Methods to Identify Synthetic and Natural RNA Elements that Enhance Protein Translation

Abstract
The present invention provides reagents and methods for identifying translation enhancing elements, as well as isolated translation enhancing elements and their use in protein expression reagents and methods.
Description
BACKGROUND

Ribosomal initiation constitutes a critical step in the protein translation process, allowing the ribosome to locate the correct AUG start site in the RNA message and initiate the transfer of genetic information from RNA into proteins via the genetic code. In eukaryotes, recruitment of the 40S ribosomal subunit to the RNA message occurs by recognition of a 7-methylguanosine cap located at the 5′ end of the mRNA strand. Ribosomal recruitment can also occur by a less common cap-independent mechanism, an example of which is the internal ribosomal entry site (IRES). In many cases, the recruitment site is located some distance upstream of the initiation codon, which poses the question of how the ribosome is able to bypass the intervening sequence. While linear scanning is the dominant model used to explain this process, emerging evidence suggests that transient mRNA-rRNA base pairing may play an important role in the initiation of certain mRNAs. This possibility, and the fact that the genome is routinely and pervasively transcribed into RNA, raise many interesting questions about the role of RNA inside cells and the potential for many unknown protein coding regions.


Discovering translation initiation elements (TIEs), also known as translation enhancing elements (TEEs) in human and other higher order genomes is a challenging problem as computational methods are unable to locate these sequences at the DNA level. This limitation has created a pressing need for new functional tools that can be used to identify and map these sequences in known genomes.


SUMMARY OF THE INVENTION

In a first aspect, the present invention provides nucleic acid libraries comprising a plurality of linear recombinant double stranded DNA constructs, wherein each double stranded DNA construct comprises


(a) a promoter;


(b) a heterologous coding region downstream from the promoter, wherein the coding region encodes a detectable polypeptide;


(c) a heterologous cross-linking region downstream of the coding region;


(d) a heterologous polynucleotide sequence of between 20-500 base pairs in length located downstream of the promoter and upstream of the coding region; and


(e) a first PCR primer binding site and a second PCR primer binding site, wherein the first PCR primer binding site is upstream of the polynucleotide sequence and the second PCR primer site is downstream of the polynucleotide sequence;


wherein at least 1013 different polynucleotide sequences are represented in the plurality of double stranded nucleic acid constructs, and wherein the first PCR primer and the second PCR primer are the same for each construct in the plurality of double stranded nucleic acid constructs.


In a second aspect, the present invention provides mRNA pools, comprising mRNA transcripts resulting from transcription of the nucleic acid libraries of the first aspect of the invention.


In a third aspect, the present invention provides methods for identifying translational enhancing elements (TEEs), comprising


(a) contacting the nucleic acid library of the first aspect of the invention with reagents for RNA transcription under conditions to promote transcription of RNA from the double stranded nucleic acid constructs, resulting in an RNA expression product;


(b) contacting the RNA expression product with reagents for ligating a linker containing a puromycin residue to the 3′ end of the RNA expression product, resulting in a labeled RNA expression product;


(c) contacting the labeled RNA expression product with reagents for protein expression under conditions to promote protein translation from the labeled RNA expression product, resulting in a RNA-polypeptide fusion product;


(d) isolating RNA-polypeptide fusion products;


(e) converting the isolated RNA-polypeptide fusion products to cDNA by reverse transcription-PCR using a primer to the 3′ end of the isolated RNA-polypeptide fusion products;


(f) amplifying the cDNA by PCR using primers to the 5′ and 3′ end of the cDNA; and


(g) repeating steps (a)-(f) a desired number of times, wherein the amplified polynucleotide sequence fragments comprise TEEs.


In a fourth aspect, the present invention provides isolated polynucleotides, comprising a nucleic acid sequence according to any one of SEQ ID NOS: 1-5 and 7-645. These polynucleotides have been identified as TEEs using the methods of the present invention.


In a fifth aspect, the present invention provides expression vectors comprising


(a) a promoter;


(b) a heterologous TEE downstream of the promoter, where the TEE comprises a polynucleotide according to the fourth aspect of the invention; and


(c) a cloning site suitable for cloning of an protein-encoding nucleic acid of interest located upstream of the TEE, and downstream of the promoter.


In a sixth aspect, the present invention provides recombinant host cells comprising the expression vector of the fifth aspect of the invention.


In a seventh aspect, the present invention provides methods for protein expression, comprising contacting an expression vector of the fifth aspect of the invention with reagents and under conditions suitable for promoting expression of a polypeptide cloned into the cloning site.





DESCRIPTION OF THE FIGURES


FIG. 1. In vitro selection and characterization of RNA elements that mediate cap-independent. (A) Human genomic DNA fragments were inserted into a DNA cassette containing all of the sequence information necessary to perform an mRNA display selection. For each selection round, the dsDNA pool was in vitro transcribed into ssRNA, conjugated to a DNA-puromycin linker, and translated in vitro. Uncapped mRNA sequences that initiate translation of an intact ORF become covalently linked to a His-6 protein affinity tag encoded in the RNA message. Functional molecules are recovered, reverse transcribed, and amplified by PCR to generate the input for the next round of selection. (B) Generation of RNA-protein fusion molecule by the natural peptidyl transferase activity of the ribosome, which catalyzes the formation of a non-hydrolyzable amide bond between puromycin and the polypeptide chain. (C) The selection progress was monitored by measuring the fraction of S35-labeled mRNA-peptide fusions that bound to an oligo-dT column and a Ni-NTA affinity column. Chromosomal distribution of in vitro selected sequences with 100% sequence similarity to the human reference genome (D) and their evolutionary conservation compared to the starting library (round 0) (E). (F) The distribution of individual repeat families in the starting library, random genomic sequences, and the in vitro selected sequences.



FIG. 2. Functional analysis of top nine sequences in human cells. (A) Schematic diagram showing the individual steps of a coupled transcription-translation assay for cytoplasmic RNA expression and analysis. A luciferase reporter plasmid carrying an insert and a promoter sequence specific to the vaccinia virus is transfected into HeLa cells that are immediately infected with vaccinia virus. Virus-infected cells synthesize a vaccinia RNA polymerase that enables cytoplasmic transcription of the reporter plasmid into RNA. The mRNA transcripts are translated by endogenous ribosomes and the cells are assayed for bioluminescence activity after 6 hours of infection. The translation efficiency of the top nine sequences identified in the cell-based screen in (B) HeLa cells and (C) in vitro in HeLa cell lysate.



FIG. 3. Functional analysis of the top nine sequences in the hairpin plasmid. (A) The sequences were inserted into a firefly reporter plasmid (F-luc-hp) containing a stable stem-loop structure. (B) The translation efficiency of the controls with no insert in vitro and in cell-based assays with and without the stable stem-loop structure. (C) The translation efficiency of the top nine sequences in vitro relative to the no insert control.

    • (D) The translation efficiency of the top nine sequences in HeLa cells relative to the no insert control after normalization for mRNA (E) No infection assay in HeLa cells demonstrating that HGL6.877, HGL6.1033, and HGL6.733 have weak promoter activity that is specific to vaccinia virus infection. No activity is observed for these sequences in the absence of the vaccinia virus (inset).



FIG. 4. Translation initiation efficiency of AUG triplet patterns. (A) In vitro translation efficiency of selected sequences with in-frame and out-of-frame AUG triplets. (B) Gel image illustrating start site usage of sequences in rabbit and human cell lysate. (C) In vitro translation efficiency of HGL6.877 and an unselected sequence (HGL0.53) with various combinations of AUG triplets.





DETAILED DESCRIPTION OF THE INVENTION

In a first aspect, the present invention provides nucleic acid libraries comprising a plurality of linear recombinant double stranded DNA constructs, wherein each double stranded DNA construct comprises


(a) a promoter;


(b) a heterologous coding region downstream from the promoter, wherein the coding region encodes a detectable polypeptide;


(c) a heterologous cross-linking region downstream of the coding region;


(d) a heterologous polynucleotide sequence of between 20-500 base pairs in length located downstream of the promoter and upstream of the coding region; and


(e) a first PCR primer binding site and a second PCR primer binding site, wherein the first PCR primer binding site is upstream of the polynucleotide sequence and the second PCR primer site is downstream of the polynucleotide sequence;


wherein at least 1013 different polynucleotide sequences are represented in the plurality of double stranded nucleic acid constructs, and wherein the first PCR primer and the second PCR primer are the same for each construct in the plurality of double stranded nucleic acid constructs.


The nucleic acid libraries according to the present invention can be used, for example, in the methods of the invention for performing in vitro selection for the isolation of RNA elements (TEEs, including internal ribosome entry sites (IRESs)) that can mediate cap-independent protein translation. The libraries comprise a series of linear constructs, which, when used in in vitro selection methods as described herein, permit use of a library diversity of at least 1013 different polynucleotide sequences. As described in detail below, the inventors have used the libraries of the present invention to identify a large number of novel TEEs, including a number of IRESs. As used herein, a “library” is a collection of linear double stranded nucleic acid constructs.


As used herein, “heterologous” means that none of the promoter, coding region, genomic fragment, and cross-linking region are normally associated with each other (ie: they are not part of the same gene in vivo), but are recombinantly combined in the construct.


As used herein, a “promoter” is any DNA sequence that can be used to help drive RNA expression of a DNA sequence downstream of the promoter. Suitable promoters include, but are not limited to, the T7 promoter, SP6 promoter, CMV promoter, and vaccinia virus synthetic-late promoter. As will be understood by those of skill in the art, a given double stranded DNA construct may contain more than one promoter, as appropriate for a given proposed use.


As used herein, a “coding region” is any DNA sequence encoding a polypeptide product. As used herein, a “detectable polypeptide” is any polypeptide whose expression can be detected, including but not limited to a fluorescent polypeptide (GFP, BFP, etc.), a member of a binding pair, an affinity tag, etc. The ability to detect the polypeptide greatly facilitates the methods of the invention. Non-limiting examples of such detectable polypeptides include affinity tags, protein DX (Smith et al. (2007) PLoS ONE 2, e467), maltose-binding protein (MBP), streptavadin, glutathionine S-transferase (GST), flagellar protein FlaG (FLAG affinity tag), and myelocytomatosis and viral oncogene homologs (Myc affinity tag).


As used herein, a “cross linking region” is any nucleic acid sequence that can be expressed as RNA, where the expressed RNA can serve as a site for ligation/binding to a linker to form a stable complex between mRNA-ribosome-protein. In a preferred embodiment, expressed RNA from the cross-linking region can serve as a site for ligation to a linker containing a 3′-puromycin residue. In a non-limiting embodiment, the expressed RNA from the cross-linking region can serve as a site for photo-ligation of a psoralen-DNA-puromycin linker (5′-psoralen-(oligonucleotide complementary to linker)-(PEG9)2-A15-ACC-puromycin). In a preferred embodiment, the linker is a DNA linker, and the mRNA expressed from the cross linking region is complementary to the DNA linker sequence to be used.


The polynucleotide sequence can be any suitable length, such as between 20-1000 base pairs. In a preferred embodiment, the polynucleotide sequence is between 20-500 base pairs, and may comprise genomic fragments, such as a representation of an entire or partial genome from an organism of interest, or may comprise synthetic sequences. In embodiments where genomic fragments are used, the genomic fragments may be generated by any appropriate means, including restriction enzyme digestion, shearing, polynucleotide synthesis, etc. Genomic fragments from any suitable organism of interest may be used, including but not limited to human, mammal, fish, reptile, plant, yeast, insect, prokaryotic, bacterial (E. coli, etc.), viral, fungal, and pathogenic organism genomic fragments. In another preferred embodiment, such genomic fragments are obtained from plurality of individual organisms of a single species; in a further embodiment, the plurality of individual organisms of a single species differ in ancestry, age, gender, and/or other characteristics.


The primer binding sites provide regions of known sequence around the polynucleotide sequence of unknown sequence to be tested for TEE activity. Additionally the primer binding sites provide a way to amplify only the polynucleotide sequence back out of the construct as desired. As will be understood by those of skill in the art, any suitable sequence can be used as a primer binding site so long as it can be used to bind a primer of interest. The primer binding site may be immediately adjacent to the polynucleotide sequence, or there may be additional nucleotides present between the primer binding site and the polynucleotide sequence as deemed appropriate for a given purpose.


As used herein, “at least 1013 different polynucleotide sequences are represented in the plurality of double stranded nucleic acid constructs” means that the library, in its entirety, contains at least 1013 different polynucleotide sequences that can be tested for TEE activity, while each different double stranded nucleic acid construct contains only a single polynucleotide sequence. In various embodiments, at least 1014 different polynucleotide sequences or at least 1015 different polynucleotide sequences are represented in the plurality of double stranded nucleic acid constructs.


It will be understood by those of skill in the art that the constructs of the invention may comprise further nucleotide elements as appropriate for a given intended use. In one preferred embodiment, the double stranded nucleic acid constructs further comprise one or more unique restriction sites upstream of the polynucleotide sequence and downstream of the promoter, and one or more unique restriction sites downstream of the polynucleotide sequence. This embodiment provides a further means by which to isolate polynucleotide sequences of interest from the constructs. In a further embodiment, the constructs do not include sequences encoding a 3′ poly(A) tail, or sequences that promote formation of a 5′ cap on the resulting transcript.


In another preferred embodiment, the second (3′) primer binding site is immediately upstream of the coding region in the double stranded nucleic acid construct. In this embodiment, the 3′ primer binding site abuts the coding region when the polynucleotide sequence is upstream of the promoter.


In a second aspect, the present invention provides an mRNA pool resulting from transcription of the library of any embodiment of the first aspect of the invention. Such mRNA pools can be used, for example, in the methods of the invention below. Any suitable technique for RNA transcription can be used. In one non-limiting embodiment, the double stranded DNA constructs each comprise a T7 RNA polymerase promoter, and the library is transcribed in vitro using T7 RNA polymerase, using standard techniques. It will be clear to those of skill in the art how to optimize transcription conditions in terms of buffers, nucleotides, salt conditions, etc., based on the general knowledge of in vitro transcription techniques in the art. The resulting mRNA pools will comprise single stranded RNA from all/almost all the double stranded DNA constructs in the library. In a further embodiment, the transcripts in the pooled mRNA comprise a DNA linker, containing a 3′ puromycin residue, ligated at the 3′ end of the transcript. In a further aspect, the invention provides pooled mRNA-peptide fusion molecules resulting from in vitro translation of the pooled mRNA. Methods for in vitro translation of RNA transcripts are well known to those of skill in the art. In one non-limiting embodiment, the methods comprise incubating the pooled mRNA with rabbit reticulocyte lysate and 35S-methionine for a suitable time. The method may further comprise incubating the mixture overnight in the presence of suitable amounts of KCl and MgCl2 to promote fusion formation. When the pool of RNA is translated in vitro, transcripts that contain a TEE (such as an IRES) in their 5′ UTR would initiate translation and produce an mRNA-peptide fusion molecule; thus, modifying TEE-containing RNAs with a selectable tag. The chemical bond forming step of mRNA display is due to the natural peptidyl transferase activity of the ribosome, which catalyzes the formation of a non-hydrolyzable amide bond between puromycin and the polypeptide chain (FIG. 1B). mRNA-peptide fusion molecules can be isolated by affinity purification, reverse-transcribed, and amplified to regenerate the pool of DNA for another selection cycle.


In a third aspect, the present invention provides in vitro methods for identifying translational enhancing elements (TEEs), comprising


(a) contacting the nucleic acid library of any embodiment or combination of embodiments of the first aspect of the invention with reagents for RNA transcription under conditions to promote transcription of RNA from the double stranded nucleic acid constructs, resulting in an RNA expression product;


(b) contacting the RNA expression product with reagents for ligating a linker containing a puromycin residue to the 3′ end of the RNA expression product, resulting in a labeled RNA expression product;


(c) contacting the labeled RNA expression product with reagents for protein expression under conditions to promote protein translation from the labeled RNA expression product, resulting in a RNA-polypeptide fusion product;


(d) isolating RNA-polypeptide fusion products;


(e) converting the isolated RNA-polypeptide fusion products to cDNA by reverse transcription-PCR using a primer to the 3′ end of the isolated RNA-polypeptide fusion products;


(f) amplifying the cDNA by PCR using primers to the 5′ and 3′ end of the cDNA; and


(g) repeating steps (a)-(f) a desired number of times, wherein the amplified polynucleotide sequence fragments comprise TEEs.


The methods of this aspect of the present invention serve to isolate RNA elements that could mediate cap-independent translation (ie: TEEs, including but not limited to IREs). The mechanism-based approach of mRNA display provides an efficient method to systematically and comprehensively survey nucleic acid sequences for all of the possible RNA elements that could initiate translation of uncapped mRNA transcripts. Since IRESs function by a cap-independent mechanism, this selection serves to identify IRESs as well as TEEs that promote cap-independent translation but do not initiate internally. All terms used in this third aspect have the same meaning as used elsewhere herein; similarly, all embodiments of the nucleic acid libraries and components thereof that are disclosed above, and combinations thereof, can be used in the methods of the invention. Thus, for example, each double stranded DNA construct comprises


(a) a promoter;


(b) a heterologous coding region downstream from the promoter, wherein the coding region encodes a detectable polypeptide;


(c) a heterologous cross-linking region downstream of the coding region;


(d) a heterologous polynucleotide sequence of between 20-1000 base pairs in length located downstream of the promoter and upstream of the coding region; and


(e) a first PCR primer binding site and a second PCR primer binding site, wherein the first PCR primer binding site is upstream of the polynucleotide sequence and the second PCR primer site is downstream of the polynucleotide sequence. In one non-limiting embodiment, the heterologous polynucleotide sequences are randomly digested fragments (in various non-limiting embodiments, ranging between 20-1000 nts, 20-750 nts, 20-500 nts; or about 150 nts) of total human DNA. Since the heterologous polynucleotide sequence is located downstream of the promoter and upstream of the coding region.


In the method, step (f) amplifying the cDNA by PCR using primers to the 5′ and 3′ end of the cDNA serves to add sequence information that was lost in steps (a) and (e). In one embodiment, primers to add a promoter (such as a T7 promoter) to the 5′ end and the cross-linking region (such as a photo-crosslinking) site (3′ end) back onto the DNA library are after each round of selection. The sequence of these PCR primers may vary depending on how each library is constructed. The result of this PCR is the fully constructed double stranded nucleic acid construct, which can be used to repeat steps (a)-(f) as desired.


Contacting the RNA expression product with reagents for ligating a linker containing a puromycin residue to the 3′ end of the RNA expression product, resulting in a labeled RNA expression product, can be carried out via any suitable method, including photo-crosslinking or Moore-Sharp splint-directed ligation.


Any suitable linker may be used. In a preferred embodiment the linker comprises a DNA linker complementary to the transcribed single stranded RNA. The DNA linker may comprise any suitable modifications, including but not limited non-natural residues and pegylation, as can be used in mRNA display.


In one preferred embodiment, the polynucleotide sequences in the library comprise genomic fragments; in a further preferred embodiment the starting pool of constructs used in the methods contains at least a 5×-1000× coverage of the genome of interest.


General conditions for in vitro transcription and translation, PCR, reverse transcription, and mRNA display techniques (including contacting an RNA expression product with reagents for ligating a linker containing a puromycin residue to the 3′ end of the RNA expression product), are well known to those of skill in the art. Exemplary such conditions are described above and in the examples that follow. To favor the selection of RNA elements that enhance ribosomal recruitment via a cap-independent mechanism, the pool of RNA transcripts is preferably devoid of a 5′ cap and 3′ poly(A) tail. As will be apparent to those of skill in the art, this can be accomplished, for example, by not including polyT sequences in the DNA template (to avoid poly(A) tail production) and by not providing capping enzymes required for 5′ cap production.


When the pool of RNA is translated in vitro, transcripts that contain a TEE in their 5′ UTR initiate translation and produce an mRNA-peptide fusion molecule; thus, modifying TEE-containing RNAs with a selectable tag. The chemical bond forming step of mRNA display is due to the natural peptidyl transferase activity of the ribosome, which catalyzes the formation of a non-hydrolyzable amide bond between puromycin and the polypeptide chain (FIG. 1B). mRNA-peptide fusion molecules can then be isolated by affinity purification, reverse-transcribed, and amplified to regenerate the pool of DNA for another selection cycle.


In one non-limiting embodiment, for each round of selection, the dsDNA library was transcribed with an RNA polymerase suitable for the promoter being used, photo-ligated to a psoralen-DNA-puromycin linker (5′-psoralen-oligonucleotide complementary to linker)-(PEG9)2-A15-ACC-puromycin), and translated in vitro by incubating the library with rabbit reticulocyte lysate and 35S-methionine under suitable conditions. mRNA-peptide fusion molecules are reverse transcribed, and can be purified by any suitable means, including but not limited to a two-step procedure on oligo (dT)-cellulose beads (NEB) and Ni-NTA agarose affinity resin (Qiagen). Functional TEEs are recovered by any suitable technique, including but not limited to eluting the column with imidazole, dialyzing the sample into water, and amplifying the cDNA by PCR. The selection progress can be monitored using any suitable technique, including but not limited to determining the fraction of S35-labeled mRNA-peptide fusions that remained on the oligo (dT)/Ni-NTA affinity columns. After a desired number of rounds of selection and amplification, the TEEs can be identified by any suitable means, including but not limited to cloning and sequencing of the amplified DNA constructs.


The selection process (steps (a)-(f)) can be carried out any suitable number of times deemed appropriate to identify TEEs, such as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more times. In one preferred embodiment, at least three selection cycles are carried out, such that step (g) comprises repeating steps (a)-(f) at least two more times, and even more preferably at least 3, 4, 5, 6, 7, 8, 9, or more times.


In one embodiment, the method further comprises testing polynucleotide sequences identified as TEEs for TEE activity in vivo using, for example, the vaccinia system described herein. Any suitable system may be used. In one non-limiting embodiment, a plasmid-based reporter assay that allows coupled transcription and translation to occur in the cytoplasm of human cells was developed (FIG. 2A), to test sequences under conditions that are not subject to nuclear processing. This system is based on an EMCV-driven system that relies on vaccinia virus (VACV) to circumvent nuclear expression (25). TEE candidate sequences are cloned into a monocistronic firefly luciferase reporter plasmid (F-luc-mono) containing a VACV-specific promoter. Transfected HeLa cells are infected with VACV, and after a brief incubation, cells are lysed and assayed for luciferase activity. Plasmids carrying no-insert or a randomly chosen sequence from the starting pool provided a basal level of activity.


In a further embodiment, TEE candidate sequences are tested for the ability to initiate internal translation initiation. Any suitable assay for testing internal translation initiation can be used, including but not limited to those disclosed herein. In one non-limiting embodiment, TEE candidate sequences are inserted into a firefly reporter plasmid (F-luc-hp) containing a stable stem-loop structure (ΔG=−58 kcal/mol) to prevent ribosomal scanning (FIG. 3A) (26).


In a fourth aspect, the present invention provides isolated polynucleotides, comprising a nucleic acid sequence according to any one of SEQ ID NOS: 1-5 and 7-645. In another embodiment, the isolated polynucleotides comprise or consist of a sequence according to one or more of SEQ ID NO: 7-645, listed in Table 1. The isolated polynucleotides listed in the recited tables were all identified as TEEs by the methods of the invention; all are human genomic sequences, and thus can be used, for example, in designing expression vectors for improved translational efficiency of one or more proteins encoded by the vector. In various preferred embodiments, the isolated polynucleotides are between 13-180, 13-170, 13-160, 13-150, 13-140, 13-130, 13-120, 13-110, 13-100, 13-90, 13-80, 13-70, 13-60, 13-50, 13-40, 13-30, or 13-20 nucleotides in length. In a preferred embodiment, the isolated polynucleotides consist of the recited sequence. In a further embodiment, the isolated polynucleotides comprise the sequence of SEQ ID NO:4 (A/-)(A/G)ATC(A/G)(A/G)TAAA(T/C)G, wherein the isolated polynucleotides is between 13-200 nucleotides in length. SEQ ID NO:4 is a consensus sequence found within a number of the TEES (Clones 985 (SEQ ID NO:448), 1092 (SEQ ID NO:495), 1347 (SEQ ID NO:623), 906 (SEQ ID NO:408), 12 (SEQ ID NO:12), 1200 (SEQ ID NO:553), 958 (SEQ ID NO:434), 1011 (SEQ ID NO:458), 459 (SEQ ID NO:214) in Table 1) identified using the methods of the invention. In a preferred embodiment, the isolated polynucleotides comprise the sequence of SEQ ID NO:55′-AAATCAATAAATG-3′, which is a conserved sequence found in the top-performing TEEs as described in the examples that follow. In various preferred embodiments, the isolated polynucleotides are between 13-180, 13-170, 13-160, 13-150, 13-140, 13-130, 13-120, 13-110, 13-100, 13-90, 13-80, 13-70, 13-60, 13-50, 13-40, 13-30, or 13-20 nucleotides in length.


In one embodiment, the polynucleotide is selected from the group consisting of SEQ ID NO:583 (clone 1267), SEQ ID NO:397 (clone 877), SEQ ID NO:54 (clone 100), SEQ ID NO:401 (clone 884), SEQ ID NO:471 (clone 1033), SEQ ID NO:327 (clone 733), SEQ ID NO:398 (clone 878), SEQ ID NO:301 (clone 675), and SEQ ID NO:310 (clone 694). These sequences have been identified as IRESs using the methods disclosed herein. In a further embodiment, the present invention provides isolated polynucleotides comprising a nucleic acid sequence according to SEQ ID NO:1. This sequence represents a consensus sequence of a subset of 733 (SEQ ID NO:327), 877 (SEQ ID NO:397), 1033 (SEQ ID NO:471), and 1267 (SEQ ID NO:583), and thus is strongly correlated with activity. In further embodiments, the isolated polynucleotides comprise a nucleic acid sequence according to SEQ ID NO:2 or SEQ ID NO:3, which are longer portions of the consensus sequence between 733 (SEQ ID NO:327), 877 (SEQ ID NO:397), 1033 (SEQ ID NO:471), 1267 (SEQ ID NO:583.









