The subject matter described herein relates to image guided medical treatment systems. More particularly, the subject matter described herein relates to methods, systems, and computer readable media for image guided ablation.
Ablation, such as radio frequency ablation (RFA), microwave ablation, and cryo-ablation, is a first-line treatment for non-resectable hepatic and other types of tumors. RFA is a minimally invasive intervention (MII) uses high-frequency electrical current, introduced—under 2D ultrasound guidance—via a percutaneous needle-like probe, to heat the targeted tissues to physiologically destructive levels. RFA probes are characterized by manufacturer-specified ablation zones that are typically spheres or ellipsoids. The interventional radiologist who performs the procedure must place the probe such that the entire tumor as well as a safety boundary of several millimeters thickness are contained within the predicted ablation area. Frequent tumor recurrence on the periphery of the original tumor [1] indicates that probe placement accuracy may be a major cause for the low 5-year survival rates of hepatic carcinoma patients.
It is believed that physicians will more accurately target RFA to hepatic and other tumors using a contextually correct 3D visualization system than with standard 2D ultrasound alone. If proven beneficial, 3D guidance could decrease the high post-RFA tumor recurrence rate [3]. Prior experience in developing and evaluating a guidance system for breast biopsy [5] yield results that support this hypothesis.
Accordingly, there exists a long-felt need for methods, systems, and computer readable media for image guided ablation.
The subject matter described herein includes methods, systems, and computer readable media for image guided ablation. One system for image guided ablation includes an ultrasound transducer for producing a real-time ultrasound image of a target volume to be ablated and surrounding tissue. The system further includes an ablation probe for ablating the target volume. The system further includes a display for displaying an image to guide position of the ablation probe during ablation of the target volume. The system further includes at least one tracker for tracking position of the ablation probe during the ablation of the target volume. The system further includes a rendering and display module for receiving a pre-ablation image of the target volume and for displaying a combined image on the display, where the combined image includes a motion tracked, rendered image of the ablation probe and the real-time ultrasound image registered with the pre-ablation image of the target volume.
The subject matter described herein for image guided ablation may be implemented using a computer readable medium comprising computer executable instructions that are executed by a computer processor. Exemplary computer readable media suitable for implementing the subject matter described herein includes disk memory devices, programmable logic devices, and application specific integrated circuits. In one implementation, the computer readable medium may include a memory accessible by a processor. The memory may include instructions executable by the processor for implementing any of the methods described herein for image guided ablation. In addition, a computer readable medium that implements the subject matter described herein may be distributed across multiple physical devices and/or computing platforms.
The subject matter described herein will now be explained with reference to the accompanying drawings of which:
The subject matter described herein includes methods, systems, and computer readable media for image guided ablation. The following paragraphs describe how an exemplary implementation of the present subject matter was designed, comparing the two designs introduced in
1. Choosing a Display System
Our research team has developed 3D guidance for MIIs since the mid-1990s; all our systems were based on see-through head-mounted displays (ST-HMDs) [6]. We demonstrated superior targeting accuracy in breast lesions when comparing ST-HMD guidance with the standard 2D method [5]. In addition to stereoscopy and head-motion parallax, the system based on motion-tracked ST-HMDs provided a view of the patient that included a synthetic opening into the patient, showing live echography data and 3D tool guidance graphics in registration with the “real world,” and therefore also with the patient (
Stereoscopic visualization with head-motion parallax can also be implemented with fixed displays, i.e. without mounting the display on the user's head. Such “fish tank” displays may use CRT monitors and frame-sequential shutter glasses [2], or (at a larger scale) projection displays and passive polarized glasses, for example. Recently, devices based on LCD panels and a semi-transparent mirror have become available from Planar Systems, Inc. [4]; these use passive linearly polarized glasses.
While we obtained encouraging results in the past with ST-HMD systems, we are disappointed with the bulky and uncomfortable, low-resolution devices resulting from today's state of the art in HMDs. Moreover, since there are no satisfactory video see-through devices on the market, we always constructed our own, with rather modest resources [6]. For these reasons, when designing the RFA 3D guidance system, we considered both an ST-HMD approach and a commercial fish tank system (
The above considerations led us to favor a fish tank type display even though it does not offer registration between virtual display and internal patient anatomy. Since our display metaphor proposes life-size representations of the ultrasound image and of the ablation probe, projection displays are unsuitable; and CRT-based stereo has disadvantages such as the requirement for active stereo glasses, which can exhibit flicker. The Planar SD1710 display [4] was almost ideally suited: its small 17-inch 1280×1024 display can fully contain our 3D display elements at life size. Furthermore, it does not exhibit flicker and has manageable bulk.
In
The system illustrated in
The subject described herein is not limited to using a fish tank VR display. As stated above, a virtual see through head mounted display may be used without departing from the scope of the subject matter described herein. In an embodiment that uses a virtual see through head mounted display, tracker 408 can track both the display and the user's head using headband 406, since the display is worn on the user's head.
A rendering and display module 412 receives the real-time ultrasound image, pre-ablation image data, tracking data from tracker 408, produces combined, stereoscopic, head tracked imagery and displays the imagery on display 410. The combined imagery may include a motion tracked, rendered image of the RFA probe, the real-time ultrasound image registered with the pre-ablation image of the target volume, shown from a viewpoint of the user. Exemplary images that may be computed and displayed by rendering and display module 412 will be illustrated and described in detail below.
2. Display System Implementation Details
In one exemplary implementation of the present subject matter, a motion tracker is mounted on the display as in handheld augmented reality applications. Thus, both the tracker base and the stereoscopic display can be moved relative to each other at any time without recalibration to adjust for space and/or line-of-sight constraints within the operating environment; this aims to improve visibility of the tracked system components by the tracker and thereby tracking accuracy and/or reliability. The control software, i.e., rendering and display module 412, ensures that the 3D display preserves orientation; e.g., the virtual representations of tracked devices such as the RFA probe in the display are always shown geometrically parallel to the actual devices, in this case the handheld ablation probe 402. The same applies to the ultrasound transducer 400. In other words, as opposed to the registration in both position and orientation provided by the ST-HMD, this technique maintains only orientation alignment; it introduces a translational offset between the location of the instruments in the real world on the one hand, and their virtual counterparts in the 3D display on the other hand. The interface implemented by rendering and display module 412 has three presentation modes that differ in how these user-induced translational movements of the instruments are echoed in the 3D display (orientation changes are always fully shown, as mentioned):
Given the small size of the display, it is important for the system to accurately track the user's eyes, in order to minimize geometric distortions. A fast and accurate method to calibrate the user's eyes to the head tracker is referenced in the context of which is set forth below [7].
Table 1 summarizes the principal characteristics of the two display techniques we have considered using for the RFA guidance system (ST-HMD and fish tank VR system).
3. Using the Head-Tracked Fish Tank Stereoscopic Display
At present there is no controlled study comparing the performance of the head-tracked fish tank display to an ST-HMD device. An interventional radiologist (Charles Burke, MD, UNC Radiology) who has used the head-tracked fish tank display extensively, reports that depth perception is good and that the display correctly portrays three-dimensional relationships during RFA probe targeting. A depth perception study conducted with this display revealed that most subjects (a randomly selected group of 23) were able to determine which of two objects located only a few millimeters apart in depth was closer, based solely on stereoscopic and motion parallax cues provided by the fish tank display.
The present 3D RF ablation guidance system has been tested on specially constructed liver phantoms; the completed system is currently used in a controlled animal study to ablate liver carcinomas in woodchucks (FIG. 5, left). The study randomizes each woodchuck to either the ultrasound-only conventional guidance method or to the present ultrasound-with-3D-guidance technique.
According to one aspect of the subject matter described herein, rendering and display module 412 may display the target volume, such as the tumor, with successively smaller size as ablated regions are eliminated from display with each ablation pass. Such an image is useful for multiple pass techniques that are aim to treat a large tumor with multiple overlapping ablations. In one embodiment, an initial target volume to be ablated may be shown as a three dimensional structure on a display screen. The initial target volume may be rendered from the pre-ablation image data, such as MRI or CT image data.
