The subject matter described herein relates to x-ray radiography. More specifically, the subject matter describes methods, systems, and computer program products for binary multiplexing x-ray radiography.
X-ray radiation is widely used in many areas including medical diagnostics and treatment, industrial inspection and testing, security screening and detections. Current x-ray sources are mostly based on a thermionic cathode to generate electron beam, which is accelerated to high energy to bombard a metal target to generate x-ray. Thermionic cathode based x-ray sources cannot be easily switched on/off rapidly and the x-ray flux cannot be easily controlled due to the slow response of thermal process and the nonlinear relationship between the cathode current and the electron beam current. At the same time, the hot filament based x-ray tube is generally bulky due to the heating and insulation parts required for the filament heating. It is in principle difficult to integrate multiple x-ray units together to form an integrated multi-beam x-ray source which can provide multiple x-ray beams simultaneously.
Recently, x-ray generating devices and methods based on nanostructure containing field emission cathodes have been developed. Examples of such x-ray generating devices and methods are described in U.S. Pat. Nos. 6,553,096, 6,850,595, and 6,876,724. These devices and methods provide several advantages over conventional hot filament based x-ray tubes. Firstly, the field emission x-ray (FEX) source can be easily triggered to generate x-ray pulse in arbitrary temporal waveform. This feature can enable new radiography imaging techniques that are not possible (or practical) with conventional x-ray sources. Secondly, the field emission x-ray source operates at room temperature, which is much lower than conventional hot filament based x-ray tubes. Further, because there is no heat, it is free of bulky insulation or ventilation components, so such a device is much smaller than conventional machines.
It would be beneficial to provide x-ray radiography systems and methods having reduced data collection times, enhanced signal-to-noise ratios, and better x-ray source power distribution. One or more such improvements can enable new x-ray imaging and x-ray analysis applications. Accordingly, it is desirable to provide x-ray radiography systems and methods having one or more of these improvements.
It is an object of the presently disclosed subject matter to provide novel methods, systems, and computer program products for binary multiplexing x-ray radiography.
An object of the presently disclosed subject matter having been stated hereinabove, and which is achieved in whole or in part by the presently disclosed subject matter, other objects will become evident as the description proceeds when taken in connection with the accompanying drawings as best described hereinbelow.
The subject matter described herein will now be explained with reference to the accompanying drawings of which:
The subject matter disclosed herein is directed to a multiplexing x-ray radiographic technique that utilizes a multi-beam x-ray source, an x-ray detector, and binary transform techniques. Particularly, the radiographic techniques disclosed herein according to one aspect are referred to herein as binary multiplexing x-ray radiography (BMXR). In accordance with the BMXR techniques disclosed herein, during the data collection process, an on/off state (also referred to as the “binary state”) of a multi-beam x-ray source follows the form of a predetermined binary transform. The on-off states of the x-ray source can generate x-ray beams including signals based on the predetermined binary transform. An object can be irradiated with the generated x-ray beams. After irradiation of an object, transmitted or fluorescent x-ray beams can be detected by an x-ray detector which records x-ray intensities of the multiplexing x-ray signals corresponding to the binary states of the x-ray source. The recorded x-ray intensity data can then be processed through an inverse binary transform to recover the original x-ray signals generated from each beam of the multi-beam x-ray source.
BMXR enables many new x-ray imaging and x-ray analysis applications. By using different forms of binary transforms, BMXR can reduce data collection time, enhance signal-to-noise ratio (SNR), and provide better power distribution of an x-ray source in digital radiography and fluorescence spectroscopy. By use of a multi-beam x-ray source, BMXR can allow parallel imaging/spectroscopy analysis of an object from multiple x-ray beams simultaneously using a single detector. BMXR can enhance the imaging speed in computed tomography (CT), tomosynthesis, fluoroscopy, angiography, multi-energy radiography, and x-ray fluorescence spectroscopy analysis. Suitable applications of BMXR include medical diagnostics and treatment, industrial non-destructive testing (NDT) and x-ray fluorescence (XRF) analysis, and security screening and detections.
As referred to herein, the term “nano-structured” or “nanostructure” material can designate materials including nanoparticles with particle sizes less than 100 nm, such as nanotubes (e.g. —carbon nanotubes). These types of materials have been shown to exhibit certain properties that have raised interest in a variety of applications.
