METHODS TO PREDICT CLINICAL OUTCOME OF CANCER

Information

  • Patent Application
  • 20210062275
  • Publication Number
    20210062275
  • Date Filed
    September 11, 2020
    3 years ago
  • Date Published
    March 04, 2021
    3 years ago
Abstract
The present invention provides methods to determine the prognosis and appropriate treatment for patients diagnosed with cancer, based on the expression levels of one or more biomarkers. More particularly, the invention relates to the identification of genes, or sets of genes, able to distinguish breast cancer patients with a good clinical prognosis from those with a bad clinical prognosis. The invention further provides methods for providing a personalized genomics report for a cancer patient. The inventions also relates to computer systems and software for data analysis using the prognostic and statistical methods disclosed herein.
Description
INTRODUCTION

Oncologists have a number of treatment options available to them, including different combinations of therapeutic regimens that are characterized as “standard of care.” The absolute benefit from adjuvant treatment is larger for patients with poor prognostic features, and this has resulted in the policy to select only these so-called ‘high-risk’ patients for adjuvant chemotherapy. See, e.g., S. Paik, et al., J Clin Oncol. 24(23):3726-34 (2006). Therefore, the best likelihood of good treatment outcome requires that patients be assigned to optimal available cancer treatment, and that this assignment be made as quickly as possible following diagnosis.


Today our healthcare system is riddled with inefficiency and wasteful spending—one example of this is that the efficacy rate of many oncology therapeutics working only about 25% of the time. Many of those cancer patients are experiencing toxic side effects for costly therapies that may not be working. This imbalance between high treatment costs and low therapeutic efficacy is often a result of treating a specific diagnosis one way across a diverse patient population. But with the advent of gene profiling tools, genomic testing, and advanced diagnostics, this is beginning to change.


In particular, once a patient is diagnosed with breast cancer there is a strong need for methods that allow the physician to predict the expected course of disease, including the likelihood of cancer recurrence, long-term survival of the patient, and the like, and select the most appropriate treatment option accordingly. Accepted prognostic and predictive factors in breast cancer include age, tumor size, axillary lymph node status, histological tumor type, pathological grade and hormone receptor status. Molecular diagnostics, however, have been demonstrated to identify more patients with a low risk of breast cancer than was possible with standard prognostic indicators. S. Paik, The Oncologist 12(6):631-635 (2007).


Despite recent advances, the challenge of breast cancer treatment remains to target specific treatment regimens to pathogenically distinct tumor types, and ultimately personalize tumor treatment in order to maximize outcome. Accurate prediction of prognosis and clinical outcome would allow the oncologist to tailor the administration of adjuvant chemotherapy such that women with a higher risk of a recurrence or poor prognosis would receive more aggressive treatment. Furthermore, accurately stratifying patients based on risk would greatly advance the understanding of expected absolute benefit from treatment, thereby increasing success rates for clinical trials for new breast cancer therapies.


Currently, most diagnostic tests used in clinical practice are frequently not quantitative, relying on immunohistochemistry (IHC). This method often yields different results in different laboratories, in part because the reagents are not standardized, and in part because the interpretations are subjective and cannot be easily quantified. Other RNA-based molecular diagnostics require fresh-frozen tissues, which presents a myriad of challenges including incompatibilities with current clinical practices and sample transport regulations. Fixed paraffin-embedded tissue is more readily available and methods have been established to detect RNA in fixed tissue. However, these methods typically do not allow for the study of large numbers of genes (DNA or RNA) from small amounts of material. Thus, traditionally fixed tissue has been rarely used other than for IHC detection of proteins.


SUMMARY

The present invention provides a set of genes, the expression levels of which are associated with a particular clinical outcome in cancer. For example, the clinical outcome could be a good or bad prognosis assuming the patient receives the standard of care. The clinical outcome may be defined by clinical endpoints, such as disease or recurrence free survival, metastasis free survival, overall survival, etc.


The present invention accommodates the use of archived paraffin-embedded biopsy material for assay of all markers in the set, and therefore is compatible with the most widely available type of biopsy material. It is also compatible with several different methods of tumor tissue harvest, for example, via core biopsy or fine needle aspiration. The tissue sample may comprise cancer cells.


In one aspect, the present invention concerns a method of predicting a clinical outcome of a cancer patient, comprising (a) obtaining an expression level of an expression product (e.g., an RNA transcript) of at least one prognostic gene listed in Tables 1-12 from a tissue sample obtained from a tumor of the patient; (b) normalizing the expression level of the expression product of the at least one prognostic gene, to obtain a normalized expression level; and (c) calculating a risk score based on the normalized expression value, wherein increased expression of prognostic genes in Tables 1, 3, 5, and 7 are positively correlated with good prognosis, and wherein increased expression of prognostic genes in Tables 2, 4, 6, and 8 are negatively associated with good prognosis. In some embodiments, the tumor is estrogen receptor-positive. In other embodiments, the tumor is estrogen receptor negative.


In one aspect, the present disclosure provides a method of predicting a clinical outcome of a cancer patient, comprising (a) obtaining an expression level of an expression product (e.g., an RNA transcript) of at least one prognostic gene from a tissue sample obtained from a tumor of the patient, where the at least one prognostic gene is selected from GSTM2, IL6ST, GSTM3, C8orf4, TNFRSF1lB, NAT1, RUNX1, CSF1, ACTR2, LMNB1, TFRC, LAPTM4B, ENO1, CDCl20, and IDH2; (b) normalizing the expression level of the expression product of the at least one prognostic gene, to obtain a normalized expression level; and (c) calculating a risk score based on the normalized expression value, wherein increased expression of a prognostic gene selected from GSTM2, IL6ST, GSTM3, C8orf4, TNFRSF11B, NAT1, RUNX1, and CSF1 is positively correlated with good prognosis, and wherein increased expression of a prognostic gene selected from ACTR2, LMNB1, TFRC, LAPTM4B, ENO1, CDCl20, and IDH2 is negatively associated with good prognosis. In some embodiments, the tumor is estrogen receptor-positive. In other embodiments, the tumor is estrogen receptor negative.


