The embodiments described herein relate generally to medical devices for therapeutic electrical energy delivery, and more particularly to systems, apparatuses, and methods for tracking ablation devices (e.g., ablation catheters) and generating lesion lines using such devices.
Pulsed field ablation using application of high voltage pulses has been demonstrated to be suitable for the rapid and effective generation of lesions in cardiac tissue as well as other target anatomy. In the cardiac context, pulsed field ablation has been used for focal ablation or the generation of discrete local lesions. For example, an ablation catheter configured for focal ablation can be used to delivered pulsed field ablation via irreversible electroporation to cardiac tissue.
In a clinical catheter laboratory, electroanatomical mapping systems that use impedance tracking or impedance-based localization systems can be used to provide three-dimensional visualization feedback of devices positioned in patient anatomy. Additionally or alternatively, electromagnetic tracking sensors can be integrated into devices and used to track those devices within patient anatomy.
It can be desirable during an ablation procedure to track properties of an ablation device and use such information to assess ablation characteristics, e.g., to assist with ablation procedure planning.
Described herein are systems, devices, and methods for visualizing and generating focal tissue ablation using an ablation catheter. In some embodiments, the ablation devices used in these systems may be deployed epicardially or endocardially in cardiac applications.
In some embodiments, an apparatus may include a memory; and a processor operatively coupled to the memory, the processor configured to: activate a field generator to generate an electric or magnetic field such that signals are received by a receiver coupled to an ablation device disposed adjacent to a tissue surface; obtain processed data associated with the signals; determine a position and an orientation of the ablation device based on the processed data; determine an expected ablation zone of the ablation device in the tissue surface based on the position and the orientation of the ablation device; and display, via an output device, a map of the tissue surface and a visual representation of the expected ablation zone in the map of the tissue surface.
In some embodiments, a method may include receiving, at a processor, data representative of signals received by a receiver coupled to an ablation device disposed adjacent to a tissue surface, the receiver receiving the signals in response to an electric or magnetic field being generated by a field generator; determining, at the processor, a position and an orientation of the ablation device based on the data representative of the signals; determining, at the processor, an expected ablation zone of the ablation device in the tissue surface based on the position and the orientation of the ablation device; and displaying, via an output device operatively coupled to the processor, a map of the tissue surface and a visual representation of the expected ablation zone in the map of the tissue surface.
In some embodiments, a system may include a field generator configured to generate an electric or magnetic field; a signal generator configured to generate a pulse waveform for ablating tissue; an output device; and a processor operatively coupled to the field generator, the signal generator, and the output device, the processor configured to: activate the field generator to generate the electric or magnetic field such that signals are received by a receiver coupled to an ablation device disposed adjacent to a tissue surface; obtain processed data associated with the signals; determine a position and an orientation of the ablation device based on the processed data; determine an expected ablation zone of the ablation device in the tissue surface based on the position and the orientation of the ablation device; cause the output device to display a map of the tissue surface and a visual representation of the expected ablation zone in the map of the tissue surface; and in response to the expected ablation zone corresponding to a desired ablation zone, activate the signal generator to generate the pulse waveform to be delivered to the ablation device such that the ablation device produces an ablated zone corresponding to the expected ablation zone.
Described herein are systems, devices, and methods for selective and rapid application of pulsed electric fields to ablate tissue by irreversible electroporation. Generally, the systems, devices, and methods described herein may be used to generate lesion lines with an ablation device (e.g., a focal ablation device).
In some embodiments, the systems, devices, and methods described herein provide spatial tracking of an ablation device (e.g., catheter) in a body cavity to aid tissue ablation, such as the generation of contiguous and transmural lesion lines with a focal ablation catheter. Such spatial tracking can, for example, provide real-time tracking of the spatial location and orientation of the ablation device. Systems, devices, and methods incorporating spatial tracking functionality may enable real-time procedure planning and may be applied to the context of pulsed electric field ablation procedures with delivery of high voltage pulse waveforms to generate lesions using irreversible electroporation.
Pulsed electric field ablation for cardiac tissue ablation has been demonstrated recently to be a suitable modality for the rapid and effective generation of ablation lesions. In the cardiac context, focal ablation, or the creation of discrete local lesions, is a relevant application of pulsed electric field ablation. In a clinical catheter laboratory, electroanatomical mapping systems (e.g., the CARTO® system manufactured by Biosense Webster Inc., or the NavX™ system manufactured by Abbott Laboratories) can be used to provide three-dimensional visualization feedback for a catheter device positioned in the cardiac anatomy or chambers.
An electromagnetic tracking sensor may be integrated into a catheter device using electrodes configured to track the device position (e.g., in real time) within a three-dimensional volume of interest. Suitable electromagnetic tracking or localization systems for some medical applications include, for example, systems and sensors manufactured by Northern Digital Inc. Using a catheter endowed with such a sensor endocardially to navigate to different locations within a cardiac chamber, location data of a catheter electrode, and/or ECG signals recorded from the electrodes may be used to reconstruct the surface anatomy of a cardiac chamber.
Additionally or alternatively, a device location tracking system may determine a location of a device (e.g., a catheter) using an electric field or voltage gradients generated by a set of surface electrode patches on a patient, e.g., with potential differences set up between the surface electrode patches. With at least three such independently paired potential differences not all in the same plane, the three-dimensional location of an electrode may be estimated based on the voltage potentials measured by an electrode or sensor relative to one or more of the surface patches, or equivalently, impedance measurements may be estimated based on measured currents and/or voltages. Suitable techniques and methods of estimating spatial locations using such potential differences or voltage gradients of a set of electrodes, also termed impedance tracking or impedance-based localization systems, are incorporated in electroanatomical mapping systems such as the NavX™ system manufactured by Abbott Laboratories, the Rhythmia™ system manufactured by Boston Scientific Inc., or the CARTO® system manufactured by Biosense Webster Inc. In some embodiments, when a catheter device includes an electromagnetic sensor for electromagnetic tracking and is further used with an impedance tracking system, the locations of electrodes on the catheter may be more accurately estimated than by the use of impedance tracking without electromagnetic tracking.
Given a focal catheter configured to deliver pulsed field ablation lesions (e.g., lesions produced by irreversible electroporation) with a high voltage pulse waveform, the characteristics of a lesion (e.g., spatial extent and geometry) delivered using such a catheter with a given pulsed field ablation waveform and at given voltages may be determined using computational modeling and/or lesion data from studies or past procedures (e.g., preclinical or animal studies and/or procedures). Depending on the electrode geometry of the focal catheter, the lesion geometry generated by such an ablation generally depends at least in part on device orientation with respect to a local tissue surface or wall.
Systems and methods described herein relate to displaying expected lesion geometries or ablation zones on anatomical maps or surface renderings, which can enable a series of lesions (e.g., contiguous and/or transmural) to be efficiently generated in a predetermined anatomical region. In some embodiments, a focal ablation catheter configured to generate pulsed electric field ablation lesions can take a variety of geometric forms. In some embodiments, the methods, systems, and devices disclosed herein may comprise one or more of the methods, systems, and devices described in U.S. application Ser. No. 16/375,561, filed on Apr. 4, 2019, and titled “SYSTEMS, DEVICES, AND METHODS FOR FOCAL ABLATION,” the contents of which are hereby incorporated by reference in its entirety.
The term “electroporation” as used herein refers to the application of an electric field to a cell membrane to change the permeability of the cell membrane to the extracellular environment. The term “reversible electroporation” as used herein refers to the application of an electric field to a cell membrane to temporarily change the permeability of the cell membrane to the extracellular environment. For example, a cell undergoing reversible electroporation can observe the temporary and/or intermittent formation of one or more pores in its cell membrane that close up upon removal of the electric field. The term “irreversible electroporation” as used herein refers to the application of an electric field to a cell membrane to permanently change the permeability of the cell membrane to the extracellular environment. For example, a cell undergoing irreversible electroporation can observe the formation of one or more pores in its cell membrane that persist upon removal of the electric field.
Disclosed herein are systems and devices configured for generating focal ablation lesions in tissue. Generally, a system described here for ablating tissue with high voltage pulse waveforms may include a device tracking or localization component, ECG recording or monitoring component, cardiac stimulator, and ablation component. The systems, methods and implementations described in the present disclosure apply to synchronous or asynchronous ablation delivery. Furthermore, as described herein, the systems and devices may be deployed endocardially and/or epicardially to treat cardiac fibrillation.
The ablation device (110) can be operatively coupled to a mapping system (140). The mapping system (140) can include components that are functionally and/or structurally similar to the ablation mapping system (10), as described above with respect to
Memory (144) can be, for example, a random access memory (RAM), a memory buffer, a hard drive, an erasable programmable read-only memory (EPROM), an electrically erasable read-only memory (EEPROM), a read-only memory (ROM), Flash memory, etc. The memory may store instructions to cause the processor (142) to execute modules, processes and/or functions, such as field generation and/or location and orientation determination.
Input/output device (148) can be used to present information and/or receive information from a user and/or other compute devices (e.g., remote compute devices that are operatively coupled to the electroporation system (100) via a wired and/or wireless connection. In some embodiments, the processor (142) (or another processor) can be configured to generate information and control the input/output device (148) to present that information, e.g., using a display, audio device, projector, etc. The input/output device (148) can include, for example, a user interface, e.g., a display, an audio device, etc. that enables presentation of outputs to a user and/or receipt of input from the user. In some embodiments, the input/output device (148) can display a visual representation of specific anatomy (e.g., cardiac anatomy) along with a visual representation of a tracked device (e.g., the ablation device (110)) within that anatomy. In operation (e.g., during an ablation procedure), the visual representation can display the position, orientation, and/or configuration of the tracked device as it moves through target anatomy, e.g., in real-time (e.g., within fractions of a second). In some embodiments, the input/output device (148) can be used to receive inputs from a user that specify pulse waveform parameters (e.g., voltages, durations, delays, etc.), properties or characteristics of the ablation device (e.g., type of ablation device, deployment state, etc.) and/or other information that may assist in determining an expected ablation zone. In some embodiments, input/output device (148) can be configured to display expected ablation zones and/or ablated zones, e.g., in real time during an ablation procedure. In some embodiments, input/output device (148) can be configured to display different features or components (e.g., surrounding anatomical structure, ablation device, expected ablation zone, and/or ablated zone) using different markings, patterns, visual renderings, and/or colors to show during components as overlaying other components.