After a first ablation pass, the volume affected by the first ablation pass may be subtracted from the displayed representation of the initial target volume. The volume affected by the first ablation pass may be determined mathematically based on the position of the ablation probe at the time of the first ablation pass, the geometry of the ablation probe, and the tine deployment and power settings of the ablation probe during the first ablation pass. For example, if the probe is the above-referenced LeVeen needle electrode probe, the affected volume for an ablation pass may be determined based on manufacturers specifications. In one current implementation, a constant ellipsoid based on what the probe data sheet indicates is used as the affected ablation volume may be subtracted from the image of the target volume. In alternate implementations, pre-calibrated volumes (shapes measured in a test ablated human-organ-like phantom) or varying the shape based on time deployment can be used to determine the affected sub volume. However, the probes are usually specified to be used with fully deployed times, and manufacturers do not give partial deployment information. Additional bio-chemo-thermo-geometric calibration and simulation work, possibly taking into account fluid flow through blood vessels, may be utilized to increase the accuracy of the affected ablation volume estimates.
Region 504 illustrated in
As stated above, rendering and display module 412 may both calculate and display in real-time the amount of tumor and background tissue that would be ablated for the momentary location of the ablation probe, in order to illustrate on the display the impact of probe position. The calculation and display of the amount of tumor and background tissue that would be affected by an ablation can be performed in real-time or may use a lookup table based on the geometry and location of the probe. As stated above, the affected volume can be determined using the data from the probe manufacturer or using experimental data. The volume that would be affected by the ablation can be super imposed about the ablation probe position and displayed to the user.
According to another aspect of the subject matter described herein, the guidance system will benefit from accurate registration of the user's eyes for precise head tracked stereoscopic visualization. An exemplary method for accurate registration of the user's eyes for precise head tracked stereoscopic visualization will now be described.
The high accuracy is achieved in the same calibrated, stereoscopic head-tracked viewing environment used by the guidance system. While the current implementation requires a head-mounted tracker, future embodiments may use un-encumbering tracking, such as vision-based head pose recovery. It is important to note that the technique described here does not require pupil tracking; it uses only head pose, which can generally be obtained less intrusively, with higher reliability, and from a greater distance away than camera-based pupil tracking. An additional pupil tracker is not required unless the system must know the user's gaze direction, for example in order to record user behavior in training-related applications [14].
2. Calibration System for Exact Eye Locations
The calibration system uses the following main components (
In fish tank VR systems, the calibration between the head tracker and the eyes is usually obtained from measurements such as the user's inter-pupillary distance (IPD, measured with a pupillometer) [8], the location of the tracker on the user's head, as well as from assumptions about the most suitable location of the projection origin inside the eye. Popular choices for the latter include the eye's 1st nodal point [2], the entrance pupil [9], and the center of the eye [10]. Our method uses the eye center [10] because it is easy to calibrate and yields exact synthetic imagery in the center of the field of view regardless of the user's gaze. However, the 1st nodal point and the entrance pupil are better approximations for the actual optics within the eye. Therefore, by rendering stereo images from the eye centers, i.e. from a few mm too far back, and thus with a slightly exaggerated separation, the EEC system deforms the stereoscopic field [11] ever so slightly. For higher accuracy, a pupil tracker could detect the user's gaze directions, and assuming that the user converges onto the virtual object found along those directions, the rendering and display module could move the projection origins forward to the 1st nodal point, or all the way to the pupil.
Calibration.
The eye calibration technique (
Since the current head band tracker (
Application of Eye Calibration to Image Guided Ablation
As stated above, the user's head or eyes can be tracked during image guided ablation and the combined display shown by the rendering and display module 412 can adjust the combined display of the treatment volume based on the current position of the user's head and/or eyes. For example, in the images illustrated in
Exact eye calibration in an ablation procedure can be used to produce the same 3D effect illustrated in
According to another aspect of the subject matter described herein, rendering and display module 412 may render preoperative data, including an anatomical context for the ablation of the target volume. For example, rendering and display module 412 may render organs or anatomical structures such as bones or blood vessels adjacent to the target volume.
The disclosure of each of the following references is hereby incorporated herein by reference in its entirety.
Although the examples described above relate primarily to RFA, the subject matter described herein is not limited to image guided RFA. The image guided techniques and systems described herein can be used with any type of ablation, including microwave ablation and cryo-ablation. In microwave ablation, a needle delivers microwave energy to the target volume. In cryo-ablation, a needle delivers cold fluid to the target volume. The tracking, rendering, and display techniques and systems described above can be used to track, render, and display microwave and cryo-ablation needles in the same manner described above. In addition, the techniques and systems described above for displaying predicted ablation volumes and ablated volumes for successive ablation passes can be applied to microwave and cryo-ablation probes by configuring rendering and display module 412 with manufacturer's specifications for these types of probes.
