Methods, systems, and devices relating to surgical end effectors

Information

  • Patent Grant
  • 11832871
  • Patent Number
    11,832,871
  • Date Filed
    Monday, June 21, 2021
    2 years ago
  • Date Issued
    Tuesday, December 5, 2023
    5 months ago
Abstract
The embodiments disclosed herein relate to various medical device components, including components that can be incorporated into robotic and/or in vivo medical devices, and more specifically including end effectors that can be incorporated into such devices. Certain end effector embodiments include various vessel cautery devices that have rotational movement as well as cautery and cutting functions while maintaining a relatively compact structure. Other end effector embodiments include various end effector devices that have more than one end effector.
Description
FIELD OF THE INVENTION

The embodiments disclosed herein relate to various medical device components and related components, including robotic and/or in vivo medical devices and related components. More specifically, certain embodiments include various medical device attachment and control components, often referred to as “end effectors” or “operational components.” Certain end effector embodiments disclosed herein include vessel sealing and cutting devices, and, in particular, bipolar cautery devices having integrated cutting components. Other end effector embodiments disclosed herein include various dual end effector components, wherein such components have two or more end effectors. Further embodiments relate to systems and methods for operating the above components.


BACKGROUND OF THE INVENTION

Invasive surgical procedures are essential for addressing various medical conditions. When possible, minimally invasive procedures, such as laparoscopy, are preferred.


However, known minimally invasive technologies such as laparoscopy are limited in scope and complexity due in part to the need to remove and insert new surgical tools into the body cavity when changing surgical instruments due to the size of access ports. Known robotic systems such as the da Vinci® Surgical System (available from Intuitive Surgical, Inc., located in Sunnyvale, Calif.) are also restricted by the access ports, the necessity for medical professionals to remove and insert new surgical tools into the abdominal cavity, as well as having the additional disadvantages of being very large, very expensive, unavailable in most hospitals, and having limited sensory and mobility capabilities.


There is a need in the art for improved surgical methods, systems, and devices.


BRIEF SUMMARY OF THE INVENTION

Discussed herein are various surgical end effectors—including certain cauterizing end effectors and certain dual end effectors—for use in surgical devices, including robotic in vivo devices.


In Example 1, an in vivo vessel sealing device comprises a device body and a bipolar vessel cautery component operably coupled to the device body. The device body has a cautery component actuation motor, a cutting component actuation motor, a jaw actuation motor, and a cautery component shaft disposed within the body and operably coupled to the jaw actuation motor. The cautery component has a stationary jaw coupled to a distal end of the cautery component shaft, a mobile jaw pivotally coupled to the distal end of the cautery component shaft, and a cutting component operably coupled to the cutting component actuation motor. In addition, the cautery component is operably coupled to the cautery component actuation motor.


Example 2 relates to the sealing device according to Example 1, wherein the cautery component is rotatable about an axis parallel with the shaft.


Example 3 relates to the sealing device according to Example 1, wherein the overall length of the device body is under about 3 inches.


Example 4 relates to the sealing device of Example 1, wherein the overall length of the cautery component is under about 1.5 inches.


Example 5 relates to the sealing device of Example 1, wherein the device is an end effector coupled to an arm of an in vivo robotic device.


Example 6 relates to an in vivo robotic device comprising a device body operably coupled to at least one arm, wherein the sealing device of Example 1 is operably coupled to the at least one arm.


In Example 7, a method of cauterizing tissue of a patient with an in vivo cautery device comprises positioning an in vivo cautery device near the tissue, positioning a cautery component rotationally in relation to the tissue with a cautery component actuation motor, and opening a mobile jaw with a jaw actuation motor and positioning the cautery component such that the tissue is positioned between the mobile and stationary jaws. The method further comprises closing the mobile jaw with a jaw actuation motor, applying an electrical current to the tissue via the mobile and stationary jaws, thereby cauterizing the tissue, and urging the cutting component in a distal direction with the cutting component actuation motor, thereby cutting the cauterized tissue positioned between the mobile and stationary jaws.


In Example 8, an operational component for an in vivo surgical device comprises an actuator housing comprising at least one actuator; and an end effector housing operably coupled to the actuator housing. The end effector housing comprises a first end effector rotationally coupled to the end effector housing and a second end effector rotationally coupled to the end effector housing.


While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. As will be realized, the invention is capable of modifications in various obvious aspects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a perspective view of a vessel sealing device, according to one embodiment.



FIG. 1B is a front view of a vessel sealing device, according to one embodiment.



FIG. 1C is a side view of a vessel sealing device, according to one embodiment.



FIG. 2 is a side view of a vessel sealing device longitudinally sectioned to show component staging, according to one embodiment.



FIG. 3A is a perspective view of a vessel sealing device with the exterior shown transparent to reveal inner components, according to one embodiment.



FIG. 3B is a front view of a vessel sealing device with the exterior shown transparent to reveal inner components, according to one embodiment.



FIG. 4 is a side view of a vessel sealing device longitudinally sectioned to show inner components, according to one embodiment.



FIG. 5 is a perspective view of a vessel sealing device laterally sectioned to show inner components, according to one embodiment.



FIG. 6 is a view of a mobile jaw for a vessel sealing device in the closed position (top), partially open position (middle), and fully open position (bottom), according to one embodiment.



FIG. 7 is a side view of a mobile jaw (top) and an outer shell (bottom) for a vessel sealing device, according to one embodiment.



FIG. 8A is a perspective top view of a medical device with a dual end effector component in a first orientation, according to one embodiment.



FIG. 8B is a perspective side view of the device and component of FIG. 8A in a first orientation.



FIG. 9A is a perspective top view of the device and component of FIG. 8A in a second orientation.



FIG. 9B is a perspective side view of the device and component of FIG. 8A in a second orientation.



FIGS. 10A and 10B are schematic representations of the bi-directional range of motion of the component of FIG. 8A.



FIGS. 11A and 11B are perspective isometric views of the component of FIG. 8A.



FIGS. 12A and 12B are perspective side views of the component of FIG. 8A.



FIGS. 13A and 13B are perspective front views of the component of FIG. 8A.



FIG. 14 is a perspective front view of the component of FIG. 8A.



FIG. 15 is a perspective top view of the component of FIG. 8A.



FIG. 16 is a perspective side view of the component of FIG. 8A.



FIG. 17 is a perspective isometric view of the component of FIG. 8A.



FIG. 18 is a perspective front view of the component of FIG. 8A.



FIG. 19 is a perspective front view of the component of FIG. 8A.



FIG. 20 is a perspective isometric view of the component of FIG. 8A.



FIG. 21 is a perspective side view of the component of FIG. 8A.



FIG. 22 is a perspective isometric view of the component of FIG. 8A.



FIG. 23A is a perspective view of a robotic surgical device, according to one embodiment.



FIG. 23B is a side view of the robotic surgical device of FIG. 23A.



FIG. 24A is a front view of a robotic surgical device, according to another embodiment.



FIG. 24B is a perspective view of the robotic surgical device of FIG. 24A.



FIG. 25A is a perspective view of a robotic surgical device positioned in a patient's peritoneal cavity, according to one embodiment.



FIG. 25B is another perspective view of the robotic surgical device of FIG. 25A.



FIG. 25C is a perspective view of the robotic surgical device of FIG. 25A.



FIG. 26A is a front perspective view of a robotic surgical device, according to a further embodiment.



FIG. 26B is a side view of the robotic surgical device of FIG. 26A being inserted into a patient's body cavity, according to one embodiment.



FIG. 26C is a side view of the robotic surgical device of FIG. 26A being inserted into a patient's body cavity, according to one embodiment.



FIG. 26D is a side view of the robotic surgical device of FIG. 26A positioned a patient's body cavity, according to one embodiment.





DETAILED DESCRIPTION

The various systems and devices disclosed herein relate to devices for use in medical procedures and systems. More specifically, various embodiments relate to end effector devices that can be used in various procedural devices and systems. For example, certain embodiments relate to vessel sealing end effector devices, while other embodiments relate to dual end effector components incorporated into or used with robotic and/or in vivo medical devices. The term “dual end effector” as used herein shall mean an operational component having two or more interchangeable end effectors.


It is understood that the various embodiments of end effector devices or components disclosed herein can be incorporated into or used with any other known medical devices, systems and methods, including, but not limited to, robotic or in vivo devices as defined herein.


For example, the various embodiments disclosed herein can be incorporated into or used with any of the medical devices disclosed in copending U.S. application Ser. No. 11/932,441 (filed on Oct. 31, 2007 and entitled “Robot for Surgical Applications”), Ser. No. 11/695,944 (filed on Apr. 3, 2007 and entitled “Robot for Surgical Applications”), Ser. No. 11/947,097 (filed on Nov. 27, 2007 and entitled “Robotic Devices with Agent Delivery Components and Related Methods), Ser. No. 11/932,516 (filed on Oct. 31, 2007 and entitled “Robot for Surgical Applications”), Ser. No. 11/766,683 (filed on Jun. 21, 2007 and entitled “Magnetically Coupleable Robotic Devices and Related Methods”), Ser. No. 11/766,720 (filed on Jun. 21, 2007 and entitled “Magnetically Coupleable Surgical Robotic Devices and Related Methods”), Ser. No. 11/966,741 (filed on Dec. 28, 2007 and entitled “Methods, Systems, and Devices for Surgical Visualization and Device Manipulation”), Ser. No. 12/171,413 (filed on Jul. 11, 2008 and entitled “Methods and Systems of Actuation in Robotic Devices”), Ser. No. 12/192,663 (filed on Aug. 15, 2008 and entitled “Medical Inflation, Attachment, and Delivery Devices and Related Methods”), Ser. No. 12/192,779 (filed Aug. 15, 2008 and entitled “Modular and Cooperative Medical Devices and Related Systems”), Ser. No. 12/324,364 (filed Nov. 26, 2008 and entitled “Multifunctional Operational Component for Robotic Devices”), 61/030,588 (filed on Feb. 22, 2008 and entitled Medical Devices having a Positionable Camera), Ser. No. 12/971,917 (filed on Dec. 17, 2010 and entitled “Modular and Cooperative Medical Devices and Related Systems and Methods”), 61/506,384 (filed on Jul. 11, 2011 and entitled “Robotic Surgical Devices, Systems, and Related Methods”), 61/542,543 (filed on Oct. 3, 2011 and entitled “Robotic Surgical Devices, Systems, and Related Methods”), 61/584,947 (filed on Jan. 10, 2012 and entitled “Methods, Systems, and Devices, for Surgical Access and Insertion”), and 61/640,879 (filed on May 1, 2012 and entitled “Single Site Robotic Device and Related Systems and Methods”), all of which are hereby incorporated herein by reference in their entireties.


In accordance with certain exemplary embodiments, any of the various embodiments disclosed herein can be incorporated into or used with a natural orifice translumenal endoscopic surgical device, such as a NOTES device. Those skilled in the art will appreciate and understand that various combinations of features are available including the features disclosed herein together with features known in the art.


Certain device implementations disclosed in the applications listed above can be positioned within a body cavity of a patient, including certain devices that can be positioned against or substantially adjacent to an interior cavity wall, and related systems. An “in vivo device” as used herein means any device that can be positioned, operated, or controlled at least in part by a user while being positioned within a body cavity of a patient, including any device that is positioned substantially against or adjacent to a wall of a body cavity of a patient, further including any such device that is internally actuated (having no external source of motive force), and additionally including any device that may be used laparoscopically or endoscopically during a surgical procedure. As used herein, the terms “robot,” and “robotic device” shall refer to any device that can perform a task either automatically or in response to a command.


Further, the various end effector embodiments could be incorporated into various robotic medical device systems that are actuated externally, such as those available from Apollo Endosurgery, Inc., Hansen Medical, Inc., Intuitive Surgical, Inc., and other similar systems, such as any of the devices disclosed in the applications that are incorporated herein elsewhere in this application.


Certain embodiments disclosed herein relate to end effector devices for use in sealing vessels, including certain embodiments used in combination with any of the various procedural device embodiments described above. One such embodiment is a cautery device. FIGS. 1A-1C depict one embodiment of a cautery device 10 having a proximal end 30 and a distal end 40. In the cautery device 10 depicted in FIGS. 1A-1C, the device 10 includes a body 20 with a bipolar cautery component 12 at the distal end 40.


Known minimally-invasive in vivo cautery devices use a monopolar hook cautery component. In contrast, the embodiments disclosed herein provide a different device that cauterizes and cuts vessels with more precision and with reduced damage to the surrounding tissue.


As best shown in FIGS. 1A-1C, the bipolar cautery component 12, also termed a “cautery end effector” herein, includes a stationary jaw component 14, a mobile jaw component 16 for clasping and cauterizing a vessel (e.g., a vein or artery), and a cutting component 18 for cutting the cauterized vessel, thus providing a three function end effector 12. The stationary jaw component 14 and mobile jaw component 16 are structured like a pair of jaws, with the stationary jaw component 14 being configured to remain stationary during the cautery process, providing a substantially rigid and stable base to support a vessel. The mobile jaw component 16 is configured such that it can move in a jaw-like fashion in relation to the stationary jaw component 14 such that the mobile jaw component 16 can ultimately make contact with the vessel positioned between the stationary jaw component 14 and the mobile jaw component 16 to clasp the vessel between the jaws 14, 16.