The pulse waveform generator (130) may be configured to generate ablation pulse waveforms for irreversible electroporation of tissue, such as, for example, pulmonary vein ostia. For example, the pulse waveform generator (130) may generate and deliver a pulse waveform to the ablation device (110), which generates a pulsed electric field that can ablate tissue. In some embodiments, the pulse waveform generator (130) is configured to generate the ablation pulse waveform in synchronization with a cardiac cycle of a heart (e.g., within a common refractory window of an atrial pacing signal and a ventricular pacing signal). For example, in some embodiments, the common refractory window may start substantially immediately following a pacing signal (or after a very small delay) and last for a duration of approximately 250 milliseconds (ms) or less thereafter. In some embodiments, an entire pulse waveform may be delivered within this duration, while in other embodiments, portions of the pulse waveform may be delivered within this duration with other portions being delivered during common refractory windows of a subsequent cardiac cycle. In such embodiments, the synchronization with the cardiac cycle can be achieved through the use of pacing or by appropriate gating of ablation delivery to R-wave detection based on an ECG recording.
In some embodiments, a cardiac stimulator (180) can be configured to generate pacing signal(s) and provide these to an optional pacing device (120) disposed near the target anatomy. Pacing device (120) can include a set of electrode(s) 122 that can receive the pacing signals and deliver them the cardiac anatomy, e.g., to pace the heart. One or both of atrial and/or ventricular pacing signals can be generated or delivered to the heart. In some embodiments, pacing device (120) can be configured to sense and/or analyze information (e.g., cardiac signals) regarding the patient, and provide this information to one or more of the mapping system (140) and/or pulse waveform generator (130) to further assist with controlling operation of those devices (e.g., initiating or interrupting pulse waveform delivery, determining expected ablation zones and/or ablated zones, etc.).
In some embodiments, the cardiac stimulator (180) and pulse waveform generator (130) may be in communication with one another (e.g., for coordinating timing of the pulse waveform delivery, pacing signal delivery). In some embodiments, the cardiac stimulator (180) may be integrated with the pulse waveform generator (130) in a single console. In some embodiments, the cardiac stimulator (180) and the pulse waveform generator (130) may be in communication with other devices, e.g., mapping system (140) or remote compute devices, directly or via, for example, one or more networks, each of which may be any type of network. A wireless network may refer to any type of digital network that is not connected by cables of any kind. However, a wireless network may connect to a wireline network in order to interface with the Internet, other carrier voice and data networks, business networks, and personal networks. A wireline network is typically carried over copper twisted pair, coaxial cable or fiber optic cables. There are many different types of wireline networks including, wide area networks (WAN), metropolitan area networks (MAN), local area networks (LAN), campus area networks (CAN), global area networks (GAN), like the Internet, and virtual private networks (VPN). Hereinafter, network refers to any combination of combined wireless, wireline, public and private data networks that are typically interconnected through the Internet, to provide a unified networking and information access solution.
In some embodiments, the pulse waveform generator (130) and/or cardiac stimulator (180) can be operatively coupled to the mapping system (140) such that information regarding the pulse waveform, pacing signals, and/or sensed signals (e.g., sensed cardiac signals from the pacing device (120)) can be provided to the mapping system (140), e.g., to assist with device localization and/or expected ablation determination. In some embodiments, the mapping system (140) and/or processor(s) associated with the pulse waveform generator (130) and/or cardiac stimulator (180) can be integrated into one or more controllers that can function to control the component(s) of each of these devices.
While not depicted, the cardiac stimulator (180) and the pulse waveform generator (130) can include one or more processor(s), which can be any suitable processing device configured to run and/or execute a set of instructions or code, similar to processor (142).
While not depicted, the cardiac stimulator (180) and the pulse waveform generator (130) can include one or more memory or storage device(s), similar to memory (144). The memory may store instructions to cause the processor of any one of the cardiac stimulator (180) and the pulse waveform generator (130) to execute modules, processes and/or functions, such as pulse waveform generation and/or cardiac pacing.
In some embodiments, one or more of the splines (230) may include one or more of a set of proximal electrodes (232, 234) and distal electrodes (236, 238). In some embodiments, a spline of the set of splines (230) may include between about 1 and about 8, inclusive, proximal electrodes (232, 234) and between about 1 and about 8, inclusive, distal electrodes (236, 238). In some embodiments, the device (200) may include between about 2 and about 12 splines, including all ranges and sub-values in-between.
In some embodiments, an ablation device (e.g., ablation device (110, 200)) may incorporate a receiver (e.g., receiver (118)) implemented as an electromagnetic tracking sensor for tracking a position or orientation of the ablation device. Along with the device configuration calculations as described herein, the electromagnetic localization data may provide refined (e.g., improved) spatial locations of all the device electrodes. In such embodiments, the ablation device can be used to endocardially navigate to different locations within a cardiac camber while collecting location data and/or cardiac data (e.g., recorded using one or more electrodes of the ablation device), which in turn can be used to construct a virtual representation of a surface anatomy of the cardiac camber.
Additionally or alternatively, in some embodiments, an ablation catheter (e.g., ablation device (110)) can include a receiver implemented as an electrode that is configured to measure voltage and/or current induced by electric fields generated by a set of surface patches. In such embodiments, the set of surface patches can be configured to generate electric fields in multiple planes, with voltage and/or current signals being measured by the electrode of the ablation catheter (or impedance estimated using such measurements).
While an ablation device (110) having a basket shape is depicted in
Also described here are methods for determining an expected ablation zone during a tissue ablation process performed in or near one or more heart chamber(s) using the systems and devices described herein. In an embodiment, the heart chamber(s) may be the left atrial chamber and include its associated pulmonary veins, while the devices and methods described herein can also be used in other cardiac chambers. Generally, one or more catheters may be advanced in a minimally invasive fashion through vasculature to a target location. For example, an ablation device may be advanced through vasculature over a guidewire and through a deflectable sheath. The sheath may be configured for deflection and aid in guiding a focal ablation catheter through vasculature and one or more predetermined targets (e.g., pulmonary vein ostia). A dilator may be advanced over a guidewire and configured for creating and dilating a transseptal opening during and/or prior to use. The methods described here include introducing and disposing an ablation device (e.g., ablation device (110, 200)) in contact with one or more pulmonary vein ostial or antral regions. A pacing signal may be delivered to the heart using a cardiac stimulator (e.g., cardiac stimulator (180)) and/or measure cardiac activity. Spatial characteristics (e.g., position, orientation, configuration) of the ablation device and tissue may be determined and used to generate an expected ablation zone and/or tissue map for display. A pulse waveform may be delivered by one or more electrodes of the ablation device to ablate tissue. In some embodiments, ablation energy may be delivered in synchrony with cardiac pacing. In some embodiments, the voltage pulse waveforms described herein may be applied during a refractory period of the cardiac cycle so as to avoid disruption of the sinus rhythm of the heart. The tissue map including ablated tissue and the expected ablation zone may be updated in real-time on the display as the device is navigated through tissue and additional pulse waveforms are delivered to the tissue.
A pulse waveform may be generated and delivered to one or more electrodes of the device to ablate tissue. In some embodiments, the pulse waveform may be generated in synchronization with a pacing signal of the heart to avoid disruption of the sinus rhythm of the heart. In some embodiments, the electrodes may be configured in anode-cathode subsets. Additionally or alternatively, the pulse waveforms may include a plurality of levels of a hierarchy to reduce total energy delivery, e.g., as described in International Application Serial No. PCT/US2019/031135, filed on May 7, 2019, and titled “SYSTEMS, APPARATUSES AND METHODS FOR DELIVERY OF ABLATIVE ENERGY TO TISSUE,” the disclosure of which is incorporated herein by reference. In some embodiments, the ablation devices (e.g., ablation device (110, 200)) described herein may be used for epicardial and/or endocardial ablation. Examples of suitable ablation catheters are described in International Application Serial No. PCT/US2019/014226, incorporated by reference above.
In some embodiments, spatial information associated with the ablation device and tissue may be determined, at (908). For example, signals may be received at a receiver (e.g., sensor, electrode, etc.) coupled to or integrated into the ablation device in response to electric and/or magnetic fields generated by a field generator. Data representative of signals received by the receiver may be received at a processor (e.g., processor (42, 142)), which can further process and/or analyze such information. Based on such analysis, spatial information (e.g., position, orientation, configuration) of the ablation device may be determined at the processor.
For example, such analysis can involve determining one or more geometric parameters that characterize the distal end of the ablation device. In some embodiments, with a known distal geometry of a distal portion of an ablation device (e.g., focal ablation catheter), for a given configuration of the splines, the shape of the ablation device may be characterized by a set of geometric parameters. For example, as shown in
In some embodiments, an impedance-based localization system may be configured to generate spatial coordinates of proximal and distal electrodes of an ablation device. Conventional impedance-based localization systems can be prone to error due to tissue inhomogeneities. The localization systems as described herein may generate improved (or refined) spatial coordinate estimates of a distal portion of a focal ablation device. Given the coordinates of the proximal electrodes of an ablation device obtained from an impedance-based localization system, a centroid of the proximal electrodes on each spline may be determined. From this set of centroids on each spline, the centroid x1 of these centroids of the proximal electrodes can be determined. The centroid x1 may be used to calculate a center for a best-fit circle C1 (corresponding to the proximal electrodes) having a diameter d1 that may be calculated using, for example, a least-squares fit. Likewise, the centroids of the distal electrodes of the set of splines can be determined, and a centroid x2 of the centroids of the distal electrodes can be determined. The centroid x2 can be used to calculate a center for a best-fit circle C2 (corresponding to the distal electrodes) having a diameter d2. A diameter d1 of the centroid x1 and a diameter d2 of the centroid x2 may be determined. A distance b between the centroids x1 and x2 may be calculated.
A configuration of the ablation device may be determined based on the diameter d1, the diameter d2, and the distance b, and the orientation of the ablation device may be defined using the centroids x1 and x1. In particular, given a set of known deployment configurations {Fi} of the ablation device (with index i labeling the configurations), each with corresponding parameters {d1,i, d2,i, bi}, the closest configuration {F*i} may be calculated, for example, by finding the configuration with minimal error or cost Si using:
Si=(d1,i−d1)2+(d2,i−d2)2+(bi−b)2
In embodiments where a focal ablation catheter device does not incorporate an electromagnetic sensor, the device orientation may be defined in part by the unit vector v as follows:
Furthermore, the unit vector w=(p1−x1)/|p1−x1| from the centroid x1 to the centroid p1 of proximal electrodes on a fiducial spline (for example, a first spline) together with v may fully define the device orientation. The device configuration, as obtained above, and the device orientation may provide improved spatial locations of each of the device electrodes.