It will be understood that various details of the subject matter described herein may be changed without departing from the scope of the subject matter described herein. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation, as the subject matter described herein is defined by the claims as set forth hereinafter.
This application is a continuation of PCT International Patent Application No. PCT/US2009/032028, filed Jan. 26, 2009, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/023,268, filed Jan. 24, 2008; the disclosures of each which are incorporated herein by reference in their entireties.
This presently disclosed subject matter was made with U.S. Government support under Grant No. 1-R01-CA101186-01A2 awarded by the National Institutes of Health. Thus, the U.S. Government has certain rights in the presently disclosed subject matter.
Number | Name | Date | Kind |
---|---|---|---|
3556079 | Omizo | Jan 1971 | A |
4058114 | Soldner | Nov 1977 | A |
RE30397 | King | Sep 1980 | E |
4249539 | Vilkomerson et al. | Feb 1981 | A |
4294544 | Altschuler et al. | Oct 1981 | A |
4390025 | Takemura et al. | Jun 1983 | A |
4407294 | Vilkomerso | Oct 1983 | A |
4431006 | Trimmer et al. | Feb 1984 | A |
4567896 | Barnea et al. | Feb 1986 | A |
4583538 | Onik et al. | Apr 1986 | A |
4620546 | Aida et al. | Nov 1986 | A |
4671292 | Matzuk | Jun 1987 | A |
4839836 | Fonsalas | Jun 1989 | A |
4862873 | Yajima et al. | Sep 1989 | A |
4884219 | Waldren | Nov 1989 | A |
4899756 | Sonek | Feb 1990 | A |
4911173 | Terwillige | Mar 1990 | A |
4945305 | Blood | Jul 1990 | A |
5076279 | Arenson et al. | Dec 1991 | A |
5078140 | Kwoh | Jan 1992 | A |
5078142 | Siczek et al. | Jan 1992 | A |
5095910 | Powers | Mar 1992 | A |
5109276 | Nudelman et al. | Apr 1992 | A |
5158088 | Nelson et al. | Oct 1992 | A |
5161536 | Vilkomerson et al. | Nov 1992 | A |
5193120 | Gamache et al. | Mar 1993 | A |
5209235 | Brisken et al. | May 1993 | A |
5249581 | Horbal et al. | Oct 1993 | A |
5251127 | Raab | Oct 1993 | A |
5261404 | Mick et al. | Nov 1993 | A |
5265610 | Darrow et al. | Nov 1993 | A |
5271400 | Dumoulin et al. | Dec 1993 | A |
5307153 | Maruyama et al. | Apr 1994 | A |
5309913 | Kormos et al. | May 1994 | A |
5323002 | Sampsell et al. | Jun 1994 | A |
5371543 | Anderson | Dec 1994 | A |
5383454 | Bucholz | Jan 1995 | A |
5394875 | Lewis et al. | Mar 1995 | A |
5411026 | Carol | May 1995 | A |
5433198 | Desai | Jul 1995 | A |
5433739 | Sluijter et al. | Jul 1995 | A |
5443489 | Ben-Haim | Aug 1995 | A |
5446798 | Morita et al. | Aug 1995 | A |
5447154 | Cinquin et al. | Sep 1995 | A |
5452024 | Sampsell | Sep 1995 | A |
5457493 | Leddy et al. | Oct 1995 | A |
5474073 | Schwartz et al. | Dec 1995 | A |
5476096 | Olstad et al. | Dec 1995 | A |
5483961 | Kelly et al. | Jan 1996 | A |
5488431 | Gove et al. | Jan 1996 | A |
5489952 | Gove et al. | Feb 1996 | A |
5491510 | Gove | Feb 1996 | A |
5494039 | Onik et al. | Feb 1996 | A |
5503152 | Oakley et al. | Apr 1996 | A |
5505204 | Picot et al. | Apr 1996 | A |
5515856 | Olstad et al. | May 1996 | A |
5517990 | Kalfas et al. | May 1996 | A |
5526051 | Gove et al. | Jun 1996 | A |
5526812 | Dumoulin et al. | Jun 1996 | A |
5529070 | Augustine et al. | Jun 1996 | A |
5531227 | Schneider | Jul 1996 | A |
5532997 | Pauli | Jul 1996 | A |
5541723 | Tanaka | Jul 1996 | A |
5558091 | Acker et al. | Sep 1996 | A |
5568811 | Olstad | Oct 1996 | A |
5570135 | Gove et al. | Oct 1996 | A |
5579026 | Tabata | Nov 1996 | A |
5581271 | Kraemer | Dec 1996 | A |
5588948 | Takahashi et al. | Dec 1996 | A |
5608468 | Gove et al. | Mar 1997 | A |
5608849 | King, Jr. | Mar 1997 | A |
5611345 | Hibbeln | Mar 1997 | A |
5611353 | Dance et al. | Mar 1997 | A |
5612753 | Poradish et al. | Mar 1997 | A |
5625408 | Matsugu et al. | Apr 1997 | A |
5628327 | Unger et al. | May 1997 | A |
5629794 | Magel et al. | May 1997 | A |
5630027 | Venkateswar et al. | May 1997 | A |
5647361 | Damadian | Jul 1997 | A |
5647373 | Paltieli | Jul 1997 | A |
5660185 | Shmulewitz et al. | Aug 1997 | A |
5662111 | Cosman | Sep 1997 | A |
5699444 | Palm | Dec 1997 | A |
5701898 | Adam et al. | Dec 1997 | A |
5701900 | Shehada et al. | Dec 1997 | A |
5726670 | Tabata et al. | Mar 1998 | A |
5728044 | Shan | Mar 1998 | A |
5758650 | Miller et al. | Jun 1998 | A |
5766135 | Terwilliger | Jun 1998 | A |
5784098 | Shoji et al. | Jul 1998 | A |
5792147 | Evans et al. | Aug 1998 | A |
5793701 | Wright et al. | Aug 1998 | A |
5797849 | Vesely et al. | Aug 1998 | A |
5807395 | Mulier et al. | Sep 1998 | A |
5810008 | Dekel et al. | Sep 1998 | A |
5817022 | Vesely | Oct 1998 | A |
5820554 | Davis et al. | Oct 1998 | A |
5820561 | Olstad et al. | Oct 1998 | A |
5829439 | Yokosawa et al. | Nov 1998 | A |
5829444 | Ferre et al. | Nov 1998 | A |
5851183 | Bucholz | Dec 1998 | A |
5870136 | Fuchs et al. | Feb 1999 | A |
5891034 | Bucholz | Apr 1999 | A |
5920395 | Schulz | Jul 1999 | A |
5961527 | Whitmore, III et al. | Oct 1999 | A |
5967980 | Ferre et al. | Oct 1999 | A |
5991085 | Rallison et al. | Nov 1999 | A |
6016439 | Acker | Jan 2000 | A |
6019724 | Gronningsaeter et al. | Feb 2000 | A |
6048312 | Ishrak et al. | Apr 2000 | A |
6064749 | Hirota et al. | May 2000 | A |
6091546 | Spitzer | Jul 2000 | A |
6095982 | Richards-Kortum et al. | Aug 2000 | A |
6099471 | Torp et al. | Aug 2000 | A |
6108130 | Raj | Aug 2000 | A |
6122538 | Sliwa, Jr. et al. | Sep 2000 | A |
6122541 | Cosman et al. | Sep 2000 | A |
6160666 | Rallison et al. | Dec 2000 | A |
6167296 | Shahidi | Dec 2000 | A |
6181371 | Maguire, Jr. | Jan 2001 | B1 |
RE37088 | Olstad et al. | Mar 2001 | E |
6216029 | Paltieli | Apr 2001 | B1 |
6241725 | Cosman | Jun 2001 | B1 |
6245017 | Hashimoto et al. | Jun 2001 | B1 |
6246898 | Vesely et al. | Jun 2001 | B1 |
6248101 | Witmore, III et al. | Jun 2001 | B1 |
6261234 | Lin | Jul 2001 | B1 |
6341016 | Malione | Jan 2002 | B1 |
6348058 | Melken et al. | Feb 2002 | B1 |
6350238 | Olstad et al. | Feb 2002 | B1 |
6352507 | Torp et al. | Mar 2002 | B1 |
6379302 | Kessman et al. | Apr 2002 | B1 |
6385475 | Cinquin et al. | May 2002 | B1 |
6442417 | Shahidi et al. | Aug 2002 | B1 |
6447450 | Olstad | Sep 2002 | B1 |
6456868 | Saito et al. | Sep 2002 | B2 |
6470207 | Simon et al. | Oct 2002 | B1 |
6471366 | Hughson et al. | Oct 2002 | B1 |
6477400 | Barrick | Nov 2002 | B1 |
6478793 | Cosman et al. | Nov 2002 | B1 |
6503195 | Keller et al. | Jan 2003 | B1 |
6511418 | Shahidi et al. | Jan 2003 | B2 |
6517485 | Torp et al. | Feb 2003 | B2 |
6518939 | Kikuchi | Feb 2003 | B1 |
6527443 | Vilsmeier | Mar 2003 | B1 |
6529758 | Shahidi | Mar 2003 | B2 |
6537217 | Bjaerum et al. | Mar 2003 | B1 |
6545706 | Edwards et al. | Apr 2003 | B1 |
6546279 | Bova et al. | Apr 2003 | B1 |