In various embodiments, the normalized expression level of at least 2, or at least 5, or at least 10, or at least 15, or at least 20, or a least 25 prognostic genes (as determined by assaying a level of an expression product of the gene) is determined. In alternative embodiments, the normalized expression levels of at least one of the genes that co-expresses with prognostic genes in Tables 16-18 is obtained.


In another embodiment, the risk score is determined using normalized expression levels of at least one a stromal or transferrin receptor group gene, or a gene that co-expresses with a stromal or transferrin receptor group gene.


In another embodiment, the cancer is breast cancer. In another embodiment, the patient is a human patient.


In yet another embodiment, the cancer is ER-positive breast cancer.


In yet another embodiment, the cancer is ER-negative breast cancer.


In a further embodiment, the expression product comprises RNA. For example, the RNA could be exonic RNA, intronic RNA, or short RNA (e.g., microRNA, siRNA, promoter-associated small RNA, shRNA, etc.). In various embodiments, the RNA is fragmented RNA.


In a different aspect, the invention concerns an array comprising polynucleotides hybridizing to an RNA transcription of at least one of the prognostic genes listed in Tables 1-12.


In a still further aspect, the invention concerns a method of preparing a personalized genomics profile for a patient, comprising (a) obtaining an expression level of an expression product (e.g., an RNA transcript) of at least one prognostic gene listed in Tables 1-12 from a tissue sample obtained from a tumor of the patient; (b) normalizing the expression level of the expression product of the at least one prognostic gene to obtain a normalized expression level; and (c) calculating a risk score based on the normalized expression value, wherein increased expression of prognostic genes in Tables 1, 3, 5, and 7 are positively correlated with good prognosis, and wherein increased expression of prognostic genes in Tables 2, 4, 6, and 8 are negatively associated with good prognosis. In some embodiments, the tumor is estrogen receptor-positive, and in other embodiments the tumor is estrogen receptor negative.


In various embodiments, a subject method can further include providing a report. The report may include prediction of the likelihood of risk that said patient will have a particular clinical outcome.


The invention further provides a computer-implemented method for classifying a cancer patient based on risk of cancer recurrence, comprising (a) classifying, on a computer, said patient as having a good prognosis or a poor prognosis based on an expression profile comprising measurements of expression levels of expression products of a plurality of prognostic genes in a tumor tissue sample taken from the patient, said plurality of genes comprising at least three different prognostic genes listed in any of Tables 1-12, wherein a good prognosis predicts no recurrence or metastasis within a predetermined period after initial diagnosis, and wherein a poor prognosis predicts recurrence or metastasis within said predetermined period after initial diagnosis; and (b) calculating a risk score based on said expression levels.







DETAILED DESCRIPTION
Definitions

Unless defined otherwise, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Singleton et al., Dictionary of Microbiology and Molecular Biology 2nd ed., J. Wiley & Sons (New York, N.Y. 1994), and March, Advanced Organic Chemistry Reactions, Mechanisms and Structure 4th ed., John Wiley & Sons (New York, N.Y. 1992), provide one skilled in the art with a general guide to many of the terms used in the present application.


One skilled in the art will recognize many methods and materials similar or equivalent to those described herein, which could be used in the practice of the present invention. Indeed, the present invention is in no way limited to the methods and materials described. For purposes of the present invention, the following terms are defined below.


“Prognostic factors” are those variables related to the natural history of cancer, which influence the recurrence rates and outcome of patients once they have developed cancer. Clinical parameters that have been associated with a worse prognosis include, for example, lymph node involvement, and high grade tumors. Prognostic factors are frequently used to categorize patients into subgroups with different baseline relapse risks.


The term “prognosis” is used herein to refer to the prediction of the likelihood of cancer-attributable death or progression, including recurrence, metastatic spread, and drug resistance, of a neoplastic disease, such as breast cancer. The term “good prognosis” means a desired or “positive” clinical outcome. For example, in the context of breast cancer, a good prognosis may be an expectation of no recurrences or metastasis within two, three, four, five or more years of the initial diagnosis of breast cancer. The terms “bad prognosis” or “poor prognosis” are used herein interchangeably herein to mean an undesired clinical outcome. For example, in the context of breast cancer, a bad prognosis may be an expectation of a recurrence or metastasis within two, three, four, five or more years of the initial diagnosis of breast cancer.


The term “prognostic gene” is used herein to refer to a gene, the expression of which is correlated, positively or negatively, with a good prognosis for a cancer patient treated with the standard of care. A gene may be both a prognostic and predictive gene, depending on the correlation of the gene expression level with the corresponding endpoint. For example, using a Cox proportional hazards model, if a gene is only prognostic, its hazard ratio (HR) does not change when measured in patients treated with the standard of care or in patients treated with a new intervention.


The term “predictive gene” is used herein to refer to a gene, the expression of which is correlated, positively or negatively, with response to a beneficial response to treatment. For example, treatment could include chemotherapy.


The terms “risk score” or “risk classification” are used interchangeably herein to describe a level of risk (or likelihood) that a patient will experience a particular clinical outcome. A patient may be classified into a risk group or classified at a level of risk based on the methods of the present disclosure, e.g. high, medium, or low risk. A “risk group” is a group of subjects or individuals with a similar level of risk for a particular clinical outcome.