As best shown in FIGS. 6 and 7, according to one embodiment, the mobile jaw 16 additionally includes a pivot component 13 that that projects laterally from the proximal end of mobile jaw 16 and includes a receptacle 13a for receiving a pin 13b. The pivot component 13 is generally peg- or wedge-shaped to fit through an opening in outer shell 15 and facilitates movement of mobile jaw 16 as described herein below. Stationary jaw 14 includes an opening 14a configured to align with receptacle 13 and receive pin 13b.


Returning to FIGS. 1A-1C, each of the fixed jaw component 14 and mobile jaw component 16 is connected to a source of electrical current (not shown) such that the jaws 14, 16 function as bipolar electrodes, with one jaw functioning as a cathode and one jaw functioning as an anode when an electric current is applied. In certain implementations, the source for electrical current is a generator (not shown) that provides current separately from electricity powering the motors. In some embodiments, the generator is located outside of device 10 as a separate component. In use, the electricity flowing through the jaws 14, 16 creates heat which cauterizes a vessel clasped between the jaws 14, 16. In some embodiments, the current is applied discretely by the operator by, for example, pressing a button or flipping a switch on the generator.


As best shown in FIG. 4, the stationary jaw 14 of the bipolar cautery end effector 12 is attached to a shaft 32 that extends proximally from the stationary jaw 14 and is disposed within the body 20. The cutting component 18 is positioned between the jaws 14, 16 (as shown in FIGS. 1A-1C and 4) and extends through the shaft 32. The shaft 32 has a slot 39 cut into either or both the top 34 or bottom 36 sides of the shaft 32 and extending longitudinally along part of the length of the shaft 32 to accommodate a pin 38 (as shown in FIG. 4) that extends through the slot 39 and attaches to or extends through the cutting component 18 such that the pin is coupled to the cutting component. As such, the pin 38 and cutting component 18 can slide together along the slot 39 from a generally proximal first position to a more distal second position along with the cutting component 18. In some embodiments as best shown in FIG. 5, one or both of the stationary jaw 14 and mobile jaw 16 have a channel 26, 28 within which the cutting component 18 moves from the first position to the second position.


In the embodiment illustrated in FIG. 4, the cutting component 18 is substantially elongate and has a proximal end 24 and a distal end 25. The cutting component 18 includes a cutting surface 22 at the distal end 25 such that when the cutting component 18 is moved from the generally proximal first position to the more distal second position, the cauterized vessel enclosed between the jaws 14, 16 of the cautery device 10 is cut at the point of cautery.


For ease of description and understanding, the cautery device 10 as described herein has three sections 100, 200, 300, as illustrated in FIG. 2. In this embodiment, each section generally defines a plurality of components configured to control a function of the cautery device 10 within the body 20. As such, the first section 100 controls the application of the electrical current to the jaws 14, 16 as described above and rotation of the bipolar cautery end effector 12. The second section 200 controls positioning of the cutting component 18. Finally, the third section 300 controls opening and closing of the jaws 14, 16 of the bipolar cautery end effector 12. It is to be understood that while the illustrated embodiments utilize three sections, this identification and division of sections is provided solely for ease of description and understanding. It is also understood that the sections may be combined or split into more or fewer sections. For example, the first section 100 may be split into two sections separately controlling electrical current and end effector rotation.


According to some embodiments, the sections are configured and positioned such that the first section 100 is proximal to the bipolar cautery end effector 12, while the third section 300 is located closest to the proximal end 30 of the device 10, with the second section 200 being located between the first and third sections 100, 300. In some embodiments, the sections are configured and positioned such that the shape of the cautery device 10 becomes more slender toward the distal end. It is to be understood, however, that the sections may be configured or positioned in any manner suitable for proper function of the device, and may include any modifications that provide functional, aesthetic, and/or manufacturing advantages. Such advantages include, without limitation, visibility of the bipolar cautery end effector 12, size reduction, reduced materials costs, and the like.


Power for the various functions of the device 10 as described herein is provided by the motors 102, 202, 302, as best shown in FIGS. 4 and 5. Electrical current for the motors 102, 202, 302 is provided by an electrical source (not shown). According to one implementation, the electrical source is positioned externally in relation to the device 10. Alternatively, the electrical source can be positioned within the device. In some embodiments, the source of electricity for motors 102, 202, 302 also includes a control device (not shown) that includes components for controlling the motors 102, 202, 302 and/or sensing the status (e.g., position) of motors 102, 202, 302. For example, the control device could be an external control device configured to be manipulated by a user. In some embodiments, the source of electric current for motors 102, 202, 302 is separate from the control device. In other embodiments, each motor 102, 202, 302, is controlled and/or powered separately from one another. In some embodiments, the electricity for motors 102, 202, 302 is provided by the same electricity source as the current provided to jaws 14, 16.


As best shown in FIG. 5, one or more of motors 102, 202, 302 have an encoder, e.g., 102a, 302a, (not shown for motor 202), which is connected to the control device for receiving control instructions from the control device and providing data about the status of motors 102, 202, 302 to the control device. In some embodiments, one or more motors 102, 202, 302 also have a gear head, e.g., 102b, 302b, (not shown for motor 202). The gear heads 102b, 302b, (not shown for motor 202) can be fixed or, in some embodiments, removable and interchangeable to provide multiple gear ratios.


In accordance with one implementation, due to the electrical nature of the bipolar cautery end effector 12, the drivetrain—including the first 100, second 200, and third 300 sections of the device—is electrically isolated from the motors 102, 202, 302 through the use of non-conductive gears driven by the motors 102, 202, 302. In one embodiment, the non-conductive gears are made of nylon. Alternatively, the gears can be made of any known non-conductive material that can be used in gears. The non-conductive gears inhibit electrical current from flowing through the drive train to the jaws 14, 16 and producing electrical interference that affects communication between the motors 102, 202, 302 and control device. In some embodiments, both conductive and non-conductive gears are used. For example, in one implementation, as best shown in FIGS. 4 and 5, gears 106, 208, 306 are made of non-conductive material, while gears 104, 206, 308 are made of a conductive material. In accordance with another implementation, the effect of electrical interference can be reduced through the use of interference-reducing software and/or components in the control device or encoder 102a, 302a instead of, or in addition to, the use of non-conductive gears.


As best shown in FIGS. 3A and 5, the first section 100 of the cautery device 10 includes a first section motor 102 that is operatively coupled to the bipolar cautery end effector 12 to control rotation of the bipolar cautery end effector 12. In some embodiments, the first section motor 102 is directly coupled to the bipolar cautery end effector 12 or can be indirectly coupled to the bipolar cautery end effector 12 by one or more coupling means. For example, in the embodiment illustrated in FIGS. 3A and 3B, the first section motor 102 is coupled to the bipolar cautery end effector 12 by a first gear 104 and a second gear 106, the second gear 106 being attached to the shaft 32 of the bipolar cautery end effector 12 via metal coupler 108, as best shown in FIG. 5, such that rotational movement produced by the first section motor 102 is transferred to rotational movement of the bipolar cautery end effector 12 around axis A depicted in FIG. 3A. In some embodiments, metal coupler 108 is coupled to the bipolar cautery end effector 12 via an outer shell 15. As best shown in FIGS. 6 and 7, outer shell 15 projects distally from the metal coupler 108 and includes an opening 15a through which pivot component 13 on mobile jaw 16 projects and translates rotational movement of coupler 108 to shaft 32.


Second gear 106 can be fixed to the metal coupler 108 using, for example, an adhesive (e.g., UV cure glue). In some embodiments, the second gear 106 and the metal coupler 108 are configured such that the shape of each component prevents the second gear 106 from moving relative to the metal coupler 108 (i.e., non-circular geometry). For example, the metal coupler 108 can be generally square-shaped to fit into a generally square-shaped hole in the second gear 106.


Returning to FIG. 4, the first section 100 additionally includes components for applying electrical current to the jaws 14, 16. In this embodiment, the first section 100 includes an electrical connection 110 for the mobile jaw 16. The electrical connection 110 is configured to allow sliding contact to a first slip ring 112, which is connected to a source of electrical current (not shown) either directly or indirectly. Slip ring 112 is generally U-shaped or C-shaped such that it maintains contact with electrical connection 110 when electrical connection 110 rotates with shaft 36. The use of slip ring 112 rather than a wire to provide electrical connection to connection 110 prevents twisting of wires about the drive train as connection 110 rotates. Mobile jaw 16 is electrically connected to connection 110 via a conductor, such as wire 13c shown in FIG. 7 or other appropriate conductor. Electrical connection 110 is electrically isolated from stationary jaw 14 by the inclusion of a non-conductive (e.g., plastic) ring 17 between the connection 110 and the stationary jaw 14. The first section also includes a second slip ring 114 associated with the stationary jaw 14, that functions similarly to the first slip ring 112 by maintaining electrical contact with shaft 36 during rotation. The use of slip rings 112, 114 to separately provide current to jaws 16, 14, respectively, allows one jaw to function as a cathode and one jaw to function as an anode when an electric current is applied. In some embodiments, it may be desirable to include additional components or modifications to limit or focus electrical communication between jaws 14, 16.


The second section 200 in the embodiment shown in FIG. 4 includes a second section motor 202 that is operatively coupled to the cutting component 18 to control movement of the cutting component 18 from a first position to a second position along line of movement M. The second section motor 202 is coupled to a threaded collar 204 either directly or indirectly via a coupling means. In the embodiment illustrated in FIG. 4, the coupling means for coupling the second section motor 202 to the threaded collar 204 includes a first gear 206 connecting the second section motor 202 to a second gear 208, the second gear 208 being attached to the threaded collar 204 using, for example, an adhesive (e.g., UV cure glue) or non-circular geometry, as described above. An end of the pin 38 attached to or extending through the cutting component 18 is seated in a thread 212 of the threaded collar 204 such that rotational movement produced by the second section motor 202 is translated to lateral movement of the pin 38 along M and thereby the cutting component 18. The second section is configured such that the movement of the cutting component 18 along M is a distance ranging from about 0.5 to about 1.0 inches in order to cut a vessel clasped between jaws 14, 16. Alternatively, the distance ranges from about 0.7 inches to about 1.0 inches. However, the distance can be adjusted as appropriate for the vessel size and specific configuration of the cautery device 10. In one embodiment, the pivot component 13 of mobile jaw 16 includes an opening through which the cutting component 18 passes when moved. When not being used to cut a vessel, the cutting component 18 is retracted to a position proximal to the jaws 14, 16 such that the mobile jaw 16 may be opened or closed.


The third section 300 illustrated in FIGS. 4 and 5 includes a third section motor 302 that is operatively coupled to mobile jaw 16 to control opening and closing of the jaws 14, 16. In some embodiments, the third section motor 302 is directly coupled to shaft 32 or can be indirectly coupled to shaft 32 by one or more coupling means. For example, in the embodiment illustrated in FIGS. 4 and 5, the third section motor 302 is coupled to the shaft 32 by a first gear 308 and a second gear 306, the second gear 306 being attached to collar 310 using, for example, an adhesive (e.g., UV cure glue) or non-circular geometry. In some embodiments, the shaft 32 and collar 310 are threaded such that rotation produced by motor 302 is translated to lateral movement of the shaft 32 along M and thereby the jaws 14, 16 relative to outer shell 15. As best seen in FIG. 6, opening 15a restricts lateral movement of pivot component 13 of mobile jaw 16 along M relative to outer shell 15 such that lateral translation of shaft 32 along M causes mobile jaw 16 to open or close by pivoting around pin 13b via the pivot component 13 at opening 15a.


In an alternative embodiment, stationary jaw 14 can be replaced with a second mobile jaw. In this embodiment, the second mobile jaw is pivotably attached to shaft 32 and includes a pivot component similar to pivot component 13. In this embodiment, outer shell 15 is configured to include a second opening similar to opening 15a that restricts lateral movement of the pivot component of the second mobile jaw such that the second mobile jaw is opened and closed via translation of shaft 32 along M in a manner similar to mobile jaw 16.


The third section 300 can further include a means for detecting the thickness of a vessel clasped between the jaws 14, 16. Vessel thickness can be calculated, for example, based on the amount of lateral translation of shaft 32 along M required to close mobile jaw 16 or the position of mobile jaw 16 relative to stationary jaw 14. In some embodiments, the position of mobile jaw 16 relative to stationary jaw 14 is determined for example, by measuring electrical impedance between jaws 14, 16.


As discussed above, the cautery device embodiments disclosed herein can be utilized in any type of medical device, including those devices in which a compact or smaller size is desirable, such as devices for procedures to be performed within a patient. In order to achieve a cautery device with appropriate dimensions for such use, the dimensions of components disclosed herein can be adjusted to control the overall size of the device. For example, in one implementation, the motors 102, 202, 302 can range in size from about 8 mm to about 15 mm, while the overall length of the body is kept under about 3 inches. In some embodiments, the overall length of the cautery component is kept under about 1.5 inches. In some embodiments, the height and/or width is kept under 2 inches. Alternatively, other dimensions can be used depending on size, weight, and/or visibility requirements.