6551325 | Neubauer et al. | Apr 2003 | B2 |
6570566 | Yoshigahara | May 2003 | B1 |
6575969 | Rittman et al. | Jun 2003 | B1 |
6579240 | Bjaerum et al. | Jun 2003 | B2 |
6587711 | Alfano et al. | Jul 2003 | B1 |
6591130 | Shahidi | Jul 2003 | B2 |
6592522 | Bjaerum et al. | Jul 2003 | B2 |
6594517 | Nevo | Jul 2003 | B1 |
6597818 | Kumar et al. | Jul 2003 | B2 |
6604404 | Paltieli et al. | Aug 2003 | B2 |
6616610 | Steininger et al. | Sep 2003 | B2 |
6626832 | Paltieli et al. | Sep 2003 | B1 |
6652462 | Bjaerum et al. | Nov 2003 | B2 |
6669635 | Kessman et al. | Dec 2003 | B2 |
6676599 | Torp et al. | Jan 2004 | B2 |
6689067 | Sauer et al. | Feb 2004 | B2 |
6695786 | Wang et al. | Feb 2004 | B2 |
6711429 | Gilboa et al. | Mar 2004 | B1 |
6725082 | Sati et al. | Apr 2004 | B2 |
6733458 | Steins et al. | May 2004 | B1 |
6764449 | Lee et al. | Jul 2004 | B2 |
6766184 | Utzinger et al. | Jul 2004 | B2 |
6768496 | Bieger et al. | Jul 2004 | B2 |
6775404 | Pagoulatos et al. | Aug 2004 | B1 |
6782287 | Grzeszczuk et al. | Aug 2004 | B2 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6827723 | Carson | Dec 2004 | B2 |
6863655 | Bjaerum et al. | Mar 2005 | B2 |
6873867 | Vilsmeier | Mar 2005 | B2 |
6875179 | Ferguson et al. | Apr 2005 | B2 |
6881214 | Cosman et al. | Apr 2005 | B2 |
6895268 | Rahn et al. | May 2005 | B1 |
6915150 | Cinquin et al. | Jul 2005 | B2 |
6917827 | Kienzle, III | Jul 2005 | B2 |
6923817 | Carson et al. | Aug 2005 | B2 |
6936048 | Hurst | Aug 2005 | B2 |
6947783 | Immerz | Sep 2005 | B2 |
6968224 | Kessman et al. | Nov 2005 | B2 |
6978167 | Dekel et al. | Dec 2005 | B2 |
7008373 | Stoianovici et al. | Mar 2006 | B2 |
7033360 | Cinquin et al. | Apr 2006 | B2 |
7072707 | Galloway, Jr. et al. | Jul 2006 | B2 |
7077807 | Torp et al. | Jul 2006 | B2 |
7093012 | Olstad et al. | Aug 2006 | B2 |
7110013 | Ebersole et al. | Sep 2006 | B2 |
7171255 | Holupka et al. | Jan 2007 | B2 |
7209776 | Leitner | Apr 2007 | B2 |
7245746 | Bjaerum et al. | Jul 2007 | B2 |
7248232 | Yamazaki et al. | Jul 2007 | B1 |
7261694 | Torp et al. | Aug 2007 | B2 |
7313430 | Urquhart et al. | Dec 2007 | B2 |
7331932 | Leitner | Feb 2008 | B2 |
7351205 | Szczech et al. | Apr 2008 | B2 |
7379769 | Piron et al. | May 2008 | B2 |
7385708 | Ackerman et al. | Jun 2008 | B2 |
7392076 | Moctezuma de la Barrera | Jun 2008 | B2 |
7398116 | Edwards | Jul 2008 | B2 |
7466303 | Yi et al. | Dec 2008 | B2 |
7480533 | Cosman et al. | Jan 2009 | B2 |
7505809 | Strommer et al. | Mar 2009 | B2 |
7588541 | Floyd et al. | Sep 2009 | B2 |
7652259 | Kimchy et al. | Jan 2010 | B2 |
7662128 | Salcudean et al. | Feb 2010 | B2 |
7678052 | Torp et al. | Mar 2010 | B2 |
7728868 | Razzaque et al. | Jun 2010 | B2 |
7797032 | Martinelli et al. | Sep 2010 | B2 |
7798965 | Torp et al. | Sep 2010 | B2 |
7833168 | Taylor et al. | Nov 2010 | B2 |
7833221 | Voegele et al. | Nov 2010 | B2 |
7846103 | Cannon, Jr. et al. | Dec 2010 | B2 |
7876942 | Gilboa | Jan 2011 | B2 |
7889905 | Higgins et al. | Feb 2011 | B2 |
7912849 | Ohrn et al. | Mar 2011 | B2 |
7920909 | Lyon et al. | Apr 2011 | B2 |
7962193 | Edwards et al. | Jun 2011 | B2 |
7976469 | Bonde et al. | Jul 2011 | B2 |
8023712 | Ikuma et al. | Sep 2011 | B2 |
8038631 | Sanghvi et al. | Oct 2011 | B1 |
8041413 | Barbagli et al. | Oct 2011 | B2 |
8050736 | Piron et al. | Nov 2011 | B2 |
8052636 | Moll et al. | Nov 2011 | B2 |
8066644 | Sarkar et al. | Nov 2011 | B2 |
8073528 | Zhao et al. | Dec 2011 | B2 |
8086298 | Whitmore, III et al. | Dec 2011 | B2 |
8135669 | Olstad et al. | Mar 2012 | B2 |
8137281 | Huang et al. | Mar 2012 | B2 |
8147408 | Bunce et al. | Apr 2012 | B2 |
8152724 | Ridley et al. | Apr 2012 | B2 |
8167805 | Emery et al. | May 2012 | B2 |
8216149 | Oonuki et al. | Jul 2012 | B2 |
8221322 | Wang et al. | Jul 2012 | B2 |
8228028 | Schneider | Jul 2012 | B2 |
8257264 | Park et al. | Sep 2012 | B2 |
8296797 | Olstad et al. | Oct 2012 | B2 |
8340379 | Razzaque et al. | Dec 2012 | B2 |
8350902 | Razzaque et al. | Jan 2013 | B2 |
8482606 | Razzaque et al. | Jul 2013 | B2 |
8554307 | Razzaque et al. | Oct 2013 | B2 |
8585598 | Razzaque et al. | Nov 2013 | B2 |
8641621 | Razzaque et al. | Feb 2014 | B2 |
8670816 | Green et al. | Mar 2014 | B2 |
8690776 | Razzaque et al. | Apr 2014 | B2 |
8831310 | Razzaque et al. | Sep 2014 | B2 |
20010007919 | Shahidi | Jul 2001 | A1 |
20010016804 | Cunningham et al. | Aug 2001 | A1 |
20010041838 | Holupka et al. | Nov 2001 | A1 |
20010045979 | Matsumoto et al. | Nov 2001 | A1 |
20020010384 | Shahidi et al. | Jan 2002 | A1 |
20020032772 | Olstad et al. | Mar 2002 | A1 |
20020049375 | Strommer et al. | Apr 2002 | A1 |
20020077540 | Kienzle, III | Jun 2002 | A1 |
20020077543 | Grzeszczuk et al. | Jun 2002 | A1 |
20020105484 | Navab et al. | Aug 2002 | A1 |
20020135673 | Favalora et al. | Sep 2002 | A1 |
20020138008 | Tsujita et al. | Sep 2002 | A1 |
20020140814 | Cohen-Solal et al. | Oct 2002 | A1 |
20020156375 | Kessman et al. | Oct 2002 | A1 |
20020198451 | Carson | Dec 2002 | A1 |
20030040743 | Cosman et al. | Feb 2003 | A1 |
20030073901 | Simon et al. | Apr 2003 | A1 |
20030135119 | Lee et al. | Jul 2003 | A1 |
20030163142 | Paltieli et al. | Aug 2003 | A1 |
20030164172 | Chumas et al. | Sep 2003 | A1 |
20030231789 | Willis et al. | Dec 2003 | A1 |
20040034313 | Leitner | Feb 2004 | A1 |
20040078036 | Keidar | Apr 2004 | A1 |
20040095507 | Bishop et al. | May 2004 | A1 |
20040116810 | Olstad | Jun 2004 | A1 |
20040147920 | Keidar | Jul 2004 | A1 |
20040152970 | Hunter et al. | Aug 2004 | A1 |
20040181144 | Cinquin et al. | Sep 2004 | A1 |
20040215071 | Frank et al. | Oct 2004 | A1 |
20040238732 | State et al. | Dec 2004 | A1 |
20040243146 | Chesbrough et al. | Dec 2004 | A1 |
20040243148 | Wasielewski | Dec 2004 | A1 |
20040249281 | Olstad | Dec 2004 | A1 |
20040249282 | Olstad | Dec 2004 | A1 |
20040254454 | Kockro | Dec 2004 | A1 |
20050010098 | Frigstad et al. | Jan 2005 | A1 |
20050085717 | Shahidi | Apr 2005 | A1 |
20050085718 | Shahidi | Apr 2005 | A1 |
20050090742 | Mine et al. | Apr 2005 | A1 |
20050111733 | Fors et al. | May 2005 | A1 |
20050159641 | Kanai | Jul 2005 | A1 |
20050182316 | Burdette et al. | Aug 2005 | A1 |
20050192564 | Cosman et al. | Sep 2005 | A1 |
20050219552 | Ackerman et al. | Oct 2005 | A1 |
20050222574 | Giordano et al. | Oct 2005 | A1 |
20050251148 | Friedrich | Nov 2005 | A1 |
20060004275 | Vija et al. | Jan 2006 | A1 |
20060020204 | Serra et al. | Jan 2006 | A1 |
20060036162 | Shahidi et al. | Feb 2006 | A1 |
20060052792 | Boettiger et al. | Mar 2006 | A1 |
20060058609 | Olstad | Mar 2006 | A1 |
20060058610 | Olstad | Mar 2006 | A1 |