A clinical outcome can be defined using different endpoints. The term “long-term” survival is used herein to refer to survival for a particular time period, e.g., for at least 3 years, more preferably for at least 5 years. The term “Recurrence-Free Survival” (RFS) is used herein to refer to survival for a time period (usually in years) from randomization to first cancer recurrence or death due to recurrence of cancer. The term “Overall Survival” (OS) is used herein to refer to the time (in years) from randomization to death from any cause. The term “Disease-Free Survival” (DFS) is used herein to refer to survival for a time period (usually in years) from randomization to first cancer recurrence or death from any cause.


The calculation of the measures listed above in practice may vary from study to study depending on the definition of events to be either censored or not considered.


The term “biomarker” as used herein refers to a gene, the expression level of which, as measured using a gene product.


The term “microarray” refers to an ordered arrangement of hybridizable array elements, preferably polynucleotide probes, on a substrate.


As used herein, the term “normalized expression level” as applied to a gene refers to the normalized level of a gene product, e.g. the normalized value determined for the RNA expression level of a gene or for the polypeptide expression level of a gene.


The term “C,” as used herein refers to threshold cycle, the cycle number in quantitative polymerase chain reaction (qPCR) at which the fluorescence generated within a reaction well exceeds the defined threshold, i.e. the point during the reaction at which a sufficient number of amplicons have accumulated to meet the defined threshold.


The term “gene product” or “expression product” are used herein to refer to the RNA transcription products (transcripts) of the gene, including mRNA, and the polypeptide translation products of such RNA transcripts. A gene product can be, for example, an unspliced RNA, an mRNA, a splice variant mRNA, a microRNA, a fragmented RNA, a polypeptide, a post-translationally modified polypeptide, a splice variant polypeptide, etc.


The term “RNA transcript” as used herein refers to the RNA transcription products of a gene, including, for example, mRNA, an unspliced RNA, a splice variant mRNA, a microRNA, and a fragmented RNA. “Fragmented RNA” as used herein refers to RNA a mixture of intact RNA and RNA that has been degraded as a result of the sample processing (e.g., fixation, slicing tissue blocks, etc.).


Unless indicated otherwise, each gene name used herein corresponds to the Official Symbol assigned to the gene and provided by Entrez Gene (URL: www.ncbi.nlm.nih.gov/sites/entrez) as of the filing date of this application.


The terms “correlated” and “associated” are used interchangeably herein to refer to a strength of association between two measurements (or measured entities). The disclosure provides genes and gene subsets, the expression levels of which are associated with a particular outcome measure. For example, the increased expression level of a gene may be positively correlated (positively associated) with an increased likelihood of good clinical outcome for the patient, such as an increased likelihood of long-term survival without recurrence of the cancer and/or metastasis-free survival. Such a positive correlation may be demonstrated statistically in various ways, e.g. by a low hazard ratio (e.g. HR<1.0). In another example, the increased expression level of a gene may be negatively correlated (negatively associated) with an increased likelihood of good clinical outcome for the patient. In that case, for example, the patient may have a decreased likelihood of long-term survival without recurrence of the cancer and/or cancer metastasis, and the like. Such a negative correlation indicates that the patient likely has a poor prognosis, e.g., a high hazard ratio (e.g., HR>1.0). “Correlated” is also used herein to refer to a strength of association between the expression levels of two different genes, such that expression level of a first gene can be substituted with an expression level of a second gene in a given algorithm in view of their correlation of expression. Such “correlated expression” of two genes that are substitutable in an algorithm usually gene expression levels that are positively correlated with one another, e.g., if increased expression of a first gene is positively correlated with an outcome (e.g., increased likelihood of good clinical outcome), then the second gene that is co-expressed and exhibits correlated expression with the first gene is also positively correlated with the same outcome


The term “recurrence,” as used herein, refers to local or distant (metastasis) recurrence of cancer. For example, breast cancer can come back as a local recurrence (in the treated breast or near the tumor surgical site) or as a distant recurrence in the body. The most common sites of breast cancer recurrence include the lymph nodes, bones, liver, or lungs.


The term “polynucleotide,” when used in singular or plural, generally refers to any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. Thus, for instance, polynucleotides as defined herein include, without limitation, single- and double-stranded DNA, DNA including single- and double-stranded regions, single- and double-stranded RNA, and RNA including single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or include single- and double-stranded regions. In addition, the term “polynucleotide” as used herein refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The strands in such regions may be from the same molecule or from different molecules. The regions may include all of one or more of the molecules, but more typically involve only a region of some of the molecules. One of the molecules of a triple-helical region often is an oligonucleotide. The term “polynucleotide” specifically includes cDNAs. The term includes DNAs (including cDNAs) and RNAs that contain one or more modified bases. Thus, DNAs or RNAs with backbones modified for stability or for other reasons are “polynucleotides” as that term is intended herein. Moreover, DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritiated bases, are included within the term “polynucleotides” as defined herein. In general, the term “polynucleotide” embraces all chemically, enzymatically and/or metabolically modified forms of unmodified polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including simple and complex cells.


The term “oligonucleotide” refers to a relatively short polynucleotide, including, without limitation, single-stranded deoxyribonucleotides, single- or double-stranded ribonucleotides, RNA:DNA hybrids and double-stranded DNAs. Oligonucleotides, such as single-stranded DNA probe oligonucleotides, are often synthesized by chemical methods, for example using automated oligonucleotide synthesizers that are commercially available. However, oligonucleotides can be made by a variety of other methods, including in vitro recombinant DNA-mediated techniques and by expression of DNAs in cells and organisms.