As referred to herein, the term “multi-beam x-ray source” can designate devices that can simultaneously generate multiple x-ray beams. For example, the “multi-beam x-ray source” can include a field emission based multi-beam x-ray source having electron field emitters. The electron field emitters can include nano-structured materials based materials.
As referred to herein, the term “binary transform” can refer to the concept of multiplexing techniques, including Hadamard transforms and other suitable binary transforms. Generally, the binary transform can be presented by a binary transform matrix whose elements are either 1 or 0, which represents the on or off state of the signal source, respectively. Binary transforms, such as Hadamard transforms, can be applied to various kinds of applications including microscopy, optical spectroscopy, mass spectrometry, and magnetic resonance imaging (MRI).
For monochromatic imaging, a system in accordance with the subject matter described herein can include a monochromator configured to generate a monochromatic x-ray beam for imaging an object. The monochromator can generate multiple monochromatic x-ray beams having either the same or different x-ray energies for monochromatic x-ray imaging.
The binary state of the signals of x-ray beams XB can be based on a predetermined binary transform. Particularly, the signals can follow the form of a predetermined binary transform matrix. The binary state of the signals of the x-ray beams can be based on a pattern of 0 and 1 elements in the predetermined binary transform matrix.
After passing through object O, x-ray beams XB can be detected by a high frame rate x-ray detector XD. X-ray detector XD can continuously capture the composite x-ray beams XB. After all or at least a portion of x-ray beams XB are collected and stored as x-ray signal data in a memory, an inverse binary transform function IBTF can apply an inverse binary transform to the stored x-ray signal data to recover the original set of generated signals.
Using the same principle of binary transform technique, BMXR in accordance with the subject matter described herein can be used to obtain multi-projection images of an object from multiple x-ray sources simultaneously using a single detector. This imaging technique can enhance the imaging speed in CT, tomosynthesis, fluoroscopy (e.g., digital fluoroscopy), angiography, and multi-energy radiography. Further, this imaging technique can lead to enhanced detection speed in industrial applications such as non-destructive testing (NDT), x-ray fluoroscopy (XRF), and diffraction.
The binary state of the signals of x-ray beams XB1, XB2, and XB3 can be based on a predetermined binary transform. Particularly, the signals can follow the form of a predetermined binary transform matrix. The binary state of the signals of the x-ray beams can be based on a pattern of 0 and 1 elements in the predetermined binary transform matrix. The following equation represents an exemplary 3×3 binary transform matrix suitable for a source projecting three x-rays beams.
After passing through object O, x-ray beams XB can be detected by x-ray detector XD. X-ray detector XD can continuously capture the composite x-ray beams XB. In one example, x-ray detector XD can include an array or a matrix of x-ray photo diode detectors for detecting x-ray beams. In another example, x-ray detector XD can include an array or a matrix of photon counting x-ray detector elements for detecting x-ray beams. Further, for example, x-ray detector XD can be configured to record x-ray signals at a fast frame rate.
After all or at least a portion of x-ray beams XB are collected and stored as x-ray signal data in a memory, an inverse binary transform function IBTF can apply an inverse binary transform to the stored x-ray signal data to recover the original individual projection images PI1, PI2, and PI3. In this manner, each individual x-ray source can be turned on multiple times during the imaging process. Thus, data acquisition speed can be greatly enhanced due to more efficient use of the x-ray source. The more efficient use of the x-ray source can enhance the imaging speed for CT and tomosynthesis.
According to one aspect of the subject matter disclosed herein, a Hadamard multiplexing radiography is provided. The Hadamard transform is a particular example of a binary matrix transform that can be used in accordance with the present subject matter. As noted previously, any other suitable binary transform can be used. Hadamard transform includes encoding signals using a spatial modulation technique, which is inherently based on square waves (on/off state of the signal source) rather than trigonometric functions. Hadamard transform instruments can include the following: a signal source; an encoding Hadamard mask configured based on a corresponding Hadamard matrix; a detector; and a demultiplexing processor. The Hadamard transform technique superposes signals according to the Hadamard matrix. The original signals can be directly recovered from the recorded multiplexed signals by applying the inversed Hadamard transformation.
In accordance with the subject matter described herein, a multi-pixel x-ray source including multiple field emission x-ray sources (or pixels) and operable based on Hadamard multiplexing radiography techniques is provided. The multi-pixel x-ray source can include a multi-pixel field emission cathode with a linear array of gated electron emitting pixels.