20060058674 | Olstad | Mar 2006 | A1 |
20060058675 | Olstad | Mar 2006 | A1 |
20060100505 | Viswanathan | May 2006 | A1 |
20060122495 | Kienzle, III | Jun 2006 | A1 |
20060184040 | Keller et al. | Aug 2006 | A1 |
20060193504 | Salgo et al. | Aug 2006 | A1 |
20060229594 | Francischelli et al. | Oct 2006 | A1 |
20060235290 | Gabriel et al. | Oct 2006 | A1 |
20060235538 | Rochetin et al. | Oct 2006 | A1 |
20060241450 | Da Silva et al. | Oct 2006 | A1 |
20060253030 | Altmann et al. | Nov 2006 | A1 |
20060253032 | Altmann et al. | Nov 2006 | A1 |
20060271056 | Terrill-Grisoni et al. | Nov 2006 | A1 |
20060282023 | Leitner | Dec 2006 | A1 |
20060293643 | Wallace et al. | Dec 2006 | A1 |
20070016035 | Hashimoto | Jan 2007 | A1 |
20070032906 | Sutherland et al. | Feb 2007 | A1 |
20070073155 | Park et al. | Mar 2007 | A1 |
20070078346 | Park et al. | Apr 2007 | A1 |
20070167699 | Lathuiliere et al. | Jul 2007 | A1 |
20070167701 | Sherman | Jul 2007 | A1 |
20070167705 | Chiang et al. | Jul 2007 | A1 |
20070167771 | Olstad | Jul 2007 | A1 |
20070167801 | Webler et al. | Jul 2007 | A1 |
20070225553 | Shahidi | Sep 2007 | A1 |
20070239281 | Gotte et al. | Oct 2007 | A1 |
20070244488 | Metzger et al. | Oct 2007 | A1 |
20070255136 | Kristofferson et al. | Nov 2007 | A1 |
20070270718 | Rochetin et al. | Nov 2007 | A1 |
20070276234 | Shahidi | Nov 2007 | A1 |
20080004481 | Bax et al. | Jan 2008 | A1 |
20080004516 | DiSilvestro et al. | Jan 2008 | A1 |
20080030578 | Razzaque et al. | Feb 2008 | A1 |
20080039723 | Suri et al. | Feb 2008 | A1 |
20080051910 | Kammerzell et al. | Feb 2008 | A1 |
20080091106 | Kim et al. | Apr 2008 | A1 |
20080114235 | Unal et al. | May 2008 | A1 |
20080161824 | McMillen | Jul 2008 | A1 |
20080200794 | Teichman et al. | Aug 2008 | A1 |
20080208031 | Kurpad et al. | Aug 2008 | A1 |
20080208081 | Murphy et al. | Aug 2008 | A1 |
20080214932 | Mollard et al. | Sep 2008 | A1 |
20080232679 | Hahn et al. | Sep 2008 | A1 |
20080287794 | Li et al. | Nov 2008 | A1 |
20080287805 | Li | Nov 2008 | A1 |
20080287837 | Makin et al. | Nov 2008 | A1 |
20090024030 | Lachaine et al. | Jan 2009 | A1 |
20090118724 | Zvuloni et al. | May 2009 | A1 |
20090137907 | Takimoto et al. | May 2009 | A1 |
20090226069 | Razzaque et al. | Sep 2009 | A1 |
20090234369 | Bax et al. | Sep 2009 | A1 |
20090312629 | Razzaque et al. | Dec 2009 | A1 |
20100045783 | State et al. | Feb 2010 | A1 |
20100198045 | Razzaque et al. | Aug 2010 | A1 |
20100208963 | Kruecker et al. | Aug 2010 | A1 |
20100268072 | Hall et al. | Oct 2010 | A1 |
20100268085 | Kruecker et al. | Oct 2010 | A1 |
20100305448 | Dagonneau et al. | Dec 2010 | A1 |
20100312121 | Guan | Dec 2010 | A1 |
20100331252 | Hamrick | Dec 2010 | A1 |
20110043612 | Keller et al. | Feb 2011 | A1 |
20110046483 | Fuchs et al. | Feb 2011 | A1 |
20110057930 | Keller et al. | Mar 2011 | A1 |
20110082351 | Razzaque et al. | Apr 2011 | A1 |
20110130641 | Razzaque et al. | Jun 2011 | A1 |
20110137156 | Razzaque et al. | Jun 2011 | A1 |
20110201915 | Gogin et al. | Aug 2011 | A1 |
20110201976 | Sanghvi et al. | Aug 2011 | A1 |
20110230351 | Fischer et al. | Sep 2011 | A1 |
20110237947 | Boctor et al. | Sep 2011 | A1 |
20110238043 | Kleven | Sep 2011 | A1 |
20110251483 | Razzaque et al. | Oct 2011 | A1 |
20110274324 | Clements et al. | Nov 2011 | A1 |
20110282188 | Burnside et al. | Nov 2011 | A1 |
20110288412 | Deckman et al. | Nov 2011 | A1 |
20110295108 | Cox et al. | Dec 2011 | A1 |
20110301451 | Rohling | Dec 2011 | A1 |
20120035473 | Sanghvi et al. | Feb 2012 | A1 |
20120059260 | Robinson | Mar 2012 | A1 |
20120071759 | Hagy et al. | Mar 2012 | A1 |
20120078094 | Nishina et al. | Mar 2012 | A1 |
20120101370 | Razzaque et al. | Apr 2012 | A1 |
20120108955 | Razzaque et al. | May 2012 | A1 |
20120143029 | Silverstein et al. | Jun 2012 | A1 |
20120143055 | Ng et al. | Jun 2012 | A1 |
20120165679 | Orome et al. | Jun 2012 | A1 |
20120259210 | Harhen et al. | Oct 2012 | A1 |
20130030286 | Alouani et al. | Jan 2013 | A1 |
20130044930 | Li et al. | Feb 2013 | A1 |
20130079770 | Kyle, Jr. et al. | Mar 2013 | A1 |
20130129175 | Razzaque et al. | May 2013 | A1 |
20130132374 | Olstad et al. | May 2013 | A1 |
20130151533 | Udupa et al. | Jun 2013 | A1 |
20130178745 | Kyle, Jr. et al. | Jul 2013 | A1 |
20140016848 | Razzaque et al. | Jan 2014 | A1 |
20140078138 | Martin et al. | Mar 2014 | A1 |
20140094687 | Razzaque | Apr 2014 | A1 |
20140180074 | Green et al. | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
7656896 | May 1997 | AU |
9453898 | Apr 1999 | AU |
1719601 | Jun 2001 | AU |
9036301 | Mar 2002 | AU |
2003297225 | Jul 2004 | AU |
2001290363 | Feb 2006 | AU |
0113882 | Jul 2003 | BR |
2420382 | Apr 2011 | CA |
60126798 | Oct 2007 | DE |
0 427 358 | May 1991 | EP |
1955284 | Aug 2008 | EP |
S63-290550 | Nov 1988 | JP |
H07-116164 | May 1995 | JP |
2005-058584 | Mar 2005 | JP |
2005-323669 | Nov 2005 | JP |
2009-517177 | Apr 2009 | JP |
WO 9605768 | Feb 1996 | WO |
WO 9715249 | May 1997 | WO |
WO 9717014 | May 1997 | WO |
WO 9926534 | Jun 1999 | WO |
WO 0139683 | Jun 2001 | WO |
WO 03032837 | Apr 2003 | WO |
WO 03034705 | Apr 2003 | WO |
WO 03105289 | Dec 2003 | WO |
WO 2005010711 | Feb 2005 | WO |
WO 2007019216 | Feb 2007 | WO |
WO 2007067323 | Jun 2007 | WO |
WO 2007-067323 | Sep 2007 | WO |
WO 2008017051 | Feb 2008 | WO |
WO 2009063423 | May 2009 | WO |
WO 2009094646 | Jul 2009 | WO |
WO 2010057315 | May 2010 | WO |
WO 2010-096419 | Aug 2010 | WO |
WO 2011014687 | Feb 2011 | WO |
WO 2012169990 | Dec 2012 | WO |
WO 2013116240 | Aug 2013 | WO |
Entry |
---|
International Search Report for International Application No. PCT/US2009/032028 (Sep. 9, 2009). |
“3D Laparoscope,” copyright 2007 InnerOptic Technology, Inc. 2 pages. |
“Cancer Facts & Figures 2004,” www.cancer.org/downloads/STT/CAFF—finalPWSecured.pdf, copyright 2004 American Cancer Society, Inc., printed Sep. 19, 2007, 60 pages. |
“David Laserscanner <-Latest News <-Institute for Robotics and Process Control <-Te . . . ,” http://www/rob.cs.tu-bs.de/en/news/david, printed Sep. 19, 2007, 1 page. |
“laser scanned 3d model Final” video, still image of video attached, http://www.youtube.com/watch?v+DaLglgmoUf8, copyright 2007 YouTube, LLC, printed Sep. 19, 2007, 2 pages. |
“mile robbins—Computer Vision Research—Stereo Depth Perception,” http://www.compumike.com/vision/stereodepth. php, copyright 2007 Michael F. Robbins, printed Sep. 19, 2007, 3 pages. |
“Olympus Endoscopic Ultrasound System,” www.olympusamerica.com/msg—section/download—brochures/135—b—gfum130.pdf, printed Sep. 20, 2007, 20 pages. |