SEQ ID NO: 1:


5′AT(C/G)GAAT(C/G)(G/A)AA(G/T)(A/G/C)GAATGGA(A/T)





(A/T)(C/A/G)(A/G)AA(T/A)GGAAT(G/A)GAAT(T/G)(G/A)A





ATGGAATGGAA(T/A)(T/G)GA(A/T)T(G/C)GAATG-3′





SEQ ID NO: 2:


5′-(custom-character --)(custom-character --)(custom-character --)(custom-character --)(custom-character --)





(custom-character --)(custom-character --)(custom-character --)(custom-character --)(custom-character /--)(--/custom-character )





(-custom-character )AT(C/G)





GAAT(C/G)(G/A)AA(G/T)(A/G/C)GAATGGA(AT)(A/T)





(C/A/G)(A/G)AA(T/A)GGAAT(G/A)GAAT(T/G)(G/A)





AATGGAATGGAA(T/A)(T/G)GA(A/T)T(G/C)GAATG-3′





SEQ ID NO; 3


5′-(custom-character --)(custom-character --)(custom-character --)(custom-character --)(custom-character --)(custom-character --)





(custom-character --)(custom-character --)(custom-character --)(custom-character --)(A/--)(A/--)(G/A/--)





(C/T/--)(G/--)(G/--)(A/--)(A/--)(T/--)(T/C/--)





(--/A/G)(--/A)AT(C/G)





GAAT(C/G)(G/A)AA(G/T)(A/G/C)GAATGGA(AT)(A/T)





(C/A/G)(A/G)AA(T/A)GGAAT(G/A)GAAT(T/G)(G/A)





AATGGAATGGAA(T/A)(T/G)GA(A/T)T(G/C)GAATG-3′






In a fifth aspect, the present invention provides expression constructs comprising:


(a) a promoter;


(b) a heterologous translational initiation element (TEE) downstream of the promoter, where the TEE comprises or consists of a sequence according to any one of SEQ ID NO:1-5 and 7-645; and


(c) a polylinker suitable for cloning of an open reading frame of interest located upstream or downstream of the TEE, and downstream of the promoter.


In this aspect, the invention provides constructs comprising the TEEs of the invention that are positioned relative to the polylinker (ie: one or more unique restriction sites to facilitate cloning) to increase translational efficiency of any polynucleotide coding region cloned into the polylinker. In a preferred embodiment, the TEE is between 13-500 nucleotides in length; in a more preferred embodiment, between 13 and 200 nucleotides in length. In a preferred embodiment, the polylinker is located downstream of the TEE. Any suitable coding region for which an increase in translational efficiency is desired can be cloned into the vector. Thus, in a further embodiment, the construct comprises a polynucleotide coding region cloned into the polylinker. In a further preferred embodiment, the TEE comprises or consists of the sequence of any one or more of SEQ ID NOS:1-5, 448, 495, 623, 408, 12, 553, 434, 458, 214, 327, 397, 471, and 583. In a further preferred embodiment, the TEE comprises or consists of the sequence of any one or more of 583 (clone 1267), SEQ ID NO:397 (clone 877), SEQ ID NO:54 (clone 100), SEQ ID NO:401 (clone 884), SEQ ID NO:471 (clone 1033), SEQ ID NO:327 (clone 733), SEQ ID NO:398 (clone 878), SEQ ID NO:301 (clone 675), and SEQ ID NO:310 (clone 694). These sequences have been identified as IRESs using the methods disclosed herein. Suitable promoters include, but are not limited to, the T7 promoter, SP6 promoter, CMV promoter, and vaccinia virus synthetic-late promoter. The constructs in this aspect of the invention may be linear constructs, or may be part of an expression vector, such as a plasmid or viral-based expression vector as are known in the art. As will be apparent to those of skill in the art, the constructs may contain any other components as desired by a user, such as origins of replication, selection markers, etc.


In a sixth aspect, the present invention provides recombinant host cell comprising an expression vector of any embodiment or combination of embodiments of the fifth aspect of the invention. Such host cells can be used, for example, to prepare large amounts of the expression vector and to provide for expression of the encoded proteins in the host cells. Any suitable host cell may be used, including but not limited to bacterial and eukaryotic host cells, including but not limited to mammalian and human cells.


In a seventh aspect, the present invention provides methods for protein expression, comprising contacting an expression construct according to any embodiment or combination of embodiments of the fifth aspect of the invention, wherein the construct comprises a polynucleotide coding region cloned into the polylinker, with reagents and under conditions suitable for promoting expression of the polypeptide encoded by the polynucleotide coding region. It is within the level of skill in the art to choose appropriate reagents and conditions for RNA expression from the expression construct, followed by translation of the encoded polypeptide. Exemplary reagents and conditions are described in the examples that follow. The methods of this aspect of the invention may be carried out in vitro or in vivo.


Unless clearly dictated otherwise by the context, all embodiments of any aspect of the invention may be combined with other embodiments of the same and different aspects.


Example 1
Genome-Wide Identification of Human Cap-Independent Translation Initiation Elements

Internal ribosomal entry sites (IRESs) are RNA elements located in the untranslated region of mRNA transcripts that initiate protein synthesis independent of the canonical 5′ cap. To date, only a handful of IRESs have been identified in higher order genomes. Here, we have applied a mechanism-based approach to search the entire human genome for RNA sequences with IRES activity. Starting from a library of >1013 human RNA fragments, we performed iterative cycles of mRNA display to capture leader sequences that mediate cap-independent translation. The selected sequences are distributed throughout the genome, and often occur in repetitive regions with high conservation to mammals. We observed strong cis-regulatory activity for more than 200 sequences tested in a monocistronic translation-enhancing assay. The most active sequences function as potent IRESs in vitro and in human cells. These results demonstrate the power of mRNA display as a genome-wide tool for identifying functional IRESs.


Initiation is a critical step in protein translation, allowing the ribosome to locate the translation start site in the RNA message and initiate the transfer of genetic information from RNA into protein via the genetic code. In eukaryotes, the 43S ribosomal pre-initiation complex (PIC) is recruited to the RNA message by recognition of the eIF4F cap-binding complex bound to a 7-methylguanosine cap located at the 5′ end of the mRNA strand (1, 2). A subset of leader sequences known as internal ribosomal entry sites (IRESs) can bypass the 5′ cap structure by recruiting the ribosome to internal positions in the 5′ untranslated region (5′ UTR) (3-7). IRESs play an important role in gene regulation by allowing essential proteins to be synthesized when normal cap-dependent translation is compromised (8). This can occur during regular cellular processes like mitosis and apoptosis (9, 10), as well as during hypoxia (11), viral infection (12), or during states of cellular dysregulation (13).


Ribosomal profiling, a technique that combines polysome fractioning with DNA microarrays, has been employed to profile cellular translation under conditions that impede normal cap-dependent translation (14). Data from these studies suggest that the human genome likely contains many more IRESs than previously thought; however, only a few human IRESs have been characterized in detail. These studies further suggest that cellular systems may possess mechanisms to support the coordinated regulation of specific IRES subtypes, as different physiological conditions gave rise to different IRES subsets. Despite a wealth of useful information gained by ribosomal profiling, this approach suffers from limited resolution and sequence accuracy, as well as an inability to distinguish stalled ribosomes from actively translating ribosomes. While continued technological advancement could circumvent some of these problems, thorough investigation of the human genome would require exhaustive sampling of countless conditions and cell types. This limitation has created a need for new molecular tools that can be used to identify human IRESs on a genome-wide scale (15).


To identify IRESs encoded in the human genome, we devised an in vitro selection strategy for the isolation of RNA elements that could mediate cap-independent translation. We reasoned that the mechanism-based approach of mRNA display provided an efficient method to systematically and comprehensively survey the entire human genome for all of the possible RNA elements that could initiate translation of uncapped mRNA transcripts (16). Since IRESs function by a cap-independent mechanism, it was hypothesized that this selection would lead to the discovery of human IRESs as well as human translation enhancing elements that promote cap-independent translation but do not initiate internally. In this scheme (FIG. 1A), a genomic library composed of randomly digested fragments (˜150 nts) of total human DNA was inserted into the 5′ UTR of a DNA cassette containing an open reading frame (ORF) encoding a peptide affinity tag. The library also contained all of the genetic information required for mRNA display. The library was converted to single-stranded RNA by in vitro transcription and photo-ligated at the 3′ end to a DNA linker containing a 3′ puromycin residue. To favor the selection of RNA elements that enhance ribosomal recruitment via a cap-independent mechanism, the pool of RNA transcripts was deprived of a 5′ cap and 3′ poly(A) tail. When the pool of RNA is translated in vitro, transcripts that contain an IRES in their 5′ UTR would initiate translation and produce an mRNA-peptide fusion molecule; thus, modifying IRES-containing RNAs with a selectable tag. The chemical bond forming step of mRNA display is due to the natural peptidyl transferase activity of the ribosome, which catalyzes the formation of a non-hydrolyzable amide bond between puromycin and the polypeptide chain (FIG. 1B) (17). mRNA-peptide fusion molecules could then be isolated by affinity purification, reverse-transcribed, and amplified to regenerate the pool of DNA for another selection cycle.


We started the selection with an RNA-DNA-puromycin library that contained >1013 sequences, which provided 100-1000-fold coverage of the human genome. We translated the library for 1 hour at 30° C. in nuclease treated reticulocyte lysate and fusion formation was promoted by incubating the mixture overnight at −20° C. in the presence of 600 mM KCl and 75 mM MgCl2. mRNA-peptide fusions were isolated from the crude lysate by affinity purification on an oligo-(dT) resin, and the elution fractions were applied to Ni-NTA agarose beads. The Ni-NTA beads were thoroughly washed to remove RNA sequences that did not form mRNA-peptide fusions or did not initiate in the correct reading frame. mRNA-peptide fusions that remained bound to the column were selectively eluted with imidazole, exchanged into buffer, reverse-transcribed, and amplified by PCR to reinitiate the selection cycle described above. We monitored the selection progress by following the proportion of S35-labeled mRNA-peptide fusions that remained in the pool after purification. The abundance of mRNA-peptide fusions increased up to round 5 and plateaued in round 6, indicating that the library became dominated by RNA elements that could enhance cap-independent translation (FIG. 1C).


We cloned and sequenced 712 members from round 6. Of these, 639 were non-redundant, indicating that the library contained significant sequence diversity even after six rounds of mRNA display (Table S1). Each non-redundant sequence was aligned to the human reference genome (hg18) using the UCSC BLAT web-tool (18). A subset of 229 sequences showed 100% identity to 1814 genomic locations. These sites are distributed across all 24 human chromosomes with ˜34% occurring in the intronic regions of known genes (FIG. 1D). The remaining 410 sequences have high homology (85-99% identity) to genomic sites, but contain small degrees of sequence variation that include single nucleotide polymorphisms in addition to small and large insertions and deletions. This level of variation is expected for individuals in a population (19), and it is known that gene regulatory sequences can differ between individual genomes (20). Since we could not distinguish between mutations that arose during the selection and those that occur naturally, we focused the remainder of our study on the set of 229 perfectly matched sequences.


We examined their evolutionary conservation using the 44-species UCSC alignments (FIG. 1E) (18). Of the 229 sequences, 82.5% are conserved in the chimpanzee genome (Pan troglodytes) and 43.2% are conserved in the genomes of other placental mammals (i.e., dogs, horses, and mice). The degree of sequence similarity ranged from 97-100% for chimpanzee and 96-100% for placental mammals. Sometimes significant sequence similarities (E-value<9e-13) were also observed in lower vertebrate genomes. For example, HGL6.634 homologs are found in lizards (Anolis carolinensis) and fish (Xenopus tropicalis and Gasterosteus aculeatus). This sequence overlaps the intron-exon junction for a chromatin modification-related protein. Similarly, HGL6.1305 shows high sequence similarity to the platypus and opossum genomes. This sequence is located in the intron of a neuronal PAS domain protein—a transcription factor expressed primarily in mammalian forebrains.


Because many of the perfectly matched sequences mapped to multiple genomic locations, we compared the distribution of repetitive elements found in the starting library to that of all round 6 sequences. The distribution of repetitive elements in the starting library is similar to the distribution obtained by random computational sampling (FIG. 1F). This is expected because our starting library contained an unbiased representation of the human genome (21-23). In contrast, round 6 was enriched in sequences that align to repetitive regions of the human genome. Of the 639 non-redundant sequences, most align to regions of LINE-1 (L1) retrotransposons and satellite DNA (25% and 45%, respectively). This distribution is comparable to what we observed for the set of 229 perfectly matched sequences with the difference that L1 elements are overrepresented at the expense of satellite DNA. This difference is not unexpected, as satellite DNA is known to contain large numbers of point mutations, which preclude their ability to map with 100% identity to the human reference genome (23).


We chose the set of 229 perfectly matched sequences and a set of 15 high homology sequences for functional characterization in human cells. Testing large numbers of sequences in cells presents a challenging problem as traditional assays are often complicated by splicing events that can occur during nuclear transcription and export (24). To test sequences under conditions that are not subject to nuclear processing, we developed a plasmid-based reporter assay that allows coupled transcription and translation to occur in the cytoplasm of human cells (FIG. 2A). We were inspired by an EMCV-driven system that relies on vaccinia virus (VACV) to circumvent nuclear expression (25). We inserted the sequences into a monocistronic firefly luciferase reporter plasmid (F-luc-mono) containing a VACV-specific promoter. Transfected HeLa cells were infected with VACV, and after a brief incubation, cells were lysed and assayed for luciferase activity. Plasmids carrying no-insert or a randomly chosen sequence from the starting pool provided a basal level of activity. We confirmed with no infection controls that luciferase activity was due to cytoplasmic expression by showing that uninfected cells have luciferase values equivalent to untreated cells. Plasmids carrying the selected sequences provided a range of activity (Fig. S1); the most active sequences enhanced translation ˜100-fold relative to the basal level after normalization for RNA (FIG. 2B). Analysis of the isolated RNA after six hours of expression demonstrated that the transcripts were intact and full-length. The top 9 sequences were validated in vitro in HeLa cell lysate to control for the strong capping mechanism associated with VACVs. The cell-free assay recapitulated the cell-based assay, confirming that activity did not depend on a 5′ cap or VACV infection (FIG. 2C).


To test whether the selected sequences were capable of internal translation initiation, we inserted the top 9 sequences from the monocistronic assay into a firefly reporter plasmid (F-luc-hp) containing a stable stem-loop structure (ΔG=−58 kcal/mol) to prevent ribosomal scanning (FIG. 3A) (26). Hairpin transcripts with no insert are poorly translated in vitro and in cells, yielding 0.3% and 1.5% of the respective activity observed for unobstructed transcripts after normalization for RNA (FIG. 3B). We confirmed that the RNA was stable in cells and in cell lysate, indicating that differences in activity were not due to selective degradation. We examined the top 9 sequences for IRES activity by first testing the reporter constructs in HeLa cell lysate. All nine sequences promote cap-independent translation initiation at levels consistent with known cellular IRESs (FIG. 3C) (26). We then examined the sequences in HeLa cells using cytoplasmic expression to avoid any possibility of nuclear splicing. In agreement with the in vitro assay, all of the sequences exhibit potent IRES activity (˜100-600-fold) when compared to the no insert control after normalization for RNA (FIG. 3D). To test for possible cryptic promoter activity, we repeated the cytoplasmic expression assay using a knock-out plasmid (F-luc-hp-ko) that deleted the VACV promoter. Under these conditions, HGL6.884 and HGL6.733 retain activity in VACV infected cells, indicating that a portion of their activity was due to monocistronic RNA that arose from a cryptic VACV promoter site. This prediction was confirmed by assaying HGL6.884 and HGL6.733 in uninfected cells, which yielded luciferase values equivalent to untreated cells (FIG. 3E). Direct transfection of the RNA-hairpin constructs into the cytoplasm of HeLa cells further corroborated our finding that all nine in vitro selected sequences mediate internal translation initiation (FIG. 3F).


Many well-characterized IRESs contain AUG triplets in their 5′ UTR that are expected to impede ribosomal scanning (2). Likewise, the human in vitro selected sequences identified in round 6 also have an abundance of AUG triplets. How is it then that a given AUG codon is selected as a start site when multiple options are present? One might expect a priori that AUGs in good sequence context would lead to more efficient translation initiation; however, only 1 out of 657 AUG codons observed in the 229 sequences contains a Kozak motif (Fig. S2) (27). To investigate this question, we selected ten sequences with a range of monocistronic activity and AUG triplet patterns, and examined their relative translation initiation efficiency and start site usage in vitro. This analysis revealed a number of striking observations (FIG. 4, A and B, and table S2). First, sequences with similar thermodynamic stability and no AUG codons can initiate translation with different levels of efficiency (HGL6.738 vs. HGL6.140). Second, out-of-frame start sites can be just as effective at translation initiation as in-frame start sites (HGL6.928 vs. HGL6.338). Third, AUG triplets near the 5′ end of the sequence are often bypassed in favor of downstream AUGs (e.g., HGL6.512, HGL6. 962, and HGL6.1155). Last, ribosomes that initiate translation at out-of-frame AUG codons can shift back into frame before reaching the designated ORF (e.g., HGL6.338, and HGL6.1155). Taken together, this data suggests that human cap-independent translation involves cis-regulatory elements in the 5′ UTR that function as ribosomal recruitment sites. This prediction is supported by the observation that many cellular IRESs have noncontiguous segments that retain IRES activity on their own (5, 28, 29).


To determine what role, if any, upstream AUG codons could play in ribosomal recruitment, we removed the in-frame, out-of-frame, and all AUG triplets from a high activity sequence (HGL6.877). Mutation of the AUG triplets had a strong negative impact on the translation initiation efficiency of all HGL6.877 variants (FIG. 4C). Even HGL6.877Δall devoid of all AUGs was less efficient than the parent sequence, indicating that AUGs can have a profound functional role in ribosomal recruitment. To determine whether translation initiation was due to the AUG codons or the surrounding sequence, we inserted the AUGs from HGL6.877 into an unselected sequence (HGL0.53) at the same locations that they appear in HGL6.877. Both HGL6.877 and HGL0.53 are identical in length, but HGL0.53 did not otherwise contain any AUG codons. HGL0.53 nor any of its AUG variants were capable of efficient translation initiation. This result demonstrates, at least for HG6.877, that presence of AUG triplets alone is not sufficient to initiate translation, but instead requires the ribosomal recruitment site in which the AUGs are imbedded for function.


Our results represent the first example of mRNA display as a genome-wide tool for identifying cap-independent translation initiation elements in the human genome. The in vitro selected IRESs characterized here represent novel regulatory elements that were previously hidden in the human genome. The general scheme used to identify these sequences is readily adaptable to other organisms and translation initiation mechanisms, and the versatility of the in vitro protocol makes it possible to explore ribosomal translation under a variety of conditions. We suggest that further discovery of additional cis-regulatory elements will advance our understanding of genome structure and function, and the biological role that IRESs play in the human genome.


Materials and Methods

Library Assembly and mRNA Display Selection


The human DNA library was provided by the Szostak laboratory18. This library was modified by PCR to add the genetic information necessary for performing mRNA display31. For each round of selection, the dsDNA library was transcribed with T7 RNA polymerase, photo-ligated to a psoralen-DNA-puromycin linker (5′-psoralen-TAGCCGGTG-(PEG9)2-A15-ACC-puromycin) (SEQ ID NO:6), and translated in vitro by incubating the library (1 nmol) with rabbit reticulocyte lysate and 35S-methionine for 1 hour at 30° C. Fusion formation was promoted by incubating the mixture overnight at −20° C. in the presence of KCl (600 mM) and MgCl2 (75 mM). The mRNA-peptide fusion molecules were reverse transcribed, and purified by a two-step procedure on oligo (dT)-cellulose beads (NEB) and Ni-NTA agarose affinity resin (Qiagen). Functional TEEs were recovered by eluting the column with imidazole, dialyzing the sample into water, and amplifying the cDNA by PCR. The selection progress was monitored by determining the fraction of S35-labeled mRNA-peptide fusions that remained on the oligo (dT) Ni-NTA affinity columns. After 6 rounds of selection and amplification, the dsDNA library was cloned and sequenced.


Luciferase Reporter Assay

A monocistronic luciferase reporter vector (pT7_v_<TEE>_FLuc) that contains both a T7 and a vaccinia virus synthetic late promoter was constructed by modifying a pT3-R-luc<IRES>F-luc(pA)62 luciferase reporter plasmid provided by the Doudna laboratory (Gilbert et al., 2007),32. HeLa and HEK-293 cells were seeded at a density of 15,000 cells per well in white 96-well plates 18 hours prior to transfection. Cells were transfected with a complex of the reporter plasmid (200 ng) and Lipofectamine 2000 (0.5 μl) in Opti-MEM (Invitrogen), and immediately infected with the Copenhagen strain (VC-2) of WT vaccinia virus at a multiplicity of infection (m.o.i) of 5 PFU/cell (FIG. 4). Cells were lysed (6.5 hours post-infection) in the 96-well plates and the luciferase activity was measured using the Promega Luciferase Assay System with a Glomax microplate luminometer (Promega). Cell-free characterization of the top TEEs was performed using the Human In Vitro Protein Expression Kit (Pierce). Luciferase expression was achieved following manufacturer's protocols using 300 ng of linear template for a two-hour transcription at 32° C. followed by a 90 min translation at 30° C.


RNA Characterization

A portion of the cells used in the transfect-infect study was separately lysed to evaluate the quality of the cellular RNA. Isolated RNA was reverse transcribed with Superscript II (Invitrogen), and realtime PCR was used to determine the mRNA levels of luciferase relative to the housekeeping gene hypoxanthine-guanine phospho-ribosyltransferase (HPRT). Using the ΔΔCt method, the amount of luciferase mRNA was normalized to HPRT mRNA levels. In addition, the length of luciferase mRNA was determined using PCR to analyze the relative proportion of the 5′- and 3′-ends of representative cDNA molecules.


Mutagenesis Study.

The 13-nucleotide core motif was assayed for activity by constructing five luciferase reporter constructs in which the 13-mer motif was either added to the 5′ end of a low activity TEE (clones 499, 646 and 347) or deleted from the 5′ end of a high activity TEE (clones 1092 and 1347). HGL sequences 1092 and 1347 were regenerated with the 13-nucleotide deletion by Klenow DNA polymerase extension followed by a restriction enzyme digest with BamHI and NcoI. The digested fragments were then ligated into the luciferase reporter plasmid pT7_v_<TEE>_FLuc. The insertion constructs were generated by overlap PCR, and then digested and ligated into the reporter plasmid. Translation enhancement of the modified sequences was assessed using the transfect/infect assay in HeLa cells. Sequences 1347 and 499 were additionally characterized in BSC40, RK13, BHK and 129SV cells.


Bioinformatics Analysis

Bioinformatics analysis was used to analyze 143 sequences from the naïve library, and 709 sequences isolated after six rounds of in vitro selection. The genomic locations of all non-redundant sequences were determined using the BLAT webtool to map each sequence to the human reference genome (hg18)21. This analysis revealed that 75 sequences from the naïve pool and 227 sequences from the round 6 pool matched with perfect sequence identity to the human reference genome. The program RepeatMasker was used to classify the selected sequences into specific repeat families33. By randomly selecting 10,000 genomic locations, we generated the null expectation for the fraction of sequence motifs of length 200 nucleotides to overlap a repeat family. This number was 45.7% and was not statistically-significantly different from that observed for Round-0 sequences. However, the null hypothesis for TEEs is rejected at P<10-6 indicating that TEEs are significantly enriched in their involvement with repeat families.









TABLE 1







Clones sequenced for characterization after six rounds of mRNA display selection.










