The subject matter described herein relates to multimedia services and more particularly to supporting database access in an Internet protocol multimedia subsystem network environment.
Internet protocol (IP) multimedia subsystem (IMS) is defined by the Third Generation Partnership Project (3GPP) as a new mobile network infrastructure that enables the convergence of data, speech, and mobile network technology over an IP-based infrastructure. IMS bridges the gap between the existing traditional telecommunications technology and Internet technology, allowing network operators to offer a standardized, reusable platform with new, innovative services by enhancing real time, multimedia mobile services, such as voice services, video telephony, messaging, conferencing, and push services. IMS can be used to provide services for both mobile networks and fixed networks at the same time, providing unique mixtures of services with transparency to the end-user.
IMS supports the establishment of any type of media session (e.g., voice, video, text, etc.) and provides the service creator the ability to combine services in the same session and dynamically modify sessions “on the fly” (e.g., adding a video component to an existing voice session). As a result, new and innovative user-to-user and multi-user services become available, such as enhanced voice services, video telephony, chat, push-to-talk, and multimedia conferencing, all of which are based on the concept of a multimedia session. The underlying IMS infrastructure enables mobile IP communication services via its ability to find a user in the network and then to establish a session with the user. The key IMS components enabling mobility management are the call session control function (CSCF) and home subscriber server (HSS). The CSCF is essentially a proxy, which aids in the setup and management of sessions and forwards messages between IMS networks. The HSS holds all of the key subscriber information and enables users (or servers) to find and communicate with other end users.
IMS uses session initiation protocol (SIP) for multimedia session negotiation and session management. For example, SIP REGISTER and INVITE messages are used in communication with P-CSCF 102, I-CSCF 114, and S-CSCF 116 in
P-CSCF 102 is the first contact point within the IMS and behaves like a proxy. The P-CSCF 102 forwards the SIP REGISTER request received from the subscriber's user equipment (UE) (not shown) via GGSN 104, SGSN 106, and RAN 108 to l-CSCF 114, whose identity is determined using the home domain name, as provided by the UE. The SIP messages are forwarded to S-CSCF 116, whose identity P-CSCF 102 received as a result of the registration procedure. P-CSCF 102 also forwards SIP requests or responses to the UE, generates call detail records (CDRs), maintains a security association between itself and each UE, performs SIP message compression and decompression, and authorizes bearer resources and QoS management.
I-CSCF 114 is the contact point within the subscriber's home network 110 for all connections destined to the subscriber or for a roaming subscriber currently located within that network operator's service area. The I-CSCF 114 assigns S-CSCF 116 to a user performing SIP registration, routes a SIP request received from another network towards S-CSCF 116, obtains the address of S-CSCF 116 from HSS 112 and forwards the SIP request or response to the S-CSCF 116.
S-CSCF 116 performs the session control services for the UE and maintains session state as needed by the network operator for support of the services. S-CSCF 116 accepts registration requests, makes its information available through HSS 112, and provides session control. S-CSCF 116 also acts as a proxy server, i.e., it accepts requests and services them internally or forwards them on, and behaves as a User Agent, i.e., it terminates and independently generates SIP transactions. S-CSCF 116 is responsible for interaction with services platforms for the support of services on behalf of an originating endpoint.
HSS 112 holds the subscriber profile and keeps track of the core network node that is currently holding the subscriber. HSS 112 provides mobility management, call and/or session establishment support, and supports the call and/or session establishment procedures in IMS. HSS 112 supports user security information generation, authentication procedures, user identification handling, access authorization, service authorization support service provisioning support, and provides support for application services. HSS 112 may also communicate with an application server (not shown) to offer value added services. The application server and can reside either in the user's home network or in a third party location and enables different services in the IMS network like call-forwarding, call waiting, presence & instant messaging. The application server communicates with the HSS using the DIAMETER protocol.
IMS network operators adopting an IMS infrastructure early stand to gain sizeable competitive advantages. Despite those benefits, it is still desirable to evolve network infrastructure incrementally rather than make radical changes. Accordingly, network operators must provide support for other legacy networks while implementing an IMS infrastructure. A need therefore exists for supporting database access in internet protocol multimedia subsystem network environment while supporting legacy network subscriber database access.