Optionally, a surface anatomy of a cardiac chamber may be constructed (e.g., simulated) using the device location and/or tracking systems described herein. For example, as depicted in
A portion of such a representation (e.g., tissue map) is illustrated in
In some embodiments, an anatomical map of the cardiac chamber can be acquired using other devices (e.g., imaging devices, etc.), and the anatomical map can be provided to the mapping and ablation systems described herein. In such embodiments, the ablation device can optionally be used to confirm the accuracy of the anatomical map, e.g., using the method depicted in
Referring back to
In some embodiments, the expected ablation zone can be determined at a processor (e.g., processor (42, 142)) based on the position and the orientation of the ablation device, as further described below. For example, the expected ablation zone can be determined by determining a nearest distance from the ablation device to the tissue surface, identifying a set of points from the plurality of points within a predefined distance from a distal end of the ablation device when the nearest distance is less than a predefined value, determining a centroid of the set of points, determining a local tangent plane to a surface extending through the centroid, and determining a center of the expected ablation zone based on the position and the orientation of the ablation device relative to the local tangent plane, the center representing a location of the tissue surface having a maximum depth of ablation. Furthermore, an expected ablation zone can be based on one or more pulse waveform parameters (e.g., voltage, duration, delays, number of pulses, number of pulse groups, etc.) that may modify, for example, a size and depth of an expected ablation zone.
To illustrate an example of determining the expected ablation zone,
A centroid (1122) of this local set of points may be calculated. A local tangent plane (1110) to the surface passing through the local centroid (1122) is determined. For example, such a plane may be determined by solving an optimization problem. If the local set of points (1120) is the centroid (1122) is xc, and the unit normal to the local tangent plane (1110) is n, then the distance of each local point to the tangent plane (1110) is given by:
qi=(yi−xc)·n
A cost function can be defined as the sum of such squared distances:
where the matrix A is defined as the sum (over the local set of points) of outer products
In some embodiments, it is desired to find the normal n to the local tangent plane that minimizes the cost C. Furthermore, since n is a unit normal, it satisfies the constraint nTn=1. Introducing an appropriate Lagrange multiplier λ, this leads to the constrained cost function:
C′=nTAn−λ(nTn−1)
In some embodiments, C′ may be minimized with respect to n and λ. For example, performing the minimization leads to the eigenvalue equation:
An=λn
The unit eigenvector n* corresponding to the smallest eigenvalue of the matrix A is the desired solution for the normal to the local tangent plane (1110). Thus, the local tangent plane (1110) is determined.
Once the local tangent plane is known, based on known properties of the ablation zone (and its center) depending on the orientation of the distal device geometry with respect to the local tangent plane and/or deployment configuration, the ablation zone center (1130) may be determined. Thereafter, for a given device positioning or placement at the endocardial surface, the expected ablation zone can be rendered in the local tangent plane. In some embodiments, the expected ablation zone can be projected onto the surface rendering itself and be depicted as one or more of a contour on the surface, colored patch, or other graphical indicator (e.g., be projected or rendered in a map of the tissue, at (914)).
The expected ablation zone can be presented, at (914), according to various methods. For example, a map of the tissue surface and a visual representation of the expected ablation zone in the map of the tissue surface may be displayed via an output device (e.g., input/output device (48, 148) or an output device coupled to an external compute device) operatively coupled to the processor.
In some embodiments, the expected ablation zone can be determined (e.g., at a processor including, for example, processor (42, 142)) by identifying an electrode from the plurality of electrodes that is in contact with the tissue surface (e.g., using ECG data, as described above), identifying an expected ablation zone shape from a plurality of expected ablation zone shapes based on the position and the orientation of the ablation device, and generating the expected ablation zone having a center at a location corresponding to a location of the electrode and based on the expected ablation zone shape, the center representing a location of the tissue surface having a maximum depth of ablation. For example,
The shape, size, and/or orientation of the expected ablation zone (440) can be based on the spatial characteristics or geometry of the ablation device. For example, a linear focal device can have an ablation zone whose shape and size can be generally different from that of a focal ablation device. In some embodiments, ablated zones generated by the ablation device (430) can be recorded for the ablation device (430) when the device is in a plurality of positions, orientations, and/or configurations relative to a tissue surface, and the resulting shapes of the generated ablated zones can be recorded and stored for future reference in generating expected ablation zones. In some embodiments, such ablated zones can be generated in experimental environments, e.g., using test subjects/preclinical animal models.
Further examples of expected ablation zones are depicted in and described with reference to
As shown in
In some embodiments, with an estimated expected shape of the ablation zone (including the approximate center of the ablation zone) and its dependence on one or both of device deployment and device orientation with respect to the local tissue wall, a representation of the ablation zone, for example a minimum expected ablation zone, may be graphically provided when a map of the tissue surface anatomy is available.
Referring back to
In some embodiments, a mapping system (e.g., mapping system (10, 140)) separate from a signal generator (e.g., pulse waveform generator (130)) can send a signal to the signal generator to cause the signal generator to generate a pulse waveform to be delivered to the ablation device, such that the ablation device generates an electric field that produces an ablated zone corresponding to the expected ablation zone. In some embodiments, the mapping system can be integrated with a signal generator, and upon determining that ablation is to proceed, the mapping system can generate and deliver the pulse waveform to the ablation device. As described in more detail herein,
In some embodiments, systems, devices, and methods described herein can base the ablated zone on the expected ablation zone (e.g., have the ablated zone be the same as the expected ablated zone). Accordingly, after ablating the tissue, at (918), such systems, devices, and methods can present the ablated zone by changing the representation of the expected ablation zone to signify that the area has been ablated. For example, the expected ablation zone can be visually depicted using a first set of indicia or coloring before ablation, and the abated zone can be visually depicted using a second set of indicia or coloring different from the first set after ablation.
In some embodiments, systems, devices, and methods can use further methods to detect the tissue area that has been ablated (for example, using signals (e.g., impedances) collected by one or more sensor(s) (e.g., electrode(s) (116, 122), receiver (118)), or using an external device). In such embodiments, systems, devices, and methods can further adapt its methods (e.g., models, algorithms) for determining an expected ablation zone based on the detected ablated area. For example, analysis of the expected ablation zone and how that compared to the actual ablated area, along with parameters associated with the tissue and/or ablation device (e.g., thickness of tissue, tissue type, ablation device geometry and/or positioning, etc.) that may have caused discrepancies between the expected ablation zone and actual ablated area, can be used to improve future determinations of expected ablation zones.
When delivery of ablation pulses has not been completed by the ablation device (e.g., when using the ablation device to generate a contiguous lesion line, as further described with reference to
A visual representation of the ablated zone may be displayed by the output device using a first set of indicia and a visual representative of the second expected ablation zone using a second set of indicia different from the first set of indicia. For example,
In some embodiments, a first ablated zone and a second ablated zone may form a portion of a continuous lesion in the tissue surface. For example, the signal generator may be activated to generate the pulse waveform to be delivered to the ablation device such that the ablation device produces a second ablated zone corresponding to the second expected ablation zone when the second expected ablation zone has an area of overlap with the ablated zone that is greater than a predetermined value.
This process can be continued to generate a series of overlapping ablated zones for contiguous lesion line generation. In some embodiments, the size of the depicted expected ablation zones can be illustrated to be smaller than the simulated or pre-clinically determined zone size as a method of prescribing closer placement of adjacent ablations to ensure adequate lesion overlap. Furthermore, the shape and size of the surface rendering of the ablation zone can both generally depend on device orientation with respect to the local tangent plane and/or on device deployment state.
When the ablation is completed, (920—Yes), the ablation device may be withdrawn from the cardiac chamber and the patient, at (922).
It should be understood that the examples and illustrations in this disclosure serve exemplary purposes and departures and variations such as numbers of splines, number of electrodes, and so on, or a variety of focal ablation devices such as linear ablation catheters etc. can be built and deployed according to the teachings herein without departing from the scope of this invention.
As used herein, the terms “about” and/or “approximately” when used in conjunction with numerical values and/or ranges generally refer to those numerical values and/or ranges near to a recited numerical value and/or range. In some instances, the terms “about” and “approximately” may mean within ±10% of the recited value. For example, in some instances, “about 100 [units]” may mean within ±10% of 100 (e.g., from 90 to 110). The terms “about” and “approximately” may be used interchangeably.
Some embodiments described herein relate to a computer storage product with a non-transitory computer-readable medium (also may be referred to as a non-transitory processor-readable medium) having instructions or computer code thereon for performing various computer-implemented operations. The computer-readable medium (or processor-readable medium) is non-transitory in the sense that it does not include transitory propagating signals per se (e.g., a propagating electromagnetic wave carrying information on a transmission medium such as space or a cable). The media and computer code (also may be referred to as code or algorithm) may be those designed and constructed for the specific purpose or purposes. Examples of non-transitory computer-readable media include, but are not limited to, magnetic storage media such as hard disks, floppy disks, and magnetic tape; optical storage media such as Compact Disc/Digital Video Discs (CD/DVDs), Compact Disc-Read Only Memories (CD-ROMs), and holographic devices; magneto-optical storage media such as optical disks; carrier wave signal processing modules; and hardware devices that are specially configured to store and execute program code, such as Application-Specific Integrated Circuits (ASICs), Programmable Logic Devices (PLDs), Read-Only Memory (ROM) and Random-Access Memory (RAM) devices. Other embodiments described herein relate to a computer program product, which may include, for example, the instructions and/or computer code disclosed herein.
The systems, devices, and/or methods described herein may be performed by software (executed on hardware), hardware, or a combination thereof. Hardware modules may include, for example, a general-purpose processor (or microprocessor or microcontroller), a field programmable gate array (FPGA), and/or an application specific integrated circuit (ASIC). Software modules (executed on hardware) may be expressed in a variety of software languages (e.g., computer code), including C, C++, Java®, Ruby, Visual Basic®, and/or other object-oriented, procedural, or other programming language and development tools. Examples of computer code include, but are not limited to, micro-code or micro-instructions, machine instructions, such as produced by a compiler, code used to produce a web service, and files containing higher-level instructions that are executed by a computer using an interpreter. Additional examples of computer code include, but are not limited to, control signals, encrypted code, and compressed code.
The specific examples and descriptions herein are exemplary in nature and embodiments may be developed by those skilled in the art based on the material taught herein without departing from the scope of the present invention, which is limited only by the attached claims.