Entry
Clone
Duplicates
Sequence













1
HGL6.1
HGL6.346,
AATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCG




HGL6.670,
AAGAGAATCATCGAATGGACC (SEQ ID NO: 7)




HGL6.676,





HGL6.715,





HGL6.961,





HGL6.1106,





HGL6.1182,





HGL6.1338






2
HGL6.5

TGGAATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGA





ATCGAAGAGAATCATCGAATGGACC (SEQ ID NO: 8)





3
HGL6.7

AGCATTCATATCTTGCAGTGTTGGGAAAGAGTGAGAGGTTGTGATGTCAAGAAG





GATAGGTCAGAAGTGGAAGGTATGGGGGATTGTGCCTGCTGTCATGGCT (SEQ ID





NO: 9)





4
HGL6.8

GGAACGAAATCGAATGGAACGGAATAGAATAGACTCGAATGTAATGGATTGCTA





TGTAATTGATTCGAATGGAATGGAATCGAATGGAATGCAATCCAATGGAATGGA





ATGCAATGCAATGAATGGAATGGAATGGAATGGAATGGAA (SEQ ID NO: 10)





5
HGL6.9

GGAACGAAATCGAATGGAACGGAATAGAATAGACTCGAATGTAATGGATTGCTA





TGTAATTGATTCGAATGGAATGGAATCGAATGGAATGCAATCCAATGGAATGGA





ATGCAATGCAATGAATGGAATGGAATGGAATGGAATGGA (SEQ ID NO: 11)





6
HGL6.12

TACGCAAATCGATAAATGTAATCCAGCATATAAACAGAACCAAAGACAAAAACC





ACATGATTATCTCAATAGATGCAGAAAAGGCC (SEQ ID NO: 12)





7
HGL6.14

ACTCGAATGCAATCAACATCAAACGGAATCAAACGGAATTATCGAATGGAATCG





AAGAGAATCATCGAACGGACTCGAATGGAATCATCTAATGGAATGGAATGG





(SEQ ID NO: 13)





8
HGL6.18

GAAATTCCAATTAAAATGAAATCGACTTATCTTAACAAATATAGCAATGCTGACA





ACACTTCTCCGGATATGGGTACTGCT (SEQ ID NO: 14)





9
HGL6.20

AAGGAAAAGTAAAAGGAACTTAACACCTTCAAGAAAAGACAGACAAATAACAA





AACAGCAGTTTGATAGAATGAGATATCAGGGGATGGCA (SEQ ID NO: 15)





10
HGL6.21

ATCAACATCAAACGGAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATC





GAACGGACC (SEQ ID NO: 16)





11
HGL6.22

AAAGAAAGACAGAGAACAAACGTAATTCAAGATGACTGATTACATATCCAAGAA





CATTAGATGGTCAAAGACTTTAAGAAGGAATACATTCAAAGGCAAAAAGTCACT





TACTGATTTTGGTGGAGTTTGCCACATGGAC (SEQ ID NO: 17)





12
HGL6.23

AAGGGAATTGAATAGAATGAATCCGAATGGAATGGAATGGAATGGAATGGAAT





GGAATGGAATGGAATGGAATGGAATG (SEQ ID NO: 18)





13
HGL6.24

GAATGGAATCGAATCAAATTAAATCAAATGGAATGCAATAGAAGGGAATACAAT





GGAATAGAATGGAATGGAATGGAATGGACT (SEQ ID NO: 19)





14
HGL6.25

ACAGCAAGAGAGAAATAAAACGACAAGAAAACTACAAAATGCCTATCAATAGT





TACTTTAAATATCAGTGGACCAAATCAGTGAAACAAAAGACACAGAGTGGC





(SEQ ID NO: 20)





15
HGL6.27

TAGCAGGAAACAGCAAACTCAAATTAAGTAATTTCAAGAGCGTATCATCAATGA





ACTATTTTCAAAGATGTGGGCAAGAT (SEQ ID NO: 21)





16
HGL6.28

AAACGGAATTATCAAATGGAATCGAAGAGAATCATCGAACGGACTCGAATGGAA





TCATCTAATGGAATGGAATGGAAG (SEQ ID NO: 22)





17
HGL6.30

GAATGAAATGAAATCAAATNGAATGTACATGAATGGAATAGAAAAGAATGCATC





TTTCTCGAACGGAAGTGCATTGAATGGAAAGGAATCTACTGGAATGGATTCGAA





TGGAATGGAANGGGATGGAATGGTATGG (SEQ ID NO: 23)





18
HGL6.32

AATGGACTCGAATGAAATCATCATCAAACGGAATCGAATGGAATCATTGAATGG





AAAGGATGGGATCATCATGGAATGGAAACGAATGGAATCACTG (SEQ ID NO: 24)





19
HGL6.34

AATGGAATCATTGAATGGAATGGAATGGAATCATCAAAGAAAGGAATCGAAGG





GAATCATCGAATGGAATCAAACGGAATCATCGAATGGAATGGAATGGAATG





(SEQ ID NO: 25)





20
HGL6.38
HGL6.537
AGCAGAAGAAATAACTGAAATCAGAGTGAAACTGAATCAAATTGAGATGCAAA





AATACATACGAAATGGCCAG (SEQ ID NO: 26)





21
HGL6.40

AGTTAATCCGAATAGAATGGAATGGAATGCAATGGAACGGAATGGAACGGAAT





GGAATGGAATGGAATGGAATGGAATG (SEQ ID NO: 27)





22
HGL6.42

ATGGAATCAACATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAGAGA





ATCATCGAACGGATTCGAATGGAATCATCTAATGGAATGGAATGGAAGAATCCA





TGGACTCGAATGCAATCATCAGCGAATGGAATCGAATGGAATCATCGAATGGAC





TCG (SEQ ID NO: 28)





23
HGL6.44

AAAGGAATGGACTGGAACAAAATGAAATCGAACGGTAGGAATCGTACAGAACG





GACAGAAATGGAACGGCATGGAATGCACTCG (SEQ ID NO: 29)





24
HGL6.47

AAATCAACAACAAACGGAAAAAAAAGGAATTATCGAATGGAATCAAAGAGAAT





CATCGAATGGACC (SEQ ID NO: 30)





25
HGL6.50

AAATGAACAAAACTAGAGGAATGACATTACCTGACTTCAAATTATACTACAGAG





CTATAGTAACCAAAACAGCATGGTACAGGCAT (SEQ ID NO: 31)





26
HGL6.51

GTAATGGAATGGAATGGAAAGGAATCGAAACGAAAGGAATGGAGACAGATGGA





ATGGAATGGAACAGAG (SEQ ID NO: 32)





27
HGL6.52
HGL6.496,
ATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGA




HGL6.881,
AGAGAATCATCGAATGGACC (SEQ ID NO: 33)




HGL6.1207






28
HGL6.57

CAATCAGAGCGGACACAAACAAATTGCATGGGAAGAATCAATATCGTGAAAATG





GCC (SEQ ID NO: 34)





29
HGL6.59

AGACCTTTCTCAGAAGACACACAAATTGCCAACAGGTATATGAAAAAATGTTCA





ATATCACTAATCATCAGGGCGATGCC (SEQ ID NO: 35)





30
HGL6.61

CATGGAATCGAATGGAATTATCATCGAATGGAATCGAATGGTACCAACACCAAA





CGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCTTCGAACGGACC





(SEQ ID NO: 36)





31
HGL6.63

GAACGATTTATCACTGAAAATTAATACTCATGCAAGTAGTAAACGAATGTAATG





ACCATGATAAGGAGACGGACGGTGGTGATAGT (SEQ ID NO: 37)





32
HGL6.65

AAAGATCAANGNNCAAAAATCAGCAGCATTTCTATAAACCAACAATGTCCAGGC





TGAGAGNGAAATCAAGAAANCAATTC (SEQ ID NO: 38)





33
HGL6.66

ACACACATACCAACAGAACATGACAAAAGAACAAAACCAGCCGCATGCATACTC





GATGGAGACAAAGGTAACACTGCAGAATGGTGAAGGAAGAACAGTCATTTTAAT





GACAGTGTTGGCT (SEQ ID NO: 39)





34
HGL6.67
HGL6.463,
AATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGA




HGL6.775,
GAATCATCGAATGGACC (SEQ ID NO: 40)




HGL6.936






35
HGL6.68

ATCAAAAGGAACGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAATG





GAATGAAATCAACCCGAATGGAATGGATTGGCATAGAGTGGAATGG (SEQ ID





NO: 41)





36
HGL6.70
HGL6.71
TAAAGAAAAACAAACAAACAGAAATCAATGAAAATCCCATTCAAAGGTCAGCA





ACCTCAAAGACTGAAGGTAGATAAGCCCACAAGGATG (SEQ ID NO: 42)





37
HGL6.73

AAACGGAAAAAAACGGAATTATCGAATGGAATCGAATAGAATCATCGAATGGA





CC (SEQ ID NO: 43)





38
HGL6.74

GGAATCAACTCGATTGCAATGGAATGCAATGGAAAGGAATGGAATGCAATTAAA





GCGAATAGAATGGAATGGAATGGAATGGAACGGAATGGAATG (SEQ ID NO: 44)





39
HGL6.76

GAAGAAGAAAAAACATGGATATACAATGTCAACAGAAATCAAGGAGAAACGGA





ATTTCACCAATCAATTTAGTGATCTGGGTT (SEQ ID NO: 45)





40
HGL6.82

TGGAATCATCTAATGGAATGGAATGGAATAATCCATGGACTCGAATGCAATCAT





CATAAAATGGAATCGAATGGAATCAACATCAAATGGAATCAAATGGGATCATTG





AACGGAATTGAATGGAATCGTCAT (SEQ ID NO: 46)





41
HGL6.83

TGAACAGAGAATTGGACAAAACGCACAAAGTAAAGAAAAAGAATGAAGCAACA





AAAGCAGAGATTTATTGAAAACAAAAGTACACACCACACAGGGTGGGAGTGG





(SEQ ID NO: 47)





42
HGL6.85
HGL6.980,
GGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAA




HGL6.1002
TCATCGAATGGACC (SEQ ID NO: 48)





43
HGL6.88

AACACGACTTTGAGAAGAGTAAGTGATTGTTAATTAAAGCAAGAGAATTATTGA





TGTATCACAGTCATGAGAAATATTGGAAGGAATATGGTCCATAC (SEQ ID NO: 49)





44
HGL6.91

TGAAAAGAAGAATGACCATAAGCAAGCAGATGAAAAACAAAACAGAATTTTTA





CAGACGTCTTGGACTGATATCTTGGGC (SEQ ID NO: 50)





45
HGL6.92

AATCAATAAATGTAAACCAGCATATAAACAGAACCAACGACAAAAACCACATGA





TTATCTCAATAGATGCAGAAAAGGCC (SEQ ID NO: 51)





46
HGL6.95

CAACATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAGAGAATCATCG





AATGGACTCGAATGGAATCATCTAATGGAATGGAATGGAAG (SEQ ID NO: 52)





47
HGL6.96

AATGGAAGGGAATGGAATGGAATCGAATCGAATGGAACAGAATTCAATGGAAT





GGAATGGAATGGAATGGAATCGAATGGAATGG (SEQ ID NO: 53)





48
HGL6.100

AAAGACTTAAACATAAGACCTAAAACCATAAAAACCACAGAAGAAAACATAGG





CAATGCCATTCAGGACATAGGCATGGGCAAAGACTTC (SEQ ID NO: 54)





49
HGL6.101

AGACTTGAAAAGCACAGACAACGAAAGCAAAAATGGACAAATGGAATCACATC





AAGCTAAAAGGTTTTGCATGGCAAAGG (SEQ ID NO: 55)





50
HGL6.1l2
HGL6.952,
AGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGTGCAAAAATCACAAGCA




HGL6.955
TTCTTATACACCAACAACAGACAAACAGAGAGCC (SEQ ID NO: 56)





51
HGL6.113

TGAATGCTATAGAGCAGTAAAAACAAATAAATGAACTACATTACAGCTACTTAC





AACCATATGAAAGAATATAACCATAACAATGATGAGTGGACAAAAGCTAAGTGT





GAAAGAATGCATAGTGCTACAGCAGCCAACATTTACAGC (SEQ ID NO: 57)





52
HGL6.115

AACAAAATTGAACAACATGCAAAGAAACATAAACGAAGCAATGAAAGTGTGCA





GATCCACTGAAATGAAAGTGCTGTCCAGAGTGGGAGCCAGCTCGAGA (SEQ ID





NO: 58)





53
HGL6.116

TGGAATTATCGTCGAATAGAATCGAATGGTATCAACATCAAACGGAAAAAAACG





GAATTATCGAATGGAATCGAAGAGAATCATCGAACGGACTCGAATGGAATCATC





TAATGGAATGGAATGGAATAATCCATGG (SEQ ID NO: 59)





54
HGL6.117

AGATAAGTGGATGAACAGATGGACAGATGGATGGATGGATGGATGGATGGATG





GATGCCTGGAAGAAAGAAGAATGGATAGTAAGCTGGGTATA (SEQ ID NO: 60)





55
HGL6.119

AATCAAAGAATTGAATCGAATGGAATCATCTAATGTACTCGAATGGAATCACCA





T (SEQ ID NO: 61)





56
HGL6.121

AATGGAATCGAACGGAATCATCATCAAACGGAACCGAATGGAATCATTGAATGG





AATCAAAGGCAATCATGGTCGAATG (SEQ ID NO: 62)





57
HGL6.122

AGGAATCTATAATACAGCTGTTTATAGCCAAGCACTAAATCATATGATACAGAA





AACAAATGCAGATGGTTTGAAGGGTGGG (SEQ ID NO: 63)





58
HGL6.125

AACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGAC





C (SEQ ID NO: 64)





59
HGL6.126

TGAGAAAATGATGGAAAAGAGGAATAANACGAAACAAAACCACAGGAACACAG





GTGCATGTGAATGTGCACAGACAAAGATACAGGGCGGACTGGGAAGGAAGTTTC





TGCACCAGAATTTGGGG (SEQ ID NO: 65)





60
HGL6.132

AATGGAATCGAAGAGAATGGAAACAAATGGAATGGAATTGAATGGAATGGAAT





TGAATGGAATGGGAAGGAATGGAGTG (SEQ ID NO: 66)





61
HGL6.134

AATGTCAAGTGGAATCGAGTGGAATCATCGAAAGAAATCGAATGGAATCGAAGG





GAATCATTGGATGGGCTCAAAT (SEQ ID NO: 67)





62
HGL6.137

AAACAATGGAAGATAATGGAAAGATATCGAATGGAATAGAATGGAATGGAATG





GACTCAAATGGAATGGACTTTAATGGAATGG (SEQ ID NO: 68)





63
HGL6.138

GAACAATCAATGGAAGCAGAAACAAATAAACCAAGGTGTGCATCAAGGAATAC





ATTCACGCATGATGGCTGTATGAGTAAAATG (SEQ ID NO: 69)





64
HGL6.139

AAACCGAATGGAATGGAATGGACGCAAAATGAATGGAATGGAAGTCAATGGAC





TCGAAATGAATGGAATGGAATGGAATGGAATG (SEQ ID NO: 70)





65
HGL6.140

AGGATACAAAATCAAAGTGCAAAAATCACAAGCATTCTTATACACCAATAACAG





ACAAACAGAGAGCC (SEQ ID NO: 71)





66
HGL6.147

GGAATCGAATGGAATCAACATCAAACGGAAAAAAACAGAATTATCGTATGGAAT





CGAATAGAATCATCGAATGGACC (SEQ ID NO: 72)





67
HGL6.148

CAACCCGAGTGGAATAAAATGGAATGGAATGGAATGAAATGGAATGGATCGGA





ATGGAATCCAATGGAATCAACTGGAATGGAATGGAATGGAATG (SEQ ID NO: 73)





68
HGL6.149

TATCATCGAATGGAATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTA





TCGAATGGAATCGAAGAGAATCATCGAATGGACC (SEQ ID NO: 74)





69
HGL6.150

CGGAATAATCATTGAACGGAATCGAATGGAATCATCATCGGATGGAAACGAATG





GAATCATCATCGAATGGAAATGAAAGGAGTCATC (SEQ ID NO: 75)





70
HGL6.151

CAACACACAGAGATTAAAACAAACAAACAAACAATCCAGCCCTGACATTTATGA





GTTTACAGACTGGTGGAGAGGCAGAGAAG (SEQ ID NO: 76)





71
HGL6.152

GGAATGGAATGAACACGAATGTAATGCAACCCAATAGAATGGAATCGAATGGCA





TGGAATATAAAGAAATGGAATCGAAGAGAATGGAAACAAATGGAATGGAATTG





(SEQ ID NO: 77)





72
HGL6.153

CACTACAAACCACGCTCAAGGCAATAAAAGAACACAAACAAATGGAAAAACAT





TCCATGCTCATGGATGGG (SEQ ID NO: 78)





73
HGL6.158

AATCGAATGGAATTAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCG





AAGAGAATCATCGAATGGACC (SEQ ID NO: 79)





74
HGL6.161

TGGAAAAGAATCAAATTGAATGGCATCGAACGGAATGGGATGGAATGGAATAG





ACCCAGATGTAATGGACTCGAATGGAATG (SEQ ID NO: 80)





75
HGL6.163

AATCAGTCTAGATCTTAAAGGAACACCAGAGGGAGTATTTAAATGTGCCCAATA





AGCAAGAATTATGGTGATGTGGAAGTA (SEQ ID NO: 81)





76
HGL6.164

CCATAACACAATTAAAAACAACCTAAATGTCTAATAGAAGAACACTGTTCAGAC





CGGGCATGGTGGCTTATACC (SEQ ID NO: 82)





77
HGL6.165

GACTAATATTCAGAATATACAAGGAACTCAAACAACTCAACAGTAGAAAAAAAA





ACCTGAATAGACATTTCTCAAAAGAAGACATACAAATGGCC (SEQ ID NO :33)





78
HGL6.171
HGL6.1149
AACAGACCATAAATAAACACAGAAGACACACGAGTGTAAAGTCAGTGCCCCGCT





GCGAATTAAATCGGGGTGATGTGATGGCGAGTGAGTGGGTAGTT (SEQ ID NO:





84)





79
HGL6.174

ATCATTGAATGCAATCACATGGAATCATCACAGAATGGAATCGTACGGAATCAT





CATCGAATGGAATTGAATGGAATCATCAATTGGACTCGAATGGAAACATCAAAT





GGAATCGATTGGAAGTGTCGAATGGACTCG (SEQ ID NO: 85)





80
HGL6.175

GGTCCATTCGATGATTCTCTTCGATTCCATTCGATAATTCCGTTTTTTCCCGTTTG





ATGTTGATTCC (SEQ ID NO: 86)





81
HGL6.178

AGCAACTTCAGTAAAGTGTCAGGATACAAAATCAATGTGCAAAAATCACAAGCA





TTCTTATACATCAATAACAGACAAACAGAGAGCCAAA (SEQ ID NO: 87)





82
HGL6.180

AGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGTGCAAAAATCACAAGCA





TTCCTATACACCAACAACAGACAAACAGAGAGCC (SEQ ID NO: 88)





83
HGL6.181

GAATAATCATTGAACGGAATCGAATGGAATCATCATCGGATGGAAACGAATGGA





ATCATCATCGAATGGAAATGAAAGGAGTCATC (SEQ ID NO: 89)





84
HGL6.182
HGL6.902
TAATCAT CT TCGAATTGAAAACAAAGCAATCATTAAATGTACTCTAACGGAATCA





TCGAATGGACC (SEQ ID NO: 90)





85
HGL6.184
HGL6.1215
GGAATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAA





TCGAAGAGAATCATCGAATGGACC (SEQ ID NO: 91)





86
HGL6.186

GATCAGCTTAGAATACAATGGAACAGAACAGATTAGAACAATGTGATTTTATTA





GGGGCCACAGCACTGTTGACTCAAGTACAAGTTCTGACTCATGTAGAACTAACA





CTTTT (SEQ ID NO: 92)





87
HGL6.187

AGAGAAAAGATGATCATGTAACCATTGAAAAGACAATGTACAAAACTAATACTA





ATCACACAGGACCAGAAAGCAATTTAGACCAT (SEQ ID NO: 93)





88
HGL6.190

AATGGAATCGAATGGAATCAACATCAAACGGAAAAAACGGAATTATCGAATGG





AATCAAAGAGAATCATCGAATGGACC (SEQ ID NO: 94)





89
HGL6.191

AATGGAATTATCATCGAATGGAATCGAATGGAATCAACATCAAACGGAAAAAAA





CGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGACC (SEQ ID NO: 95)





90
HGL6.197

GTCAACACAGGACCAACATAGGACCAACACAGGGTCAACACAGGACCAACATA





GGACCAACACAGGGTCAACACAAGACCAACATGGGACCAACACAGGGTCAACA





TAGGACCAACATGGGACCAACACAGGGTCAACACAGGACCAAC (SEQ ID NO: 96)





91
HGL6.198

TATAGTTGAATGAACACACATACACACACACATGCCACAAAACAAAAACAAAGT





TATCCTCACACACAGGATAGAAACCAAACCAAATCCCAACACATGGCAAGATGA





T (SEQ ID NO: 97)





92
HGL6.206

GAATCAACTCGATTGCAATCGAATGGAATGGAATGGTATTAACAGAATAGAATG





GAATGGAATGGAATGGAACGGAACG (SEQ ID NO: 98)





93
HGL6.208

AATGGAATGGAATAATCGACGGACCCGAATGCAATCATCATCGTACAGAATCGA





ATGGAATCATCGAATGGACTGGAATGGAATGG (SEQ ID NO: 99)





94
HGL6.210

AATACAAACCACTGCTCAACGAAATAAAAGAGGATACAAACAAATGGAAGAAC





ATTCTATGCTCATGGGTAGGATGAATTCATATCGTGAAAATGGCCATACTGCC





(SEQ ID NO: 100)





95
HGL6.215

AAACACGCAAACACACACACAAGCACACTACCACACAAGCGGACACACATGCA





AACACGCGAACACACACACATATACACACAAGCACATTACAAAACACAAGCAA





ACACCAGCAGACACACAAACACACAAACATACATGG (SEQ ID NO: 101)





96
HGL6.219

AATCGAACGGAATCAACATCAAACGGAAAAAAAACGGAATTATCGAATGGAAT





CGAAGAGAATCATCGAATGGACC (SEQ ID NO: 102)





97
HGL6.220
HGL6.301,
ACACATTTCAAGGAAGGAAACAAGAACAGACAGAAACACAACATACTTCATGA




HGL6.1353
AACCACATTTTAGCATCCTGGCCGAGTATTCATCA (SEQ ID NO: 103)





98
HGL6.222

GGATACAAAATCAATGTACAAAAATCACAAGCATTCTTATACACCAATAACAGA





CAAACAGAGAGCC (SEQ ID NO: 104)





99
HGL6.223

TAATTGATTCGAATGGAATGGAATAGAATGGAATTGAATGGAATGGACCATAAT





GGATTGGACTTTAATAGAAAGGGCATG (SEQ ID NO: 105)





100
HGL6.225

AGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGTACAAAAGTCACAAGCA





TTCTTATACACCAACAAAAGACAAACAGAGAGCC (SEQ ID NO: 106)





101
HGL6.228

ACATCAAACGGAAAAAAAAAACAAAACGGAATTATCGAATGGAATCGAAGAGA





ATCATCGAATGGACC (SEQ ID NO: 107)





102
HGL6.229

ACATCTCACTTTTAGTAATGAACAGATCATTCAGACAGAAAATTAGCAAAGAAA





CATCAGAGTTAAACTACACTCTAAACCAAATGGACCTA (SEQ ID NO: 108)





103
HGL6.231

GAAGAAAGCATTCATTCAAGACATCTAACTCGTTGATATAATGCATACAGTTCAA





AATGATTACACTATCATTACATCTAGGGCTTTC (SEQ ID NO: 109)





104
HGL6.232

GCAAAAGAAACAATCAGTAGAGTAAACAGACAACTCATAGAATGCAAGAAAAT





CATCGCAATCTGTACATCCAACAAAGGGCT (SEQ ID NO: 110)





105
HGL6.235

ACACACACATTCAAAGCAGCAATATTTACAACAGCCAAAAGGTGGAAACAATTG





AGCAATTG (SEQ ID NO: 111)





106
HGL6.237

ATCATCGAATAGAATCGAATGGTATCAACACCAAACGGAAAAAAACGGAATTAT





CGAATGGAATCGAAGAGAATCTTCGAACGGACC (SEQ ID NO: 112)





107
HGL6.238

TGAAAATACAAATGACCATGCAAGTAATTCCGCAGGGAGAGAGCGGATATGAAC





AAACAGAAGAAATCAGATGGGATAGTGCTGGCGGGAAGTCA (SEQ ID NO: 113)





108
HGL6.239

AATCGAAAGGAATGTCATCGAATGGAATGGACTCAAATGGAATAGAATCGGATG





GAATGGCATCGAATGGAATGGAATGGAATTGGATGGAC (SEQ ID NO: 114)





109
HGL6.241

AACATGAACAGTGGAACAATCAGTGAACCAATACAAGGGTTAAATAAGCTAGCA





ATTAAAAGCTGTATCACTGGTCTAAAGATAGAAGATCAAGTAGAAAATCAGCGC





AAGAGGAAAGATATACGAAAACTAATGGCC (SEQ ID NO: 115)





110
HGL6.243

CGAATGGAATCATTATGGAATGGAATGAAATGGAATAATCAAATGGAATTGAAT





GGAATCATCGAATGGAATCGAACAAAATCCTCTTTGAATGGAATAAGATGGAAT





CACCAAATGGAATTG (SEQ ID NO: 116)





111
HGL6.246

AAACGGAATCAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAACGGA





CTCGAATGGAATCATCTAATGGAATGGAATGGAAGAATCCATGGACT (SEQ ID





NO: 117)





112
HGL6.247

GCTAGTTCAACATATGCAAATCAATAAACGTAATCCATCACATAAACAGAACCA





ATGACAAAAACCACGATTATCTCAATAGATGCAGAAAAGGCC (SEQ ID NO: 118)





113
HGL6.256

ACCAATCAAGAAAACAATGCAACCCACAGAGAATGGACAAAAGCAAGGCAGGA





CAATGGCT (SEQ ID NO: 119)





114
HGL6.26

ATCGAATGGAATCAACATCAGACGGAAAAAAACGGAATTATCAAATGGAATCGA





AGAGAATCATCGAATGGACC (SEQ ID NO: 120)





115
HGL6.260

ATGGAATCAACATCAAACGGAAAAAAAAACGGAATTATCGAATGGAATCGAAG





AGAATCATCGAATGGACCAGAATGGAATCATCTAATGGAATGGAATGG (SEQ ID





NO: 121)





116
HGL6.261
HGL6.1088
AATGGAATCATCATCGAATGGAATCGAATGGAATCATGGAATGGAATCAAATGG





AATCAAATGGAATCGAATGGAATGGAATGGAATG (SEQ ID NO: 122)





117
HGL6.262

AACGGAATCAAACGGAATTACCGAATGGAATCGAATAGAATCATCGAACGGACT





CGAATGGAATCATCTAATGGAATGGAATGGAAG (SEQ ID NO: 123)





118
HGL6.263

AAACGGAATCAAACGGAATTATCGAATGGAATCGAAAAGAATCATCGAACGGA





CTCGAATGGAATCATCTAATGGAATGGAATGGAAGAATCCATGG (SEQ ID NO: 





124)





119
HGL6.266

AGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGTACAAAAATCACAAGCA





TTCTTATACACCAATAACAGACAAACAGAGAGCC (SEQ ID NO: 125)





120
HGL6.267

GAATGATACGGANTANNNNGNAATGGAACGAAATGAAATGGAATGGAATGGAA





TGGAATGGAATGGAATGG (SEQ ID NO: 126)





121
HGL6.268

AATGGACTCGAATGGATTAATCATTGAACGGAATCGAATGGAATCATCATCGGA





TGGTAATGAATGGAATCATCATCGAATGGAATCGG (SEQ ID NO: 127)





122
HGL6.271

GAATGGAATCGAAAGGAATGTCATCGAATGGAATGGAATGGAACGGAATGGAA





TCGAATGGAATGGACTCGAATGGAATAGAATCGAATGCAATGGCATCG (SEQ ID





NO: 128)