Electron field emitters FE1-FE3 can be controlled by a suitable controller C including metal-oxide-semiconductor field-effect transmitter (MOSFET) circuitry MC and binary transform function BTF. Controller C can control voltage sources to apply voltages between electron field emitters FE1-FE3 and gate electrodes GE1-GE3, respectively, to generate respective electric fields for extracting electron from electron field emitters FE1-FE3 to thereby produce respective electron beams EB1-EB3. In particular, controller C can individually operate a plurality of MOSFETs in MOSFET circuitry MC for individually controlling field emitters FE1-FE3 to emit electrons. The drains of the MOSFETs can be connected to a corresponding one of cathodes C1-C3 for controlling electron beam emission by respective emitters FE1-FE3. The MOSFETs can be turned on and off by the individual application of high signal (e.g., 5 V) and a low signal (e.g., 0 V), respectively, to the gates of MOSFETs. When a high signal is applied to the gate of a MOSFET, a drain-to-source channel of the transistor is turned on to apply a voltage difference between a respective cathode C1-C3 and a respective gate electrode GE1-GE3. A voltage difference exceeding a threshold can generate an electric field between a respective cathode C1-C3 and a respective gate electrode GE1-GE3 such that electrons are extracted from respective electron field emitters FE1-FE3. Conversely, when a low voltage (e.g., 0 V) is applied to the gate of a MOSFET, a corresponding drain-to-source channel is turned off such that the voltage at a respective electron field emitter FE1-FE3 is electrically floating and the voltage difference between a respective cathode C1-C3 and a respective gate electrode GE1-GE3 cannot generate an electric field of sufficient strength to extract electrons from the respective electron field emitter FE1-FE3. In one example, each x-ray pixel can provide a tube current of between 0.1 and 1 mA at 40 kVp. Controller C is operable to apply voltage pulses of different frequencies to the gates of the MOSFETs. Thus, controller C can individually control the frequencies of the electron beam pulses from field emitters FE1-FE3.
Further, x-ray source 300 can include an anode A having a plurality of focus spots bombarded by a corresponding electron beam. A voltage difference can be applied between anode A and gate electrodes GE1-GE3 such that respective fields are generated for accelerating electrons emitted by respective electron field emitters FE1-FE3 toward respective target structures of anode A. The target structures can produce x-ray beams having predetermined signals upon bombardment by electron beams EB1-EB3. X-ray source 300 can include focusing electrodes FEL1-FEL3 for focusing electrons extracted from respective electron field emitters FE1-FE3 on the target structures and thus reduce the size of electron beams EB1-EB3. Focusing electrodes FEL1-FEL3 can be controlled by application of voltage to focusing electrodes FEL1-FEL3 by a voltage source. The gate voltage can be varied depending on required flux. In one example, the focal spot size of each electron beam EB1-EB3 on anode A is about 200 μm.
Electron field emitters FE1-FE3 and gate electrode GE1-GE3 can be contained within a vacuum chamber with a sealed interior at about 10−7 torr pressure. The interior of the vacuum chamber can be evacuated to achieve a desired interior pressure. Electron beams EB1-EB3 can travel from the interior of the vacuum chamber to its exterior through an electron permeable portion or window. In one example, the electron permeable portion or window can be a 4″ diameter beryllium (Be) x-window. X-ray beams having distinct signals can be generated by the electron bombardment of anode A by electron beams of distinct signals. Further, anode A can be suitably shaped and/or angled such that the generated x-ray beams are transmitted toward an object from a plurality of different viewing angles.
In one aspect, binary transform function BTF can control MOSFET circuitry MC to turn off and on electron field emitters FE such that electron beams EB1-EB3 carry signals in a pattern of 0 and 1 elements in a predetermined Hadamard binary transform matrix. Corresponding x-ray beams generated by bombardment of anode A with electron beams EB1-EB3 can also carry the same signals in the pattern of 0 and 1 elements in the Hadamard binary transform matrix. Spatial modulation, or coding, of waveforms of the x-ray beam radiation generated by x-ray source 300 can be readily achieved through binary transform function BTF. The generated x-ray beams can be directed towards an object for irradiation with composite x-ray beams including signals based on the predetermined Hadamard binary transform. Anode A can be configured in a reflection mode for redirecting x-ray beams towards an object to be irradiated.