In use, the cautery device 20 is positioned next to the target vessel using a complementary system or device as described elsewhere such as an articulating robotic arm. Next, the cautery device 20 operates in the following manner to cauterize the vessel. The first section motor 102 rotates the cautery end effector 12 to position the jaws 14, 16 in an alignment with the vessel such that the jaws may enclose the vessel. The third section motor 302 actuates the mobile jaw 16 to open and the cautery end effector 12 is positioned such that the vessel is located between the jaws 14, 16. The third section motor 302 then actuates the mobile jaw 16 to close with the vessel disposed between the jaws 14, 16 and the source of electrical current (not shown) applies an electric current to the vessel via the jaws 14, 16, thereby cauterizing it. The second section motor 202 drives the cutting component 18 toward the distal end of the cautery device 20 and thus pushes the cutting surface 22 through the vessel enclosed in the jaws 14, 16, thereby cutting the vessel.



FIGS. 8A-22 depict a dual end effector operational component 410 that can be incorporated into any one of a variety of medical devices as described above. In this embodiment, the dual end effector operational component 410 is positioned on the end of a robotic arm 412. It is further understood that the robotic arm 412 can be part of any robotic medical device, such as an in vivo device. As best shown in FIGS. 8A-10B, the arm 412 has two arm segments, including a first arm segment (or “upper arm”) 412A and a second arm segment (or “forearm”) 412B. The first arm segment 412A is rotatably coupled with a torso motor housing 414 via a joint or hinge (not shown). The torso motor housing 414 houses a motor and actuation mechanism (not shown) to provide rotation of the first arm segment 412A relative to the torso motor housing 414. Further, the first arm segment 412A is rotatably coupled to the second arm segment 412B at joint 416A, while the second arm segment 412B is rotatably coupled to the dual end effector operational component 410 at joint 416B.


In one embodiment, the dual end effector operational component 410 has an actuator housing 418 and an end effector housing 420. The end effector housing 420 has two end effector elements 422, 424. In the embodiment depicted in FIGS. 8A-10B, one end effector element is a cautery component 422 and the second end effector element is a grasper 424. Alternatively, the end effector elements on the dual end effector operational component 410 can be any known end effectors for use with medical devices, such as, for example, forceps, needle drivers, scissors, Ligasure™, or knife components, to list a few.


As best shown in FIGS. 8A and 8B, in one embodiment, although both end effector elements 422, 424 remain operable, the end effector housing 420 is oriented so that the grasper 424 is accessible to the subject tissue and can perform a medical procedure.


As best shown in FIGS. 9A and 9B, in another embodiment, although both end effector elements 422, 424 remain operable, the end effector housing 420 is oriented so that the cautery component 422 is accessible to the subject tissue and can perform a medical procedure.


In one embodiment, both end effector elements 422, 424 can rotate in relation to the end effector housing 420. More specifically, as best shown in FIG. 9A, the cautery component 422 is rotatable relative to the end effector housing 420 as shown by arrow AA around an axis indicated by line A. Further, the grasper 424 is rotatable relative to the end effector housing 420 as shown by arrow BB around an axis indicated by line B. According to one embodiment, the grasper 424 is also configured to move between an open configuration and a closed configuration (not shown). In an alternative embodiment (not shown), both end effector elements 422, 424 can rotate relative to the end effector housing 420 and also can be configured to move between an open configuration and a closed configuration, depending on the type of end effectors. In another alternative embodiment, the two end effectors can be operably coupled to each other such that both end effectors can be configured to move between open and closed positions.


As best shown in FIG. 10A, in one embodiment, the dual end effector operational component 410 can be rotated relative to the second arm segment 412B via the joint 416B and an actuation motor and gear system (not shown) contained within the second arm segment 412B.


As best shown in FIG. 10B, in one embodiment, the dual end effector operational component 410 and the second arm segment 412B can be rotated relative to the first arm segment 412A via the joint 416A and an actuation motor and gear system (not shown) within the first arm segment 412A.


As best shown in FIGS. 11A-12B, within the dual end effector 410, the forearm gear housing 426 contains an actuation motor 428 that is rigidly coupled to a driveshaft 430. The driveshaft 430 is rigidly coupled to a rotational motor spur gear 432. The rotational motor spur gear 432 is rotatably coupled to a rotational gear 434 that is rigidly coupled to the second arm segment (such as, for example, the second arm segment 412B as shown in FIGS. 8A-10B). Actuation of the actuation motor 428 causes rotation of the driveshaft 430 and the rotational motor spur gear 432. Rotation of the rotational motor spur gear 432 causes rotation of the dual end effector operational component 410 relative to the second arm segment (such as second arm segment 412B).


As best shown in FIGS. 13A and 13B, in one embodiment, the cautery component 422 has a proximal cautery housing 436 rigidly attached to a distal cautery tip 438. In one embodiment, the wire (not shown) supplying electricity to the cautery tip 438 is enclosed in the cautery housing 436. The wire runs proximally through the dual end effector operational component 410 and is coupled at a proximal end of the wire to a power source such as a standard electrocautery generator (not shown). In another embodiment, the power source could be located within the dual end effector operational component 410. According to the implementation as shown, the grasper 424 has a proximal grasper housing 440 coupled to two grasping elements 442, 444.


As best shown in FIG. 13B, in one embodiment, the cautery housing 436 is rigidly coupled to a cautery rotational gear 446 within the end effector housing 420. Further, the grasper housing 440 is rigidly connected to the grasper rotational spur gear 448 within the end effector housing 420.


As best shown in FIG. 14, the cautery rotational gear 446 is rotatably coupled with a rotational motor spur gear 450. The rotational motor spur gear 450 is rotatably actuated by a rotational motor 452 and a rotational motor gearhead 454 coupled to the motor 452. Actuation of the rotational motor 452 and rotational motor gearhead 454 causes rotation of the rotational motor spur gear 450, and thus the cautery rotational gear 446 and the cautery housing 436. The cautery housing 436 is further coupled to two bearing elements 456, 458 proximal to the cautery rotational gear 446: a distal bearing 456 and a proximal bearing 458, both of which support the cautery housing 436 and reduce rotational friction thereof. The cautery housing 436 and proximal bearing 458 are further coupled to a cautery housing preload nut 460 that limits translation of the cautery housing 436 and provides a preload or clamping force for the two bearing elements 456, 458 to aid in reducing friction during rotation of the cautery housing 436 by holding the bearing elements 456, 458 in place during rotation.


In one embodiment, the grasper rotational spur gear 448 is rotatably coupled with the rotational motor spur gear 450. Actuation of the rotational motor 452 and rotational motor gearhead 454 causes rotation of the rotational motor spur gear 450, and thus causes rotation of the grasper rotational spur gear 448 and the grasper housing 440 simultaneously with rotation of the cautery housing 436.


In one embodiment, proximal to the grasper rotational spur gear 448, the grasper housing 440 is coupled to two beveled washer elements—a distal beveled washer element 462 and a proximal beveled washer element 464—that provide compliance for the grasper and prevent contact between moving parts during rotation of the grasper housing 440. The grasper housing 440 is further coupled to two bearing elements—a distal bearing 466 and a proximal bearing 468—that provide support for and reduce rotational friction of the grasper housing 440. The grasper housing 440 is further coupled to a distal hex preload nut 470 that limits translation of the grasper housing 440 and provides a preload or clamping force for the bearings 466, 468 to help reduce friction during rotation of the grasper housing 440 by holding the bearings 466, 468 in place during rotation.


In one embodiment, an actuation motor 472 is rigidly coupled to an actuation motor housing 474 by two actuation motor mounting bolts 476, 478. The actuation motor mounting bolts 476, 478 constrains the translation and rotation motion of the actuation motor 472 to the actuation motor housing 474.


As best shown in FIG. 15, in one embodiment, the actuation motor 472 is rigidly coupled to the actuation motor spur gear 480. Actuation of the actuation motor 472 causes rotation of the actuation motor spur gear 480 and this rotation is translated to the driveshaft housing spur gear 482.


As best shown in FIG. 16, the driveshaft housing spur gear 482 is rigidly coupled to the driveshaft housing 484 which is, in turn, rotatably coupled to the grasper driveshaft 486. Rotation of the driveshaft housing spur gear 482 via actuation of the actuation motor 472 and the actuation motor spur gear 480 therefore results in rotation of the driveshaft housing 484. Rotation of the driveshaft housing 484 in turn causes translation of the grasper driveshaft 486.


In one embodiment, rotation of the driveshaft housing 484 is aided by a proximal hex preload nut 488, several beveled washer elements 490, 492, 494 and bearing elements 496, 498. The driveshaft housing 484 is further rigidly coupled to a driveshaft housing screw 500 that constrains translation of the driveshaft housing 484 to the proximal bearing 498.


As best shown in FIG. 17, a grasper rotational pin 502 is threaded through one side of the grasper housing 440, through a hole in each of the grasping elements 442, 444 and is rigidly coupled on the opposite side of the grasper housing 440. As the grasper driveshaft 486 is translated via rotation of the driveshaft housing 484 (as best shown in FIG. 16), a connector pin 504 that connects the grasper driveshaft 486 to the grasper elements 442, 444 slides up and down in the grooves of the grasper elements 442, 444. This translation in turn causes the grasper elements 442, 444 to open and close.


As best shown in FIGS. 18 and 19, the cautery component 422 can extend and retract as necessary for operation and accessibility of the desired end effector element. As best shown in FIG. 18, the cautery component 422 can be retracted through retraction of the retractable cautery shaft 506 during operation of the grasper 424 so that unwanted contact with tissue by the cautery component 422 can be avoided. As best shown in FIG. 19, during operation of the cautery component 422, the cautery component 422 can be extended beyond the proximal tip of the grasper 424 by extension of the retractable cautery shaft 506.


As best shown in FIGS. 20 and 21, the cautery component 422 is extended and retracted through rotation of the rotational motor spur gear 450. The rotational motor spur gear 450 is rotatably coupled to the upper long cautery shaft 508. The upper long cautery shaft 508 is rigidly coupled to the lower long cautery shaft 510 via a set screw 512. The lower long cautery shaft 510 is supported by two bearing elements 514, 516. The lower long cautery shaft 510 is rotatably coupled to the retractable cautery shaft 506.


As best shown in FIG. 22, rotation of the lower long cautery shaft 510 (depicted in FIGS. 20 and 21) causes the retractable cautery shaft 506 to retract or extend via external threading on the retractable cautery shaft 506 and internal threading on the threaded cautery energizing ring 518. The external threading of the retractable cautery shaft 506 causes the retractable cautery shaft 506 to translate up and down when the lower long cautery shaft 510 (depicted in FIGS. 20 and 21) is rotated. Power is supplied to the cautery component 422 via a wire (not shown) connected to the energizing ring 518.


As discussed above, the various embodiments disclosed herein relate to end effector devices that can be incorporated into any of the medical devices, including robotic and/or in vivo device, disclosed in the various patents and applications incorporated by reference above. Further, as also discussed above, the various implementations can be positioned on the end of a robotic arm.


For example, any of the embodiments disclosed herein can be incorporated into the robotic device embodiments disclosed in U.S. Pat. No. 8,679,096 (which was incorporated herein above), including the devices depicted in FIGS. 23A-24B. FIGS. 23A and 23B depict a combination or modular medical device 600 having three modular components 602, 604, 606 coupled or attached to each other. More specifically, the device 600 has two robotic arm modular components 602, 604 and one robotic camera modular component 606 disposed between the other two components 602, 604. Each of the modular arm components 602, 604 have arms 608, 610. FIGS. 24A and 24B depict a robotic device 620 according to a further embodiment in which the device 620 has two arms 622, 624, each having a first link 622A, 624A and a second link 622B, 624B. Each arm 622, 624 also includes operational components 626, 628 that can be the same or different from one another. In addition, the device 620 has a body 630 that can have lighting and/or camera components and is disposed between and coupled to both arms 622, 624 as shown.


As another example, the various embodiments disclosed herein can also be incorporated into the robotic device embodiments disclosed in U.S. Application 61/506,384 (which was incorporated herein above), including the device shown in FIGS. 25A-25C. FIG. 25C depicts a robotic device 700 having a body 702 having two components 702A, 702B, wherein the body 702 is coupled to a support component 704 having a first support leg 706A and a second support leg 706B. Body component 702A is coupled to arm 708, and body component 702B is coupled to arm 710. Each of the arms 708, 710 has a first joint 708A, 710A (each of which can also be referred to as a “shoulder joint”) that is coupled to the body components 702A, 702B. Each first joint 708A, 710A is coupled to a first link 708B, 710B that is rotatably coupled to a second link 708C, 710C. In addition, each arm 708, 710 also has an operational component 708D, 710D coupled to the second link 708C, 710C.