In one aspect, the subject matter described herein includes a system for supporting database access in an IMS network environment. The system includes at least one CSCF entity for generating subscriber-related queries according to an abstracted profile (AP) protocol. The system also includes an abstracted profile server (APS) for receiving a CSCF-generated subscriber-related query and for gathering subscriber information related to the CSCF-generated subscriber-related query from at least one subscriber information database using a native protocol of the subscriber information database, generating a reply message for the CSCF-generated subscriber-related query based on the gathered subscriber information, and forwarding the reply message to a respective CSCF that generated the CSCF-generated subscriber-related query, the reply message being forwarded according to the AP protocol.
According to another aspect, the subject matter described herein includes an abstracted profile server (APS) for supporting database access in an IMS network environment. The APS is configured for gathering subscriber information from at least one subscriber information database using a native protocol of the subscriber information database, wherein the native protocol is at least one of RADIUS, DIAMETER, MAP, and LDAP, generating a reply message to a subscriber-related query based on the gathered subscriber information, and forwarding the reply message to a source of the subscriber-related query, the reply message being forwarded using a protocol other than the native protocol of the subscriber information database.
According to yet another aspect, the subject matter described herein includes a method is disclosed for supporting database access in an IMS network environment. At least one CSCF entity generates subscriber-related queries according to an abstracted profile (AP) protocol. At an abstracted profile server (APS), a CSCF-generated subscriber-related query is received, subscriber information is gathered related to the CSCF-generated subscriber-related query from at least one subscriber information database using a native protocol of the subscriber information database, a reply message for the CSCF-generated subscriber-related query is generated based on the gathered subscriber information and the reply message is forwarded to a respective CSCF that generated the CSCF-generated subscriber-related query, the reply message being forwarded according to the AP protocol.
Objects and advantages of the present invention will become apparent to those skilled in the art upon reading this description in conjunction with the accompanying drawings, in which like reference numerals have been used to designate like elements, and in which:
To facilitate an understanding of exemplary embodiments, many aspects are described in terms of sequences of actions that can be performed by elements of a computer system. For example, it will be recognized that in each of the embodiments, the various actions can be performed by specialized circuits or circuitry (e.g., discrete logic gates interconnected to perform a specialized function), by program instructions being executed by one or more processors, or by a combination of both.
Moreover, the sequences of actions can be embodied in any computer-readable medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor containing system, or other system that can fetch the instructions from a computer-readable medium and execute the instructions.
As used herein, a “computer-readable medium” can be any means that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device. The computer-readable medium can be, for example but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, device, or propagation medium. More specific examples (a non exhaustive list) of the computer-readable medium can include the following: an electrical connection having one or more wires, a portable computer diskette, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, and a portable compact disc read-only memory (CDROM).
Thus, the subject matter described herein can be embodied in many different forms, and all such forms are contemplated to be within the scope of what is claimed. Any such form of embodiment can be referred to herein as “logic configured to” perform a described action, or alternatively as “logic that” performs a described action.
This approach requires the simultaneous support of a multitude of native protocols by S-CSCF 116, which is often impractical from a network operation standpoint due to the complex nature of the required multi-protocol control logic. For example, in certain signaling scenarios it may be necessary to query several network entities (e.g., HSS, HLR, AAA, EIR, AuC, presence server, and the like) in a particular sequence, where the sequence is based, at least in part, on the responses obtained from the various network entities. In a single subscriber-related transaction, AAA 200 may be queried using RADIUS protocol, and, based on the response returned by the AAA server, it may be determined that HSS 112 should be queried using the DIAMETER protocol. Based on the response provided by HSS 112, it may then be determined that HLR 202 should be queried using MAP protocol. This multi-protocol, multi-step approach is believed to consume a significant amount of available resources at S-CSCF 116, which in turn may have a direct impact on the call control processing capabilities of S-CSCF 116.
In operation, when S-CSCF 116 requires subscriber information, a subscriber-related query is generated according to the AP protocol and forwarded to APS 300. APS 300 receives the S-CSCF-generated subscriber-related query and gathers subscriber information related to the CSCF-generated subscriber-related query from at least one subscriber information database, such as HLR 202, HSS 112, AAA 200, and LDAP server 302, using a native protocol of the subscriber information database. APS 300 generates a reply message for the CSCF-generated subscriber-related query based on the gathered subscriber information and forwards the reply message to S-CSCF 116 according to the AP protocol.