In one embodiment, an x-ray source including multi-beam pixels can include a field emission cathode with a linear array of gated carbon nanotube emitting pixels, focusing electrodes, and a molybdenum target configured in a reflection mode. These components can be housed in a vacuum chamber with a 4″ diameter Be x-ray window at a base pressure of 10−7 torr. Each emitting pixel can include a 1.5 mm diameter carbon nanotube film deposited on a metal surface, a 150 μm thick dielectric spacer, and an electron extraction gate made of a tungsten grid. Further, each emitting pixel is capable of emitting 1 mA current and can be evenly spaced with a center-to-center spacing of about 1.27 cm. The anode voltage can be set at 40 kV. Gate voltage can vary depending on the flux required. Switching the x-ray beam from each pixel can be controlled by sweeping a 0-5 Volt DC pulse through a corresponding MOSFET.
The carbon nanotube film can be deposited on the metal substrate by electrophoresis. The film can have a thickness of about 1.5 mm. The film can be coated on a metal disk. All of the gate electrodes can be electrically connected. An active electrostatic focusing electrode can be placed between the gate electrode and the anode for each pixel. The electron beam can be focused into a focus area on the anode target (referred to as a focal spot) when an electrical potential is applied onto the focusing electrode. Each emitting pixel can be connected to the drain of an n-channel MOSFET, the source of which is grounded. The gate of the MOSFET can be connected to the output of a digital I/O board, which can provide a 5 V DC voltage signal.
To generate x-ray radiation, a constant DC voltage can be applied to the anode and a variable DC voltage (less than about 1 kV) can be applied to the gate electrodes. MOSFET circuitry can be used to turn on and off the emission current from the individual pixels. To activate a pixel, a 5 V signal can be applied to open the channel of a corresponding MOSFET such that the pixel formed a complete electrical circuit with the gate electrode. Electrons can be emitted from the activated pixel when the gate voltage is larger than the critical field for emission. The electrons can be accelerated by the anode voltage and bombarded on a directly opposing area on the anode to produce x-ray radiation. Other, non-activated pixels will not emit electrons because they form an open circuit. To generate a scanning x-ray beam from different origins on the target, a pulsed controlling signal with predetermined pulse width can be swept across the individuals MOSFETs. At each point, the channel can be opened to generate an electron beam from the particular pixel which produced an x-ray beam from the corresponding focal point on the target.
A subset of pixels can be activated such that they all emit electrons with either the same or different pulsing frequencies which generate x-ray beams from different focal points with either the same or different frequencies. In one example, this can be accomplished by using separate gate electrodes for the field emission pixels. Extraction voltages can be applied to the corresponding pixels with the desired pulsing frequencies to generate field emitted electrons with the desired pulsing frequencies and amplitudes. In another example, a common gate can be used for all of the electron emitting pixels. Pulsing of the electron beam can be accomplished by pulsing the activation voltage applied to the MOSFET circuit. For example, to generate a pulsed x-ray with a desired frequency f, a pulsed voltage with the same frequency f can be applied to open the corresponding MOSFET.
Object O can be placed on a sample stage in position for intercepting x-ray beams XB1-XB3, which can carry signals in a pattern of 0 and 1 elements in a predetermined Hadamard binary transform matrix. The sample stage can be rotated for rotating of object O. The signal pattern of x-ray beams XB1-XB3 can correspond to the signal pattern contained in electron beams EB1 and EB3, which is based on the predetermined Hadamard binary transform matrix. All or a portion of x-ray beams XB1-XB3 can pass through object O.
After passing through object O, x-ray beams XB1-XB3 can be detected by x-ray detector XD. X-ray detector XD can continuously capture the composite x-ray beams XB1-XB3. After all or at least a portion of x-ray beams XB1-XB3 are collected and stored as x-ray signal data in a memory, inverse binary transform function IBTF can apply an inverse binary transform to the stored x-ray signal data to recover the signals of the composite x-ray beams. In one example, x-ray detector XD can deliver a 264×264 full frame with 200 micron pixels and 16 frames per second, which is suitable for may high speed x-ray imaging applications. A display unit D can organize the recovered signals for displaying images of object O based on the recovered signals.
The 0 and 1 x-ray beam signals can be generated by pulsing x-ray beams XB1-XB3. The pulsed x-ray radiation can include a programmable pulse width and repetition rate.
In Hadamard multiplexing, the multiplexed signals are generated from original signals weighted by 0 and 1. Assuming the original signals have the form X=[x1 x2 . . . xN-1 xN]T, the multiplexed signals Y=[y1 y2 . . . yN-1 yN]T are in general related to the original signals by the linear transform Y=SX. For a Hadamard transform, the S-matrices consist of only 1s and 0s, which correspond to the on/off state of the signal source. The inverse of such a matrix is obtained by replacing the elements in the matrix by −1s and scaling by 2/(n+1).