As best shown in FIGS. 25A and 25B, the support component 704 is configured to maintain the device 700 in the desired positioned within a cavity 712 within the patient. The support component 704, which is coupled to the body 702, is disposed through an orifice or any other kind of opening in the body cavity wall 714 such that the distal portion of the component 704 coupled to the body 702 is disposed within the body cavity 712 while the proximal portion is disposed outside the patient's body and can be attached to an external component (not shown) so as to provide stability or fixed positioning for the device 700.


In a further example, the various embodiments disclosed herein can also be incorporated into the robotic device embodiments disclosed in U.S. Application 61/640,879 (which was incorporated herein above), including the device depicted in FIGS. 26A-26D. FIG. 26A depicts a robotic device 800 having a main body 802, a left arm 804, and a right arm 806. Each of the arms 804, 806 is comprised of two segments: an upper arm (or first link) 804A, 806A, and a forearm (or second link) 804B, 806B, thereby resulting in each arm 804, 806 having a shoulder joint (or first joint) 804C, 806C and an elbow joint (or second joint) 804D, 806D. Each arm 804, 806 also has an end effector 808, 810. As shown in FIGS. 26B-26D, the device 800 can be positioned in or inserted into a cavity 820 of a patient such that, during a procedure, the arms 804, 806 are disposed entirely within the body cavity 820 while the device body 802 is positioned through an incision 824 in the wall 822 of the cavity 820.


Although the present invention has been described with reference to preferred embodiments, persons skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.

Claims
  • 1. An in-vivo vessel sealing end effector, the end effector comprising: (a) an in vivo end effector body coupleable to an arm of an in vivo robotic device, wherein the arm and the end effector body are configured to be positioned entirely within a cavity of a patient, the end effector body comprising at least one actuator and a cautery component shaft disposed within the body; and(b) a bipolar vessel cautery component operably coupled to the end effector body, the cautery component comprising: (i) a stationary jaw disposed at a distal end of the cautery component shaft;(ii) a mobile jaw pivotally coupled to the distal end of the cautery component shaft; and(iii) a cutting component moveably coupled to the cautery component shaft,wherein the at least one actuator comprises a jaw actuator operably coupled to the mobile jaw.
  • 2. The end effector of claim 1, wherein the cautery component is rotatable about an axis parallel with the shaft.
  • 3. The end effector of claim 1, wherein the overall length of the end effector body is under about 3 inches.
  • 4. The end effector of claim 1, wherein the at least one actuator comprises a cautery component rotation actuator operably coupled to the cautery component shaft.
  • 5. The end effector of claim 1, wherein the at least one actuator comprises a cutting component actuator operably coupled to the cutting component.
  • 6. The end effector of claim 1, wherein the stationary jaw is configured to provide a stable base to support a vessel to be cauterized.
  • 7. The end effector of claim 1, wherein rotation of the cautery component shaft causes rotation of the mobile and stationary jaws.
  • 8. The end effector of claim 1, further comprising (a) an electrical connection disposed on the cautery component shaft, wherein the electrical connection is electrically coupled to one of the mobile jaw and the stationary jaw;(b) a first slip ring disposed within the end effector body, wherein the first slip ring is electrically coupled with the electrical connection during rotation of the cautery component shaft;(c) a second slip ring disposed within the end effector body, wherein the second slip ring is electrically coupled with the cautery component shaft during rotation of the cautery component shaft; and(d) an external electrical source electrically coupled to the first and second slip rings.
  • 9. An in-vivo vessel sealing end effector, the end effector comprising: (a) an in vivo end effector body coupleable to an arm of an in vivo robotic device, wherein the arm and the end effector body are configured to be positioned entirely within a cavity of a patient, the end effector body comprising a cautery component shaft disposed within the body; and(b) a bipolar vessel cautery component operably coupled to the end effector body, the cautery component comprising: (i) a stationary jaw fixedly disposed at a distal end of the cautery component shaft;(ii) a mobile jaw pivotally coupled to the distal end of the cautery component shaft; and(iii) a cutting component moveably coupled to the cautery component shaft.
  • 10. The end effector of claim 9, further comprising a threaded collar disposed around and threadably coupled with the cautery component shaft such that rotation of the collar causes axial movement of the cautery component shaft, thereby causing the mobile jaw to move between open and closed positions.
  • 11. The end effector of claim 9, wherein rotation of the cautery component shaft causes rotation of the mobile and stationary jaws.
  • 12. The end effector of claim 9, further comprising: (a) a collar rotatably disposed within the end effector body;(b) a translation pin fixedly coupled to the cutting component and operably coupled to the collar,such that rotation of the collar causes axial movement of the cutting component between retracted and deployed positions.
  • 13. The end effector of claim 9, further comprising: (a) an electrical connection disposed on the cautery component shaft and electrically coupled to one of the mobile jaw and the stationary jaw; and(b) a first slip ring disposed in the end effector body, wherein the first slip ring is electrically coupled with the electrical connection during rotation of the cautery component shaft.
  • 14. The end effector of claim 13, further comprising an external electrical source electrically coupled to the first slip ring.
  • 15. The end effector of claim 13, further comprising a second slip ring disposed in the end effector body, wherein the second slip ring is electrically coupled with the cautery component shaft during rotation of the cautery component shaft, wherein the second slip ring is electrically coupled to an external electrical source.
  • 16. An in-vivo vessel sealing end effector, the end effector comprising: (a) an in vivo end effector body coupleable to an arm of an in vivo robotic device, wherein the arm and the end effector body are configured to be positioned entirely within a cavity of a patient, the end effector body comprising at least one actuator and a cautery component shaft disposed within the body; and(b) a bipolar vessel cautery component operably coupled to the end effector body, the cautery component comprising: (i) a stationary jaw fixedly disposed at a distal end of the cautery component shaft;(ii) a mobile jaw pivotally coupled to the distal end of the cautery component shaft; and(iii) a cutting component moveably coupled to the cautery component shaft.
  • 17. The end effector of claim 16, further comprising: (a) a first threaded collar rotatably disposed within the end effector body; and(b) a translation pin fixedly coupled to the cutting component and threadably coupled to the first threaded collar, such that rotation of the first threaded collar causes axial movement of the cutting component between retracted and deployed positions.
  • 18. The end effector of claim 17, further comprising a second threaded collar disposed around and threadably coupled with the cautery component shaft such that rotation of the second collar causes axial movement of the cautery component shaft, thereby causing the mobile jaw to move between open and closed positions.
  • 19. The end effector of claim 16, wherein the stationary jaw is configured to provide a stable base to support a vessel to be cauterized.
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application claims priority as a continuation application to U.S. application Ser. No. 16/512,510, filed on Jul. 16, 2019 and entitled “Methods, Systems, and Devices Relating to Surgical End Effectors,” which claims priority as a continuation application to U.S. application Ser. No. 15/700,713, filed on Sep. 11, 2017 and entitled “Methods, Systems, and Devices Relating to Surgical End Effectors,” which issued as U.S. Pat. No. 10,350,000 on Jul. 16, 2019, which claims priority as a continuation application to U.S. application Ser. No. 14/745,587, filed on Jun. 22, 2015 and entitled “Methods, Systems, and Devices Relating to Surgical End Effectors,” which issued as U.S. Pat. No. 9,757,187 on Sep. 12, 2017, which claims priority as a continuation application to U.S. Pat. No. 9,060,781, issued on Jun. 23, 2015 and entitled “Methods, Systems, and Devices Relating to Surgical End Effectors,” which claims priority to U.S. Provisional Patent Application 61/495,487, filed Jun. 10, 2011 and entitled “Vessel Sealing Device for Robotic Devices,” and to U.S. Provisional Patent Application 61/498,919, filed Jun. 20, 2011 and entitled “Dual End Effector Components and Related Devices, Systems, and Methods,” all of which are hereby incorporated herein by reference in their entireties.

GOVERNMENT SUPPORT

This invention was made with government support under Grant No. W81XWH-09-2-0185, awarded by the Telemedicine and Advanced Technology Research Center within the Department of Defense and Grant No. NNX09A071A, awarded by the National Aeronautics and Space Administration Experimental Program to Stimulate Competitive Research. The government has certain rights in the invention.