The phrase “amplification” refers to a process by which multiple copies of a gene or RNA transcript are formed in a particular sample or cell line. The duplicated region (a stretch of amplified polynucleotide) is often referred to as “amplicon.” Usually, the amount of the messenger RNA (mRNA) produced, i.e., the level of gene expression, also increases in the proportion of the number of copies made of the particular gene expressed.


The term “estrogen receptor (ER)” designates the estrogen receptor status of a cancer patient. A tumor is ER-positive if there is a significant number of estrogen receptors present in the cancer cells, while ER-negative indicates that the cells do not have a significant number of receptors present. The definition of “significant” varies amongst testing sites and methods (e.g., immunohistochemistry, PCR). The ER status of a cancer patient can be evaluated by various known means. For example, the ER level of breast cancer is determined by measuring an expression level of a gene encoding the estrogen receptor in a breast tumor sample obtained from a patient.


The term “tumor,” as used herein, refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues.


The terms “cancer” and “cancerous” refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth. Examples of cancer include, but are not limited to, breast cancer, ovarian cancer, colon cancer, lung cancer, prostate cancer, hepatocellular cancer, gastric cancer, pancreatic cancer, cervical cancer, liver cancer, bladder cancer, cancer of the urinary tract, thyroid cancer, renal cancer, carcinoma, melanoma, and brain cancer.


The gene subset identified herein as the “stromal group” includes genes that are synthesized predominantly by stromal cells and are involved in stromal response and genes that co-express with stromal group genes. “Stromal cells” are defined herein as connective tissue cells that make up the support structure of biological tissues. Stromal cells include fibroblasts, immune cells, pericytes, endothelial cells, and inflammatory cells. “Stromal response” refers to a desmoplastic response of the host tissues at the site of a primary tumor or invasion. See, e.g., E. Rubin, J. Farber, Pathology, 985-986 (2nd Ed. 1994). The stromal group includes, for example, CDH11. TAGLN, ITGA4, INHBA, COLIA1, COLIA2, FN1, CXCL14, TNFRSF1, CXCL12, COORF116, RUNX1, GSTM2, TGFB3, CAV1, DLC1, TNFRSF10, F3, and DICER1, and co-expressed genes identified in Tables 16-18.


The gene subset identified herein as the “metabolic group” includes genes that are associated with cellular metabolism, including genes associated with carrying proteins for transferring iron, the cellular iron homeostasis pathway, and homeostatic biochemical metabolic pathways, and genes that co-express with metabolic group genes. The metabolic group includes, for example, TFRC, ENO1, IDH2, ARF1, CLDN4, PRDX1, and GBP1, and co-expressed genes identified in Tables 16-18.


The gene subset identified herein as the “immune group” includes genes that are involved in cellular immunoregulatory functions, such as T and B cell trafficking, lymphocyte-associated or lymphocyte markers, and interferon regulation genes, and genes that co-express with immune group genes. The immune group includes, for example, CCL19 and IRF1, and co-expressed genes identified in Tables 16-18.


The gene subset identified herein as the “proliferation group” includes genes that are associated with cellular development and division, cell cycle and mitotic regulation, angiogenesis, cell replication, nuclear transport/stability, wnt signaling, apoptosis, and genes that co-express with proliferation group genes. The proliferation group includes, for example, PGF, SPC25, AURKA, BIRC5, BUB1, CCNB1, CENPA, KPNA, LMNB1, MCM2, MELK, NDC80, TPX2M, and WISP1, and co-expressed genes identified in Tables 16-18.


The term “co-expressed”, as used herein, refers to a statistical correlation between the expression level of one gene and the expression level of another gene. Pairwise co-expression may be calculated by various methods known in the art, e.g., by calculating Pearson correlation coefficients or Spearman correlation coefficients. Co-expressed gene cliques may also be identified using a graph theory.


As used herein, the terms “gene clique” and “clique” refer to a subgraph of a graph in which every vertex is connected by an edge to every other vertex of the subgraph.


As used herein, a “maximal clique” is a clique in which no other vertex can be added and still be a clique.


The “pathology” of cancer includes all phenomena that compromise the well-being of the patient. This includes, without limitation, abnormal or uncontrollable cell growth, metastasis, interference with the normal functioning of neighboring cells, release of cytokines or other secretory products at abnormal levels, suppression or aggravation of inflammatory or immunological response, neoplasia, premalignancy, malignancy, invasion of surrounding or distant tissues or organs, such as lymph nodes, etc.


A “computer-based system” refers to a system of hardware, software, and data storage medium used to analyze information. The minimum hardware of a patient computer-based system comprises a central processing unit (CPU), and hardware for data input, data output (e.g., display), and data storage. An ordinarily skilled artisan can readily appreciate that any currently available computer-based systems and/or components thereof are suitable for use in connection with the methods of the present disclosure. The data storage medium may comprise any manufacture comprising a recording of the present information as described above, or a memory access device that can access such a manufacture.


To “record” data, programming or other information on a computer readable medium refers to a process for storing information, using any such methods as known in the art. Any convenient data storage structure may be chosen, based on the means used to access the stored information. A variety of data processor programs and formats can be used for storage, e.g. word processing text file, database format, etc.


A “processor” or “computing means” references any hardware and/or software combination that will perform the functions required of it. For example, a suitable processor may be a programmable digital microprocessor such as available in the form of an electronic controller, mainframe, server or personal computer (desktop or portable). Where the processor is programmable, suitable programming can be communicated from a remote location to the processor, or previously saved in a computer program product (such as a portable or fixed computer readable storage medium, whether magnetic, optical or solid state device based). For example, a magnetic medium or optical disk may carry the programming, and can be read by a suitable reader communicating with each processor at its corresponding station.