This application claims the benefit of U.S. Provisional Application No. 62/940,219, filed on Nov. 25, 2019, the entire disclosure of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4200104 | Harris | Apr 1980 | A |
4438766 | Bowers | Mar 1984 | A |
4470407 | Hussein | Sep 1984 | A |
4739759 | Rexroth et al. | Apr 1988 | A |
5234004 | Hascoet et al. | Aug 1993 | A |
5242441 | Avitall | Sep 1993 | A |
5257635 | Langberg | Nov 1993 | A |
5281213 | Milder et al. | Jan 1994 | A |
5304214 | DeFord et al. | Apr 1994 | A |
5306296 | Wright et al. | Apr 1994 | A |
5334193 | Nardella | Aug 1994 | A |
5341807 | Nardella | Aug 1994 | A |
5342301 | Saab | Aug 1994 | A |
5398683 | Edwards et al. | Mar 1995 | A |
5443463 | Stern et al. | Aug 1995 | A |
5454370 | Avitall | Oct 1995 | A |
5515848 | Corbett, III et al. | May 1996 | A |
5531685 | Hemmer et al. | Jul 1996 | A |
5545161 | Imran | Aug 1996 | A |
5558091 | Acker et al. | Sep 1996 | A |
5578040 | Smith | Nov 1996 | A |
5617854 | Munsif | Apr 1997 | A |
5624430 | Eton et al. | Apr 1997 | A |
5662108 | Budd et al. | Sep 1997 | A |
5667491 | Pliquett et al. | Sep 1997 | A |
5672170 | Cho | Sep 1997 | A |
5700243 | Narciso, Jr. | Dec 1997 | A |
5702438 | Avitall | Dec 1997 | A |
5706823 | Wodlinger | Jan 1998 | A |
5722400 | Ockuly et al. | Mar 1998 | A |
5722402 | Swanson et al. | Mar 1998 | A |
5749914 | Janssen | May 1998 | A |
5779699 | Lipson | Jul 1998 | A |
5788692 | Campbell et al. | Aug 1998 | A |
5810762 | Hofmann | Sep 1998 | A |
5833710 | Jacobson | Nov 1998 | A |
5836874 | Swanson et al. | Nov 1998 | A |
5836942 | Netherly et al. | Nov 1998 | A |
5836947 | Fleischman et al. | Nov 1998 | A |
5843154 | Osypka | Dec 1998 | A |
5849028 | Chen | Dec 1998 | A |
5863291 | Schaer | Jan 1999 | A |
5868736 | Swanson et al. | Feb 1999 | A |
5871523 | Fleischman et al. | Feb 1999 | A |
5876336 | Swanson et al. | Mar 1999 | A |
5885278 | Fleischman et al. | Mar 1999 | A |
5895404 | Ruiz | Apr 1999 | A |
5899917 | Edwards et al. | May 1999 | A |
5904709 | Arndt et al. | May 1999 | A |
5916158 | Webster, Jr. | Jun 1999 | A |
5916213 | Haissaguerre et al. | Jun 1999 | A |
5921924 | Avitall | Jul 1999 | A |
5928269 | Alt | Jul 1999 | A |
5928270 | Ramsey, III | Jul 1999 | A |
6002955 | Willems et al. | Dec 1999 | A |
6006131 | Cooper et al. | Dec 1999 | A |
6009351 | Flachman | Dec 1999 | A |
6014579 | Pomeranz et al. | Jan 2000 | A |
6029671 | Stevens et al. | Feb 2000 | A |
6033403 | Tu et al. | Mar 2000 | A |
6035238 | Ingle et al. | Mar 2000 | A |
6045550 | Simpson et al. | Apr 2000 | A |
6068653 | LaFontaine | May 2000 | A |
6071274 | Thompson et al. | Jun 2000 | A |
6071281 | Burnside et al. | Jun 2000 | A |
6074389 | Levine et al. | Jun 2000 | A |
6076012 | Swanson et al. | Jun 2000 | A |
6090104 | Webster, Jr. | Jul 2000 | A |
6096036 | Bowe et al. | Aug 2000 | A |
6113595 | Muntermann | Sep 2000 | A |
6119041 | Pomeranz et al. | Sep 2000 | A |
6120500 | Bednarek et al. | Sep 2000 | A |
6146381 | Bowe et al. | Nov 2000 | A |
6164283 | Lesh | Dec 2000 | A |
6167291 | Barajas et al. | Dec 2000 | A |
6171305 | Sherman | Jan 2001 | B1 |
6216034 | Hofmann et al. | Apr 2001 | B1 |
6219582 | Hofstad et al. | Apr 2001 | B1 |
6223085 | Dann et al. | Apr 2001 | B1 |
6231518 | Grabek et al. | May 2001 | B1 |
6245064 | Lesh et al. | Jun 2001 | B1 |
6251107 | Schaer | Jun 2001 | B1 |
6251128 | Knopp et al. | Jun 2001 | B1 |
6270476 | Santoianni et al. | Aug 2001 | B1 |
6272384 | Simon et al. | Aug 2001 | B1 |
6287306 | Kroll et al. | Sep 2001 | B1 |
6314963 | Vaska et al. | Nov 2001 | B1 |
6322559 | Daulton et al. | Nov 2001 | B1 |
6350263 | Wetzig et al. | Feb 2002 | B1 |
6370412 | Armoundas et al. | Apr 2002 | B1 |
6391024 | Sun et al. | May 2002 | B1 |
6447505 | McGovern et al. | Sep 2002 | B2 |
6464699 | Swanson | Oct 2002 | B1 |
6470211 | Ideker et al. | Oct 2002 | B1 |
6502576 | Lesh | Jan 2003 | B1 |
6503247 | Swartz et al. | Jan 2003 | B2 |
6517534 | McGovern et al. | Feb 2003 | B1 |
6527724 | Fenici | Mar 2003 | B1 |
6527767 | Wang et al. | Mar 2003 | B2 |
6592581 | Bowe | Jul 2003 | B2 |
6595991 | Tollner et al. | Jul 2003 | B2 |
6607520 | Keane | Aug 2003 | B2 |
6623480 | Kuo et al. | Sep 2003 | B1 |
6638278 | Falwell et al. | Oct 2003 | B2 |
6666863 | Wentzel et al. | Dec 2003 | B2 |
6669693 | Friedman | Dec 2003 | B2 |
6702811 | Stewart et al. | Mar 2004 | B2 |
6719756 | Muntermann | Apr 2004 | B1 |
6723092 | Brown et al. | Apr 2004 | B2 |
6728563 | Rashidi | Apr 2004 | B2 |
6743225 | Sanchez et al. | Jun 2004 | B2 |
6743226 | Cosman et al. | Jun 2004 | B2 |
6743239 | Kuehn et al. | Jun 2004 | B1 |
6764486 | Natale | Jul 2004 | B2 |
6780181 | Kroll et al. | Aug 2004 | B2 |
6805128 | Pless | Oct 2004 | B1 |
6807447 | Griffin, III | Oct 2004 | B2 |
6892091 | Ben-Haim et al. | May 2005 | B1 |
6893438 | Hall et al. | May 2005 | B2 |
6926714 | Sra | Aug 2005 | B1 |
6955173 | Lesh | Oct 2005 | B2 |
6960206 | Keane | Nov 2005 | B2 |
6960207 | Vanney et al. | Nov 2005 | B2 |
6972016 | Hill, III et al. | Dec 2005 | B2 |
6973339 | Govari | Dec 2005 | B2 |
6979331 | Hintringer et al. | Dec 2005 | B2 |
6984232 | Vanney et al. | Jan 2006 | B2 |
6985776 | Kane et al. | Jan 2006 | B2 |
7001383 | Keidar | Feb 2006 | B2 |
7041095 | Wang et al. | May 2006 | B2 |
7113831 | Hooven | Sep 2006 | B2 |
7171263 | Darvish et al. | Jan 2007 | B2 |
7182725 | Bonan et al. | Feb 2007 | B2 |
7195628 | Falkenberg | Mar 2007 | B2 |
7207988 | Leckrone et al. | Apr 2007 | B2 |
7207989 | Pike, Jr. et al. | Apr 2007 | B2 |
7229402 | Diaz et al. | Jun 2007 | B2 |
7229437 | Johnson et al. | Jun 2007 | B2 |
7250049 | Roop et al. | Jul 2007 | B2 |
7285116 | de la Rama et al. | Oct 2007 | B2 |
7285119 | Stewart et al. | Oct 2007 | B2 |
7326208 | Vanney et al. | Feb 2008 | B2 |
7346379 | Eng et al. | Mar 2008 | B2 |
7367974 | Haemmerich et al. | May 2008 | B2 |
7374567 | Heuser | May 2008 | B2 |
7387629 | Vanney et al. | Jun 2008 | B2 |
7387630 | Mest | Jun 2008 | B2 |
7387636 | Cohn et al. | Jun 2008 | B2 |
7416552 | Paul et al. | Aug 2008 | B2 |
7419477 | Simpson et al. | Sep 2008 | B2 |
7419489 | Vanney et al. | Sep 2008 | B2 |
7422591 | Phan | Sep 2008 | B2 |
7429261 | Kunis et al. | Sep 2008 | B2 |
7435248 | Taimisto et al. | Oct 2008 | B2 |
7513896 | Orszulak | Apr 2009 | B2 |
7527625 | Knight et al. | May 2009 | B2 |
7578816 | Boveja et al. | Aug 2009 | B2 |
7588567 | Boveja et al. | Sep 2009 | B2 |
7623899 | Worley et al. | Nov 2009 | B2 |
7678108 | Chrisitian et al. | Mar 2010 | B2 |
7681579 | Schwartz | Mar 2010 | B2 |
7771421 | Stewart et al. | Aug 2010 | B2 |
7805182 | Weese et al. | Sep 2010 | B2 |
7850642 | Moll et al. | Dec 2010 | B2 |
7850685 | Kunis et al. | Dec 2010 | B2 |
7857808 | Oral et al. | Dec 2010 | B2 |
7857809 | Drysen | Dec 2010 | B2 |
7869865 | Govari et al. | Jan 2011 | B2 |
7896873 | Hiller et al. | Mar 2011 | B2 |
7917211 | Zacouto | Mar 2011 | B2 |
7918819 | Karmarkar et al. | Apr 2011 | B2 |
7918850 | Govari et al. | Apr 2011 | B2 |
7922714 | Stevens-Wright | Apr 2011 | B2 |
7955827 | Rubinsky et al. | Jun 2011 | B2 |
8048067 | Davalos et al. | Nov 2011 | B2 |
8048072 | Verin et al. | Nov 2011 | B2 |
8100895 | Panos et al. | Jan 2012 | B2 |
8100900 | Prinz et al. | Jan 2012 | B2 |
8108069 | Stahler et al. | Jan 2012 | B2 |