123
HGL6.274
HGL6.466,
GAATAGAATAGAATGGAATCATCGAATGGAATCGAATGGAATCATCATGATATG




HGL6.883
GAATTGAGTGGAATC (SEQ ID NO: 129)





124
HGL6.276

TAAGCCGATAAGCAACTTCAGCAAAGTCTCAGGAGACAAAATCAATGTGCAAAA





AATCACAAGCATTCTTATACACTAATAACAGACAAACAGAGAGCCAAATCATG





(SEQ ID NO: 130)





125
HGL6.277

AGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGTGCAAAAATCAAAAGCA





TTCTTATGCACCAATAACAGACACAGAGCCAAAT (SEQ ID NO: 131)





126
HGL6.278

AGGAAAGTTTTCAATATGAGAAAGATACAAACCAACAGAATAAGCAAACTGGAT





AAACAGAAAATACAGAGAGAGCCAAGG (SEQ ID NO: 132)





127
HGL6.280

AATGGAATGGAACGCAATTGAATGGAATGGAATGGAACGGAATCAACCTGAGTC





AAATGGAATGGAATGGAATGGAATG (SEQ ID NO: 133)





128
HGL6.289

AGGAAAATGCAAATCAGAACGACTATAACACACCATCTCAAACTCGTTAGGATG





GCTATTATCAAAAAGTCAAGAGATAACAAATGTGGGCAAGGG (SEQ ID NO: 134)





129
HGL6.290

GGAACGAAATCGAATGGAACGGAATAGAATAGACTCGAATGTCATGGATTGCTA





TGTAATTGATTGGAATGGAATGGAATCG (SEQ ID NO: 135)





130
HGL6.291

GAATTGAAAGGAATGTATTGGAATAAAATGGAATCGAATAGGTTGAAATACCAT





AGGTTCGAATTGAATGGAATGGGAGGGACACCAATGGAATTG (SEQ ID NO: 136)





131
HGL6.292

AACAAAACAAAAACCCAACTCAATAACAAGAAGACAAACAACCCAATTTAAAA





TGAGCAAAGAACTTGATAAACATGTCTCCAAAGAAGATACGGCCAAAGAGCAC





(SEQ ID NO: 137)





132
HGL6.295

ATGGTTAAAACTCAACAATGAAAACACAAACAGCGCAATTTAAAAATGGGCAAA





ATGACAGGCCAGACCCAGTGGCTCATGCG (SEQ ID NO: 138)





133
HGL6.300

AAGCAACTTCAGCAAAGTCTCGGGATACAAAATCAATGTGCAAAAATCACAAGC





ATTCTTATACACCACTAACAGACAAATGGAGAGTC (SEQ ID NO: 139)





134
HGL6.302

GAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAG





AGAATCATCGAATGGACCAGAATGGAATCATCTAATGGAATGGAATGGAATAAT





CCATGG (SEQ ID NO: 140)





135
HGL6.305

TAGAAGGAATTTGATACATGCTCAGAAATACAGGCAAAGGAAGTAGGTGCCTGC





CAGTGAACACAGGGGAACTATGGCTCCTA (SEQ ID NO: 141)





136
HGL6.310

GGAATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAA





TCGAAGAGAATCATCGAATGGACC (SEQ ID NO: 142)





137
HGL6.311

AACTAAGACAACAGATTGATTTACACTACTATTTTCACACAGCCAAAAATATCAC





TATGGCAATCGTCAAAAGGTCAATTCAAAGATGGGACAGT (SEQ ID NO: 143)





138
HGL6.315

AAAAGCAATTGGACTGATTTTAAATATACGTGGCAACAAGGATAAACTGCTAAT





GATGGGTTTGCAAATACAGATCG (SEQ ID NO: 144)





139
HGL6.317
HGL6.1189
AATGGAATCAACATCGAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGA





GAATCATCGAATGGACC (SEQ ID NO: 145)





140
HGL6.319

TGCAAGATAACACATTTTAGTTGACACCATTGAAAACAGTTTTAACCAAGAATAT





TAGAACCAATGAAGCAGAGAAATCAAAAGGGTGGATGGAACTGCCAAAGGATG





(SEQ ID NO: 146)





141
HGL6.321

TAGAACAGAATTGAATGGAATGGCATCAAATGGAATGGAAACGAAAGGAATGG





AATTGAATGGACTCAAATGTTATGGAATCAAAGGGAATGGACTC (SEQ ID NO:





147)





142
HGL6.323

AAGAGAATCATCGAATGGAATCGAATGGAATCAACATCAAACGGAAAAAAACG





GAATTATCGAATGGAATCGAAGAGAATCATCGAATGGACC (SEQ ID NO: 148)





143
HGL6.324
HGL6.431,
ATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCAT




HGL6.1071
CGAATGGACC (SEQ ID NO: 149)





144
HGL6.326

GAATCAACATCAAACGGAAAAAAACCGAATTATCGAATGGAATCGAAGAGAAT





CATCGAATGGACC (SEQ ID NO: 150)





145
HGL6.327

ATCAACATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAGAGAATCAT





CAAATGGACTCGAATGGAATCATCTAATGGAATGGAATGGAAGAATCCATGG





(SEQ ID NO: 151)





146
HGL6.330
HGL6.1005
AAACAGTTCAAAAATTATTGCAACAAAATGAGAGAGATGAGTTTATCTTGCAAA





CTAATGGATGGTAGCAGTGACAGTGGCAAAACGTGGTTTGATTCT (SEQ ID NO:





152)





147
HGL6.334

ATCGAATGGAATCATTGAATGGAAAGGAATGGAATCATCATGGAATGGAAACGA





ATGGAATCACTGAATGGACTCGAATGGGATCATCA (SEQ ID NO: 153)





148
HGL6.335

ATTCAGCCTTTAAAAAAAGAAGACAGTCCTGTCATTTGTGACAATATGAATGAA





ACAGACATCACATTAAATGAAATGAGCCAGGCGCAG (SEQ ID NO: 154)





149
HGL6.336

AGGAGAATAGCAGTAGAATGACAAAATTAGATTTTCACATGAAACTTGATGACA





GTGTAGGAAATGGACTGAAAGGACAAGAC (SEQ ID NO: 155)





150
HGL6.337
HGL6.1095,
AACCCACAAAGACAACAGAAGAAAAGACAACAGTAGACAAGGATGTCAACCAC




HGL6.1367
ATTTTGGAAGAGACAAGTAATCAAACACATGGCA (SEQ ID NO: 156)





151
HGL6.338

GAAAATGAACAATATGAACAAACAAACAAAATTACTACCCTTACGAAAGTACGT





GCATTCTAGTATGGTGACAAAAAGGAAAG (SEQ ID NO: 157)





152
HGL6.339

AACATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGA





ACGGACTCGAATGGAATCATCTAATGGAATGGAATGGAAGAATCCATGGACTCG





AATGCAATCATCATCGAATGAAATCGAATGGAATCATCGAATGGACTCG (SEQ ID





NO: 158)





153
HGL6.340

ACCAACATAAGACAAAGAAACATCCAGCAGCTGCCTATGGCAAAAGATTACAAT





GTGTCAAACAAGAGGGCAATG (SEQ ID NO: 159)





154
HGL6.342

ATGGAATTCAATGGAATGGACATGANTGNAATGNACTTCAATGGAATGGNATCN





AATGGAATGNAATTCANT (SEQ ID NO: 160)





155
HGL6.343

TATGACTTTCACAAATTACAGAAAAAGACACCCATTTGACAAGGGAACTGAAGG





TGGTGAAGACATACTGGCAGGCTAC (SEQ ID NO: 161)





156
HGL6.344

AATGGAAAGGAATCGAATGGAAGGGAATGAAATTGAATCAACAGGAATGGAAG





GGAATAGAATAGACGGCAATGGAATGGACTCG (SEQ ID NO: 162)





157
HGL6.347

AGCCTATCAAAAAGTGGGCTAAGAATATGAATACACAATTCTCAAAAGAAGATA





TACAAATGGGCAACAAACATATGAAAACATACTCAACATCACTAATGATCAGGG





AAATG (SEQ ID NO: 163)





158
HGL6.352
HGL6.710
AGCAACTTCAGCAAAGTATCAGGATACAAAATCAATGTACAAAAATCCCAAGCA





TTCTTATACACCAACAACAGACAAACAGAGAGCC (SEQ ID NO: 164)





159
HGL6.353

AAAGACAATATACAAATGGCCAATAAGCACATGAAAAGACGCTCAACATCCTTA





GTCGTTAAGGCAATGCAAATCAAAACCACAATG (SEQ ID NO: 165)





160
HGL6.354

AGCAACTTCAGCAAAGTCTCAGGATACAAAATCGATGTGCAAAAATCACAAGCA





TTCTTATACACCAACAACAGATAAACAGAGAGCC (SEQ ID NO: 166)





161
HGL6.356

AACGGAAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGA





CCAGAATGGAATCATCTAATGGAATGGAATGGAATAATCCATGGACTCGAATG





(SEQ ID NO: 167)





162
HGL6.357

AACAGCAATAGACACAAAGTCAGCACTTACAGTACAAAAACTAATGGCAAAAGC





ACATGAAGTGGGACAT (SEQ ID NO: 168)





163
HGL6.358

GGAATCAAACGGAATTATCGAATGGAATCGAAGAGAATCATAGAACGGACTCAA





ATGGAATCATCTAATGGAATGGAATGGGAGAATCCATGGACTCGAATG (SEQ ID





NO: 169)





164
HGL6.360
HGL6.1105
AATGGAATCAATATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGA





GAATCATCGAATGGACC (SEQ ID NO: 170)





165
HGL6.362

AAAATGATCATGAGAAAATTCAGCAACAAAACCATGAAATTGCAAAGATATTAC





TTTTGGGATGGAACAGAGCTGGAAGGCAAAGAG (SEQ ID NO: 171)





166
HGL6.364

AACGGAATCAAACGGAATTATCGAATGGAATCGAAAAGAATCATCGAACGGACT





CGAATGGAATCATCTAATGGAATGGAATGGAAGAATCCATGG (SEQ ID NO: 172)





167
HGL6.367

AAACGGAATTATCGAANGGAATCAAAGAGAATCATCGAANNNNNACGAATGGA





ATCATATAATGGAATGGAATGGAATAATCCATGGACC (SEQ ID NO: 173)





168
HGL6.369

AATGGAATCGAATGGATTGATATCAAATGGAATGGAATGGAAGGGAATGGAATG





GAATGGAATTGAACCAAATGTAATGGATTTG (SEQ ID NO: 174)





169
HGL6.371

TAAAAGACGGAACAGATAGAAAGCAGAAAGGAAAGGTGAATTGCATTACCACT





ATTCATACTGCCACACACATGACATTAGGCCAAGTC (SEQ ID NO: 175)





170
HGL6.372

ACAAACAATCCAATTCGAAAATGGGCAAGATATTTCACCAAAGACATGAGCTGA





TATTTCAC (SEQ ID NO: 176)





171
HGL6.373

AATGGAATCGAATGGAACAATCAAATGGACTCCAATGGAGTCATCTAATGGAAT





CGAGTGGAATCATCGAATGGACTCG (SEQ ID NO: 177)





172
HGL6.374

TAACACATAAACAAACACAGAGACAAAATCTCCGAGATGTTAATCTGCTCCAGC





AATACAGAACAATTTCTATTACCAACAGAATGCTTAATTTTTCTGCCT (SEQ ID





NO: 178)





173
HGL6.379

GGAATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAA





TCAAAGAGAATCATCGAATGGACC (SEQ ID NO: 179)





174
HGL6.382

AGAATGGAAAGGAATCGAAACGAAAGGAATGGAGACAGATGGAATGGAATG





(SEQ ID NO: 180)





175
HGL6.383

GAATGGAATGGAAAGGAATCGAAACGAAAGGAATGGAGACAGATGGAATGGAA





TGGAACAGAGAGCAATGG (SEQ ID NO: 181)





176
HGL6.387

GAATCATCATAAAATGGAATCGAATGGAATCAACATCAAATGGAATCAAATGGT





CTCGAATGGAATCATCTTCAAATGGAATGGAATGG (SEQ ID NO: 182)





177
HGL6.389

AACAACAATGACAAACAAACAACAACGACAAAGACATTTATTTGGTTCACAAAT





CTCCAGGGTGTACAAGAAGCATGGTGCCAGCATCTGCTCAGCTTCTGATGAGGG





CTCTGGGAAGCTTTTACTC (SEQ ID NO: 183)





178
HGL6.390

AACGGACTCGAACGGAATATAATGGAATGGAATGGATTCGAAAGGAATGGAAT





GGAATGGACAGGAAAAGAATTGAATGGGATTGGAATGGAATCG (SEQ ID NO:





184)





179
HGL6.393

AGGAAATAAAAGAAGACACAAACAAATGGAAGAACATTCCATGCTTATGGATA





GGGAGAATCAGTATCGTGAAAATGGCCATACT (SEQ ID NO: 185)





180
HGL6.394
HGL6.1136
AACATCAAACGAAATCAAACGGAATTATCAAATTGAATCGAAGAGAATCATCGA





ATTGCCACGAATGCAATCATCTAATGGTATGGAATGGAATAATCCATGGACCCA





GATG (SEQ ID NO: 186)





181
HGL6.395

AGAAATTAACAGCAAAAGAAGGATGCAGTGCAACTCAGGACAACACATACAATT





CAAGCAACAAATGTATAGTGGCTGGGCACCAAGGATACAG (SEQ ID NO: 187)





182
HGL6.396

GCAATAAAATCGACTCAGATAGAGAAGAATGCAATGGAATGGAATGGAATGGA





ATGGAATGGGATGGAATGGTATGGAATGG (SEQ ID NO: 188)





183
HGL6.397

CCACATAAAACAAAACTACAAGACAATGATAAAGTTCACAACATTAACACAATC





AGTAATGGAAAAGCCTAGTCAATGGCAG (SEQ ID NO: 189)





184
HGL6.399

GGACAACATACACAAATCAGTCAAGATACATCATTTCAACAGAATGAAAGACAA





AAACCATTTGATCACTTCAATCGATGATGAAAAAGCA (SEQ ID NO: 190)





185
HGL6.400

GAAATCATCATCAAACGGAATCGAATGGAATCATTGAATGGAATGGAATGGAAT





CATCATGGAATGGAAACG (SEQ ID NO: 191)





186
HGL6.405

TGGAATGGANTGGAATGNAATCNAATCNNNTGGTAATGAATCAAATGGAATCAA





ATCGAATGGNAATAATGGAATCNANNGGAAACGAATGGNATCGAATTGCACTGA





TTCTACTGACTTCGAGGAAAATGAAATGAAATGCGGTGAAGTGGAATGG (SEQ ID





NO: 192)





187
HGL6.409

AGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGGGAAAAAATCACAAGCA





TTCCTATACATCAATAACAGACAAACAGAGAGCC (SEQ ID NO: 193)





188
HGL6.410

GAATGTTATGAAATCAACTCGAACGGAATGCAATAGAATGGAATGGAATGGAAT





GGAATGGAATGGAATGG (SEQ ID NO: 194)





189
HGL6.412

AGTAGAATTGCAATTGCAAATTTCACACATATACTCACACACAAGTACACACATC





CACTTTTACAACTAAAAAAACTAGCACCCAGGACAGGTGCAGTGGCT (SEQ ID





NO: 195)





190
HGL6.416

GGAATCAACATCAAACGGAAAAAAAACGGAATTATCGAATGGAATCGAAGAGA





ATCATCGAATGGACC (SEQ ID NO: 196)





191
HGL6.420

GGAATAATCATCATCAAACAGAACCAAATGGAATCATTGAATGGAATCAAAGGC





AATCATGGTCGAATG (SEQ ID NO: 197)





192
HGL6.422

ACTCAGGAAAAATAACGAATCCAACTCACAGGAGAAAGAAGTACAAACCAGAA





ACCAATTTCAAATTACAAGGACCAGAATACTCATGTTGGCTGGCCAGT (SEQ ID





NO: 198)





193
HGL6.424

AAACGCACAAACAAAGCAAGGAAAGAATGAAGCAACAAAAGCAGAGATTTATT





GAAAATGAAAAATACACTCCACAGGGTGGG (SEQ ID NO: 199)





194
HGL6.429

GCATAGAATCGAATGGAATTATCATTGAATGGAATCGAATGGAATCAACATCAA





ACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGACC





C (SEQ ID NO: 200)





195
HGL6.430

AATGGAATCGAANAGAATCATCGAACGGACTCGAATGGAATCATCTAATGGAAT





GGAATGGAATAATCCATGGACCCGAATG (SEQ ID NO: 201)





196
HGL6.433

AAATGAATCGAATGGAATTGAATGGAATCAAATAGAACAAATGGAATCGAAATG





AATCAAATGGAATCGAATCGAATGGAATTGAATGGCATGGAATTG (SEQ ID NO:





202)





197
HGL6.436

NTCACAATCACACAACACATTGCACATGNNNANNATGCACTCACAATACACACA





CAACACATACACAACACACATGCAATACAACACAAAACGCAACACAACATATAC





ACNACACACAGCACACANATGCC (SEQ ID NO: 203)





198
HGL6.442

GAATGGAATCAAATCGAATGAAATGGAATGGAATAGAAAGGAATGGAATGAAA





TGGAATGGAAAGGATTCGAAT (SEQ ID NO: 204)





199
HGL6.445

AAAGACTTAAACGTTAGACCTAAAACCATAAAAACCCTAGAGGAAAACCTAGGC





ATTACCATTCAGGACTTAGGCATGGGCAAGGAC (SEQ ID NO: 205)





200
HGL6.446

GTTTACAGTCAAGTGTACAAACAGAATATAAGCAAACAAAAGAGAACATATACT





TACAAACTATGCTAAGTGCCATGAAGGAAAAG (SEQ ID NO: 206)





201
HGL6.447

AAAGTCCAAAGATGAACAAAATATCCAGAAGGAAAACAAATGCACTTGGGGAG





TGGGAAAGAAAACCAAGACTGAGCAATGCGTCAAGCTCAGACGTGCCTCACTAC





G (SEQ ID NO: 207)





202
HGL6.448

AAACGGAATCAAACGGAATTATCGAATGGAGTCGAAAAGAATCATCGAACGGA





CTCGAATGGAATCATCTAATGGAATGGAATGGAAGAATCCATGG (SEQ ID NO:





208)





203
HGL6.450
HGL6.1296
AATTGATTCGAAATTAATGGAATTGAATGGAATGCAATCAAATGGAATGGAATG





TAATGCAATGGAATGTAATAGAATGGAAAGCAATGGAATG (SEQ ID NO: 209)





204
HGL6.453

TACAGAACACATGACTCAACAACAGCAGAAAGCATATTCTTTTCAAATGCACAT





GAAACATTATCATGATGGACCAAAT (SEQ ID NO: 210)





205
HGL6.454

TAAGACACATAGAAAACATAAAGCAAAATGGCAGATGTAAATGCAACCTATCAA





TCAAAACATTACGAATGGCTT (SEQ ID NO: 211)





206
HGL6.456

GGAACAAAATGAAATCGAACGGTAGGAATCATACAGAACAGAAAGAAATGGAA





CGGAATGGAATG (SEQ ID NO: 212)





207
HGL6.457

AACGGAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGAAT





CGAATGGAGTCATCG (SEQ ID NO: 213)





208
HGL6.459
HGL6.806
AACATACGAAAATCAATAAACGTAATCCAGCATATAAACAGAACCAAAGACAA





AAACCACATGATTATCTCAATAGATGCAGAAAAGGCCTTT (SEQ ID NO: 214)





209
HGL6.460
HGL6.1163
AATCGAACGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATC





GAAGAGAATCATCGAATGGACC (SEQ ID NO: 215)





210
HGL6.461

AGAATGGAATGCAATAGAATGGAATGCAATGGAATGGAGTCATCCGTAATGGAA





TGGAAAGGAATGCAATGGAATGGAATGGAATGG (SEQ ID NO: 216)





211
HGL6.462

GGAATAAAACGGACTCAATAGTAATGGATTGCAATGTAATTGATTCGATTTCGA





ATGGAATCGCATGGAATGTAATGGAATGGAATGGAATGGAAGGC (SEQ ID NO:





217)





212
HGL6.467

AGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGTACAAAAATCACAAGCA





TTCTTATACACCAACAACAGACAAACAGAGAGCC (SEQ ID NO: 218)





213
HGL6.476

TAAGCAGAGAAAATATCAACACGAAAATAATGCAAGGAGAAAAATACAGAACA





ATCCAAAATGTGGCC (SEQ ID NO: 219)





214
HGL6.487

AATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGTATGGAATCGAAAA





GAATTATCGAATGGACC (SEQ ID NO: 220)





215
HGL6.489
HGL6.587
TCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATG





GACC (SEQ ID NO: 221)





216
HGL6.490

AACTTCAGCAAATTCTCAGGATACAAAATCAATGTGCAAAAACCACAAGCATTC





CTATACACCAATAATAGACAGTGAGCCAAAT (SEQ ID NO: 222)





217
HGL6.494
HGL6.1131
ACATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAAAGAATCATCGAA





CGGACTCGAATGGAATCATCTAATGGAATGGAATGGAAGAATCCATGGACTCGA





ATG (SEQ ID NO: 223)





218
HGL6.497

AATGGAATCGAATGCAATCATCGAACGGAATCGAATGGCATCACCGAATGGAAT





GGAATGGAATGGAATGGAATGG (SEQ ID NO: 224)





219
HGL6.499

AATCCAGCATATAAACAGAACCAAAGACAAAAACCACATGATTATCTCAATAGA





TGCAGAAAAGGCC (SEQ ID NO: 225)





220
HGL6.500

TGACTAAACAGAGTTGAACAAGAACAAAAAGCAAATTTGCAGAAATGAAATAC





ATACTAATTGAAAGTCCATGGACAGGCTCAACAGATGATATAGATACAGCTAAA





GAGATAATTAGTGAAATGGATCAG (SEQ ID NO: 226)





221
HGL6.501

GATCATCAGAGAAACAGAGAAATGCAAATTAAAACCACAATGAGATACTATCTC





CACACAAGTCAGAATGGCTAT (SEQ ID NO: 227)





222
HGL6.503

AGGATACAAAATCAATGTACAAAAATCACAAACATTCTTATACACCAACAACAG





ACAAACAGAGAGCCAAATCATGGGTG (SEQ ID NO: 228)





223
HGL6.505

TAAGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGTACAAAAATCACAAG





CATTCTTATACACCAACAACAGACAAACAAGAGTGCCAAATCATG (SEQ ID NO:





229)





224
HGL6.506

AGAATTGATTGAATCCAAGTGGAATTGAATGGAATGGAATGGATTAGAAAGGAA





TGGAATGGATTGGAATGGATTGGAATGGAAAGG (SEQ ID NO: 230)





225
HGL6.508

AATGGAATGCAATCGAATGGAATGGAATCGAACGGAATGGAATAAAATGGAAG





AAAACTGGCAAGAAATGGAATCG (SEQ ID NO: 231)





226
HGL6.509

AACTGCATCAACTAACAGGCAAAATAACCAGCTAATATCATAATGACAGGATTA





AATTCACAAATGACAATATTAACCGTAAATGTAAATGGGCTA (SEQ ID NO: 232)





227
HGL6.510

TACAAAGAACTCAAACAAATCAGCAAGAACAAAAACAATCCCAACAAAATGTTG





GACAAAGACATGAATAGACAATTCTCGAAAGAAGATGTACAAATGGCT (SEQ ID





NO: 233)





228
HGL6.512

AGAGAAATGCAAATCAAAACCACAATGGAATACCATCTCACGCCAGTCAGAATG





GCAATTATTAAAAAATCACAACAATTAATGATGGCAAGGCTGTGG (SEQ ID NO: 





234)





229
HGL6.513

GTAAACAAACAATCAAGCAAGTAAGAACAGAAATAACAGCATTTGGCTTTTGAG





TTAATGACAAGAACACTCGGCATGGGAGCCTGGGTGAGCAAATCACAGATCTTC





(SEQ ID NO: 235)





230
HGL6.514

GAATCAACCCGAGCGGAAAGGAATGGAATGGAATGGAATCAACACGAATGGAA





TGGAACGGAATGGAATGGGATGGGATGAAATGGAATGG (SEQ ID NO: 236)





231
HGL6.516

AGCAACTTCAGCAAAGTCTCAGGAGACAAAATCAATGTACAAAAATCACAAGCA





TTCTTATACACCAATAACAGACAAACAGAGAGCC (SEQ ID NO: 237)





232
HGL6.520

AAGAAATGGAATCGAAGAGAATGGAAACAAACGGAATGGAATTGAATGGAATG





GAATTGAATGGAATGGGA (SEQ ID NO: 238)





233
HGL6.522

GACATGCAAACACAACACACAGCACACATGGAACATGCATCAGACATGCAAACA





CAACACACATACCACACATGGCATATGCATCAGACGTGCCTCACTAC (SEQ ID





NO: 239)





234
HGL6.528

TACAGATAAGAAAATTGAGACTCAAGAGTATTACATAAATTGTTTCAGCTACCAC





AGCAAAAAATGGTATGGTTGGGAATCAAGCTCAGGG (SEQ ID NO: 240)





235
HGL6.529

AAAGGAATGCACTCGAATGGAATGGACTTGAATGGAATGTCTCCGAATGGAACA





GACTCGTATGAAATGGAATCGAATGGAATGGAATCAAATGGAATTGATTTGAGT





GAAATGGAATCAAATGGAATGGCAACG (SEQ ID NO: 241)





236
HGL6.530

TGAAACAAATGATAATGAAAATACAACATACCAAACATACGAGATACAGTAAAA





GCAGTACTAAGATGCAAGTATATATTGCTACAAGTGCCTAC (SEQ ID NO: 242)





237
HGL6.531

GGAACAAAATGAAATCGAACGGTAGGAATCGTACAGAACGGAAAGAAATGGAA





CGGAATGGAATGCACTCGAATGGAAAGGAGTCCAAT (SEQ ID NO: 243)