As an example for the S matrix of order N=3, the convolution process can be expressed succinctly in the matrix notation by the following equation:
The original signals can be recovered from the multiplexed signals by applying the inversed Hadamard matrix to both sides of equation (2), as illustrated by the following equation (3):
For Hadamard multiplexing radiography of order N=3, an exemplary comparison of conventional imaging and data processing procedures with procedures Hadamard techniques according to the subject matter described herein are described with respect to
For the Hadamard multiplexing imaging example shown in
In this example, the multiplexing radiography is order N=7, although any other order may be used based on the number of x-ray sources or pixels.
In block 702, a binary transform function can generate multiplexed composite x-ray beams including signals based on the predetermined Hadamard binary transform and irradiate an object with the composite x-ray beams. For example,
X-ray sources XS1-XS7 are individually addressable x-ray pixels. Each field emission pixel can be comprised of a gated carbon nanotube field emission cathode, a tungsten mesh extraction gate, and an electrostatic focusing lens. The cathode can be a random carbon nanotube composite film deposited on a metal substrate by electrophoresis. A MOSFET-based electronic circuit can control the on/off pattern of the x-ray sources.
The x-ray beams generated by x-ray sources XS1-XS7 can be controlled by a binary transform function to include signals based on the Hadamard binary transform matrix S7. X-ray beams of x-ray sources XS1-XS7 can be applied to object O in sequence until the composite x-ray beams have been applied. Object O can be positioned on a sample stage. The first application of x-ray beam signals (shown in
As shown in the Hadamard binary transform matrix S7 of
In the first application, x-ray sources XS4, XS6, and XS7 are turned off. The sequence of x-ray beams includes six more applications x-ray beam signals. The control of x-ray beam sources XS1-XS7 to apply the applications is shown in the Hadamard binary transform matrix S7. The generation of each multiplexed image is based on the corresponding row of the Hadamard matrix. The on/off state of each x-ray source is determined by the 1/0 matrix element in that row.
Referring again to
In block 706, an inverse binary transform can be applied to the detected x-ray intensities associated with the signals of the composite x-ray beams to recover the signals of the composite x-ray beams. For example, an inverse binary transform function can apply an inverse binary transform to the detected x-ray intensities associated with the signals of the composite x-ray beams to recover the signals of the composite x-ray beams. In one example, after a complete set of multiplexed images are collected, a demultiplexing algorithm based on a corresponding inversed Hadamard transform matrix can be applied to the complete set of multiplex images to recover the original projection images.
In one experiment, images of a computer circuit were acquired using conventional techniques and techniques in accordance with the subject matter described herein.
Systems and methods in accordance with the subject matter described herein may also be included in a CT imaging system having multi-beam field emission pixels.
Several different factors can contribute to multiplexing imaging artifacts. Some artifacts, such the artifact introduced by insufficient data sampling, can be difficult to resolve due to the limitation of current x-ray detector technology. In the case of imaging in accordance with the subject matter described herein, the imaging artifact is simply from the intensity fluctuation of the x-ray signals/field emission current. In order to minimize the x-ray intensity fluctuation, either hardware-based or software-based feedback circuitry can be applied to stabilize the field emission current from a carbon nanotube pixel.
For scattered x-ray radiation, the deleterious effects of scattering on imaging quality in x-ray imaging have been well documented. Compared with sequential imaging, the multiplexing imaging generally introduced more scattering components due to the fact that multiple x-ray signals were turned on simultaneously during the imaging process. It can also be shown that the scattered radiations in Hadamard imaging are also multiplexed in the same fashion as their primary counterparts. The demultiplexing process will also demultiplex the scattered radiation from each x-ray pixel to prevent the severe degradation of imaging contrast and accumulation of background noise. An anti-scattering device can be configured to minimize scattered x-ray signals collected by an x-ray detector.
If the x-ray exposure dose for each individual x-ray beam signal is fixed, the BMXR methods and systems in accordance with the subject matter described herein can be utilized such that the overall data collection time can be dramatically reduced in comparison to conventional techniques. In conventional x-ray radiography, there is only one signal source turned on at a given time. Multiple x-ray signals have to be collected on after the other, which is referred to as a sequential data collection method. This method can greatly limit the overall imaging speed. In BMXR in accordance with the subject matter described herein, multiple x-ray signals can be collected simultaneously. This parallel data collection mechanism can significantly reduce the overall data collection time in comparison to conventional techniques.