8133220 | Lee et al. | Mar 2012 | B2 |
8137342 | Crossman | Mar 2012 | B2 |
8145289 | Calabro' et al. | Mar 2012 | B2 |
8147486 | Honour et al. | Apr 2012 | B2 |
8160690 | Wilfley et al. | Apr 2012 | B2 |
8175680 | Panescu | May 2012 | B2 |
8182477 | Orszulak et al. | May 2012 | B2 |
8206384 | Falwell et al. | Jun 2012 | B2 |
8206385 | Stangenes et al. | Jun 2012 | B2 |
8216221 | Ibrahim et al. | Jul 2012 | B2 |
8221411 | Francischelli et al. | Jul 2012 | B2 |
8226648 | Paul et al. | Jul 2012 | B2 |
8228065 | Wirtz et al. | Jul 2012 | B2 |
8235986 | Kulesa et al. | Aug 2012 | B2 |
8235988 | Davis et al. | Aug 2012 | B2 |
8251986 | Chornenky et al. | Aug 2012 | B2 |
8282631 | Davalos et al. | Oct 2012 | B2 |
8287532 | Carroll et al. | Oct 2012 | B2 |
8414508 | Thapliyal et al. | Apr 2013 | B2 |
8430875 | Ibrahim et al. | Apr 2013 | B2 |
8433394 | Harlev et al. | Apr 2013 | B2 |
8449535 | Deno et al. | May 2013 | B2 |
8454594 | Demarais et al. | Jun 2013 | B2 |
8463368 | Harley et al. | Jun 2013 | B2 |
8475450 | Govari et al. | Jul 2013 | B2 |
8486063 | Werneth et al. | Jul 2013 | B2 |
8500733 | Watson | Aug 2013 | B2 |
8535304 | Sklar et al. | Sep 2013 | B2 |
8538501 | Venkatachalam et al. | Sep 2013 | B2 |
8562588 | Hobbs et al. | Oct 2013 | B2 |
8568406 | Harley et al. | Oct 2013 | B2 |
8571635 | McGee | Oct 2013 | B2 |
8571647 | Harlev et al. | Oct 2013 | B2 |
8585695 | Shih | Nov 2013 | B2 |
8588885 | Hall et al. | Nov 2013 | B2 |
8597288 | Christian | Dec 2013 | B2 |
8608735 | Govari et al. | Dec 2013 | B2 |
8628522 | Ibrahim et al. | Jan 2014 | B2 |
8632534 | Pearson et al. | Jan 2014 | B2 |
8647338 | Chornenky et al. | Feb 2014 | B2 |
8708952 | Cohen et al. | Apr 2014 | B2 |
8734442 | Cao et al. | May 2014 | B2 |
8771267 | Kunis et al. | Jul 2014 | B2 |
8795310 | Fung et al. | Aug 2014 | B2 |
8808273 | Caples et al. | Aug 2014 | B2 |
8808281 | Emons et al. | Aug 2014 | B2 |
8834461 | Werneth et al. | Sep 2014 | B2 |
8834464 | Stewart et al. | Sep 2014 | B2 |
8868169 | Narayan et al. | Oct 2014 | B2 |
8876817 | Avitall et al. | Nov 2014 | B2 |
8880195 | Azure | Nov 2014 | B2 |
8886309 | Luther et al. | Nov 2014 | B2 |
8903488 | Callas et al. | Dec 2014 | B2 |
8920411 | Gelbart et al. | Dec 2014 | B2 |
8926589 | Govari | Jan 2015 | B2 |
8932287 | Gelbart et al. | Jan 2015 | B2 |
8945117 | Bencini | Feb 2015 | B2 |
8979841 | Kunis et al. | Mar 2015 | B2 |
8986278 | Fung et al. | Mar 2015 | B2 |
9002442 | Harley et al. | Apr 2015 | B2 |
9005189 | Davalos et al. | Apr 2015 | B2 |
9005194 | Oral et al. | Apr 2015 | B2 |
9011425 | Fischer et al. | Apr 2015 | B2 |
9044245 | Condie et al. | Jun 2015 | B2 |
9055959 | Vaska et al. | Jun 2015 | B2 |
9072518 | Swanson | Jul 2015 | B2 |
9078667 | Besser et al. | Jul 2015 | B2 |
9101374 | Hoch et al. | Aug 2015 | B1 |
9119533 | Ghaffari | Sep 2015 | B2 |
9119634 | Gelbart et al. | Sep 2015 | B2 |
9131897 | Harada et al. | Sep 2015 | B2 |
9155590 | Mathur | Oct 2015 | B2 |
9162037 | Belson et al. | Oct 2015 | B2 |
9179972 | Olson | Nov 2015 | B2 |
9186481 | Avitall et al. | Nov 2015 | B2 |
9192769 | Donofrio et al. | Nov 2015 | B2 |
9211405 | Mahapatra et al. | Dec 2015 | B2 |
9216055 | Spence et al. | Dec 2015 | B2 |
9233248 | Luther et al. | Jan 2016 | B2 |
9237926 | Nollert et al. | Jan 2016 | B2 |
9262252 | Kirkpatrick et al. | Feb 2016 | B2 |
9277957 | Long et al. | Mar 2016 | B2 |
9282910 | Narayan et al. | Mar 2016 | B2 |
9289258 | Cohen | Mar 2016 | B2 |
9289606 | Paul et al. | Mar 2016 | B2 |
9295516 | Pearson et al. | Mar 2016 | B2 |
9301801 | Scheib | Apr 2016 | B2 |
9375268 | Long | Jun 2016 | B2 |
9414881 | Callas et al. | Aug 2016 | B2 |
9468495 | Kunis et al. | Oct 2016 | B2 |
9474486 | Eliason et al. | Oct 2016 | B2 |
9474574 | Ibrahim et al. | Oct 2016 | B2 |
9480525 | Lopes et al. | Nov 2016 | B2 |
9486272 | Bonyak et al. | Nov 2016 | B2 |
9486273 | Lopes et al. | Nov 2016 | B2 |
9492227 | Lopes et al. | Nov 2016 | B2 |
9492228 | Lopes et al. | Nov 2016 | B2 |
9517103 | Panescu et al. | Dec 2016 | B2 |
9526573 | Lopes et al. | Dec 2016 | B2 |
9532831 | Reinders et al. | Jan 2017 | B2 |
9539010 | Gagner et al. | Jan 2017 | B2 |
9554848 | Stewart et al. | Jan 2017 | B2 |
9554851 | Sklar et al. | Jan 2017 | B2 |
9700368 | Callas et al. | Jul 2017 | B2 |
9724170 | Mickelsen | Aug 2017 | B2 |
9757193 | Zarins et al. | Sep 2017 | B2 |
9782099 | Williams et al. | Oct 2017 | B2 |
9788885 | Long et al. | Oct 2017 | B2 |
9795442 | Salahieh et al. | Oct 2017 | B2 |
9861802 | Mickelsen | Jan 2018 | B2 |
9913685 | Clark et al. | Mar 2018 | B2 |
9931487 | Quinn et al. | Apr 2018 | B2 |
9987081 | Bowers et al. | Jun 2018 | B1 |
9999465 | Long et al. | Jun 2018 | B2 |
10016232 | Bowers et al. | Jul 2018 | B1 |
10117701 | Davalos et al. | Nov 2018 | B2 |
10117707 | Garcia et al. | Nov 2018 | B2 |
10130423 | Viswanathan et al. | Nov 2018 | B1 |
10172673 | Viswanathan et al. | Jan 2019 | B2 |
10292755 | Arena et al. | May 2019 | B2 |
10322286 | Viswanathan et al. | Jun 2019 | B2 |
10342598 | Long et al. | Jul 2019 | B2 |
10433906 | Mickelsen | Oct 2019 | B2 |
10433908 | Viswanathan et al. | Oct 2019 | B2 |
10448989 | Arena et al. | Oct 2019 | B2 |
10507302 | Leeflang et al. | Dec 2019 | B2 |
10512505 | Viswanathan | Dec 2019 | B2 |
10512779 | Viswanathan et al. | Dec 2019 | B2 |
10517672 | Long | Dec 2019 | B2 |
10531914 | Stewart et al. | Jan 2020 | B2 |
10625080 | Viswanathan | Apr 2020 | B1 |
10688305 | Viswanathan | Jun 2020 | B1 |
10709502 | Viswanathan | Jul 2020 | B2 |
10709891 | Viswanathan et al. | Jul 2020 | B2 |
20010000791 | Suorsa et al. | May 2001 | A1 |
20010007070 | Stewart et al. | Jul 2001 | A1 |
20010044624 | Seraj et al. | Nov 2001 | A1 |
20020052602 | Wang et al. | May 2002 | A1 |
20020077627 | Johnson et al. | Jun 2002 | A1 |
20020087169 | Brock et al. | Jul 2002 | A1 |
20020091384 | Hooven et al. | Jul 2002 | A1 |
20020095176 | Liddicoat et al. | Jul 2002 | A1 |
20020111618 | Stewart et al. | Aug 2002 | A1 |
20020156526 | Hlavka et al. | Oct 2002 | A1 |
20020161323 | Miller et al. | Oct 2002 | A1 |
20020169445 | Jain et al. | Nov 2002 | A1 |
20020177765 | Bowe et al. | Nov 2002 | A1 |
20020183638 | Swanson | Dec 2002 | A1 |
20030014098 | Quijano et al. | Jan 2003 | A1 |
20030018374 | Paulos | Jan 2003 | A1 |
20030023287 | Edwards et al. | Jan 2003 | A1 |
20030028189 | Woloszko et al. | Feb 2003 | A1 |
20030050637 | Maguire et al. | Mar 2003 | A1 |
20030078494 | Panescu | Apr 2003 | A1 |
20030114849 | Ryan | Jun 2003 | A1 |
20030125729 | Hooven et al. | Jul 2003 | A1 |
20030130598 | Manning et al. | Jul 2003 | A1 |
20030130711 | Pearson et al. | Jul 2003 | A1 |
20030204161 | Ferek Petric | Oct 2003 | A1 |
20030229379 | Ramsey | Dec 2003 | A1 |
20040039382 | Kroll et al. | Feb 2004 | A1 |
20040049181 | Stewart et al. | Mar 2004 | A1 |
20040049182 | Koblish et al. | Mar 2004 | A1 |
20040082859 | Schaer | Apr 2004 | A1 |
20040082948 | Stewart et al. | Apr 2004 | A1 |
20040087939 | Eggers et al. | May 2004 | A1 |
20040111087 | Stern et al. | Jun 2004 | A1 |
20040147920 | Keidar | Jul 2004 | A1 |
20040199157 | Palanker et al. | Oct 2004 | A1 |
20040215139 | Cohen | Oct 2004 | A1 |
20040231683 | Eng et al. | Nov 2004 | A1 |
20040236360 | Cohn et al. | Nov 2004 | A1 |