238
HGL6.532

AAATTGATTGAAATCATCATAAAATGGAATCGAAGGGAATCAACATCAAATGGA





ATCAAATGGAATCATTGAACGGAATTGAATGGAATCGTCAT (SEQ ID NO: 244)





239
HGL6.533

AGAAAGGATTCGAATGGAATGAAAAAGAATTGAATGGAATAGAACAGAATGGA





ATCAAATCGAATGAAATGGAATGGAATAGAAAGGAATGGAATG (SEQ ID NO:





245)





240
HGL6.534

AGAATGGAAAGCAATAGAATGGAACGCACTGGATTCGAGTGCAATGGAATCAAT





TGGAATGGAATCGAATGGAATGGATTGGCA (SEQ ID NO: 246)





241
HGL6.535

AACACCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCTTCG





AACGGACCCGAATGGGATCATCTAATGGAATGGAATGGAATAATCCATGG (SEQ





ID NO: 247)





242
HGL6.536

AATGGAGACTAATGTAATAGAATCAAATGGAATGGCATCGAATGGAATGGACTG





GAATGGAATGTGCATGAATGGAATGGAATCGAATGGATTG (SEQ ID NO: 248)





243
HGL6.539

TGGGATATGGGTGAAAGAACAAGTTTGCAGAAAAGATACAGTGAATTATGGACC





ATGAGTTCGGGAAAGAAGGGTAGGACTGCG (SEQ ID NO: 249)





244
HGL6.540

AAATCGAATGGAACGCAATAGAATAGACTCGAATGTAATGGATTGCTATGTAAT





TGATTCGAATGGAATGGAATCGACTGGAATGCAATCCAATGGAATGGAATGCAA





TGCAATGGAATGGAATCGAACGGAATGCAGTGGAAGGGAATGG (SEQ ID NO: 





250)





245
HGL6.541

AATCAACAAGGAACTGAAACAAGTAAACAAGAAAACAAATAACACCATAAAAC





ATGGGCAAAGGACATAAACAGACATTTTTCAAAAAAGACATACAAATGGCCGAG





(SEQ ID NO: 251)





246
HGL6.542

AATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGA





GAATCATCGAATGGACCCAGGCTGGTCTTGAACTCC (SEQ ID NO: 252)





247
HGL6.545

ATTGAATGGGCTAGAATGGAATCATCTTTGAACGGAATCAAAGGGAATCATCAT





CGAATGGAATCGAATGGAAATGTCAACG (SEQ ID NO: 253)





248
HGL6.547

AATGGACTCGAATGGAATCAACATCAAATGGAATCAAGCGGAATTATCGAATGA





AATCGAAGAGAATCATCGAATGGACTCGAAAGGAATCATCTAATGGAATGGAAT





GGAATAATCCATGGACTCGAATGCAATCATCATCG (SEQ ID NO: 254)





249
HGL6.549

ACAGACAGAGATTTAAAACAATAAACAAGCAGTAAGCAAACACAGATAACAAA





ATGACATGATCCAACAAATACTCAGAAGGAGACTTAGAAATGAATTGAGGGTC





(SEQ ID NO: 255)





250
HGL6.553

AATGTAATCCAGCATATAAACAGAGCCAAAGACAAAAACCACATGATTATCTCA





ATAGATGCAGAAAAAGCCTTTGACAAAATTCAACAACCCTTCATGCTAAAAACT





CTCAATAAATTAGGTATTGATGGGACG (SEQ ID NO: 256)





251
HGL6.555

AAACGGAAAAAAACGGAATTATTGAATGGAATCGAAGAGAATCTTCGAACGGA





CCCGAATGGAATCATCTAATGGAATGGAATGGAATAATCCATGG (SEQ ID NO: 





257)





252
HGL6.557
HGL6.1238
GCTCAAGGAAATAAAATAGGACACAAAGAAATGGAAAAACATTCCATACTCATG





GATAGAAAGAATCAATATCATGAAATGGCC (SEQ ID NO: 258)





253
HGL6.560

ACTCGAGTGGAATTGACTGTAACAAAATGGAAAGTAACGGATTGGAATCGAATG





GAACGGAATGGAATGGAATGGACAT (SEQ ID NO: 259)





254
HGL6.561

TACAAACTTTAAAAAATGATCAACAGATACACAGTTAGCAAGAAAGAATTGAGG





GCAAAGAATATGCCAGACAAACTCAAGAGGAAGATGATGGTAGAGATAGGTCA





CATTGGAGTGTCA (SEQ ID NO: 260)





255
HGL6.562
HGL6.154,
GGAATCGAATGGAATCAATATCAAACGGAAAAAAACGGAATTATCGAATGGAAT




HGL6.114
CGAAGAGAATCATCGAATGGACC (SEQ ID NO: 261)





256
HGL6.564

AACGGAATCAAACGGAATTATCGAATGGAATCGAAAAGAATCATCGAACGGACT





CGAATGGAATCATCTAATGTAATGGAATGGAAGAATCCATGGACTCGAATG





(SEQ ID NO: 262)





257
HGL6.565

GGAAATAACAGAGAACACAAACAAATGGGAAAACATTCCATGTTCATGGATAGG





AAGAATCAATATTGTGAAAATGGCCATACT (SEQ ID NO: 263)





258
HGL6.570

AACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGAC





CAGAATGGAATCATCTAATGGAATGGAATGGAATAATCCATGGACTCGAATG





(SEQ ID NO: 264)





259
HGL6.581

CAACATCAAACGGAAAAAAACGGAATTATGGAATGGAATCGAAGAGAATCATC





GAATGGACCCGAATGGAATCATCTGAAATATAATAGACTCGAAAGGAATG (SEQ





ID NO: 265)





260
HGL6.589

ATGGAATCGAATGGAATGGACTGGAATGGAATGGATTCGAATGGAATCGAATGG





AACAATATGGAATGGTACCAAATG (SEQ ID NO: 266)





261
HGL6.595
HGL6.1293
GAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAG





AGAATCATCGAATGGACC (SEQ ID NO: 267)





262
HGL6.606

AAGGAATTTAAGCAAATCAACAAGCAAAACCAAAATAATCCCATTAAAAAGTGG





GTAAAGGACATGAATACACACTTGTCAATAGAGGACATTCAAGTGGCCAAC





(SEQ ID NO: 268)





263
HGL6.608

AAATGGACTCGAATGGAATCATCATAGAATGGAATCGAATGCAATGGAATGGAA





TCTTCCGGAATGGAATGGAATGGAATGGAATGGAG (SEQ ID NO: 269)





264
HGL6.609

GAATCANCNNNNNNNGGAATCGAATGGAATCAACATCAAATGGAATCAAATGG





AATCATTGAACGGAATTGAATGGAATCGTCAT (SEQ ID NO: 270)





265
HGL6.610

AGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGTACAAAAATCACAAGCA





TTCTTATACACCAATAACAGACAAACAGAGAGCCAAAA (SEQ ID NO: 271)





266
HGL6.611

TATGCAAATCAATAAACATAATCCATCACATAAACAGAAACAAAGACAAAATGA





CATGATTATCTCAATAGATGCAGAAAAGGCC (SEQ ID NO: 272)





267
HGL6.615

AGTAAATCACCATAAAGAAGGTAAGAGTTCATTCACAAAAACAACAAACTGAAG





AATCAGGCCATAGTA (SEQ ID NO: 273)





268
HGL6.617

AGAAACAGAAAACAGTCAAACCAATGGGCAATCCATATCAGATGCAGTATTATG





AACAGAAGTGTAAAGAATGCACCAGGCACAATGGC (SEQ ID NO: 274)





269
HGL6.619

AGGAAAAACAACAACAACAACAGGAAAACAACCTCAGTATGAAGACAAGTACA





TTGATTTATTCAACATTTACTGATCACTTTTCAGGTGGTAGGCAG (SEQ ID NO:





275)





270
HGL6.623

GATTGGAACGAAATCGAATGGAACGGAATAGAATAGACTCGAATGTAATGGATT





GCTATGTAATTGATTCGAATGGAATGGAATCGAATGGAATGCAATCCAATGGAA





TGGAATGCAATGCAATGGAATGG (SEQ ID NO: 276)





271
HGL6.624

AACATATGGAAAAAAACTCAACATCACTGATCATTAGAGAAATGCAAATCAAAA





CCACAATGAGATACCATCTCACGCCAGTCAGAATGGCG (SEQ ID NO: 277)





272
HGL6.625

ATGGAATGGAATAATCAACGTACTCGAATGCAATCATCATCGTATAGAATCGAA





TGGAATCATCGAATGGACTCGAATGGAATAATCATTGAACGGAGTCGAATGGAA





TCATCATCGGATGGAAAC (SEQ ID NO: 278)





273
HGL6.627

AAANAANTCNAATGGAATCNNTGNCGAATGGAATGGAATGGAATCGAANAATT





GAATTGNNNANAATCNNANGNAANCNTTGNATGGGCTCAAAT (SEQ ID NO: 279)





274
HGL6.629

AGAAAAGATAACTCGATTAACAAATGAACAAACACCTGAATACACAAGTCTCAA





AAGAAGACATAAAAATGGCCAAC (SEQ ID NO: 280)





275
HGL6.632

ATGGAATCAACATCAAACGGAATCACACGGAATTATCGAATGGAATCGAAAAGA





ATCATCGAACGGACTCGAATGGAATCATCTAATGGAATGGAATGGAAG (SEQ ID





NO: 281)





276
HGL6.633
HGL6.1135
AATGGAATCAACATCAAACGGAATCAAGCGAAATTATCGAATGGAATCGAAGAG





AATCATCGAATGGACTCGAATGGAATCATCTAATGGAATGGAATGGGAT (SEQ ID





NO: 282)





277
HGL6.634

AAACACAGTACAAATACTAATTCAAATCAAACTTACTCAAAGTCATAATCAAAC





ATGCCAGACGGGCTGAGGGGCAGCATTA (SEQ ID NO: 283)





278
HGL6.638

AACCACTGCTCAAGGAAATAAGAGAGAACACAAACAAATGAAAAAACATTCCA





TGCTCATGGATAGGAAGAATCAG (SEQ ID NO: 284)





279
HGL6.641

GGAATCGAGTGGAATCATCGAAAGAAATCGAATGGAATCATTGTCGAATGGAAT





GGAATGGAATCAAAGAATGGAATCGAAGGGAATCATTGGATGGGCT (SEQ ID





NO: 285)





280
HGL6.642

AAAGAAAGACAGAGAACAAACGTAATTCAAGATGACTGTTTACATATCCAAGAA





CATTAGATGGTCAAAGACTTTAAGAAGGAATACATTCAAAGGCAAAAAGTCACT





TACTGATTTTGGTGGAGTTTGCCACATGGAC (SEQ ID NO: 286)





281
HGL6.645

AAGATAGAGTTGAAACAGTGGACAATTAAAGAGTAATTTGGAAGAATGGTGAAA





TTACAGCCATGCTTTGAATCAGGCGGGTTCACTGGC (SEQ ID NO: 287)





282
HGL6.646

AAGAGTATCAACAGTAAATTACATTAGCAGAAGAATCAACAAACATGAAAATAG





AAATTATGGTAGCCAAAGAACAG (SEQ ID NO: 288)





283
HGL6.647

GAAAGGAATCATCATTGAATGCAATCACATGGAATCATCACAGAATGGAATCGT





ACGGAATCATCATCGAATGGAATTGAATGGAATCATCAATTGGACTCGAATGGA





ATCATCAAATGGAATCGATTGGAAGTGTCAAATGGACTCG (SEQ ID NO: 289)





284
HGL6.651

CAGCGCACCACAGCACACACAGTATACACATGACCCACAATACACACAACACAC





AACACATTCACACACCAC (SEQ ID NO: 290)





285
HGL6.655

GCAAACAGAATTCAACACTACATTAGAACGATCATTCATCACGACCTAGTAGGA





TGTTTTTCCTGGGATGCAAGGATGGTTCAACAT (SEQ ID NO: 291)





286
HGL6.656

CAATCAAAACAGCAATGAGATACCATTTTACACCAATCAAAATGGCTACTAAAA





AGTCAAAAGCAAATGCC (SEQ ID NO: 292)





287
HGL6.658
HGL6.830
AGAACCATATTGAAGAGACAGAGTGATATATAAAACTGCTAACTCAAGCAGCAC





AAGAATTAAATGAATACCAAGAAAATACTTGGCCAG (SEQ ID NO: 293)





288
HGL6.660

TGGAATAGAATGGAATCAATGTTAAGTGGAATCGAGTGGAATCATCGAAAGAAA





TCGAATGGAATCATTGTCGAATGGTATGGAATGGAATCA (SEQ ID NO: 294)





289
HGL6.661

AATGGAATGGAATCATCGCATAGAATNGAATGGAATTATCATCGAATTGAATCG





AATGGTATCAACATCAAACGGAAAAAAACGGAAATATCGAANGGAATCGAAGA





GAATCATCGAACGGACC (SEQ ID NO: 295)





290
HGL6.662

ACATACGCAAATCAATAAACATAATCCATCACATAAACAGAACCAAAGACAAAA





ATCACATGATTATCTCAATAGATGCAGAAAAGGCCTTCGAC (SEQ ID NO: 296)





291
HGL6.663

AAAAAATGTTCAACATCACTAGTCAGCAGAGAAATGCAAATCAAAATCACAATG





AGATAACTTCTCACACCAGACAGCATGGC (SEQ ID NO: 297)





292
HGL6.668

GAAAAACAAAACAAAACAAACAAACAAACAATCAAAAAAGTGGTAGCAGAAAC





CAGAAAGTCCATGTATATAGCTAATTGGCCTGGTTGT (SEQ ID NO: 298)





293
HGL6.671

AACAGCAATGACAATGATCAGTAACAACAAGACTTTTAACTTTGAAAAAATCAG





GACC (SEQ ID NO: 299)





294
HGL6.672

AAGAGCCTGAATAGCTAAAGTGATCATAAGCAAAAAGAACAAAGTCGGAAGCA





TCACATTACCTGACTTCAAACTATACTCAAAGGCTATG (SEQ ID NO: 300)





295
HGL6.675

AAAAGGAAATACAAGACAACAAACACAGAAACACAACCATCGGGCATCATGAA





ACCTCGTGAAGATAATCATCAGGGT (SEQ ID NO: 301)





296
HGL6.677

AAGCAAAGAAAGAATGAAGCAGCAAAAGAACGAAAGCAGGAATTTATTGAAAA





CCAAAGTACACTCCACAGTATGGGAGCGGACCCGAGCA (SEQ ID NO: 302)





297
HGL6.679

GCAAATGATTATAAGTGCTGTTATAGAAACATTCAAAGACCAGAAAAGGACCAC





AATGGCTGACCAC (SEQ ID NO: 303)





298
HGL6.681

AGAGCAGAAACAAATGGAATTGAAATGAAGACAACAATCAAAAGCATCAATGA





AATGAAAAGTTGGGTTTTGGAAGAGAGAAACAAT (SEQ ID NO: 304)





299
HGL6.683

ACACAAACACACACACACACACACACACACACACACACACACACACACACACAC





ACACACACACACATAC (SEQ ID NO: 305)





300
HGL6.686

AACAAACAAATGAGATGATTTCAGATAGTGATAAACACTATAACATAATTAATT





CGTGCCAATCAGAGCATAACAGTGGTGTGGTGGCTGTGGAACAGATAGCAGAC





(SEQ ID NO: 306)





301
HGL6.688

AATGGAATCGAGTGGAATGGAAGGCAATGGAATAGAATGGAATGGAATCGAAA





GGAACGGAATGGAATGGAATGGAATG (SEQ ID NO: 307)





302
HGL6.689

AGCAGTGCAAGAACAACATAACATACAAGTAAACAAACACATGGGGCCAGGTA





ATAAAAAGTCAGGCTCAAGAGGTCAG (SEQ ID NO: 308)





303
HGL6.690

AGAAATGGAATCGGAGAGAATGGAAACAAATGGAATGGAATTGAATGGAATGG





AATTGAATGGAATGGGAACG (SEQ ID NO: 309)





304
HGL6.694

GCACTAGTCAGATCAAGACAGAAAGTCAACGAACAAAGAACAGACTTAAACTAC





ACTCTAGAACAAATGGACCTA (SEQ ID NO: 310)





305
HGL6.704

AAGAGAACTGCAAAACACTGCTCAAAGAAATCAGAGATGACAAAAACACATGG





AAAAACGTTTCATGCTCATGGATTGGAAGACTTA (SEQ ID NO: 311)





306
HGL6.705

AATCAACACGAATAGAATGGAACGGAATGGAATGGAATGGAATGGAATGGAAT





GGAGTGGAATGGAACAGAATGGAGTGGAAT (SEQ ID NO: 312)





307
HGL6.707

AACATCAAACGAAATCAAACGGAATTATCAAATTGAATCGAAGAGAATCATCGA





ATTGCCACGAATGCAACCATCTAATGGTATGGAATGGAATAATCCATGGACCCA





GATG (SEQ ID NO: 313)





308
HGL6.714

CGGAATTATCATCGAATGTAATCGAATGGAATCAACATCAAACGGAAAAAAACG





GAATTATCGAATGGAATCGAAGAGAATCATCGAATGGACC (SEQ ID NO: 314)





309
HGL6.719

TGGACACACACGAACACACACCTACACACACGTGGACACACACGGACACATGGA





CACACACGAACACATGGACACACACACGGGGACACACACAGACACACACAGAG





ACACACACGGACACATGG (SEQ ID NO: 315)





310
HGL6.720
HGL6.1044
AGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGTGCAAAAATCACAAGCA





TTCTTATACACCAATAACAGACAAACAGAGAGCC (SEQ ID NO: 316)





311
HGL6.721
HGL6.1020
AAAATCAATATGAAAACAAACACAAGCAGACAAAGAAAATTGGGCAAAAGGTT





TGAGCAGACACTTCACCAAAGAAGTACAAATGGCAAATCAGCA (SEQ ID NO:





317)





312
HGL6.724

ATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATG





GACTCGAATGGAATCATCTAATGGAATGGAATGGAAGAATCCATGG (SEQ ID NO:





318)





313
HGL6.725

AACAGATTTAAACAAACCAACAAGCAAAAAACGAACAACTCCATTCAAACATGG





ACAAAAGACACGAACAGACACTTTTCAAAGAAGACATACATGTGGCC (SEQ ID





NO: 319)





314
HGL6.726

AAATGGAATGGAATGCACTTGAAAGGAATAGACTGGAACAAAATGAAATCGAA





CGGTAGGAATCATACAGAACAGAAAGAAATGGAACGGAATGGAATG (SEQ ID





NO: 320)





315
HGL6.727

ACCACACACAAAATACACCACACACCACACACACACCACACACTATACACACAC





CACACACCACACAC (SEQ ID NO: 321)





316
HGL6.728

AAAGAAATAGAAGGGAGTTGAACAGAATCGAATGGAATCGAATCAAATGGAAT





CGAATGGCATCAAATGGAATCGAATGGAATGTGGTGAAGTGGATTGG (SEQ ID





NO: 322)





317
HGL6.729

GGAATCATCATAAAATGGAATCGAATGGAATCATCATCAAATGGAATCAAATGG





AATCATTGAACGGAATTGAATGGAATCGTCAT (SEQ ID NO: 323)





318
HGL6.730

TGGAATGGAATGGAATGAAATAAACACGAATAGAATGGAACGGAATGGAACGG





AATGGAATGGAATGGAATGGAAAG (SEQ ID NO: 324)





319
HGL6.731

AAGAATTGGACAAAACACACAAACAAAGCAAGGAAGGAATGAAAGGATTTGTT





GAAAATGAAAGTACACTCCACAGTGTGGGAGCAG (SEQ ID NO: 325)





320
HGL6.732

TAATCAGCACAATCAACTGTAGTCACAAAACAAATAGTAACGCAATGATAAAGA





AACAGAGAACTAGTTCAAATAAACATGATAAGATGGGG (SEQ ID NO: 326)





321
HGL6.733

AAGCGGAATTATCAAATGGAATCGAAGAGAATGGAAACAAATGGAATGGAATT





GAATGGAATGGAATTGAATGGAATG (SEQ ID NO: 327)





322
HGL6.734

AAGCAACTTCAGCAAAGTCTCAGGACACAAAATCAATATGCGAAAATCACAAGC





ATTCCTATACACCAATAATAGACAAACAGAGAGCCAAATCATG (SEQ ID NO: 328)





323
HGL6.736

TTCACAGCAGCATTACGCACAATAGCCAGAAGGTGGGAACAGACAAAATGCCTT





TTGATGGG (SEQ ID NO: 329)





324
HGL6.738

AGACCCTAATATCACAGTTAAACGAACTAGAGAAGGAAGAGCAAACAAATTCAA





AAGCTAGCGGAAAGCAAGAAATAACTAAGACCAG (SEQ ID NO: 330)





325
HGL6.739

TAAAAGTGTGCTCAACATCATTGATCATCAGAGAAATGCAAATCAAAACTACAA





TGAGATATCATCTCATCCCAGTCAAAGTGGCT (SEQ ID NO: 331)





326
HGL6.740

ACTTGAATCGAATGGAAAGGAATTTAATGAACTTAAATCGAATGGAATATAATG





GTATGGAATGGACTCATGGAATGGAATGGAAAGGAATC (SEQ ID NO: 332)





327
HGL6.742

TGGAATCATCATCGAAAGCAAGCGAATGGAATCATCAAATGGAAACGAATGGAA





TCATCGAATGGACTCGGATGGAATTGTTGAATGGACT (SEQ ID NO: 333)





328
HGL6.743

TGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGA





ATCATCGAATGGACC (SEQ ID NO: 334)





329
HGL6.745

TAAGTGAATTGAATAGAATCAATCTGAATGTAATGAAATGGAATGGAACGGAAT





GGAATGGAATGGAATGGAATGGAATGGAATGG (SEQ ID NO: 335)





330
HGL6.747

AGGAAAATTTAATCAGCAGGAATAGAAACACACTTGAGAAATCCATGTGGAATG





AAAAGAGAATGGCTGAGCAGCAACAGATTGTCAAAAAGGAAATC (SEQ ID NO:





336)





331
HGL6.749
HGL6.897
AACATCAAACGGAAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATC





GAATGGACC (SEQ ID NO: 337)





332
HGL6.756

GAAAATGAACAATATGAACAAACAAACAAAATTACTACCCTTACGAAAGTACGT





GCATTCTAGTATGGTGACAAAAAGGAAA (SEQ ID NO: 338)





333
HGL6.757

AGAAAACACACAGACAACAAAAAACACAGAACGACAATGACAAAATGGCCAAG





C (SEQ ID NO: 339)





334
HGL6.758
HGL6.1040
AGCAACTTCAGCAAAGACTCAGGATACAAAATCAATGTGCAAAAATCACAAGCA





TTCTTATACACCAATAACAGACAGAGAGCCAAAT (SEQ ID NO: 340)





335
HGL6.759

TGACATGCAAGAAATAAGGAAGTGCAAAAACAAACAAACAAACAACAACAACA





ACAACAACAACAACAACAAAAAACAGTCCCAAAAGGATGGGCAG (SEQ ID NO:





341)





336
HGL6.760

TAATTGAGAATAAGCATTCCAGTGGAAAAAAAACTAAACAATTTGTTGTAAAAC





ATCCTTAAAAGCATCAGAAAGTTAATACAGCAATGAAGAATTACAGGACCAAAT





TAAGAATGGTATGGAAGCCTGTTA (SEQ ID NO: 342)





337
HGL6.762

TATCATCGAATGGAATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTA





TCGAATTGAATCGAAGAGAATCATCGAATGGACC (SEQ ID NO: 343)





338
HGL6.764

GAATGGAATCAAATAGAATGGAATCGAAACAAATGGAATGGAATGGAATGGGA





GCTGAGATTGTGTCACTGCAC (SEQ ID NO: 344)





339
HGL6.765

AGCAAAACAAACACAATCTGTCGTTCATGGTACTACGACATACTGGGAGAGATA





TTCAAATGATCACACAAAACAACATG (SEQ ID NO: 345)





340
HGL6.766

AAGGATTCGAATGGAATGAAAAAGAATTGAATGGAATAGAACAGAATGGAATC





AAATCGAATGAAATGGAGTGGAATAGAAAGGAATGGAATG (SEQ ID NO: 346)





341
HGL6.768

AACGGAATCAAACGGAATTATCGAATGNNNTNNAAGAGAATCATCGAACGGACT





CGAATGGAATCATCTAATGGAATGGAATGGAAGAATCCATGGACTCGAATGCAA





TCATCATCGAATGGAATCGAACGGAATCATCGAATGGCC (SEQ ID NO: 347)





342
HGL6.771

AATCAACTAGATGTCAATGGAATGCAATGGAATAGAATGGAATGGAATTAACAC





GAATAGAATGGAATGGAATGGAATGGAATGG (SEQ ID NO: 348)





343
HGL6.772

TGTAACACTGCAAACCATAAAAACCGTAGAAGAAAACCTAGACAATACTATTCA





GGACATAGGCATGGGCAAAGAC (SEQ ID NO: 349)





344
HGL6.773

AATGGACTCGAATGGAATAATCATTGAACGGAATCGAATGGAATCATCATCGGA





TGGAAATGAATGGAATCATCATCGCATGGAATCG (SEQ ID NO: 350)





345
HGL6.776

GAATGGAATGATACGGAATAGAATGGAATGGAACGAAATGGAATTGAAAGGAA





AGGAATGGAATGGAATGGAATGG (SEQ ID NO: 351)





346
HGL6.777

AAAAATGACCAGAGCAATAGAATGCATTGACCAGATAAAGACCTTCACGTATGT





TGAACTAAAATGTGTGGTGCAGGTG (SEQ ID NO: 352)





347
HGL6.781

AATCATCATCGAATGGAATCGAATGGTATCATTGANTGNAATCGAATGGAATCA





TCATCANATGGAAATGAATGGAATCGTCAT (SEQ ID NO: 353)





