0.003
1.28
2.04
CTCTCCAGG
SEQ


19
21


L1
T
62
25
E-
[1.37-
ACTCTGATG
ID










03
3.04]
AACAAGACC
NO:












CTCAGGAGG
536












TGAC[A/G]TA













CACACAGTT













GAATCACTG













CGTTTTCAC













ACAGAGAAA













AA






chr
553300
G
A
KIR3D
p.V11
0.026
0.000
5.79
69.9
CCCACACTC
SEQ


19
36


L1
3M
23
38
E-
5[48.
CCCCACTGG
ID










118
58-
GTGGTCGGC
NO:











100.
ACCCAGCAA
537











73]
CCCC[G/A]TG













GTGATCATG













GTCACAGGT













CAGAGGCTT













TCCGTCTGG













GC






chr
553330
C
T
KIR3D
p.P220
0.028
0.000
9.70
1523
AGAACCTCC
SEQ


19
23


L1
L
68
02
E-
.42[3
CTGAGGAAA
ID










164
76.4-
CTGCCTCTTC
NO:











6165
TCCTTCCAG
538











.8]
GTC[C/T]ATA













TGAGAAACC













TTCTCTCTCA













GCCCAGCCG













GGCCCCAAG






chr
554941
T
G
NLRP2
p.I330
0.007
0.001
8.85
4.3[2
AGGGCCCTG
SEQ


19
21



S
85
80
E-
.1-
AGGGACCTC
ID










04
8.8]
CGGATCCTG
NO:












GCGGAGGAG
539












CCGA[T/G]CT













ACATAAGGG













TGGAGGGCT













TCCTGGAGG













AGGACAGGA













GG






chr
560296
A
C
SSC5D
p.T132
0.016
0.000
1.11
Inf
CCACCACTA
SEQ


19
21



6T
67
00
E-

CTCCTGATC
ID










80

CCACCACGA
NO:












CCCCTCACC
540












CCAC[A/C]AC













TCCTGACCC













TTCCTCAAC













CCCTGTCAT













CACTACTGT













GT






chr
564163
G
A
NLRP1
p.A86
0.006
0.003
4.86
1.79
CTCCAGTCT
SEQ


19
47


3
0V
86
84
E-
[1.22-
CTCTAAGGC
ID










03
2.63]
ACACTTGGG
NO:












GTGAGTCAG
541












GGCC[G/A]CA













CACAATAGC













TTTATGCCAT













CATCTTGGA













GCCGATTAA













A






chr
579108
T
G
ZNF54
p.F402
0.007
0.000
8.20
Inf
TGGAGAAAG
SEQ


19
59


8
V
60
00
E-

GCCTTATAA
ID










46

ATGCAGTGA
No:












ATGTGGGAA
542












ATCA[T/G]TT













AGGTACCAC













TGCAGGCTC













ATTAGACAC













CAGAGAGTC













CA






chr
581183
T
C
ZNF53
p.S499
0.005
0.000
3.59
Inf
CTGGAGAAA
SEQ


19
90


0
S
64
00
E-

GGCCTTATG
ID










34

AGTGCAGTG
No:












TATGTGGGA
543












AATC[T/C]TT













TATCCGAAA













AACCCACCT













CATTCGACA













CCAGACTGT













TC






chr
583862
T
C
ZNF81
p.A15
0.017
0.009
3.97
1.86
AGACAGATG
SEQ


19
84


4
8A
16
32
E-
[1.45-
ACTCCCCTG
ID










06
2.37]
ACACATGCA
NO:












ACTTACACC
544












TCTT[T/C]GC













AAACAACGC













CTCCTCAAC













ACTCCCTCT













GTAGGGTTT













CT






chr
584385
C
T
ZNF41
p.G34
0.007
0.000
6.65
Inf
GTTGATGTT
SEQ


19
05


8
8G
11
00
E-

GAATGAGAT
ID










43

TGCCCTTCTG
NO:












AGTAAAACA
545












TTT[C/T]CCA













CATTCTTCAC













ACTCATAAG













GTCTTTCTCC













AGTGTGAA






chr
587723
C
A
ZNF54
p.P117
0.005
0.002
1.59
1.93
ATCCCACCA
SEQ


19
21


4
T
53
866
E-
[1.11-
CGTGGAAGT
ID










02
3.15]
GTACAGGAG
No:












TGGACCGGA
546












GGAG[C/A]C













ACCCTCTTTG













GTATTAGGA













AAAGTGCAA













GATCAGAGC













AA






chr
141821
G
A
TPO
p.T10
0.009
0.005
3.81
1.69
TTAATTTTAG
SEQ


2
0



T
31
53
E-
[1.22-
AATGAGAGC
ID










03
2.35]
GCTCGCTGT
No:












GCTGTCTGT
547












CAC[G/A]CTG













GTTATGGCC













TGCACAGAA













GCCTTCTTCC













CCTTCATCT






chr
100450
A
T
TAF1B
p.K27
0.005
0.000
2.18
201.
TCTTTTATTT
SEQ


2
15



9X
39
03
E-
64[6
CAGTCTTGG
ID










29
0.33-
CCTGACTAC
No:











673.
GAGGACATC
548











95]
TAC[A/T]AAA













AAACAGTAG













AAGTTGGAA













CATTTTTAG













ATTTGCCTC













G






chr
117744
C
T
GREB
p.S171
0.001
0.000
3.24
11.7
TCCAGCAAG
SEQ


2
03


1
3F
47
13
E-
5[3.3
ACCCGGGCC
ID










03
7-
AGCGAGGTG
No:











40.9
CAAGAGCCC
549











2]
TTCT[C/T]CC













GCTGCCACG













TGCACAACT













TCATCATCCT













GAACGTGGA













C






chr
179980
C
T
MSGN
p.G72
0.005
0.002
8.49
1.84
CTCCCTGTCC
SEQ


2
01


1
G
39
93
E-
[1.2-
AGCTGTGGC
ID










03
2.84]
TGGGCTGCC
No:












CTGTGAGCA
550












CGG[C/T]GGG













GCCAGCAGT













GGGGGCAGC













GAAGGCTGC













AGTGTCGGT













G






chr
239295
C
T
KLHL2
p.C865
0.011
0.008
4.80
1.38
TCCTCCCCC
SEQ


2
01


9
C
03
04
E-
[1.01-
ACATGCCCT
ID










02
1.87]
GCCCTGTGT
No:












TCAGACACG
551












GCTG[C/T]GT













CGTGATAAA













GAAATATAT













TCAAAGCGG













CTGACATCA













GC






chr
243023
G
A
TP53I3
p.R258
0.003
0.000
2.03
16.4
TTGTCCCTA
SEQ


2
58



X
93
20
E-
[5.5-
GACCTCAGC
ID










04
49.2]
AAACTGGTG
No:












ATCAGACTT
552












CCTC[G/A]CT













TAAAAAGTA













GCTTTGAAA













ACAGGGGCC













CATTGATGT













CA






chr
249302
C
T
NCOA
p.A64
0.009
0.006
3.26
1.43
AAACCAGTC
SEQ


2
62


1
1A
56
69
E-
[1.04-
ACAAACTAG
ID










02
1.98]
TGCAGCTTTT
No:












GACAACAAC
553












TGC[C/T]GAA













CAGCAGTTA













CGGCATGCT













GATATAGAC













ACAAGCTGC













A






chr
264151
G
A
HADH
p.L661
0.010
0.007
3.77
1.41
TAGCCACTC
SEQ


2
98


A
L
05
13
E-
[1.03-
AAACGGACT
ID










02
1.94]
TACACTTCA
No:












GACTTAGGA
554












GGCA[G/A]CT













TCAGACTCG













CTAAAATAC













TATCCATGT













CAGAATTCA













AA






chr
266633
C
T
DRC1
p.T331
0.005
0.003
1.29
1.91
TACAACTTG
SEQ


2
49



I
856
08
E-
[1.11-
CAGGTGCTG
ID










02
3.07]
AAGAAGAGA
No:












GATGAAGAA
555












AGCA[C/T]AG













TAATTAAAT













CCCAGCAGA













AGAGGAAGA













TCAATCGGT













AA






chr
268523
C
G
CIB4
p.G42
0.017
0.000
2.59
Inf
ACCTGGTCC
SEQ


2
40



R
40
00
E-

ATGGTGAGC
ID










95

GTTGCCTCCT
No:












TGTAGTACT
556












TCC[C/G]AGG













AGGGCAGAG













CTTCAGGAA













GGTGTCATG













GATGCTGAA













A






chr
292460
G
A
FAM1
p.V53
0.005
0.003
4.86
1.55
AGGTCCTCA
SEQ


2
48


79A
6V
64
66
E-
?1.01-
CCGGGAAGC
ID










02
2.36?
TGCACGACG
No:












TGTGCTTGG
557












TGGT[G/A]AC













TGGGGAGGT













GAGGCCCCC













CAGCCTGTG













TGCTGTGCA













TT






chr
315951
C
T
XDH
p.R607
0.005
0.003
3.21
1.61
TCACTTGAT
SEQ


2
30



Q
64
51
E-
[1.06-
CTTGGCGTG
ID










02
2.45]
GGCCCGGGT
No:












GCTGGTGAC
558












CAGC[C/T]GG













AGAGACAGC













TCATTCTCGT













AGCGAGGAA













TGTCGTCAC













A






chr
322890
C
T
SPAST
p.P34P
0.021
0.000
3.17
2161
CTCCCAGGC
SEQ


2
02




81
01
E-
.13[3
CTCCGCCCC
ID










123
01.0
CTTGCCTGG
No:











2-
CCCCCGCCC
559











1551
CTCC[C/T]GC












5.36]
CGCCGGGCC













GGCCCCTCC













GCCCGAGTC













GCCGCATAA













GC






chr
489827
A
T
LHCG
p.L16
0.008
0.000
3.94
29.6
GAGCGCCTC
SEQ


2
64


R
Q
58
29
E-
3[15.
GCGCAGCGC
ID










28
93-
TCGTGGCAG
No:











55.1
CGGCGGCTG
560











2]
CAGC[A/T]GC













AGCAGCAGC













TTCAGCAGC













TGCAGCGCC













GAGAACCGC













TG






chr
624498
C
T
B3GN
p.N17
0.008
0.006
3.07
1.47
GAAGGCAAG
SEQ


2
65


T2
0N
82
00
E-
[1.05-
CAATCCGGG
ID










02
2.06]
AATCCTGGG
No:












GCCAAGAAA
561












GCAA[C/T]GC













AGGGAACCA













AACGGTGGT













GCGAGTCTT













CCTGCTGGG













CC






chr
743265
C
T
TET3
p.P115
0.019
0.000
5.92
2204
AGGTGCTCA
SEQ


2
94



3P
61
01
E-
.62[3
CCGCCTTCC
ID










115
06.7-
CCCGCGAGG
No:











1584
TCCGACGCC
562











7.05]
TGCC[C/T]GA













GCCTGCCAA













GTCCTGCCG













CCAGCGGCA













GCTGGAAGC













CA






chr
744793
G
A
SLC4A
p.S472
0.006
0.003
7.75
1.78
CCCCGATTT
SEQ


2
68


5
S
37
58
E-
[1.2-
CATGCATGG
ID










03
2.66]
CTGGCATCT
No:












CTCCATCAT
563












CCCC[G/A]CT













GCTTGTTCC













GCCGGCCCC













GCCACTGCC













AGCCCCGCC













GC






chr
747513
G
C
DQX1
p.T158
0.005
0.003
2.25
1.67
CCTCATCTA
SEQ


2
92



T
88
53
E-
[1.1-
GTACCAGCA
ID










02
2.52]
CGCCCCAGG
NO:












CTCCAGTGC
564












CTCG[G/C]GT













CGAGGCCAC













CTCCTGCAG













AAGCAGCCT













GTCCCAGCA













GA






chr
868317
G
C
RNF10
p.L421
0.006
0.003
5.86
1.8[1
CTCTTCTTCT
SEQ


2
51


3
V
62
69
E-
.22-
CAAAGTAAT
ID










03
2.66]
CAATTAGTA
NO:












AACCATGAC
565












CAA[G/C]GTA













TGTACTGAG













AAACAGGGC













TGGGTGTGA













AGAGTAAAA













C






chr
959456
G
A
PROM
p.G45
0.005
0.000
8.10
571.
CTATTCGTG
SEQ


2
67


2
0D
64
01
E-
38[7
GTGCTCTGC
ID










32
7.15-
AACCTGCTG
No:











4231
GGCCTCAAT
566











.98]
CTGG[G/A]CA













TCTGGGGCC













TGTCTGCCA













GGGACGACC













CCAGCCACC













CA






chr
981282
G
C
ANKR
p.L102
0.007
0.000
4.61
Inf
GTCTTTGCCT
SEQ


2
58


D36B
1L
35
00
E-

GCTCTCTCTT
ID










27

TGCTTCTCCA
No:












GTTTGGAAC
567












G[G/C]AGCGT













TGTGTTTTCA













TCTGTCAGA













GCAGCAAGC













TGTCCAC






chr
981283
G
A
ANKR
p.T100
0.017
0.000
7.10
240.
ATCTGTCAG
SEQ


2
13


D36B
3M
16
07
E-
02[5
AGCAGCAAG
ID










60
8.84-
CTGTCCACT
NO:











979.
ATAACAGGC
568











16]
TATC[G/A]TT













TTTGCTAAT













GTTTCCCCAT













TCCGTTTTAG













AGCCTTTTG






chr
996517
G
A
TSGA1
p.S503
0.005
0.001
1.76
3.76
TAATACAGA
SEQ


2
98


0
S
21
39
E-
[2.09-
GTTCCCTAG
ID










05
6.31]
TAGAAGACA
NO:












AATCTGCAA
569












GAGC[G/A]G













ACACTTTTTC













AAACTGAAC













CTTCTGAAG













CTCCTCTTCC













A






chr
108486
G
T
RGPD
RGPD4
0.025
0.000
1.47
67.6
ACTTTAACA
SEQ


2
338


4
(NM_
25
38
E-
[34.1
GTGTTTTCTT
ID







182588:


74
8-
TCTTTTCTTT
NO:







exon19:



133.
TTTTTTTTTT
570







c.



72]
A[G/T]TTGCA








2606-




ACTACTGGC








1G > T)




CCTTCAGTA













TATTATAGT













CAGTCACC






chr
109347
T
G
RANB
p.L96
0.014
0.000
1.94
Inf
ATTAGCGTT
SEQ


2
813


P2
L
95
00
E-

CAGTGGAAT
ID










89

TAAACCCAA
No:












CACAAAAAG
571












ATCT[T/G]GT













GTTGAAGAT













TGCAGAATT













GCTTTGTAA













AAATGATGT













TA






chr
112922
C
G
FBLN7
p.P87
0.007
0.004
7.23
1.73
TCCATCTCTC
SEQ


2
601



A
35
26
E-
[1.19-
CTTACAGTTT
ID










03
2.51]
CCTGCCCGG
NO:












CTCTGAACA
572












CC[C/G]CCGC













AGACGGCAG













AAAGTTTGG













AAGCAAGTA













CTTAGTGGA






chr
113940
G
A
PSD4
p.A52
0.022
0.000
6.94
2577
CCATGAGGA
SEQ


2
187



T
55
01
E-
.18[3
TCCACCGGA
ID










133
59.1-
GCCTTTCGA
NO:











1849
GGAGCAAAC
573











5.63]
CTGG[G/A]CC













ACTGACCCT













CCTGAACCT













ACCAGACAA













AATGTTCCT













CC






chr
114500
C
T
SLC35
p.E224
0.009
0.006
4.53
1.43
GCAGTAAGT
SEQ


2
349


F5
K
07
35
E-
[1.03-
TTCCCCACA
ID










02
1.99]
GTTTTCAGT
NO:












ATGGATTCT
574












TGTT[C/T]TT













TCACAGGAT













ATGACATGC













GAGACAACT













TTGCTTCCA













AT






chr
132238
T
C
TUBA3
p.A27
0.007
0.004
2.79
1.55
TCCACTTCCC
SEQ


2
100


D
8A
35
75
E-
[1.07-
CCTGGCCAC
ID










02
2.25]
CTATGCCCC
NO:












AGTCATCTC
575












AGC[T/C]GAG













AAGGCCTAC













CACGAGCAG













CTGTCTGTG













GCCGAGATC













A






chr
136418
A
G
R3HD
p.H59
0.005
0.002
1.00
2.18
TTATGATCCT
SEQ


2
868


M1
6R
64
60
E-
[1.42-
AGATGCCAG
ID










03
3.33]
CCTGTTATTG
No:












CGCTCCAGG
576












CC[A/G]CTAT













CACTCCAGC













CAACCTCAG













TATCGCCCA













GTCCCTTCT






chr
141232
C
T
LRP1B
p.A31
0.007
0.011
2.07
0.67
GCCCAGTAG
SEQ


2
800



78T
84
71
E-
[0.47-
AGTCTACGA
ID










02
0.95]
TTAACATAA
No:












TCTATTGTTA
577












GTG[C/T]CAT













AGGTCTAGA













AATCTTGGT













TTCTATGAC













AACACTCTG













A






chr
152982
T
C
STAM2
p.M39
0.006
0.003
9.98
1.73
ATAATTTAG
SEQ


2
745



2V
62
83
E-
[1.17-
AAAATGTTC
ID










03
2.56]
TCAAAAAAC
No:












ATGCTCACC
578












TGCA[T/C]TG













GAACCCCAG













ATGATGCAG













GTGGGTAAT













GTGCTGGAG













GG






chr
165984
C
T
SCN3A
p.V10
0.012
0.007
7.31
1.71
GGGTTGTTT
SEQ


2
284



841
25
22
E-
[1.28-
ATGAATGAC
ID










04
2.27]
ATATAATCA
No:












TTTTCATCGA
579












TTA[C/T]GTA













TTTTTCAACA













CTGCTTCCA













GTACCTACA













CCACTGGTG






chr
171070
G
A
MYO3
p.G13
0.005
0.003
4.93
1.68
CCAGCGGTT
SEQ


2
982


B
9R
205
108
E-
[0.95-
GGATGAAGC
ID










02
2.77]
AATGATCTC
No:












ATACATCTT
580












GTAC[G/A]GG













GCCCTCTTG













GTAAGAACA













TCTATCAAA













TGGGGTATG













AC






chr
178096
G
A
NFE2L
p.L286
0.005
0.003
6.39
1.86
AGATCAGAA
SEQ


2
406


2
F
64
04
E-
[1.22-
ACATCAATG
ID










03
2.84]
GGCCCATTT
No:












AGAAGTTCA
581












GAGA[G/A]T













GAATGGCTT













AAAGTAGCA













GGTGAGGGC













ATGCTGTTG













CTG






chr
186661
A
G
FSIP2
p.R333
0.006
0.003
1.12
1.72
ATCGTGTTCT
SEQ


2
602



6G
86
99
E-
[1.16-
ACTAGAAAC
ID










02
2.56]
AAAGTACAA
NO:












GACCACAGA
582












CCA[A/G]GG













GAATCTAAC













TTTGGTAGTT













TTGATCAGA













CCATGAAAG













G






chr
186678
A
T
FSIP2
p.K68
0.025
0.000
3.65
Inf
TTTCTCCTAA
SEQ


2
577



00N
49
00
E-

GTCAACACT
ID










151

AAGCACGAG
NO:












CAGCCTGAA
583












AAA[A/T]TTT













TTGTCACTA













AGTAAATGT













TGTCAGACC













ACAGCCAGT













G






chr
187605
G
A
FAM1
p.R95
0.007
0.004
2.40
1.58
GTATTTATGT
SEQ


2
000


71B
H
11
51
E-
[1.09-
TGAAAGTCC
ID










02
2.3]
AGGTGAATG
NO:












ACATCATCA
584












GTC[G/A]TCA













GTACCTGAG













CCAAGCAGT













TGTAGAAGT













GTTTGTAAA













C






chr
209302
G
A
PTH2R
p.S82S
0.006
0.000
1.50
743.
GACTCATTT
SEQ


2
329




62
01
E-
52[1
GTTGGCCCA
ID










38
01.0
GAGGAACAG
No:











1-
TGGGGAAAA
585











5472
TATC[G/A]GC












.96]
TGTTCCATG













CCCTCCTTAT













ATTTATGAC













TTCAACCAT













A






chr
211068
C
A
ACAD
p.R311
0.007
4.63
0.002
3.5[2
AACTGTTTT
SEQ


2
107


L
M
11
04
E-
.37-
GCCAAAAGC
ID










08
5.16]
TTTTCTTTGT
NO:












TTAACATAG
586












TTC[C/A]TGG













TTTCTTCAAA













CATGAATTC













ACTAGCTGA













AATTGCCAC






chr
216285
C
T
FN1
p.V52
0.001
not
4.03
Inf
ATGTGCCCC
SEQ


2
492



7M
47
found
E-

TCTTCATGA
ID










06

CGCTTGTGG
NO:












AATGTGTCG
587












TTCA[C/T]AT













TGTAAGTGA













TGTCATCAA













CAATGCACT













GATCTGTTT













AG






chr
233246
A
G
ALPP
p.E451
0.006
0.004
8.56
1.71
AGCCCCGAG
SEQ


2
249



G
86
01
E-
[1.17-
TATCGGCAG
ID










03
2.52]
CAGTCAGCA
NO:












GTGCCCCTG
588












GACG[A/G]A













GAGACCCAC













GCAGGCGAG













GACGTGGCG













GTGTTCGCG













CGC






chr
233498
C
G
EFHD
p.P34
0.010
0.000
2.59
Inf
GAGAGTGGC
SEQ


2
515


1
R
05
00
E-

CCCCAGCTG
ID










36

GCTCCCCTC
NO:












GGCGCCCCA
589












GCCC[C/G]GG













AGCCCAAGC













CCGAGCCCG













AGCCTCCCG













CCCGTGCGC













CC






chr
234229
C
T
SAG
p.T125
0.005
0.003
1.25
1.78
CTTAAAAAG
SEQ


2
468



M
88
32
E-
[1.17-
CTGGGGAGC
ID










02
2.7]
AACACGTAC
NO:












CCCTTTCTCC
590












TGA[C/T]GGT













GGGTGACTC













CTCCGGCCA













GCCCTGCTT













CCTTCACCC













G






chr
237029
C
T
AGAP
p.C711
0.025
0.000
9.57
943.
TGCTGGCAC
SEQ


2
013


1
C
25
03
E-
45[2
ACGGCTCCC
ID










145
99.2
GGGACGAGG
NO:











2-
TGAACGAGA
591











2974
CCTG[C/T]GG












.8]
GGAGGGAGA













CGGCCGCAC













GGCGCTGCA













TCTGGCCTG













CC






chr
238973
A
G
SCLY
p.K60
0.002
0.000
5.74
4.37
AACGACTCC
SEQ


2
062



E
94
67
E-
[2.37-
CCTGGAGCC
ID










05
8.05]
AGAAGTTAT
NO:












CCAGGCCAT
592












GACC[A/G]A













GGCCATGTG













GGAAGCCTG













GGGAAATCC













CAGCAGCCC













GTA






chr
240982
G
A
PRR21
p.R53
0.021
0.000
1.26
480.
GGGTGAAGA
SEQ


2
243



W
32
05
E-
79[1
GCCGTGGAT
ID










112
76.3
GAAGGGCCG
NO:











8-
TGGGTGAAG
593











1310
AGCC[G/A]TG












.53]
GATGAAGGG













CCATGGGTG













AAGAGCCGT













GGATGAAGG













GC






chr
242154
G
A
ANO7
NM_
0.005
0.000
3.42
7.1[3
GCAAGCAGG
SEQ


2
318



001001891:
89
80
E-
-
TCATCAACA
ID







exon18:


04
16.5]
ACATGCAGG
NO:







c




AGGTCCTCA
594







.1988 +




TCCC[G/A]TG








1G > A




AGTCCCCCA













CTCCTCCCTG













GGTGGCATC













CAAGGACCG













A






chr
242207
T
A
HDLB
p.T14S
0.009
0.006
4.29
1.43
ACCACACAC
SEQ


2
024



P
07
34
E-
[1.02-
CTCTTAATG
ID










02
2.02]
CTTACAAAA
NO:












TGCATCATG
595












ACAG[T/A]TG













CTACAAAAA













GCCAGCGGT













CTCTCTCTGC













AAGGTGCAT













C






chr
242312
C
T
FARP2
p.H45
0.008
0.006
4.12
1.45
TGGGCAGAC
SEQ


2
655



Y
82
12
E-
[1.03-
TCTCTTGCCC
ID










02
2.03]
AGAATGCAA
NO:












GAGAAGCAC
596












CTG[C/T]ACC













TCAGAGTAA













AGCTGCTGG













ACAACACCA













TGGAAATAT













T






chr
314753
G
A
LZTS3
p.L93
0.009
0.006
1.14
1.55
CACTGCCCC
SEQ


20
1



L
56
19
E-
[1.12-
GCAGCTCAC
ID










02
2.14]
CATTGAGGT
NO:












AGAGGGAGT
597












TGGC[G/A]AG













ACCCTTGTC













CTCTGAGGG













GTAGCGGCC













CGGCCTCTC













CC






chr
468011
T
C
PRNP
p.S55P
0.005
0.000
1.14
314.
GTGGCTGGG
SEQ


20
8




64
02
E-
81[7
GGCAGCCCC
ID










31
4.2-
ATGGTGGTG
NO:











1335
GCTGGGGAC
598











.71]
AGCC[T/C]CA













TGGTGGTGG













CTGGGGTCA













AGGAGGTGG













CACCCACAG













TC






chr
317569
C
T
BPIFA
p.G12
0.005
0.002
9.96
1.86
AAAAGATGC
SEQ


20
87


2
G
15
77
E-
[1.2-
TTCAGCTTTG
ID










03
2.9]
GAAACTTGT
NO:












TCTCCTGTGC
599












GG[C/T]GTGC













TCACTGGGA













CCTCAGAGT













CTCTTCTTGA













CAATCTTG






chr
340785
G
A
CEP25
p.E881
0.010
0.007
4.80
1.37
CTGGCACCA
SEQ


20
17


0
K
78
88
E-
[1.01-
GCAGGAGCT
ID










02
1.86]
GGCAAAGGC
No:












TCTGGAGAG
600












CTTA[G/A]AA













AGGGAAAAA













ATGGAGCTG













GAAATGAGG













CTAAAGGAG













CA






chr
341303
T
C
ERGIC
p.F76F
0.007
0.000
3.01
79.9
CGCGGGGAG
SEQ


20
30


3

11
09
E-
3[38.
ATAAACTGA
ID










34
93-
AGATCAACA
No:











164.
TCGATGTAC
601











12]
TTTT[T/C]CC













GCACATGCC













TTGTGCCTGT













GAGTACCTC













ACCATGGGT













G






chr
462798
G
A
NCOA
p.Q12
0.011
0.000
5.51
Inf
GGGTGGCTA
SEQ


20
39


3
55Q
27
00
E-

TGATGATGC
ID










65

AGCAGCAGC
No:












AGCAGCAGC
602












AACA[G/A]C













AGCAGCAGC













AGCAGCAGC













AGCAGCAAC













AGCAACAGC













AAC






chr
485033
G
A
SLC9A
p.S519
0.009
0.006
3.58
1.44
GGCCGCCTT
SEQ


20
06


8
S
07
33
E-
[1.03-
TCCTCCCTGC
ID










02
2]
TCAGGGCAA
No:












CACTGTGGA
603












GTC[G/A]GAG













CACCTGTCG













GAGCTCACG













GAGGAGGAG













TACGAGGCC













C






chr
491978
G
A
PTPN1
p.G30
0.005
0.002
6.45
2.14
CACTGAAGT
SEQ


20
54



8S
541
6
E-
[1.23-
TAGAAGTCG
ID










03
3.49]
GGTCGTGGG
No:












GGGAAGTCT
604












TCGA[G/A]GT













GCCCAGGCT













GCCTCCCCA













GCCAAAGGG













GAGCCGTCA













CT






chr
609019
C
T
LAMA
p.V17
0.011
0.007
2.52
1.43
ACCCTGCCA
SEQ


20
32


5
35M
27
93
E-
[1.06-
CATCATCTC
ID










02
1.92]
AGCTCCCTC
No:












ACCTGCAGC
605












ACCA[C/T]AT













CCGGCCTGC













TCTCCATGG













GGACAAAGA













CATCTCCCC













GC






chr
612963
C
A
SLCO4
p.G40
0.011
0.008
4.76
1.35
TCTGCCTGG
SEQ


20
67


A1
1G
52
55
E-
[1.01-
CCGGGGCCA
ID










02
1.81]
CCGAGGCCA
No:












CTCTCATCA
606












CCGG[C/A]AT













GTCCACGTT













CAGCCCCAA













GTTCTTGGA













GTCCCAGTT













CA






chr
622005
C
T
HELZ2
p.S334
0.005
0.003
3.47
1.63
GGTGCATCC
SEQ


20
87



S
15
16
E-
[1.05-
TCTGCCGAT
ID










02
2.54]
AGTTGGTTG
No:












GTGAGATGG
607












GGCC[C/T]GA













GGCCACGCT













GCTGCGGTT













GAACTCCAG













GGCCAGGGC













AG






chr
109429
T
G
TPTE
p.Q17
0.005
0.000
9.09
14.4
ACTTACCCG
SEQ


21
55



3P
88
41
E-
3[8.7
CCTTCTTATC
ID










18
8-
AGCTTTTCA
No:











23.7]
AGTTGTCTTT
608












TT[T/G]GATG













AAACAGATG













AAAAATTCT













TAACAGAAT













AATAAGTCG






chr
109429
C
A
TPTE
p.L164
0.012
0.000
1.16
16.3
CAAGTTGTC
SEQ


21
81



L
75
79
E-
9[11.
TTTTTTGATG
ID










38
59-
AAACAGATG
No:











23.1
AAAAATTCT
609











7]
TAA[C/A]AGA













ATAATAAGT













CGTAGAAGT













CGAAGTAAA













TGTGTCCAT













C






chr
149827
A
G
POTE
p.R58
0.022
0.000
8.43
216.
CACTTCTGG
SEQ


21
21


D
G
79
11
E-
23[5
AGACCACGA
ID










67
3.26-
CGACTCCTTT
No:











877.
ATGAAGATG
610











86]
CTC[A/G]GGA













GCAAGATGG













GCAAGTGTT













GCCGCCACT













GCTTCCCCT













G






chr
349274
C
G
SON
p.R196
0.008
0.000
2.93
Inf
GCATTTCCC
SEQ


21
26



3R
33
00
E-

CAAGCCGCC
ID










36

GCAGCCGCA
No:












CCCCCAGCC
611












GCCG[C/G]AG













CCGCACCCC













CAGCCGCCG













CAGCCGCAC













CCCCAGCCG













CC






chr
427708
G
A
ALV2
p.G40
0.010
0.006
1.46
1.51
GGAGAGCCA
SEQ


21
96



8R
05
66
E-
[1.1-
CCAGAAGGC
ID










02
2.08]
GACCGAGGA
NO:












GCTGCGGCG
612












TTGC[G/A]GG













GCTGACATC













CCCAGCCAG













GAGGCCGAC













AAGATGTTC













TT






chr
434126
G
C
ZBTB2
p.A52
0.007
0.005
3.45
1.49
ACCAAATTC
SEQ


21
40


1
2G
60
10
E-
[1.04-
GTCTTTATTC
ID










02
2.15]
AAATCAGAA
NO:












TCTGGAAAA
613












TCT[G/C]CAT













CAAGGAGAG













TAGGGCTTG













AGCCTTCCT













CAAAATTAT













C






chr
456707
G
A
DNMT
p.S276
0.024
0.000
1.25
2810
GCACCAGAT
SEQ


21
74


3L
S
75
01
E-
.21[3
TGTCCACGA
ID










145
91.9
ACATCCAGA
No:











4-
AGAAGGGCC
614











2014
TGGG[G/A]CT












9]
GCCTGGCTT













GGGCCGTGC













GTACTGCAG













GAGCCGGTG













GA






chr
457866
G
A
TRPM
p.V15
0.008
0.005
3.32
1.49
CCCGCAGTA
SEQ


21
70


2
3M
33
61
E-
[1.05-
CGTCCGAGT
ID










02
2.11]
CTCCCAGGA
NO:












CACGCCCTC
615












CAGC[G/A]TG













ATCTACCAC













CTCATGACC













CAGCACTGG













GGGCTGGAC













GT






chr
459947
T
C
KRTA
p.P378
0.011
0.000
1.15
1313
GCCGCCCCG
SEQ


21
69


P10-4
P
76
01
E-
.63[1
TGTGCAGGC
ID










68
81.2
CCGCCTGCT
NO:











8-
GCGTGCCCG
616











9519
TCCC[T/C]TC












.28]
CTGCTGTGC













TCCCACCTC













CTCCTGCCA













ACCCAGCTG













CT






chr
459998
T
A
KRTA
p.T197
0.008
0.000
4.27
Inf
CAGCAAGCC
SEQ


21
67


P10-5
S
82
00
E-

GGCTGACAG
ID










53

CTAGACTGC
NO:












TGGCAGCAT
617












GAAG[T/A]G













GAAGCCCCA













GAGCAGACG













GGCACACAG













CAGATGGGT













TTG






chr
460000
G
A
KRTA
p.P138
0.026
0.000
3.02
Inf
ATGAAGAGG
SEQ


21
42


P10-5
P
47
00
E-

AATCCTCAG
ID










158

AACAGGTGG
NO:












GCACACAGC
618












ACAC[G/A]G













GCTTGCAGC













AGACAGGCA













CACAGCAGG













ACTGCTGGC













AGG






chr
460206
C
T
KRTA
p.C42
0.012
0.001
7.61
10.2
CCGACTCCT
SEQ


21
47


P10-7
C
75
26
E-
4[7.4
GGCAGGTGG
ID










31
3-
ACGACTGCC
NO:











14.1
CAGAGAGCT
619











2]
GCTG[C/T]GA













GCCCCCCTG













CTGCGCCCC













CAGCTGCTG













CGCCCCGGC













CC






chr
460324
T
C
KRTA
p.S153
0.014
0.000
3.77
Inf
TGGAGCTTC
SEQ


21
74


P10-8
P
22
00
E-

CTCCCCATG
ID










85

CTGCCAGCA
NO:












GTCTAGCTG
620












CCAG[T/C]CA













GCTTGCTGC













ACCTTCTCCC













CATGCCAAC













AGGCCTGCT













G






chr
461174
T
C
KRTA
p.S98P
0.017
0.000
3.00
1974
CTGCCAGCA
SEQ


21
08


P10-12

40
01
E-
.74[2
GTCTAGCTG
ID










102
74.3-
CCAGCCGGC
NO:











1421
TTGCTGCAC
621











6.51]
CTCC[T/C]CC













CCCTGCCAG













CAGGCCTGC













TGCGTGCCC













GTCTGCTGC













AA






chr
461914
G
A
UBE2
p.P60P
0.008
0.005
3.46
1.47
ACATTTTGG
SEQ


21
00


G2

33
68
E-
[1.04-
ACGCATCCA
ID










02
2.08]
CGTTAGCTC
NO:












CACTTTCGTC
622












ATT[G/A]GGC













TCTGAAAGA













AAAGGGAAC













ACCCTCCAT













GTAAAAGGG













A






chr
465964
G
A
ADAR
p.K28
0.008
0.005
2.59
1.5[1
TCGTGGATG
SEQ


21
59


B1
1K
33
59
E-
.06-
GTCAGTTCTT
ID










02
2.12]
TGAAGGCTC
NO:












GGGGAGAAA
623












CAA[G/A]AA













GCTTGCCAA













GGCCCGGGC













TGCGCAGTC













TGCCCTGGC













CG






chr
185627
T
C
PEX26
p.Y10
0.005
0.002
2.61
1.82
AATGGATCG
SEQ


22
34



9H
21
87
E-
[1.03-
GTGGCAAGA
ID










02
3.01]
AGTCCTCTC
NO:












CTGGGTCCT
624












TCAG[T/C]AT













TACCAGGTC













CCTGAAAAG













CTACCCCCC













AAAGTCCTG













GA






chr
240867
G
A
ZNF70
p.C198
0.013
0.000
4.80
1525
TGAGGGCTG
SEQ


22
34



C
48
01
E-
.31[2
AGCTCTGGC
ID










79
11.0
GGAAGGCCT
NO:











3-
TCCCACACT
625











1102
CCCG[G/A]CA












4.83]
CTCGTAGGG













CTTCTCCCCG













GTGTGGATG













ATCTGGTGC













C






chr
250071
G
A
GGT1
p.A42
0.008
0.002
5.51
3.34
AGCCTCCAA
SEQ


22
72



T
82
66
E-
[2.34-
GGAACCTGA
ID










09
4.76]
CAACCATGT
NO:












GTACACCAG
626












GGCT[G/A]CC













GTGGCCGCG













GATGCCAAG













CAGTGCTCG













AAGATTGGG













AG






chr
250072
A
G
GGT1
p.K52
0.008
0.002
2.23
3.52
CACCAGGGC
SEQ


22
02



E
82
52
E-
[2.45-
TGCCGTGGC
ID










09
5.05]
CGCGGATGC
NO:












CAAGCAGTG
627












CTCG[A/G]AG













ATTGGGAGG













TGAGCAGGG













CAGGGCATG













GGACATGGG













CC






chr
268799
A
G
SRRD
p.R37
0.007
0.000
1.96
Inf
CTCGACGGC
SEQ


22
67



R
11
00
E-

CGCGGCGGA
ID










08

GGGAGGCGG
NO:












CGCCCCGGG
628












GGAG[A/G]G













AGGCGGCGC













CCCGGGGGA













GAGAGGCGG













CGCCCCGGG













GCC






chr
299132
C
T
THOC
p.V52
0.010
0.007
4.97
1.38
ACTCCTTCA
SEQ


22
78


5
3M
05
28
E-
[1.01-
CCTACCATG
ID










02
1.9]
TAATCCTCA
NO:












TGGGCAACT
629












GTCA[C/T]CC













ATTTCACCA













GGCGAGAGA













CAACCTTGG













CAGGGAAGA













GG






chr
325904
C
T
RFPL2
p.R50
0.005
0.003
3.92
1.56
GGGCCTTTT
SEQ


22
48



H
88
78
E-
[1.03-
ATTGGTGAG
ID










02
2.35]
ATTCCCACC
No:












TCCCACTGG
630












GTCA[C/T]GC













CCTTCCACA













CCCTCTAAC













CTGATGAGG













CTTTGATTTA













A






chr
325904
G
A
RFPL2
p.I42I
0.005
0.003
3.59
1.96
CACCTCCCA
SEQ


22
71




88
01
E-
[1.29-
CTGGGTCAC
ID










03
2.97]
GCCCTTCCA
No:












CACCCTCTA
631












ACCT[G/A]AT













GAGGCTTTG













ATTTAATTAT













AACAGGGAA













TTAGGTTTTT






chr
381203
C
G
TRIOB
p.T599
0.008
0.000
4.23
966.
AGAGCCTCC
SEQ


22
59


P
R
58
01
E-
49[1
TCTCCCAAT
ID










50
32.3
AGAGCTACA
No:











8-
CGAGACAAC
632











7056
CCCA[C/G]AA












.38]
CATCCTGTG













CCCAGCGGG













ACAATCCCA













GAGCCTCCA













GA






chr
381208
C
T
TRIOB
p.P754
0.021
0.000
3.86
2405
CGAGACAAC
SEQ


22
24


P
L
08
01
E-
.39[3
CCCAGAACA
ID










124
34.9
TCCTGTGCC
No:











2-
CAGCGGGAC
633











1727
AATC[C/T]CA












5.56]
GAGCCTCCT













CTCCTAACA













GAACCATCC













AACAAGAGA













AC






chr
381224
G
T
TRIOB
p.G12
0.026
0.000
4.02
Inf
GGCCCAGAG
SEQ


22
49


P
96W
23
00
E-

ACAGCCAGG
ID










141

GCCCCAGGC
No:












GCAGTGCAG
634












CAGC[G/T]GG













GGCCGCACC













CACAGCCCT













GGCCGTGCA













GAGGTGGAG













CG






chr
425646
G
A
TCF20
p.S195
0.015
0.000
1.36
Inf
ACTGCCCCC
SEQ


22
89



1S
44
00
E-

CTCACCCCC
ID










91

GCTCCGACT
No:












GCTCTGTGC
635












TGAG[G/A]CT













GCCTTTCGC













GGTCTTGTTC













TGCAAGGGG













GGGAGAGGG













C






chr
466578
T
C
PKDR
p.R447
0.006
0.002
2.21
2.21
ATGTGTGCT
SEQ


22
81


EJ
G
51
96
E-
[1.33-
ATGGCTTTT
ID










03
3.47]
GGTCCTTGG
No:












AGCACGTGG
636












ACCC[T/C]CT













TATCAGAAA













ACGCTGTCC













TAGAGTCCT













TCCGAATCA













CC






chr
503153
C
A
CREL
p.D18
0.035
0.027
4.33
1.29
ACATGGGGT
SEQ


22
63


D2
2E
54
77
E-
[1.09-
ACCAGGGCC
ID










03
1.53]
CGCTGTGCA
No:












CTGACTGCA
637












TGGA[C/A]GG













CTACTTCAG













CTCGCTCCG













GAACGAGAC













CCACAGCAT













CT






chr
507212
T
C
PLXN
p.M95
0.009
0.006
2.76
1.47
TTGGGCACG
SEQ


22
52


B2
9V
31
34
E-
[1.06-
GGGGACCCC
ID










02
2.04]
CCGTAGGAG
No:












ACCTCCAGA
638












AGCA[T/C]CT













GGCCCCGTG













TCGCCTGGG













GGCCAGTGA













CACACTGGA













GC






chr
126965
G
A
CNTN
p.K11
0.007
0.005
1.83
1.57
GCCTGGCCA
SEQ


3
8


6
3K
84
02
E-
[1.1-
CCAATCTTCT
ID










02
2.24]
GGGGACAAT
No:












TCTGAGTCG
639












GAA[G/A]GC













AAAGCTCCA













ATTTGCATG













TGAGTTTGG













GGTAAATTT













TG






chr
109768
C
T
SLC6A
p.C564
0.005
0.003
3.50
1.63
ATGGCATTG
SEQ


3
31


11
C
15
17
E-
[1.05-
GCTGGCTCA
ID










02
2.53]
TGGCCCTGT
No:












CCTCCATGC
640












TCTG[C/T]AT













CCCGCTCTG













GATCTGCAT













CACAGTGTG













GAAGACGGA













GG






chr
147246
C
T
C3orf2
p.L26
0.009
0.006
5.92
1.61
ACAGGTTTC
SEQ


3
64


0
L
80
11
E-
[1.17-
AGCAGCAGT
ID










03
2.22]
CCATCCACC
No:












TGCTGACGG
641












AGCT[C/T]CT













CAGACTGAA













GATGAAGGC













CATGGTGGA













GTCTATGTC













GG






chr
324094
C
T
CMTM
p.A12
0.008
0.005
1.57
1.54
TGTGCTTTA
SEQ


3
08


8
2A
82
74
E-
[1.1-
ACGGCAGTG
ID










02
2.16]
CCTTCGTCTT
No:












GTACCTCTCT
642












GC[C/T]GCTG













TTGTAGATG













CATCTTCCGT













CTCCCCTGA













GAGGGACA






chr
367800
C
T
DCLK
p.R24
0.012
0.009
4.43
1.36
TGGAGAAGG
SEQ


3
80


3
Q
50
21
E-
[1.02-
GGCACGGCT
ID










02
1.81]
GTGCTGGGC
No:












CAGTGTCAG
643












GGCC[C/T]GG













GCTTTGTTG













GGGTACAGT













TCTTCTACA













GCCACCTGA













AT






chr
383476
C
T
SLC22
p.L55F
0.009
0.006
3.16
1.44
GAGGGCTGT
SEQ


3
80


A14

56
64
E-
[1.04-
CCACACCAA
ID










02
1.99]
GCAGGATGA
No:












CAAGTTTGC
644












CAAC[C/T]TC













CTGGATGCG













GTGGGGGAG













TTTGGCACA













TTCCAGCAG













AG






chr
386718
G
A
SCN5A
p.H11
0.005
0.002
2.12
2.01
ATGAGTGAA
SEQ


3
40



8H
88
94
E-
[1.33-
CCAGAATCT
ID










03
3.05]
TCACAGCCG
No:












CTCTCCGGA
645












TGGG[G/A]TG













GAAGGGACT













GAGGACATA













CAAGGCGTT













GGTGGCACT













GA






chr
419493
G
A
ULK4
p.P391
0.008
0.005
2.71
1.5[1
TAGGAAGAA
SEQ


3
48



S
58
74
E-
.06-
AATTTCCCA
ID










02
2.11]
AGTCTGCTC
No:












ACCTTGGTC
646












AGAG[G/A]A













GAAGTCTTC













TGTGGTGAA













CAGTGAGTC













ATATCCTCA













CCA






chr
427750
G
A
CCDC
p.R471
0.007
0.000
8.25
88.7
CTGGGTCCT
SEQ


3
60


13
R
11
08
E-
2[41.
CCAGGAACT
ID










35
97-
GGGTATAGG
No:











187.
CAGGGCTGA
647











53]
CCTC[G/A]CG













GCCACTGGA













CCCCTCACC













CACTCCTTTA













TTCCGAAGA













T






chr
455420
C
T
LARS2
p.A56
0.006
0.003
1.03
2.02
GGATGCCTG
SEQ


3
03



4A
86
41
E-
[1.38-
TGGATTTGT
ID










03
2.97]
ACATTGGAG
No:












GGAAAGAAC
648












ATGC[C/T]GT













CATGCACTT













GTTCTATGC













AAGATTCTT













TAGTCATTTT













T






chr
460629
G
A
XCR1
p.S173
0.009
0.005
1.02
1.57
GGAGGTGAG
SEQ


3
22



L
31
97
E-
[1.13-
GTACCACGT
ID










02
2.17]
GAGTTCGGA
NO:












ATAATCACA
649












GCCC[G/A]AA













GAAAGCACC













TTGTGGAAG













ATGGTGTCG













AGGATGGAG













GA






chr
464969
G
A
LTF
p.A17
0.007
0.004
2.66
1.55
GGTTGGGGA
SEQ


3
10



4A
11
61
E-
[1.06-
ACTGTCCTTT
ID










02
2.25]
ATCTGCACC
NO:












GGGAACACA
650












GCT[G/A]GCT













GAGAAGAAC













CTGGCCACA













GCTGTTAAA













CACAGAGAA













G






chr
495691
G
A
DAG1
p.V41
0.006
0.002
7.27
2.16
CTGGCCAGA
SEQ


3
77



1V
37
96
E-
[1.45-
TTCGCCCAA
ID










04
3.22]
CGATGACCA
NO:












TTCCTGGCT
651












ATGT[G/A]GA













GCCTACTGC













AGTTGCTAC













CCCTCCCAC













AACCACCAC













CA






chr
497288
A
G
RNF12
p.E32
0.009
0.006
2.22
1.49
CTTTTCTCCC
SEQ


3
70


3
G
56
43
E-
[1.08-
TTCTGACTTG
ID










02
2.06]
TGGCTCAGG
NO:












CATTGTGCA
652












GG[A/G]GAA













GCTGCTGAA













TGACTACCT













GAACCGCAT













CTTTTCCTCT






chr
503345
C
T
NAT6
p.V14
0.008
0.005
2.17
1.53
TGGTTCAGC
SEQ


3
40



1I
09
29
E-
[1.07-
ACCCGTGAC
ID










02
2.18]
AGGCGGGCA
NO:












TGGCCCACC
653












ACAA[C/T]GG













GTGCTGCTT













CAAGTGTGG













GGTGGGGGC













TTAGCAGCA













TC






chr
520056
G
A
ABHD
p.R8C
0.007
0.005
4.86
1.45
AAGAAGAGG
SEQ


3
65


14B

60
26
E-
[1.01-
GCCTGGCCC
ID










02
2.08]
TGCACCTGG
No:












ATGGTGCCC
654












TCGC[G/A]CT













GCTCCACGC













TTGCTGCCA













TGCCTGCTG













CTGCTGTGC













TG






chr
525408
C
T
STAB1
p.S655
0.006
0.004
2.53
1.61
TGCCCCCGA
SEQ


3
42



S
62
12
E-
[1.09-
CCATCCTGC
ID










02
2.38]
CCATCCTGC
No:












CCAAGCACT
655












GCAG[C/T]GA













GGAGCAGCA













CAAGATTGT













GGCGGTGAG













CCTCGCCTG













CA






chr
757862
A
G
ZNF71
p.S855
0.005
0.000
1.25
89.9
TTTTCTCCTG
SEQ


3
11


7
P
15
06
E-
2[12.
TGTGTGTTCT
ID










14
09-
CTGATGTAT
No:











668.
ACTGAGGCC
656











7]
TG[A/G]CTTC













TGGGAGAAA













GTTTTCCTAC













ATTCATTAC













ATCTAAAG






chr
757869
C
A
ZNF71
p.R611
0.008
0.000
1.48
Inf
ACATTCATT
SEQ


3
42


7
I
58
00
E-

ACATTCATA
ID










41

GGGTCTTTC
No:












CCCTGTGTG
657












AGTT[C/A]TC













TTGTGTATCC













CAAGGTTTA













ACTTATTGA













TAAAGGTTT













T






chr
757872
G
T
ZNF71
p.P506
0.011
0.000
9.28
Inf
TTACAGCGA
SEQ


3
58


7
T
52
00
E-

AAGGTTTTC
ID










35

CCACATTCA
No:












TTGCATTCGT
658












AGG[G/T]TTT













TTCCCCTGTG













TGAGTCCAT













TGATGGATA













GTGAGGAAT






chr
757875
G
C
ZNF71
p.L410
0.027
0.000
3.86
Inf
TAGGGCTTT
SEQ


3
46


7
V
45
00
E-

TCCCCTGTGT
ID










62

GAGTTCTAT
No:












GATGTATTG
659












TGA[G/C]GTA













TGACTTCTG













GCTAAAGGT













TTTTCCACAT













TCACTACAC






chr
757881
G
C
ZNF71
p.L206
0.007
0.000
3.87
Inf
TTGAAGGTT
SEQ


3
58


7
V
35
00
E-

TTCCCTTGTT
ID










34

CATTACATT
No:












GAAAAGTCT
660












GCA[G/C]CAG













AGTTTGAAT













CTTGTGATG













CTGAGTAAG













ATGTTCATG













A






chr
757882
T
A
ZNF71
p.D16
0.006
0.000
7.04
14.7
TGTCTCCCC
SEQ


3
92


7
1V
13
42
E-
5[6.0
AGGCTTAAT
ID










12
4-
AGGGAAAAG
No:











35.9
CATGTTCTG
661











7]
GCAA[T/A]CA













TTAAACTGC













CCAGGCTTC













ATTCCTGAA













CTGTTTCCAT













T






chr
999985
G
C
p.C31
TBC1
0.008
0.005
4.33
1.45
AGGGAAAAA
SEQ


3
31


D23
S
09
59
E-
[1.02-
GATCTTGAA
ID










02
2.06]
GAAGCTCTG
No:












GAAGCAGGA
662












GGTT[G/C]TG













ATCTTGAAA













CGTTGAGAA













ATATAATTC













AAGGAAGAC













CG






chr
113052
G
C
WDR5
p.P118
0.006
0.004
4.42
1.5[1
TTCCTCTTCC
SEQ


3
314


2
5R
86
57
E-
.02-
TTCTTGGCA
ID










02
2.23]
GCATTTATTC
No:












TCATGTGCT
663












CA[G/C]GTAT













CTTGTAGTCT













GGGGCTGTC













TTCAGATTG













AAATCTCC






chr
124578
C
G
ITGB5
p.E80
0.009
0.006
3.42
1.45
GGCAGGCTC
SEQ


3
212



Q
07
25
E-
[1.04-
CTCAGGACA
ID










02
2.03]
TGGAAGCTG
No:












CTGGCTGGG
664












CTCT[C/G]TA













TCTCACCTCC













ACAGCCATT













TTTGACAAG













GTTTGCCCTC






chr
124646
G
A
MUC1
p.T66I
0.006
0.004
3.25
1.59
GGAGGAACT
SEQ


3
693


3

37
03
E-
[1.07-
ATGTGTACT
ID










02
2.36]
AATTATGGG
No:












GGGAGCAGG
665












TGAA[G/A]TA













GCTGTTGGG













AAAGGTGTA













TTTGCTGTG













GTGCTAGCA













GT






chr
129196
C
T
IFT122
p.R366
0.008
0.005
3.60
1.46
CTATGAGTT
SEQ


3
984



W
33
73
E-
[1.03-
GTATTCAGA
ID










02
2.06]
GGACTTATC
No:












AGACATGCA
666












TTAC[C/T]GG













GTAAAGGAG













AAGATTATC













AAGAAGTTT













GAGTGCAAC













CT






chr
132198
G
A
DNAJ
p.R912
0.006
0.003
1.75
1.68
ATTTATTTCA
SEQ


3
097


C13
R
13
65
E-
[1.12-
ATAGTGCAC
ID










02
2.53]
AGATAAACT
No:












TGAACGAGA
667












TAG[G/A]TTG













ATTCTCTTCC













TTAACAAGT













TGATCCTTA













ATAAGGTAC






chr
132247
T
G
DNAJ
p.L217
0.006
0.004
1.27
1.68
GCTCAGATT
SEQ


3
160


C13
0W
86
09
E-
[1.15-
GTTAAAGCT
ID










02
2.47]
CTCAAGGCA
No:












ATGACTCGA
668












AGTT[T/G]GC













AGTATGGAG













AACAGGTGA













GTCTGCATA













GAGTCAACT













TT






chr
136664
A
T
NCK1
p.S139
0.011
0.008
4.08
1.38
AAGTGTTGC
SEQ


3
807



S
03
02
E-
[1.02-
ATGTGGTAC
ID










02
1.86]
AGGCTCTTT
No:












ACCCATTCA
669












GCTC[A/T]TC













TAATGATGA













AGAACTTAA













TTTCGAGAA













AGGAGATGT













AA






chr
137849
G
T
A4GN
p.P97P
0.008
0.005
2.16
1.52
TTGCTGACA
SEQ


3
808


T

82
83
E-
[1.08-
GGAAGGAAA
ID










02
2.13]
AAGCTGGGT
No:












ATGTGGAGT
670












TTGA[G/T]GG













CATCGGTGT













GGAATCAGT













AAGACCCTT













CATAAAGAA













CA






chr
186953
C
T
MASP
p.P582
0.009
0.005
1.70
1.54
AGATGCCCC
SEQ


3
913


1
P
07
90
E-
[1.11-
AGCCGGCCA
ID










02
2.15]
CCAGGCCCA
No:












GCATGTGGG
671












GGGC[C/T]GG













GCCTTCAGG













CTCAAGCCT













TGGCAGGCA













GACAGGCAT













AA






chr
192980
C
T
HRASL
p.S160
0.008
0.005
7.49
1.64
AATTCTACTT
SEQ


3
784


S
S
33
09
E-
[1.16-
TATAGATGG
ID










03
2.33]
CATTCCTGC
NO:












GTCCTTTAC
672












AAG[C/T]GCC













AAGTCTGTA













TTCAGCAGT













AAGGCCCTG













GTGAAAATG













C






chr
195306
A
G
APOD
p.F15S
0.009
0.005
9.46
1.59
GCACTTCCC
SEQ


3
289




31
89
E-
[1.14-
AAGATGAAA
ID










03
2.2]
TGCTTGTCCC
NO:












TCTGCCGCA
673












CCG[A/G]AG













AGGCCAGCC













AGTGCGGAA













AGCAGCAGC













AGCAGCATC













AC






chr
195505
C
G
MUC4
p.V42
0.025
0.000
6.23
Inf
GGGGTGGCG
SEQ


3
772



27L
74
00
E-

TGACCTGTG
ID










146

GATACTGAG
No:












GAAAGGCTG
674












GTGA[C/G]AG













GAAGAGGGG













TGGCGTGAC













CTGTGGATG













CTGAGGAAG













TG






chr
195508
G
C
MUC4
p.L342
0.009
0.000
2.06
51.1
GCGTGACCG
SEQ


3
178



5V
80
19
E-
6[26.
GTGGATGCT
ID










37
23-
GAGGAAGTG
No:











99.7
CTGGTGACA
675











9]
GGAA[G/C]A













GGGGTGGCG













TGACCTGTG













GATGCTGAG













GAAGGGCTA













GTG






chr
195508
T
G
MUC4
p.T341
0.016
0.000
6.58
38.6
CTGAGGAAG
SEQ


3
194



9T
42
43
E-
[24.1
TGCTGGTGA
ID










58
9-
CAGGAAGAG
NO:











61.5
GGGTGGCGT
676











9]
GACC[T/G]GT













GGATGCTGA













GGAAGGGCT













AGTGACAGG













AAGAGGCAT













GG






chr
195512
T
C
MUC4
p.S205
0.015
0.000
2.79
68.2
GGAAGAGGC
SEQ


3
294



3G
20
23
E-
6[37.
GTGGTGTCA
ID










60
51-
CCTGTGGAT
NO:











124.
ACTGAGGAA
677











21]
AGGC[T/C]GG













TGACAGGAA













GAGGGGTGT













CCTGACCTG













TGGATGCTG













AG






chr
195512
C
G
MUC4
p.Q20
0.011
0.000
1.51
32.7
TGGATACTG
SEQ


3
316



45H
27
35
E-
1[19.
AGGAAAGGC
ID










38
15-
TGGTGACAG
NO:











55.8
GAAGAGGGG
678











8]
TGTC[C/G]TG













ACCTGTGGA













TGCTGAGGA













AGTATCGGT













GACAGGAAG













CG






chr
195512
G
A
MUC4
p.P182
0.011
0.000
3.64
352
TCACCTGTG
SEQ


3
981



4S
52
03
E-
[85.4
GATGCTGAG
ID










54
7-
GAAGCGTCG
NO:











1449
GTGACAGGA
679











.66]
AGAG[G/A]G













GTGGTGTCA













CCTGTGGAT













GCTGAGGAA













GGGCTGGTG













ACA






chr
196214
C
T
RNF16
p.R164
0.023
0.000
6.42
388.
GTTCCTCATC
SEQ


3
336


8
R
77
06
E-
53[1
ACTTTTCAGT
ID










132
80.3-
TGTTCTTCCA
No:











837.
TCGCTCTTCG
680











21]
[C/T]CTTTTTT













CTGCCTGTCT













TTTTTCCTCT













TCTTCCTCCT













CTG






chr
196214
T
C
RNF16
p.R164
0.009
0.000
1.81
Inf
TCCTCATCA
SEQ


3
338


8
G
56
00
E-

CTTTTCAGTT
ID










57

GTTCTTCCAT
NO:












CGCTCTTCG
681












CC[T/C]TTTT













TCTGCCTGTC













TTTTTTCCTC













TTCTTCCTCC













TCTGCC






chr
265813
A
T
ZNF73
p.F277
0.022
0.000
2.19
492.
TGAGGATGA
SEQ


4



2
Y
30
05
E-
83[2
GGTAATGAT
ID










124
00.2-
TTTGCCACA
NO:











1213
TTCTTCACAT
682











.19]
GTG[A/T]AGG













GTTTCTCTTC













AGCATGAAT













TCTCTTATGC













TTAGTAAG






chr
265825
T
C
ZNF73
p.E273
0.011
0.000
2.01
Inf
AATGATTTT
SEQ


4



2
G
52
00
E-

GCCACATTC
ID










68

TTCACATGT
No:












GAAGGGTTT
683












CTCT[T/C]CA













GCATGAATT













CTCTTATGCT













TAGTAAGGG













TTGAGGACC













T






chr
265829
C
T
ZNF73
p.A27
0.018
0.000
1.83
Inf
ATTTTGCCA
SEQ


4



2
2T
14
00
E-

CATTCTTCAC
ID










107

ATGTGAAGG
No:












GTTTCTCTTC
684












AG[C/T]ATGA













ATTCTCTTAT













GCTTAGTAA













GGGTTGAGG













ACCTATTA






chr
436337
G
A
ZNF72
p.P640
0.008
0.000
4.30
Inf
TGATGGGGC
SEQ


4



1
L
82
00
E-

AAAGGCTTT
ID










53

GCCACACTC
No:












TTCACATTTG
685












TAA[G/A]GTT













TCTCCCCAG













TGTAAATTTT













CTTCTGTTGA













TTCAGGTC






chr
436390
A
G
ZNF72
p.F622
0.005
0.000
3.07
660.
TGTAAATTTT
SEQ


4



1
F
88
01
E-
68[8
CTTCTGTTGA
ID










34
9.36-
TTCAGGTCC
No:











4884
GTGTACCAT
686











.86]
AC[A/G]AAGT













CTTTGCCAC













ACTCTTCAC













ATTTGTAAA













GTTTCTCTC






chr
437293
A
G
ZNF72
p.Y32
0.013
0.000
1.88
103.
ATGTGTAGG
SEQ


4



1
1Y
73
13
E-
33[5
GTTTCTCTCC
ID










67
8.4-
AGTATGAAT
No:











182.
TCTCCTATGT
687











84]
AC[A/G]TAAA













GGTTTGCGG













ACTGTCTAA













AGGCTTTGC













CACATACTT






chr
676125
G
C
MFSD
p.S434
0.007
0.004
9.52
1.71
GGCGCCGGT
SEQ


4



7
R
11
18
E-
[1.16-
ATGGGGTGT
ID










03
2.51]
GGAAGAAGA
No:












CCGCCAGGA
688












TGCA[G/C]CT













GAAGAAGGT













GCACAGGCC













GGCCATCAG













CAGCAGAGA













CA






chr
138836
G
A
CRIPA
p.A24
0.006
0.000
1.22
109.
GGAGTGCCC
SEQ


4
9


K
T
86
06
E-
46[4
GCCTGCTCA
ID










34
7.78-
CACGTGCCC
No:











250.
ATGTGGAGT
689











72]
GCCC[G/A]CC













TGCTCATGT













GCCCATGTG













GAGTGCCCG













CCTGCTCAC













AC






chr
138941
C
T
CRIPA
p.P373
0.006
0.000
5.30
238.
GAGTGCCCG
SEQ


4
7


K
L
37
03
E-
42[7
CCTGCTCAC
ID










35
2.13-
ACACGTGCC
NO:











788.
CATGTGGAG
690











02]
TGCC[C/T]GC













CTGCTCACA













CGTGCCCAT













GTGGAGTGC













CTGCCTGCT













CA






chr
180550
C
T
FGFR
p.T338
0.007
0.003
1.52
1.9[1
CCTTGCACA
SEQ


4
2


3
T
35
89
E-
.31-
ACGTCACCT
ID










03
2.75]
TTGAGGACG
NO:












CCGGGGAGT
691












ACAC[C/T]TG













CCTGGCGGG













CAATTCTATT













GGGTTTTCTC













ATCACTCTG






chr
341781
C
T
RGS12
p.A14
0.010
0.006
1.19
1.52
ATCGACAGC
SEQ


4
1



9V
29
78
E-
[1.11-
CAGGCCCAG
ID










02
2.08]
CTAGCAGAC
NO:












GACGTCCTC
692












CGCG[C/T]AC













CTCACCCAG













ACATGTTCA













AGGAGCAGC













AGCTGCAGG













TA






chr
351988
C
T
LRPAP
p.D21
0.005
0.003
4.80
1.62
AGCTCCGTG
SEQ


4
1


1
1N
15
19
E-
[1.04-
TGCCTGCTG
ID










02
2.51]
TGCAGGACG
NO:












CTGCCCTTG
693












ATGT[C/T]GC













TCAGGTCCG













AGGGGCTAA













TGACGTTCT













CGTGGATTT













CT






chr
700663
G
C
TBC1
p.E166
0.006
0.004
2.71
1.58
AGCCAAGGA
SEQ


4
6


D14
Q
62
20
E-
[1.07-
GAGGTGGCG
ID










02
2.33]
GTCCCTTAG
NO:












CACAGGAGG
694












CTCT[G/C]AA













GTGGAGAAC













GAAGGTAGA













ATGTCTTCTA













AAACCAGCG













G






chr
135457
C
G
NKX3-
p.A11
0.005
0.000
8.15
Inf
CCGAGGCTC
SEQ


4
02


2
3P
15
00
E-

AAGGATCCC
ID










28

CCCGCAAGG
NO:












CCGGCCCCG
695












CTGG[C/G]CC













CCCGCGCGT













CCGCGCAGC













GCCGCCTGC













TCTCGTTCTC













C






chr
165042
T
G
LDB2
p.N36
0.020
0.000
1.23
2373
CTGGTGCCG
SEQ


4
91



6T
83
01
E-
.68[3
ATCATCTTAT
ID










122
30.4
TGGGAAGCC
NO:











6-
TGGGGTGGG
696











1705
GGG[T/G]TTT












0.06]
CTGATTTGG













TCTCTTGAGT













GGCGGGAGG













TTTACTGTT






chr
577972
A
G
REST
p.I747
0.010
0.000
4.04
Inf
CTCCTCCCAT
SEQ


4
65



M
05
00
E-

GGAGGTGGT
ID










60

CCAGAAGGA
No:












GCCTGTTCA
697












GAT[A/G]GA













GCTGTCTCCT













CCCATGGAG













GTGGTCCAG













AAGGAACCT













G






chr
629360
C
A
LPHN
p.N12
0.006
0.004
3.32
1.65
GTGAACAGA
SEQ


4
92


3
92K
831
163
E-
[1.01-
ACAGGAATC
ID










02
2.55]
TGATGAACA
NO:












AGCTGGTGA
698












ATAA[C/A]CT













TGGCAGTGG













AAGGGAAGA













TGATGCCAT













TGTCCTGGA













TG






chr
694337
T
A
UGT2
p.D14
0.009
0.006
1.90
1.48
CAGCTCACC
SEQ


4
63


B17
7V
80
63
E-
[1.08-
ACAGGGATT
ID










02
2.04]
AACGGCATC
NO:












TGCCAGAAG
699












GACA[T/A]CA













AATTTTGAC













TCTTGTAGTT













TTCTCATAA













GTTTCTTGTT






chr
698747
T
C
UGT2
p.T134
0.010
0.000
4.99
27.9
AACAATGGA
SEQ


4
38


B10
A
78
39
E-
[18.3
ATGCCCACC
ID










40
1-
ATAGGGATC
NO:











42.5
CCATGGTAG
700











3]
ATTGCT













CGTAGATGC













CATTGGCTC













CACCATGAG













TTATAAAAG













CT






chr
698747
G
A
UGT2
p.Y13
0.011
0.000
1.22
26.1
ATGGAATGC
SEQ


4
42


B10
2Y
76
45
E-
7[17.
CCACCATAG
ID










42
59-
GGATCCCAT
NO:











38.9
GGTAGATTG
701











4]
TCTC[G/A]TA













GATGCCATT













GGCTCCACC













ATGAGTTAT













AAAAGCTCT













GG






chr
712325
C
A
SMR3
p.S79
0.007
0.000
8.43
Inf
CCCCTTTCTC
SEQ


4
42


A
Y
60
00
E-

CACCCTATG
ID










46

GTCCAGGGA
NO:












GAATCCCAC
702












CAT[C/A]CCC













TCCTCCACC













CTATGGTCC













AGGGAGAAT













TCAATCACA













C






chr
723385
A
G
SLC4A
p.K60
0.007
0.003
7.37
2.04
TCCTCTCTGA
SEQ


4
89


4
2R
11
50
E-
[1.4-
TTAGCTTCAT
ID










04
2.98]
CTTTATCTAT
NO:












GATGCTTTC
703












A[A/G]GAAG













ATGATCAAG













CTTGCAGAT













TACTACCCC













ATCAACTCC






chr
772045
C
T
FAM4
p.R283
0.010
0.006
1.10
1.54
TTAGTTCCTT
SEQ


4
70


7E
C
29
72
E-
[1.12-
GAGAATATG
ID










02
2.12]
TATATCGGG
NO:












AAGGAATGT
704












AAA[C/T]GTG













CATGTAATA













AGACTCCTA













TAAAACGAA













CTCAAGCAT













A






chr
797921
G
A
BMP2
p.Q48
0.012
0.000
1.06
1376
AACAGCAAC
SEQ


4
48


K
1Q
75
01
E-
.85[1
AGCAGCAGC
ID










73
90.3-
AGCAACAGC
NO:











9961
AACAGCAGC
705











.91]
AGCA[G/A]C













AGCAGCAGC













AGCAGCACC













ACCACCACC













ACCACCACC













ACC






chr
819672
C
T
BMP3
p.T222
0.000
0.000
1.00
0.79
GCCAAAGAA
SEQ


4
40



M
49
62
E+0
[0.19-
AATGAAGAG
ID










0
3.22]
TTCCTCATA
NO:












GGATTTAAC
706












ATTA[C/T]GT













CCAAGGGAC













GCCAGCTGC













CAAAGAGGA













GGTTACCTTT













T






chr
876662
A
G
PTPN1
p.H86
0.009
0.005
1.49
1.77
AAGATATGC
SEQ


4
25


3
5R
31
28
E-
[1.27-
CAGTACCTG
ID










03
2.46]
CTGCACCTC
NO:












TGCTCTTACC
707












AGC[A/G]TAA













GTTCCAGCT













ACAGATGAG













AGCAAGACA













GAGCAACCA













A






chr
876722
G
T
PTPN1
p.D10
0.008
0.005
9.90
1.61
GAGTTTAAA
SEQ


4
35


3
42Y
82
50
E-
[1.15-
TAGAAGTCC
ID










03
2.26]
TGAAAGGAG
NO:












GAAACATGA
708












ATCA[G/T]AC













TCCTCATCC













ATTGAAGAC













CCTGGGCAA













GCATATGTT













CT






chr
877491
G
A
SLC10
p.H24
0.028
0.000
2.75
Inf
AGTTTATGG
SEQ


4
62


A6
9Y
68
00
E-

ATAGTTTAA
ID










171

CTATACCTTT
NO:












GCCAAGACT
709












GGT[G/A]GGT













AAAAAGTGC













CAGCAGAAA













ACCCGTGAC













ATGGCCAAT













C






chr
885375
C
T
DSPP
p.S124
0.010
0.000
3.86
Inf
AAAGCAGCG
SEQ


4
52



6S
78
00
E-

ACAGCAGTG
ID










52

ACAGCAGCG
NO:












ATAGCAGTG
710












ACAG[C/T]AG













CAACAGCAG













TGACAGCAG













CGACAGCAG













TGATAGCAG













TG






chr
885375
C
T
DSPP
p.N12
0.011
0.000
5.36
54.1
GCGACAGCA
SEQ


4
58



48N
52
22
E-
4[28.
GTGACAGCA
ID










43
06-
GCGATAGCA
No:











104.
GTGACAGCA
711











46]
GCAA[C/T]AG













CAGTGACAG













CAGCGACAG













CAGTGATAG













CAGTGACAG













CA






chr
113303
A
G
ALPK1
p.Q67
0.011
0.007
2.92
1.61
GCAAAGGAA
SEQ


4
632



R
76
35
E-
[1.2-
ATGAAGTGG
ID










03
2.15]
CCCTTCGTG
NO:












CCTGAAAAG
712












TGGC[A/G]GT













ACAAACAAG













CCGTGGGCC













CAGAGGACA













AAACAAACC













TG






chr
115997
T
C
NDST4
p.I283
0.012
0.009
3.24
1.37
AGCCTCTTC
SEQ


4
346



V
75
37
E-
[1.03-
CCTGACAAG
ID










02
1.81]
AAGGAGATG
NO:












GCATCTATG
713












AAGA[T/C]GA













GCTTGTGCA













GCCAAAAGT













TCAAGTTGT













TGCCAAAAA













GT






chr
125592
G
A
ANKR
p.A52
0.011
0.008
3.46
1.39
CATTATCTA
SEQ


4
869


D50
1A
27
16
E-
[1.03-
ATAATGTCC
ID










02
1.87]
GAATGGAAT
No:












CCTCTCTTTC
714












TAA[G/A]GCT













TGTCGAACT













ATGCATGAT













GTGCGATCG













TCTTCACTGT






chr
153690
G
A
TIGD4
p.T477
0.005
0.003
1.38
1.74
ATCTTGACTT
SEQ


4
727



I
88
39
E-
[1.15-
CTGAGAAAT
ID










02
2.63]
TTTTTCAGA
No:












GTATCTAAA
715












GCA[G/A]TTA













TTGCCTCAG













ATTTTGATG













GTAAAGGGA













GTTCAGTTC













C






chr
165962
A
T
TRIM6
p.E422
0.006
0.003
2.13
1.64
TAGTAAAAC
SEQ


4
490


0
D
37
89
E-
[1.11-
CCAGTAAAA
ID










02
2.45]
TTGGTATTTT
No:












TCTGGACTA
716












TGA[A/T]TTG













GGTGATCTT













TCCTTTTATA













ATATGAATG













ATAGGTCTA






chr
166300
T
C
CPE
p.F51L
0.005
0.000
4.59
Inf
GAGGCGGCG
SEQ


4
524




15
00
E-

CCGGCGGCT
ID










30

GCAGCAAGA
No:












GGACGGCAT
717












CTCC[T/C]TC













GAGTACCAC













CGCTACCCC













GAGCTGCGC













GAGGCGCTC













GT






chr
167656
A
T
SPOC
p.X31
0.003
not
5.64
Inf
TTAGAAATG
SEQ


4
074


K3
7R
93
found
E-

TAGAATTTA
ID










08

TTGATTTCA
No:












ACTGTCATC
718












AATC[A/T]AA













TGTATACAT













CATGGTCAT













CACCACCAT













CATCATCAT













CC






chr
170671
C
G
C4orf2
p.G82
0.005
0.003
4.94
1.6[1
TTCTTCGTTT
SEQ


4
841


7
R
15
23
E-
.03-
TATGTTTTCC
ID










02
2.48]
AGCAAGGAT
No:












ATCATAAGG
719












AC[C/G]AACT













AATTGAAGT













CCAAGGCTT













GCAGAAAGT













GAATCTATA






chr
175898
T
C
ADAM
p.W73
0.006
0.000
1.43
33.5
TCAGCGTCG
SEQ


4
879


29
5R
37
19
E-
3[18.
ACCTCATGA
ID










25
85-
GTTACCTCC
No:











59.6
CCAGAGTCA
720











3]
ACCT[T/C]GG













GTGATGCCT













TCCCAGAGT













CAACCTCCT













GTGACGCCT













TC






chr
175898
C
T
ADAM
p.S757
0.006
0.000
7.49
12.9
CTGTGACGC
SEQ


4
947


29
S
62
52
E-
1[8.1
CTTCCCAGA
ID










19
6-
GTCATCCTC
No:











20.4
AGGTGATGC
721











2]
CTTC[C/T]CA













GAGTCAACC













TCCTGTGAC













ACCCTCCCA













GAGTCAACC













TC






chr
177083
G
A
WDR1
p.D93
0.006
0.004
1.23
1.7[1
GCACAAAGT
SEQ


4
272


7
3N
86
05
E-
.16-
CAGTAAAGA
ID










02
2.49]
ACTGGCAGA
No:












ATGGTATTTT
722












CAA[G/A]ATG













GTCGAGCAG













TACTAGCCG













CATGTTGCC













ATCTTGCCA













T






chr
191718
C
G
LRRC1
p.A22
0.008
0.000
8.74
Inf
TTCATTTCTG
SEQ


5



4B
G
82
00
E-

CAGAAGCTC
ID










53

TGGTGTCCC
No:












ACCCCCAGG
723












TGG[C/G]CCG













GCAGAGCCT













GGACAGCGT













GGCCCACAA













CCTCTACCC













A






chr
891400
T
C
BRD9
p.K39
0.000
0.001
5.63
10[5
CCGTGTCAC
SEQ


5




R
90
70
E-
-21]
AGTGCTCCC
ID










09

TCTCTCGCTT
No:












CCGCTTCTTC
724












TC[T/C]TCCT













GGGCGGCAG













AGTCAAGGG













AGTGAGAAA













GGCAGGAGT






chr
739660
T
G
ADCY
p.F65
0.008
0.000
3.47
Inf
GCTCATCGT
SEQ


5
2


2
V
58
00
E-

CATGGGCTC
ID










49

CTGCCTCGC
No:












CCTGCTCGC
725












CGTC[T/G]TC













TTCGCGCTC













GGGCTGGTG













AGTGGCCTC













CCCGCGGGT













CC






chr
369854
G
A
NIPBL
p.G72
0.005
0.000
9.80
628.
GTGAAAGCC
SEQ


5
42



0G
64
01
E-
63[8
GGCCTGAGA
ID










33
4.88-
CTCCAAAAC
No:











4655
AAAAGAGTG
726











.98]
ATGG[G/A]CA













TCCTGAAAC













CCCAAAACA













GAAGGGTGA













TGGAAGGCC













TG






chr
523473
A
C
ITGA2
p.T252
0.008
0.005
2.65
1.51
CATCCCAGA
SEQ


5
66



T
58
69
E-
[1.07-
CATCCCAAT
ID










02
2.13]
ATGGTGGGG
No:












ACCTCACAA
727












ACAC[A/C]TT













CGGAGCAAT













TCAATATGC













AAGGTAAGT













TTTGGTGCT













AA






chr
550836
G
T
DDX4
p.A19
0.005
0.000
2.43
603.
GCAACTTAA
SEQ


5
98



9S
39
01
E-
79[8
CTTCTAGGC
ID










31
1.37-
GGCTTTTCTC
No:











4480
CTACCAATT
728











.44]
TTG[G/T]CTC













ATATGATGC













ATGATGGAA













TAACTGCCA













GTCGTTTTA













A






chr
708062
C
A
BDP1
p.G11
0.008
0.000
1.09
Inf
TGGAAGAAA
SEQ


5
31



04G
09
00
E-

CTGAAAGAG
ID










48

AAATATCCC
No:












CACAGGAAA
729












ATGG[C/A]CT













AGAGGAGGT













TAAGCCTCT













AGGTGAAAT













GCAAACAGA













TT






chr
715167
G
C
MRPS
p.Q39
0.005
0.003
3.05
1.68
GCTTTCTGA
SEQ


5
95


27
6E
15
06
E-
[1.08-
GCCTGGTAC
ID










02
2.62]
TCCTGCTTCG
No:












CTTGCTCCCT
730












CT[G/C]TTGC













TGTTCTCTCT













GGATCAACT













GTACAAGGT













CTAGATGC






chr
762495
G
A
CRHB
p.P53P
0.010
0.007
4.12
1.4[1
TCAGCGCCA
SEQ


5
03


P

29
39
E-
.02-
ACCTGAAGC
ID










02
1.91]
GGGAGCTGG
No:












CTGGGGAGC
731












AGCC[G/A]TA













CCGCCGCGC













TCTGCGTGA













GTCGAGGCT













GCCCGGCTC













GC






chr
762498
A
AC
CRHB
NM_
0.006
not
7.44
223.
GCTGCAGCC
SEQ


5
52


P
001882:
87
found
E-
6?46.
CGGGACTTA
ID







exon3:


12
4-
TTGCCCCAT
No:







c.176-



1077
GCCCTCCTC
732







2- > C



.6?
CCCC[A/AC]G













GGTGCCTGG













ACATGCTGA













GCCTCCAGG













GCCAGTTCA













CCT






chr
767606
C
T
WDR4
p.G61
0.005
0.003
3.47
1.62
ACACACCTG
SEQ


5
20


1
D
88
65
E-
?1.07-
GGCATTCCA
ID










02
2.44?
CACAACTAC
No:












AATTCCATC
733












ATCA[C/T]CA













GCAGATGCA













AATCTGGTT













AGGGAGAAA













GGGTCAAGA













AA






chr
798548
A
G
ANKR
p.V33
0.005
0.003
2.71
1.65
AAATATTGT
SEQ


5
26


D34B
8A
39
28
E-
?1.07-
CTGGTTAGA
ID










02
2.54?
ATCTGGGTC
No:












CTGGTCAAC
734












AGGG[A/G]CT













TCAATGCAT













TGCTGATTTC













CTTCTGAAA













GATAAGATT













G






chr
899698
A
G
GPR98
p.I164
0.010
0.006
2.82
1.44
GCTTAGTGC
SEQ


5
80



7V
05
98
E-
[1.05-
CTCTGGATA
ID










02
1.98]
TTTATATTTT
No:












TAGGTTCTG
735












AAT[A/G]TAT













ATGTTCTTG













ATGATGATA













TTCCTGAAC













TTAATGAGT













A






chr
899795
G
A
GPR98
p.D19
0.009
0.005
6.02
1.64
TATCACTGT
SEQ


5
68



44N
31
69
E-
[1.18-
GGAGATATT
ID










03
2.28]
GCCTGACGA
No:












AGACCCAGA
736












ACTG[G/A]AT













AAGGCATTC













TCTGTGTCA













GTCCTCAGT













GTTTCCAGT













GG






chr
929210
C
T
NR2F1
p.H97
0.029
0.000
1.83
838.
TCGAGTGCG
SEQ


5
20



H
66
04
E-
44[3
TGGTGTGCG
ID










169
09.5
GGGACAAGT
No:











1-
CGAGCGGCA
737











2271
AGCA[C/T]TA












.28]
CGGCCAATT













CACCTGCGA













GGGCTGCAA













AAGTTTCTTC













A






chr
134002
G
C
SEC24
p.A22
0.013
0.000
5.18
1523
TCATGGGCC
SEQ


5
614


A
3P
48
01
E-
.15[2
CCCTCCAGC
ID










79
10.7
TGGAGGCCC
NO:











3-
ACCCCCAGT
738











1100
GAGG[G/C]CC












9.22]
CTCACGCCC













CTGACATCA













TCATATAGA













GATGTACCC













CA






chr
137621
C
T
CDC2
p.R388
0.006
0.003
2.71
1.63
TCATGGGCT
SEQ


5
421


5C
Q
13
76
E-
[1.09-
CATGTCCTTC
ID










02
2.45]
ACCAGAAGG
NO:












GCAATCTGC
739












TCC[C/T]GCA













GCTGCCGCT













CCCCTTCCTG













CACTTTGCTC













TGGCTTCG






chr
140209
G
A
PCDH
p.R498
0.006
0.004
3.84
1.55
AGGAGAACG
SEQ


5
170


A6
R
62
29
E-
[1.05-
CGCTGGTGT
ID










02
2.28]
CCTACTCGC
NO:












TGGTGGAGC
740












GGCG[G/A]GT













GGGCGAGCG













CGCGTTGTC













GAGCTACAT













TTCGGTGCA













CG






chr
140559
T
C
PCDH
p.L576
0.007
0.003
8.04
2.02
CTGTACCCG
SEQ


5
342


B8
P
11
53
E-
[1.38-
CTGCAGAAT
ID










04
2.95]
GGCTCCGCG
NO:












CCCTGCACC
741












GAGC[T/C]GG













TGCCCCGGG













CGGCCGAGC













CGGGCTACC













TGGTGACCA













AG






chr
141336
G
A
PCDH
p.T261
0.009
0.005
7.37
1.6[1
GCCTTGGTC
SEQ


5
635


12
M
56
98
E-
.16-
AGGGTCTGT
ID










03
2.22]
GGCGGTCAG
NO:












TTTTATGAG
742












AAGC[G/A]TA













CCAGGTGCA













GCATCTTCTT













GGATTTCCA













GTGCCAGTG













A






chr
141694
G
T
SPRY4
p.S218
0.014
0.001
2.15
11.5
GCAGTTGGA
SEQ


5
021



Y
31
26
E-
[7.94-
GCGGGAGCA
ID










28
16.4
GGAGCAGGG
NO:











1]
GTGGTCAGC
743












GCAG[G/T]AG













CCCTCATCG













TCCTCATTCG













TGCAGTGGT













AGAAGATGC













C






chr
148384
T
A
SH3TC
p.D12
0.007
0.004
2.62
1.84
GACCGCTGC
SEQ


5
455


2
29V
35
02
E-
[1.27-
TGCCAGGGC
ID










03
2.66]
CAGAAGGAA
No:












GTACTCAGT
744












GGCA[T/A]CA













TGGGCATCC













TAACCCCGT













GGTATGGGG













GCAAAGAAG













AG






chr
149276
T
G
PDE6
p.Q49
0.019
0.001
8.09
11.3
ATTTATTAAT
SEQ


5
063


A
2H
52
76
E-
2[8.1
TTCGTATTTA
ID










37
7-
TCTGCATCT
No:











15.5
GGCAGCTCC
745











51]
GC[T/G]TGCT













GTATAAGGA













ATAGAGTCA













GGTGATTAG













GAAACATGA






chr
149301
G
A
PDE6
p.P293
0.007
0.004
3.83
1.5[1
CCTGGGACC
SEQ


5
253


A
L
11
75
E-
.03-
AGAGTAAGG
ID










02
2.18]
TGGAACTTC
No:












ACCCATCAG
746












AACC[G/A]GC













CACACATCA













AAAAATTCC













TAGGAATGA













GAAAAACAA













TA






chr
149512
C
T
PDGF
p.V31
0.006
0.004
1.88
1.64
TCAGCAAAT
SEQ


5
494


RB
6M
86
19
E-
[1.11-
TGTAGTGTG
ID


02
2.43







2.43]
CCCACCTCT
No:












CCCAGGAGC
747












CGCA[C/T]GT













AGCCGCTCT













CTGCAAGGG













GTGACCGTC













AGGGGCGGG













GC






chr
150905
G
T
FAT2
p.P347
0.006
0.000
4.42
Inf
CCTCCTGCTT
SEQ


5
399



9Q
13
00
E-

AGGCCCTCA
ID










37

GCAGTCACC
No:












AGCCATCCA
748












TCC[G/T]GGG













TCACTCGGA













AGGCAGAGC













CGTTGTTCCC













CTTGGTGAT






chr
167689
C
A
TENM
p.R257
0.005
0.003
2.93
1.71
CATCATTGG
SEQ


5
228


2
1R
15
02
E-
[1.1-
CAAAGGCAT
ID










02
2.66]
CATGTTTGC
No:












CATCAAAGA
749












AGGG[C/A]G













GGTGACCAC













GGGCGTGTC













CAGCATCGC













CAGCGAAGA













TAG






chr
167881
A
T
WWC1
p.E862
0.011
0.000
5.03
Inf
GAGAATGAG
SEQ


5
032



V
76
00
E-

GCAGTAGCC
ID










70

GAGGAAGAG
NO:












GAGGAGGAG
750












GTGG[A/T]GG













AGGAGGAGG













GAGAAGAGG













ATGTTTTCAC













CGAGAAAGC













C






chr
168112
G
A
SLIT3
p.A11
0.005
0.002
1.12
2.16
AAGGGCAGG
SEQ


5
707



80A
64
62
E-
[1.41-
GCAGGGCGG
ID










03
3.31]
GACACACCT
NO:












GCAGGGAGA
751












TGTT[G/A]GC













CTGGGGTCG













GACCTTGGC













GGAGGCCAG













TTCCACGTA













GG






chr
171661
T
C
UBTD
p.A89
0.009
0.006
3.47
1.45
CATGTGGTA
SEQ


5
166


2
A
07
28
E-
[1.04-
ATGTTATGTT
ID










02
2.02]
TGCACCATC
NO:












AATGATTGC
752












TTG[T/C]GCC













AGTTCATGA













TCATTGCTCT













CAAAAGCAT













GTGCAGCAG






chr
178139
C
T
ZNF35
p.E498
0.020
0.002
8.40
8.69
GATTACTAA
SEQ


5
385


4A
E
34
38
E-
[6.78-
GTGATGAGT
ID










44
11.1
TACACCTGA
NO:











4]
ATGTTTTCCC
753












ACA[C/T]TCG













TTACATTTAT













AGGGTCTTT













CTCCAGTAT













GCATTCTCT






chr
178139
T
C
ZNF35
p.K49
0.020
0.002
4.38
7.3[5
GTGATGAGT
SEQ


5
394


4A
5K
34
84
E-
.72-
TACACCTGA
ID










39
9.32]
ATGTTTTCCC
NO:












ACACTCGTT
754












ACA[T/C]TTA













TAGGGTCTT













TCTCCAGTA













TGCATTCTCT













GATGTTGAA






chr
179192
A
G
MAML1
p.T110
0.010
0.007
4.35
1.4[1
AAGTCATTC
SEQ


5
341



T
54
57
E-
.03-
TTTTCAATGT
ID










02
1.9]
TTTTCAGCAT
NO:












CTTCATGAT
755












AC[A/G]GTTA













AGAGGAATC













TTGACAGCG













CCACTTCCC













CTCAGAATG






chr
179192
C
T
MAML1
p.Y13
0.010
0.007
4.35
1.4[1
GCGCCACTT
SEQ


5
401



0Y
54
56
E-
.03-
CCCCTCAGA
ID










02
1.9]
ATGGCGATC
NO:












AACAGAATG
756












GCTA[C/T]GG













GGACCTCTT













TCCTGGGCA













TAAGAAGAC













TCGCCGGGA













GG






chr
117684
C
T
ADTR
p.T96
0.005
0.002
6.64
2.12
CACATTTCT
SEQ


6
82


P
T
53
61
E-
[1.22-
GTTAGATTA
ID










03
3.46]
TGTACACAT
NO:












CTTTGAAAC
757












TTAC[C/T]GT













GGATACAGG













AAAAGCCAG













AGTGGTGAA













AAGCAGGTC













TC






chr
260322
C
T
HIST1
p.K24
0.007
0.000
8.79
Inf
TTTTCACGCC
SEQ


6
17


H3B
K
11
00
E-

GCCGGTAGC
ID










43

CGGCGCGCT
NO:












CTTGCGAGC
758












AGC[C/T]TTG













GTAGCCAGC













TGCTTGCGT













GGCGCTTTA













CCGCCGGTG













G






chr
294087
T
G
OR10C1
p.M31
0.009
0.005
7.68
1.63
AAAGCTGCC
SEQ


6
21



0R
07
59
E-
[1.17-
CTAAAGAGA
ID










03
2.27]
ACCATCCAG
NO:












AAAACGGTG
759












CCTA[T/G]GG













AGATTTGAA













AAGGGGGCG













ATAGTGACT













TCTGTGCAG













TG






chr
300389
C
T
RNF39
p.L337
0.005
0.003
3.63
1.59
GTACAATGC
SEQ


6
42



L
88
72
E-
[1.04-
GGAGCGGAG
ID










02
2.41]
CACGAGGGT
NO:












CGCAGGTGC
760












AGAA[C/T]AG













CGGGAAGAT













GCGCTCCCC













CAGGGGGCC













AGGCGCCTG













GA






chr
306732
G
A
MDC1
p.A12
0.011
0.000
4.12
264.
AGGGGTCTT
SEQ


6
80



27V
76
04
E-
73[1
GACAGAGGA
ID










64
05.3
TCTATTTTTT
NO:











3-
CTTCCCCTA
761











665.
GTA[G/A]CCT












33]
GAGAGGTGG













GTTCAGAGG













TGACAGGTC













GGTCGGTGG













A






chr
309171
G
A
DPCR1
p.G29
0.020
0.000
2.77
Inf
GAGCTCACA
SEQ


6
10



0E
59
00
E-

CAATCTCTA
ID










100

GCAGAGCCT
No:












ACAGAACAT
762












GGAG[G/A]A













AGGACAGCC













AATGAGAAC













AACACACCA













TCCCCAGCA













GAG






chr
309174
T
C
DPCR1
p.T392
0.006
0.000
2.15
78.3
AGCCTACAG
SEQ


6
17



T
37
08
E-
3[27.
AACATGGAG
ID










25
32-
AAAGGACAG
No:











224.
CCAATGAGA
763











54]
ACAC[T/C]AC













ACCATCCCC













AGCAGAGCC













TACAGAACA













TGGAGAAAG













GA






chr
309178
A
G
DPCR1
p.E539
0.012
0.000
4.79
Inf
ACCCCACTG
SEQ


6
57



G
25
00
E-

GCCAATGAG
ID










60

AACACCACA
No:












CCATCCCCA
764












GCAG[A/G]G













CCTACAGAA













AATAGAGAA













AGGACAGCC













AATGAGAAG













ACC






chr
309181
G
A
DPCR1
p.G64
0.005
0.000
6.87
42.3
GAAAGGACA
SEQ


6
60



0E
64
13
E-
5[18.
GCCAATGAG
ID










21
16-
AACACCACA
No:











98.7
CCATCCCCA
765











4]
GCAG[G/A]G













CCTACAGAA













AATAGAGAA













ATGACAGCC













AACGAGAAG













ACC






chr
309207
A
C
DPCR1
p.Y13
0.005
0.002
4.32
1.75
GTTCTCATTC
SEQ


6
55



48S
21
99
E-
[0.98-
CTCCTTTCTC
ID










02
2.88]
ATCCCAATC
No:












ACAGGTCTC
766












CT[A/C]TATG













ATGCGGACA













CGCCGCACA













CTAACCCAG













AACACCCAG






chr
309543
C
T
MUC21
p.S125
0.013
0.000
5.07
Inf
CAACCTCCA
SEQ


6
27



S
24
00
E-

GTGGGGCCA
ID










73

GCACAGCCA
No:












CCAACTCTG
767












AGTC[C/T]AG













CACACCCTC













CAGTGGGGC













CAGCACAGC













CACCAACTC













TG






chr
309544
A
G
MUC21
p.S163
0.019
0.000
1.38
Inf
AGCCACCAA
SEQ


6
39



G
61
00
E-

CTCTGACTC
ID










116

CAGCACAAC
No:












CTCCAGTGA
768












GGCC[A/G]GC













ACAGCCACC













AACTCTGAG













TCCAGCACA













ACCTCCAGT













GG






chr
309956
C
T
MUC22
p.S809
0.009
0.000
5.89
Inf
CTACAGTTT
SEQ


6
35



S
56
00
E-

CCACCACAG
ID










43

GCTTGGAGA
No:












CCACCACCA
769












CTTC[C/T]AC













TGAAGGCTC













TGAGATGAC













TACAGTCTC













CACCACAGG













TG






chr
316916
C
A
C6orf25
p.G10
0.005
0.002
2.87
2.08
TCCGGCGGC
SEQ


6
66



4G
39
60
E-
[1.35-
TGGAGCTCC
ID










03
3.22]
TCTTGAGCG
No:












CGGGGGACT
770












CGGG[C/A]AC













TTTTTTCTGC













AAGGGCCGC













CACGAGGAC













GAGAGCCGT













A






chr
317368
C
T
VWA7
p.R488
0.005
0.002
1.64
2.13
CAGGGCAGC
SEQ


6
35



Q
39
54
E-
[1.38-
CATGCTCTC
ID










03
3.29]
CCCAACAAT
No:












GGCTGCCAC
771












GTCT[C/T]GA













ATGTGCTGG













TCTTTGGTG













AAGATCACC













TCTCCTCCTG













A






chr
326342
A
G
HLA-
p.S35P
0.007
0.004
1.76
1.73
TGGCGGCTC
SEQ


6
82


DQB1

48
33
E-
[1.09-
TGGAGAGCA
ID










02
2.64]
GCTGCCCTG
No:












CACTTACCG
772












GGAG[A/G]G













TCTCTGCCCT













CAGCCAGTA













GGGAGCTCA













GCATCGCCA













GC






chr
327136
C
A
HLA-
p.P128
0.006
0.000
1.10
Inf
GTCACAGTG
SEQ


6
19


DQA2
H
62
00
E-

TTTTCCAAGT
ID










39

TTCCTGTGA
No:












CGCTGGGTC
773












AGC[C/A]CAA













CACCCTCAT













CTGTCTTGTG













GACAACATC













TTTCCTCCT






chr
327140
T
G
HLA-
p.L219
0.020
0.000
4.06
2275
GCCTGAGAT
SEQ


6
58


DQA2
V
59
01
E-
.46[3
TCCAGCCCC
ID










120
16.7
TATGTCAGA
NO:











4-
GCTCACAGA
774











1634
GACT[T/G]TG












6.8]
GTCTGCGCC













CTGGGGTTG













TCTGTGGGC













CTCATGGGC













AT






chr
327141
C
G
HLA-
p.G23
0.012
0.000
1.19
Inf
CCCTGGGGT
SEQ


6
08


DQA2
5G
75
00
E-

TGTCTGTGG
ID










75

GCCTCATGG
NO:












GCATTGTGG
775












TGGG[C/G]AC













TGTCTTCATC













ATCCAAGGC













CTGCGTTCA













GTTGGTGCT













T






chr
327141
T
C
HLA-
p.T236
0.012
0.000
3.37
Inf
TGGGGTTGT
SEQ


6
11


DQA2
T
50
00
E-

CTGTGGGCC
ID










74

TCATGGGCA
No:












TTGTGGTGG
776












GCAC[T/C]GT













CTTCATCATC













CAAGGCCTG













CGTTCAGTT













GGTGCTTCC













A






chr
327141
C
G
HLA-
p.F238
0.016
0.000
4.00
Inf
TGTCTGTGG
SEQ


6
17


DQA2
L
91
00
E-

GCCTCATGG
ID










100

GCATTGTGG
No:












TGGGCACTG
777












TCTT[C/G]AT













CATCCAAGG













CCTGCGTTC













AGTTGGTGC













TTCCAGACA













CC






chr
328200
C
A
TAP1
p.V30
0.005
0.002
1.19
2.21
TGCACGTGG
SEQ


6
00



4L
39
45
E-
[1.43-
CCCATGGTG
ID










03
3.42]
TTGTTATAG
NO:












ATCCCGTCA
778












CCCA[C/A]GA













ACTCCAGCA













CTGCACTAT













AAAGAACCC













GGAAAAAAA













GG






chr
333658
G
T
KIFC1
p.R5S
0.005
0.003
3.11
1.62
CTCCTGGGT
SEQ


6
08




64
49
E-
[1.06-
ATTGTCTTA
ID










02
2.47]
AGGGTCTCT
NO:












TTTCCCAAC
779












AGAG[G/T]TC













CCCCCTATT













GGAAGTAAA













GGGGAACAT













AGAACTGAA













GA






chr
340039
C
T
GRM4
p.S520S
0.005
0.003
4.08
1.59
AGCTGATGC
SEQ


6
28




39
40
E-
[1.03-
TCATCCCTA
ID










02
2.45]
GTCCCAGGA
No:












AGATTCGGC
780












GCAG[C/T]GA













GCAGGTGCC













AAGGTCGGG













CTCAGCGAT













CATGAGGAA













GG






chr
357150
C
T
ARMC
p.I188I
0.005
0.002
1.08
1.84
AGGAACACT
SEQ


6
76


12

15
81
E-
[1.18-
CCATCAAAG
ID










02
2.86]
TACTCGAAC
No:












TGATCTCCA
781












CCAT[C/T]TG













GGACACGGA













ACTGCACAT













TGCGGGCCT













CAGACTCCT













CA






chr
367100
T
A
CPNE5
p.I593F
0.006
0.000
5.82
Inf
CCCAGGCCC
SEQ


6
50




62
00
E-

CAGCCACCT
ID










39

GCCTGCTGA
No:












GACCAGGTT
782












CAGA[T/A]GT













GCGTGTGCA













GGGGGGACG













CAGGGGGCG













TGCGGGCTG













GG






chr
392828
G
A
KCNK
p.Q25
0.007
0.004
4.28
1.75
CCTCAGCTT
SEQ


6
16


16
1X
84
49
E-
[1.23-
CCCAGTCCT
ID










03
2.51]
TTCTTGGAT
No:












ATGGGGAAG
783












TCCT[G/A]GG













GTGTGACTT













GGACTCCTC













TTGCTGCTGT













AGAGCCTCT













C






chr
441438
G
A
CAPN
p.A29
0.005
0.002
2.43
1.85
ACTGGAATC
SEQ


6
62


11
7T
21
82
E-
[1.04-
CATGACTGA
ID










02
3.06]
CAAGATGCT
No:












GGTGAGAGG
784












GCAC[G/A]CT













TACTCTGTG













ACTGGCCTT













CAGGATGTG













AGTCCTGAG













AA






chr
466559
C
G
TDRD6
p.A12A
0.012
0.000
4.48
Inf
TCAAGATGT
SEQ


6
01




01
00
E-

GCTCGACGC
ID










58

CCGGAATGC
No:












CGGCGCCGG
785












GGGC[C/G]TC













GCTGGCCCT













GCGGGTGTC













CTTCGTGGA













CGTGCATCC













CG






chr
560330
G
A
COL21A1
p.T343M
0.067
0.071
3.19
0.94
TACTAAGAG
SEQ


6
94




40
69
E-
[0.83-
ACGAATTTG
ID










01
1.06]
GTGCCAGCC
NO:












TTCATCAAA
786












CAAC[G/A]TC













TACAAAAAG













AAAGTGTGG













AAGATTCAT













AAATAAAGC













CC






chr
767318
G
A
IMPG1
p.N13
0.010
0.007
3.74
1.39
AACTCTAGG
SEQ


6
54



7N
78
76
E-
[1.03-
AACTTCTTA
ID










02
1.89]
CTGTTGTAG
NO:












GCATCTTGG
787












TGTC[G/A]TT













GAGTGTATT













ATCGAGAAT













TTCATTGAG













GAGGGTGTC













AT






chr
843032
T
C
SNAP91
p.T553
0.010
0.007
1.83
1.49
AAATTACCA
SEQ


6
30



A
78
26
E-
[1.09-
CCAAAGATA
ID










02
2.04]
TCTAGAGCA
NO:












GGAGGAGCA
788












GTGG[T/C]GG













CGGTGGCAG













CGGAGGTGG













TGGTAGTGG













TGGTGGCAG













CG






chr
854737
C
T
TBX18
p.G48
0.414
0.494
5.64
0.72
GCGCCGCCG
SEQ


6
58



R
71
51
E-
[0.68-
CCGCGGCTG
ID










23
0.77]
CAGCCTCCG
NO:












TCGTCCACG
789












GCCC[C/T]CG













CCGCCTCTTC













GGCGCCCAG













TTTTCGCCGC













TTCTTCTGA






chr
861950
G
A
NT5E
p.V27
0.007
0.004
1.07
1.64
ATTCATAGT
SEQ


6
33



8I
60
66
E-
[1.14-
CACTTCTGA
ID










02
2.35]
TGATGGGCG
NO:












GAAGGTTCC
790












TGTA[G/A]TC













CAGGCCTAT













GCTTTTGGC













AAATACCTA













GGCTATCTG













AA






chr
905721
G
A
CASP8
p.G23
0.005
0.003
2.39
1.69
AATGGTGTT
SEQ


6
38


AP2
7D
39
19
E-
[1.1-
TGGTCACGT
ID










02
2.61]
TCTCATTATC
NO:












AGGTTGGCG
791












AGG[G/A]TA













GCTCAAATG













AGGATAGTA













GAAGAGGAA













GAAAAGATA













TT






chr
108882
A
T
FOXO3
p.S26C
0.005
0.000
2.37
20.8
TCCGCTCGA
SEQ


6
487




39
26
E-
1[10.
AGTGGAGCT
ID










17
92-
GGACCCGGA
No:











39.6
GTTCGAGCC
792











5]
CCAG[A/T]GC













CGTCCGCGA













TCCTGTACG













TGGCCCCTG













CAAAGGCCG













GA






chr
109867
T
C
AK9
p.E103
0.023
0.000
6.49
295.
CGTTCTCAG
SEQ


6
190



5E
28
08
E-
82[1
AATCTTCCTC
ID










127
49.2
AAATTCAGG
No:











3-
TCCCACTTTC
793











586.
TT[T/C]TCAG












43]
TTTTGAGTA













GTAGTTTTTC













TTGAAGAAC













TTCTTCAA






chr
126073
T
G
HEY2
p.L74
0.005
0.003
3.66
1.58
GGGATCGGA
SEQ


6
212



L
88
72
E-
[1.05-
TAAATAACA
ID










02
2.39]
GTTTATCTG
No:












AGTTGAGAA
794












GACT[T/G]GT













GCCAACTGC













TTTTGAAAA













ACAAGTAAG













CTATCCCCTC













C






chr
136597
G
A
BCLA
p.P497
0.005
0.002
2.13
2.47
TCAAAGAGG
SEQ


6
174


F1
S
64
29
E-
[1.61-
TCTTTGAGCT
ID










04
3.78]
TTTCAGACTT
No:












TACCTGCTC
795












AG[G/A]TGAC













TGAGTTTCTT













TCTTTACTGT













TATTCTTTCA













GAATTT






chr
136597
C
A
BCLA
p.E403
0.008
0.004
1.21
1.83
AGGACTGAC
SEQ


6
456


F1
X
58
71
E-
[1.3-
TTCCTGAAC
ID










03
2.58]
TGTCTATAA
No:












TCCTCTGTCT
796












CCT[C/A]TGT













GTCATCCCC













TTCTGAATC













ATTAAACTT













TTGTTTTCCA






chr
137814
G
T
OLIG3
p.I124I
0.024
0.000
1.52
2806
TGAGCATGA
SEQ


6
936




51
01
E-
.41[3
GGATGTAGT
ID










144
91.3
TTCTGGCGA
No:











8-
GCAGGAGTG
797











2012
TGGC[G/T]AT












3.7]
CTTGGAGAG













CTTGCGCAC













CGACGGCCC













ATGCGCGTA













GG






chr
139113
A
T
CCDC
p.T271
0.008
0.002
7.18
3.81
ACAAAAACT
SEQ


6
926


28A
S
14
15
E-
[2.41-
CCATTTGGC
ID










08
5.78]
AGATGCACA
NO:












AGATGTTCC
798












AAAT[A/T]CT













TCTGCTAGC













TAAAATGAA













ATGTAGTTT













GCTTTCTTGT













G






chr
152457
C
T
SYNE1
p.E853
0.008
0.001
6.73
5.3[3
GGCACTGCA
SEQ


6
795



9E
36
60
E-
.21-
TCAGGGCAT
ID










08
8.74]
CCTGCAGCA
NO:












GGCCCCGCC
799












ACTC[C/T]TC













CAGCAGAGA













GCACACTCG













GTCCCAGCG













CCCATTCAT













CT






chr
155143
A
G
SCAF8
p.T629
0.005
0.003
3.35
1.59
TCAGAGCCC
SEQ


6
502



A
64
54
E-
[1.05-
AACTCCAGT
ID










02
2.43]
TGAAAAGGA
NO:












GACAGTGGT
800












CACA[A/G]CC













CAGGCAGAG













GTTTTCCCTC













CTCCTGTTGC













TATGTTGCA






chr
158487
T
C
SYNE
p.M29
0.009
0.005
9.88
1.57
CAGTCCGAA
SEQ


6
551



7T
31
94
E-
[1.13-
TTCACAAAT
ID










03
2.18]
TTCAAGCGG
NO:












ATCCGGATT
801












GCTA[T/C]GG













GGACCTGGA













ACGTGAACG













GAGGAAAGC













AGTTCCGGA













GC






chr
167728
T
C
UNC9
p.Y38
0.007
0.000
1.30
7.62
CGTTCTGTTT
SEQ


6
725


3A
7H
35
97
E-
[5.08-
GAGAAGAGC
ID










15
11.4
AAGGAAGCT
NO:











41]
GCCTTCGCC
802












AAT[T/C]ACC













GCCTGTGGG













AGGCCCTGG













GCTTCGTCA













TTGCCTTCG













G






chr
331061
A
G
WI2-
p.K10
0.015
0.000
1.78
377.
GCGCGCAGG
SEQ


7



237311
3K
69
04
E-
58[5
TGCCGCGGT
ID






.2



52
2.37-
CCGAGGGCC
NO:











2722
ACGAGAAGG
803











.42]
GCAA[A/G]G













GCAACTACT













GGACGTTCG













CGGGCGGCT













GCGAGTCGC













TGC






chr
102700
G
A
CYP2
p.R328
0.023
0.000
9.98
1179
CCACCCTTT
SEQ


7
7


W1
H
77
02
E-
.78[2
GCCCCAGGC
ID










133
90.7
CGGGTGCAG
NO:











9-
GAGGAGCTA
804











4786
GACC[G/A]CG












.53]
TGCTGGGCC













CTGGGCGGA













CTCCCCGGC













TGGAGGACC













AG






chr
102837
C
T
CYP2
p.P464
0.010
0.007
2.76
1.43
CTGCAGAGG
SEQ


7
6


W1
L
78
56
E-
[1.05-
TACCGCCTG
ID










02
1.94]
CTGCCCCCG
NO:












CCTGGCGTC
805












AGTC[C/T]GG













CCTCCCTGG













ACACCACGC













CCGCCCGGG













CTTTTACCAT













G






chr
178430
C
T
ELEN1
p.R26
0.006
0.003
4.27
1.55
CGTGGCGGC
SEQ


7
8



C
13
97
E-
[1.02-
CGCCACCCT
ID










02
2.34]
GCTGCACGC
NO:












TGGCGGCCT
806












GGCC[C/T]GC













GCAGACTGC













TGGCTGATC













GAGGGCGAC













AAGGGCTTC













GT






chr
225589
C
G
MAD1
p.E236
0.007
0.004
1.35
1.62
CCAGCTCAG
SEQ


7
3


L1
D
35
54
E-
[1.12-
ACTTCATGTT
ID










02
2.35]
CTTCACAAT
NO:












CGCTGCATC
807












CTG[C/G]TCT













TGCAGGGAC













AGCTTCTGC













TCCAGATCC













TGATGGAGG













C






chr
418545
G
A
SDK1
p.P144
0.010
0.007
4.98
1.38
GCGCCACAG
SEQ


7
7



4P
05
28
E-
[1.01-
TGAGGCAGT
ID










02
1.9]
TCACAGCCA
NO:












CCGACCTGG
808












CCCC[G/A]GA













GTCCGCATA













CATCTTCAG













GCTGTCCGC













CAAGACGAG













GC






chr
485690
T
C
RADIL
p.Y56
0.009
0.006
2.59
1.47
GTGCACCTT
SEQ


7
4



5C
07
17
E-
[1.06-
GGAGACATA
ID










02
2.06]
GTAGACGCA
NO:












CTGCTGGAA
809












GGCG[T/C]AC













AGCACCACC













TCCTCCAGC













ACCGCCATG













GCCTCCTCG













CT






chr
602682
G
C
PAIS2
p.S523
0.006
0.003
1.88
1.66
CCTGAGAGT
SEQ


7
7



S
13
70
E-
[1.11-
CCACATGTT
ID










02
2.49]
CCTGCGAGC
NO:












CCCTGTCCC
810












CTGG[G/C]GA













GCTGGCCGC













ATACTCGCT













GCTGCAGTG













ACTGCCCGT













GT






chr
232218
A
G
NUPL2
p.Q36R
0.005
0.000
4.20
195.
CCCGGTGCT
SEQ


7
11




39
03
E-
45[5
AGGGGTGCA
ID










29
8.48-
GGAGGAGGA
NO:











653.
CGGCAGCAA
811











28]
CCGC[A/G]GC













AGCAGCCTT













CAGGTGACT













CTCCTCTGA













ATCCTCCGC













GG






chr
262176
A
G
NFE2L3
p.I233
0.001
not
4.03
Inf
GGAGAACTC
SEQ


7
89



V
47
found
E-

ACTTCAGCA
ID










06

GAATGATGA
No:












TGATGAAAA
812












CAAA[A/G]TA













GCAGAGAAA













CCTGACTGG













GAGGCAGAA













AAGACCACT













GA






chr
309219
G
T
FAM1
p.R696
0.006
0.000
2.24
370.
GCCTGCAGC
SEQ


7
12


88B
S
62
02
E-
83[8
CGGGGCTCC
ID










37
8.15-
TGCGTGACT
No:











1559
GGAGGACTG
813











.92]
AGAG[G/T]CT













CTTTGACTTG













TACTACTAC













GATGGCCTG













GCCAACCAG













C






chr
379885
G
T
EPDR1
p.G79
0.007
0.000
1.62
159.
CATTCCTCA
SEQ


7
90



W
11
04
E-
69[6
AAACTCCAC
ID










37
1.78-
CTTTGAAGA
NO:











412.
CCAGTACTC
814











75]
CATC[G/T]GG













GGGCCTCAG













GAGCAGATC













ACCGTCCAG













GAGTGGTCG













GA






chr
420072
T
C
GLI3
p.I808
0.006
0.002
4.10
2.47
CTGAGCAGA
SEQ


7
01



M
86
79
E-
[1.67-
TGCATGGTC
ID










05
3.63]
TGATGTAGA
NO:












ACTCACCAT
815












TTCC[T/C]AT













GAGAGGAGA













GACCGCAGG













GGCTTTAGG













GGGTAGAAT













GG






chr
441544
G
A
POLD2
p.C447C
0.006
0.004
4.50
1.53
CATCGTCCT
SEQ


7
53




13
02
E-
[1.02-
CTGCCCCGA
ID










02
2.29]
AGCCCGAGA
NO:












AGCTGATGG
816












GCTG[G/A]CA













GGCCAGGCT













GCGCAGGTT













CACAAGGCA













GGCGGTCTG













CG






chr
451239
C
T
NACA
p.K61
0.005
0.000
6.20
47.3
CTTCAGCCT
SEQ


7
25


D
8K
15
11
E-
7[17.
GCTGGGACA
ID










19
85-
CAATCGTGG
NO:











125.
CTGCAGCCA
817











69]
CAGG[C/T]TT













TGGGGCTGA













TGAGAGATC













TGTGTCTTGT













AGGGGCAGA













G






chr
479255
C
T
PKD1
p.R990
0.009
0.006
3.03
1.46
TGAAGTGGC
SEQ


7
20


L1
Q
56
56
E-
[1.06-
AGGTTGGCC
ID










02
2.02]
AAGGGTCAC
NO:












GGGTGAAGG
818












TTCC[C/T]GT













GAGAATGGT













GTGGTCGTT













GCATCAGGA













TCTGCAGTG













CC






chr
505717
C
A
DDC
p.M23
0.005
0.003
3.84
1.62
TGTCAAAGG
SEQ


7
55



9I
39
34
E-
[1.05-
AGCAGCATG
ID










02
2.49]
TTGTGGTCC
NO:












CCAGGGTGG
819












CAAC[C/A]AT













CTAGAGGGT













AAAAAGCAG













ACAGCCTTT













TATTCCCCA













GG






chr
506730
C
T
GRB10
p.P390
0.005
0.003
3.94
1.61
AGGCGTGGC
SEQ


7
32



P
39
37
E-
[1.04-
CCTCCTCCA
ID










02
2.47]
GGGCTGCGC
NO:












TCTGGGCCT
820












CTGC[C/T]GG













ATTCTCTATC













ACGCGTCCT













GTTTGCCCA













GAAAAATCC













A






chr
636803
C
A
ZNF73
p.G30
0.008
0.000
1.80
989.
TTCATACTG
SEQ


7
38


5P
3G
82
01
E-
53[1
GAGAGAGAC
ID










51
35.6
CCTACAAAT
NO:











4-
GTGAAGAAT
821











7219
GTGG[C/A]AA












.03]
AGCCTTTAG













CGTATCCTC













AGCCCTCAT













TTACCACAA













GA






chr
638092
C
A
ZNF736
p.I342I
0.014
0.000
8.84
Inf
GTAAACATA
SEQ


7
67




22
00
E-

AGAGAATTC
ID










84

ATACTGGAG
NO:












AGAAACCCT
822












ACAT[C/A]TG













TGAAGAATG













TGGCAAAGC













CTTTACCCG













CTCCTCAAC













CC






chr
871606
G
A
ABCB1
p.L884
0.007
0.005
4.73
1.46
CTCACCTTCC
SEQ


7
45



L
60
22
E-
[1.02-
CAGAACCTT
ID










02
2.11]
CTAGTTCTTT
NO:












CTTATCTTTC
823












A[G/A]TGCTT













GTCCAGACA













ACATTTTCAT













TTCAACAAC













TCCTGCT






chr
889655
C
T
ZNF80
p.T108
0.006
0.003
1.55
1.98
TTCCCTGGT
SEQ


7
53


4B
61
62
35
E-
[1.34-
GCTTTTCCGT
ID










03
2.93]
CTAATAAAT
NO:












ATACTGGTG
824












TGA[C/T]TGA













TTCAACAGA













GACCCAAGA













AGACCAAAT













AAATCTAGA













C






chr
916030
C
T
AKAP9
p.S27L
0.005
0.002
6.73
1.92
TTTTCTTAGC
SEQ


7
56




39
82
E-
[1.24-
TTGCCCAGT
ID










03
2.96]
TTCGACAAA
NO:












GAAAAGCTC
825












AGT[C/T]GGA













TGGGCAGAG













TCCTTCCAA













GAAGCAGAA













AAAAAAGAG













A






chr
978223
G
A
LMTK2
p.A86
0.009
0.005
9.20
1.6[1
TGTCCCGGA
SEQ


7
61



2T
31
85
E-
.15-
GGACTGTCT
ID










03
2.22]
CCACCAGGA
NO:












CATCAGTCC
826












AGAC[G/A]CT













GTGACTGTC













CCGGTTGAA













ATTCTCTCA













ACTGATGCC













AG






chr
999995
T
C
ZCWP
p.R529
0.005
0.002
1.11
1.83
CCTGGCTGG
SEQ


7
51


W1
G
15
82
E-
[1.17-
TCAGAATCT
ID










02
2.85]
GAATTCCCT
NO:












TGGCCTTCTT
827












TCC[T/C]TCC













CATTCTGGG













TGCAGGAGG













AGCTGTGGA













TTTCCTGCCT






chr
100228
G
T
TFR2
p.A37
0.006
0.004
2.67
1.58
ATAAGGGGA
SEQ


7
655



6D
62
19
E-
[1.07-
GCCTAGGAG
ID










02
2.34]
GCTCCCCTG
No:












CCATTCTTG
828












GGGG[G/T]CC













ACAGGGCCT













TTGAGCTTC













CTGGAGAGG













AGGAAGGCA













GA






chr
100633
G
A
MUC12
p.G32S
0.005
0.006
9.17
0.95
CTCTCAAAT
SEQ


7
938




88
17
E-
[0.63-
CACAGGCTC
ID










01
1.44]
AACAGTAAA
No:












CACCAGTAT
829












TGGA[G/A]GT













AATACAACT













TCTGCATCC













ACACCCAGT













TCAAGCGAC













CC






chr
100633
C
T
MUC12
p.T39I
0.000
0.000
1.85
7.1[0
GTAAACACC
SEQ


7
960




25
03
E-
.64-
AGTATTGGA
ID










01
78.3
GGTAATACA
No:











51]
ACTTCTGCA
830












TCCA[C/T]AC













CCAGTTCAA













GCGACCCTT













TTACCACCTT













TAGTGACTA













T






chr
100634
G
A
MUC12
p.A10
0.002
0.001
1.71
1.59
CCCAGGTGC
SEQ


7
145



1T
70
70
E-
[0.85-
AACTGGAAC
ID










01
2.96]
AACACTCTT
No:












CCCTTCCCA
831












CTCT[G/A]CA













ACCTCAGTT













TTTGTTGGA













GAACCTAAA













ACCTCACCC













AT






chr
100634
C
T
MUC12
p.T122I
0.000
0.000
1.84
7.15
CCTAAAACC
SEQ


7
209




25
03
E-
[0.65-
TCACCCATC
ID










01
78.8
ACTTCAGCC
No:











7]
TCAATGGAA
832












ACAA[C/T]AG













CGTTACCTG













GCAGTACCA













CAACAGCAG













GCCTGAGTG













AG






chr
100634
C
G
MUC12
p.P153
0.000
0.000
1.00
0.92
TTCTACAGT
SEQ


7
302



R
49
53
E+00
[0.22-
AGCCCCAGA
ID











3.85]
TCACCAGAC
No:












AGAACACTC
833












TCAC[C/G]TG













CCCGCACGA













CAAGCTCAG













GCGTCAGTG













AAAAATCAA













CC






chr
100634
C
T
MUC12
p.P172
0.006
0.006
7.62
1.06
CTCAGGCGT
SEQ


7
358



S
86
48
E-
[0.72-
CAGTGAAAA
ID










01
1.56]
ATCAACCAC
NO:












CTCCCACAG
834












CCGA[C/T]CA













GGCCCAACG













CACACAATA













GCGTTCCCT













GACAGTACC













AC






chr
100634
C
A
MUC12
p.T177
0.000
0.000
1.00
1.02
AAATCAACC
SEQ


7
374



K
25
24
E+00
[0.13-
ACCTCCCAC
ID











7.75]
AGCCGACCA
NO:












GGCCCAACG
835












CACA[C/A]AA













TAGCGTTCC













CTGACAGTA













CCACCATGC













CAGGCGTCA













GT






chr
100634
C
T
MUC12
p.P181
0.001
0.002
7.38
0.83
TCCCACAGC
SEQ


7
386



L
96
37
E-
[0.41-
CGACCAGGC
ID










01
1.69]
CCAACGCAC
NO:












ACAATAGCG
836












TTCC[C/T]TG













ACAGTACCA













CCATGCCAG













GCGTCAGTC













AGGAATCTA













CA






chr
100634
T
G
MUC12
p.I199
0.000
0.000
5.26
1.42
ATGCCAGGC
SEQ


7
440



S
25
17
E-
[0.18-
GTCAGTCAG
ID










01
11.1
GAATCTACA
No:











3]
GCTTCCCAC
837












AGCA[T/G]CC













CCGGCTCCA













CAGACACAA













CACTGTCCC













CTGGCACTA













CC






chr
100634
G
C
MUC12
p.D28
0.005
0.005
1.00
0.99
GGGAGAACC
SEQ


7
700



6H
39
46
E+00
[0.64-
TACCACCTT
ID











1.52]
CCAGAGCTG
NO:












GCCAAGCTC
838












AAAG[G/C]A













CACTTCGCC













TGCACCTTCT













GGTACCACA













TCAGCCTTT













GT






chr
100634
C
T
MUC12
p.T315
0.000
0.000
5.28
1.42
TCTACAACT
SEQ


7
788



I
25
17
E-
[0.18-
TATCACAGC
ID










01
11.0
AGCCCGAGC
NO:











7]
TCAACTCCA
839












ACAA[C/T]CC













ACTTTTCTGC













CAGCTCCAC













AACCTTGGG













CCATAGTGA













G






chr
100634
G
A
MUC12
p.R348
0.013
0.015
3.63
0.87
AGCAGCCCA
SEQ


7
887



H
97
95
E-
[0.67-
GTTGCAACT
ID










01
1.14]
GCAACAACA
No:












CCCCCACCT
840












GCCC[G/A]CT













CCGCGACCT













CAGGCCATG













TTGAAGAAT













CTACAGCCT













AC






chr
100635
A
T
MUC12
p.K39
0.000
0.000
6.69
1.3[0
GAAGAATCA
SEQ


7
034



71
49
38
E-
.31-
GCAACTTTC
ID










01
5.53]
CACGGCAGC
No:












ACAACACAC
841












ACAA[A/T]AT













CTTCAACTC













CTAGCACCA













CAGCTGCCC













TAGCACATA













CA






chr
100635
C
G
MUC12
p.T403
0.000
0.000
6.53
Inf
CACGGCAGC
SEQ


7
052



S
25
00
E-
[NaN-
ACAACACAC
ID










02
Inf]
ACAAAATCT
No:












TCAACTCCT
842












AGCA[C/G]CA













CAGCTGCCC













TAGCACATA













CAAGCTACC













ACAGCAGCC













TG






chr
100635
T
C
MUC12
p.L416
0.000
0.000
1.00
0.89
ACCACAGCT
SEQ


7
091



P
49
55
E+00
[0.21-
GCCCTAGCA
ID











3.73]
CATACAAGC
No:












TACCACAGC
843












AGCC[T/C]GG













GCTCAACTG













AAACAACAC













ACTTCCGTG













ATAGCTCCA













CA






chr
100635
C
G
MUC12
p.D46
0.000
0.001
6.61
0.7[0
TCTTACCTGC
SEQ


7
236



4E
98
41
E-
.26-
CGGCTCTAC
ID










01
1.9]
ACCCTCAGT
No:












TCTTGTTGG
844












AGA[C/G]TCG













ACGCCCTCA













CCCATCAGT













TCAGGCTCA













ATGGAAACC













A






chr
100635
C
A
MUC12
p.P469
0.001
0.001
6.90
0.71
TCTACACCC
SEQ


7
250



H
23
72
E-
[0.29-
TCAGTTCTTG
ID










01
1.75]
TTGGAGACT
No:












CGACGCCCT
845












CAC[C/A]CAT













CAGTTCAGG













CTCAATGGA













AACCACAGC













GTTACCCGG













C






chr
100635
A
C
MUC12
p.M47
0.000
0.000
3.33
2.86
TGTTGGAGA
SEQ


7
267



5L
25
09
E-
[0.33-
CTCGACGCC
ID










01
24.4
CTCACCCAT
No:











9]
CAGTTCAGG
846












CTCA[A/C]TG













GAAACCACA













GCGTTACCC













GGCAGTACC













ACAAAACCA













GG






chr
100635
A
G
MUC12
p.S498
0.005
0.005
8.30
1.03
CACAAAACC
SEQ


7
336



G
88
70
E-
[0.68-
AGGCCTCAG
ID










01
1.56]
TGAGAAATC
No:












TACCACTTTC
847












TAC[A/G]GTA













GCCCCAGAT













CACCAGACA













CAACACACT













TACCTGCCA













G






chr
100635
C
G
MUC12
p.H52
0.000
0.000
4.92
1.59
TGACAAGCT
SEQ


7
419



5Q
25
15
E-
[0.2-
CAGGCGTCA
ID










01
12.5
GTGAAGAAT
No:











4]
CCACCACCT
848












CCCA[C/G]AG













CCGACCAGG













CTCAACACA













CACAACAGC













ATTCCCTGG













CA






chr
100635
C
A
MUC12
p.T533
0.000
0.000
1.26
14.3
GAATCCACC
SEQ


7
442



K
25
02
E-
2[0.9-
ACCTCCCAC
ID










01
228.
AGCCGACCA
No:











9]
GGCTCAACA
849












CACA[C/A]AA













CAGCATTCC













CTGGCAGTA













CCACCATGC













CAGGCCTCA













GT






chr
100635
C
G
MUC12
p.L602
0.000
0.000
1.00
0.71
AACAACACT
SEQ


7
648



V
49
69
E+00
[0.17-
CTTACCTGA
ID











2.95]
CAACACCAC
No:












AGCCTCAGG
850












ACTC[C/G]TT













GAAGCATCT













ATGCCCGTC













CACAGCAGC













ACCAGATCG













CC






chr
100635
A
C
MUC12
p.E603
0.001
0.000
1.73
1.75
ACACTCTTA
SEQ


7
652



A
47
84
E-
[0.75-
CCTGACAAC
ID










01
4.09]
ACCACAGCC
No:












TCAGGACTC
851












CTTG[A/C]AG













CATCTATGC













CCGTCCACA













GCAGCACCA













GATCGCCAC













AC






chr
100635
G
A
MUC12
p.S614
0.005
0.003
3.40
1.68
TCCTTGAAG
SEQ


7
686



S
39
22
E-
[1.08-
CATCTATGC
ID










02
2.61]
CCGTCCACA
No:












GCAGCACCA
852












GATC[G/A]CC













ACACACAAC













ACTGTCCCC













TGCCGGCTC













TACAACCCG













TC






chr
100635
C
T
MUC12
p.P657
0.004
0.003
7.98
1.04
AGGCCTGCA
SEQ


7
814



L
17
99
E-
[0.64-
CCTCCTACT
ID










01
1.71]
ACCACATCA
No:












GCCTTTGTTG
853












AGC[C/T]ATC













TACAACCTC













CCACGGCAG













CCCGAGCTC













AATTCCAAC













A






chr
100635
C
G
MUC12
p.H67
0.000
0.000
4.91
1.59
TACAACCTC
SEQ


7
858



2D
25
15
E-
[0.2-
CCACGGCAG
ID










01
12.5
CCCGAGCTC
No:











5]
AATTCCAAC
854












AACC[C/G]AC













ATTTCTGCCC













GCTCCACAA













CCTCAGGCC













TCGTTGAAG













A






chr
100635
T
A
MUC12
p.S674
0.000
0.000
7.03
3.58
CTCCCACGG
SEQ


7
864



T
74
21
E-
[1.01-
CAGCCCGAG
ID










02
12.6
CTCAATTCC
No:











9]
AACAACCCA
855












CATT[T/A]CT













GCCCGCTCC













ACAACCTCA













GGCCTCGTT













GAAGAATCT













AC






chr
100635
G
A
MUC12
p.R676
0.000
0.000
1.84
7.15
GGCAGCCCG
SEQ


7
871



H
25
03
E-
[0.65-
AGCTCAATT
ID










01
78.8
CCAACAACC
No:











7]
CACATTTCT
856












GCCC[G/A]CT













CCACAACCT













CAGGCCTCG













TTGAAGAAT













CTACGACCT













AC






chr
100635
C
A
MUC12
p.T679
0.004
0.003
2.87
1.28
AGCTCAATT
SEQ


7
880



N
66
65
E-
[0.8-
CCAACAACC
ID










01
2.04]
CACATTTCT
No:












GCCCGCTCC
857












ACAA[C/A]CT













CAGGCCTCG













TTGAAGAAT













CTACGACCT













ACCACAGCA













GC






chr
100635
C
G
MUC12
p.S695
0.000
0.000
3.71
Inf
CTCGTTGAA
SEQ


7
928



X
25
00
E-
[NaN-
GAATCTACG
ID










02
Inf]
ACCTACCAC
No:












AGCAGCCCG
858












GGCT[C/G]AA













CTCAAACAA













TGCACTTCC













CTGAAAGCG













ACACAACTT













CA






chr
100636
C
A
MUC12
p.S910
0.005
0.016
8.63
0.35
AGCACCACC
SEQ


7
573



Y
64
13
E-
[0.23-
ACCTCAGGC
ID










09
0.53]
CCCAGTCAG
No:












GAATCAACA
859












ACTT[C/A]CC













ACAGCAGCT













CAGGTTCAA













CTGACACAG













CACTGTCCC













CT






chr
100636
G
A
MUC12
p.R974
0.000
0.000
2.64
18.6
GAAGCATCT
SEQ


7
765



H
49
03
E-
3[1.6
ACACGCGTC
ID










02
9-
CACAGCAGC
No:











205.
ACTGGCTCA
860











52]
CCAC[G/A]CA













CAACACTGT













CCCCTGCCA













GCTCCACAA













GCCCTGGAC













TT






chr
100636
C
G
MUC12
p.T996
0.000
0.000
2.81
2.12
ACAAGCCCT
SEQ


7
831



S
49
23
E-
[0.46-
GGACTTCAG
ID










01
9.8]
GGAGAATCT
No:












ACTGCCTTC
861












CAGA[C/G]CC













ACCCAGCCT













CAACTCACA













CAACGCCTT













CACCTCCTA













GC






chr
100636
T
C
MUC12
p.S100
0.005
0.006
3.48
0.78
TGCCTTCCA
SEQ


7
860



6P
15
58
E-
[0.5-
GACCCACCC
ID










01
1.22]
AGCCTCAAC
No:












TCACACAAC
862












GCCT[T/C]CA













CCTCCTAGC













ACCGCAACA













GCCCCTGTT













GAAGAATCT













AC






chr
100637
C
G
MUC12
p.P113
0.006
0.000
5.46
250.
CTGGGCGTC
SEQ


7
251



6R
37
03
E-
3[33.
GGTGAAGAA
ID










26
96-
TCCACCACC
No:











1844
TCCCGTAGC
863











.95]
CAAC[C/G]AG













GTTCTACTC













ACTCAACAG













TGTCACCTG













CCAGCACCA













CC






chr
100637
C
G
MUC12
p.T118
0.001
0.001
4.55
1.37
CACAGCACC
SEQ


7
407



8S
47
07
E-
[0.58-
ACAACCTCA
ID










01
3.23]
GTTCATGGT
No:












GAAGAGCCT
864












ACAA[C/G]CT













TCCACAGCC













GGCCAGCCT













CAACTCACA













CAACACTGT













TC






chr
100637
G
A
MUC12
p.G12
0.008
0.011
1.98
0.79
CCAAACAGG
SEQ


7
556



38S
82
19
E-
[0.56-
GTTACCTGC
ID










01
1.11]
CACACTCAC
No:












AACCGCAGA
865












CCTC[G/A]GT













GAGGAATCA













ACTACCTTTC













CCAGCAGCT













CAGGCTCAA













C






chr
100637
C
T
MUC12
p.P135
0.001
0.001
1.00
0.87
TTCCCTGAC
SEQ


7
902



3L
47
69
E+0
[0.37-
AGCACCACC
ID










0
2.04]
ACCTCAGAC
No:












CTCAGTCAG
866












GAAC[C/T]TA













CAACTTCCC













ACAGCAGCC













AAGGCTCAA













CAGAGGCAA













CA






chr
100638
C
G
MUC12
p.H15
0.006
0.000
1.36
Inf
CGACAAGCT
SEQ


7
584



80Q
13
00
E-

CAGGCGTCA
ID










29

GTGAAGAAT
No:












CCACCACCT
867












CCCA[C/G]AG













CCGACCAGG













CTCAACGCA













CACAACAGC













ATTCCCTGG













CA






chr
100638
G
T
MUC12
p.S161
0.001
0.000
1.36
21.2
ATGCCAGGC
SEQ


7
673



0I
47
07
E-
8[6-
GTCAGTCAG
ID










05
75.4
GAATCTACA
No:











4]
GCTTCCCAC
868












AGCA[G/T]CC













CAGGCTCCA













CAGACACAA













CATTGTCCC













CTGGCAGTA













CC






chr
100638
G
A
MUC12
p.S163
0.000
0.000
2.36
14.2
ACAGCATCA
SEQ


7
754



7N
49
03
E-
5[2.0
TCCCTTGGTC
ID










02
1-
CAGAATCTA
No:











101.
CTACTTTCCA
869











22]
CA[G/A]CAGC













CCAGGCTCC













ACTGAAACA













ACACTCTTA













CCTGACAAC






chr
100638
C
T
MUC12
p.S166
0.000
0.000
6.13
1.1[0
CTCCTTGAA
SEQ


7
850



9L
25
22
E-
.14-
GCATCTACG
ID










01
8.39]
CCCGTCCAC
No:












AGCAGCACT
870












GGAT[C/T]GC













CACACACAA













CACTGTCCC













CTGCCGGCT













CTACAACAC













GT






chr
100638
G
A
MUC12
p.R168
0.001
0.000
2.33
1.7[0
TCGCCACAC
SEQ


7
889



2H
23
72
E-
.67-
ACAACACTG
ID










01
4.31]
TCCCCTGCC
No:












GGCTCTACA
871












ACAC[G/A]TC













AGGGAGAAT













CTACCACCT













TCCAGAGCT













GGCCAAGCT













CA






chr
100638
G
A
MUC12
p.W16
0.000
0.000
1.84
7.15
TCTACAACA
SEQ


7
919



92X
25
03
E-
[0.65-
CGTCAGGGA
ID










01
78.9]
GAATCTACC
No:












ACCTTCCAG
872












AGCT[G/A]GC













CAAGCTCAA













AGGACACTA













TGCCTGCAC













CTCCTACTA













CC






chr
100638
C
G
MUC12
p.P169
0.000
0.000
6.53
Inf
ACAACACGT
SEQ


7
922



3R
25
00
E-
[NaN-
CAGGGAGAA
ID










02
Inf]
TCTACCACC
No:












TTCCAGAGC
873












TGGC[C/G]AA













GCTCAAAGG













ACACTATGC













CTGCACCTC













CTACTACCA













CA






chr
100638
G
A
MUC12
p.S169
0.000
0.000
6.45
1.51
ACACGTCAG
SEQ


7
925



4N
49
33
E-
[0.35-
GGAGAATCT
ID










01
6.47][
ACCACCTTC
No:












CAGAGCTGG
874












CCAA[G/A]CT













CAAAGGACA













CTATGCCTG













CACCTCCTA













CTACCACAT













CA






chr
100638
C
G
MUC12
p.S169
0.000
0.000
3.71
Inf
CGTCAGGGA
SEQ


7
928



5X
25
00
E-
[NaN-
GAATCTACC
ID










02
Inf][
ACCTTCCAG
No:












AGCTGGCCA
875












AGCT[C/G]AA













AGGACACTA













TGCCTGCAC













CTCCTACTA













CCACATCAG













CC






chr
100643
C
G
MUC12
p.H31
0.017
0.000
9.03
Inf
CGACAAGCT
SEQ


7
255



37Q
16
00
E-

CAGGCGTCA
ID










84

GTGAAGAAT
No:












CCACCACCT
876












CCCA[C/G]AG













CCGACCAGG













CTCAACGCA













CACAACAGC













ATTCCCTGG













CA






chr
100643
G
A
MUC12
p.A31
0.005
0.001
2.43
3.89
AGGCTCCAC
SEQ


7
388



82T
88
52
E-
[2.47-
AGACACAAC
ID










07
6.12][
ACTGTCCCC
No:












TGGCAGTAC
877












CACA[G/A]CA













TCATCCCTTG













GTCCAGAAT













CTACTACCTT













CCACAGCGG






chr
100643
G
A
MUC12
p.R323
0.003
0.000
2.27
44.8
TCGCCACAC
SEQ


7
560



9H
92
09
E-
5[16.
ACAACACTG
ID










15
42-
TCCCCTGCC
No:











122.
GGCTCTACA
878











48]
ACCC[G/A]TC













AGGGAGAAT













CTACCACCT













TCCAGAGCT













GGCCTAACT













CG






chr
100643
A
G
MUC12
p.T324
0.000
0.000
3.74
9.54
ACTGTCCCC
SEQ


7
574



4A
49
05
E-
[1.59-
TGCCGGCTC
ID










02
57.1
TACAACCCG
No:











3]
TCAGGGAGA
879












ATCT[A/G]CC













ACCTTCCAG













AGCTGGCCT













AACTCGAAG













GACACTACC













CC






chr
100643
C
T
MUC12
p.S329
0.000
0.000
6.47
1.48
TTTTCTGCCA
SEQ


7
737



8L
49
33
E-
[0.34-
GCTCCACAA
ID










01
6.34]
CCTTGGGCC
No:












GTAGTGAGG
880












AAT[C/T]GAC













AACAGTCCA













CAGCAGCCC













AGTTGCAAC













TGCAACAAC













A






chr
100643
G
A
MUC12
p.R331
0.008
0.000
1.03
36.5
AGCAGCCCA
SEQ


7
791



6H
09
22
E-
9[18.
GTTGCAACT
ID










28
88-
GCAACAACA
No:











70.9]
CCCTCGCCT
881












GCCC[G/A]CT













CCACAACCT













CAGGCCTCG













TTGAAGAAT













CTACGACCT













AC






chr
100646
G
A
MUC12
p.S424
0.000
0.000
4.92
1.36
ACCATGCCA
SEQ


7
590



9N
74
54
E-
[0.42-
GGCGTCAGT
ID










01
4.44]
CAGGAATCT
NO:












ACAGCTTCC
882












CACA[G/A]CA













GCCCAGGCT













CCACAGACA













CAACACTGT













CCCCTGGCA













GT






chr
100646
A
C
MUC12
p.N42
0.021
0.051
5.47
0.4[0
CAGCAGCCC
SEQ


7
712



90H
08
65
E-
.32-
AGGCTCCAC
ID










22
0.49]
TGAAACAAC
NO:












ACTCTTACCT
883












GAC[A/C]ACA













CCACAGCCT













CAGGCCTCC













TTGAAGCAT













CTACACCCG













T






chr
100646
C
G
MUC12
p.P430
0.022
0.000
6.14
313.
GACAACACC
SEQ


7
749



2R
55
07
E-
86[9
ACAGCCTCA
ID










92
9.34-
GGCCTCCTT
NO:











991.
GAAGCATCT
884











56]
ACAC[C/G]CG













TCCACAGCA













GCACTGGAT













CGCCACACA













CAACACTGT













CC






chr
100646
G
A
MUC12
p.R432
0.000
0.000
1.00
0.89
TCGCCACAC
SEQ


7
809



2H
25
27
E+00
[0.12-
ACAACACTG
ID











6.73]
TCCCCTGCC
NO:












GGCTCTACA
885












ACCC[G/A]TC













AGGGAGAAT













CTACCACCT













TCCAGAGCT













GGCCAAACT













CG






chr
100646
C
T
MUC12
p.R437
0.002
0.002
8.75
0.89
TCCAACAAC
SEQ


7
973



7C
45
75
E-
[0.47-
CCACTTTTCT
ID










01
1.7]
GCCAGCTCC
NO:












ACAACATTG
886












GGC[C/T]GTA













GTGAGGAAT













CGACAACAG













TCCACAGCA













GCCCAGTTG













C






chr
100647
A
G
MUC12
p.R463
0.000
0.000
6.60
Inf
CCCTGAAAG
SEQ


7
735



1G
25
00
E-
[NaN-
CTCCACAGC
ID










02
Inf]
TTCAGGTCG
NO:












TAGTGAAGA
887












ATCA[A/G]GA













ACTTCCCAC













AGCAGCACA













ACACACACA













ATATCTTCA













CC






chr
100647
C
G
MUC12
p.P464
0.006
0.006
9.21
0.95
AAGAACTTC
SEQ


7
774



4A
37
73
E-
[0.64-
CCACAGCAG
ID










01
1.41]
CACAACACA
No:












CACAATATC
888












TTCA[C/G]CT













CCTAGCACC













ACATCTGCC













CTTGTTGAA













GAACCTACC













AG






chr
100647
C
G
MUC12
p.S471
0.005
0.003
1.60
1.37
TTACCTGCC
SEQ


7
976



1C
39
95
E-
[0.88-
CATTTTACTA
ID










01
2.12]
CCTCAGGCC
No:












GCATTGCAG
889












AAT[C/G]TAC













CACCTTCTAT













ATCTCTCCA













GGCTCAATG













GAAACAACA






chr
100647
A
G
MUC12
p.Y47
0.000
0.000
2.36
14.2
TTTACTACCT
SEQ


7
988



15C
49
03
E-
7[2.0
CAGGCCGCA
ID










02
1-
TTGCAGAAT
No:











101.
CTACCACCT
890











32]
TCT[A/G]TAT













CTCTCCAGG













CTCAATGGA













AACAACATT













AGCCAGCAC













T






chr
100648
C
G
MUC12
p.L473
0.005
0.006
7.56
0.91
AATGGAAAC
SEQ


7
044



4V
64
19
E-
[0.6-
AACATTAGC
ID










01
1.39]
CAGCACTGC
No:












CACAACACC
891












AGGC[C/G]TC













AGTGCAAAA













TCTACCATC













CTTTACAGT













AGCTCCAGA













TC






chr
100648
C
G
MUC12
p.S476
0.000
0.000
3.78
2.38
CCAGCATGA
SEQ


7
148



8R
25
10
E-
[0.29-
CAAGCTCCA
ID










01
19.7
GCATCAGTG
No:











51]
GAGAACCCA
892












CCAG[C/G]TT













GTATAGCCA













AGCAGAGTC













AACACACAC













AACAGCGTT













CC






chr
100648
C
T
MUC12
p.A47
0.000
0.000
1.84
7.12
ACCAGCTTG
SEQ


7
183



80V
25
03
E-
[0.65-
TATAGCCAA
ID










01
78.5
GCAGAGTCA
No:











51]
ACACACACA
893












ACAG[C/T]GT













TCCCTGCCA













GCACCACCA













CCTCAGGCC













TCAGTCAGG













AA






chr
100649
G
T
MUC12
p.C498
0.000
0.000
7.00
1.12
CACGGTGAC
SEQ


7
758



8F
49
44
E-
[0.27-
TGCTGTGGA
ID










01
4.73]
TTCTATCTCT
No:












CCACAGGGT
894












TGT[G/T]CCA













GGAAGGACA













AATTTGGAA













TGGAAAACA













ATGCGTCTG













T






chr
100649
G
C
MUC12
p.G50
0.000
0.000
2.41
4.67
TGGAATGGA
SEQ


7
815



07A
25
05
E-
[0.49-
AAACAATGC
ID










01
44.9
GTCTGTCCC
No:











4]
CAAGGCTAC
895












GTTG[G/C]TT













ACCAGTGCT













TGTCCCCTCT













GGAATCCTT













CCCTGTAGG













T






chr
100649
C
T
MUC12
p.P501
0.000
0.000
2.59
0.29
CTACGTTGG
SEQ


7
847



8S
25
86
E-
[0.04-
TTACCAGTG
ID










01
2.07]
CTTGTCCCCT
No:












CTGGAATCC
896












TTC[C/T]CTG













TAGGTAATG













ACCTTTTCTG













AGACCTGCA













GCTCTTTGC






chr
100649
T
C
MUC12
p.V50
0.000
0.000
9.98
3[0.8
GTTGGTTAC
SEQ


7
851



19A
74
24
E-
6-
CAGTGCTTG
ID










02
10.4
TCCCCTCTG
No:











6]
GAATCCTTC
897












CCTG[T/C]AG













GTAATGACC













TTTTCTGAG













ACCTGCAGC













TCTTTGCAG













GC






chr
100651
C
T
MUC12
p.P502
0.000
0.000
4.29
1.69
GCTGTCTCA
SEQ


7
921



2L
74
43
E-
0[.51-
CGCATACCA
ID










01
5.6]
TGGCCTTTTC
No:












CCACAGAAA
898












CCC[C/T]GGA













AAAACTCAA













CGCCACTTT













AGGTATGAC













AGTGAAAGT













G






chr
100656
T
C
MUC12
p.L520
0.000
0.000
1.29
14.0
AAGTGCACC
SEQ


7
384



0P
25
02
E-
2[0.8
AAAGGAACG
ID










01
8-
AAGTCGCAA
No:











224.
ATGAACTGT
899











21]
AACC[T/C]GG













GCACATGTC













AGCTGCAAC













GCAGTGGCC













CCCGCTGCC













TG






chr
100657
T
C
MUC12
p.I523
0.000
0.000
6.19
1.08
AACACACAC
SEQ


7
247



1T
25
23
E-
[0.14-
TGGTACTGG
ID










01
8.25]
GGAGAGACC
NO:












TGTGAATTC
900












AACA[T/C]CG













CCAAGAGCC













TCGTGTATG













GGATCGTGG













GGGCTGTGA













TG






chr
100678
G
A
MUC17
p.P140
0.018
0.000
2.01
1009
GAACCACTC
SEQ


7
918



7P
14
02
E-
.33[2
CGTTAACAA
ID










104
47.6
GTATACCTG
NO:











9-
TCAGCACCA
901











4112
CGCC[G/A]GT












.96]
AGTCAGTTC













TGAGGCTAG













CACCCTTTC













AGCAACTCC













TG






chr
100681
C
T
MUC17
p.A21
0.012
0.000
8.18
Inf
CTCCTTTAAC
SEQ


7
219



74A
99
00
E-

AAGTATGCC
ID










78

TGTCAGCAC
No:












CACAGTGGT
902












GGC[C/T]AGT













TCTGCAATC













AGCACCCTT













TCAACAACT













CCTGTTGAC













A






chr
100681
T
G
MUC17
p.S220
0.0006
0.000
2.25
Inf
TGTGACCAA
SEQ


7
310



5A
37
00
E-

TTCTACTGA
ID










38

AGCCCGTTC
NO:












ATCTCCTAC
903












AACT[T/G]CT













GAAGGTACC













AGCATGCCA













ACCTCAACT













CCTAGTGAA













GG






chr
100682
T
C
MUC17
p.S263
0.007
0.001
4.22
4.95
TACCAGCAT
SEQ


7
597



4P
11
44
E-
[3.33-
GCCAATCTC
ID










11
7.38]
AACTCCTAG
NO:












TGAAGTAAG
904












TACT[T/C]CA













TTAACAAGT













ATACTTGTC













AGCACCATG













CCAGTGGCC













AG






chr
100682
T
C
MUC17
p.L263
0.006
0.000
2.08
14.3
TCAACTCCT
SEQ


7
613



9P
86
48
E-
2[9.0
AGTGAAGTA
ID










20
5-
AGTACTTCA
NO:











22.6
TTAACAAGT
905











5]
ATAC[T/C]TG













TCAGCACCA













TGCCAGTGG













CCAGTTCTG













AGGCTAGCA













CC






chr
102087
C
T
ORAI2
p.L168
0.011
0.006
2.80
1.82
TGCTTGGCA
SEQ


7
238



L
27
23
E-
[1.35-
TCCTACTCTT
ID










04
2.46]
CCTGGCCGA
No:












GGTGGTGCT
906












GCT[C/T]TGC













TGGATCAAG













TTCCTCCCCG













TGGATGCCC













GGCGCCAGC






chr
108112
A
G
PNPL
p.D76
0.005
0.003
1.58
1.69
ATGGAAGTC
SEQ


7
902


A8
4D
88
48
E-
[1.12-
CTTCATACA
ID










02
2.56]
TATCAGTTTT
No:












TAATTTTATC
907












CA[A/G]TCAT













TAATTTTCTG













CAGAGTTGT













TTTTTCTTGA













CTTAATA






chr
111368
G
A
DOCK4
p.P191
0.009
0.005
2.33
1.74
CGCGGGCGG
SEQ


7
481



7L
31
38
E-
[1.25-
CTCCGACGT
ID










03
2.42]
GACGGGGAT
No:












GGAGAGGCT
908












GTGA[G/A]GT













AGCGGGACG













GGGCGCCGC













AGAGTCCGC













TCGTAGACG













CT






chr
117232
A
G
CFTR
p.E695
0.021
0.000
3.53
2406
ACAAAAAAA
SEQ


7
305



G
32
01
E-
.22[3
CAATCTTTTA
ID










125
35.0
AACAGACTG
No:











8-
GAGAGTTTG
909











1727
GGG[A/G]AA












9.21]
AAAGGAAGA













ATTCTATTCT













CAATCCAAT













CAACTCTAT













A






chr
123143
G
A
IQUB
p.P278
0.007
0.004
1.12
1.65
ACATTACCT
SEQ


7
031



P
84
78
E-
[1.15-
GCGTATCCC
ID










02
2.36]
TACAAAATA
No:












TACTGAGTC
910












TTTC[G/A]GG













AATCCTTTTA













GGTACAGTT













TGTGTTCCA













GCATTGTGA













T






chr
141366
A
G
KIAA1
p.M23
0.006
0.004
4.89
1.52
GATGAGGAT
SEQ


7
203


147
5T
37
20
E-
[1.02-
CTGTTCTCCA
ID










02
2.26]
AAGAACTTT
No:












ATAAACTGA
911












GAC[A/G]TGC













AGCCAGCTG













GGTGTGTGA













TCTGAAAAA













ATTGAGGGG













A






chr
141763
C
A
MGAM
p.P142
0.012
0.009
2.68
1.38
GAGGTATGT
SEQ


7
311



4T
99
45
E-
[1.05-
CTGTGTTTG
ID










02
1.82]
GCATTTCTA
No:












GGATATGAA
912












TGAA[C/A]CA













TCAAGCTTC













GTGAATGGG













GCAGTTTCT













CCAGGCTGC













AG






chr
141794
C
T
MGAM
p.F154
0.006
0.002
1.83
2.75
CTGTGCTTCT
SEQ


7
442



7F
13
24
E-
[1.82-
CGTTGCAGG
ID










05
4.15]
CATGATGGA
No:












GTTCAGCCT
913












CTT[C/T]GGC













ATATCCTAT













GTGAGTGTC













CTTGGGATC













CTCCTAAGC













A






chr
150069
G
A
REPIN1
p.K24
0.009
0.000
1.71
Inf
CCTTCCAGT
SEQ


7
074



8K
56
00
E-

GTGCCTGTT
ID










56

GTGGCAAGC
No:












GCTTCCGGC
914












ACAA[G/A]CC













CAACTTGAT













CGCTCACCG













CCGCGTGCA













CACGGGCGA













GC






chr
150738
C
T
ABCB8
p.G40
0.005
0.002
5.50
1.9[1
TGCCCCCTG
SEQ


7
005



5G
64
97
E-
.24-
GCAAGATCG
ID










03
2.91]
TGGCCCTCG
No:












TGGGCCAGT
915












CTGG[C/T]GG













AGGTAAGGG













GAGCCCACC













ACCTCTTCA













CCCTCTGAC













TC






chr
150840
A
T
AGAP3
p.E431
0.005
0.002
1.04
1.85
TCATGCCCT
SEQ


7
440



D
15
79
E-
[1.19-
GATGGGCCT
ID










02
2.88]
GTGGTTGCA
No:












GAGAGGAGA
916












AGGA[A/T]CG













CTGGATACG













GGCCAAGTA













TGAACAGAA













GCTCTTCCTG













G






chr
151078
C
T
WDR86
p.G31
0.006
0.003
8.14
1.73
GAGGGACCT
SEQ


7
993



3S
86
98
E-
[1.18-
ACCTGGATG
ID










03
2.54]
CAGTTGATG
No:












ATGAATGTG
917












TGGC[C/T]CC













GGAACACCC













TCCGCAGCT













CTCCAGACT













GCGCGTCGA













AG






chr
151859
G
A
KMT2C
p.S358
0.005
0.003
4.53
1.58
TTTTTCCTCT
SEQ


7
899



8L
64
57
E-
[1.04-
GGGATTATA
ID










02
2.41]
TCAGAATAC
No:












AACTGAATG
918












AGC[G/A]ATT













GGGTTGATC













CCGGATAAC













TGTGTCCAT













GGGTTATAG













T






chr
623435
G
A
ERICH1
p.P306
0.027
0.000
7.40
1561
CTCCCCGGA
SEQ


8




L
21
02
E-
.55[3
GTCTGCACC
ID










159
85.5
CTCTTCCTCC
No:











8-
CCAGCCCAT
919











6324
GTC[G/A]GGT












.12]
CTTCCTCGCT













GGCGTCCGC













ACCGTCCTC













CTCCCTGGT






chr
623519
A
C
ERICH1
p.I278
0.014
0.000
1.13
Inf
TTTACCGTCT
SEQ


8




S
71
00
E-

TCCTCCCCG
ID










87

GCCCGTGTC
No:












AGGTCTTCC
920












TCA[A/C]TGG













TGTCCACAC













CGTCCTCCTC













CCTGGCGTC













TTTAACGTC






chr
623675
A
C
ERICH1
p.V22
0.024
0.000
1.64
Inf
CTCGCTAGC
SEQ


8




6G
51
00
E-

GTCCGCACC
ID










145

ATCTTCCTCC
No:












CTGGTATCTT
921












TA[A/C]CGTC













TTCCTCCCCG













GCCAGTGTC













GGGTCTTCC













TCGCTGGT






chr
104660
A
C
RP1L1
p.D18
0.005
0.000
1.36
Inf
CTTCTGACTC
SEQ


8
31



59E
15
00
E-

TGGCTGGGC
ID










30

CTCCCCTTCA
No:












GCCTCCTGG
922












GC[A/C]TCCC













CTTCTGCCTC













TGGGGCCTC













TACACCTTCT













GACTCTG






chr
171597
A
G
MTMR7
p.M52
0.005
0.002
1.04
1.85
TAGTTCTTCC
SEQ


8
18



2T
15
79
E-
[1.19-
TCTAGCTGC
ID










02
2.88]
TGAGTTTCTT
No:












CCTTCACTG
923












CC[A/G]TTAG













GTAATCTGT













AACTGACTG













TCGGGGCTG













CATCCCCTT






chr
180803
A
T
NAT1
p.D25
0.005
0.003
1.32
1.76
ACCCTCACC
SEQ


8
08



1V
88
35
E-
[1.16-
CATAGGAGA
ID










02
2.66]
TTCAATTAT
NO:












AAGGACAAT
924












ACAG[A/T]TC













TAATAGAGT













TCAAGACTC













TGAGTGAGG













AAGAAATAG













AA






chr
234289
C
G
SLC25
p.T191
0.005
0.003
3.48
1.63
ACCGGTCAG
SEQ


8
24


A37
T
15
17
E-
[1.05-
CAATCAGCT
ID










02
2.53]
GCATCCGGA
NO:












CGGTGTGGA
925












GGAC[C/G]G













AGGGGTTGG













GGGCCTTCT













ACCGGAGCT













ACACCACGC













AGC






chr
251746
C
T
DOCK5
p.T469
0.010
0.007
4.77
1.38
GACAAAGGG
SEQ


8
10



M
78
86
E-
[1.01-
AAGAAGAAG
ID










02
1.87]
ACGCCAAAG
NO:












AATGTGGAG
926












GTGA[C/T]GA













TGTCTGTGC













ACGATGAGG













AGGGCAAGC













TCTTGGAGG













TG






chr
267219
C
T
ADRA
p.R166
0.006
0.003
2.42
1.74
GTTGATCTG
SEQ


8
90


1A
K
506
743
E-
[1.05-
GCAGATGGT
ID










02
2.73]
CTCGTCCTC
NO:












GGGGGCCGG
927












CTGC[C/T]TC













CAGCCGAAC













AGGGGTCCA













ATGGATATG













ACCAGGGAG













AG






chr
356480
G
A
UNC5D
p.T930
0.009
0.005
1.25
1.79
CCCTGGCCT
SEQ


8
09



T
07
08
E-
[1.28-
GTGCCCTTG
ID










03
2.5]
AAGAGATTG
NO:












GGAGGACAC
928












ACAC[G/A]A













AACTCTCAA













ACATTTCAG













AATCCCAGC













TTGATGAAG













CCG






chr
367933
T
C
KCNU1
p.N11
0.005
0.002
8.09
2.24
TATCATCTC
SEQ


8
75



29N
64
53
E-
[1.46-
AGATACCTT
ID










04
3.43]
TAGGTGACA
NO:












ATGCAAAAG
929












AAAA[T/C]GA













AAGGAAAAC













TTCAGATGA













GGTTTATGA













TGAGGATCC













CT






chr
376997
G
A
GPR12
p.K13
0.005
0.000
9.89
Inf
CGTACCCGC
SEQ


8
77


4
07K
64
00
E-

TCAACGCCG
ID










29

CCAGCCTAA
No:












ACGGCGCCC
930












CCAA[G/A]G













GGGGCAAGT













ACGACGACG













TCACCCTGA













TGGGCGCGG













AGG






chr
382600
C
T
LETM2
p.A33
0.006
0.003
4.19
1.56
AAGTTCCAA
SEQ


8
50



1V
13
94
E-
[1.04-
CTCCATCCCT
ID










02
2.34]
TACATTTCTT
No:












TCAGATAAT
931












TG[C/T]CAAG













GAAGGGGTG













ACAGCATTG













AGTGTATCA













GAACTACAG






chr
382657
C
T
LETM2
p.T385
0.005
0.002
2.15
1.92
GTTTTTTACG
SEQ


8
55



M
205
716
E-
[1.08-
CCTAGACAC
ID










02
3.18]
TCCAGGCCA
No:












AATCACAAA
932












TGA[C/T]GGC













CCAGAACAG













CAAGGCTAG













TTCAAAAGG













AGCATAAAG













G






chr
523208
G
C
PXDN
p.L111
0.007
0.004
4.90
1.54
TAAGCCGCG
SEQ


8
32


L
8V
482
863
E-
[0.97-
GAGAAGAGC
ID










02
2.34]
CTCTGGGTC
No:












AGCTCAGGA
933












CTGA[G/C]AA













GGTAGGAGG













GTGCCCGCC













ATTTAGCAG













CCACGCCAA













AC






chr
550491
A
G
MRPL
p.R57
0.012
0.008
4.23
1.36
GAGAAGAGG
SEQ


8
31


15
G
01
88
E-
[1.02-
TAGAAAATG
ID










02
1.81]
TGGCAGAGG
No:












CCATAAAGG
934












AGAA[A/G]G













GCAAAGAGG













AACCCGGCC













CCGCTTGGG













CTTTGAGGG













AGG






chr
813991
C
T
ZBTB10
p.S36L
0.018
0.014
3.39
1.31
GGCGGCGGC
SEQ


8
52




87
49
E-
[1.03-
TCCACGAAC
ID










02
1.67]
AATAACGCT
No:












GGCGGGGAG
935












GCCT[C/T]AG













CTTGGCCTC













CGCAGCCCC













AGCCGAGAC













AGCCCCCGC













CG






chr
919530
G
A
NECA
p.A27
0.007
0.004
1.54
1.74
GATGTCTGT
SEQ


8
77


B1
1T
16
12
E-
[1.08-
GATAGAAGA
ID










02
2.68]
GGACCTGGA
NO:












AGAATTCCA
936












GCTC[G/A]CT













CTGAAACAC













TACGTGGAG













AGTGCTTCC













TCCCAAAGT













GG






chr
947463
C
G
RBM1
p.E777
0.005
0.000
7.19
Inf
GGCCGCCTG
SEQ


8
10


2B
Q
88
00
E-

AAATGCTCC
ID










34

TGGGGCGGT
NO:












CTCCGGAAG
937












TGCT[C/G]CG













GGGGCGGGC













GCCTGAAAT













GCTCTGGGG













GTGGCCGCC













TG






chr
978921
G
A
CPQ
p.M24
0.008
0.004
1.07
1.75
CCTGTATTA
SEQ


8
19



5I
133
667
E-
[1.12-
CGGTGGAAG
ID










02
2.62]
ATGCAGAAA
NO:












TGATGTCAA
938












GAAT[G/A]GC













TTCTCATGG













GATCAAAAT













TGTCATTCA













GCTAAAGAT













GG






chr
989912
A
G
MATN2
p.K35
0.006
0.000
2.40
Inf
CTTTGCCAG
SEQ


8
22



6R
86
00
E-

TGCCATGAA
ID










41

GGATTTGCT
No:












CTTAACCCA
939












GATA[A/G]A













AAAACGTGC













ACAAGTAAG













TTACACACA













CATGCACAC













ACA






chr
100832
A
G
VPS13
p.N29
0.008
0.005
7.31
1.65
ACTTTGTTG
SEQ


8
259


B
68S
33
07
E-
[1.17-
ATAGAACTT
ID










03
2.34]
CTGCCCTGG
NO:












GCCCTGCTT
940












ATCA[A/G]TG













AATCCAAAT













GGGACCTCT













GGCTATTTG













AAGGAGAGA













AA






chr
103573
G
A
ODF1
p.S228
0.005
0.000
4.61
Inf
TGCAGCCCC
SEQ


8
042



N
64
00
E-

TGCAACCCC
ID










34

TGCAGCCCC
NO:












TGCAACCCG
941












TGCA[G/A]CC













CATATGATC













CTTGCAACC













CGTGTTATC













CCTGTGGAA













GC






chr
104897
G
A
RPVIS2
p.R175
0.005
0.003
4.50
1.59
GGATCCATG
SEQ


8
928



R
64
56
E-
[1.04-
CTGAAGTGT
ID










02
2.42]
CCCGAGCAC
NO:












GGCATGAGA
942












GAAG[G/A]C













ATAGTGATG













TTTCTTTGGC













AAATGCTGA













TCTGGAAGA













TT






chr
125711
A
G
MTSS1
p.A62
0.009
0.006
1.95
1.52
CAGCCTCCA
SEQ


8
789



A
31
16
E-
[1.09-
TCTGCTTACC
ID










02
2.1]
ACGTGTGTT
NO:












GGTGGCCAT
943












GTC[A/G]GCC













ACTTTCTGA













AAGGCGTCC













AAGAAGGCA













GCTGCTGCT













A






chr
144297
G
A
GPIHB
p.G15
0.005
0.000
1.65
Inf
GTCCAGGAC
SEQ


8
314


P1
9D
39
00
E-

CCAACAGGC
ID










32

AAGGGGGCA
NO:












GGCGGCCCC
944












CGGG[G/A]C













AGCTCCGAA













ACTGTGGGC













GCAGCCCTC













CTGCTCAAC













CTC






chr
144874
G
C
SCRIB
p.P145
0.013
0.000
9.10
229.
AGCTTTGGC
SEQ


8
555



0R
97
06
E-
41[7
CGTCCGCAC
ID










60
1.81-
CGGGGCGCC
NO:











732.
ACCTCCCAG
945











85]
GGGT[G/C]GG













GGGGACGCC













GGGCTCTGC













CTGGGGAAG













GGACAGGAC













GT






chr
144940
C
T
EPPK1
p.A22
0.008
0.001
2.32
7.88
GCCTCAGGT
SEQ


8
621



67A
09
03
E-
[5.34-
TGCGCACGG
ID










17
11.6
GGTCGATGA
NO:











3]
CGAAGCCGG
946












TGGC[C/T]GC













CTGCGCCTC













CAGCAGCAC













CAGGGCCGT













GCCGGGCCG













CA






chr
144941
A
T
EPPK1
p.Y20
0.006
0.003
2.84
1.61
GTGTCCTCTT
SEQ


8
229



65N
13
82
E-
[1.07-
GTGGGCGGC
ID










02
2.41]
ACCTCTCCT
NO:












GCAGCTCTC
947












GGT[A/T]CGA













GACCTTCTCT













TGCGTGTTC













GGGTCCACA













AACCGTTTC






chr
144993
G
A
PLEC
p.L359
0.008
0.006
3.15
1.46
TGCTCCTCG
SEQ


8
230



1L
82
04
E-
[1.05-
GGGATCAGG
ID










02
2.05]
TCCGACTGC
NO:












ATCACCTCC
948












CACA[G/A]G













GACATGGTG













GAGCCGCCG













TGGCTGCCG













CCGCCGGGA













ATG






chr
145736
C
G
RECQ
p.V11
0.011
0.000
2.26
1295
GTCAGCGGG
SEQ


8
853


L4
96V
52
01
E-
.85[1
CCACCTGCA
ID










67
78.7
GGAGCTCTT
NO:











5-
CCGTGGCCA
949











9394
GGCC[C/G]AC












.47]
CAGGGCATG













GAAGCTCAG













GTGCAGGTA













TTTTCTCCAG













A






chr
146157
C
T
ZNF16
p.S30
0.005
0.003
4.01
1.6[1
CATGTGAGA
SEQ


8
265



N
39
38
E-
.04-
CTTTTGGTGC
ID










02
2.46]
TTTTTAAGG
NO:












CTCGAGTTC
950












TGG[C/T]TGA













AGGCTTTTC













CACATTCAT













TACACATAT













AAGGCCTCT













C






chr
411793
C
G
GLIS3
p.E360
0.008
0.004
6.65
1.8[1
GCTGGTCGA
SEQ


9
3



D
133
527
E-
.15-
TGTGGACCT
ID










03
2.7]
TCTCGATGT
NO:












GCCGCACGA
951












GCTC[C/G]TC













CTGCTGGTC













GTACAGGGC













GCTGCAGTC













GATCCAGCG













GC






chr
601362
C
T
RANB
p.D66
0.006
0.002
5.81
2.36
CTCTGCTGG
SEQ


9
4


P6
2N
831
903
E-
[1.44-
TCTCCAAGA
ID










04
3.68]
TTTACAAAT
NO:












TGCCAGCCA
952












TCAT[C/T]GT













CACTCATAT













TTTCCACATC













CTGTGTGTCT













AAGAGAGCA






chr
154230
C
T
SNAP
p.H43
0.013
0.000
1.53
117.
TCCAGAGTA
SEQ


9
04


C3
Y
73
12
E-
22[5
TGAGCTTCC
ID










64
9.77-
CGAGCTAAA
NO:











229.
TACGCGCGC
953











91]
TTTC[C/T]AT













GTGGGCGCC













TTTGGGGAG













CTGTGGCGG













GGCCGTCTG













CG






chr
190503
G
A
RRAG
p.Q22
0.007
0.004
1.55
1.64
CTACATTCTT
SEQ


9
23


A
2Q
11
34
E-
[1.13-
GGTTATTTCC
ID










02
2.39]
CACTACCAG
NO:












TGCAAAGAG
954












CA[G/A]CGCG













ACGTCCACC













GGTTTGAGA













AGATCAGCA













ACATCATCA






chr
337948
A
C
PRSS3
p.K12
0.007
0.004
6.12
1.78
GACAGGATG
SEQ


9
24



T
35
13
E-
[1.22-
CACATGAGA
ID










03
2.62]
GAGACAAGT
NO:












GGCTTCACA
955












TTGA[A/C]GA













AGGGGAGGA













GTGCGCCAT













TGGTTTTCCA













TCCTCCAGA













T






chr
337967
G
T
PRSS3
p.G10
0.005
0.000
3.09
Inf
CCCTACCAG
SEQ


9
46



6V
15
00
E-

GTGTCCCTG
ID










31

AATTCTGGC
No:












TCCCACTTCT
956












GCG[G/T]TGG













CTCCCTCATC













AGCGAACAG













TGGGTGGTA













TCAGCAGCT






chr
356741
G
A
CA9
p.G79
0.014
0.001
1.18
10.6
GCCCAGTGA
SEQ


9
91



R
46
37
E-
7[7.8
AGAGGATTC
ID










35
9-
ACCCAGAGA
NO:











14.4
GGAGGATCC
957











3]
ACCC[G/A]GA













GAGGAGGAT













CTACCTGGA













GAGGAGGAT













CTACCTGGA













GA






chr
358100
G
A
SPAG8
p.F433
0.005
0.003
2.25
1.67
GAGACAAGG
SEQ


9
94



F
88
53
E-
[1.1-
GTACTGGTG
ID










02
2.52]
TTGAGAAGC
NO:












TGCAGTTCTT
958












CCG[G/A]AAT













GGTGTGTCC













AATGTCCTG













ATGTTACTG













ACACCCTGG













A






chr
391092
C
T
CNTN
p.A76
0.022
0.000
4.31
1284
GGCCCCAGT
SEQ


9
17


AP3
9T
55
02
E-
.01[3
GTATAAGCT
ID










131
16.2
GCTTCGGAA
NO:











4-
TGTGGTCGG
959











5213
CCTG[C/T]GT












.39]
CTGTCATCA













CAATCTGAG













TGACTGGCA













GGTGCTCCT













TT






chr
776135
A
G
C9orf41
p.D29
0.009
0.006
3.33
1.44
TTGATTTGG
SEQ


9
39



5D
80
81
E-
[1.05-
ACTTACTGC
ID










02
1.99]
ATTCTGAAT
NO:












AAATCTCTT
960












GAAA[A/G]TC













TCCTGCTGTC













ATAGAAAAG













TTAGAACCA













GGAGGAAGA













C






chr
845625
A
G
SPATA
p.K77
0.012
0.000
2.19
Inf
GTGGGGAAT
SEQ


9
04


31D3
9R
25
00
E-

TATCAGGGA
ID










72

TGCAGCCAG
No:












GAGACTGCC
961












CCAA[A/G]A













AACCATCTC













TTGCATGAT













CCGGAGACA













TCTTCAGAG













GAG






chr
941725
C
T
NFIL3
p.M17
0.005
0.003
3.57
1.6[1
GTGGAGAGT
SEQ


9
07



0I
88
69
E-
.06-
GTTTAATGA
ID










02
2.41]
CAGAAATAC
NO:












AACTACTTG
962












ACAC[C/T]AT













CGAGGGTTC













GTGCTCGTC













CACAAATGA













ACTCACATT













GG






chr
960518
G
A
WNK2
p.A16
0.005
0.000
1.02
56.0
GCGGGGGGG
SEQ


9
69



48A
39
10
E-
7[23.
ACCTGGCCC
ID










22
94-
TGCCCCCAG
NO:











131.
TGCCTAAGG
963











32]
AGGC[G/A]GT













CTCAGGGCG













TGTCCAGCT













GCCCCAGCC













CTTGGTGAG













TA






chr
960814
C
T
C9orf1
p.R130
0.010
0.007
2.68
1.43
TGCCTGTGA
SEQ


9
33


29
H
54
41
E-
[1.05-
ATCCCTTCCT
ID










02
1.94]
TGTACATGG
NO:












TGGTCAGTG
964












GCA[C/T]GGA













ATCCCCAAT













AGATTGTAT













ATCTGAAGG













AGAAAAATA













A






chr
964390
C
A
PHF2
p.T992
0.022
0.001
8.06
20.0
CCTCCACCA
SEQ


9
19



T
30
14
E-
2[14.
CGCCAGCCT
ID










65
5-
CTACCACCC
NO:











27.6
CGGCCTCCA
965











51]
CCAC[C/A]CC













GGCCTCCAC













CAGCACGGC













CAGCAGCCA













GGCCTCGCA













GG






chr
970809
A
C
NUTA1
p.S689
0.007
0.000
5.91
16.6
AAGAGAGGT
SEQ


9
53


2F
A
84
47
E-
9[10.
CGCTTCTTG
ID










24
5-
GACTTGCTG
No:











26.5
GCAGGAGAA
966











2]
GGTG[A/C]TG













GGCTGAGGC













CTCTTTTCTG













AGCAGATGG













AGACTGAAG













A






chr
106889
C
T
SMC2
p.S867
0.005
0.003
3.42
1.63
CCTCACCAC
SEQ


9
571



L
15
16
E-
[1.05-
ATATTTTCTT
ID










02
2.54]
TAATTTTTTT
No:












GTTTTAGGA
967












GT[C/T]AGTA













AATAAAGCT













CAAGAAGAG













GTGACCAAG













CAAAAAGAG






chr
113562
T
C
MUSK
p.V55
0.006
0.004
2.64
1.59
GAAACTGAG
SEQ


9
589



8A
62
17
E-
[1.08-
ACTAACAGG
ID










02
2.35]
GATGGTCTT
No:












TTGGTTCCA
968












GGAG[T/C]GT













GTGCTGTCG













GGAAGCCAA













TGTGCCTGC













TCTTTGAAT













AC






chr
117170
G
C
DFNB
p.P562
0.119
0.117
6.55
1.02
AACCAAAGG
SEQ


9
241


31
A
36
07
E-
[0.93-
GCCAGCCAG
ID










01
1.13]
GGCCTTACC
No:












ACGGACACA
969












TCTG[G/C]GA













GGGCGTTGA













TATTGCCCT













GGACAGCCT













CGCCAGTTT













CC






chr
127623
G
A
RPL35
p.R32
0.011
0.008
3.12
1.39
TAGAGAGCT
SEQ


9
742



R
76
52
E-
[1.03-
TGGAGGCCG
ID










02
1.85]
CACCGCCTG
No:












TCACTTTGG
970












CGAC[G/A]CG













CAGCTGGGA













CAGCTCCAC













CTTCAGGTC













GTCCAGCTG













TT






chr
131094
G
C
COQ4
p.E161
0.012
0.008
1.55
1.44
ATGATGAGG
SEQ


9
512



D
25
51
E-
[1.09-
AGCTAGCGT
ID










02
1.92]
ATGTGATTC
No:












AGCGGTACC
971












GGGA[G/C]GT













GCACGACAT













GCTTCACAC













CCTGCTGGG













GATGCCCAC













CA






chr
131258
G
C
ODF2
p.Q61
0.007
0.000
2.84
Inf
TAAACCAGT
SEQ


9
331



7H
84
00
E-

CTGTGTTCCT
ID










47

GTCATTTTA
NO:












GATCGAACA
972












CCA[G/C]GGG













GACAAGCTG













GAGATGGCG













AGAGAGAAA













CATCAGGCT













T






chr
132630
G
A
USP20
p.S288
0.005
0.003
9.34
1.85
ACCGGAGCC
SEQ


9
457



S
64
05
E-
[1.21-
CATCAGAAG
ID










03
2.83]
ATGAGTTCT
NO:












TGTCCTGTG
973












ACTC[G/A]AG













CAGTGACCG













GGGTGAGGG













TGACGGGCA













GGGGCGTGG













CG






chr
134353
G
A
PRRC2
p.E147
0.005
0.003
2.96
1.71
CTGGTTAAC
SEQ


9
141


B
3K
15
03
E-
[1.1-
AAGATCCTC
ID










02
2.65]
TTTCCCTTAC
NO:












AGATCCCCA
974












GAC[G/A]AG













GCCTTGCCT













GGAGGTCTT













AGTGGCTGC













AGCAGTGGG













AG






chr
135140
A
G
SETX
p.I254
0.008
0.005
2.68
1.5[1
GGGTTGTGG
SEQ


9
020



7T
58
72
E-
.07-
ATCCCAAAG
ID










02
2.12]
GAATATTCC
NO:












TCCTTTGACC
975












TCA[A/G]TGC













CCATCCTCTT













CAGCAGTCG













TGGGTCCTG













AAGTTGGTC






chr
136419
G
A
ADAM
p.G42
0.023
0.000
1.28
Inf
CGAGCAGGC
SEQ


9
800


TSL2
1S
28
00
E-

CGGCGGCGG
ID










12

GGCCTGCGA
NO:












GGGGCCCCC
976












CAGG[G/A]G













CAAGGGCTT













CCGAGGTAA













CCAGGAGGA













GGGAGGCAT













GAG






chr
137309
G
A
RXRA
p.M25
0.006
0.003
2.76
1.62
CCGTGGAGC
SEQ


9
155



41
13
79
E-
[1.08-
CCAAGACCG
ID










02
2.43]
AGACCTACG
NO:












TGGAGGCAA
977












ACAT[G/A]GG













GCTGAACCC













CAGCTCGGT













GAGTTGCAG













CCTGTGCAG













GG






chr
139333
G
C
INPP5
p.G12
0.007
0.000
1.78
447.
TCAGGCAGG
SEQ


9
512


E
0G
11
02
E-
13[6
GCGGGGAGC
ID










34
0.89-
AGCTGTGGG
No:











3283
CGGGGGCCC
978











.17]
CGGG[G/C]CC













CTCGCTCTG













CACTGAGCC













CCTGGAGGG













ACTGGTCCC













AT






chr
139701
G
T
CCDC
p.M45
0.005
0.003
4.82
1.63
GCGAGGGGA
SEQ


9
301


183
71
856
603
E-
[0.95-
AGCTCACGT
ID










02
2.61]
ACCTGGCTG
No:












ACAGAGTGC
979












AGAT[G/T]GT













GTCCAGGAC













CGAGGAGGT













AGCCCCGGG













CTGGGAGGA













AC






chr
139752
A
T
NIAMD
p.T771
0.009
0.006
4.61
1.42
CTCGGGCCA
SEQ


9
023


C4
S
07
39
E-
[1.02-
TGCTGCCTG
ID










02
1.98]
GGGCCCCCC
No:












AACAGACCA
980












TACC[A/T]CT













GAGACAGCC













CAAGGTATG













GGGGCCTGG













CAGGGGCAG













GG






chr
140008
G
A
DPP7
p.Q38
0.005
0.000
4.86
Inf
TTGTTGCCG
SEQ


9
984



X
15
00
E-

AAGCGCTCG
ID










28

AAGTTGAAG
No:












TGGTCCAGA
981












CGCT[G/A]CT













GGAAGAAGC













GCTCCTGGA













AGCCGGGGT













CCGGGGCCC













TG






chr
140120
G
T
CYSRT1
p.A14
0.011
0.000
2.82
Inf
AGCGCCAGG
SEQ


9
397



8A
03
00
E-

CCGGACTGA
ID










52

CCTACGCTG
No:












GCCCTCCGC
982












CCGC[G/T]GG













GCGCGGGGA













TGACATCGC













CCACCACTG













CTGCTGCTG













CC






chr
986397
C
CT
SHRO
p.L676
0.005
0.000
2.57
61.9
CTGGAGGGC
SEQ


X
4


OM2
fs
89
10
E-
[12.5-
CGGGTTGGG
ID










07
307.
AGGTGGCAC
No:











11]
CCAGGAAGG
983












ACCC[C/CT]T













CGCTGGCAC













CTATAAAGA













CCACCTGAA













AGAGGCCCA













AGC






chr
100856
C
T
WWC3
p.H52
0.006
0.003
4.13
1.56
GGGACGAAG
SEQ


X
59



0H
13
94
E-
[1.03-
ACTTACCAG
ID










02
2.36]
GCATGGCGG
NO:












CCCTTCAGC
984












CACA[C/T]GG













GGTCCCCGG













GGATGGGGA













AGGGCCGCA













CGAGCGAGG













AC






chr
349618
G
A
FM4
p.P297
0.005
0.000
6.33
473.
GCCCGGAGC
SEQ


X
39


7B
P
88
01
E-
89[6
CTCCCGAGA
ID










31
4.09-
CTCGCGTAT
NO:











3503
CTCATCTCC
985











.83]
ACCC[G/A]GA













GCCTCCTGA













GACTGGAGT













GTCCCATCT













CCGCCCAGA













GC






chr
370279
C
G
FAM4
p.D49
0.006
0.000
5.71
Inf
CAGAGAAGG
SEQ


X
59


7C
2E
86
00
E-

ACGTATCTC
ID










37

ATCTCCGCC
NO:












CAGAGCCTC
986












CCGA[C/G]AC













TGGAGTGTC













CCATCTCTG













CCCAGAGCC













CCCCAAGAC













AC






chr
370287
C
T
FAM4
p.R763
0.008
0.000
2.98
692.
TCTCCGCCC
SEQ


X
70


7C
C
58
01
E-
67[9
AGAGCCTCT
ID










45
4.87-
TGAGACTCG
No:











5057
CGTATCTCA
987











.22]
TCTC[C/T]GC













CCGGAGCCT













CCTGAGACT













GGAGTGTCC













CATCTCCAC













CC






chr
436286
G
A
MAOB
p.T426
0.008
0.000
6.54
Inf
CAGCCCCCT
SEQ


X
23



T
82
00
E-

CCATGTAGC
ID










48

CGCTCCAGT
NO:












GTGTGGCAG
988












TCTC[G/A]GT













GCCTGCAAA













GTAAATCCT













GTCCACTGG













CTGGCGTAG













AA









chr
474267
C
T
ARAF
p.A33
0.010
0.007
3.68
1.42
TTGGCACCG
SEQ


X
57



7A
05
11
E-
[1.03-
TGTTTCGAG
ID










02
1.95]
GGCGGTGGC
NO:












ATGGCGATG
989












TGGC[C/T]GT













GAAGGTGCT













CAAGGTGTC













CCAGCCCAC













AGCTGAGCA













GG






chr
486648
C
T
HDAC
p.Y17
0.005
0.002
1.98
2.04
ACATGAATG
SEQ


X
50


6
1Y
88
90
E-
[1.34-
AGGGAGAAC
ID










03
3.1]
TCCGTGTCCT
No:












AGCAGACAC
990












CTA[C/T]GAC













TCAGTTTATC













TGCATCCGG













TATGGATGA













GAACTCTGC






chr
491059
G
A
CCDC
p.D54
0.008
0.005
3.56
1.48
GCAGCCCAC
SEQ


X
70


22
6N
58
80
E-
[1.05-
TGATACCTTT
ID










02
2.09]
GAGGTCCCT
No:












GTGTCTGGT
991












CAG[G/A]ATG













CCAAGAAGG













ACGATGCTG













TTCGGAAGG













CCTATAAGT













A






chr
494559
C
T
PAGE1
p.G56
0.008
0.005
2.89
1.49
TTGGCTGAA
SEQ


X
76



G
82
92
E-
[1.06-
CCAGTTCCT
ID










02
2.1]
GGCTATCAG
No:












CTTCAGGCT
992












CCTG[C/T]CC













TTAAAGATA













AAACAAAAT













TATCATTTTA













AGCAGCAAC













A






chr
531153
G
A
TSPYL2
p.E607
0.009
0.006
2.37
1.5[1
AAGGCAGCG
SEQ


X
95



E
07
06
E-
.07-
ATGATGACG
ID










02
2.1]
ACAGAGACA
No:












TTGAGTACT
993












ATGA[G/A]A













AAGTTATTG













AAGACTTTG













ACAAGGATC













AGGCTGACT













ACG






chr
562918
A
G
KLF8
p.I108
0.009
0.006
4.00
1.43
CAAGGCTCC
SEQ


X
53



V
56
71
E-
[1.03-
TCTCCAGCC
ID










02
1.98]
TGCTAGCAT
No:












GCTACAAGC
994












TCCA[A/G]TA













CGTCCCCCC













AAGCCACAG













TCTTCTCCCC













AGACCCTTG













T






chr
708237
G
C
ACRC
p.K21
0.005
0.000
1.40
33.7
CCGACGACA
SEQ


X
81



8N
88
18
E-
6[17.
ACAGTGATG
ID










22
45-
ATTCGGATG
No:











65.3
TTCCCGACG
995











11]
ACAA[G/C]A













GTGATGATT













CGGATGTTC













CCGACGACA













GCAGTGATG













ATT






chr
738116
G
A
RLIM
p.S501
0.009
0.000
1.61
Inf
ATGTCGACC
SEQ


X
48



L
80
00
E-

CTCTCGCCT
ID










52

GGCACCTGA
NO:












TGAGCCTGA
996












TGAT[G/A]AG













CTTCCTTCAT













TACTGCCTTC













AAATAAATC













TGAGCTAGT






chr
738116
A
G
RLIM
p.S485
0.010
0.000
6.36
46.1
CTTCATTACT
SEQ


X
95



S
29
23
E-
6[26.
GCCTTCAAA
ID










41
25-
TAAATCTGA
No:











81.1
GCTAGTTTCT
997











6]
GA[A/G]CTTT













CACCACCGG













AACTGGAAC













TAGGACTGG













AACTGGAAC






chr
738117
C
T
RLIM
p.S453
0.010
0.000
2.96
825.
ACTCGAACT
SEQ


X
92



N
29
01
E-
58[1
GGAACTGGA
ID










54
13.6-
ACTCGAACT
No:











5999
GGAACCAGA
998











.93]
ACTA[C/T]TA













CCACCACCA













GAACCTCCT













CTTCCACTCC













GTGACTCTG













C






chr
100507
G
T
DRP2
p.L571
0.011
0.008
3.77
1.38
CCTGCTTCTT
SEQ


X
675



L
76
56
E-
[1.03-
GACAGGCAG
ID










02
1.85]
GGCCAGCAA
No:












AGGCAATAA
999












GCT[G/T]CAC













TACCCCATC













ATGGAGTAT













TACACACCG













GTATGAAGC













C






chr
100524
C
T
TAF7L
p.R372
0.011
0.007
2.26
1.44
TGTGGGCCA
SEQ


X
197



H
03
69
E-
[1.06-
CGCCAATGG
ID










02
1.95]
CTCTCCTCAC
No:












TTCTTCAGA
1000












AAA[C/T]GCT













GCAACTGTT













CCTGTAGGG













AAATGAGCT













GTAGGGAGA













G






chr
100745
C
G
ARMC
p.A77
0.008
0.000
8.99
Inf
CAGGGTGAG
SEQ


X
885


X4
0G
33
00
E-

GTCTTGCCT
ID










34

GGTGCCAAA
NO:












AATAAGGTC
1001












AAGG[C/G]C













AATCTTAAT













GCTGTGTCT













AAGGCAGAA













GCTGGGATG













GGT






chr
100746
G
C
ARMC
p.Q94
0.009
0.000
1.04
Inf
CTAAGGCAG
SEQ


X
423


X4
9H
31
00
E-

AGGCTGGGG
ID










38

CAGGCATAA
NO:












TGGGCTCTG
1002












TCCA[G/C]GT













CCAGGTTGT













GGCCAGTTT













TCAGGGTGA













GGTCTTGCC













TG






chr
101971
C
T
ARMC
p.S721
0.011
0.007
5.08
1.58
TGACTATTG
SEQ


X
960


X5-
S
52
33
E-
[1.17-
ACTATCACA
ID






GPRA



03
2.13]
CACTGATTG
NO:






SP2





CCAACTATA
1003












TGTC[C/T]GG













GTTTCTCTCC













TTATTAACC













ACAGCCAAT













GCGAGAACG













A






chr
102754
C
T
RAB40
p.E257
0.008
0.001
5.24
4.28
GTGCAGTTT
SEQ


X
916


A
K
33
96
E-
[2.95-
TTGGGTGGG
ID










11
6.22]
CTCTGGGGT
NO:












GGGCAGACG
1004












ATCT[C/T]CA













CTTTGCAGA













GGCTGCTCT













TGTGAGTGG













AGCTGGTGG













TG






chr
114425
G
A
RBA1X
p.R514
0.007
0.000
5.32
323.
AGCGACCGC
SEQ


X
545


L3
Q
60
02
E-
05[4
TACGGAGTA
ID










32
4.09-
GGAGGCCAC
NO:











2367
TATGAGGAG
1005











.01]
AACC[G/A]A













GGCCACTCT













CTGGATGCC













AACAGCGGA













GGCCGTTCA













CCC






chr
114426
C
T
RBA1X
p.Y84
0.012
0.000
4.17
101.
ACGCCTACA
SEQ


X
551


L3
9Y
01
12
E-
99[4
GTGGGGGCC
ID










46
0.62-
GTGACAGTT
NO:











256.
CCAGCAACA
1006











12]
GTTA[C/T]GA













CCGGAGCCA













CCGCTATGG













AGGAGGAGG













CCACTACGA













AG






chr
120008
G
C
CT47B1
p.P182
0.012
0.000
1.16
1046
CGACGCAGC
SEQ


X
980



R
99
01
E-
.3[14
CTCCTGGAT
ID










68
4.66-
CAGGCCGAG
NO:











7567
GCCCTCGCC
1007











.63]
TTCT[G/C]GG













GCTGCAGCC













CCTGCACCC













AGCCTCTGG













GACAGCAGC













AG






chr
124455
G
C
LOC10
p.K43
0.017
0.000
8.76
Inf
ACAGCCACA
SEQ


X
258


012952
0N
40
00
E-

GCATGAAGA
ID






0



72

AAGATCCAG
NO:












TGATGCCCC
1008












AGAA[G/C]AT













GGTCCCCCT













GGGGGACAG













CAACAGCCA













CAGTCTGAA













GA






chr
140993
A
G
MAGE
p.Q18
0.013
0.002
4.36
6.11
CTTTAGTGA
SEQ


X
751


C1
7Q
24
19
E-
[3.92-
GTATTTTCCA
ID










16
9.52]
GAGTTCCCC
NO:












TGAGAGTAC
1009












TCA[A/G]AGT













CCTTTTGAG













GGTTTTCCCC













AGTCTCCAC













TCCAGATTC






chr
140994
T
A
MAGE
p.C501
0.014
0.000
9.16
Inf
CTCCTCCACT
SEQ


X
691


C1
S
71
00
E-

TTATTGAGT
ID










80

CTTTTCCAG
No:












AGTTCCCCT
1010












GAG[T/A]GTA













CTCAAAGTA













CTTTTGAGG













GTTTTCCCCA













GTCTCCTCT






chr
149100
C
T
CXorf4
p.G15
0.009
0.005
1.69
1.54
AACATTCCT
SEQ


X
775


0B
5E
07
92
E-
[1.1-
TTCAGGAGC
ID










02
2.15]
CCACACTTG
NO:












TCACACTTC
1011












ATGC[C/T]CC













AAAGGGATC













AGGTGCTCT













GGGATGTCT













ACCTGGAAT













AC






chr
150908
G
T
CNGA2
p.G11
0.010
0.007
4.45
1.38
GGGCCTGAA
SEQ


X
168



3V
54
65
E-
[1.01-
CTCCAGACT
ID










02
1.88]
GTGACCACA
NO:












CAGGAGGGG
1012












GATG[G/T]CA













AAGGCGACA













AGGATGGCG













AGGACAAAG













GCACCAAGT













AC






chr
153295
C
T
MECP2
p.K44
0.018
0.000
3.45
Inf
TGGCGGCGG
SEQ


X
986



3K
87
00
E-

TGGCAACCG
ID










102

CGGGCTGAG
NO:












TCTTAGCTG
1013












GCTC[C/T]TT













GGGGCAGCC













GTCGCTCTC













CAGTGAGCC













TCCTCTGGG













CA
















TABLE 2







Variants associated with infertility symptom of endometriosis





















Alter-













nate

Amino
Chronic









Refer-
Allele/

Acid
Pelvic
Infer-

OR






ence
Minor

po-
Pain
tility

[L95-
Context
SEQ ID


Chr
Position
Allele
Allele
Gene
sition
MAF
MAF
p value
U95]
Sequence
NO





chr11
5444040
C
T
OR51Q1
p.L204F
0.0089
0.02899
2.59E-
0.30
CTGTGCTG
SEQ ID








4

02

ACATCAGG
NO: 129












CTCAACAG













CTGGTATG













GATTTGCT













[C/T]TTGCC













TTGCTCAT













TATTATCG













TGGATCCT













CTGCTCAT













TGT






chr19
53793162
C
T
BIRC8
p.A156T
0.0000
0.00725
1.16E-
0.00
GAAGTCTG
SEQ ID








0

03

ATTCAATT
NO: 531












CATTTTCT













GTAGTGTC













TTTCTGAG













[C/T]GCTCA













CTAGATCT













GCAACAAG













AACCTCAA













GCGTTTTA













TAG






chr2
238973062
A
G
SCLY
p.K60E
0.0000
0.00730
1.11E-
0.00
AACGACTC
SEQ ID








0

03

CCCTGGAG
NO: 592












CCAGAAGT













TATCCAGG













CCATGACC













[A/G]AGGC













CATGTGGG













AAGCCTGG













GGAAATCC













CAGCAGCC













CGTA






chr22
50315363
C
A
CRELD2
p.D182E
0.0282
0.06159
4.03E-
0.44
ACATGGGG
SEQ ID








0

03

TACCAGGG
NO: 637












CCCGCTGT













GCACTGAC













TGCATGGA













[C/A]GGCT













ACTTCAGC













TCGCTCCG













GAACGAG













ACCCACAG













CATCT






chr4
81967240
C
T
BHP3
p.T222M
0.0000
0.00725
1.16E-
0.00
GCCAAAGA
SEQ ID








0

03

AAATGAAG
NO: 706












AGTTCCTC













ATAGGATT













TAACATTA













[C/T]GTCCA













AGGGACGC













CAGCTGCC













AAAGAGG













AGGTTACC













TTTT
















TABLE 3







Variants associated with pelvic pain symptom of endometriosis





















Alter-













nate

Amino
Chronic









Refer-
Allele/

Acid
Pelvic
Infer-

OR






ence
Minor

po-
Pain
tility
p
[L95-
Context
SEQ ID


Chr
Position
Allele
Allele
Gene
sition
MAF
MAF
value
U95]
Sequence
NO





chr2
141232800
C
T
LRP1B
p.A3178T
0.
0.01087
7.31E-
0.00
GCCCAG
SEQ ID








00000

05

TAGAGT
NO: 577












CTACGA













TTAACA













TAATCT













ATTGTT













AGTG[C/













T]CATA













GGTCTA













GAAATC













TTGGTT













TCTATG













ACAACA













CTCTGA






chr6
56033094
G
A
COL21L2A1
p.T343M
0.
0.11590
2.12E-
0.52
TACTAA
SEQ ID








06389

03

GAGACG
NO: 786












AATTTG













GTGCCA













GCCTTC













ATCAAA













CAAC[G/













A]TCTA













CAAAAA













GAAAGT













GTGGAA













GATTCA













TAAATA













AAGCCC






chr6
85473758
C
T
TBX18
p.G48R
0.
0.57660
2.41E-
0.68
GCGCCG
SEQ ID








48050

03

CCGCCG
NO: 789












CGGCTG













CAGCCT













CCGTCG













TCCACG













GCCC[C/













T]CGCC













GCCTCT













TCGGCG













CCCAGT













TTTCGC













CGCTTC













TTCTGA






chr9
117170241
G
C
DFNB31
p.P562A
0.
0.16060
4.01E-
0.59
AACCAA
SEQ ID








10070

03

AGGGCC
NO: 969












AGCCAG













GGCCTT













ACCACG













GACACA













TCTG[G/













C]GAGG













GCGTTG













ATATTG













CCCTGG













ACAGCC













TCGCCA













GTTTCC
















TABLE 4







Additional variants associated with endometriosis.




