As used herein, “graph theory” refers to a field of study in Computer Science and Mathematics in which situations are represented by a diagram containing a set of points and lines connecting some of those points. The diagram is referred to as a “graph”, and the points and lines referred to as “vertices” and “edges” of the graph. In terms of gene co-expression analysis, a gene (or its equivalent identifier, e.g. an array probe) may be represented as a node or vertex in the graph. If the measures of similarity (e.g., correlation coefficient, mutual information, and alternating conditional expectation) between two genes are higher than a significant threshold, the two genes are said to be co-expressed and an edge will be drawn in the graph. When co-expressed edges for all possible gene pairs for a given study have been drawn, all maximal cliques are computed. The resulting maximal clique is defined as a gene clique. A gene clique is a computed co-expressed gene group that meets predefined criteria.


“Stringency” of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures. Hybridization generally depends on the ability of denatured DNA to reanneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature which can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel et al., Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995).


“Stringent conditions” or “high stringency conditions”, as defined herein, typically: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50° C.; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50 mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42° C.; or (3) employ 50% formamide, 5×SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5×Denhardt's solution, sonicated salmon sperm DNA (50 μg/ml), 0.1% SDS, and 10% dextran sulfate at 42° C., with washes at 42° C. in 0.2×SSC (sodium chloride/sodium citrate) and 50% formamide at 55° C., followed by a high-stringency wash consisting of 0.1×SSC containing EDTA at 55° C.


“Moderately stringent conditions” may be identified as described by Sambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength and % SDS) less stringent that those described above. An example of moderately stringent conditions is overnight incubation at 37° C. in a solution comprising: 20% formamide, 5×SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5×Denhardt's solution, 10% dextran sulfate, and 20 mg/ml denatured sheared salmon sperm DNA, followed by washing the filters in 1×SSC at about 37-50° C. The skilled artisan will recognize how to adjust the temperature, ionic strength, etc. as necessary to accommodate factors such as probe length and the like.


In the context of the present invention, reference to “at least one,” “at least two,” “at least five,” etc. of the genes listed in any particular gene set means any one or any and all combinations of the genes listed.


The term “node negative” cancer, such as “node negative” breast cancer, is used herein to refer to cancer that has not spread to the lymph nodes.


The terms “splicing” and “RNA splicing” are used interchangeably and refer to RNA processing that removes introns and joins exons to produce mature mRNA with continuous coding sequence that moves into the cytoplasm of a eukaryotic cell.


In theory, the term “exon” refers to any segment of an interrupted gene that is represented in the mature RNA product (B. Lewin. Genes IV Cell Press, Cambridge Mass. 1990). In theory the term “intron” refers to any segment of DNA that is transcribed but removed from within the transcript by splicing together the exons on either side of it. Operationally, exon sequences occur in the mRNA sequence of a gene as defined by Ref. SEQ ID numbers. Operationally, intron sequences are the intervening sequences within the genomic DNA of a gene, bracketed by exon sequences and having GT and AG splice consensus sequences at their 5′ and 3′ boundaries.


Gene Expression Assay

The present disclosure provides methods that employ, unless otherwise indicated, conventional techniques of molecular biology (including recombinant techniques), microbiology, cell biology, and biochemistry, which are within the skill of the art. Such techniques are explained fully in the literature, such as, “Molecular Cloning: A Laboratory Manual”, 2nd edition (Sambrook et al., 1989); “Oligonucleotide Synthesis” (M. J. Gait, ed., 1984); “Animal Cell Culture” (R. I. Freshney, ed., 1987); “Methods in Enzymology” (Academic Press, Inc.); “Handbook of Experimental Immunology”, 4th edition (D. M. Weir & C. C. Blackwell, eds., Blackwell Science Inc., 1987); “Gene Transfer Vectors for Mammalian Cells” (J. M. Miller & M. P. Calos, eds., 1987) “Current Protocols in Molecular Biology” (F. M. Ausubel et al., eds., 1987); and “PCR: The Polymerase Chain Reaction”, (Mullis et al., eds., 1994).


1. Gene Expression Profiling


Methods of gene expression profiling include methods based on hybridization analysis of polynucleotides, methods based on sequencing of polynucleotides, and proteomics-based methods. The most commonly used methods known in the art for the quantification of mRNA expression in a sample include northern blotting and in situ hybridization (Parker & Barnes, Methods in Molecular Biology 106:247-283 (1999)); RNAse protection assays (Hod, Biotechniques 13:852-854 (1992)); and PCR-based methods, such as reverse transcription polymerase chain reaction (RT-PCR) (Weis et al., Trends in Genetics 8:263-264 (1992)). Alternatively, antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes.


2. PCR-based Gene Expression Profiling Methods


a. Reverse Transcriptase PCR (RT-PCR)


Of the techniques listed above, the most sensitive and most flexible quantitative method is RT-PCR, which can be used to compare mRNA levels in different sample populations, in normal and tumor tissues, with or without drug treatment, to characterize patterns of gene expression, to discriminate between closely related mRNAs, and to analyze RNA structure.


The first step is the isolation of mRNA from a target sample. The starting material is typically total RNA isolated from human tumors or tumor cell lines, and corresponding normal tissues or cell lines, respectively. Thus RNA can be isolated from a variety of primary tumors, including breast, lung, colon, prostate, brain, liver, kidney, pancreas, spleen, thymus, testis, ovary, uterus, etc., tumor, or tumor cell lines, with pooled DNA from healthy donors. If the source of mRNA is a primary tumor, mRNA can be extracted, for example, from frozen or archived paraffin-embedded and fixed (e.g. formalin-fixed) tissue samples.