348
HGL6.785

ACAAAATCAAACTAACCTCGATAAGAATGCAAGTGAATCAAAATGAGTTTCAAG





GGGTTGTGGCTAGTACACGCTTTCTACAGCTG (SEQ ID NO: 354)





349
HGL6.787

GAATCAAATCAATGGAATCAAATCAAATGGAATGGAATGGAATTGTATGGAATG





GAATGGCATGG (SEQ ID NO: 355)





350
HGL6.789

TAATGCAGTCCAATAGAATGGAATCGAATGGCATGGAATATAAAGAAATGGAAT





CGAAGAGAATGGGAACAAATGGAATGGAATTGAGTGGAATGGAATTGAATGGA





ATGGGAACGAATGGAGTG (SEQ ID NO: 356)





351
HGL6.792

TGAATAGACACACAGACCAATGGAACAGAATAGAGAACACAGAATAAATCTGC





ACACTTATAGCCAGCTGATTTTTGACAAATTTGCCAAG (SEQ ID NO: 357)





352
HGL6.797
HGL6.810,
AACATCNNACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCG




HGL6.1172,
AATGGACC (SEQ ID NO: 358)




HGL6.1223






353
HGL6.801

GCCAACAATCATATGAGAAAAAGCTCAACATCACTGATCATTTCAGGAATGCAA





ATCAAAACCACAATGAGATACTATCACACATCAATCAGAATGGCT (SEQ ID NO:





359)





354
HGL6.802
HGL6.118,
GAATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATC




HGL6.590,
GAAGAGAATCATCGAATGGACC (SEQ ID NO: 360)




HGL6.1051,





HGL6.1170,





HGL6.1248,





HGL6.1372






355
HGL6.804

AATCAAATGGAATGAAATCGAATGGAATTGAATCGAATGGAATGCAATAGAATG





TCTTCAAATGGAATCGAATGGAAATTGGTGAAGTGGACGGGAGTG (SEQ ID NO:





361)





356
HGL6.805

TAACAGTACCAAAAAACAGTCATAATCTTCAAGAGCTTAAATTTAGCATGAAAG





GAAGACATTCATCAAAGAATCACACAAAGGAATGTAAAATTAAATGGAGATTAG





TGCCAGGAAAGAGC (SEQ ID NO: 362)





357
HGL6.808

TAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGCAATCGAAGA





GAATCATCGAATGGACC (SEQ ID NO: 363)





358
HGL6.813

AGCAACTTCAGCAAAGTCTCAGCATACAAAATCAATGTGCAAAAATCACACGCA





TTCCTATACACCAATAACAGACAAACAGAGAGCC (SEQ ID NO: 364)





359
HGL6.815

GAATCAAATGGAATGGACTGTAATGGAATGGATTCGAATGGAATCGAATGGAGT





GGACTCAAATGGAATG (SEQ ID NO: 365)





360
HGL6.816

AACAAGTGGACGAAGGATATGAACAGACACTTCTCAAGACATTTATGCAGCCAA





CAGACACACGAAAAAATGCTCATCATCACTGGCCATCAG (SEQ ID NO: 366)





361
HGL6.819

AAACACACAAAGCAACAAAAGAACGAAGCAACAAAAGCATAGATTTATTGAAA





TGAAAGTACATTCTACAGAGTGGGGGCAGGCT (SEQ ID NO: 367)





362
HGL6.820

ATACAACTAAAGCAAATATAAGCAACTAAAGCAACAGTACAACTAAAGCAAAA





CAGAACAAGACTGCCAGGGCCTAGAAAAGCCAAGAAC (SEQ ID NO: 368)





363
HGL6.822

GCAATCGAATGGAATGGAATCGAACGGAATGGAATAAAATGGAAGAAAACTGG





CAAGAAATGGAATCG (SEQ ID NO: 369)





364
HGL6.825

AGCAGCCAACAAGCATATGAAATAATGCTCCACAACACTCATCATCAGAGAAAT





GCAAATCAAAACCAAAAT (SEQ ID NO: 370)





365
HGL6.826

TGGAACCGAACAAAGTCATCACCGAATGGAATTGAAATGAATCATAATCGAATG





GAATCAAATGGCATCTTCGAATTGACTCGAATGCAATCATCCACTGGGCTT (SEQ





ID NO: 371)





366
HGL6.827
HGL6.829
AACGGAATCACGCGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGACT





CGAATGGAATCATCTAATGGAATGGAATGG (SEQ ID NO: 372)





367
HGL6.830

AGAACCATATTGAAGAGACAGAGTGATATATAAAACTGCTAACTCAAGCAGCACAAGAATTA





AATGAATACCAAGAAAATACTTGGCCAG (SEQ ID NO: 373)





368
HGL6.831

AAAACAAACAACAACGACAAATCATGAGACCAGAGTTAAGAAACAATGAGACC





AGGCTGGGTGTGGTG (SEQ ID NO: 374)





369
HGL6.833

AATCGAAAGGAATGCAATATTATTGAACAGAATCGAAAAGAATGGAATCAAATG





GAATGGAACAGAGTGGAATGGACTGC (SEQ ID NO: 375)





370
HGL6.836

AAGGAATCGAATGGAAGTGAATGAAATTGAATCAACAGGAATGGAAGGGAATA





GAATAGACTGTAATGGAATGGACTCG (SEQ ID NO: 376)





371
HGL6.837

AATGGACTCGAATGAAATCATCATCAAACGGAATCGAATGGAATCATTGAATGG





AATGGAATGGAATCATCATGGAATGGAAACG (SEQ ID NO: 377)





372
HGL6.838

TTGACCAGAACACATTACACAATGCTAATCAACTGCAAAGGAGAATATGAACAG





AGAGGAGGACATGGATATTTTGTG (SEQ ID NO: 378)





373
HGL6.839

AACCCGAGTGCAATAGAATGGAATCGAATGGAATGGAATGGAATGGAATGGAA





TGGAATGGAGTC (SEQ ID NO: 379)





374
HGL6.843

AAGAGTATTGAAGTTGACATATCTAGACTGATCAAGAACAAAGACAAAAGGTAC





AGATTATCAAGAAAATGAGCGGGCAAAGCAAGATGGCC (SEQ ID NO: 380)





375
HGL6.847

GAATGGAATTGAAAGGAATGGAATGCAATGGAATGGAATGGGATGGAATGGAA





TGCAATGGAATCAACTCGATTGCAATG (SEQ ID NO: 381)





376
HGL6.849

GAAAAAAACGGAATTATCNAATTGAATCNAATANAATCATCNNNNNGACCANA





NTGGAATCATCTAATGNAATGNAATGGAATAATCCATGGACTCNAATG (SEQ ID





NO: 382)





377
HGL6.850

GAAAAAAACGGAATTATCGAATTGAATCGAATAGAATCATCGAACGGACCAGAA





TGGAATCATCTAATGGAATGGAATGGAATAATCCATGGACTCGAATG (SEQ ID





NO: 383)





378
HGL6.853

AACCACTGCTTAAGGAAATAAGAGAGAACACAAACAAATGGAAAAACGTTCCAT





GCTCATGGATAGGAGAATCAATATCGTGAAAATGGCC (SEQ ID NO: 384)





379
HGL6.854

TATCGAATGGAATGGAAAGGAGTGGAGTAGACTCGAATAGAATGGACTGGAATG





AAATAGATTCGAATGGAATGGAATGGAATGAAGTGGACTCG (SEQ ID NO: 385)





380
HGL6.855

GTATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCATCTAATGGA





ATGGAATGGAATAATCCATGGACTCGAATG (SEQ ID NO: 386)





381
HGL6.856

TAAATGGAGACATCATTGAATACAATTGAATGGAATCATCACATGGAATCGAAT





GGAATCATCGTAAATGCAATCAAGTGGAATCAT (SEQ ID NO: 387)





382
HGL6.857

GAATGGAATTGAAAGGTATCAACACCAAACGGAAAAAAAAACGGAATTATCGA





ATGGAATCGAAGAGAATCATCGAACGGACC (SEQ ID NO: 388)





383
HGL6.858

AGCAATTTCAGCAAAGTCTCAGGATACAAAATCAATGTACAAATTCACAAGCAT





TCTTATGGACCAACAACAG (SEQ ID NO: 389)





384
HGL6.860

AACCAAATTAGACAAATTGGAAATCATTACACATAACAAAAGTAATAAACTGTC





AGCCTCAGTAGTATTCATTGTACATAAACTGGCC (SEQ ID NO: 390)





385
HGL6.861

TATTTTACCAGATTATTCAAGCAATATATAGACAGCTTAAAGCATACAAGAAGAC





ATGTATAGATTTACATGCAAACACTGCACCACTTTACATAAGGGACTTGAGCAC





(SEQ ID NO: 391)





386
HGL6.863

GGAATCGAATGGCATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAAT





CGAATGGAATCATC (SEQ ID NO: 392)





387
HGL6.864

AAACAAAACACAGAAATGCAAAGACAAAACATAAAACGCAGCCATAAAGGACA





TATTTTAGATAACTGGGGAAATTTGTATGGGCTGTGT (SEQ ID NO: 393)





388
HGL6.866
HGL6.867
AGGAAAAGAAAGAAATAGAAAATGCGAAATGGTAAGAAAAAACAGCATAATAA





ACATTTGTATGGTGTTGATGGACAATGCATT (SEQ ID NO: 394)





389
HGL6.869

AATGGAATCAACATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAGAG





AATCATCGAACGGACTCGAATGGAATCATCTAATGGAATGGAATGGAAG (SEQ





ID NO: 395)





390
HGL6.872
HGL6.1072,
AATCGAATGGAATCAGCATCAAACGGAAAAAAACGGAATTATCGAATGGAATCG




HGL6.1301
AAGAGAATCATCGAATGGACC (SEQ ID NO: 396)





391
HGL6.877

AAAGAAATGGAATCGAAGAGAATGGAAACAAATGGAATGGAATTGAATGGAAT





GGAATTGAATGGAATGGGAACG (SEQ ID NO: 397)





392
HGL6.878

AGAAAGAATCAAGAGGAAATGCAAGAAATCCAAAACACTGTAACAGATATGAT





GAATAATGAGGTATGCACTCATCAGCAGACTCGACAT (SEQ ID NO: 398)





393
HGL6.879

AAACGGAATTATNNANTGGANNNNAAGNNAATCATCGAACGGANNNNANNGGA





ATCATNTNNNNGAANGGAATGGAACAATCCATGGTNTNNNN (SEQ ID NO: 399)





394
HGL6.882
HGL6.971
AGCAACTTCAGCAAAGTTTCAGGATACAAAATCAATGTGCAAAAATCACAAGCA





TTCTTATACACCAACAACAGACAAACAGAGAGCC (SEQ ID NO: 400)





395
HGL6.884

AGACAGTCAGACAATCACAAAGAAACAAGAATGAAAATGAATGAACAAAACCT





TCAAGAAATATGGGATTATGAAGAGGCCAAATGT (SEQ ID NO: 401)





396
HGL6.885

ATCATAACGACANGANCAAATTCACACACAACAATNNNNACNNNAAANNCAAA





TGGGTTAAATNNTNCAATTAAAGGATGCAGACGGGCAAATTGGATA (SEQ ID NO:





402)





397
HGL6.891

ATCATAANGACAAGANCAAATTCACACACAACAATNNNNACNNNAAANNCAAA





TGGGTTNAATGNTNCAATTAAAGGATGCAGACGGNCAAATTGGATA (SEQ ID NO:





403)





398
HGL6.895

GAATGGAATCGAATGGATTGATATCAACTGGAATGGAATGGAAGGGAATGGAAT





GGAATGGAATTGAACCAAATGTNNNNGNCTTGAATGGAATG (SEQ ID NO: 404)





399
HGL6.898

GAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAAT





CATCGAATGGACC (SEQ ID NO: 405)





400
HGL6.904

ATGGAATCAACATCAAACGGAATCAAACGGAATTATCGAATGGAATCAAAGAGA





ATCATCGAACGGACTCGAATGGAATCATCTAATGGAATGGAATGGAAGAATCCA





TGGACTCGAATGCAATCATCATCGAAT (SEQ ID NO: 406)





401
HGL6.905

GGAATGGAATGGAATGGAGCNGAATNGAANGGANNNNANTCAAATGGAATGC





(SEQ ID NO: 407)





402
HGL6.906

AACATACGCAAATCAATAAATGTAATCCAGCATATAAACAGAACCAAAGACAA





AAACCACATGATTATCTCAATAGATGCAGAAAAGGCC (SEQ ID NO: 408)





403
HGL6.911

AAACGATTGGACAGGAATGGAATCACCATCGAATGGAAACGAATGGAATCTTCG





AATGGAATTGAATGAAATTATTGAACGGAATCAAATAGAATCATCATTGAACAG





AATCAAATTGGATCAT (SEQ ID NO: 409)





404
HGL6.912

AAAAGATGCAAAAGTAGCAAATGCAATGTTAAAACAAGCAAAGAAAGAATCAG





GTGGACCACATAGTGCAGTGCTTCTC (SEQ ID NO: 410)





405
HGL6.914

AACAATAAACAAACTCCAACTAGACACAATAGTCAAATTGCTGAAAATGAAATA





TAAAGGAACAATCTCGATGGTAGCCCAAGGA (SEQ ID NO: 411)





406
HGL6.915
HGL6.916
AGTCAATAACAAGAAGACAAACAACCCAATTACAAAATGGGATATGAATTTAAT





AGATGTTACTCCAAGGAAGATACACAAATGGCCAAC (SEQ ID NO: 412)





407
HGL6.919

AAAACACCTAGGAATACAGATAACAAGGGACATTAACTACCTCTTAAAGAGAAC





TACAAACCACTGCTCAAGGAAATGAGAGAGGACACAAACACATGGAAAAACAT





TCCATCCTCATGGATAGGAAGAATCAATATTGTGAAAATGGCC (SEQ ID NO: 413)





408
HGL6.921

GATATATAAACAAGAAAACAACTAATCACAACTCAATATCAAAGTGCAATGATG





GTGCAAAATGCAAGTATGGTGGGGACAGAGAAAGGATGC (SEQ ID NO: 414)





409
HGL6.923

ACACATATCAAACAAACAAAAGCAATTGACTATCTAGAAATGTCTGGGAAATGG





CAAGATATTACA (SEQ ID NO: 415)





410
HGL6.924

GGAATCATCATATAATGGAATCGAATGGAATCAACATCAAATGGAATCAAATGG





AATCATTGAACGGAATTGAATGGAATCGTCAT (SEQ ID NO: 416)





411
HGL6.926

CCCAACTTCAAATTATACTACAAGGCTACAGTAATCAAAAAAGCATAGTACTATT





ACAAAAACAGACACACAGGCCAATGGAATACAAT (SEQ ID NO: 417)





412
HGL6.927

AAACGCAGAAACAAATCAACGAAAGAACGAAGCAATGAAAGACAAAGCAACAA





AAGAATGGAGTAAGAAAGCACACTCCACAAAGTGGAAGCAGGCTGGGACA (SEQ





ID NO: 418)





413
HGL6.928

AACTAACACAAGAACAGAAAACCAAACATCACATGTTCTCACTCATAAGCGGGA





GCTGAACAATGAGAACACACGGACACAGGGAGAGGAACATG (SEQ ID NO: 419)





414
HGL6.929

GCCACAATTTTGAAACAACCATAATAATGAGAATACACAAGACAACTCCAATAA





TGTGGGAAGACAAACTTTGCAATTCACATCATGGC (SEQ ID NO: 420)





415
HGL6.933

AATGGAATCAACATCAAACGGAATCAAATGGAATTATCGAATGGAATCGAAGAG





AATCATCGAATTGTCACGAATGGAATCATCTAATGGAATGGAATGGAATAATCC





ATGGCCCCTATGC (SEQ ID NO: 421)





416
HGL6.934
HGL6.935
TAAACAGAACCAAAGACAAAAATCACATGATTATCTCAATAGATGCAGAAAAGG





CC (SEQ ID NO: 422)





417
HGL6.937

ATCAACAGACAACAGAAACAAATCCACAAAGCACTTAGTTATTAGAACTGTCAT





ACAGACTGTACAACAACCACATTTACCAT (SEQ ID NO: 423)





418
HGL6.938

AATGGACTCGAATGAAATCATCATCAAACAGAATCGAATGGAATCATCTAATGG





AATGGAATGGCATAATCCATGGACTCGAATG (SEQ ID NO: 424)





419
HGL6.939

TAAAATGAAACAAATATACAACACGAAGGTTATCACCAGAAATATGCCAAAACT





TAAATATGAGAATAAGACAGTCTCAGGGGCCACAGAG (SEQ ID NO: 425)





420
HGL6.940

AAAATACAGCGTTATGAAAAGAATGAACACACACACACACACACACACACAGA





AAATGT (SEQ ID NO: 426)





421
HGL6.942

TACTCTCAGAAGGGAAGCAGATATTCAGCATAAATCATATTGTTTGTACAAAGA





GTCTGGGCATGGTGAATGACACT (SEQ ID NO: 427)





422
HGL6.943

CAAACAAATAGGTACCAAACAAATAACAACATAAACCTGACAACACACTTATTT





ACAAGAGACATCCCTTATATGAAAGGGTACAGAAAAGTCGATGGTAAGATGATG





GGGAAAGGTATACCAACCACTAGCAGAAGG (SEQ ID NO: 428)





423
HGL6.944

TGGAATCGAATGGAATCAATATCAAACGGAAAAAAACGGAATTATCGAATGGAA





TCGAAAAGAATCATCGAATGGGCCCGAATGGAATCATCT (SEQ ID NO: 429)





424
HGL6.945

ACAAATGGAATCAACAACGAATGGAATCGAATGGAAACGCCATCGAAAGGAAA





CGAATGGAATTATCATGAAATTGAAATGGATG (SEQ ID NO: 430)





425
HGL6.947

GACAAGAGTTCAGAAAGGAAGACTACACAGAAATACGCATTTTAAAGTCACTGA





CATGGAGATGACACTTAAAACCATGAACATGGATGGG (SEQ ID NO: 431)





426
HGL6.956

AAAATAAACGCAAATTAAAATCACAAGATACCAACACATTCCCACGGCTAAGTA





CGAAGAACAAGGGCGAATGGTCAGAATTAAGCTCAAACCT (SEQ ID NO: 432)





427
HGL6.957

TAAACTGACACAAACACAGACACACAGATACACACATACATACAGAAATACACA





TTCACACACAGACCTGGTCTTTGGAGCCAGAGATG (SEQ ID NO: 433)





0
HGL6.958

GATCAATAAATGTAATTCATCATATAAACAGAGAACTAAAGACAAAAACACATG





ATTATCGCAATACATGCAGAAAAGGCC (SEQ ID NO: 434)





429
HGL6.962

AGGACATGAATAGACAATTCTCAAAAGAAGATACACAAGTGGCAAACAAACAC





ATGAAAAAAGACTCAACATTAGTAATGACCATGGAAATGCAAATC (SEQ ID NO: 





435)





430
HGL6.963

ACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGA





ATGGACC (SEQ ID NO: 436)





431
HGL6.965

AATGGACTCGAATAGAATTGACTGGAATGGAATGGACTCGAATGGAATGGAATG





GAATGGAAGGGACTCG (SEQ ID NO: 437)





432
HGL6.966

AAGAAAGACAGAGAACAAACGTAATTCAAGATGACTGATTACATATCCAAGAAC





ATTAGATGGTCAAAGACTTTAAGAAGGAATACATTCAAAGGCAAAACGTCACTT





ACTGATTTTGGTGGAGTTTGCCACATGGAC (SEQ ID NO: 438)





433
HGL6.967

AACATAATCCATCAAATAAACAGAACCAAAGACAAAAACCACATGATTATCTCA





ATAGATGCAGAAAAGGCCTTC (SEQ ID NO: 439)





434
HGL6.969

GAATGGAATCGAATGGAATGAACATCAAACGGAAAAAAACGGAATTATCGAAT





GGAATCAAAGAGAATCATCGAATGGACCCG (SEQ ID NO: 440)





435
HGL6.972

ATGGACTCGAATGTAATAATCATTGAACGGAATCGAATGGAATCATCATCGGAT





GGAAACGAATGGAATCATCATCGAATGGAATCGAATGGGATC (SEQ ID NO: 441)





436
HGL6.974

GAATGGAATCAACATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAGA





GAATCATCGAATGGCCACGAATGGAATCATCTAATGGAATGGAATGGAATAATC





CATGG (SEQ ID NO: 442)





437
HGL6.975

GAAATGGAATGGAAAGGAATAAAATCAAGTGAAATTGGATGGAATGGATTGGA





ATGGATTGGAATG (SEQ ID NO: 443)





438
HGL6.978

AAACGGAAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAACGA





ACCAGAATGGAATCATCTAATGGAATGGAATGGAATAATCCATGG (SEQ ID NO: 





444)





439
HGL6.981

ATTAACCCGAATAGAATGGAATGGAATGGAATGGAACGGAACGGAATGGAATG





GAATGGAATGGAATGGAATGGATCG (SEQ ID NO: 445)





440
HGL6.982

GCAAAACACAAACAACGCCATAAAAAACTGGGCAAAGGATATGAACAGACATT





TTTCAAAACAAAACATACTTATGGCCAAC (SEQ ID NO: 446)





441
HGL6.984

AACATCAAACGGAAAAAAACGGAATTATCGTATGGAATCGAAGAGAATCATCGA





ATGGACC (SEQ ID NO: 447)





442
HGL6.985



AAATCAATAAATG
TAATTCAGCATATAAACAGAACCAAAGACAAAAACCACAT






GATTATCTCAATAGATGCAGAAAAGGCCTTT (SEQ ID NO: 448)





443
HGL6.986

AGAATCAAATGGAATTGAATCGAATGGAATCGAATGGATTGGAAAGGAATAGA





ATGGAATGGAATGGAATG (SEQ ID NO: 449)





444
HGL6.988

GAATAGAATTGAATCATCATTGAATGGAATCGAGTAGAATCATTGAAATCGAAT





GGAATCATCATCGAATGGAATTGGGTGGAATC (SEQ ID NO: 450)





445
HGL6.989

CACCGAATAGAATCGAATGGAACAATCATCGAATGGACTCAAATGGAATTATCC





TCAAATGGAATCGAATGGAATTATCGAATGCAATCGAATAGAATCATCGAATAG





ACTCGAATGGAATCATCGAATGGAATGGAATGGAACAGTC (SEQ ID NO: 451)





446
HGL6.992
HGL6.1286
AAATCATCATCGAATGGAATCGAATGGTATCATTGAATGGAATCGAATGGAATC





ATCATCAGATGGAAATGAATGGAATCGTCAT (SEQ ID NO: 452)





447
HGL6.997

GAATGGAATCGAAAGGAATAGAATGGAATGGATCGTTATGGAAAGACATCGAAT





GGAATGGAATTGACTCGAATGGAATGGACTGGAATGGAACG (SEQ ID NO: 453)





448
HGL6.998

GAATAGAATTGAATCATCATTGAATGGAATCGAGTAGAATCATTGAAATCGAAT





GGAATCATCATCGAATGGAATTGGGTGGAATC (SEQ ID NO: 454)





449
HGL6.1001

GAAAGGAATAGAATGGAATGGATCGTTATGGAAAGACATCGAATGGGATGGAA





TTGACTCGAATGGATTGGACTGGAATGGAACGGACTCGAATGGAATGGACTGGA





ATG (SEQ ID NO: 455)





450
HGL6.1003

TGGATTTCAGATATTTAACACAAAATAGTCAAAGCAGATAAATACTAGCAACTT





ATTTTTAATGGGTAACATCATATGTTCGTGCCTT (SEQ ID NO: 456)





451
HGL6.1004

ACAGCAGAAAACGAACATCAGAAAATCACTCTACATGATGCTTAAATACAGAGG





GCAAGCAACCCAAGAGAAAACACCACTTCCTAAT (SEQ ID NO: 457)





452
HGL6.1011

AACATACACAAATCAATAAACGTAATCCAGCTTATAAACAGAACCAAAGACAAA





AACCACATGATTATCTCAATAGATGCGGAAAAGGCC (SEQ ID NO: 458)





453
HGL6.1012

ACATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAAAGAATCATCGAA





CGGACTCGAATGGAATCATCTAATGGAATGGAATGGAAG (SEQ ID NO: 459)





454
HGL6.1013

ATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCAAATGGAATCGA





AGAGAATCATCGAATGGACC (SEQ ID NO: 460)





455
HGL6.1014

GAATAATCATTGAACGGAATCGAATGGAAACATCATCGAATGGAAACGAATGGA





ATCATCATCGAATGGAAATGAAAGGAGTCATC (SEQ ID NO: 461)





456
HGL6.1015

CATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAAAGAATCATCGAAC





GGACTCGAATGGAATCATCTAATGGAATGGAATGGAAGAATCCATGGACTCGAA





TG (SEQ ID NO: 462)





457
HGL6.1016

TCCAGTCGATCATCATATAGTCAGCACTTATCATACACCAAGCCGTGTGCAAGGA





AAGGGAATACAACCATGAACATGATAGATGGATGGTT (SEQ ID NO: 463)





458
HGL6.1017

ACAAACCACTGCTCAAGGAAATAAGGACACAAACAAATGGAACAACATTCCGTG





CTCATGGATAGGAAGAATCAATATCGTGAAAATGGCCATACT (SEQ ID NO: 464)





459
HGL6.1019

ACAAAATTGATAGACCACTAGCAAGACTAATAAAGAAGAAAAGAGAGAAGAAT





CATTACCATTCAGGACATAGGCATGGGCAAGGAC (SEQ ID NO: 465)





460
HGL6.1024

AAACGGAATCAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGAC





TCGAATGGAATCATCTAATGGAATGGAATGGAAGAATCCATGG (SEQ ID NO: 466)





461
HGL6.1026

ATACACAAATCAATAAATGTAATCCAGCATATAAACAGAACCAAAGACAAAAA





CCATATGATTATCTCAATGGATGCAGAAAAGGCC (SEQ ID NO: 467)