“Point Grey Research Inc.—Imaging Products—Triclops SDK Samples,” http://www.ptgrey.com/products/triclopsSDK/ samples.asp, copyright 2007 Point Grey Research Inc., printed Sep. 19, 2007, 1 page. |
“RUE: Registered Ultrasound-Endoscope,” copyright 2007 InnerOptic Technology, Inc., 2 pages. |
Advertisement, “Inspeck 3DC 3D Capturor,” Inspeck 3DC 3D Capturor (www.inspeck.com), 1998. |
Advertisement, “Virtual 3D High Speed Non-Contact Surface Perception,” Virtual 3-D Technologies Corporation (www.virtual3dtech.com), Dec. 21, 1998. |
Advertisements, “Virtuoso,” Visual Interface, Inc. (www.visint.com), Dec. 21, 1998. |
Akka, “Automatic Software Control of Display Parameters for Stereoscopic Graphics Images,” SPIE vol. 1669: Stereoscopic Displays and Applications III, pp. 31-38 (1992). |
Ali et al., “Near Infrared Spectroscopy and Imaging to Probe Differences in Water Content in Normal and Cancer Human Prostate Tissues,” Technology in Cancer Research & Treatment; Oct. 2004; 3(5):491-497; Adenine Press. |
Aylward et al., “Analysis of the Parameter Space of a Metric for Registering 3D Vascular Images,” in W. Niessen and M. Viergever (Eds.): MICCAI 2001, LNCS 2208, pp. 932-939, 2001. |
Aylward et al., “Intra-Operative 3D Ultrasound Augmentation,” Proceedings of the IEEE International Symposium on Biomedical Imaging, Washington, Jul. 2002. |
Aylward et al., “Registration and Analysis of Vascular Images,” International Journal of Computer Vision 55(2/3), pp. 123-138 (2003). |
Azuma et al., “Improving Static and Dynamic Registration in an Optical See-Through HMO,” Proceedings of SIGGRAPH '94, Computer Graphics, Annual Conference Series, 1994, 197-204 (1994. |
Azuma, “A Survey of Augmented Reality,” Presence: Teleoperators and Virtual Environments 6, vol. 4, pp. 1-48 (Aug. 1997). |
Badler et al., “Simulating Humans: Computer Graphics, Animation, and Control,” Oxford University Press (1993). |
Bajura et al., “Merging Virtual Objects with the Real World: Seeing Ultrasound Imagery within the Patient,” Computer Graphics, vol. 26, No. 2, pp. 203-210 (Jul. 1992). |
Benavides et al., “Multispectral digital colposcopy for in vivo detection of cervical cancer,” Optics Express; May 19, 2003; 11(1 0) Optical Society of America; USA. |
Beraldin et al., “Optimized Position Sensors for Flying-Spot Active Triangulation Systems,” Proceedings of the Fourth International Conference on a 3-D Digital Imaging and Modeling (3DIM), Banff, Alberta, Canada, Oct. 6-10, 2003, pp. 334-341, NRC 47083, National Research Council of Canada, http://iit-iti.nrc-. |
Billinghurst et al.; Research Directions in Handheld AR; Int. J. of Virtual Reality 5(2), 51-58 (2006). |
Blais, “Review of 20 Years of Range Sensor Development,” Journal of Electronic Imaging, 13(1): 231-240, Jan. 2004, NRC 46531, copyright 2004 National Research Council of Canada, http://iit-iti.nrc-cnrc.gc.ca/iit-publications-iti/docs/NRC-46531.pdf, printed Sep. 19, 2007, 14 pages. |
Bouguet, “Camera Calibration Toolbox for Matlab,” www.vision.caltech.edu/bouguetj/calib—doc, printed Sep. 20, 2007, 5 pages. |
Buxton et al.; “Colposcopically directed punch biopsy: a potentially misleading investigation,” British Journal of Obstetrics and Gynecology; Dec. 1991; 98:1273-1276. |
Cancer Prevention & Early Detection Facts & Figures 2004; National Center for Tobacco-Free Kids; 2004; American Cancer Society; USA. |
Cantor et al., “Cost-Effectiveness Analysis of Diagnosis and Management of Cervical Squamous Intraepithelial Lesions,” Diagnostic Strategies for SILs; Feb. 1998; 91(2):270-277. |
Catalano et al. “Multiphase helical CT findings after percutaneous ablation procedures for hepatocellular carcinoma.” Abdom. Imaging, 25(6), 2000, pp. 607-614. |
Chiriboga et al., “Infrared Spectroscopy of Human Tissue. IV. Detection of Dysplastic and Neoplastic Changes of Human Cervical Tissue Via Infrared Microscopy,” Cellular and Molecular Biology; 1998; 44(1):219-229. |
Crawford et al., “Computer Modeling of Prostate Biopsy: Tumor Size and Location—Not Clinical Significance—Determine Cancer Detection,” Journal of Urology, Apr. 1998, vol. 159(4), pp. 1260-1264, 5 pages. |
Deering, “High Resolution Virtual Reality.” Proceedings of SIGGRAPH '92, Computer Graphics, 26(2), 1992, pp. 195-202. |
Depiero et al., “3-D Computer Vision Using Structured Light: Design, Calibration and Implementation Issues,” The University of Tennessee, pp. 1-46, (1996). |
Dodd et al., “Minimally invasive treatment of malignant hepatic tumors: at the threshold of a major breakthrough.” Radiographies 20(1),2000, pp. 9-27. |
Drascic et al., “Perceptual Issues in Augmented Reality,” SPIE vol. 2653: Stereoscopic Displays and Virtual Reality Systems III, pp. 123-134 (Feb. 1996). |
Fahey et al., “Meta-analysis of Pap Test Accuracy; American Journal of Epidemiology,” 1995 141(7):680-689; The John Hopkins University School of Hvqiene and Public Health; USA. |
Final Official Action for U.S. Appl. No. 10/492,582 (Apr. 30, 2009). |
Foxlin et al., “An Inertial Head-Orientation Tracker with Automatic Drift Compensation for Use with HMD's,” Virtual Reality Software & Technology, Proceedings of the VRST Conference, pp. 159-173, Singapore, Aug. 23-26, 1994. |
Fronheiser et al., “Real-Time 3D Color Doppler for Guidance of Vibrating Interventional Devices,” IEEE ULTRASONICS Symposium, pp. 149-152 (2004). |
Fuchs et al., “Augmented Reality Visualization for Laparoscopic Surgery,” Proceedings of Medical Image Computer and Computer-Assisted Intervention, MICCAI '98, pp. 1-10 (1998). |
Fuhrmann et al., “Comprehensive calibration and registration procedures for augmented reality,” Proc. Eurographics Workshop on Virtual Environments 2001,219-228 (2001). |
Garrett et al., “Real-Time Incremental Visualization of Dynamic Ultrasound Volumes Using Parallel BSP Trees,”Proceedings of IEEE Visualization 1996, pp. 235-240, available from www.cs.unc.edu/˜andrei/pubs/1996 VIS dualBSP Mac.pdf, printed Sep. 20, 2007, 7 pages. |
Georgakoudi et al., “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” American Journal of Obstetrics and Gynecology; Mar. 2002; 186(3):374-382; USA. |
Herline et al., “Surface Registration for Use in Interactive, Image-Guided Liver Surgery,” Computer Aided Surgery 5:11-17 (2000). |
Holloway; Registration Error Analysis for Augmented Reality; Presence: Teleoperators and Virtual Environments 6(4), 413-432 (1997). |
Hornung et al., “Quantitative near-infrared spectroscopy of cervical dysplasia in vivo,” Human Reproduction; 1999; 14(11):2908-2916; European Society of Human Reproduction and Embryology. |
Howard et al., An Electronic Device for Needle Placement during Sonographically Guided Percutaneous Intervention, Radiology 2001; 218:905-911. |