20040254607 | Wittenberger et al. | Dec 2004 | A1 |
20040267337 | Hayzelden | Dec 2004 | A1 |
20050033282 | Hooven | Feb 2005 | A1 |
20050187545 | Hooven et al. | Aug 2005 | A1 |
20050222632 | Obino | Oct 2005 | A1 |
20050251130 | Boveja et al. | Nov 2005 | A1 |
20050261672 | Deem et al. | Nov 2005 | A1 |
20060009755 | Sra | Jan 2006 | A1 |
20060009759 | Chrisitian et al. | Jan 2006 | A1 |
20060015095 | Desinger et al. | Jan 2006 | A1 |
20060015165 | Bertolero et al. | Jan 2006 | A1 |
20060024359 | Walker et al. | Feb 2006 | A1 |
20060058781 | Long | Mar 2006 | A1 |
20060111702 | Oral et al. | May 2006 | A1 |
20060142801 | Demarais et al. | Jun 2006 | A1 |
20060167448 | Kozel | Jul 2006 | A1 |
20060217703 | Chornenky et al. | Sep 2006 | A1 |
20060241734 | Marshall et al. | Oct 2006 | A1 |
20060264752 | Rubinsky et al. | Nov 2006 | A1 |
20060270900 | Chin et al. | Nov 2006 | A1 |
20060287648 | Schwartz | Dec 2006 | A1 |
20060293730 | Rubinsky et al. | Dec 2006 | A1 |
20060293731 | Rubinsky et al. | Dec 2006 | A1 |
20070005053 | Dando | Jan 2007 | A1 |
20070021744 | Creighton | Jan 2007 | A1 |
20070060989 | Deem et al. | Mar 2007 | A1 |
20070066972 | Ormsby et al. | Mar 2007 | A1 |
20070129721 | Phan et al. | Jun 2007 | A1 |
20070129760 | Demarais et al. | Jun 2007 | A1 |
20070156135 | Rubinsky et al. | Jul 2007 | A1 |
20070167740 | Grunewald et al. | Jul 2007 | A1 |
20070167940 | Stevens-Wright | Jul 2007 | A1 |
20070173878 | Heuser | Jul 2007 | A1 |
20070208329 | Ward et al. | Sep 2007 | A1 |
20070225589 | Viswanathan | Sep 2007 | A1 |
20070249923 | Keenan | Oct 2007 | A1 |
20070260223 | Scheibe et al. | Nov 2007 | A1 |
20070270792 | Hennemann et al. | Nov 2007 | A1 |
20080009855 | Hamou | Jan 2008 | A1 |
20080033426 | Machell | Feb 2008 | A1 |
20080065061 | Viswanathan | Mar 2008 | A1 |
20080086120 | Mirza et al. | Apr 2008 | A1 |
20080091195 | Silwa et al. | Apr 2008 | A1 |
20080103545 | Bolea et al. | May 2008 | A1 |
20080132885 | Rubinsky et al. | Jun 2008 | A1 |
20080161789 | Thao et al. | Jul 2008 | A1 |
20080172048 | Martin et al. | Jul 2008 | A1 |
20080200913 | Viswanathan | Aug 2008 | A1 |
20080208118 | Goldman | Aug 2008 | A1 |
20080243214 | Koblish | Oct 2008 | A1 |
20080281322 | Sherman et al. | Nov 2008 | A1 |
20080300574 | Belson et al. | Dec 2008 | A1 |
20080300588 | Groth et al. | Dec 2008 | A1 |
20090024084 | Khosla et al. | Jan 2009 | A1 |
20090048591 | Ibrahim et al. | Feb 2009 | A1 |
20090062788 | Long et al. | Mar 2009 | A1 |
20090076500 | Azure | Mar 2009 | A1 |
20090105654 | Kurth et al. | Apr 2009 | A1 |
20090138009 | Viswanathan et al. | May 2009 | A1 |
20090149917 | Whitehurst et al. | Jun 2009 | A1 |
20090163905 | Winkler et al. | Jun 2009 | A1 |
20090228003 | Sinelnikov | Sep 2009 | A1 |
20090240248 | Deford et al. | Sep 2009 | A1 |
20090275827 | Aiken et al. | Nov 2009 | A1 |
20090281477 | Mikus et al. | Nov 2009 | A1 |
20090306651 | Schneider | Dec 2009 | A1 |
20100004623 | Hamilton et al. | Jan 2010 | A1 |
20100023004 | Francischelli et al. | Jan 2010 | A1 |
20100134273 | Weiss et al. | Jun 2010 | A1 |
20100135550 | Arnon | Jun 2010 | A1 |
20100137861 | Soroff et al. | Jun 2010 | A1 |
20100168550 | Byrd | Jul 2010 | A1 |
20100185140 | Kassab et al. | Jul 2010 | A1 |
20100185186 | Longoria | Jul 2010 | A1 |
20100191112 | Demarais et al. | Jul 2010 | A1 |
20100191232 | Boveda | Jul 2010 | A1 |
20100241185 | Mahapatra et al. | Sep 2010 | A1 |
20100261994 | Davalos et al. | Oct 2010 | A1 |
20100274238 | Klimovitch | Oct 2010 | A1 |
20100280513 | Juergen et al. | Nov 2010 | A1 |
20100280539 | Miyoshi et al. | Nov 2010 | A1 |
20100292687 | Kauphusman et al. | Nov 2010 | A1 |
20100312096 | Guttman et al. | Dec 2010 | A1 |
20100312300 | Ryu et al. | Dec 2010 | A1 |
20110015628 | Dalal | Jan 2011 | A1 |
20110028962 | Werneth et al. | Feb 2011 | A1 |
20110028964 | Edwards | Feb 2011 | A1 |
20110040199 | Hopenfeld | Feb 2011 | A1 |
20110098694 | Long | Apr 2011 | A1 |
20110106221 | Neal, II et al. | May 2011 | A1 |
20110130708 | Perry et al. | Jun 2011 | A1 |
20110144524 | Fish et al. | Jun 2011 | A1 |
20110144633 | Govari | Jun 2011 | A1 |
20110160785 | Mori et al. | Jun 2011 | A1 |
20110190659 | Long et al. | Aug 2011 | A1 |
20110190727 | Edmunds et al. | Aug 2011 | A1 |
20110213231 | Hall et al. | Sep 2011 | A1 |
20110276047 | Sklar et al. | Nov 2011 | A1 |
20110276075 | Fung et al. | Nov 2011 | A1 |
20110288544 | Verin et al. | Nov 2011 | A1 |
20110288547 | Morgan et al. | Nov 2011 | A1 |
20110313417 | De La Rama et al. | Dec 2011 | A1 |
20120029512 | Willard et al. | Feb 2012 | A1 |
20120046570 | Villegas et al. | Feb 2012 | A1 |
20120053581 | Wittkampf et al. | Mar 2012 | A1 |
20120059255 | Paul et al. | Mar 2012 | A1 |
20120071872 | Rubinsky et al. | Mar 2012 | A1 |
20120078320 | Schotzko et al. | Mar 2012 | A1 |
20120078343 | Fish | Mar 2012 | A1 |
20120089089 | Swain et al. | Apr 2012 | A1 |
20120095459 | Callas et al. | Apr 2012 | A1 |
20120101413 | Beetel et al. | Apr 2012 | A1 |
20120109242 | Levin et al. | May 2012 | A1 |
20120158021 | Morrill | Jun 2012 | A1 |
20120165667 | Altmann et al. | Jun 2012 | A1 |
20120172859 | Condie et al. | Jul 2012 | A1 |
20120172867 | Ryu et al. | Jul 2012 | A1 |
20120197100 | Razavi et al. | Aug 2012 | A1 |
20120209260 | Lambert et al. | Aug 2012 | A1 |
20120220998 | Long et al. | Aug 2012 | A1 |
20120265198 | Crow et al. | Oct 2012 | A1 |
20120283582 | Mahapatra et al. | Nov 2012 | A1 |
20120303019 | Zhao et al. | Nov 2012 | A1 |
20120310052 | Mahapatra et al. | Dec 2012 | A1 |
20120310230 | Willis | Dec 2012 | A1 |
20120310237 | Swanson | Dec 2012 | A1 |
20120316557 | Sartor et al. | Dec 2012 | A1 |
20130030430 | Stewart et al. | Jan 2013 | A1 |
20130060247 | Sklar et al. | Mar 2013 | A1 |
20130060248 | Sklar et al. | Mar 2013 | A1 |
20130079768 | De Luca et al. | Mar 2013 | A1 |
20130090651 | Smith | Apr 2013 | A1 |
20130096655 | Moffitt et al. | Apr 2013 | A1 |
20130103027 | Sklar et al. | Apr 2013 | A1 |
20130103064 | Arenson et al. | Apr 2013 | A1 |
20130131662 | Wittkampf | May 2013 | A1 |
20130158538 | Govari | Jun 2013 | A1 |
20130158621 | Ding et al. | Jun 2013 | A1 |
20130172715 | Just et al. | Jul 2013 | A1 |
20130172864 | Ibrahim et al. | Jul 2013 | A1 |
20130172875 | Govari et al. | Jul 2013 | A1 |
20130184702 | Neal, II et al. | Jul 2013 | A1 |
20130218157 | Callas et al. | Aug 2013 | A1 |
20130226174 | Ibrahim et al. | Aug 2013 | A1 |
20130237984 | Sklar | Sep 2013 | A1 |
20130253415 | Sano et al. | Sep 2013 | A1 |
20130296679 | Condie et al. | Nov 2013 | A1 |
20130310829 | Cohen | Nov 2013 | A1 |
20130317385 | Sklar et al. | Nov 2013 | A1 |
20130331831 | Werneth et al. | Dec 2013 | A1 |
20130338467 | Grasse et al. | Dec 2013 | A1 |
20140005664 | Govari et al. | Jan 2014 | A1 |
20140024911 | Harlev et al. | Jan 2014 | A1 |
20140039288 | Shih | Feb 2014 | A1 |
20140051993 | McGee | Feb 2014 | A1 |
20140052118 | Laske et al. | Feb 2014 | A1 |
20140052126 | Long et al. | Feb 2014 | A1 |
20140052216 | Long et al. | Feb 2014 | A1 |
20140058377 | Deem et al. | Feb 2014 | A1 |
20140081113 | Cohen et al. | Mar 2014 | A1 |
20140100563 | Govari et al. | Apr 2014 | A1 |
20140107644 | Falwell et al. | Apr 2014 | A1 |
20140142408 | De La Rama et al. | May 2014 | A1 |