462
HGL6.1027

AATNGAATAGAATCATCGAATGGACTCGAATGGAATCATCGANNNTANTGATGG





AACAGTC (SEQ ID NO: 468)





463
HGL6.1030

TGGAATGGAATCATCGCATAGAATCGAATGGAATTACCATCGAATGGGATCGAA





TGGTATCAACATCAAACGCAAAAAAACGGAATTATCGAATGGAATCGAAGAGAA





TCTTCGAACGGACCCG (SEQ ID NO: 469)





464
HGL6.1031

GAATTGAATTGAATGGAATGGAATGCAATGGAATCTAATGAAACGGAAAGGAA





AGGAATGGAATGGAATGGAATG (SEQ ID NO: 470)





465
HGL6.1033

AACAGAATGGAATCAAATCGAATGAAATGGAATGGAATAGAAAGGAATGGAAT





GAAATGGAATGGAAAGGATTCGAATGGAATGCAATCG (SEQ ID NO: 471)





466
HGL6.1034

ATGGAATGGAATGGAATGGAATTAAATGGAATGGAAAGGAATGGAATCGAATG





GAAAGGAATC (SEQ ID NO: 472)





467
HGL6.1037
HGL6.1245
GTCGAAATGAATAGAATGCAATCATCATCAAATGGAATCCAATGGAATCATCAT





CAAATAGAATCGAATGGAATCATCAAATGGAATCGAATGGAGTCATTG (SEQ ID





NO: 473)





468
HGL6.1039

TGGAATTATCGAAAGCAAACGAATAGAATCATCGAATGGACTCGAATGGAATCA





TCGAATGGAATGGAATGGAACAG (SEQ ID NO: 474)





469
HGL6.1045

AAAGGAATGGAATGCAATGGAATGCAATGGAATGCACAGGAATGGAATGGAAT





GGAATGGAAAGGAATG (SEQ ID NO: 475)





470
HGL6.1046

AATCTAATGGAATCAACATCNAACGGAAAAAAACGGAATTATCGAATGGAATCN





AAGAGAATCATCNAATGGACC (SEQ ID NO: 476)





471
HGL6.1047

TACACAACAAAAGAAATACTCAACACAGTAAACAGACAACCTTCAGAACAGGA





GAAAATATTTGCAAATACATCTAACAAAGGGCTAATATCCAGAATCT (SEQ ID





NO: 477)





472
HGL6.1048

NGCAATCNTAGTNTCAGATAAAACAGACATTAAACCAACAAAGATCAAAAGAG





ACAAAGAAGGCCANTAC (SEQ ID NO: 478)





473
HGL6.1052

GAATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATC





NAAAAGAATCATCNAATGGACC (SEQ ID NO: 479)





474
HGL6.1055

ACAGTTAACAAAAACCGAACAATCTAATTACGAAATGAACAAAAGATATGAACA





GACATTTCACCCGAGAGTATACAGGGGCCAGGCATGGT (SEQ ID NO: 480)





475
HGL6.1056

AATGGAATCGAATGGAATGCAATCCAATGGAATGGAATGCAATGCAATGGAATG





GAATCGAACGGAATGCAGTGGAAGGGAATGG (SEQ ID NO: 481)





476
HGL6.1057

GAACACAGAAAAATTTCAAAGGAATAATCAACAGGGATTGATAACTAACTGGAT





TTAGAGAGCCAAGGCAAAGAGAATCAAAGCACAGGGCCTGAGTCGGAG (SEQ ID





NO: 482)





477
HGL6.1058

TATACCACACAAATGCAAAAGATTATTAGCAACAATTATCAACAGCAATATGTC





AACAAGTTGACAAACCTAGAGGACATGGAT (SEQ ID NO: 483)





478
HGL6.1061

CACCATGAGTCATTAGGTAAATGCAAATCAAAACCACAATGAAATACTTCACAC





CCATGAAGATGGCTATAATAAAAAAACAGACA (SEQ ID NO: 484)





479
HGL6.1067

AGTTGAATAGAACCAATCCGAATGAAATGGAATGGAATGGAACGGAATGGAATT





GAATGGAATGGAATGGAATGCAATGGA (SEQ ID NO: 485)





480
HGL6.1069

AAGTAATAAGACTGAATTAGTAATACAAAGTGTCTCAACAAAGAAAATTGCGGG





ACTGTTCATGCTCATGGACAGGAAGAATCAATATCATGAAAATGGCC (SEQ ID





NO: 486)





481
HGL6.1070

AACTCGATTGCAATGGAATGTAATGTAATGGAATGGAATGGAATTAACGCGAAT





AGAATGGAATGGAATGTAATGGAACGGAATGGAATG (SEQ ID NO: 487)





482
HGL6.1074

AAGCGGAATAGAATTGAATCATCATTGAATGGAATCGAGTAGAATCATTGAAAT





CGAATGGAATCATAGAATGGAATCCAAT (SEQ ID NO: 488)





483
HGL6.1076

AAAGGAAAACTACAAAACACTGCTGAAAGAAATCATTGACAACACAAACAAAT





GGAAACACATCCCAAGATCATGGGTGGGTGGAATCAAT (SEQ ID NO: 489)





484
HGL6.1077

AATGGAATCNAAAGGAATAGAATGGAATGGATCGTTATGGAAAGATATCGAATG





GAATGGAATTGACTCGAATGGAATGGACTGGAATGGAACG (SEQ ID NO: 490)





485
HGL6.1078

TAACGGAATAATCATCGAACAGAATCAAATGGAATCATCATTGAATGGAATTGA





ATGGAATCTTCGAATAGACATGAATGGACCATCATCG (SEQ ID NO: 491)





486
HGL6.1084

AAAGACCGAAACAACAACAGAAACAGAAACAAACAACAATAAGAAAAAATGTT





AAGCAAAACAAATGATTGCACAACTTACATGATTACTGAGTGTTCTAATGGT





(SEQ ID NO: 492)





487
HGL6.1085

AAGATTTAAACATAAGACCTAAAACGACAAAAATCCTAGGAGAAAACCTAAGCA





ATACCATTCAGGACATAGGCATGGGCAAAGACTTCATG (SEQ ID NO: 493)





488
HGL6.1090

AGAAACAGCCAGAAAACAATTATTACCTACAGCATTAAAACTATTCAAATGACA





GCATATTTTTCAGCAGAAATCATGAAGGCCAGAAGGACGTGTCAT (SEQ ID NO:





494)





489
HGL6.1092

ATGTACACAAATCAATAAATGCAGTCCAGCATATAAACAGAACCAAACACAAA





AACCACATGATTATCTCAATAGATGCAGAAAAGGCCTTT (SEQ ID NO: 495)





490
HGL6.1093

AGCAACTTCAGCAAAGTCTCAGGACACAAAATCAATGTGCAAAAATCACAAGCA





TTCTTATACACCAATAACAGACAAACAGAGAGCC (SEQ ID NO: 496)





491
HGL6.1094

TTGAATCGAATGGAATCGAATGGATTGGAAAGGAATAGAATGGAATGGAATGGA





ATTGACTCAAATGGAATG (SEQ ID NO: 497)





492
HGL6.1097
HGL6.1241
AACGGAATCAAACGGAATTATCGAATGGAATCGAATAGAATCATCGAACGGACT





CGAATGGAATCATCTAATGGAATGGAATGGAAG (SEQ ID NO: 498)





493
HGL6.1098

AACATCACTGATCATTAGAAACACACAAATCAAAACCACAATAAGATACCATCT





AACACCAGTCACAATGGCTATT (SEQ ID NO: 499)





494
HGL6.1100

TAAGCAATTTCAGCAGTCTCAGGATACAAAATCAATGTGCAAAAATCACAAGCA





TTCTTATACACCAACAACAGACAAACAGAGAGCCAAATCG (SEQ ID NO: 500)





495
HGL6.1101

AGAAAAAAACAAACAGCCCATTAAAAGGTAGACAAAGGACATGAACACTTTTCA





AAAGAAGACATACATGTGGCCAAACAGCATG (SEQ ID NO: 501)





496
HGL6.1103

ATTGGAATGGAACGGAACAGAACGGAATGGAATGGAATAGAATGGAATGGAAT





GGAATGGTATGGAATGGAATGGAATGGTACG (SEQ ID NO: 502)





497
HGL6.1104

AGAGCATCCACAAGGCCCAATTCAAAGAATCTGAAATAATGTATTGTTACTGCA





ACAGTTGTGAGTACCAGTGGCATCAG (SEQ ID NO: 503)





498
HGL6.1107

AATCCACAAAGACAACAGAAGAAAAGACAACAGTAGACAAGGATGTCAACCAC





ATTTTGGAAGAGACAAGTAATCAAACACATGGCA (SEQ ID NO: 504)





499
HGL6.1109

AAACAGAACCACAGATATCTGTAAAGGATTACACTATAGTATTCAACAGAGTAT





GGAACAGAGTATAGTATTCAACAGAGTATGCAAAGAAACTAAGGCCAGAAAG





(SEQ ID NO: 505)





500
HGL6.1110

AGCAAACAAACAAACAAACAAACAAACTATGACAGGAACAAAACGTCACATAT





CAACATTAACAAAGAATGTAAACAGCCTAAATGCTTCACTTAAAAGTTATAGAC





AGGGGCTGGGCATGGTGGCTCACGCC (SEQ ID NO: 506)





501
HGL6.1111

AAAAGTACAGAAGACAACAAAAAATGAGAGAGAGAAAGATAACAGACTATAGC





AGCATTGGTGATCAGAGCCACCAG (SEQ ID NO: 507)





502
HGL6.1114

TACAAGAAAATCACAGTAACATTTATAAAACACAGAAGTGTGAACACACAGCTA





TTGACCTTGAAAACAGTGAAAGAGGGTCAGCTGTAGAACTAAGACATAAGCAAA





GTTTTTCAATCAAGAATACATGGGTGGCC (SEQ ID NO: 508)





503
HGL6.1116

GAATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATC





GAAAAGAATCATCGAACGGACTCGAATGGAATCATCTAATGGAATGGAATGGAA





GAATCCATGG (SEQ ID NO: 509)





504
HGL6.1117

AATGGAATCGAATGGAATCATCATCAAATGGAATCTAATGGAATCATTGAACGG





AATTGGATGGAATCGTCAT (SEQ ID NO: 510)





505
HGL6.1118

AACGGAATCAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGCCA





CGAATGGAATCATCTAATGGAATGGAATGGAATAATCCATGGACCCGAATG





(SEQ ID NO: 511)





506
HGL6.1121

CAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATC





GAATGGACC (SEQ ID NO: 512)





507
HGL6.1122

CACAACCAAAGCAATGAAAGAAAAGCACAGACTTATTGAAATGAAAGTACACA





CCACAGAATGGGAGCAGGCTCAAGCAAGC (SEQ ID NO: 513)





508
HGL6.1123
HGL6.1229
ATCAAAGGGAATCAAGCGGAATTATCGAATGGAATCGAAGAGAATCATCGAATG





GACTCGAATGGAATCATGTGATGGAATGGAATGGAATAATCCACGGACT (SEQ ID





NO: 514)





509
HGL6.1125

AAGAAACAATCAAAAGGAAGTGCTAGAAATAAAACACACTGTAATAGAAAAGA





AGAATGCCTTATGGGCTTATCAATAGACTAGACATGGCCAGG (SEQ ID NO: 515)





510
HGL6.1127

AGATAAGAATAAGGCAAACATAGTAATAGGGAGTTCATGAATAACACACGGAA





AGAGAACTTACAGGGCTGTGATCAGGAAACG (SEQ ID NO: 516)





511
HGL6.1128

GGAATCGAATGGAATCAATATCAAACGGAGAAAAACGGAATTATCGAATGGAAT





CGAAGAGAATCATCGAATGGACC (SEQ ID NO: 517)





512
HGL6.1130

TCAGACCATAGCAGATAACATGCACATTAGCAATACGATTGCCATGACAGAGTG





GTTGGTG (SEQ ID NO: 518)





513
HGL6.1132

AGGAATGGACACGAACGGAATGCAATCGAATGGAATGGAATCTAATAGAAAGG





AATTGAATGAAATGGACTGG (SEQ ID NO: 519)





514
HGL6.1133

GGAAGGGAATCAAATGCAACAGAATGTAATGGAATGGAATGCAATGGAATGCA





ATGGAATGGAATGGAATGCAATGGAATGG (SEQ ID NO: 520)





515
HGL6.1138

AAATTGGATTGAATCGAATCGAATGGAAAAAATGAAATCAAATGAAATTGAATG





GAATCGAAATGAATGTAAACAATGGAATCCAATGGAATCCAATGGAATCGAATC





AAATGGTTTTGAGTGGCGTAAAATG (SEQ ID NO: 521)





516
HGL6.1139

AAGGATTCGAATGGAATGCAATCGAATGGAATGGAATCGAACGGAATGGAATA





AAATGGAAGAAAACTGGCAAGAAATGGAATCG (SEQ ID NO: 522)





517
HGL6.1141

GAAAAATCATTGAACGGAATCGAATGGAATCATCATCGGATGGAAACGAATGGA





ATCATCATCGAATGGAAATGAAAGGAGTCATC (SEQ ID NO: 523)





518
HGL6.1147

GGTTCAACTTACAATATTTTGACTTGACAACAGTGCAAAAGCAATACACGATTAG





TAGAAACACACTTCCAATGCCCATAGGACCATTCTGC (SEQ ID NO: 524)





519
HGL6.1150

GGAATCGAATGGAATCAACATCAAACGGAGAAAAACGGAATTATCGAATGGAA





TCGAAGAGAATCATCGAATGGACC (SEQ ID NO: 525)





520
HGL6.1152

TAACCTGATTTGCCATAATCCACGATACGCTTACAACAGTGATATACAAGTTACA





TGAGAAACACAAACATTTTGCAAGGAAACTGTGGCCAGATG (SEQ ID NO: 526)





521
HGL6.1153

TAACTACTCACAGAACTCAACAAAACACTATACATGCATTTACCAGTTTATTATA





AAGATACAAGTCAGGAACAGCCAAATGGAAGAAATGTAAATGGCAAG (SEQ ID





NO: 527)





522
HGL6.1155

GCTCAAAGAAATCAGAAATGACACAAGCAAATGGAAAAACATGCCATGTTCATG





AATATGAAGAATCAATATTGTTAAAATGGCCATACTGCTCA (SEQ ID NO: 528)





523
HGL6.1157

AAAGAAATGTCACTGCGTATACACACACACGCACATACACACACCATGGAATAC





TACTCAGCTATACAAAGGAATGAAATAATCCACAGCCAC (SEQ ID NO: 529)





524
HGL6.1159

GAATAGAACAGAATGGAATCAAATCGAATGAAATGGAATGGAATAGAAAGGAA





TGGAATGAAATGGAATGGAAAGGATTCGAATGGAATG (SEQ ID NO: 530)





525
HGL6.1162

TGAACGGAATCGAATGGAATCATCATCGGATGGAAACGAATGGAATCATCATCG





AATGGAAATGAAAGGAGTCATC (SEQ ID NO: 531)





526
HGL6.1165

GAATAGAACGAAATGGAATGGAATGGAATGGAATGGAAAGGAATGGAATGGAA





TGGAACG (SEQ ID NO: 532)





527
HGL6.1166

AACGTGACATACATACAAAAAGTTTTTAGAGCAAGTGAAATTTTAGCTGCTATAT





GTTAATTGGTGGTAATCCC (SEQ ID NO: 533)





528
HGL6.1169

GGAATAACAACAACAACAACCAAAAGACATATAGAAAACAAACAGCACGATGG





CAGATGTAAAGCCTACC (SEQ ID NO: 534)





529
HGL6.1174

GACAAAAAGAATCATCATCGAATAGAATCAAATGGAATCTTTGAATGGACTCAA





AAGGAATATCGTCAAATGGAATCAAAAGCCATCATCGAATGGACTGAAATGGAA





TTATCAAATGGACTCG (SEQ ID NO: 535)





530
HGL6.1175

GTAACAAAACAGACTCATAGACCAATAGAACAGAATAGAGAATTCAGAAATAA





GACTGCACTTCTATGACCATGTGATCTTAGACAAACCT (SEQ ID NO: 536)





531
HGL6.1176

AGATAAAAAGAACAGCAGCCAAAATGACAAAAGCAAAAAGCAAAATCGTGTTA





GAGCCAGGTGTGGTGATGTGTGCT (SEQ ID NO: 537)





532
HGL6.1178

GCAATCTCAGGATACAAAATCAATGTGCAAAAATCACAAGCATTCTCATACACC





AATAACAGACAAACAGAGCCAAATCATG (SEQ ID NO: 538)





533
HGL6.1179

AACCAAACCAAGCAAACAAACAAACAGTAAAAACTCAATAACAACCAACAAAC





AGGAAATACCAGGTAATTCAGATTATCTAGTTATGTGCCATAGT (SEQ ID NO:





539)





534
HGL6.1181

GAATGAATTGAATGCAAACATCGAATGGTCTCGAATGGAATCATCTTCAAATGG





AATGGAATGGAATCATCGCATAGAATCGAATGGAATTATCAACGAATGGAATCG





AATGGAATCATCATCAGATGGAAATGAATGGAATCGTCAT (SEQ ID NO: 540)





535
HGL6.1183

TGGAATGGAATCAAATCGCATGGAATCGAATGGAATAGAAAAGAATCAAACAG





AGTGGAATGGAATGGAATGGAATGGAATCATGCCGAATGGAATG (SEQ ID NO:





541)





536
HGL6.1184

GAATCCATGTTCATAGCACAACAACCAAACAGAAGAAATCACTGTGAAATAAGA





AACAAAGCAAAACACAGATGTCGACACATGGCA (SEQ ID NO: 542)





537
HGL6.1185

AAATGGAATAATGAAATGGAATCGAACGGAATCATCATCAAAAGGAACCGAAT





GAAGTCATTGAATGGAATCAAAGGCAATCATGGTCGAATGGAATCAAATGGAAA





CAGCATTGAATAGAATTGAATGGAGTCATCACATGGAATCG (SEQ ID NO: 543)





538
HGL6.1186

GAATTAACCCGAATAGAATGGAATGGAATGGAATGGAACAGAACGGAACGGAA





TGGAATGGAATGGAATGGAATGGAATG (SEQ ID NO: 544)





539
HGL6.1188

AAGATATACAAGCAGCCAACAAACATACGAAAGAATGCTCAACATCACTAATCC





TCAGAGAAATTTAAATCAAAACCACAATGAGTTACAATCTCATACCAGTCAGAA





T (SEQ ID NO: 545)





540
HGL6.1190

AGAATTACAAACCACTGCTCAACAAAATAAAAGAGTACACAAACAAATGGAAG





AATATTCCATGCTTATGGATAGGAAGAATCAATATTGTGAAAATGGCCATACT





(SEQ ID NO: 546)





541
HGL6.1192

CATCGAATGGACTCGAATGGAATAATCATTGAACGGAATCGAAGGGAATCATCA





TCGGATGGAAACGAATGGAATCATCATCGAATGGAAATG (SEQ ID NO: 547)





542
HGL6.1194

CACCCATCTGTAGGACCAGGAAGCCTGATGTGGGAGAGAACAGCAGGCTAAATC





CAGGGTTGGTCTCTACAGCAGAGGGAATCACAAGCCTGTTAGCAAGTGAAGAAC





CAACACTGGCAAGAGTGTGAAGGCC (SEQ ID NO: 548)





543
HGL6.1195

TAATGCAAACTAAAACGACAATGAGATATCAATACATAACTACCAGAAAGGCTA





ACAAAAAAACAGTCATAACACACCAAAGGCTGATGAGTGAGGATGTGCAG (SEQ





ID NO: 549)





544
HGL6.1196

AAAGGAATCAAACGGAATTATCGAATGGAATCGAAAAGAATCATCGAACGGACT





CGAATGGAATCATCTAATGGAATGGAATGGAAGAATCCATGGACTCGAATG





(SEQ ID NO: 550)





545
HGL6.1198

AGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGAGCAAAAATCACAAGCA





TTCTTACACACCAATAACAGACAAACAGAGAGCC (SEQ ID NO: 551)





546
HGL6.1199

GGATATAAACAAGAAAACAACTAATCACAACTCAATATCAAAGTGCAATGATGG





TGCAAAATGCAAGTATGGTGGGGACAGAGAAAGGATGC (SEQ ID NO: 552)





547
HGL6.1200

AATCAGTAAACGTAATACAGCATATAAACAGAACCAAAGACAAAAACCACATG





ATTATCTCAATAGATGCAGAAAAGGCC (SEQ ID NO: 553)





548
HGL6.1202

AACATCAAACGGAAAAAAACGGAAATATCGAATGGAATCGAAGAGAATCATCG





AATGGACC (SEQ ID NO: 554)





549
HGL6.1203

TAAAATGGAATCGAATGGAATCAACATCAAATGGAATCAAATGGAATCATTGAA





CGGAATTGAATGGAATCGTCAT (SEQ ID NO: 555)





550
HGL6.1204

AATCATCATCGAATGGAATCGAATGGTATCATTGAATGGAATCGAATGGAATCA





TCATCAGATGGAAATGAATGGAATCGTCAT (SEQ ID NO: 556)





551
HGL6.1205

CAATGCGTCAAGCTCAGACGTGCCTCACTACGGCAATGCGTCAAGCTCAGGCGT





GCCTCACTAT (SEQ ID NO: 557)





552
HGL6.1206

AAGACAGAACACTGAAACTCAACAGAGAAGTAACAAGAACACCTAAGACAAGG





AAGGAGAGGGAAGGCAGGCAG (SEQ ID NO: 558)





553
HGL6.1209

TAAGCTGATAAGCAACTTTAGCAAAGTCTCAGGATACAAAATCAATGTACAAAA





ATCACAAGCATTCTTATACACCAACAACAGACAGACGGAGAGCCAAA (SEQ ID





NO: 559)





554
HGL6.1212

ATGAACACGAATGTAATGCAATCCAATAGAATGGAATCGAATGGCATGGAATAT





AAAGAAATGGAATCGAAGAGAATGGAAACAAATGGAATGGAATTGAATGGAAT





GGAATTG (SEQ ID NO: 560)





555
HGL6.1216

AACAATCACTAGTCCTTAAGTAAGAGACAACACCTTTTGTCACACACAGTTTGTC





CTAACTTTATCTTGGTAATTGGGGAGACC (SEQ ID NO: 561)





556
HGL6.1217

TAATGAGAAGACACAGACAACACAAAGAATCACAGAAACATGACACAGGTGAC





AAGAACAGGCAAGGACCTGCAGTGCACAGGAGCC (SEQ ID NO: 562)





557
HGL6.1218

TGTTGAGAGAAATTAAACAAAGCACAGATAAATGGAAAAACGTGTTCATAGATT





GAAAGACTTCATGTTGTATGGTGTC (SEQ ID NO: 563)





558
HGL6.1219

ATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAACG





GACTCGAATGGAATCATCTAATGGAATGGGATGG (SEQ ID NO: 564)





559
HGL6.1222

ACACAACAACCAAGAAACAACCCCATTAAGAAGTGGGAAAAATACATGAATAA





ACACATCTCAAAAGAAGACAAACAAGTGGCTAAC (SEQ ID NO: 565)





560
HGL6.1225

AATGGAAAGGAATCAAATGGAATATAATGGAATGCAATGGACTCGAATGGAATG





GAATGGAATGGACCCAAATGGAATGGAATGGAATGGAATG (SEQ ID NO: 566)





561
HGL6.1226

GGAATACAACGGAATGGAATCGAAAAAAATGGAAAGGAATGAAATGAATGGAA





TGGAATGGAATGGAATGGATGGGAATGGAATGGAATGG (SEQ ID NO: 567)





562
HGL6.1227

GAATCAAGCGGAATTATCGAATGGAATCGAAGAGAATCATCGAAAGGACTCGAA





TGGAATCATCTAATGGAATGGAATGGAATAATACACGGACC (SEQ ID NO: 568)





563
HGL6.1232

AACAACAACAACAACAGGAAAACAACCTCAGTATGAAGACAAGTACATTGATTT





ATTCAACATTTACTGATCACTTTTCAGGTGGTAGGCAGACC (SEQ ID NO: 569)





564
HGL6.1233

AAGATAACCTGTGCCCAGGAGAAAAACAATCAATGGCAACAAAAGCAGAAACA





ACACAAATGATACAATTAGCAGACAGAAACATTGAGATTGCTATT (SEQ ID NO:





570)





565
HGL6.1234

AATGGACTCCAATGGAATAATCATTGAACGGAATCNAATGGAATCATCATCGGA





TGGAAATGANTGGAATCNTCNTCNAATGGAATCN (SEQ ID NO: 571)





566
HGL6.1237

ANNCNNTAAACGTAATCCATCACATAAACANGANCNAANAGNNNAACCGCNNG





ATTATCTCNNNNNNTGCNNAAAAGGCC (SEQ ID NO: 572)





567
HGL6.1240
HGL6.1277
TAATTGATTCGAAATTAATGGAATTGAATGGAATGCAATCAAATGGAATGGAAT





GTAATGCAATGGAATGTAATAGAATGGAAAGCAATGGAATG (SEQ ID NO: 573)





568
HGL6.1242

AAAGGAATGGACTTGAACAAAATGAAATCGAACGATAGGAATCGTACAGAACG





GAAAGAAATGGAACGGAATGGAATG (SEQ ID NO: 574)





569
HGL6.1243

AGCAACTTCAGCAAAATCTCAGGATACAAAATCAATGTACAAAAATCACAAGCA





TTCTTATACACCAACAACAGACAAACAGAGAGCC (SEQ ID NO: 575)





570
HGL6.1247

TGAGCAGGGAACAATGCGGATAAATTTCACAAATACAATGTTGAGCAAAAGAAA





GACACAAAANAATACACACATACACACCATATGGGCTAGG (SEQ ID NO: 576)