US Referenced Citations (572)
Number Name Date Kind
3870264 Robinson Mar 1975 A
3989952 Timberlake et al. Nov 1976 A
4246661 Pinson Jan 1981 A
4258716 Sutherland Mar 1981 A
4278077 Mizumoto Jul 1981 A
4538594 Boebel et al. Sep 1985 A
4568311 Miyaki Feb 1986 A
4579476 Post Apr 1986 A
4623183 Amori Nov 1986 A
4736645 Zimmer Apr 1988 A
4771652 Zimmer Sep 1988 A
4852391 Ruch et al. Aug 1989 A
4896015 Taboada et al. Jan 1990 A
4897014 Tietze Jan 1990 A
4922755 Oshiro et al. May 1990 A
4922782 Kawai May 1990 A
4990050 Tsuge et al. Feb 1991 A
5019968 Wang et al. May 1991 A
5108140 Bartholet Apr 1992 A
5172639 Wiesman et al. Dec 1992 A
5176649 Wakabayashi Jan 1993 A
5178032 Zona et al. Jan 1993 A
5187032 Sasaki et al. Feb 1993 A
5187796 Wang et al. Feb 1993 A
5195388 Zona et al. Mar 1993 A
5201325 McEwen et al. Apr 1993 A
5217003 Wilk Jun 1993 A
5263382 Brooks et al. Nov 1993 A
5271384 McEwen et al. Dec 1993 A
5284096 Pelrine et al. Feb 1994 A
5297443 Wentz Mar 1994 A
5297536 Wilk Mar 1994 A
5304899 Sasaki et al. Apr 1994 A
5307447 Asano et al. Apr 1994 A
5353807 DeMarco Oct 1994 A
5363935 Schempf et al. Nov 1994 A
5382885 Salcudean et al. Jan 1995 A
5441494 Oritz Jan 1995 A
5388528 Pelrine et al. Feb 1995 A
5436542 Petelin et al. Jul 1995 A
5458131 Wilk Oct 1995 A
5458583 McNeely et al. Oct 1995 A
5458598 Feinberg et al. Oct 1995 A
5462546 Rydell Oct 1995 A
5471515 Fossum et al. Nov 1995 A
5515478 Wang May 1996 A
5522669 Recker Jun 1996 A
5524180 Wang et al. Jun 1996 A
5553198 Wang et al. Sep 1996 A
5562448 Mushabac Oct 1996 A
5588442 Scovil et al. Dec 1996 A
5620417 Jang et al. Apr 1997 A
5623582 Rosenberg Apr 1997 A
5624380 Takayama et al. Apr 1997 A
5624398 Smith et al. Apr 1997 A
5632761 Smith et al. May 1997 A
5645520 Nakamura et al. Jul 1997 A
5657429 Wang et al. Aug 1997 A
5657584 Hamlin Aug 1997 A
5672168 de la Torre et al. Sep 1997 A
5674030 Sigel Oct 1997 A
5728599 Rosteker et al. Mar 1998 A
5736821 Suyaman et al. Apr 1998 A
5754741 Wang et al. May 1998 A
5762458 Wang et al. Jun 1998 A
5769640 Jacobus et al. Jun 1998 A
5791231 Cohn et al. Aug 1998 A
5792135 Madhani et al. Aug 1998 A
5797538 Heaton et al. Aug 1998 A
5797900 Madhani et al. Aug 1998 A
5807377 Madhani et al. Sep 1998 A
5808665 Green Sep 1998 A
5815640 Wang et al. Sep 1998 A
5825982 Wright et al. Oct 1998 A
5841950 Wang et al. Nov 1998 A
5845646 Lemelson Dec 1998 A
5855583 Wang et al. Jan 1999 A
5876325 Mizuno et al. Mar 1999 A
5878193 Wang et al. Mar 1999 A
5878783 Smart Mar 1999 A
5895417 Pomeranz et al. Apr 1999 A
5906591 Dario et al. May 1999 A
5907664 Wang et al. May 1999 A
5910129 Koblish et al. Jun 1999 A
5911036 Wright et al. Jun 1999 A
5913874 Berns et al. Jun 1999 A
5971976 Wang et al. Oct 1999 A
5993467 Yoon Nov 1999 A
6001108 Wang et al. Dec 1999 A
6007550 Wang et al. Dec 1999 A
6030365 Laufer Feb 2000 A
6031371 Smart Feb 2000 A
6058323 Lemelson May 2000 A
6063095 Wang et al. May 2000 A
6066090 Yoon May 2000 A
6086529 Arndt Jul 2000 A
6102850 Wang et al. Aug 2000 A
6107795 Smart Aug 2000 A
6132368 Cooper Oct 2000 A
6132441 Grace Oct 2000 A
6139563 Cosgrove, III et al. Oct 2000 A
6156006 Brosens et al. Dec 2000 A
6159146 El Gazayerli Dec 2000 A
6162171 Ng et al. Dec 2000 A
D438617 Cooper et al. Mar 2001 S
6206903 Ramans Mar 2001 B1
D441076 Cooper et al. Apr 2001 S
6223100 Green Apr 2001 B1
D441862 Cooper et al. May 2001 S
6238415 Sepetka et al. May 2001 B1
6240312 Alfano et al. May 2001 B1
6241730 Alby Jun 2001 B1
6244809 Wang et al. Jun 2001 B1
6246200 Blumenkranz et al. Jun 2001 B1
D444555 Cooper et al. Jul 2001 S
6286514 Lemelson Sep 2001 B1
6292678 Hall et al. Sep 2001 B1
6293282 Lemelson Sep 2001 B1
6296635 Smith et al. Oct 2001 B1
6309397 Julian et al. Oct 2001 B1
6309403 Minor et al. Oct 2001 B1
6312435 Wallace et al. Nov 2001 B1
6321106 Lemelson Nov 2001 B1
6327492 Lemelson Dec 2001 B1
6331181 Tierney et al. Dec 2001 B1
6346072 Cooper Feb 2002 B1
6352503 Matsui et al. Mar 2002 B1
6364888 Niemeyer et al. Apr 2002 B1
6371952 Madhani et al. Apr 2002 B1
6394998 Wallace et al. May 2002 B1
6398726 Ramans et al. Jun 2002 B1
6400980 Lemelson Jun 2002 B1
6408224 Lemelson Jun 2002 B1
6424885 Niemeyer et al. Jul 2002 B1
6432112 Brock et al. Aug 2002 B2
6436107 Wang et al. Aug 2002 B1
6441577 Blumenkranz et al. Aug 2002 B2
6450104 Grant et al. Sep 2002 B1
6451027 Cooper et al. Sep 2002 B1
6454758 Thompson et al. Sep 2002 B1
6459926 Nowlin et al. Oct 2002 B1
6463361 Wang et al. Oct 2002 B1
6468203 Belson Oct 2002 B2
6468265 Evans et al. Oct 2002 B1
6470236 Ohtsuki Oct 2002 B2
6478681 Overaker et al. Nov 2002 B1
6491691 Morley et al. Dec 2002 B1
6491701 Nemeyer et al. Dec 2002 B2
6493608 Niemeyer et al. Dec 2002 B1
6496099 Wang et al. Dec 2002 B2
6497651 Kan et al. Dec 2002 B1
6508413 Bauer et al. Jan 2003 B2
6512345 Borenstein Jan 2003 B2
6522906 Salisbury, Jr. et al. Feb 2003 B1
6544276 Azizi Apr 2003 B1
6548982 Papanikolopoulos et al. Apr 2003 B1
6554790 Moll Apr 2003 B1
6565554 Niemeyer May 2003 B1
6574355 Green Jun 2003 B2
6587750 Gerbi et al. Jul 2003 B2
6591239 McCall et al. Jul 2003 B1
6594552 Nowlin et al. Jul 2003 B1
6610007 Belson et al. Aug 2003 B2
6620173 Gerbi et al. Sep 2003 B2
6642836 Wang et al. Nov 2003 B1
6645196 Nixon et al. Nov 2003 B1
6646541 Wang et al. Nov 2003 B1
6648814 Kim et al. Nov 2003 B2
6659939 Moll et al. Dec 2003 B2
6661571 Shioda et al. Dec 2003 B1
6671581 Niemeyer et al. Dec 2003 B2
6676684 Morley et al. Jan 2004 B1
6684129 Salisbury, Jr. et al. Jan 2004 B2
6685648 Flaherty et al. Feb 2004 B2
6685698 Morley et al. Feb 2004 B2
6687571 Byrne et al. Feb 2004 B1
6692485 Brock et al. Feb 2004 B1
6699177 Wang et al. Mar 2004 B1
6699235 Wallace et al. Mar 2004 B2
6702734 Kim et al. Mar 2004 B2
6702805 Stuart Mar 2004 B1
6714839 Salisbury, Jr. et al. Mar 2004 B2
6714841 Wright et al. Mar 2004 B1
6719684 Kim et al. Apr 2004 B2
6720988 Gere et al. Apr 2004 B1
6726699 Wright et al. Apr 2004 B1
6728599 Wright et al. Apr 2004 B2
6730021 Vassiliades, Jr. et al. May 2004 B2
6731988 Green May 2004 B1
6746443 Morley et al. Jun 2004 B1
6764441 Chiel et al. Jul 2004 B2
6764445 Ramans et al. Jul 2004 B2
6766204 Niemeyer et al. Jul 2004 B2
6770081 Cooper et al. Aug 2004 B1
6774597 Borenstein Aug 2004 B1
6776165 Jin Aug 2004 B2
6780184 Tanrisever Aug 2004 B2
6783524 Anderson et al. Aug 2004 B2
6785593 Wang et al. Aug 2004 B2
6788018 Blumenkranz Sep 2004 B1
6792663 Krzyzanowski Sep 2004 B2
6793653 Sanchez et al. Sep 2004 B2
6799065 Niemeyer Sep 2004 B1
6799088 Wang et al. Sep 2004 B2
6801325 Farr et al. Oct 2004 B2
6804581 Wang et al. Oct 2004 B2
6810281 Brock et al. Oct 2004 B2
6817972 Snow Nov 2004 B2
6817974 Cooper et al. Nov 2004 B2
6817975 Farr et al. Nov 2004 B1
6820653 Schempf et al. Nov 2004 B1
6824508 Kim et al. Nov 2004 B2
6824510 Kim et al. Nov 2004 B2
6832988 Sprout Dec 2004 B2
6832996 Woloszko et al. Dec 2004 B2
6836703 Wang et al. Dec 2004 B2
6837846 Jaffe et al. Jan 2005 B2
6837883 Moll et al. Jan 2005 B2
6839612 Sanchez et al. Jan 2005 B2
6840938 Morley et al. Jan 2005 B1
6852107 Wang et al. Feb 2005 B2
6858003 Evans et al. Feb 2005 B2
6860346 Burt et al. Mar 2005 B2
6860877 Sanchez et al. Mar 2005 B1
6866671 Tierney et al. Mar 2005 B2
6870343 Borenstein et al. Mar 2005 B2
6871117 Wang et al. Mar 2005 B2
6871563 Choset et al. Mar 2005 B2
6879880 Nowlin et al. Apr 2005 B2
6892112 Wang et al. May 2005 B2
6899705 Niemeyer May 2005 B2
6902560 Morley et al. Jun 2005 B1
6905460 Wang et al. Jun 2005 B2
6905491 Wang et al. Jun 2005 B1
6911916 Wang et al. Jun 2005 B1
6917176 Schempf et al. Jul 2005 B2
6933695 Blumenkranz Aug 2005 B2
6936001 Snow Aug 2005 B1
6936003 Iddan Aug 2005 B2
6936042 Wallace et al. Aug 2005 B2
6943663 Wang et al. Sep 2005 B2
6949096 Davison et al. Sep 2005 B2
6951535 Ghodoussi et al. Oct 2005 B2
6965812 Wang et al. Nov 2005 B2
6974411 Belson Dec 2005 B2
6974449 Niemeyer Dec 2005 B2
6979423 Moll Dec 2005 B2
6984203 Tartaglia et al. Jan 2006 B2
6984205 Gazdzinski Jan 2006 B2
6991627 Madhani et al. Jan 2006 B2
6993413 Sunaoshi Jan 2006 B2
6994703 Wang et al. Feb 2006 B2
6994708 Manzo Feb 2006 B2
6997908 Carrillo, Jr. et al. Feb 2006 B2
7025064 Wang et al. Apr 2006 B2
7027892 Wang et al. Apr 2006 B2
7033344 Imran Apr 2006 B2
7039453 Mullick May 2006 B2
7042184 Oleynikov et al. May 2006 B2
7048745 Tierney et al. May 2006 B2
7053752 Wang et al. May 2006 B2
7063682 Whayne et al. Jun 2006 B1
7066879 Fowler et al. Jun 2006 B2
7066926 Wallace et al. Jun 2006 B2
7074179 Wang et al. Jul 2006 B2
7077446 Kameda et al. Jul 2006 B2
7083571 Wang et al. Aug 2006 B2
7083615 Peterson et al. Aug 2006 B2
7087049 Nowlin et al. Aug 2006 B2
7090683 Brock et al. Aug 2006 B2
7097640 Wang et al. Aug 2006 B2
7105000 McBrayer Sep 2006 B2
7107090 Salisbury, Jr. et al. Sep 2006 B2
7109678 Kraus et al. Sep 2006 B2
7118582 Wang et al. Oct 2006 B1
7121781 Sanchez et al. Oct 2006 B2
7125403 Julian et al. Oct 2006 B2
7126303 Farritor et al. Oct 2006 B2
7147650 Lee Dec 2006 B2
7155315 Niemeyer et al. Dec 2006 B2
7169141 Brock et al. Jan 2007 B2
7182025 Ghorbel et al. Feb 2007 B2
7182089 Ries Feb 2007 B2
7199545 Oleynikov et al. Apr 2007 B2
7206626 Quaid, III Apr 2007 B2
7206627 Abovitz et al. Apr 2007 B2
7210364 Ghorbel et al. May 2007 B2
7214230 Brock et al. May 2007 B2
7217240 Snow May 2007 B2
7239940 Wang et al. Jul 2007 B2
7250028 Julian et al. Jul 2007 B2
7259652 Wang et al. Aug 2007 B2
7273488 Nakamura et al. Sep 2007 B2
7311107 Harel et al. Dec 2007 B2
7339341 Oleynikov et al. Mar 2008 B2
7372229 Farritor et al. May 2008 B2
7447537 Funda et al. Nov 2008 B1
7492116 Oleynikov Feb 2009 B2
7566300 Devierre et al. Jul 2009 B2
7574250 Niemeyer Aug 2009 B2
7637905 Saadat et al. Dec 2009 B2
7645230 Mikkaichi et al. Jan 2010 B2
7655004 Long Feb 2010 B2
7670329 Flaherty et al. Mar 2010 B2
7731727 Sauer Jun 2010 B2
7762825 Burbank et al. Jul 2010 B2
7772796 Farritor Aug 2010 B2
7785251 Wilk Aug 2010 B2
7785333 Miyamoto et al. Aug 2010 B2
7789825 Nobis et al. Sep 2010 B2
7794494 Sahatjian et al. Sep 2010 B2
7865266 Moll et al. Jan 2011 B2
7960935 Farritor et al. Jun 2011 B2
8021358 Doyle et al. Sep 2011 B2
8179073 Farritor et al. May 2012 B2
8231610 Jo et al. Jul 2012 B2
8343171 Farritor et al. Jan 2013 B2
8353897 Doyle et al. Jan 2013 B2
8679096 Farritor et al. Mar 2014 B2
8828024 Farritor et al. Sep 2014 B2
8834488 Farritor et al. Sep 2014 B2
8894633 Farritor et al. Nov 2014 B2
8968267 Nelson et al. Mar 2015 B2
8968332 Farritor et al. Mar 2015 B2
8974440 Farritor et al. Mar 2015 B2
9010214 Markvicka et al. Apr 2015 B2
9060781 Farritor Jun 2015 B2
9089353 Farritor et al. Jul 2015 B2
9179981 Farritor et al. Nov 2015 B2
9427282 Belson et al. Aug 2016 B2
9498292 Mondry et al. Nov 2016 B2
9579088 Farritor et al. Feb 2017 B2
9649020 Finlay May 2017 B2
9743987 Farritor et al. Aug 2017 B2
9757187 Farritor et al. Sep 2017 B2