If the total exposure time is fixed, the BMXR methods and systems in accordance with the subject matter described herein can be utilized to improve the signal-to-noise ratio of the signal in comparison to conventional techniques. The increase of signal-to-noise ratio in x-ray imaging or analysis is often limited by the maximum x-ray flux, or equivalently the maximum output power, of the x-ray source due to the finite exposure time. The maximum output power is generally limited by the finite heat dissipation rate of the target and small focal spot size. The binary multiplexing techniques as described herein can increase the signal-to-noise ratio by simultaneously turning on multiple x-ray signal channels during the imaging process. This technique can enhance the signal-to-noise ratio due to the fact that the actual exposure time used for taking each signal is greatly extended without increasing the overall exposure time.
If the exposure does for each individual signal and total exposure time are fixed, the BMXR methods and systems in accordance with the subject matter described herein can provide better power distribution of the x-ray source in comparison to conventional techniques. In this case, compared with the conventional serial data collection method, the available exposure time for each individual source is much longer since each of them will be turned on multiple times. The demanded tube current for each x-ray source can be greatly reduced based on the number of times it can be turned on during the data collection process. Since less tube current is required, both cathode and anode life times and overall x-ray tube life time can be improved using the BMXR methods and systems described herein.
It will be understood that various details of the presently disclosed subject matter may be changed without departing from the scope of the presently disclosed subject matter. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation.
The presently disclosed subject matter claims the benefit of U.S. Provisional Patent Application Ser. No. 60/802,260, filed May 19, 2006, the disclosure of which is incorporated herein by reference in its entirety.
This work was supported at least in part by a grant from the National Institute of Health and the National Institute of Biomedical Imaging and Bioengineering (NIH-NIBIB) (Grant No. 4-R33-EB004204-02), and a grant from the National Cancer Institute (NCI) (Grant No. U54CA119343). Thus, the U.S. Government may have certain rights in the presently disclosed subject matter.
Number | Name | Date | Kind |
---|---|---|---|
2842706 | Dobischek et al. | Jul 1958 | A |
3617285 | Staudenmayer | Nov 1971 | A |
3733484 | Bayard | May 1973 | A |
3753020 | Zingaro | Aug 1973 | A |
3783288 | Barbour et al. | Jan 1974 | A |
3921022 | Levine | Nov 1975 | A |
3932756 | Cowell et al. | Jan 1976 | A |
4012656 | Norman et al. | Mar 1977 | A |
4253221 | Cochran, Jr. et al. | Mar 1981 | A |
4289969 | Cooperstein et al. | Sep 1981 | A |
4382184 | Wernikoff | May 1983 | A |
4712226 | Horbaschek | Dec 1987 | A |
4780612 | Klatt | Oct 1988 | A |
4809308 | Adams et al. | Feb 1989 | A |
4926452 | Baker et al. | May 1990 | A |
4958365 | Sohval et al. | Sep 1990 | A |
5129850 | Kane et al. | Jul 1992 | A |