571
HGL6.1254

AATGGAATGGAATGTACAAGAAAGGAATGGAATGAAACCGAATGGAATGGAAT





GGACGCAAAATGAATGGAATGGAAGTCAATGG (SEQ ID NO: 577)





572
HGL6.1260

AAGTTCAAACATCAGTATTAACCTTGAACATCAATGGCCTACATGCATCACTTAA





AACATACAGACAGGCAAATTGGGTTAAGAAAACAAACAAGCAAACAAAACATG





TTCCAAACATTTGTTGGCTAT (SEQ ID NO: 578)





573
HGL6.1262

GGAATAATCATTGAACGGAATCGAATGGAATCATCATCGGATGGAAACGAATGG





AATCATCATCGAATGGAAATGAAAGGAGTCATC (SEQ ID NO: 579)





574
HGL6.1264

GGAACGAAATCGAATGGAACGGAATAGAATAGACTCGAATGTAATGGATTGCTA





TGTAATTGATTCGAATGGAATGGAATCG (SEQ ID NO: 580)





575
HGL6.1265

TGAAAGGAATAGACTGGAACAAAATGAAATCGAATGGTAGGAATCATACAGAA





CAGAAAGAAATGGAACGGAATGGAATG (SEQ ID NO: 581)





576
HGL6.1266

AACCCGAATAGAATGGAATGGAATGGAATGGAACGGAACGGAATGGAATGGAA





TGGATTGGAATGGAATGGAATG (SEQ ID NO: 582)





577
HGL6.1267

AAAGAGAATCAAATGGAATTGAATCGAATGGAATCGAATGGATTGGAAAGGAA





TAGAATGGAATGGAATGGAATGGAATGGAATGGAATG (SEQ ID NO: 583)





578
HGL6.1269

AAAACACACAAACATACATGTGGATGCACATATAAACATGCACATACACACACA





CATAAATGCACAAACACACTTAACACAAGCACACATGCAAACAAACACATGG





(SEQ ID NO: 584)





579
HGL6.1270

AATGGAATCATCAGTAATGGAATGGAAAGGAATGGAAAGGACTGGAATGGAAT





GGAATGGAATGGAATGG (SEQ ID NO: 585)





580
HGL6.1271

GGAACAAAATGAAATCGAACGGTAGGAATCGTACAGAACGGAAAGAAATGGAA





CGGAATGGAATGCACTCAAATGGAAAGGAGTCCAATGGAATCGAAAGGAATAG





AATGGAATGG (SEQ ID NO: 586)





581
HGL6.1272

AGAATGAGATCAAGCAGTATAATAAAGGAAGAAGTAGCAAAATTACAACAGAG





CAGTGAAATGGATATGCTTTCTGGCAATAATTGTGAAAGGTCTGGTAATGAGAA





AGTAGCAACAGCTAGTGGCTGCCAC (SEQ ID NO: 587)





582
HGL6.1273

AACAAATGGAATCAACATCGAATGGAATCGAATGGAAACACCATCGAATTGAAA





CGAATGGAATTATCATGAAATTGAAATGGATGGACTCATCATCG (SEQ ID NO:





588)





583
HGL6.1278

TAACATGCAGCATGCACACACGAATACACAACACACAAACATGTATGCACGCAC





ACGTGAATACACAACACACACAAACATGCATGCATGCATACATGAATACACAGC





ACACAAATATCCAGCAT (SEQ ID NO: 589)





584
HGL6.1279

GAATGGAATCAACATCAAACGGAAAAAAAACGGAATTATCGAATGGAATCGAA





TAGAATCATCGAATGGACC (SEQ ID NO: 590)





585
HGL6.1281

AATCGAATGAAATGGAGTCAAAAGGAATGGAATCGAATGGCAAGAAATCGAAT





GTAATGGAATCGCAAGGAATTGATGTGAACGGAACGGAATGGAAT (SEQ ID NO:





591)





586
HGL6.1282

AATGGAATTGAACGGAAACATCAGCGAATGGAATCGAAAGGAATCATCATGGA





ATAGATTCGAATGGAATGGAAAGGAATGGAATGGAATG (SEQ ID NO: 592)





587
HGL6.1283

ATGGAATCAACATCAAACAGAATCAAACGGAATTATCGAATGGAATCGAAGACA





ATCATCGAATGGACTCGAATGGAATCATCTAATGGAATGGAATGGAAGAATCCA





TGGTCTCGAATGCAATCATCATCG (SEQ ID NO: 593)





588
HGL6.1284

GAATAATCATTGAACGGAATCGAATGGAATCATCTTCGGATGGAAACGAATGGA





ATCATCATCGAATGGAAATGAAAGGAGTCATC (SEQ ID NO: 594)





589
HGL6.1288

AATGGACTCGAATGGAATAATCATTGAACGGAATCGAATGGAATCATCATCGGA





TGGAAATGAGTGGAATCATCATCGAATGGAATCG (SEQ ID NO: 595)





590
HGL6.1290

AAATGAAATCGAACGGTAGGAATCGTACAGAACGGAAAGAAATGGAACGGAAT





GGAATGCAATCGAATGGAAAGGAGTCCAATGGAAGGGAATCGAAT (SEQ ID NO:





596)





591
HGL6.1291

TACCAAACATTTAAAGAACAAATATCAATCCTACGCAAACCATTCTGAAACACA





GAGATGGAGGATATACAGCGAAACTCATTCTACATGGCC (SEQ ID NO: 597)





592
HGL6.1292

TATTGGAATGGAATGGAATGGAGTCGAATGGAACGGAATGCACTCGAATGGAAG





GCAATGCAATGGAATGCACTCAACAGGAATAGAATGGAATGGAATGGAATGG





(SEQ ID NO: 598)





593
HGL6.1294

AGAGAGTATTCATCATGAGGAGTATTACTGGACAAATAATTCACAAACGAACAA





ACCAAAGCGATCATCTTTGTACTGGCTGGCTA (SEQ ID NO: 599)





594
HGL6.1295

GGAATTTAATAGAATGTACCCGAATGGAACGGAATGGAATGGAATTGTATGGCA





TGGAATGGAA (SEQ ID NO: 600)





595
HGL6.1298

GCAATCCANTANAATGGAATCGAATGGCATGGAATATAAAGAAATGGAATCGAA





GAGAATGGAGACAAATGGAATGGAATTGAATGGAATGGAATTG (SEQ ID NO:





601)





596
HGL6.1299

AATGGAATCGAATGGAATCATCATCAAATGGAATCTAATGGAATCATTGAACGG





AATTAAATGGAATCGTCATCGAATGAATTCAATGCAATCAACGAATGGTCTCGA





ATGGAACCAC (SEQ ID NO: 602)





597
HGL6.1300

AATTGCAAAAGAAACACACATATACACATATAAAACTCAAGAAAGACAAAACTA





ACCTATGGTGATAGAAATCAGAAAAGTACAGTACATTGGTTGTCTTGGTGGG





(SEQ ID NO: 603)





598
HGL6.1303

TGACATCATTATTATCAAGAAACATTCTTACCACTGTTACCAACTTCCCAACACA





GACTATGGAGAGAGAGATAAGACAGAATAGCATT (SEQ ID NO: 604)





599
HGL6.1305

GGAATCTATAATACAGCTGTTTATAGCCAAGCACTAAATCATATGATACAGAAA





ACAAATGCAGATGGTTTGAAGGGTGGG (SEQ ID NO: 605)





600
HGL6.1308

AAAGAATTGAATTGAATAGAATCACCAATGAATTGAATCGAATGGAATCGTCAT





CGAATGGAATCGAAGGGAATCATTGGATGGGCTCA (SEQ ID NO: 606)





601
HGL6.1311

ATCATCGAATGGAATCGAATGGAATCAATATCAAACGGAAAAAAACGGAATTAT





CGAATGGAATCGAATAGAATCATCGAATGGACC (SEQ ID NO: 607)





602
HGL6.1314

GAATGAAATCGTATAGAATCATCGAATGCAACTGAATGGAATCATTAAATGGAC





TTGAAAGGAATTATTATGGAATGGAATTG (SEQ ID NO: 608)





603
HGL6.1316

TAAGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGTGCAAAAATCTCAAG





CATTCTTATACACGAACAACAGACAAACAGAGAGCT (SEQ ID NO: 609)





604
HGL6.1317

ACTCAAAAGGAATTGATTCGAATGGAATAGAATGGCAAGGAATAGTATTGAATT





GAATGGAATGGAATGGACCCAAATG (SEQ ID NO: 610)





605
HGL6.1319

GAATGGAATTTAAAGGAATAGAATGGAAGGAATCGGATGGAATGGAATGGAAT





AGAATGGAGTCGAATGGAATAGAATCGAATGGAATGGCATTG (SEQ ID NO: 611)





606
HGL6.1323

AACAAAAAATGAGTCAAGCCTTAAATAAAATCAGAGCCAAAAAAGAAGACATT





ACATCTGATAAGACAAAAATTCAAAGGACCATC (SEQ ID NO: 612)





607
HGL6.1324

AACCCAGTGGAATTGAATTGAATGGAATTGAATGGAATGGAAAGAATCAATCCG





AGTCGAATGGAATGGTATGGAATGGAATGGCATGGAATCAAC (SEQID NO: 613)





608
HGL6.1327

ATCAACATCAAACGGAAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATC





ATCGAATGGACC (SEQ ID NO: 614)





609
HGL6.1331

AAGGAATGGAATGGTACGGAATAGAATGGAATGGAACGAATTGTAATGGAATG





GAATTTAATGGAACGGAATGGAATGGAATGGAATCAACG (SEQ ID NO: 615)





610
HGL6.1334

AACGGAATGGAAAGCAATTTAATCAAATGCAATACAGTGGAATTGAAGGGAATG





GAATGGAATGGC (SEQ ID NO: 616)





611
HGL6.1335

AATCGAATGGAACGGAATAGAATAGACTCGAATGTAATGGATTGCTATGTAATT





GATTCGAATGGAATGGAATCGAATGGAATGCAATCCAATGGAATGGAATGCAAT





GCAATGGAATGGAATCGAACGGAATGCAGTGGAAGGGAATGG (SEQ ID NO: 617)





612
HGL6.1336

TAGCAACATTTTAGTAACATGATAGAAACAAAACAGCAACATAGCAATGCAATA





GTAACACAACAGCAACATCATAACATGGCAGCA (SEQ ID NO: 618)





613
HGL6.1337

GGACAAATTGCTAGAAATAAACAAATTACCAAAAATGATTCAAGTAGAGACAGA





GAATCAAAATAGAACTACACATAAGTGGGCCAAG (SEQ ID NO: 619)





614
HGL6.1340

AAAATAGAATGAAAGAGAATCAAATGGAATTGAATCGAATGGAATCGAATGGA





TTGGAAAGGAATAGAATGGAATGGAATGGAATG (SEQ ID NO: 620)





615
HGL6.1342

AGCAAACAAGTGAATAAACAAGCAAACAAGTGAACAAGCAAACAAGTGAATAA





ACAAGCAAACAAGTGAACAAGCAAACAAGTGAATAAACAAGCAAACAAGTGAA





CAAGGAAACAAGTGAATAAACAAAGGCTCT (SEQ ID NO: 621)





616
HGL6.1346

AATGGAATCAACACGAGTGCAATTGAATGGAATCGAATGGAATGGAATGGAATG





GAATGAATTCAACCCGAATGGAATGGAAAGGAATGGAATC (SEQ ID NO: 622)





617
HGL6.1347

AATATACGCAAATCAATAAATGTAATCCAGCATATAAACAGTACTAAAGACAAA





AACCACATGATTATCTCAATAGATGCAGAAAAGGCC (SEQ ID NO: 623)





618
HGL6.1352

GAATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATC





GAAGAGNNNNNNCGAATGGACC (SEQ ID NO: 624)





619
HGL6.1354

AACACGAATGTAATGCAATCCAATAGAATGGAATCGAATGGCATGGAATATAAA





GAAATGGAATCGAAGAGAATGGAAACAAACGGAATGGAATTGAATGGAATGGA





ATTGAATGGAATGGGAACGAATGGAGTGAAATTG (SEQ ID NO: 625)





620
HGL6.1355

GAATGGAACGGAATAGAACAGACTCGAATGTAATGGATTGCTATGTAATTGATT





CGAATGGAATGGAATCGAATGGAATGCAATCCAATGGAATGGAATGCAATGCAA





TGGAATGGAATCGAATGGAATGCAGTGGAAGGGAATGG (SEQ ID NO: 626)





621
HGL6.1356

GAATCGAATGGAATCAATATCAAACGGAAAAAAACGGAATTATCGAATGGAATC





GAAGAGAATCATCGAATGGACC (SEQ ID NO: 627)





622
HGL6.1359

TAAACAACGAGAACACATGAACACAAAGAGGGGAACAACAGACACCAAGACCT





TCTTGAGGGTGGAGGATGGGAGGAGGGAG (SEQ ID NO: 628)





623
HGL6.1360

AGCAACTTCAGCAGTCTCAGTATACAAAAACAATGTGCAAAAATCACAAGCATT





CCTATATGCCAATAACAGACAAACAGAGAGCC (SEQ ID NO: 629)





624
HGL6.1361

ATCAAAAGAAAAGCAACCTAACAAATACGGGAAGAATATTTGAATAGACATTTC





ACAGGAAAAGATATATGAATGGCCAAAAAGCAAATGAAAAG (SEQ ID NO: 630)





625
HGL6.1364

ATAAACATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAGAGAATAAT





CGAATGGACTCAAATGGAGTCATCTAATGGAATGGTATGGAAGAATCCATGGAC





TCCAACGCAATCATCAGCGAATGGAATC (SEQ ID NO: 631)





626
HGL6.1365

AAAAGAAAAGACAAAAGACACCAATTGCCAATACTGAAATGAAAAAACAGGTA





ATAACTATTGATCCCATGGACATTAAAATGATGTTGAAGGAACACCAC (SEQ ID





NO: 632)





627
HGL6.1368

AGCAATAACCAAACAACCTCATTAAAAAGTAGGCAAAGGACATAAACAGACACT





TTTCAAAAGAAGACATACACGTGGCCAACAAACATATG (SEQ ID NO: 633)





628
HGL6.1370

AGCAACTTCAGCAAAGTCTCAGGATACAAAATCGATGTGCAAAAATCACAAGCA





TTCTTATACACCAATAACAGGCAAACAGAGAGCC (SEQ ID NO: 634)





629
HGL6.1371

GTCATATTTGGGATTTATCATCTGTTTCTATTGTTGTTGTTTTAGTACACACAAAG





CCACAATAAATATTCTAGGCT (SEQ ID NO: 635)





630
HGL6.1373

ATCATCGAATGGAATAGAATGGTATCAACATCAAACGGAGAAAAACGGAATTAT





CGAATGGAATCGAAGAGAATCTTCGAACGGACC (SEQ ID NO: 636)





631
HGL6.1374

AAATAAGCCAACGGTCATAAATTGCAAAGCCTTTTACAATCCAAACATGATGGA





AACGATATGCCATTTTGAAGGTGATTTGAAAAGCACATGGTTT (SEQ ID NO: 637)





632
HGL6.1375

GAATGGAATCATCGCATAGAATCGGATGGAATTATCATCGAATGGAATCGAATG





GTATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAATTGAATC





ATCGAACGGACCCG (SEQ ID NO: 638)





633
HGL6.1378

AATGGACTCGAATGGAATAATCATTGAACGGAATCGAATGGAATCATCATCGGA





TGGAAATGAATGGAATAATCCATGGACTCGAATGCAATCATCATCGAATGGAAT





CGAATGGAATCATCGAATGGACTCG (SEQ ID NO: 639)





634
HGL6.1379

AATGCAATCATCAACTGGCTTCGAATGGAATCATCAAGAATGGAATCGAATGGA





ATCATCGAATGGACTC (SEQ ID NO: 640)





635
HGL6.1380

AAGAGACCAATAAGGANTANGTAAGCAACANGAGGAAGGAGANANGGGCAAG





AGAGATGACCAGAGTT (SEQ ID NO: 641)





636
HGL6.1382

TGGAATCATCATAAAATGGAATCGAATGGAATCAACATCAAATGGAATCAAATG





GAATCATTGAACGGAATTGAATGGAATCGTCAT (SEQ ID NO: 642)





637
HGL6.1383

GGAATCATCGCATAGAATCGAATGGAATTATCATCGAATGGAATCGAATGGAAT





CAACATCAAACGAAAAAAAACCGGAATTATCGAATGGAATCGAAGAGAATCATC





GAACGGACC (SEQ ID NO: 643)





638
HGL6.1384

AAATCATCATCGAATGGGATCGAATGGTATCCTTGAATGGAATCGAATGGAATC





ATCATCAGATGGAAATGAATGGAATCGTCAT (SEQ ID NO: 644)





639
HGL6.1386

GGAATGTAATAGAACGGAAAGCAATGGAATGGAACGCACTGGATTCGAGTGCA





ATGGAATCTATTGGAATGGAATCGAATGGAATGGTTTGGCATGGAATGGAC (SEQ





ID NO: 645)









REFERENCES



  • 1. R. J. Jackson, C. U. T. Hellen, T. V. Pestova, Nat. Rev. Mol. Cell. Biol. 10, 113 (2010).

  • 2. N. Sonenberg, A. G. Hinnebusch, Cell 136, 731 (2009).

  • 3. C. U. T. Hellen, P. Sarnow, Genes Dev. 15, 1593 (2001).

  • 4. S. Vagner, B. Galy, S. Pyronnet, EMBO Rep. 2, 893 (2001).

  • 5. M. Stoneley, A. E. Willis, Oncogene 23, 3200 (2004).

  • 6. J. S. Kieft, A. Grech, P. Adams, J. A. Doudna, Cold Spring Harbor Symp. on Quant. Biol. 66, 277 (2001).

  • 7. N. Malys, J. E. G. McCarthy, Cell. Mol. Life. Sci. 68, 991 (2011).

  • 8. T. A. Hughes, Trends Genet. 22, 119 (2006).

  • 9. X. Qin, P. Sarnow, J. Biol. Chem. 279, 13721 (2004).

  • 10. M. Bushell et al., Mol. Cell 23, 401 (2006).

  • 11. J. D. Thomas, G. J. Johannes, RNA 13, 1116 (2007).

  • 12. G. Johannes, M. S. Carter, M. B. Eisen, P. O. Brown, P. Sarnow, Proc. Natl. Acad. Sci. USA 96, 13118 (1999).

  • 13. S. Braunstein et al., Mol. Cell. 28, 501 (2007).

  • 14. K. A. Spriggs, M. Stoneley, M. Bushell, A. E. Willis, Biol. Cell 100, 27 (2008).

  • 15. S. D. Baird, M. Turcotte, R. G. Korneluk, M. Holcik, RNA 12, 1755 (2006).

  • 16. R. W. Roberts, J. W. Szostak, Proc. Natl. Acad. Sci. USA 94, 12297 (1997).

  • 17. T. T. Takahashi, R. J. Austin, R. W. Roberts, Trends Biochem. Sci. 28, 159 (2003).

  • 18. W. J. Kent, Genome Res. 12, 656 (2002).

  • 19. J. O. Korbel et al., Science 318, 420 (2007).

  • 20. M. Kasowski et al., Science 328, 232 (2010).

  • 21. K. Salehi-Ashtiani, A. Luptak, A. Litovchick, J. W. Szostak, Science 313, 1788 (2006).

  • 22. E. S. Lander et al., Nature 409, 860 (2001).

  • 23. R. Cordaux, M. A. Batzer, Nat. Rev. Genet. 10, 691 (2009).

  • 24. B. T. Baranick et al., Proc. Natl. Acad. Sci. USA 105, 4733 (2008).

  • 25. T. R. Fuerst, E. G. Niles, F. W. Studier, B. Moss, Proc. Natl. Acad. Sci. USA 83, 8122 (1986).

  • 26. W. V. Gilbert, K. H. Zhou, T. K. Butler, J. A. Doudna, Science 317, 1224 (2007).

  • 27. M. Kozak, Nuc. Acids Res. 15, 8125 (1987).

  • 28. Q. Yang, P. Sarnow, Nuc. Acids Res. 25, 2800 (1997).

  • 29. I. Huez et al., Mol. Cell. Biol. 18, 6178 (1998).


Claims
  • 1. A nucleic acid library comprising a plurality of linear recombinant double stranded DNA constructs, wherein each double stranded DNA construct comprises (a) a promoter;(b) a heterologous coding region downstream from the promoter, wherein the coding region encodes a detectable polypeptide;(c) a heterologous cross-linking region downstream of the coding region;(d) a heterologous polynucleotide sequence of between 20-500 base pairs in length located downstream of the promoter and upstream of the coding region; and(e) a first PCR primer binding site and a second PCR primer binding site, wherein the first PCR primer binding site is upstream of the polynucleotide sequence and the second PCR primer site is downstream of the polynucleotide sequence;wherein at least 1013 different polynucleotide sequences are represented in the plurality of double stranded nucleic acid constructs, and wherein the first PCR primer and the second PCR primer are the same for each construct in the plurality of double stranded nucleic acid constructs.
  • 2. The nucleic acid library of claim 1, wherein expressed RNA from the cross-linking region can serve as a site for ligation to a linker containing a 3′-puromycin residue.
  • 3. The nucleic acid library of claim 2, wherein mRNA expressed from the cross linking region is complementary to a DNA linker sequence to be used.
  • 4. The nucleic acid library of claim 1, wherein the polynucleotide sequence of between 20-500 base pairs are genomic fragments.
  • 5. The nucleic acid library of claim 1, wherein the polynucleotide sequence of between 20-500 base pairs are synthetic sequences.
  • 6. The nucleic acid library of claim 1, wherein the polynucleotide sequence is between 20-400 base pairs in length.
  • 7. The nucleic acid library of claim 1, wherein the library comprises at least 1014 different polynucleotide sequences.
  • 8. The nucleic acid library of claim 1, wherein the double stranded nucleic acid constructs further comprise (a) one or more unique restriction sites upstream of the polynucleotide sequence and downstream of the promoter, and(b) one or more unique restriction sites downstream of the polynucleotide sequence.
  • 9. The nucleic acid library of claim 1, wherein the first (5′) or second (3′) primer binding site is upstream of the coding region in the double stranded nucleic acid construct.
  • 10. An mRNA pool resulting from transcription of the library of claim 1.
  • 11. A method for identifying translational enhancing elements (TEEs), comprising (a) contacting the nucleic acid library of claim 1 with reagents for RNA transcription under conditions to promote transcription of RNA from the double stranded nucleic acid constructs, resulting in an RNA expression product;(b) contacting the RNA expression product with reagents for ligating a linker containing a puromycin residue to the 3′ end of the RNA expression product, resulting in a labeled RNA expression product;(c) contacting the labeled RNA expression product with reagents for protein expression under conditions to promote protein translation from the labeled RNA expression product, resulting in a RNA-polypeptide fusion product;(d) isolating RNA-polypeptide fusion products;(e) converting the isolated RNA-polypeptide fusion products to cDNA by reverse transcription-PCR using a primer to the 3′ end of the isolated RNA-polypeptide fusion products;(f) amplifying the cDNA by PCR using primers to the 5′ and 3′ end of the cDNA; and(g) repeating steps (a)-(f) a desired number of times, wherein the amplified polynucleotide sequence fragments comprise TEEs.
  • 12. The method of claim 11, wherein the primers used in step (f) add a promoter to the 5′ end and a cross-linking region to the 3′ end of the cDNA after each round of selection.
  • 13. The method of claim 11, wherein the linker comprises a DNA linker complementary to the RNA expression product.
  • 14. The method of claim 11, wherein the polynucleotide sequences in the library comprise genomic fragments, and wherein a starting pool of library constructs contains at least a five-fold coverage of the genome of interest.
  • 15. The method of claim 11, wherein the method further comprises testing polynucleotide sequences identified as TEEs for TEE activity in vivo.
  • 16. An isolated polynucleotide, comprising a nucleic acid sequence according to any one of SEQ ID NOS: 1-5 and 7-645.
  • 17. The isolated polynucleotide of claim 16, wherein the polynucleotide is selected from the group consisting of SEQ ID NO:1-5, 448, 495, 623, 408, 12, 54, 401, 553, 434, 458, 214, 327, 397, 471, 398, 301, 310 and 583.
  • 18. An isolated polynucleotide comprising a nucleic acid sequence according to SEQ ID NO:1.
  • 19. The isolated polynucleotide of claim 18, comprising a nucleic acid sequence according to SEQ ID NO:2.
  • 20. The isolated polynucleotide of claim 18, comprising a nucleic acid sequence according to SEQ ID NO:3.
  • 21. An isolated polynucleotide comprising a nucleic acid sequence according to SEQ ID NO:4.
  • 22. The isolated polynucleotide of claim 16, wherein the polynucleotide is 200 nucleotides or less in length.
  • 23. An expression vector comprising (a) a promoter;(b) a heterologous TEE downstream of the promoter, where the TEE comprises a polynucleotide according to claim 16; and(c) a cloning site suitable for cloning of an protein-encoding nucleic acid of interest located upstream of the TEE, and downstream of the promoter.
  • 24. The expression vector of claim 23, further comprising a protein-encoding nucleic acid cloned into the cloning site.
  • 25. A recombinant host cell comprising the expression vector of claim 23.
  • 26. A method for protein expression, comprising contacting the expression vector of claim 24 with reagents and under conditions suitable for promoting expression of the polypeptide encoded by the protein-encoding nucleic acid.
  • 28. The method of claim 26, wherein the protein expression is carried out in vitro.
  • 29. The method of claim 26, wherein the protein expression is carried out in a recombinant host cell.
CROSS-REFERENCE

This application claims priority to U.S. Provisional Patent Application Ser. No. 61/365,133 filed Jul. 16, 2010, incorporated by reference herein in its entirety.

STATEMENT OF U.S. GOVERNMENT INTEREST

This work was funded in part by NIH Eureka Award GM085530. The U.S. government has certain rights in the invention.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US11/44198 7/15/2011 WO 00 3/29/2013
Provisional Applications (1)
Number Date Country
61365133 Jul 2010 US