Berendsen, Herman J.C. “A Glimpse of the Holy Grail” Science Oct. 23, 1998, vol. 282, pp. 642-643.* |
Akarsu et al., “A second locust (GLC3B) for primary confenital glaucoma (Buphthalmos) maps to the 1p36 region,” Hum. Mol. Genet., 5:1199-1203, 1996. |
Alward et al., “Autosomal dominant iris hypoplasia is caused by a mutation in the rieger-syndrome (Rieg/Pitx2) gene,” Am. J. Opthalmol., 125:98-100, 1998. |
Attree et al., “The lowe's oculocerebrorenal syndrome gene encodes a protein highly homologous to inositol polyphosphate-5-phosphatase,” Nature, 358-239-242, 1992. |
Bonin et al., “The MUR1 gene og arabidopsis thaliana encodes an isoform of GDP-D-mannose-4, 6-dehydratase, catalyzing the first step in the de novo synthesis of GDP-L-fucose,” Proc. Natl. Acad. Sci. USA, 64:2085-2090, 1997. |
Clark et al., “Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5,” Nature, 364:412-420, 1993. |
Dorin et al., “Gene targeting for somatic cell manipulation: Rapid analysis of reduced chromosome hybrids by Alu-PCR fingerprinting and chromosome painting,” Hum. Mol. Genet., 1:53-59, 1992. |
Fantes et al., “Aniridia-associated cytogenetic rearrangements that a position effect may cause the mutant phenotype,” Hum. Mol. Genet., 4:415-422, 1995. |
Galili et al., “Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma,” Nat. Genet., 5:230-235, 1993. |
Glaser et al., “Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene,” Nat. Genet., 2:232-239, 1992. |
Gould et al., “Autosomal dominant Axenfeld-Rieger anomaly maps to 6p25 [letter],” Am. J. Hum. Genet., 61:765-768, 1997. |
Graff et al., “Fine mapping of the gene for autosomal dominant juvenile-onset glaucoma with iridogoniodysgenesis in 6p25-Tel,” Hum. Genet., 101:130-134, 1997. |
Jordan et al., “Familial glaucoma iridogoniodysplasia maps to a 6p25 region implicated in primary congenital glaucoma and iridogoniodysgenesis anomaly,” Am. J. hum. Genet., 61:882-888, 1997. |
Jordan et al., “The human PAX6 gene is mutated in two patients with aniridia,” Nat. Genet., 1:328-332, 1992. |
Larsson et al., “Chromosomal localization of six human forkhead genes, freac-1 (FKHL5), -3(FKHL7), -4(FKHL8), -5(FKHL), -6(FKHL10), and -8(FKH12),” Genomics, 30:464-469, 1995. |
Li et al., “Analysis of 43kb of the chlorella virus PBV-1 330-kb genome: Map positions 45 to 88,” Virology, 212:134-150, 1995. |
Lida et al., “Essential roles of the winged helix transcription factor MFH-1 in aortic arch patterning and skeletogenesis,” Development, 124:4267-4638, 1997. |
Mears et al., “Autosomal dominant iridogoniodysgenesis anomaly maps to 6p25,” Am. J. Hum. Genet., 59:1321-1327, 1996. |
Mears et al., “Mutations of the forkhead/winged-helix gene, FKHL7, in patients with Axenfeld-Rieger anomaly,” Am. J. Hum. Genet., 63:1316-1328, 1998. |
Meyer et al., “Mechanicsm of extracellular secretion of an IgA protease by gram-negative host cells,” Adv. Exp. Med. Biol., 216B:1271-1281, 1987. |
Murray et al., “A comprehensive human linkage map with centimorgan density,” Cooperative Human Linkage Center (CHLC) Science, 265:2049-2054, 1994. |
Nishimura et al., “The forkhead transcription factor gene FKHL7 is responsible for glaucoma phenotypes which map to 6p25,” Nat. Genet., 19:140-147, 1998. |
Phillips et al., “A second locus for Rieger syndrome maps to chromosome 13q14,” Am. J. Hum. Genet. 59:613-619, 1996. |
Pierrou et al., “Cloning and characterization of seven human forkhead proteins: Binding site specificity and DNA bending,” EMBO Journal, 13:5002-5012, 1994. |
Semina et al., “Cloning and characterization of a novel bicoid-related homebox transcription factor gene, RIEG, involved in Rieger syndrome,” Nat. Genet., 14:392-399, 1996. |
Stevenson et al., “Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid,” J. Bacteriol, 178:4885-4893, 1996. |
Stoilov et al., “Identification of three different truncating mutations in cytochrome P450B1 (CYP1B) as the principal cause of primary congenital flaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21,” Hum. Mol. Genet., 6:641-647, 1997. |
Stoilova et al., “Localization of a locus (GLCIB) for adult-onset primary open angle glaucoma to the 2cen-q13 region,” Genomics, 36:142-150, 1996. |
Stone et al., “Identification of a gene that causes primary open angle glaucoma,” Science, 275:668-670, 1997. |
Vitovski et al., “Invasive isolates of neisseria meningitidis posses enhanced immunoglobin A1 protease activity compared to colonizing strains,” FASEB J., 13:331-337, 1999. |
Wallace et al., “Molecular genetics of glaucoma: Current Status,” J. Glaucoma, 5:276-284, 1996. |
Wirtz et al., “Mapping a gene for adult-onset primary open-angle glaucoma to chromosome 3q,” Am. J. Hum.Genet., 60:296-304, 1997. |
Ying Xu et al., “Recognizing exons in genomic sequence using grail II,” Gen. Engin . 16:241-253, 1994. |
Database EMBLhum#: SEQ ID:HSMFH1 AC:Y08223 H. sapiens, MFH-1 gene., p. XP0022122926, 1997. |
Database EMBLest20, SEQ ID:HS1223780 AN:AA42466 H. sapiens cDNA clone 7671103, p. XP0022122927, 1997. |
Database Emest3 SEQ ID HSMFH1, Acc. No. Y08223, H. sapiens MFH-1 gene., 1, cited in the application Miura et al., “Isolation of the mouse (MFH-1) and human (FKHL 14) mesenchyme fork head-1 genes rveals conservation of their gene and protein structures,” Genomics, 41:489-492, XP002133351, 1997. |