9770305 Farritor et al. Sep 2017 B2
9883911 Farritor et al. Feb 2018 B2
9888966 Farritor et al. Feb 2018 B2
9956073 Haddock et al. May 2018 B2
10111711 Farritor et al. Oct 2018 B2
10219870 Mondry et al. Mar 2019 B2
10307199 Farritor et al. Jun 2019 B2
10335024 Rentschler et al. Jul 2019 B2
10342561 Farritor et al. Jul 2019 B2
10376322 Frederick et al. Aug 2019 B2
10470828 Markvicka et al. Nov 2019 B2
10582973 Wilson et al. Mar 2020 B2
10667883 Farritor et al. Jun 2020 B2
10675110 Farritor et al. Jun 2020 B2
10702347 Farritor et al. Jul 2020 B2
10722319 Farritor et al. Jul 2020 B2
10751136 Farritor et al. Aug 2020 B2
10806538 Farritor et al. Oct 2020 B2
10966700 Farritor et al. Apr 2021 B2
11013564 Palmowski et al. May 2021 B2
11065050 Farritor Jul 2021 B2
11166758 Mohr et al. Nov 2021 B2
20010018591 Brock et al. Aug 2001 A1
20010049497 Kalloo et al. Dec 2001 A1
20020003173 Bauer et al. Jan 2002 A1
20020013601 Nobles et al. Jan 2002 A1
20020026186 Woloszko et al. Feb 2002 A1
20020038077 de la Torre et al. Mar 2002 A1
20020065507 Zando-Azizi May 2002 A1
20020091374 Cooper Jun 2002 A1
20020103417 Gazdzinski Aug 2002 A1
20020111535 Kim et al. Aug 2002 A1
20020120254 Julian et al. Aug 2002 A1
20020128552 Nowlin et al. Sep 2002 A1
20020140392 Borenstein et al. Oct 2002 A1
20020147487 Sundquist et al. Oct 2002 A1
20020151906 Demarais et al. Oct 2002 A1
20020156347 Kim et al. Oct 2002 A1
20020171385 Kim et al. Nov 2002 A1
20020173700 Kim et al. Nov 2002 A1
20020190682 Schempf et al. Dec 2002 A1
20030020810 Takizawa et al. Jan 2003 A1
20030045888 Brock et al. Mar 2003 A1
20030065250 Chiel et al. Apr 2003 A1
20030089267 Ghorbel et al. May 2003 A1
20030092964 Kim et al. May 2003 A1
20030097129 Davison et al. May 2003 A1
20030100817 Wang et al. May 2003 A1
20030114731 Cadeddu et al. Jun 2003 A1
20030135203 Wang et al. Jul 2003 A1
20030139742 Wampler Jul 2003 A1
20030144656 Ocel et al. Jul 2003 A1
20030159535 Grover et al. Aug 2003 A1
20030167000 Mullick Sep 2003 A1
20030172871 Scherer Sep 2003 A1
20030179308 Zamorano et al. Sep 2003 A1
20030181788 Yokoi et al. Sep 2003 A1
20030229268 Uchiyama et al. Dec 2003 A1
20030229338 Irion et al. Dec 2003 A1
20030230372 Schmidt Dec 2003 A1
20040024311 Quaid Feb 2004 A1
20040034282 Quaid Feb 2004 A1
20040034283 Quaid Feb 2004 A1
20040034302 Abovitz et al. Feb 2004 A1
20040050394 Jin Mar 2004 A1
20040070822 Shioda et al. Apr 2004 A1
20040099175 Perrot et al. May 2004 A1
20040102772 Baxter et al. May 2004 A1
20040106916 Quaid et al. Jun 2004 A1
20040111113 Nakamura et al. Jun 2004 A1
20040117032 Roth Jun 2004 A1
20040138525 Saadat et al. Jul 2004 A1
20040138552 Harel et al. Jul 2004 A1
20040140786 Borenstein Jul 2004 A1
20040153057 Davison Aug 2004 A1
20040173116 Ghorbel et al. Sep 2004 A1
20040176664 Iddan Sep 2004 A1
20040215331 Chew et al. Oct 2004 A1
20040225229 Viola Nov 2004 A1
20040254680 Sunaoshi Dec 2004 A1
20040267254 Manzo et al. Dec 2004 A1
20040267326 Ocel et al. Dec 2004 A1
20050014994 Fowler et al. Jan 2005 A1
20050021069 Feuer et al. Jan 2005 A1
20050029978 Oleynikov et al. Feb 2005 A1
20050043583 Killmann et al. Feb 2005 A1
20050049462 Kanazawa Mar 2005 A1
20050054901 Yoshino Mar 2005 A1
20050054902 Konno Mar 2005 A1
20050064378 Toly Mar 2005 A1
20050065400 Banik et al. Mar 2005 A1
20050083460 Hattori et al. Apr 2005 A1
20050095650 Julius et al. May 2005 A1
20050096502 Khalili May 2005 A1
20050143644 Gilad et al. Jun 2005 A1
20050154376 Riviere et al. Jul 2005 A1
20050165449 Cadeddu et al. Jul 2005 A1
20050234435 Layer Oct 2005 A1
20050239311 Yokoigawa et al. Oct 2005 A1
20050283137 Doyle et al. Dec 2005 A1
20050288555 Binmoeller Dec 2005 A1
20050288665 Woloszko Dec 2005 A1
20060020272 Gildenberg Jan 2006 A1
20060046226 Bergler et al. Mar 2006 A1
20060100501 Berkelman et al. May 2006 A1
20060119304 Farritor et al. Jun 2006 A1
20060149135 Paz Jul 2006 A1
20060152591 Lin Jul 2006 A1
20060155263 Lipow Jul 2006 A1
20060195015 Mullick et al. Aug 2006 A1
20060196301 Oleynikov et al. Sep 2006 A1
20060198619 Oleynikov et al. Sep 2006 A1
20060241570 Wilk Oct 2006 A1
20060241732 Denker et al. Oct 2006 A1
20060253109 Chu Nov 2006 A1
20060258954 Timberlake et al. Nov 2006 A1
20070032701 Fowler et al. Feb 2007 A1
20070043397 Ocel et al. Feb 2007 A1
20070055342 Wu et al. Mar 2007 A1
20070080658 Farritor et al. Apr 2007 A1
20070106113 Ravo May 2007 A1
20070123748 Meglan May 2007 A1
20070135803 Belson Jun 2007 A1
20070142725 Hardin et al. Jun 2007 A1
20070156019 Larkin et al. Jul 2007 A1
20070156211 Ferren et al. Jul 2007 A1
20070167955 De La Menardiere et al. Jul 2007 A1
20070225633 Ferren et al. Sep 2007 A1
20070225634 Ferren et al. Sep 2007 A1
20070241714 Oleynikov et al. Oct 2007 A1
20070244520 Ferren et al. Oct 2007 A1
20070250064 Darois et al. Oct 2007 A1
20070255273 Fernandez et al. Nov 2007 A1
20080004634 Farritor Jan 2008 A1
20080015565 Davison Jan 2008 A1
20080015566 Livneh Jan 2008 A1
20080033569 Ferren et al. Feb 2008 A1
20080045803 Williams et al. Feb 2008 A1
20080058835 Farritor Mar 2008 A1
20080058989 Oleynikov Mar 2008 A1
20080103440 Ferren et al. May 2008 A1
20080109014 de la Pena May 2008 A1
20080111513 Farritor May 2008 A1
20080119870 Williams May 2008 A1
20080132890 Woloszko et al. Jun 2008 A1
20080161804 Rioux et al. Jun 2008 A1
20080164079 Ferren et al. Jul 2008 A1
20080183033 Bern et al. Jul 2008 A1
20080221591 Farritor Sep 2008 A1
20080269557 Marescaux et al. Oct 2008 A1
20080269562 Marescaux et al. Oct 2008 A1
20090012532 Quaid et al. Jan 2009 A1
20090020724 Paffrath Jan 2009 A1
20090024142 Ruiz Morales Jan 2009 A1
20090048612 Farritor Feb 2009 A1
20090054909 Farritor Feb 2009 A1
20090069821 Farritor et al. Mar 2009 A1
20090076536 Rentschler Mar 2009 A1
20090137952 Ramamurthy et al. May 2009 A1
20090143787 De La Pena Jun 2009 A9
20090163929 Yeung et al. Jun 2009 A1
20090171373 Farritor Jul 2009 A1
20090234369 Bax et al. Sep 2009 A1
20090236400 Cole et al. Sep 2009 A1
20090240246 Deville et al. Sep 2009 A1
20090247821 Rogers Oct 2009 A1
20090248038 Blumenkranz et al. Oct 2009 A1
20090281377 Newell et al. Nov 2009 A1
20090287043 Naito et al. Nov 2009 A1
20090305210 Guru et al. Dec 2009 A1
20100010294 Conlon et al. Jan 2010 A1
20100016659 Weitzner et al. Jan 2010 A1
20100016853 Burbank Jan 2010 A1
20100042097 Newton et al. Feb 2010 A1
20100056863 Dejima et al. Mar 2010 A1
20100069710 Yamatani et al. Mar 2010 A1
20100069940 Miller et al. Mar 2010 A1
20100081875 Fowler et al. Apr 2010 A1
20100139436 Kawashima et al. Jun 2010 A1
20100185212 Sholev Jul 2010 A1
20100198231 Scott Aug 2010 A1
20100204713 Ruiz Aug 2010 A1
20100245549 Allen et al. Sep 2010 A1
20100250000 Blumenkranz et al. Sep 2010 A1
20100262162 Omori Oct 2010 A1
20100286480 Peine et al. Nov 2010 A1
20100292691 Brogna Nov 2010 A1
20100312102 Barnes et al. Dec 2010 A1
20100318059 Farritor et al. Dec 2010 A1
20110015569 Kirschenman et al. Jan 2011 A1
20110020779 Hannaford et al. Jan 2011 A1
20110054462 Ellman Mar 2011 A1
20110071347 Rogers et al. Mar 2011 A1
20110071544 Steger et al. Mar 2011 A1
20110077478 Freeman et al. Mar 2011 A1
20110098529 Ostrovsky et al. Apr 2011 A1
20110132960 Whitman et al. Jun 2011 A1
20110152615 Schostek et al. Jun 2011 A1
20110224605 Farritor et al. Sep 2011 A1
20110230894 Simaan et al. Sep 2011 A1
20110237890 Farritor Sep 2011 A1
20110238080 Ranjit et al. Sep 2011 A1
20110264078 Lipow et al. Oct 2011 A1
20110270443 Kamiya et al. Nov 2011 A1
20110276046 Heimbecker et al. Nov 2011 A1
20120029727 Sholev Feb 2012 A1
20120035582 Nelson et al. Feb 2012 A1
20120109150 Quaid et al. May 2012 A1
20120116362 Kieturakis May 2012 A1
20120179168 Farritor et al. Jul 2012 A1
20120253515 Coste-Maniere et al. Oct 2012 A1
20130041360 Farritor Feb 2013 A1
20130131695 Scarfogliero et al. May 2013 A1
20130345717 Markvicka et al. Dec 2013 A1
20140001234 Shelton et al. Jan 2014 A1
20140039515 Mondry et al. Feb 2014 A1
20140046340 Wilson et al. Feb 2014 A1
20140058205 Frederick et al. Feb 2014 A1
20140249474 Suon et al. Sep 2014 A1
20140303434 Farritor et al. Oct 2014 A1
20140373652 Zergiebel et al. Dec 2014 A1
20150051446 Farritor et al. Feb 2015 A1
20150190170 Frederick et al. Jul 2015 A1
20160143688 Orban, III et al. May 2016 A1
20160291915 Panchapakesan et al. Oct 2016 A1
20170258536 Yeung et al. Sep 2017 A1
20180056527 Farritor et al. Mar 2018 A1
20180140377 Reichenbach et al. May 2018 A1
20190090965 Farritor et al. Mar 2019 A1
20200214775 Farritor et al. Jul 2020 A1
20200352667 Kapadia et al. Nov 2020 A1
20210045836 Farritor et al. Feb 2021 A1
20210068913 Wang et al. Mar 2021 A1
20210169592 Robinson et al. Jun 2021 A1
20210290314 Sachs et al. Sep 2021 A1
20210290323 Sachs et al. Sep 2021 A1
20220000569 Farritor et al. Jan 2022 A1
Foreign Referenced Citations (77)
Number Date Country
2690808 Jan 2009 CA
102821918 Dec 2012 CN
104224258 Dec 2014 CN
102010040405 Mar 2012 DE
0105656 Apr 1984 EP
0279591 Aug 1988 EP
1354670 Oct 2003 EP
2286756 Feb 2011 EP
2286756 Feb 2011 EP
2329787 Jun 2011 EP
2563261 Mar 2013 EP
2647339 Oct 2013 EP
2684528 Jan 2014 EP
2123225 Dec 2014 EP
2815705 Dec 2014 EP
2881046 Oct 2015 EP
2937047 Oct 2015 EP
H04144533 May 1992 JP
05-115425 May 1993 JP
05184535 Jul 1993 JP
2006508049 Sep 1994 JP
H06507809 Sep 1994 JP
H06508049 Sep 1994 JP
07-016235 Jan 1995 JP
07-136173 May 1995 JP
7306155 Nov 1995 JP
08-224248 Sep 1996 JP
2001500510 Jan 2001 JP
2001505810 May 2001 JP
2002000524 Jan 2002 JP
2003220065 Aug 2003 JP
2004144533 May 2004 JP
2004-180781 Jul 2004 JP
2004180858 Jul 2004 JP
2004322310 Nov 2004 JP
2004329292 Nov 2004 JP
2006507809 Mar 2006 JP
2009106606 May 2009 JP
2010533045 Oct 2010 JP
2010536436 Dec 2010 JP
2011504794 Feb 2011 JP
2011045500 Mar 2011 JP
2011115591 Jun 2011 JP
2017527392 Sep 2017 JP
20100029087 Mar 2010 KR
199221291 May 1991 WO
9610957 Apr 1996 WO
9639944 Dec 1996 WO
2001089405 Nov 2001 WO
2002082979 Oct 2002 WO
2002100256 Dec 2002 WO
2005009211 Jul 2004 WO
2005044095 May 2005 WO
2005044095 May 2005 WO
2006052927 Aug 2005 WO
2006005075 Jan 2006 WO
2006079108 Jan 2006 WO
2006079108 Jul 2006 WO
2007011654 Jan 2007 WO
2007111571 Oct 2007 WO
2007146987 Dec 2007 WO
2007149559 Dec 2007 WO
2009014917 Jan 2009 WO
2009023851 Feb 2009 WO
2009144729 Dec 2009 WO
2010042611 Apr 2010 WO
2010046823 Apr 2010 WO
2010050771 May 2010 WO
2011060311 May 2011 WO
2011075693 Jun 2011 WO
2011118646 Sep 2011 WO
2011118646 Sep 2011 WO
2011135503 Nov 2011 WO
2011135503 Nov 2011 WO
2013009887 Jan 2013 WO
2014011238 Jan 2014 WO
2015088655 Jun 2015 WO
Non-Patent Literature Citations (150)
Entry
Gopura et al., Mechanical designs of active upper-limb exoskeleton robots: State-of-the-art and design difficulties, 2009, IEEE, p. 178-187 (Year: 2009).
Keller et al., Design of the pediatric arm rehabilitation robot ChARMin, 2014, IEEE, p. 530-535 (Year: 2014).