5138237 | Kane et al. | Aug 1992 | A |
5245648 | Kinney et al. | Sep 1993 | A |
5305363 | Burke et al. | Apr 1994 | A |
5371778 | Yanof et al. | Dec 1994 | A |
5377249 | Wiesent et al. | Dec 1994 | A |
5390112 | Tam | Feb 1995 | A |
5412703 | Goodenough et al. | May 1995 | A |
5424054 | Bethune et al. | Jun 1995 | A |
5557105 | Honjo et al. | Sep 1996 | A |
5578821 | Meisberger et al. | Nov 1996 | A |
5594770 | Bowles et al. | Jan 1997 | A |
5616368 | Jin et al. | Apr 1997 | A |
5623180 | Jin et al. | Apr 1997 | A |
5637950 | Jin et al. | Jun 1997 | A |
5648699 | Jin et al. | Jul 1997 | A |
5692028 | Geus et al. | Nov 1997 | A |
5726524 | Debe | Mar 1998 | A |
5745437 | Wachter et al. | Apr 1998 | A |
5764683 | Swift et al. | Jun 1998 | A |
5773834 | Yamamoto et al. | Jun 1998 | A |
5773921 | Keesmann et al. | Jun 1998 | A |
5834783 | Muraki et al. | Nov 1998 | A |
5844963 | Koller et al. | Dec 1998 | A |
5910974 | Kuhn et al. | Jun 1999 | A |
5973444 | Xu et al. | Oct 1999 | A |
RE36415 | McKenna | Nov 1999 | E |
5976444 | Pearson et al. | Nov 1999 | A |
6019656 | Park et al. | Feb 2000 | A |
6028911 | Kawahara | Feb 2000 | A |
6057637 | Zettl et al. | May 2000 | A |
6087765 | Coll et al. | Jul 2000 | A |
6097138 | Nakamoto | Aug 2000 | A |
6097788 | Berenstein et al. | Aug 2000 | A |
6125167 | Morgan | Sep 2000 | A |
6178226 | Hell et al. | Jan 2001 | B1 |
6192104 | Adams et al. | Feb 2001 | B1 |
6250984 | Jin et al. | Jun 2001 | B1 |
6259765 | Baptist | Jul 2001 | B1 |
6271923 | Hill | Aug 2001 | B1 |
6277318 | Bower et al. | Aug 2001 | B1 |
6280697 | Zhou et al. | Aug 2001 | B1 |
6297592 | Goren et al. | Oct 2001 | B1 |
6333968 | Whitlock et al. | Dec 2001 | B1 |
6334939 | Zhou et al. | Jan 2002 | B1 |
6350628 | Cheng et al. | Feb 2002 | B1 |
6376973 | Blanchet-Fincher et al. | Apr 2002 | B1 |
6385292 | Dunham et al. | May 2002 | B1 |
6440761 | Choi | Aug 2002 | B1 |
6445122 | Chuang et al. | Sep 2002 | B1 |
6456691 | Takahashi et al. | Sep 2002 | B2 |
6459767 | Boyer et al. | Oct 2002 | B1 |
6470068 | Cheng | Oct 2002 | B2 |
6498349 | Thomas et al. | Dec 2002 | B1 |
6510195 | Chappo et al. | Jan 2003 | B1 |
6529575 | Hsieh | Mar 2003 | B1 |
6545396 | Ohki et al. | Apr 2003 | B1 |
6553096 | Zhou et al. | Apr 2003 | B1 |
6560309 | Becker et al. | May 2003 | B1 |
RE38223 | Keesmann et al. | Aug 2003 | E |
6621887 | Albagli et al. | Sep 2003 | B2 |
6630772 | Bower et al. | Oct 2003 | B1 |
6650730 | Bogatu et al. | Nov 2003 | B2 |
6672926 | Liu et al. | Jan 2004 | B2 |
6674837 | Taskar et al. | Jan 2004 | B1 |
6754300 | Hsieh et al. | Jun 2004 | B2 |
6760407 | Price et al. | Jul 2004 | B2 |
RE38561 | Keesmann et al. | Aug 2004 | E |
6787122 | Zhou | Sep 2004 | B2 |
6850595 | Zhou et al. | Feb 2005 | B2 |
6852973 | Suzuki et al. | Feb 2005 | B2 |
6876724 | Zhou et al. | Apr 2005 | B2 |
6950493 | Besson | Sep 2005 | B2 |
6965199 | Stoner et al. | Nov 2005 | B2 |
6980627 | Qiu et al. | Dec 2005 | B2 |
7027558 | Ghelmansarai et al. | Apr 2006 | B2 |
7046757 | Bani-Hashemi et al. | May 2006 | B1 |
7082182 | Zhou et al. | Jul 2006 | B2 |
7085351 | Lu et al. | Aug 2006 | B2 |
7147894 | Zhou et al. | Dec 2006 | B2 |
7220971 | Chang et al. | May 2007 | B1 |
7227924 | Zhou et al. | Jun 2007 | B2 |
7245692 | Lu et al. | Jul 2007 | B2 |