For example, I-CSCF 904 may send an AP protocol query to APS 300 via communication bus 910. In the implementation of
As used herein, a subscriber information database may be a network node or a database application residing on a processor within or without an IMS cluster node, or other similar distributed processing system.
It will be understood that various details of the invention may be changed without departing from the scope of the claimed subject matter. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation, as the scope of protection sought is defined by the claims as set forth hereinafter together with any equivalents thereof entitled to.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/637,426 and U.S. Provisional Patent Application Ser. No. 60/637,337 both filed Dec. 17, 2004; the disclosure of each of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5535373 | Olnowich | Jul 1996 | A |
5765172 | Fox | Jun 1998 | A |
6522641 | Siu et al. | Feb 2003 | B1 |
6785730 | Taylor | Aug 2004 | B1 |
6816469 | Kung et al. | Nov 2004 | B1 |
6873849 | de la Red et al. | Mar 2005 | B2 |
7027582 | Khello et al. | Apr 2006 | B2 |
7171460 | Kalavade et al. | Jan 2007 | B2 |
7254603 | Weber et al. | Aug 2007 | B2 |
7380022 | Tell et al. | May 2008 | B2 |
20020131395 | Wang | Sep 2002 | A1 |
20020194378 | Foti | Dec 2002 | A1 |
20020196775 | Tuohino et al. | Dec 2002 | A1 |
20030005350 | Koning et al. | Jan 2003 | A1 |
20030040280 | Koskelainen | Feb 2003 | A1 |
20030131151 | Roach et al. | Jul 2003 | A1 |
20030133558 | Kung et al. | Jul 2003 | A1 |
20030149774 | McConnell et al. | Aug 2003 | A1 |
20030233461 | Mariblanca-Nieves et al. | Dec 2003 | A1 |
20040103157 | Requena et al. | May 2004 | A1 |
20040152469 | Yla-Outinen et al. | Aug 2004 | A1 |
20040203763 | Tammi | Oct 2004 | A1 |
20040205212 | Huotari et al. | Oct 2004 | A1 |
20040223489 | Rotsten et al. | Nov 2004 | A1 |
20040225878 | Costa-Requena et al. | Nov 2004 | A1 |
20040234060 | Tammi et al. | Nov 2004 | A1 |
20040246965 | Westman et al. | Dec 2004 | A1 |
20050007984 | Shaheen et al. | Jan 2005 | A1 |
20050009520 | Herrero et al. | Jan 2005 | A1 |
20050058125 | Mutikainen et al. | Mar 2005 | A1 |
20050078642 | Mayer et al. | Apr 2005 | A1 |
20050141511 | Gopal | Jun 2005 | A1 |
20050155036 | Tiainen et al. | Jul 2005 | A1 |
20050159156 | Bajko et al. | Jul 2005 | A1 |
20050249196 | Ansari et al. | Nov 2005 | A1 |
20050271055 | Stupka | Dec 2005 | A1 |
20060068816 | Pelaez et al. | Mar 2006 | A1 |
20060090001 | Collins | Apr 2006 | A1 |
20060121913 | Lin et al. | Jun 2006 | A1 |
20060136557 | Schaedler et al. | Jun 2006 | A1 |
20060211423 | Ejzak et al. | Sep 2006 | A1 |
20070121596 | Kurapati et al. | May 2007 | A1 |
20070174400 | Cai et al. | Jul 2007 | A1 |
20080014961 | Lipps et al. | Jan 2008 | A1 |
20080025221 | Lipps et al. | Jan 2008 | A1 |
20100268802 | Lipps et al. | Oct 2010 | A1 |
Number | Date | Country |
---|---|---|
WO 2006066149 | Jun 2006 | WO |
WO 2008008226 | Jan 2008 | WO |
WO 2008016607 | Feb 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20060161512 A1 | Jul 2006 | US |
Number | Date | Country | |
---|---|---|---|
60637426 | Dec 2004 | US | |
60637337 | Dec 2004 | US |