Albers et al., Design and development process of a humanoid robot upper body through experimentation, 2004, IEEE, p. 77-92 (Year: 2004).
Sodeyama et al., A shoulder structure of muscle-driven humanoid with shoulder blades, 2005, IEEE, p. 1-6 (Year 2005).
Franzino, “The Laprotek Surgical System and the Next Generation of Robotics,” Surg Clin North Am, 2003 83(6): 1317-1320.
Franklin et al., “Prospective Comparison of Open vs. Laparoscopic Colon Surgery for Carcinoma: Five-Year Results,” Dis Colon Rectum, 1996; 39: S35-S46.
Flynn et al, “Tomorrow's surgery: micromotors and microrobots for minimally invasive procedures,” Minimally Invasive Surgery & Allied Technologies, 1998; 7(4): 343-352.
Fireman et al., “Diagnosing small bowel Crohn's desease with wireless capsule endoscopy,” Gut 2003; 52: 390-392.
Fearing et al., “Wing Transmission for a Micromechanical Flying Insect,” Proceedings of the 2000 IEEE International Conference to Robotics & Automation, Apr. 2000; 1509-1516.
Faraz et al., “Engineering Approaches to Mechanical and Robotic Design for Minimaly Invasive Surgery (MIS),” Kluwer Academic Publishers (Boston), 2000, 13pp.
Falcone et al., “Robotic Surgery,” Clin. Obstet. Gynecol. 2003, 46(1): 37-43.
Fraulob et al., “Miniature assistance module for robot-assisted heart surgery,” Biomed. Tech. 2002, 47 Suppl. 1, Pt. 1: 12-15.
Fukuda et al., “Mechanism and Swimming Experiment of Micro Mobile Robot in Water,” Proceedings of the 1994 IEEE International Conference on Robotics and Automation, 1994: 814-819.
Fukuda et al., “Micro Active Catheter System with Multi Degrees of Freedom,” Proceedings of the IEEE International Conference on Robotics and Automation, May 1994, pp. 2290-2295.
Fuller et al., “Laparoscopic Trocar Injuries: A Report from a U.S. Food and Drug Administration (FDA) Center for Devices and Radiological Health (CDRH) Systematic Technology Assessment of Medical Products (STAMP) Committe,” U.S. Food and Drug Adminstration, available at http://www.fdaJ:?;ov, Finalized: Nov. 7, 2003 Updated: Jun. 24, 2005, 11 pp.
Dumpert et al., “Improving in Vivo Robot Visioin Quality,” from the Proceedings of Medicine Meets Virtual Realtiy, Long Beach, CA, Jan. 26-29, 2005. 1 pg.
Dakin et al., “Comparison of laparoscopic skills performance between standard instruments and two surgical robotic systems,” Surg Endosc., 2003; 17: 574-579.
Cuschieri, “Technology for Minimal Access Surgery,” BMJ, 1999, 319: 1-6.
Grady, “Doctors Try New Surgery for Gallbladder Removal,” The New York Times, Apr. 20, 2007, 3 pp.
Choi et al., “Flexure-based Manipulator for Active Handheld Microsurgical Instrument,” Proceedings of the 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Sep. 2005, 4pp.
Chanthasopeephan et al., (2003), “Measuring Forces in Liver Cutting: New Equipment and Experimenal Results,” Annals of Biomedical Engineering 31: 1372-1382.
Cavusoglu et al.,“Robotics for Telesurgery: Second Generation Berkeley/UCSF Laparoscopic Telesurgical Workstation and Looking Towards the Future Applications,” Industrial Robot: An International Journal, 2003; 30(1): 22-29.
Guber et al., “Miniaturized Instrument Systems for Minimally Invasive Diagnosis and Therapy,” Biomedizinische Technic 2002, Band 47, Erganmngsband 1: 198-201.
Abbott et al., “Design of an Endoluminal NOTES Robotic System,” from the Proceedings of the 2007 IEEE/RSJ Int'l Conf. on Intelligent Robot Systems, San Diego, CA, Oct. 29-Nov. 2, 2007, pp. 410-416.
Ollendorf et al., “Postoperative Immune Function Varies Inversely with the Degree of Surgical Trauma in a Murine Model,” Surgical Endoscopy 1997; 11:427-430.
Ang, “Active Tremor Compensation in Handheld Instrument for Microsurgery,” Doctoral Dissertation, tech report CMU-RI-TR-04-28, Robotics Institute, Carnegie Mellon Unviersity, May 2004, 167pp.
Atmel 80C5X2 Core, http://www.atmel.com, 2006, 186pp.
Bailey et al., “Complications of Laparoscopic Surgery,” Quality Medical Publishers, Inc., 1995, 25pp.
Ballantyne, “Robotic Surgery, Telerobotic Surgery, Telepresence, and Telementoring,” Surgical Endoscopy, 2002 16: 1389-1402.
Bauer et al., “Case Report: Remote Percutaneous Renal Percutaneous Renal Access Using a New Automated Telesurgical Robotic System,” Telemedicine Journal and e-Health 2001; (4): 341-347.
Begos et al., “Laparoscopic Cholecystectomy: From Gimmick to Gold Standard,” J Clin Gastroenterol, 1994; 19(4): 325-330.
Berg et al., “Surgery with Cooperative Robots,” Medicine Meets Virtual Reality, Feb. 2007, 1 pg.
Breda et al., “Future developments and perspectives in laparoscopy,” Eur. Urology 2001; 40(1): 84-91.
Breedveld et al., “Design of Steerable Endoscopes to Improve the Visual Perception of Depth During Laparoscopic Surgery,” ASME, Jan. 2004; vol. 126, pp. 1-5.
Breedveld et al., “Locomotion through the Intestine by means of Rolling Stents,” Proceedings of the ASME Design Engineering Technical Conferences, 2004, pp. 1-7.
Calafiore et al., Multiple Arterial Conduits Without Cardiopulmonary Bypass: Early Angiographic Results,: Ann Thorac Surg, 1999; 67: 450-456.
Camarillo et al., “Robotic Technology in Surgery: Past, Present and Future,” The American Journal of Surgery, 2004; 188: 2S-15.
Cavusoglu et al., “Telesurgery and Surgical Simulation: Haptic Interfaces to Real and Virtual Surgical Environments,” In McLaughliin, M.L., Hespanha, J.P., and Sukhatme, G., editors. Touch in virtual environments, IMSC Series in Multimedia 2001, 28pp.
Dumpert et al., “Stereoscopic In Vivo Surgical Robots,” IEEE Sensors Special Issue on In Vivo Sensors for Medicine, Jan. 2007, 10 pp.
Green, “Telepresence Surgery”, Jan. 1, 1995, Publisher: IEEE Engineering in Medicine and Biology.
Cleary et al., “State of the Art in Surgical Rooties: Clinical Applications and Technology Challenges”, “Computer Aided Surgery”, Jan. 1, 2002, pp. 312-328, vol. 6.
Stoianovici et al., “Robotic Tools for Minimally Invasive Urologic Surgery”, Jan. 1, 2002, pp. 1-17.
U.S. Appl. No. 61/025,346, filed Feb. 1, 2008.
U.S. Appl. No. 61/030,588, filed Feb. 22, 2008.
U.S. Appl. No. 61/030,617, filed Feb. 22, 2008.
Way et al., (editors), “Fundamentals of Laparoscopic Surgery,” Churchill Livingstone Inc., 1995, 14 pp.
Wolfe et al., “Endoscopic Cholecystectomy: An analysis of Complications,” Arch. Surg. Oct. 1991; 126: 1192-1196.
Worn et al., “Espirit Project No. 33915: Miniaturised Robot for Micro Manipulation (MINIMAN)”, Nov. 1998; http://www.ipr.ira.ujka.de/-microbol/miniman.
Yu et al., “Microrobotic Cell Injection,” Proceedings of the 2001 IEEE International Conference on Robotics and Automation, May 2001; 620-625.
Yu, BSN, RN, “M2ATM Capsule Endoscopy a Breakthrough Diagnostic Tool for Small Intestine Imagining,” vol. 25, No. 1, Gastroenterology Nursing, pp. 24-27.
Phee et al., “Development of Microrobotic Devices for Locomotion in the Human Gastrointestinal Tract,” International Conference on Computational Intelligence, Robotics and Autonomous Systems (CIRAS 2001), Nov. 28-30, 2001, Singapore.
Platt et al., “In Vivo Robotic Cameras can Enhance Imaging Capability During Laparoscopic Surgery,” in the Proceedings of the Society of American Gastrointestinal Endoscopic Surgeons (SAGES) Scientific Conference, FL. Lauderdale, Fl, Apr. 13-16, 2005, 1 pg.
Rentschler et al., “Mobile In Vivo Biopsy and Camera Robot,” Studies in Health and Informatics Medicine Meets Virtual Reality, vol. 119., pp. 449-454, IOS Press, Long Beach, CA, 2006.
Rentschler et al., “Mobile In Vivo Biopsy Robot,” IEEE International Conference on Robotics and Automation, Orlando, Florida, May 2006, pp. 4155-4160.
Rentschler et al., “Miniature in vivo Robots for Remote and Harsh Environments,” IEEE Transactions on Information Technology in Biomedicine. Jan. 2006; 12(1): 66-75.
Rentschler et al., “An In Vivo Mobile Robot for Surgical Vision and Task Assistance,” Journal of Medical Devices, Mar. 2007, vol. 1: 23-29.
Rentschler et al., “In vivo Mobile Surgical Robotic Task Assistance,” 1 pg.
Rentschler et al., “In vivo Robotics during the NEEMO 9 Mission,” Medicine Meets Virtual Reality, Feb. 2007, 1 pg.
Rentschler et al., “In Vivo Robots for Laparoscopic Surgery,” Studies in Health Technology and Informatics—Medicine Meets Virtual Reality, ISO Press, Newport Beach, CA, 2004a, 98: 316-322.
Rentschler et al., “Mechanical Design of Robotic In Vivo Wheeled Mobility,” ASME Journal of Mechanical Design, 2006, pp. 1-11.
Rentschler et al, “Mobile In Vivo Camera Robots Provide Sole Visual Feedback for Abdominal Exploration and Cholecystectomy,” Journal of Surgical Endoscopy, 20-1: 135-138, 2006b.
Rentschler et al., “Mobile In Vivo Robots Can Assist in Abdominal Exploration,” from the Proceedings of the Society of American Gastrointestinal Endoscopic Surgeons (SAGES) Scientific Conference, Ft. Lauderdale, FL, Apr. 13-16, 2005b.
Rentschler et al., “Modeling, Analysis, and Experimental Study of in Vivo Wheeled Robotic Mobility,” IEEE Transactions on Robotics, 22 (2): 308-321, 2005c.
Rentschler et al., “Natural Orifice Surgery with an Endoluminal Mobile Robot,” The Society of American Gastrointestinal Endoscopic Surgeons, Dallas, TX, Apr. 2006d, 14 pp.
Rentschler et al., “Theoretical and Experimental Analysis of In Vivo Wheeled Mobility,” ASME Design Engineering Technical Conferences: 28th Biennial Mechanisms and Robotics Conference, Salt Lake City, Utah, Sep. 28-Oct. 2, 2004, pp. 1-9.
Rentschler et al., “Toward In Vivo Mobility,” Studies in Health Technology and Informatics—Medicine Meets Virtual Reality, ISO Press, Long Beach, CA, 2005a, III: 397-403.
Riviere et al., “Toward Active Tremor Canceling in Handheld Microsurgical Instruments,” IEEE Transactions on Robotics and Automation, Oct. 2003, 19(5): 793-800.
Rosen et al., “Force Controlled and Teleoperated Endoscopic, Grasper for Minimally Invasive Surgery—Experimental Performance Evaluation,” IEEE Transactions of Biomedical Engineering, Oct. 1999; 46(10): 1212-1221.
Rosen et al., “Objective Laparoscopic Skills Assessments of Surgical Residents Using Hidden Markov Models Based on Haptic Information and Tool/Tissue Interactions,” Studies in Health Technology and Informatics-Medicine Meets Virtual Reality, Jan. 2001, 7 pp.
Rosen et al., “Spherical Mechanism Analysis of a Surgical Robot for Minimally Invasive Surgery—Analytical and Experimental Approaches,” Studies in Health Technology and Infonnatics—Medicine Meets Virtual Reality, pp. 442-448, Jan. 2005.
Rosen et al., “Task Decomposition of Laparoscopic Surgery for Objective Evaluation of Surgical Residents' Learning Curve Using Hidden Markov Model,” Computer Aided Surgery, vol. 7, pp. 49-61, 2002.
Rosen et al., “The Blue DRAGON—a System of Measuring the Kinematics and the Dynamics of Minimally Invasive Surgical Tools In-Vivo,” Proc. of the 2002 IEEE International Conference on Robotics and Automation, Washington, DC, pp. 1876-1881, May 2002.