http://www.planar.com/products/flatpanel—monitors/stereoscopic/ (Printed Dec. 29, 2011). |
InnerAim Brochure; 3D Visualization Software for Simpler, Safter, more Precise Aiming, Published no earlier than Apr. 1, 2010. |
International Preliminary Report on Patentability for International Application No. PCT/US2009/032028 (Aug. 5, 2010). |
International Search Report and Written Opinion recieved in corresponding PCT Application No. PCT/US2010/024378, mailed Oct. 13, 2010, 9 pages. |
InVision System Brochure; A “GPS” for Real-Time 3D Needle Visualization & Guidance, Published no earlier than Mar. 1, 2008. |
InVision User Manual; Professional Instructions for Use, Published no earlier than Dec. 1, 2008. |
Jacobs et al., “Managing Latency in Complex Augmented Reality Systems,” ACM SIGGRAPH Proceedings of the Symposium of Interactive 3D Graphics 1997, pp. 49-54, available from www.cs.unc.edu/˜us/Latency//ManagingRelativeLatency.html, printed Sep. 20, 2007, 12 pages. |
Kanbara et al., “A Stereoscopic Video See-through Augmented Reality System Based on Real-time Vision-Based Registration,” Nara Institute of Science and Technology, pp. 1-8 (2000). |
Keller et al., “What is it in Head Mounted Displays (HMDs) that really makes them all so terrible!,” pp. 1-8 (1998). |
Lass, “Assessment of Ovarian Reserve,” Human Reproduction, 2004, vol. 19(3), pp. 467-469, available from http://humrep.oxfordjournals.orgcgi/reprint/19/3/467, printed Sep. 20, 2007, 3 pages. |
Lee et al, “Modeling Real Objects Using Video See-Through Augmented Reality,” Proceedings of the Second International Symposium on Mixed Reality, ISMR 2001, pp. 19-26 (Mar. 14-15, 2001). |
Lee et al., “Modeling Real Objects Using Video See-Through Augmented Reality,” Presence, vol. 11, No. 2, pp. 144-157 (Apr. 2002). |
Leven et al., DaVinci Canvas: A Telerobotic Surgical System with Integrated, Robot-Assisted, Laparoscopic Ultrasound Capability, in J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3749, pp. 811-818, 2005. |
Levy et al., An Internet-Connected, Patient Specific, Deformable Brain Atlas Integrated into a Surgical Navigation System, Journal of Digital Imaging, vol. 10, No. 3. Suppl. 1 Aug. 1997: pp. 231-237. |
Livingston et al., “Magnetic Tracker Calibration for Improved Augmented Reality Registration,” Presence: Teleoperators and Virtual Environments, 1997, vol. 6(5), pp. 532-546, available from www.cs.unc.edu/˜andrei/pubs/1997—Presence—calibr.pdf, printed Sep. 20, 2007, 14 pages. |
Matsunaga et al., “the Effect of the Ratio Difference of Overlapped Areas of Stereoscopic Images on each Eye in a Teleoperation,” Stereoscopic Displays and Virtual Reality Systems VII, Proceedings of SPIE, vol. 3957, pp. 236-243 (2000). |
Meehan et al., “Effects of Latency on Presence in Stressful Virtual Environment,” Proceedings of IEEE Virtual Reality 2003, pp. 141-148, available from http://www.cs.unc.edu/˜eve/pubs.html, printed Sep. 20, 2007, 9 pages. |
Milgram et al., “Adaptation Effects in Stereo due to Online Changes in Camera Configuration,” SPIE vol. 1669-13, Stereoscopic Displays and Applications III, pp. 1-12 (1992). |
Mitchell et al., “Colposcopy for the Diagnosis of Squamous Intraepithelial lesions: A metaanalysis,” Obstetrics and Gynecology; Apr. 1998; 91(4):626-631. |
Nakamoto et al., 3D Ultrasound System Using a Magneto-optic Hybrid Tracker for Augmented Reality Visualization in Laparoscopic Liver Surgery, in T. Dohi and R. Kikinis (Eds.): MICCAI 2002, LNCS 2489, pp. 148-155, 2002. |
Non-Final Official Action for U.S. Appl. No. 12/609,915 (Nov. 9, 2011). |
Non-Final Official Action for U.S. Appl. No. 10/492,582 (Aug. 19, 2008). |
Nordstrom et al., “Identification of Cervical Intraepithelial Neoplasia (CIN) Using UV-Excited Fluorescence and Diffuse-Reflectance Tissue Spectroscopy,” Lasers in Surgery and Medicine; 2001; 29; pp. 118-127; Wiley-Liss, Inc. |
Notification of Republication for International Application No. PCT/US2009/032028 (Oct. 19, 2009). |
Notification of Transmittal of the International Search Report or the Declaration for International Application No. PCT/US02/33597 (June. 25, 2003). |
Ohbuchi et al., “Incremental Volume Reconstruction and Rendering for 3D Ultrasound Imaging,” Visualization in Biomedical Computing, SPIE Proceedings, pp. 312-323, (Oct. 13, 1992). |
Ohbuchi, “Incremental Acquisition and Visualization of 3D Ultrasound Images,” Ph.D. Dissertation, UNC-CH Computer Science Technical Report TR95-023, (1993). |
PCT, The International Search Report of the International Searching Authority, mailed Sep. 9, 2009, for case PCT/US2009/032028. |
PCT, The International Search Report of the International Searching Authority, mailed Mar. 3, 2011, for case PCT/US2010/043760. |
Pogue et al., “Analysis of acetic acid-induced whitening of high-grade squamous intraepithelial lesions,” Journal of Biomedical Optics; Oct. 2001; 6(4):397-403. |
Raij et al., Comparing Interpersonal Interactions with a Virtual Human to Those with a Real Human; IEEE Transactions on Visualization and Computer Graphics 13(3), 443-457 (2007). |
Raz et al., “Real-Time Magnetic Resonance Imaging-Guided Focal Laser Therapy in Patients with Low-Risk Prostate Cancer,” European Urology 58, pp. 173-177. Mar. 12, 2010. |
Restriction and/or Election Requirement for U.S. Appl. No. 10/492,582 (Apr. 3, 2008). |
Robinett et al., “A Computational Model for the Stereoscopic Optics of a Head-Mounted Display,” SPIE vol. 1457, Stereoscopic Displays and Applications II, pp. 140-160 (1991). |
Rolland et al., “Towards Quantifying Depth and Size Perception in 3D Virtual Environments,” Presence: Teleoperators and Virtual Environments 4, vol. 1, pp. 1-21 (1995). |
Rolland et al., “Towards Quantifying Depth and Size Perception in Virtual Environments,” Presence: Teleoperators and Virtual Environments 4, vol. 1, pp. 24-49 (Winter 1995). |
Rolland et al., Towards Quantifying Depth and Size Perception in Virtual Environments, Presence: Teleoperators and Virtual Environments, Winter 1995, vol. 4, Issue 1, pp. 24-49. |
Rosenthal et al., “Augmented Reality Guidance for Needle Biopsies: An Initial Randomized, Controlled Trial in Phantoms,” Proceedings of Medical Image Analysis, Sep. 2002, vol. 6(3), pp. 313-320, available from www.cs.unc.edu/˜fuchs/publications/AugRealGuida—NeedleBiop02.pdf, printed Sep. 20, 2007, 8 pages. |
Rosenthal et al., “Augmented Reality Guidance for Needle Biopsies: A Randomized, Controlled Trial in Phantoms,” Proceedings of MICCAI 2001, eds. W. Niessen and M. Viergever, Lecture Notes in Computer Science, 2001, vol. 2208, pp. 240-248, available from www.cs.unc.edu/˜us/AugmentedRealityAssistance.pdf. |