General methods for mRNA extraction are well known in the art and are disclosed in standard textbooks of molecular biology, including Ausubel et al., Current Protocols of Molecular Biology, John Wiley and Sons (1997). Methods for RNA extraction from paraffin embedded tissues are disclosed, for example, in Rupp and Locker. Lab Invest. 56:A67 (1987), and De Andrés et al., BioTechniques 18:42044 (1995). In particular, RNA isolation can be performed using purification kit, buffer set and protease from commercial manufacturers, such as Qiagen, according to the manufacturer's instructions. For example, total RNA from cells in culture can be isolated using Qiagen RNeasy mini-columns. Other commercially available RNA isolation kits include MasterPure™ Complete DNA and RNA Purification Kit (EPICENTRE®, Madison, Wis.), and Paraffin Block RNA Isolation Kit (Ambion, Inc.). Total RNA from tissue samples can be isolated using RNA Stat-60 (Tel-Test). RNA prepared from tumor can be isolated, for example, by cesium chloride density gradient centrifugation.


In some cases, it may be appropriate to amplify RNA prior to initiating expression profiling. It is often the case that only very limited amounts of valuable clinical specimens are available for molecular analysis. This may be due to the fact that the tissues have already be used for other laboratory analyses or may be due to the fact that the original specimen is very small as in the case of needle biopsy or very small primary tumors. When tissue is limiting in quantity it is generally also the case that only small amounts of total RNA can be recovered from the specimen and as a result only a limited number of genomic markers can be analyzed in the specimen. RNA amplification compensates for this limitation by faithfully reproducing the original RNA sample as a much larger amount of RNA of the same relative composition. Using this amplified copy of the original RNA specimen, unlimited genomic analysis can be done to discovery biomarkers associated with the clinical characteristics of the original biological sample. This effectively immortalizes clinical study specimens for the purposes of genomic analysis and biomarker discovery.


As RNA cannot serve as a template for PCR, the first step in gene expression profiling by real-time RT-PCR (RT-PCR) is the reverse transcription of the RNA template into cDNA, followed by its exponential amplification in a PCR reaction. The two most commonly used reverse transcriptases are avian myeloblastosis virus reverse transcriptase (AMV-RT) and Moloney murine leukemia virus reverse transcriptase (MMLV-RT). The reverse transcription step is typically primed using specific primers, random hexamers, or oligo-dT primers, depending on the circumstances and the goal of expression profiling. For example, extracted RNA can be reverse-transcribed using a GeneAmp RNA PCR kit (Perkin Elmer, Calif., USA), following the manufacturer's instructions. The derived cDNA can then be used as a template in the subsequent PCR reaction. For further details see, e.g. Held et al., Genome Research 6:986-994 (1996).


Although the PCR step can use a variety of thermostable DNA-dependent DNA polymerases, it typically employs the Taq DNA polymerase, which has a 5′-3′ nuclease activity but lacks a 3′-5′ proofreading endonuclease activity. Thus, TaqMan® PCR typically utilizes the 5′-nuclease activity of Taq or Tth polymerase to hydrolyze a hybridization probe bound to its target amplicon, but any enzyme with equivalent 5′ nuclease activity can be used. Two oligonucleotide primers are used to generate an amplicon typical of a PCR reaction. A third oligonucleotide, or probe, is designed to detect nucleotide sequence located between the two PCR primers. The probe is non-extendible by Taq DNA polymerase enzyme, and is labeled with a reporter fluorescent dye and a quencher fluorescent dye. Any laser-induced emission from the reporter dye is quenched by the quenching dye when the two dyes are located close together as they are on the probe. During the amplification reaction, the Taq DNA polymerase enzyme cleaves the probe in a template-dependent manner. The resultant probe fragments disassociate in solution, and signal from the released reporter dye is free from the quenching effect of the second fluorophore. One molecule of reporter dye is liberated for each new molecule synthesized, and detection of the unquenched reporter dye provides the basis for quantitative interpretation of the data.


TaqMan® RT-PCR can be performed using commercially available equipment, such as, for example, ABI PRISM 7900 Sequence Detection System™ (Perkin-Elmer-Applied Biosystems, Foster City, Calif., USA), or LightCycler® 480 Real-Time PCR System (Roche Diagnostics, GmbH, Penzberg, Germany). In a preferred embodiment, the 5′ nuclease procedure is run on a real-time quantitative PCR device such as the ABI PRISM 7900® Sequence Detection System™. The system consists of a thermocycler, laser, charge-coupled device (CCD), camera and computer. The system amplifies samples in a 384-well format on a thermocycler. During amplification, laser-induced fluorescent signal is collected in real-time through fiber optics cables for all 384 wells, and detected at the CCD. The system includes software for running the instrument and for analyzing the data.


5′-Nuclease assay data are initially expressed as Ct, or the threshold cycle. As discussed above, fluorescence values are recorded during every cycle and represent the amount of product amplified to that point in the amplification reaction. The point when the fluorescent signal is first recorded as statistically significant is the threshold cycle (C).


To minimize errors and the effect of sample-to-sample variation. RT-PCR is usually performed using an internal standard. The ideal internal standard is expressed at a constant level among different tissues, and is unaffected by the experimental treatment. RNAs most frequently used to normalize patterns of gene expression are mRNAs for the housekeeping genes glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) and β-actin.