20140148804 | Ward et al. | May 2014 | A1 |
20140163480 | Govari et al. | Jun 2014 | A1 |
20140163546 | Govari et al. | Jun 2014 | A1 |
20140171942 | Werneth et al. | Jun 2014 | A1 |
20140180035 | Anderson | Jun 2014 | A1 |
20140187916 | Clark et al. | Jul 2014 | A1 |
20140194716 | Diep et al. | Jul 2014 | A1 |
20140194867 | Fish et al. | Jul 2014 | A1 |
20140200567 | Cox et al. | Jul 2014 | A1 |
20140235986 | Harley et al. | Aug 2014 | A1 |
20140235988 | Ghosh | Aug 2014 | A1 |
20140235989 | Wodlinger et al. | Aug 2014 | A1 |
20140243851 | Cohen et al. | Aug 2014 | A1 |
20140276760 | Bonyak et al. | Sep 2014 | A1 |
20140276782 | Paskar | Sep 2014 | A1 |
20140276791 | Ku et al. | Sep 2014 | A1 |
20140288556 | Ibrahim et al. | Sep 2014 | A1 |
20140303721 | Fung et al. | Oct 2014 | A1 |
20140343549 | Spear et al. | Nov 2014 | A1 |
20140364845 | Rashidi | Dec 2014 | A1 |
20140371613 | Narayan et al. | Dec 2014 | A1 |
20150005767 | Werneth et al. | Jan 2015 | A1 |
20150011995 | Avitall et al. | Jan 2015 | A1 |
20150066108 | Shi et al. | Mar 2015 | A1 |
20150080693 | Solis | Mar 2015 | A1 |
20150119674 | Fischell et al. | Apr 2015 | A1 |
20150126840 | Thakur et al. | May 2015 | A1 |
20150133914 | Koblish | May 2015 | A1 |
20150138977 | Dacosta | May 2015 | A1 |
20150141978 | Subramaniam et al. | May 2015 | A1 |
20150142041 | Kendale et al. | May 2015 | A1 |
20150148796 | Bencini | May 2015 | A1 |
20150150472 | Harlev et al. | Jun 2015 | A1 |
20150157402 | Kunis et al. | Jun 2015 | A1 |
20150157412 | Wallace et al. | Jun 2015 | A1 |
20150164584 | Davalos et al. | Jun 2015 | A1 |
20150173824 | Davalos et al. | Jun 2015 | A1 |
20150173828 | Avitall | Jun 2015 | A1 |
20150174404 | Rousso et al. | Jun 2015 | A1 |
20150182740 | Mickelsen | Jul 2015 | A1 |
20150196217 | Harlev et al. | Jul 2015 | A1 |
20150223726 | Harlev et al. | Aug 2015 | A1 |
20150223902 | Walker | Aug 2015 | A1 |
20150230699 | Berul et al. | Aug 2015 | A1 |
20150258344 | Tandri et al. | Sep 2015 | A1 |
20150265342 | Long et al. | Sep 2015 | A1 |
20150265344 | Aktas et al. | Sep 2015 | A1 |
20150272656 | Chen | Oct 2015 | A1 |
20150272664 | Cohen | Oct 2015 | A9 |
20150272667 | Govari et al. | Oct 2015 | A1 |
20150282729 | Harlev et al. | Oct 2015 | A1 |
20150289923 | Davalos et al. | Oct 2015 | A1 |
20150304879 | Dacosta | Oct 2015 | A1 |
20150320481 | Cosman et al. | Nov 2015 | A1 |
20150321021 | Tandri et al. | Nov 2015 | A1 |
20150327944 | Neal, II et al. | Nov 2015 | A1 |
20150342532 | Basu et al. | Dec 2015 | A1 |
20150343212 | Rousso et al. | Dec 2015 | A1 |
20150351836 | Prutchi | Dec 2015 | A1 |
20150359583 | Swanson | Dec 2015 | A1 |
20160000500 | Salahieh et al. | Jan 2016 | A1 |
20160008061 | Fung et al. | Jan 2016 | A1 |
20160008065 | Gliner et al. | Jan 2016 | A1 |
20160029960 | Toth et al. | Feb 2016 | A1 |
20160038772 | Thapliyal et al. | Feb 2016 | A1 |
20160051204 | Harlev et al. | Feb 2016 | A1 |
20160051324 | Stewart et al. | Feb 2016 | A1 |
20160058493 | Neal, II et al. | Mar 2016 | A1 |
20160058506 | Spence et al. | Mar 2016 | A1 |
20160066993 | Avitall et al. | Mar 2016 | A1 |
20160074679 | Thapliyal et al. | Mar 2016 | A1 |
20160095531 | Narayan et al. | Apr 2016 | A1 |
20160095642 | Deno et al. | Apr 2016 | A1 |
20160095653 | Lambert et al. | Apr 2016 | A1 |
20160100797 | Mahapatra et al. | Apr 2016 | A1 |
20160100884 | Fay et al. | Apr 2016 | A1 |
20160106498 | Highsmith et al. | Apr 2016 | A1 |
20160106500 | Olson | Apr 2016 | A1 |
20160113709 | Maor | Apr 2016 | A1 |
20160113712 | Cheung et al. | Apr 2016 | A1 |
20160120564 | Kirkpatrick et al. | May 2016 | A1 |
20160128770 | Afonso et al. | May 2016 | A1 |
20160166167 | Narayan et al. | Jun 2016 | A1 |
20160166310 | Stewart et al. | Jun 2016 | A1 |
20160166311 | Long et al. | Jun 2016 | A1 |
20160174865 | Stewart et al. | Jun 2016 | A1 |
20160183877 | Williams et al. | Jun 2016 | A1 |
20160184003 | Srimathveeravalli et al. | Jun 2016 | A1 |
20160184004 | Hull et al. | Jun 2016 | A1 |
20160213282 | Leo et al. | Jul 2016 | A1 |
20160220307 | Miller et al. | Aug 2016 | A1 |
20160235470 | Callas et al. | Aug 2016 | A1 |
20160287314 | Arena et al. | Oct 2016 | A1 |
20160310211 | Long | Oct 2016 | A1 |
20160324564 | Gerlach et al. | Nov 2016 | A1 |
20160324573 | Mickelsen et al. | Nov 2016 | A1 |
20160331441 | Konings | Nov 2016 | A1 |
20160331459 | Townley et al. | Nov 2016 | A1 |
20160354142 | Pearson et al. | Dec 2016 | A1 |
20160361109 | Weaver et al. | Dec 2016 | A1 |
20170001016 | De Ridder | Jan 2017 | A1 |
20170035499 | Stewart et al. | Feb 2017 | A1 |
20170042449 | Deno et al. | Feb 2017 | A1 |
20170042615 | Salahieh et al. | Feb 2017 | A1 |
20170056648 | Syed et al. | Mar 2017 | A1 |
20170065330 | Mickelsen et al. | Mar 2017 | A1 |
20170065339 | Mickelsen | Mar 2017 | A1 |
20170065340 | Long | Mar 2017 | A1 |
20170065343 | Mickelsen | Mar 2017 | A1 |
20170071543 | Basu et al. | Mar 2017 | A1 |
20170095291 | Harrington et al. | Apr 2017 | A1 |
20170105793 | Cao et al. | Apr 2017 | A1 |
20170146584 | Daw et al. | May 2017 | A1 |
20170151029 | Mickelsen | Jun 2017 | A1 |
20170172654 | Wittkampf et al. | Jun 2017 | A1 |
20170181795 | Debruyne | Jun 2017 | A1 |
20170189097 | Viswanathan et al. | Jul 2017 | A1 |
20170215953 | Long et al. | Aug 2017 | A1 |
20170245928 | Xiao et al. | Aug 2017 | A1 |
20170246455 | Athos et al. | Aug 2017 | A1 |
20170312024 | Harlev et al. | Nov 2017 | A1 |
20170312025 | Harlev et al. | Nov 2017 | A1 |
20170312027 | Harlev et al. | Nov 2017 | A1 |
20180001056 | Leeflang et al. | Jan 2018 | A1 |
20180042674 | Mickelsen | Feb 2018 | A1 |
20180042675 | Long | Feb 2018 | A1 |
20180043153 | Viswanathan et al. | Feb 2018 | A1 |
20180064488 | Long et al. | Mar 2018 | A1 |
20180078170 | Panescu | Mar 2018 | A1 |
20180085160 | Viswanathan et al. | Mar 2018 | A1 |
20180093088 | Mickelsen | Apr 2018 | A1 |
20180133460 | Townley et al. | May 2018 | A1 |
20180145595 | Fontana et al. | May 2018 | A1 |
20180168511 | Hall et al. | Jun 2018 | A1 |
20180184982 | Basu et al. | Jul 2018 | A1 |
20180193090 | de la Rama et al. | Jul 2018 | A1 |
20180200497 | Mickelsen | Jul 2018 | A1 |
20180214195 | Fraasch et al. | Aug 2018 | A1 |
20180214202 | Howard et al. | Aug 2018 | A1 |
20180221078 | Howard et al. | Aug 2018 | A1 |
20180243558 | Athos et al. | Aug 2018 | A1 |
20180250508 | Howard | Sep 2018 | A1 |
20180289417 | Schweitzer et al. | Oct 2018 | A1 |
20180303488 | Hill | Oct 2018 | A1 |
20180303543 | Stewart et al. | Oct 2018 | A1 |
20180311497 | Viswanathan et al. | Nov 2018 | A1 |
20180344393 | Gruba et al. | Dec 2018 | A1 |
20180360534 | Teplitsky et al. | Dec 2018 | A1 |
20190038171 | Howard | Feb 2019 | A1 |
20190060632 | Asirvatham et al. | Feb 2019 | A1 |
20190069950 | Viswanathan et al. | Mar 2019 | A1 |
20190125439 | Rohl et al. | May 2019 | A1 |
20190151015 | Viswanathan et al. | May 2019 | A1 |
20190183378 | Mosesov et al. | Jun 2019 | A1 |
20190192223 | Rankin | Jun 2019 | A1 |
20190201089 | Waldstreicher et al. | Jul 2019 | A1 |
20190209238 | Jimenez | Jul 2019 | A1 |
20190223938 | Arena et al. | Jul 2019 | A1 |
20190223950 | Gelbart et al. | Jul 2019 | A1 |
20190231421 | Viswanathan et al. | Aug 2019 | A1 |
20190231425 | Waldstreicher et al. | Aug 2019 | A1 |
20190233809 | Neal, II et al. | Aug 2019 | A1 |