Ruurda et al., “Robot-Assisted surgical systems: a new era in laparoscopic surgery,” Ann R. Coll Surg Engl., 2002; 84: 223-226.
Ruurda et al., “Feasibility of Robot-Assisted Laparoscopic Surgery,” Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 2002; 12(1):41-45.
Sackier et al., “Robotically assisted laparoscopic surgery,” Surgical Endoscopy, 1994; 8: 63-66.
Salky, “What is the Penetration of Endoscopic Techniques into Surgical Practice?” Digestive Surgery, 2000; 17:422-426.
“Satava, ““Surgical Robotics: The Early Chronicles,”” Surgical Laparoscopy, Endoscopy & Percutaneous Techniques,2002; 12(1): 6-16.”
Schippers et al., (1996) “Requirements and Possibilities of Computer-Assisted Endoscopic Surgery,” In: Computer Integrated Surgery: Technology and Clinical Applications, pp. 561-565.
Schurr et al., “Robotics and Telemanipulation Technologies for Endoscopic Surgery,” Surgical Endoscopy, 2000; 14: 375-381.
Schwartz, “In the Lab: Robots that Slink and Squirm,” the New York Times, Mar. 27, 2007, 4 pp.
Sharp LL-151-3D, http://www.sharp3d.com, 2006, 2 pp.
Slatkin et al., “The Development of a Robotic Endoscope,” Proceedings of the 1995 IEEE International Conference on Robotics and Automation, pp. 162-71, 1995.
Smart Pill “Fastastic Voyage: Smart Pill to Expand Testing,” http://www.smartpilldiagnostics.com, Apr. 13, 2005, 1 pg.
Southern Surgeons Club (1991), “A prospective analysis of 1518 laparoscopic cholecystectomies,” N. Eng. 1 Med. 324 (16): 1073-1078.
Stefanini et al., “Modeling and Experiments on a Legged Microrobot Locomoting in a Tubular Compliant and Slippery Environment,” Int. Journal of Robotics Research, vol. 25, No. 5-6, pp. 551-560, May-Jun. 2006.
Stiff et al., “Long-term Pain: Less Common After Laparoscopic than Open Cholecystectomy,” British Journal of Surgery, 1994; 81: 1368-1370.
Strong et al., “Efficacy of Novel Robotic Camera vs. a Standard Laproscopic Camera,” Surgical Innovation vol. 12, No. 4, Dec. 2005, Westminster Publications, Inc., pp. 315-318.
Suzumori et al., “Development of Flexible Microactuator and its Applications to Robotics Mechanisms,” Proceedings of the IEEE International Conference on Robotics and Automation, 1991: 1622-1627.
Taylor et al., “A Telerobotic Assistant for Laparoscopic Surgery,” IEEE Eng Med Biol, 1995; 279-287.
Tendick et al., (1993), “Sensing and Manipulation Problems in Endoscopic Surgery: Experiment, Analysis, and Observation,” Presence 2(1): 66-81.
Tendick et al., “Applications of Micromechatronics in Minimally Invasive Surgery,” IEEE/ASME Transactions on Mechatronics, 1998; 3(1): 34-42.
Thomann et al., “The Design of a new type of Micro Robot for the Intestinal Inspection,” Proceedings of the 2002 IEEE Intl. Conference on Intelligent Robots and Systems, Oct 2002: 1385-1390.
U.S. Appl. No. 60/180,960, filed Feb. 2000.
U.S. Appl. No. 60/956,032, filed Aug. 15, 2007.
U.S. Appl. No. 60/983,445, filed Oct. 29, 2007.
U.S. Appl. No. 60/990,062, filed Nov. 26, 2007.
U.S. Appl. No. 60/990,076, filed Nov. 26, 2007.
U.S. Appl. No. 60/990,086, filed Nov. 26, 2007.
U.S. Appl. No. 60/990,106, filed Nov. 26, 2007.
U.S. Appl. No. 60/990,470, filed Nov. 27, 2007.
Abbou et al., “Laparoscopic Radical Prostatectomy with a Remote Controlled Robot,” The Journal of Urology, Jun. 2001, 165: 1964-1966.
Glukhovsky et al., “The development and application of wireless capsule endoscopy,” Int. J. Med. Robot. Comput. Assisi. Surgery, 2004; I (1): 114-123.
Gong et al., “Wireless endoscopy,” Gastrointestinal Endoscopy 2000; 51(6): 725-729.
Hanly et al., “Value of the SAGES Learning Center in introducing new technology,” Surgical Endoscopy, 2004; 19 (4): 477-483.
Hanly et al., “Robotic Abdominal Surgery,” The American Journal of Surgery 188 (Suppl. to Oct. 1994): 19S-26S, 2004.
Heikkinen et al., “Comparison of laparoscopic and open Nissen fundoplication two years after operation: A prospective randomized trial,” Surgical Endoscopy, 2000; 14: 1019-1023.
Hissink, “Olympus Medical develops capsule camera technology,” Dec. 2004, accessed Aug. 29, 2007, http://www.letsgodigital.org , 3 pp.
Horgan et al., “Technical Report Robots in Laparoscopic Surgery,” Journal of Laparoendoscopic & Advanced Surgical Techniques, 2001; 11(6): 415-419.
International Search report and Written Opinion from international application No. PCT/US2012/41911, dated Mar. 13, 2013.
Ishiyama et al., “Spiral-type Micro-machine for Medical Applications,” 2000 International Symposium on Micromechatronics and Human Science, 2000: 65-69.
Jagannath et al., “Peroral transgastric endoscopic ligation of fallopian tubes with long-term survival in a porcine model,” Gastrointestinal Endoscopy, 2005; 61(3): 449-453.
Kalloo et al., “Flexible transgastric peritoneoscopy: a novel approach to diagnostic and therapeutic interventions in the peritoneal cavity,” Gastrointestinal Endoscopy, 2004; 60(1): 114-117.
Kang et al., “Robotic Assistants Aid Surgeons During Minimally Invasive Procedures,” IEEE Engineering in Medicine and Biology, Jan.-Feb. 2001; pp. 94-104.
Kantsevoy et al., “Endoscopic gastrojejunostomy with survival in a porcine model,” Gastrointestinal Endoscopy, 2005; 62(2): 287-292.
Kantsevoy et al., “Transgastric endoscopic splenectomy,” Surgical Endoscopy, 2006; 20: 522-525.
Kazemier et al. (1998), “Vascular Injuries During Laparoscopy,” J. Am. Coli. Surg. 186(5): 604-5.
Kim, “Early Experience with Telemanipulative Robot-Assisted Laparoscopic Cholecystectomy Using da Vinci,” Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 2002; 12(1):33-40.
Ko et al., “Per-Oral transgastric abdominal surgery,” Chinese Journal of Digestive Diseases, 2006; 7: 67-70.
Lafullarde et al., “Laparoscopic Nissen Fundoplication: Five-year Results and Beyond,” Arch/Surg, Feb. 2001; 136:180-184.
Leggett et al. (2002), “Aortic injury during laparoscopic fundoplication,” Surg. Endoscopy 16(2): 362.
Li et al. (2000), “Microvascular Anastomoses Performed in Rats Using a Microsurgical Telemanipulator,” Comp. Aid. Surg. 5: 326-332.
Liem et al., “Comparison of Conventional Anterior Surgery and Laparoscopic Surgery for Inguinal-hernia Repair,” New England Journal of Medicine, 1997; 336 (22): 1541-1547.
MacFarlane et al., “Force-Feedback Grasper Helps Restore the Sense of Touch in Minimally Invasive Surgery,” Journal of Gastrointestinal Surgery, 1999; 3: 278-285.
Mack et al., “Present Role of Thoracoscopy in the Diagnosis and Treatment of Diseases of the Chest” Ann Thorac Surgery, 1992; 54: 403-409.
Mack, “Minimally Invasive and Robotic Surgery,” JAMA, Feb. 2001; 285(5): 568-572.
Mei et al., “Wireless Drive and Control of a Swimming MicroroboL” Proceedings of the 2002 IEEE International Conference on Robotics & Automation, May 2002: 1131-1136.
Melvin et al., “Computer-Enhanced vs. Standard Laparoscopic Antireflux Surgery,” J Gastrointest Surg 2002; 6: 11-16.
Menciassi et al., “Locomotion of a Leffed Capsule in the Gastrointestinal Tract: Theoretical Study and Preliminary Technological Results,” IEEE Int. Conf. on Engineering in Medicine and Biology, San Francisco, CA, pp. 2767-2770, Sep. 2004.
Menciassi et al., “Robotic Solutions and Mechanisms for a Semi-Autonomous Endoscope,” Proceedings of the 2002 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, Oct. 2002; 1379-1384.
Menciassi et al., “Shape memory alloy clamping devices of a capsule for monitoring tasks in the gastrointestinal tract,” J. Micromech. Microeng, 2005, 15: 2045-2055.
Meron, “The development of the swallowable video capsule (M2A),” Gastrointestinal Endoscopy 2000; 52 6: 817-819.
Micron, http://www.micron.com, 2006, I/4-inch VGA NTSC/PAL CMOS Digital Image Sensor, 98 pp.
Midday Jeff et al., “Material Handling System for Robotic natural Orifice Surgery”, Proceedings of the 2011 Design of medical Devices Conference, Apr. 12-14, 2011, Minneapolis, MN, 4 pages.
Miller, Ph.D., et al., “In-Vivo Stereoscopic Imaging System with 5 Degrees-of-Freedom for Minimal Access Surgery,” Dept. of Computer Science and Dept. of Surgery, Columbia University, New York, NY, 7 pp.
Munro (2002), “Laparoscopic access: complications, technotogies, and techniques,” Curro Opin. Obstel. Gynecol., 14(4): 365-74.
Nio et al., “Efficiency of manual vs robotical (Zeus) assisted laparoscopic surgery in the performance of standardized tasks,” Surg Endosc, 2002; 16: 412-415.
Oleynikov et al., “In Vivo Camera Robots Provide Improved Vision for Laparoscopic Surgery,” Computer Assisted Radiology and Surgery (CARS), Chicago, IL, Jun. 23-26, 2004.
Oleynikov et al., “In Vivo Robotic Laparoscopy,” Surgical Innovation, Jun. 2005, 12(2): 177-181.
Oleynikov et al., “Miniature Robots Can Assist in Laparoscopic Cholecystectomy,” Journal of Surgical Endoscopy, 19-4: 473-476, 2005.
O'Neill, “Surgeon takes new route to gallbladder,” The Oregonian, Jun. 2007, 2 pp.
Orlando et al., (2003), “Needle and Trocar Injuries in Diagnostic Laparoscopy under Local Anesthesia: What Is the True Incidence of These Complications?” Journal of Laparoendoscopic & Advanced Surgical Techniques 13(3): 181-184.
Palm, William, “Rapid Prototyping Primer” May 1998 (revised Jul. 30, 2002) (http://www.me.psu.edu/lamancusa/rapidpro/primer/chapter2.htm).
Park et al., “Trocar-less Instrumentation for Laparoscopy: Magnetic Positioning of Intra-abdominal Camera and Retractor,” Ann Surg, Mar. 2007; 245(3): 379-384.
Park et al., “Experimental studies of transgastric gallbladder surgery: cholecystectomy and cholecystogastric anastomosis (videos),” Gastrointestinal Endoscopy, 2005; 61(4): 601-606.
Patronik et al., “Development of a Tethered Epicardial Crawler for Minimally Invasive Cardiac Therapies,” IEEE, pp. 239-240.
Patronik et al., “Crawling on the Heart: A Mobile Robotic Device for Minimally Invasive Cardiac Interventions,” MICCAI, 2004, pp. 9-16.
Patronik et al., “Preliminary evaluation of a mobile robotic device for navigation and intervention on the beating heart,” Computer Aided Surgery, 10(4): 225-232, Jul. 2005.
Peirs et al., “A miniature manipulator for integration in a self-propelling endoscope,” Sensors and Actuators A, 2001, 92: 343-349.
Peters, “Minimally Invasive Colectomy: Are the Potential Benefits Realized?” Dis Colon Rectum 1993; 36: 751-756.
Phee et al., “Analysis and Development of Locomotion Devices for the Gastrointestinal Tract,” IEEE Transaction on Biomedical Engineering, vol. 49, No. 6, Jun. 2002, pp. 613-616.
Related Publications (1)
Number Date Country
20210307813 A1 Oct 2021 US
Provisional Applications (2)
Number Date Country
61498919 Jun 2011 US
61495487 Jun 2011 US
Continuations (4)
Number Date Country
Parent 16512510 Jul 2019 US
Child 17352817 US
Parent 15700713 Sep 2017 US
Child 16512510 US
Parent 14745587 Jun 2015 US
Child 15700713 US
Parent 13493725 Jun 2012 US
Child 14745587 US