Splechtna et al., Comprehensive calibration and registration procedures for augmented reality; Proc. Eurographics Workshop on Virtual Environments 2001, 219-228 (2001). |
State et al., “Technologies for Augmented-Reality Systems: Realizing Ultrasound-Guided Needle Biopsies,” Proceedings of SIGGRAPH '96, pp. 1-8 (Aug. 1996). |
State et al., “Case Study: Observing a Volume Rendered Fetus within a Pregnant Patient,” Proceedings of IEEE Visualization 1994, pp. 364-368, available from www.cs.unc.edu/˜fuchs/publications/cs-ObservVolRendFetus94.pdf, printed Sep. 20, 2007, 5 pages. |
State et al., “Interactive Volume Visualization on a Heterogenous Message-Passing Multicomputer,” Proceedings of 1995 Symposium on Interactive 3D Graphics, 1995, pp. 69-74, 208, available from www.cs.unc.edu/˜andrei/pubs/1995—I3D—vol2—Mac.pdf, printed Sep. 20, 2007. |
State et al., “Simulation-Based Design and Rapid Prototyping of a Parallax-Free, Orthoscopic Video See-Through Head-Mounted Display,” Proceedings of International Symposium on Mixed and Augmented Reality (ISMAR) 2005, available from www.cs.unc.edu/˜andrei/pubs/2005—ISMAR—VSTHMD—design.pdf, printed Sep. 20, 2007, 4. |
State et al., “Stereo Imagery from the UNC Augmented Reality System for Breast Biopsy Guidance” Proc. Medicine Meets Virtual Reality (MMVR) 2003 (Newport Beach, CA, Jan. 22-25, 2003). |
State et al., “Superior Augmented Reality Registration by Integrating Landmark Tracking and Magnetic Tracking,” ACM SIGGRAPH Computer Graphics, Proceedings of SIGGRAPH 1996, pp. 429-438, available from www.cs.princeton.edu/courses/archive/fall01/cs597d/papers/state96.pdf, printed Sep. 20, 2007, 10 pages. |
State, “Exact Eye Contact with Virtual Humans,” Proc. IEEE International Workshop on Human Computer Interaction 2007, Rio de Janeiro, Brazil, pp. 138-145 (Oct. 20, 2007). |
Symons et al., “What are You Looking at? Acuity for Triadic Eye Gaze,” J. Gen. Psychology 131(4), pp. 451-469 (2004). |
Takacs et al., “The Virtual Human Interface: A Photorealistic Digital Human,” IEEE Computer Graphics and Applications 23(5), pp. 38-45 (2003). |
Takagi et al., “Development of a Stereo Video See-through HMD for AR Systems,” IEEE, pp. 68-77 (2000). |
Takayama et al., “Virtual Human with Regard to Physical Contact and Eye Contact,” Kishino, F., Kitamura, U., Kato, H., Nagata, N. (eds) Entertainment Computing 2005, LNCS, vol. 3711, pp. 268-278 (2005). |
U.S. Appl. No. 11/828,826, filed Jul. 26, 2007. |
Ultraguide 1000 System, Ultraguide, www.ultraguideinc.com, 1998. |
van Staveren et al., “Light Scattering in Intralipid—10% in the wavelength range of 400-1100 nm,” Applied Optics; Nov. 1991; 30(31):4507-4514. |
Viola et al., “Alignment by Maxmization of Mutual Information,” International Journal of Computer Vision, vol. 24, No. 2, pp. 1-29 (1997). |
Viola, Paul A., Alignment by Maximization of Mutual Information, Ph.D. Dissertation, MIT-Artificial Intelligence Laboratory Technical Report No. 1548 (Jun. 1995). |
Ware et al., “Dynamic Adjustment of Stereo Display Parameters,” IEEE Transactions on Systems, Many and Cybernetics, vol. 28, No. 1, pp. 1-19 (Publication Date Unknown). |
Watson et al., “Using Texture Maps to Correct for Optical Distortion in Head-Mounted Displays,” Proceedings of the Virtual Reality Annual Symposium '95, IEEE, pp. 1-7 (1995). |
Welch, Hybrid Self-Tracker: An Inertial/Optical Hybrid Three-Dimensional Tracking System, University of North Carolina Chapel Hill Department of Computer Science, TR 95-048. |
Yinghui et al., “Real-Time Deformation Using Modal Analysis on Graphics Hardware,” Graphite 2006, Kuala Lumpur, Malaysia, Nov. 29-Dec. 2, 2006. |
Zitnick et al., “Multi-Base Stereo Using Surface Extraction,” Visual Interface Inc., (Nov. 24, 1996). |
Ohbuchi et al., “An Incremental Volume Rendering Algorithm for Interactive 3D Ultrasound Imaging,” UNC-CH Computer Science Technical Report TR91-003 (1991). |
Notice of Abandonment for U.S. Appl. No. 12/609,915 (Jan. 3, 2013). |
Final Official Action for U.S. Appl. No. 12/609,915 (May 25, 2012). |
Caines et al., “Stereotaxic Needle Core Biopsy of Breast Lesions Using a Regular Mammographic Table with an Adaptable Stereotaxic Device,” American Journal of Roentgenology, vol. 163, No. 2, pp. 317-321, Downloaded from www.ajrorline.org on Jul. 10, 2013 (Aug. 1994). |
Dumoulin et al., “Real-Time Position Monitoring of Invasive Devices Using Magnetic Resonance,” Magnetic Resonance in Medicine, vol. 29, Issue 3, pp. 411-415 (Mar. 1993). |
Fuchs et al., “Optimizing a Head-Tracked Stereo Display System to Guide Hepatic Tumor Ablation,” Departments of Computer Sciences and Radiology and School of Medicine, University of North Carolina at Chapel Hill; InnerOptic Technology, Inc., pp. 1-6 (2008). |
Fuchs et al., “Virtual Environments Technology To Aid Needle Biopsies of the Breast,” Health Care in the Information Age, Ch. 6, pp. 60-61, Presented in San Diego, Jan. 17-20, 1996, published by IOS Press and Ohmsha (Feb. 1996). |
Jolesz et al., “MRI-Guided Laser-Induced Interstitial Thermotherapy: Basic Principles,” SPIE Institute on Laser-Induced Interstitial Thermotherapy (L1TT), pp. 1-17 (Jun. 22-23, 1995). |
Kadi et al., “Design and Simulation of an Articulated Surgical Arm for Guiding Stereotactic Neurosurgery,” SPIE vol. 1708 Applications of Artificial Intelligence X: Machine Vision and Robotics, pp. 1-18, Downloaded from: http://proceedings.spiedigitallibrary.org/ on Jul. 11, 2013 (1992). |
Kato et al., “A frameless, armless navigational system for computer-assisted neurosurgery,” Journal of Neurosurgery, vol. 74, No. 5, pp. 845-849 (May 1991). |
PCT International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US07/75122 (Aug. 20, 2008). |
PCT International Preliminary Report on Patentability (Chapter 1) for International Application No. PCT/US07/75122 (Mar. 3, 2009). |
PCT International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2013/023678 (Jun. 13, 2013). |
PCT International Preliminary Report on Patentability (Chapter 1) for International Application No. PCT/US2013/023678 (Aug. 5, 2014). |
Screenshots from video produced by the University of North Carolina, produced circa 1992. |
State et al., “Contextually Enhanced 3D Visualization fro Multi-Born Tumor Ablation Guidance,” Departments of Computer Science and Radiology and School of Medicine, University of North Carolina at Chapel Hill; InnerOptic Technology, Inc., pp. 70-77, (2008). |
Number | Date | Country | |
---|---|---|---|
20110046483 A1 | Feb 2011 | US |
Number | Date | Country | |
---|---|---|---|
61023268 | Jan 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2009/032028 | Jan 2009 | US |
Child | 12842261 | US |