The steps of a representative protocol for profiling gene expression using fixed, paraffin-embedded tissues as the RNA source, including mRNA isolation, purification, primer extension and amplification are given in various published journal articles. M. Cronin, Am J Pathol 164(1):35-42 (2004). Briefly, a representative process starts with cutting about 10 μm thick sections of paraffin-embedded tumor tissue samples. The RNA is then extracted, and protein and DNA are removed. After analysis of the RNA concentration, RNA repair and/or amplification steps may be included, if necessary, and RNA is reverse transcribed using gene specific primers followed by RT-PCR.


b. Design of Intron-Based PCR Primers and Probes


PCR primers and probes can be designed based upon exon or intron sequences present in the mRNA transcript of the gene of interest. Prior to carrying out primer/probe design, it is necessary to map the target gene sequence to the human genome assembly in order to identify intron-exon boundaries and overall gene structure. This can be performed using publicly available software, such as Primer3 (Whitehead Inst.) and Primer Express® (Applied Biosystems).


Where necessary or desired, repetitive sequences of the target sequence can be masked to mitigate non-specific signals. Exemplary tools to accomplish this include the Repeat Masker program available on-line through the Baylor College of Medicine, which screens DNA sequences against a library of repetitive elements and returns a query sequence in which the repetitive elements are masked. The masked intron and exon sequences can then be used to design primer and probe sequences for the desired target sites using any commercially or otherwise publicly available primer/probe design packages, such as Primer Express (Applied Biosystems); MGB assay-by-design (Applied Biosystems); Primer3 (Steve Rozen and Helen J. Skaletsky (2000) Primer3 on the WWW for general users and for biologist programmers. In: Rrawetz S, Misener S (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press, Totowa, N.J., pp 365-386).


Other factors that can influence PCR primer design include primer length, melting temperature (Tm), and G/C content, specificity, complementary primer sequences, and 3′-end sequence. In general, optimal PCR primers are generally 17-30 bases in length, and contain about 20-80%, such as, for example, about 50-60% G+C bases, and exhibit Tm's between 50 and 80° C., e.g. about 50 to 70° C.


For further guidelines for PCR primer and probe design see, e.g. Dieffenbach, C W. et al, “General Concepts for PCR Primer Design” in: PCR Primer, A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, 1995, pp. 133-155; Innis and Gelfand, “Optimization of PCRs” in: PCR Protocols, A Guide to Methods and Applications, CRC Press, London, 1994, pp. 5-11; and Plasterer, T. N. Primerselect: Primer and probe design. Methods MoI. Biol. 70:520-527 (1997), the entire disclosures of which are hereby expressly incorporated by reference.


Table A provides further information concerning the primer, probe, and amplicon sequences associated with the Examples disclosed herein.


c. MassARRAY System


In the MassARRAY-based gene expression profiling method, developed by Sequenom, Inc. (San Diego, Calif.) following the isolation of RNA and reverse transcription, the obtained cDNA is spiked with a synthetic DNA molecule (competitor), which matches the targeted cDNA region in all positions, except a single base, and serves as an internal standard. The cDNA/competitor mixture is PCR amplified and is subjected to a post-PCR shrimp alkaline phosphatase (SAP) enzyme treatment, which results in the dephosphorylation of the remaining nucleotides. After inactivation of the alkaline phosphatase, the PCR products from the competitor and cDNA are subjected to primer extension, which generates distinct mass signals for the competitor- and cDNA-derives PCR products. After purification, these products are dispensed on a chip array, which is pre-loaded with components needed for analysis with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. The cDNA present in the reaction is then quantified by analyzing the ratios of the peak areas in the mass spectrum generated. For further details see, e.g. Ding and Cantor, Proc. Natl. Acad. Sci. USA 100:3059-3064 (2003).


d. Other PCR-based Methods


Further PCR-based techniques include, for example, differential display (Liang and Pardee, Science 257:967-971 (1992)); amplified fragment length polymorphism (iAFLP) (Kawamoto et al., Genome Res. 12:1305-1312 (1999)); BeadArray™ technology (Illumina, San Diego, Calif.; Oliphant et al., Discovery of Markers for Disease (Supplement to Biotechniques), June 2002; Ferguson et al., Analytical Chemistry 72:5618 (2000)); BeadsArray for Detection of Gene Expression (BADGE), using the commercially available Luminex100 LabMAP system and multiple color-coded microspheres (Luminex Corp., Austin, Tex.) in a rapid assay for gene expression (Yang et al., Genome Res. 11:1888-1898 (2001)); and high coverage expression profiling (HiCEP) analysis (Fukumura et al., Nucl. Acids. Res. 31(16) e94 (2003)).


3. Microarravs


Differential gene expression can also be identified, or confirmed using the microarray technique. Thus, the expression profile of breast cancer-associated genes can be measured in either fresh or paraffin-embedded tumor tissue, using microarray technology. In this method, polynucleotide sequences of interest (including cDNAs and oligonucleotides) are plated, or arrayed, on a microchip substrate. The arrayed sequences are then hybridized with specific DNA probes from cells or tissues of interest. Just as in the RT-PCR method, the source of mRNA typically is total RNA isolated from human tumors or tumor cell lines, and corresponding normal tissues or cell lines. Thus RNA can be isolated from a variety of primary tumors or tumor cell lines. If the source of mRNA is a primary tumor, mRNA can be extracted, for example, from frozen or archived paraffin-embedded and fixed (e.g. formalin-fixed) tissue samples, which are routinely prepared and preserved in everyday clinical practice.