20190256839 | Neal, II et al. | Aug 2019 | A1 |
20190269912 | Viswanathan et al. | Sep 2019 | A1 |
20190328445 | Sano et al. | Oct 2019 | A1 |
20190336198 | Viswanathan et al. | Nov 2019 | A1 |
20190336207 | Viswanathan | Nov 2019 | A1 |
20190350647 | Ramberg et al. | Nov 2019 | A1 |
20190376055 | Davalos et al. | Dec 2019 | A1 |
20200129233 | Viswanathan et al. | Apr 2020 | A1 |
20200139114 | Viswanathan et al. | May 2020 | A1 |
20200230403 | Bowers | Jul 2020 | A1 |
Number | Date | Country |
---|---|---|
105283143 | Jan 2016 | CN |
1042990 | Oct 2000 | EP |
1125549 | Aug 2001 | EP |
0797956 | Jun 2003 | EP |
1127552 | Jun 2006 | EP |
1340469 | Mar 2007 | EP |
1009303 | Jun 2009 | EP |
2213729 | Aug 2010 | EP |
2425871 | Mar 2012 | EP |
1803411 | Aug 2012 | EP |
2532320 | Dec 2012 | EP |
2587275 | May 2013 | EP |
2663227 | Nov 2013 | EP |
1909678 | Jan 2014 | EP |
2217165 | Mar 2014 | EP |
2376193 | Mar 2014 | EP |
2708181 | Mar 2014 | EP |
2777579 | Sep 2014 | EP |
2934307 | Oct 2015 | EP |
2777585 | Jun 2016 | EP |
2382935 | Mar 2018 | EP |
3111871 | Mar 2018 | EP |
3151773 | Apr 2018 | EP |
3056242 | Jul 2018 | EP |
H06-507797 | Sep 1994 | JP |
H10-510745 | Oct 1998 | JP |
2000-508196 | Jul 2000 | JP |
2005-516666 | Jun 2005 | JP |
2006-506184 | Feb 2006 | JP |
2007-325935 | Dec 2007 | JP |
2008-538997 | Nov 2008 | JP |
2009-500129 | Jan 2009 | JP |
2011-509158 | Mar 2011 | JP |
2012-050538 | Mar 2012 | JP |
WO 9207622 | May 1992 | WO |
WO 9221278 | Dec 1992 | WO |
WO 9221285 | Dec 1992 | WO |
WO 9407413 | Apr 1994 | WO |
WO 9724073 | Jul 1997 | WO |
WO 9725917 | Jul 1997 | WO |
WO 9737719 | Oct 1997 | WO |
WO 1999004851 | Feb 1999 | WO |
WO 1999022659 | May 1999 | WO |
WO 1999056650 | Nov 1999 | WO |
WO 1999059486 | Nov 1999 | WO |
WO 2002056782 | Jul 2002 | WO |
WO 2003053289 | Jul 2003 | WO |
WO 2003065916 | Aug 2003 | WO |
WO 2004045442 | Jun 2004 | WO |
WO 2004086994 | Oct 2004 | WO |
WO 2005046487 | May 2005 | WO |
WO 2006115902 | Nov 2006 | WO |
WO 2007006055 | Jan 2007 | WO |
WO 2007079438 | Jul 2007 | WO |
WO 2009082710 | Jul 2009 | WO |
WO 2009089343 | Jul 2009 | WO |
WO 2009137800 | Nov 2009 | WO |
WO 2010014480 | Feb 2010 | WO |
WO 2011028310 | Mar 2011 | WO |
WO 2011154805 | Dec 2011 | WO |
WO 2012051433 | Apr 2012 | WO |
WO 2012153928 | Nov 2012 | WO |
WO 2013019385 | Feb 2013 | WO |
WO 2014025394 | Feb 2014 | WO |
WO 2014031800 | Feb 2014 | WO |
WO 2014036439 | Mar 2014 | WO |
WO 2014160832 | Oct 2014 | WO |
WO 2015066322 | May 2015 | WO |
WO 2015099786 | Jul 2015 | WO |
WO 2015103530 | Jul 2015 | WO |
WO 2015103574 | Jul 2015 | WO |
WO 2015130824 | Sep 2015 | WO |
WO 2015140741 | Sep 2015 | WO |
WO 2015143327 | Sep 2015 | WO |
WO 2015171921 | Nov 2015 | WO |
WO 2015175944 | Nov 2015 | WO |
WO 2015192018 | Dec 2015 | WO |
WO 2015192027 | Dec 2015 | WO |
WO 2016059027 | Apr 2016 | WO |
WO 2016060983 | Apr 2016 | WO |
WO 2016081650 | May 2016 | WO |
WO 2016090175 | Jun 2016 | WO |
WO 2017093926 | Jun 2017 | WO |
WO 2017119934 | Jul 2017 | WO |
WO 2017120169 | Jul 2017 | WO |
WO 2017192477 | Nov 2017 | WO |
WO 2017192495 | Nov 2017 | WO |
WO 2017218734 | Dec 2017 | WO |
WO 2018005511 | Jan 2018 | WO |
WO 2018200800 | Nov 2018 | WO |
WO 2018208795 | Nov 2018 | WO |
WO 2019118436 | Jun 2019 | WO |
WO 2019133606 | Jul 2019 | WO |
WO 2019133608 | Jul 2019 | WO |
WO 2019147832 | Aug 2019 | WO |
WO 2019152986 | Aug 2019 | WO |
WO 2019173309 | Sep 2019 | WO |
Entry |
---|
Extended European Search Report for European Application No. 16884132.8, dated Jul. 8, 2019, 7 pages. |
Office Action for U.S. Appl. No. 15/334,646, dated Jul. 25, 2017, 19 pages. |
Office Action for U.S. Appl. No. 15/334,646, dated Nov. 16, 2017, 26 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2016/057664, dated Feb. 24, 2017, 11 pages. |
Office Action for U.S. Appl. No. 15/796,375, dated Jan. 24, 2018, 25 pages. |
Office Action for U.S. Appl. No. 15/796,375, dated May 30, 2018, 26 pages. |
Office Action for U.S. Appl. No. 15/796,375, dated Nov. 16, 2018, 27 pages. |
Office Action for U.S. Appl. No. 16/416,677, dated Aug. 15, 2019, 8 pages. |
Office Action for U.S. Appl. No. 16/722,650, dated Mar. 25, 2020, 12 pages. |
Office Action for U.S. Appl. No. 15/499,804, dated Jan. 3, 2018, 20 pages. |
Office Action for U.S. Appl. No. 15/794,717, dated Feb. 1, 2018, 10 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2018/029552, dated Jun. 29, 2018, 13 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2019/017322, dated May 10, 2019, 15 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2019/030922, dated Sep. 6, 2019, 12 pages. |
Office Action for U.S. Appl. No. 16/573,704, dated Dec. 17, 2019, 6 pages. |
Office Action for U.S. Appl. No. 16/741,506, dated Feb. 28, 2020, 5 pages. |
Office Action for U.S. Appl. No. 16/405,515, dated Sep. 6, 2019, 9 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2019/031135, dated Aug. 5, 2019, 11 pages. |
Office Action for U.S. Appl. No. 16/723,407, dated Mar. 19, 2020, 13 pages. |
Du Pre, B.C. et al., “Minimal coronary artery damage by myocardial electroporation ablation,” Europace, 15(1):144-149 (2013). |
Hobbs, E. P., “Investor Relations Update: Tissue Ablation via Irreversible Electroporation (IRE),” Powerpoint (2004), 16 pages. |
Lavee, J. et al., “A Novel Nonthermal Energy Source for Surgical Epicardial Atrial Ablation: Irreversible Electroporation,” The Heart Surgery Forum #2006-1202, 10(2), 2007 [Epub Mar. 2007]. |
Madhavan, M. et al., “Novel Percutaneous Epicardial Autonomic Modulation in the Canine for Atrial Fibrillation: Results of an Efficacy and Safety Study,” Pace, 00:1-11 (2016). |
Neven, K. et al., “Safety and Feasibility of Closed Chest Epicardial Catheter Ablation Using Electroporation,” Circ Arrhythm Electrophysiol., 7:913-919 (2014). |
Neven, K. et al., “Myocardial Lesion Size After Epicardial Electroporation Catheter Ablation After Subxiphoid Puncture,” Circ Arrhythm Electrophysiol., 7(4):728-733 (2014). |
Neven, K. et al., “Epicardial linear electroporation ablation and lesion size,” Heart Rhythm, 11:1465-1470 (2014). |
Tekle, E. et al., “Electroporation by using bipolar oscillating electric field: An improved method for DNA transfection of NIH 3T3 cells,” Proc. Natl. Acad. Sci. USA, vol. 88, pp. 4230-4234, May 1991. |
Van Driel, V.J.H.M. et al., “Pulmonary Vein Stenosis After Catheter Ablation Electroporation Versus Radiofrequency,” Circ Arrhythm Electrophysiol., 7(4):734-738 (2014). |
Van Driel, V.J.H.M. et al., “Low vulnerability of the right phrenic nerve to electroporation ablation,” Heart Rhythm, 12:1838-1844 (2015). |
Wittkampf, F.H. et al., “Myocardial Lesion Depth With Circular Electroporation Ablation,” Circ. Arrhythm Electrophysiol., 5(3):581-586 (2012). |
Wittkampf, F.H. et al., “Feasibility of Electroporation for the Creation of Pulmonary Vein Ostial Lesions,” J Cardiovasc Electrophysiol, 22(3):302-309 (Mar. 2011). |
First Office Action for Chinese Application No. 201680077941.2, dated Jun. 30, 2020, 13 pages. |
Office Action for U.S. Appl. No. 16/689,967, dated Jul. 22, 2020, 23 pages. |
Notice of Reasons for Rejection for Japanese Application No. 2018-534869, dated Jul. 29, 2020, 11 pages. |
Number | Date | Country | |
---|---|---|---|
62940219 | Nov 2019 | US |