Endo-




L95
U95









metri-
Local



(lower
(upper









osis
pop-

OR

limit
limit









patient
ulation
gnomAD
(C
OR
95% con-
95%


Base



SEQ


Fre-
Control
Fre-
hisq
(odds
fidence
confidence


Pair
Minor
Major

ID


quency
Frequency
quency
test)
Ratio)
Interval)
Interval)
CHR
SNP
Position
Allele
Allele
Context Sequence
NO:





0.3055
0.28
0.2883
4.49E-
1.13
1.07
1.20
 1
rs34108989
16,082,
C
T
GCATCAGGTATTTTTACCCACATT
SEQ





05





127


TACCCCACCAGATTCT[T/C]GCTA
ID














TGAAGCCACAAGGGACAAACCTG
NO:














GGTTGGCAACCCC
1014





0.1844
0.1494
0.1591
1.75E-
1.29
1.20
1.38
 1
rs2235529
22,450,
T
C
AAGCATCTGTGCCCCTAAAGCTG
SEQ





12





487


ATGGCGGCTCCTCCAGC[C/T]TTC
ID














TCTACCTGGTTCTGGTGTCCAGCC
No:














CTTGGACTCCAGG
1015





0.2294
0.1992
0.2086
5.07E-
1.20
1.12
1.28
 1
rs12042083
22,472,
A
G
CATGAGCCACCTTGCCTGGCCGG
SEQ





08





732


AAATTCTTAATGAGAAA[G/A]TCT
ID














CTTGGAGGAAATGCTCTTCTAAC
NO:














TTTCAAGAACAGCC
1016





0.4374
0.4042
0.4205
1.07E-
1.15
1.09
1.21
 1
rs4623666
22,480,
G
A
ATCTTCAGCCTCCTACCAGCAAC
SEQ





06





312


TATGCACACAGAAGCCC[A/G]GC
ID














CGGTATCCCCACAGAGGCAGACG
NO:














CCCCGGCACTGCCTT
1017





0.1126
0.09637
0.09915
9.43E-
1.19
1.09
1.30
 1
rs12061124
97,989,
T
C
AGTTGAAACTCACAAACTGCAGG
SEQ





05





751


AATATAGTCATTGGGGT[C/T]CCT
ID














TAGATGCAGAAAAGAAAATTAAC
No:














TACAGCGAGTTATG
1018





0.3216
0.3487
0.3388
3.65E-
0.89
0.84
0.94
 2
rs2349415
49,247,
T
C
AAAACTTTATTCATAAAAACAGG
SEQ





05





832


TGTCAGGCTGGATTTGA[T/C]CCA
ID














TTGGCTGTAGTTCAGTGACACTG
NO:














TCCTAGATCGTGGA
1019





0.
0.07747
0.08625
1.24E-
1.26
1.15
1.38
 2
rs17025778
98,637,
G
A
TCCGGGGAACACGATTCCACCCA
SEQ


09559


06





504


TCACTGGGTGCTAGGTC[A/G]AGG
ID














GTTCAGTTCTATGTCCTTCAGCAC
NO:














TTATGAAACTGAG
1020





0.1044
0.08778
0.09062
2.55E-
1.21
1.11
1.32
 2
rs17026292
98,677,
A
G
GGATGAATGGAAACTTGATTCTC
SEQ





05





164


TTAATACAGTCCACTTG[G/A]GCT
ID














CCATTTGTCTTCACAGCAACCATT
NO:














TGCTGGATTTATT
1021





0.4036
0.3744
0.3827
1.47E-
1.13
1.07
1.20
 2
rs755503
135,
A
G
TATGCTTAGGAAATATGTATATA
SEQ





05





144,


TGGGATATCTCAAAATA[A/G]GG
ID











45


AAAAGTTGGAGTGAAGATTAAAA
No:














TAGAAAATAACAAAA
1022





0.1662
0.188
0.1822
4.81E-
0.86
0.80
0.93
 2
rs10177996
219,
C
T
CTATGTGAATGTGACTGAAACAT
SEQ





05





746,


ATCTGTGGGAGTGGGCT[T/C]GTG
ID











561


GGGAACCCTGTGTGTATGGGCAT
NO:














CTATTCCTGGGGAT
1023





0.2852
0.259
0.263
1.47E-
1.14
1.08
1.21
 2
rs388208
225,938,
T
C
ACAGTTAATATTGACTGCTTTGTT
SEQ





05





996


CATTGATACATTCCCT[T/C]GACC
ID














TAGACCATTGCTGGGCACATAGT
NO:














AGGCTCTCAGTAA
1024





0.1818
0.1613
0.1695
5.28E-
1.16
1.08001
1.2425
 3
rs6792001
6,106,
A
G
CTATTGATTTTTGAGGTAGATATT
SEQ





05





251


GATGCAATTAGAGATA[A/G]GCTT
ID














TAGGAAGATCTTCCTGGAAGTGG
NO:














TATATAAATAGTT
1025





0.2338
0.258
0.2584
6.26E-
0.88
0.82
0.94
 3
rs6777088
8,786,
G
A
CACCCTTCAGATCATAAAACAAT
SEQ





05





487


AGAATTTGAGAGCTGCG[A/G]CT
ID














ATAGCACTGCCACTAAGTCACTG
NO:














TTGGCTTTAAGCAAG
1026





0.1513
0.1744
0.1682
1.05E-
0.84
0.78
0.91
 3
rs4293672
25,913,
T
C
AATTGACACACTACTGAAAAGAA
SEQ





05





415


AAGAGAATTAGAACAAC[T/C]TG
ID














CCTGGAGTTAAAGTCCCTTAGTT
NO:














AATGGATAAGTCACC
1027





0.1244
0.146
0.1344
9.21E-
0.83
0.77
0.90
 3
rs16843225
100,801,
G
T
TCTGGTGTCATTAAGGAAGCAGG
SEQ





06





257


TTACAGGCCAGCATATC[T/G]TCA
ID














AATAGCTACACAGGTGTTAGAAC
NO:














TGCATGGTCTTATA
1028





0.1405
0.1226
0.126
8.98E-
1.17
1.08
1.27
 3
rs4680277
156,245,
A
G
GTGCTAATTATCCAGAATCAGCT
SEQ





05





781


GCAGTTGCTACCATGGA[A/G]GTA
ID














ACCAGCTCTGCCCAGTGGGTTCT
NO:














CCTGTGCCCTACAG
1029





0.1399
0.1208
0.1259
2.78E-
1.18
1.09
1.28
 3
rs6795731
156,
T
C
TAGTGAAGAAAACATCATGCTGG
SEQ





05





262,


TTATGTTACCATTTTTC[C/T]CAGG
ID











460


CAACCAGGGTTATGGAAGAAAG
NO:














GACTCATTAATGGC
1030





0.2683
0.2988
0.288
1.43E-
0.86
0.81
0.92
4
rs12505096
56,006,
A
C
GATGTGGTCATATGAAGGCTTGA
SEQ





06





102


CTGGGGCTGAAGAATAC[C/A]TTT
ID














CTGGTGTGACTCACTCACATGAC
NO:














TATTGGCAAGAGAA
1031





0.2068
0.1826
0.1907
6.96E-
1.17
1.09
1.25
 4
rs10014285
161,
A
G
CCTTGGAGAGTTCCTCCACTTCTC
SEQ





06





307,


TCTGACAATTAAAATC[G/A]GTGT
ID











972


TTGCTGAGATTAGACATTTTTTTC
NO:














TTCTCTGTTTAG
1032





0.04611
0.03563
0.0323
5.50E-
1.31
1.15
1.49
 4
rs12650364
186,
A
G
TGGTGGTAGGGAGACCTTTTGGT
SEQ





05





365,


GGTATTTGAATTAAACA[G/A]TAT
ID











998


CATTTTCTTTAAAACCAACTCCAC
NO:














AGACTACAAAAAT
1033





0.05481
0.0401
0.0479
1.06E-
1.39
1.23
1.57
 4
rs4611976
188,
G
T
GTGTTGGTCGGTACAGTTCTAGA
SEQ





07





990,


AGGAAAGCTCTGAGCTG[T/G]GC
ID











955


CCCTCTCTCCAGGTGGAATTAGA
NO:














TTTTATATATTCACT
1034





0.3727
0.3466
0.3437
7.34E-
1.12
1.06
1.19
 5
rs4128741
76,423,
T
C
ATTCCCCATTCCTTTACAATTATA
SEQ





05





967


ATTGCCTCCATATTGT[C/T]CAAG
ID














GACCATAGTTACCACTTGACCCA
NO:














GAGCCTCTCCCTT
1035





0.4173
0.3783
0.3939
6.02E-
1.15
1.09
1.22
 5
rs12521058
76,
A
C
AGCTGTTCTCAGATACCAGACTG
SEQ





07





426,


GAATAAACGAGAGACAT[C/A]TG
ID











987


GAGAAAGGAGACCTCTTCCTATC
No:














CCAACAGGACTGTGT
1036





0.1807
0.1566
0.1645
1.77E-
1.19
1.11
1.28
 6
rs6456259
19,
G
A
GCTCACCAAGCAAGATTCCTCTC
SEQ





06





761,


ATCCCCTGCCACTCCCT[A/G]TTT
ID











718


AATGCCTTTGTAAAAACTGTAAT
NO:














TTGGTGAATCCCAA
1037





0.1874
0.1659
0.1615
2.88E-
1.16
1.08
1.24
 6
rs563440
151,
C
T
GCTACTCTTTTCTTCCAAAATACT
SEQ





05





288,


CTCTCCTCAGCAGCCA[T/]AGAG
ID











991


ACTGAAACCTAATGAAGCCCTGT
NO:














TGCCTTCCTACTT
1038





0.1003
0.118
0.1262
6.95E-
0.83
0.76
0.91
 6
rs9347099
166,
T
G
TCATTGGGAGTTATGAGCACATT
SEQ





05





327,


TCATAAACATAATTCCA[G/T]GGG
ID











886


TTCGCCTGTGATGACATCATTCCT
No:














TTTCACAAGGTTT
1039





0.4488
0.4107
0.4152
2.01E-
1.17
1.11
1.23
 7
rs11773804
27,
G
T
CTCCCCCTGCCCCCAATTCCTAAC
SEQ





08





206,


AGAAAGCAGCGACTCC[T/G]AGA
ID











688


ACAGGGGTAATCAAATTCACGTG
NO:














TGGATACTGTGCCT
1040





0.1704
0.1916
0.1829
9.23E-
0.87
0.81
0.93
 7
rs11535191
37,
G
A
AGGAAAATAAATTATGGAGACAT
SEQ





05





747,


TAAGTAAATTGCCCAAG[A/G]TG
ID











276


GCCCAGCTAGTAAATAATAAAGG
No:














CAAGATTTTAGAGCC
1041





0.2479
0.2246
0.1985
5.67E-
1.14
1.07
1.21
 8
rs17342242
60,
G
A
TAATGAATCTGAGTGGGATAGTG
SEQ





05





828,


ATCAGAATAAGGAAGTA[A/G]GG
ID











697


CCAATAACATTTCTGGGTAACTT
NO:














GCCATGAGCCAAGCA
1042





0.06199
0.07925
0.08
2.88E-
0.77
0.69
0.86
 9
rs9695167
106,
A
C
TTATAGTCCCAAGTAGTCAGAGA
SEQ





06





169,


TGGACTGTATAATATGC[C/A]GGG
ID











268


CACAGGGCAAAACAAGAATGAG
NO:














GGAAGTTGTTGACAG
1043





0.3579
0.3919
0.3861
4.64E-
0.87
0.82
0.92
10
rs11253141
5,422,
C
A
AGCTATCATTCCCCAGTGTGAAC
SEQ





07





196


CTCAAGTCATCAGATTG[A/C]ATC
ID














TCCCCACCTGCCATTGTTTTTATC
NO:














ACCTACCAACACC
1044





0.1681
0.1425
0.1327
1.62E-
1.22
1.13
1.31
10
rs11256106
9,222,
C
A
TGAAATTGAAGTGGTGTTTATGA
SEQ





07





228


ATCACATATGATAGATT[A/C]GGC
ID














AATTGAGTTATATTTTTATATCTG
NO:














CTTATCTCTCTAA
1045





0.4008
0.3734
0.3694
4.37E-
1.12
1.06
1.19
13
rs7997707
46,
A
G
GGCTGGAGGTCGAAAGACTCTAA
SEQ





05





360,


TCTGTTTCACTGTTTAC[G/A]TGTT
ID











678


CAGTCAGTTCTCTCATTGGCAAA
NO:














ATATTTATCTCAA
1046





0.1636
0.1848
0.1726
7.49E-
0.86
0.80
0.93
13
rs9317519
66,
C
T
TGTTAAGTTATTCCAATAATAAA
SEQ





05





137,


ATGTCATCCATAGGTTA[T/C]TGT
ID











562


CACGTTTTAATATAAGACTTCTA
NO:














ATCAAATTCCTGGG
1047





0.1589
0.1395
0.1305
5.40E-
1.17
1.08
1.26
13
rs336237
110,
T
C
TGGCTTCTTCGCAACTTGCATAG
SEQ





05





496,


AGGCTACCTCTGTGTCC[C/T]CTT
ID











410


ATGGCTCGATAGCTCATTTCTTTT
No:














TATCCCCAAATAA
1048





0.3534
0.3266
0.32
3.80E-
1.13
1.07
1.19
14
rs10498441
52,
G
A
ATAAACATAGTTATGCTTCATTA
SEQ





05





544,


CTCTGGTACAGAAACCC[G/A]GTT
ID











224


CATTAGCCATTCAGAATGATTGT
NO:














GATATCCAAAATGA
1049





0.3145
0.2871
0.2855
1.36E-
1.14
1.07
1.21
14
rs7157151
52,
T
C
TGTATCCAACCATGGGAAAAAGA
SEQ





05





571,


CTTAGCTACATTGTATA[T/C]ATT
ID











583


TGATGAGTAACGTGTTTATAATA
NO:














CAACAAAAAGTGAA
1050





0.1256
0.1087
0.1131
9.94E-
1.18
1.08
1.28
14
rs12586828
71,
T
C
TTGTGCTGCCTGAGAGGAGAGGG
SEQ





05





186,


AGCATCTCACCATCTCC[C/T]GCC
ID











513


TTGGTATCTTTTATTCTTTAGGAC
No:














TCAGCTCAGGTTC
1051





0.4297
0.4609
0.4572
5.73E-
0.88
0.83
0.93
14
rs1951521
100,
G
A
AATAAGTGAAAGAACTAGCAGTG
SEQ





06





743,


CAGCTAGTAAATCTAAC[G/A]TGG
ID











421


TTCTTTTTTGACAACTGACACCAG
No:














AACCCTTAATCAT
1052





0.3167
0.3436
0.3378
3.97E-
0.89
0.84
0.94
15
rs7181230
40,
G
A
AAAAAACCCTTACATTAGCATAA
SEQ





05





360,


AATCTGTAACAGGAGTG[A/G]AA
ID











741


TGGAAATACAAGTTCTTGGAGAG
No:














AACGAAATAATGTAA
1053





0.5069
0.4794
0.4746
7.28E-
1.12
1.06
1.18
15
rs12442708
47,
C
T
TTGCCTTTAGGACAGGACTGTTCT
SEQ





05





144,


TAGTCCTCTCCAGTTC[T/C]ACTCT
ID











386


ATTGTAAAGTTTCTGAAAGTGCC
NO:














TCAGGTATTTCA
1054





0.4955
0.466
0.4712
1.79E-
1.13
1.07
1.19
16
rs10852432
66,
C
T
AGAATCTTAGGCTCATTTTGCCC
SEQ





05





402,


ACATGGACCCATGACTG[T/C]TCC
ID











515


CTGTATCCTCTCTCTGCACCCCCT
NO:














CAGTCACACTGAA
1055





0.1229
0.1049
0.1056
2.60E-
1.20
1.10
1.30
16
rs152828
72,
T
C
CAGTGTCTACATCACTGACCTCT
SEQ





05





123,


GTGGTATTTCCTCCTGC[T/C]TAT
ID











886


GACTGAGGGTAGAATCCTCTGGT
NO:














CCTTTTTTCCCCAA
1056





0.3705
0.343
0.3488
2.69E-
1.13
1.07
1.19
17
rs8076465
66,
A
G
GAGCCAGGTCATAGATGTAGCTT
SEQ





05





513,


GTTTTGAAGTCAAGTGC[A/G]TTC
ID











025


CTGGAGATCCGGTTTTGAAATGG
No:














GTCACTGTAAGGTG
1057





0.3709
0.3432
0.3475
2.45E-
1.13
1.07
1.19
17
rs2907373
66,
A
G
CCCTTAGCTTGTCAAGTTAGCCTG
SEQ





05





533,


GCCAGAGTCTGGGGCC[A/G]ACT
ID











655


GTTCCACTGGGCCGTCGACTATG
NO:














ACACTCTGCTGTCC
1058





0.2337
0.2109
0.207
6.31E-
1.14
1.07
1.22
18
rs2175565
46,
G
A
GACGGTGAGGAGCGGGTGATGG
SEQ





05





079,


GGTAATTCCCGGAATGCA[G/A]A
ID











852


CTGTAACCAGGGCAGTCAGAACA
NO:














AGGATTGTTAACCTGC
1059





0.3788
0.3525
0.3617
7.47E-
1.12
1.06
1.18
18
rs3900176
74,
T
C
GTGAGTCGCCACTGTTGGCTTATT
SEQ





05





739,


TTATGTATTTGCATCG[T/C]TCCC
ID











022


ATCTAAATGGGGATTCCCAGACT
NO:














TCATAGGCCAGTA
1060





0.07172
0.05786
0.06164
2.35E-
1.26
1.13
1.40
20
rs6110759
15,
G
A
GTACTTATAAAGCAGCGGAATCT
SEQ





05





693,


CCTGCTTTATGAACTTT[A/G]GTT
ID











977


CTGGGCTTCAGCTCTGTATTAGTC
NO:














TGTTCTCACACTG
1061





0.2432
0.22
0.2304
5.67E-
1.14
1.07
1.21
20
rs6043979
16,
C
A
AATTCTCAGATCCACCAGTGAGA
SEQ





05





451,


CAGAAAACATAGGAGAC[A/C]GG
ID











642


AAAAGAAGAATCAAATGGGAAG
No:














TGGAAAAAAGACAGGG
1062





0.
0.01914
0.01663
8.72E-
1.46
1.24
1.73
21
rs11702826
41,
T
C
AAATGCTCCTAGAACTGCAAAAC
SEQ


02777


06





908,


ACCTAACTTATTCCAAA[C/T]TTT
ID











935


CCGGATGAAAAGGCAGAGGATTT
NO:














TCTACTCCCATTTC
1063





0.2375
0.2623
0.248
4.68E-
0.88
0.82
0.93
22
rs1296795
18,
G
A
TCTCTTTCCAGGTTAAATGTTGTT
SEQ





05





021,


CATTGCGTCCTTTCCC[A/G]AAGA
ID











760


GTCTGTTCCCATAGAGAAGCATG
No:














GCACAAAGTGTGC
1064





0.077
0.09421
0.09076
1.61E-
0.80
0.73
0.89
22
rs736490
45,
T
C
CAGCCGATGGGCTCTGCCAGATT
SEQ





05





338,


CCTGATCCACAGTAGGA[C/T]CCT
ID











213


GGGGGCACCCTCTGCCCGAGGAC
No:














CCTGGAACACACAG
1065









While exemplary embodiments of the disclosure have been shown and described herein, it will be apparent to those skilled in the art that such embodiments are provided by way of example only. It is not intended that the disclosure be limited by the specific examples provided within the specification. While the disclosure has been described with reference to the aforementioned specification, the descriptions and illustrations of the embodiments herein are not meant to be construed in a limiting sense. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the disclosure. Furthermore, it shall be understood that all embodiments of the disclosure are not limited to the specific depictions, configurations or relative proportions set forth herein which depend upon a variety of conditions and variables. It should be understood that various alternatives to the embodiments of the disclosure described herein may be employed in practicing the disclosure. It is therefore contemplated that the disclosure shall also cover any such alternatives, modifications, variations or equivalents. It is intended that the following claims define the scope of the disclosure and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. A method comprising: (a) sequencing or genotyping a nucleic acid sample obtained from a subject having endometriosis, suspected of having endometriosis, or suspected of having a risk of developing endometriosis using a high throughput method; and (b) detecting one or more genetic variants in said nucleic acid sample, wherein said one or more genetic variants are listed in Table 1, Table 2 or Table 3.
  • 2. The method of claim 1, wherein said high throughput method comprises nanopore sequencing.
  • 3. The method of claim 1 or 2, wherein said nucleic acid sample comprises RNA.
  • 4. The method of claim 3, wherein said RNA comprises mRNA.
  • 5. The method of claim 1 or 2, wherein said nucleic acid sample comprises DNA.
  • 6. The method of claim 5, wherein said DNA comprises cDNA, genomic DNA, sheared DNA, cell free DNA, fragmented DNA, or PCR amplified products produced therefrom, or any combination thereof.
  • 7. The method of claim 5, wherein said DNA comprises DNA from an endometriosis lesion or peritoneal fluid.
  • 8. The method of any one of claims 1-7, wherein said one or more genetic variants comprise a genetic variant defining a minor allele.
  • 9. The method of any one of claims 1-7, wherein said one or more genetic variants comprise at least about: 5, 10, 15, 20, 25, 50, 75, 100, 150, 200, 250, 500, or more genetic variants defining minor alleles.
  • 10. The method of any one of claims 1-9, wherein detection of said one or more genetic variants has an odds ratio (OR) for endometriosis of at least about: 1.5, 2, 5, 10, 20, 50, 100, or more.
  • 11. The method of any one of claims 1-10, wherein said one or more genetic variants comprise a synonymous mutation, a non-synonymous mutation, a stop-gain mutation, a nonsense mutation, an insertion, a deletion, a splice-site variant, a frameshift mutation, or any combination thereof.
  • 12. The method of any one of claims 1-11, wherein said one or more genetic variants comprise a protein damaging mutation.
  • 13. The method of any one of claim 12, wherein said one or more genetic variants further comprise a protein damaging or loss of function variant in one or more genes selected from the group consisting of GAT2, CCDC169, CASP8AP2, POU2F3, CD19, IGSF3, GLI3, PEX26, OLIG3, CIB4, NKX3-2, CFTR, and any combinations thereof.
  • 14. The method of any one of claims 1-12, wherein said one or more genetic variants are comprised in GAT2, CCDC169, CASP8AP2, POU2F3, CD19, IGSF3, GLI3, PEX26, OLIG3, CIB4, NKX3-2, CFTR or a combination thereof.
  • 15. The method of any one of claims 1-13, further comprising detecting one or more additional variants defining a minor allele listed in Table 4.
  • 16. The method of any one of claim 1-15, wherein said one or more genetic variants are identified or weighted based on a predictive mathematical or computer programmed algorithm.
  • 17. The method of any one of claims 1-16, wherein said one or more genetic variants are identified based on reference to a database.
  • 18. The method of any one of claims 1-17, further comprising identifying said subject as having endometriosis or being at risk of developing endometriosis.
  • 19. The method of claim 18, wherein said identifying said subject as having endometriosis or being at risk of developing endometriosis is with a specificity of at least: 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%.
  • 20. The method of any one of claims 18-19, wherein said identifying said subject as having endometriosis or being at risk of developing endometriosis is with a sensitivity of at least: 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%.
  • 21. The method of any one of claims 18-20, wherein said identifying said subject as having endometriosis or being at risk of developing endometriosis is with an accuracy of at least: 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%.
  • 22. The method of any one of claims 18-21, wherein said subject is identified as having endometriosis.
  • 23. The method of claim 22, wherein said subject is asymptomatic for endometriosis.
  • 24. The method of claim 22, wherein said subject is symptomatic for endometriosis.
  • 25. The method of any one of claims 18-21, wherein said subject is identified as being at risk of developing endometriosis.
  • 26. The method of any one of claims 1-25, further comprising administering a therapeutic to said subject.
  • 27. The method of claim 26, wherein said therapeutic comprises hormonal therapy, an advanced reproductive technology therapy, a pain managing medication, or any combination thereof.
  • 28. The method of claim 26, wherein said therapeutic comprises hormonal contraceptives, gonadotropin-releasing hormone (Gn-RH) agonists, gonadotropin-releasing hormone (Gn-RH) antagonists, progestin, danazol, or any combination thereof.
  • 29. The method of any one of claims 26-28, wherein said therapeutic comprises a pain medication.
  • 30. The method of claim 29, wherein said pain medication comprises a nonsteroidal anti-inflammatory drug (NSAID), ibuprofen, naproxen, an opioid, a cannabis-based therapeutic, or any combination thereof.
  • 31. The method of any one of claims 1-26, wherein said one or more genetic variants are listed in Table 1.
  • 32. The method of any one of claims 1-26, wherein said one or more genetic variants are listed in Table 2.
  • 33. The method of any one of claims 1-26, wherein said one or more genetic variants are listed in Table 3.
  • 34. The method of any one of claims 1-33, further comprising identifying said subject as having endometriosis-associated infertility or being at risk of developing endometriosis-associated infertility.
  • 35. The method of claim 34, further comprising administering assisted reproductive technology therapy to said subject.
  • 36. The method of claim 35, wherein said assisted reproductive technology therapy comprises in vitro fertilization, gamete intrafallopian transfer, or any combination thereof.
  • 37. The method of claim 34, further comprising administering intrauterine insemination or ovulation induction.
  • 38. The method of any one of claims 1-37, wherein said subject is a mammal.
  • 39. The method of claim 38, wherein said mammal is a human.
  • 40. The method of any one of claims 2-39, wherein said nanopore sequencing is performed with a biological nanopore, a solid state nanopore, or a hybrid nanopore.
  • 41. The method of any one of claims 1-40, wherein said one or more genetic variants further comprise a mutation in SEPT10, TNFRSF6B, UGT2B28, USP17L2 or any combination thereof.
  • 42. The method of claim 41, wherein said one or more genetic variants comprise a mutation in SEPT10 and wherein said mutation comprises a missense mutation.
  • 43. The method of claim 41, wherein said one or more genetic variants comprise a mutation in TNFRSF6B and wherein said mutation comprises a homozygous or hemizygous mutation.
  • 44. The method of claim 41, wherein said one or more genetic variants comprise a mutation in UGT2B28 or USP17L2 and wherein said mutation comprises a hemizygous deletion.
  • 45. The method of any one of claims 1-44, wherein the one or more variants are identified based on a predictive computer algorithm.
  • 46. The method of claim 45, wherein said predictive computer algorithm is Polyphen 2, Sift, Mutation Accessor, Mutation Taster, FATHMM, LRT, or MetaLR.
  • 47. The method of any one of claims 1-46, further comprising administering a hormonal therapy to said subject.
  • 48. The method of claim 47, wherein the hormonal therapy comprises administration of hormonal contraceptives, gonadotropin-releasing hormone (GnRH) agonists, gonadotropin-releasing hormone (GnRH) antagonists, progestin, danazol, or any combination thereof.
  • 49. The method of any one of claims 1-46, further comprising administering to the subject an assisted reproductive therapy.
  • 50. The method of claim 49, wherein the assisted reproductive therapy comprises in vitro fertilization, intrauterine insemination, ovulation induction, gamete intrafallopian transfer, or any combination thereof.
  • 51. The method of any one of claims 1-46, further comprising administering to the subject a pain medication.
  • 52. The method of claim 51, wherein the pain medication comprises a nonsteroidal anti-inflammatory drug (NSAID), ibuprofen, naproxen, an opioid, a cannabis-based therapeutic, or any combination thereof.
  • 53. The method of any one of claims 1-46, further comprising administering a therapeutic to the subject.
  • 54. The method of claim 53, wherein the therapeutic comprises a regenerative therapy, a medical device, a pharmaceutical composition, a medical procedure, or any combination thereof.
  • 55. The method of claim 53, wherein the therapeutic comprises a non-steroidal anti-inflammatory, a hormone treatment, a dietary supplement, a cannabis-derived therapeutic or any combination thereof.
  • 56. The method of claim 53, wherein the therapeutic comprises the pharmaceutical composition, and wherein the pharmaceutical composition comprises an at least partially hemp-derived therapeutic, an at least partially cannabis-derived therapeutic, a cannabidiol (CBD) oil derived therapeutic, or any combination thereof.
  • 57. The method of claim 53, wherein the therapeutic comprises the medical procedure, and wherein the medical procedure comprises a laparoscopy, a laser ablation procedure, a hysterectomy or any combination thereof.
  • 58. The method of claim 53, wherein the therapeutic comprises the regenerative therapy, and wherein the regenerative therapy comprises a stem cell, a cord blood cell, a Wharton's jelly, an umbilical cord tissue, a tissue, or any combination thereof.
  • 59. The method of claim 53, wherein the therapeutic comprises the pharmaceutical composition, and wherein the pharmaceutical composition comprises cannabis, cannabidiol oil, hemp, or any combination thereof.
  • 60. The method of claim 53, wherein the therapeutic comprises the pharmaceutical composition, and wherein the pharmaceutical composition is formulated in a unit dose.
  • 61. The method of claim 53, wherein the therapeutic comprises hormonal therapy, an advanced reproductive therapy, a pain managing medication, or any combination thereof.
  • 62. The method of claim 53, wherein the therapeutic comprises a hormonal contraceptive, gonadotropin-releasing hormone (GnRH) agonist, gonadotropin-releasing hormone (GnRH) antagonist, progestin, danazol, or any combination thereof.
  • 63. The method of any one of claims 1-62, wherein the subject is asymptomatic for endometriosis.
  • 64. A kit comprising: one or more probes for detecting one or more genetic variants of Table 1, Table 2, Table 3, or any combination thereof in a sample.
  • 65. The kit of claim 64, further comprising a control sample.
  • 66. The kit of claim 64, wherein the control sample comprises one or more genetic variants of Table 1, Table 2, Table 3, or any combination thereof.
  • 67. The kit of any one of claims 64-66, wherein the one or more probes comprise a hybridization probe or amplification primer.
  • 68. The kit of any one of claims 64-67, wherein the one or more probes is configured to associate with a solid support.
  • 69. The kit of any one of claims 64-68, wherein the kit further comprises instructions for use and wherein the instructions for use comprise high stringent hybridization conditions.
  • 70. The kit of any one of claims 64-69, wherein the one or more probes is configured to hybridize to a target region of a nucleic acid of the sample, wherein the target region comprises one or more genetic variants.
  • 71. A system comprising: (a) a computer processor configured to receive sequencing data obtained from assaying a sample, wherein the computer processor is configured to identify a presence or an absence of one or more genetic variants of Table 1, Table 2, Table 3 or any combination thereof in the sample, and (b) a graphical user interface configured to display a report comprising the identification of the presence or the absence of the one or more genetic variants in the sample.
  • 72. The system of claim 71, wherein the computer processor comprises a trained algorithm.
  • 73. The system of claim 71 or 72, wherein the computer processor communicates a result.
  • 74. The system of claim 73, wherein the result comprises an identification of the presence or the absence of one or more genetic variants in the sample.
  • 75. A method comprising: (a) sequencing or genotyping a nucleic acid sample obtained from a subject having endometriosis, suspected of having endometriosis, or suspected of having a risk of developing endometriosis using a high throughput method; and (b) detecting a genetic variant in said nucleic acid sample, wherein said genetic variant comprises a mutation in SEPT10, TNFRSF6B, UGT2B28, USP17L2 or any combination thereof.
  • 76. The method of claim 75, wherein said genetic variant is a mutation in SEPT10 and wherein said mutation comprises a missense mutation.
  • 77. The method of claim 75, wherein said genetic variant is a mutation in TNFRSF6B and wherein said mutation comprises a homozygous or hemizygous mutation.
  • 78. The method of claim 75, wherein said genetic variant is a mutation in UGT2B28 or USP17L2 and wherein said mutation comprises a hemizygous deletion.
  • 79. The method of claim 75, wherein said high throughput method comprises nanopore sequencing.
CROSS REFERENCE

This application claims the benefit of U.S. Provisional Application No. 62/728,263 filed Sep. 7, 2018, U.S. Provisional Application No. 62/741,434 filed Oct. 4, 2018, U.S. Provisional Application No. 62/741,805 filed Oct. 5, 2018, U.S. Provisional Application No. 62/741,437 filed Oct. 4, 2018, U.S. Provisional Application No. 62/741,807 filed Oct. 5, 2018, and U.S. Provisional Application No. 62/741,439 filed Oct. 4, 2018, each of which are incorporated by reference herein in their entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US19/50061 9/6/2019 WO 00
Provisional Applications (6)
Number Date Country
62728263 Sep 2018 US
62741434 Oct 2018 US
62741437 Oct 2018 US
62741439 Oct 2018 US
62741805 Oct 2018 US
62741807 Oct 2018 US