7359484 | Qiu et al. | Apr 2008 | B2 |
7420174 | Kurita et al. | Sep 2008 | B2 |
7741624 | Sahadevan | Jun 2010 | B1 |
7751528 | Zhou et al. | Jul 2010 | B2 |
7835492 | Sahadevan | Nov 2010 | B1 |
7902530 | Sahadevan | Mar 2011 | B1 |
20010019601 | Tkahashi et al. | Sep 2001 | A1 |
20020085674 | Price et al. | Jul 2002 | A1 |
20020094064 | Zhou et al. | Jul 2002 | A1 |
20020110996 | Yaniv et al. | Aug 2002 | A1 |
20020140336 | Stoner et al. | Oct 2002 | A1 |
20020159565 | Muller et al. | Oct 2002 | A1 |
20020171357 | Sun et al. | Nov 2002 | A1 |
20020191751 | Bogatu et al. | Dec 2002 | A1 |
20020193040 | Zhou | Dec 2002 | A1 |
20030002627 | Espinosa et al. | Jan 2003 | A1 |
20030002628 | Wilson et al. | Jan 2003 | A1 |
20030048868 | Bailey et al. | Mar 2003 | A1 |
20030102222 | Zhou et al. | Jun 2003 | A1 |
20030103666 | Edic et al. | Jun 2003 | A1 |
20030142790 | Zhou et al. | Jul 2003 | A1 |
20030198318 | Price et al. | Oct 2003 | A1 |
20040017888 | Seppi et al. | Jan 2004 | A1 |
20040036402 | Keesmann et al. | Feb 2004 | A1 |
20040065465 | Chappo et al. | Apr 2004 | A1 |
20040108298 | Gao | Jun 2004 | A1 |
20040114721 | Qiu et al. | Jun 2004 | A1 |
20040213378 | Zhou et al. | Oct 2004 | A1 |
20040240616 | Qiu et al. | Dec 2004 | A1 |
20040256975 | Gao et al. | Dec 2004 | A1 |
20050028554 | Wanner et al. | Feb 2005 | A1 |
20050084073 | Seppi et al. | Apr 2005 | A1 |
20050117701 | Nelson et al. | Jun 2005 | A1 |
20050133372 | Zhou et al. | Jun 2005 | A1 |
20050175151 | Dunham et al. | Aug 2005 | A1 |
20050226361 | Zhou et al. | Oct 2005 | A1 |
20050226371 | Kantzer et al. | Oct 2005 | A1 |
20050269559 | Zhou et al. | Dec 2005 | A1 |
20060018432 | Zhou et al. | Jan 2006 | A1 |
20060291711 | Jabri et al. | Dec 2006 | A1 |
20070009081 | Zhou et al. | Jan 2007 | A1 |
20080031400 | Beaulieu et al. | Feb 2008 | A1 |
20100239064 | Zhou et al. | Sep 2010 | A1 |
20100329413 | Zhou et al. | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
2336381 | Sep 1999 | CN |
ZL200680013859.X | Jan 2011 | CN |
197 00 992 | Jul 1998 | DE |
101 64 315 | Aug 2002 | DE |
101 64 318 | Aug 2002 | DE |
0 268 488 | May 1988 | EP |
1 050 272 | Nov 2000 | EP |
0 648 468 | Apr 2005 | EP |
679617 | Sep 1952 | GB |
53103392 | Sep 1978 | JP |
A S54-027793 | Mar 1979 | JP |
57162431 | Oct 1982 | JP |
60254615 | Dec 1985 | JP |
A S61-142644 | Jun 1986 | JP |
06163381 | Jun 1994 | JP |
09180894 | Jul 1997 | JP |
A H09-180894 | Jul 1997 | JP |
2000251826 | Feb 1999 | JP |
11-111158 | Apr 1999 | JP |
A H11-116218 | Apr 1999 | JP |
11-260244 | Sep 1999 | JP |
08264139 | Oct 1999 | JP |
2000208028 | Jul 2000 | JP |
A 2001-048509 | Feb 2001 | JP |
2001190550 | Jul 2001 | JP |
A 2001250496 | Sep 2001 | JP |
2003100242 | Apr 2003 | JP |
2003100242 | Apr 2003 | JP |
00319886 | Nov 1997 | TW |
0379354 | Jan 2000 | TW |
0439303 | Jun 2001 | TW |
0527624 | Apr 2003 | TW |
0529050 | Apr 2003 | TW |
WO 0051936 | Sep 2000 | WO |
WO 0203413 | Jan 2002 | WO |
WO 0231857 | Apr 2002 | WO |
WO 03012816 | Feb 2003 | WO |
WO 2004061477 | Jul 2004 | WO |
WO 2004096050 | Nov 2004 | WO |
WO 2004097889 | Nov 2004 | WO |
WO 2005079246 | Jan 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20080069420 A1 | Mar 2008 | US |
Number | Date | Country | |
---|---|---|---|
60802260 | May 2006 | US |