In a specific embodiment of the microarray technique, PCR amplified inserts of cDNA clones are applied to a substrate in a dense array. Preferably at least 10,000 nucleotide sequences are applied to the substrate. The microarrayed genes, immobilized on the microchip at 10,000 elements each, are suitable for hybridization under stringent conditions. Fluorescently labeled cDNA probes may be generated through incorporation of fluorescent nucleotides by reverse transcription of RNA extracted from tissues of interest. Labeled cDNA probes applied to the chip hybridize with specificity to each spot of DNA on the array. After stringent washing to remove non-specifically bound probes, the chip is scanned by confocal laser microscopy or by another detection method, such as a CCD camera. Quantitation of hybridization of each arrayed element allows for assessment of corresponding mRNA abundance. With dual color fluorescence, separately labeled cDNA probes generated from two sources of RNA are hybridized pairwise to the array. The relative abundance of the transcripts from the two sources corresponding to each specified gene is thus determined simultaneously. The miniaturized scale of the hybridization affords a convenient and rapid evaluation of the expression pattern for large numbers of genes. Such methods have been shown to have the sensitivity required to detect rare transcripts, which are expressed at a few copies per cell, and to reproducibly detect at least approximately two-fold differences in the expression levels (Schena et al., Proc. Natl. Acad. Sci. USA 93(2):106-149 (1996)). Microarray analysis can be performed by commercially available equipment, following manufacturer's protocols, such as by using the Affymetrix GenChip technology, or Agilent's microarray technology.


The development of microarray methods for large-scale analysis of gene expression makes it possible to search systematically for molecular markers of cancer classification and outcome prediction in a variety of tumor types.


4. Gene Expression Analysis by Nucleic Acid Sequencing


Nucleic acid sequencing technologies are suitable methods for analysis of gene expression. The principle underlying these methods is that the number of times a cDNA sequence is detected in a sample is directly related to the relative expression of the mRNA corresponding to that sequence. These methods are sometimes referred to by the term Digital Gene Expression (DGE) to reflect the discrete numeric property of the resulting data. Early methods applying this principle were Serial Analysis of Gene Expression (SAGE) and Massively Parallel Signature Sequencing (MPSS). See, e.g., S. Brenner, et al., Nature Biotechnology 18(6):630-634 (2000). More recently, the advent of “next-generation” sequencing technologies has made DGE simpler, higher throughput, and more affordable. As a result, more laboratories are able to utilize DGE to screen the expression of more genes in more individual patient samples than previously possible. See, e.g., J. Marioni, Genome Research 18(9):1509-1517 (2008); R. Morin, Genome Research 18(4):610-621 (2008); A. Mortazavi, Nature Methods 5(7):621-628 (2008); N. Cloonan, Nature Methods 5(7):613-619 (2008).


5. Isolating RNA from Body Fluids


Methods of isolating RNA for expression analysis from blood, plasma and serum (See for example, Tsui N B et al. (2002) 48, 1647-53 and references cited therein) and from urine (See for example, Boom R et al. (1990) J Clin Microbiol. 28, 495-503 and reference cited therein) have been described.


6. Immunohistochemistry


Immunohistochemistry methods are also suitable for detecting the expression levels of the prognostic markers of the present invention. Thus, antibodies or antisera, preferably polyclonal antisera, and most preferably monoclonal antibodies specific for each marker are used to detect expression. The antibodies can be detected by direct labeling of the antibodies themselves, for example, with radioactive labels, fluorescent labels, hapten labels such as, biotin, or an enzyme such as horse radish peroxidase or alkaline phosphatase. Alternatively, unlabeled primary antibody is used in conjunction with a labeled secondary antibody, comprising antisera, polyclonal antisera or a monoclonal antibody specific for the primary antibody. Immunohistochemistry protocols and kits are well known in the art and are commercially available.


7. Proteomics


The term “proteome” is defined as the totality of the proteins present in a sample (e.g. tissue, organism, or cell culture) at a certain point of time. Proteomics includes, among other things, study of the global changes of protein expression in a sample (also referred to as “expression proteomics”). Proteomics typically includes the following steps: (1) separation of individual proteins in a sample by 2-D gel electrophoresis (2-D PAGE); (2) identification of the individual proteins recovered from the gel, e.g. my mass spectrometry or N-terminal sequencing, and (3) analysis of the data using bioinformatics. Proteomics methods are valuable supplements to other methods of gene expression profiling, and can be used, alone or in combination with other methods, to detect the products of the prognostic markers of the present invention.


8. General Description of the mRNA Isolation, Purification, and Amplification


The steps of a representative protocol for profiling gene expression using fixed, paraffin-embedded tissues as the RNA source, including mRNA isolation, purification, primer extension and amplification are provided in various published journal articles (for example: T. E. Godfrey et al., J. Molec. Diagnostics 2: 84-91 [2000]: K. Specht et al., Am. J. Pathol. 158: 419-29 [2001]). Briefly, a representative process starts with cutting about 10 μm thick sections of paraffin-embedded tumor tissue samples. The RNA is then extracted, and protein and DNA are removed. After analysis of the RNA concentration, RNA repair and/or amplification steps may be included, if necessary, and RNA is reverse transcribed using gene specific primers followed by RT-PCR. Finally, the data are analyzed to identify the best treatment option(s) available to the patient on the basis of the characteristic gene expression pattern identified in the tumor sample examined, dependent on the predicted likelihood of cancer recurrence.


9. Normalization


The expression data used in the methods disclosed herein can be normalized. Normalization refers to a process to correct for (normalize away), for example, differences in the amount of RNA assayed and variability in the quality of the RNA used, to remove unwanted sources of systematic variation in Ct measurements, and the like. With respect to RT-PCR experiments involving archived fixed paraffin embedded tissue samples, sources of systematic variation are known to include the degree of RNA degradation relative to the age of the patient sample and the type of fixative used to preserve the sample. Other sources of systematic variation are attributable to laboratory processing conditions.


Assays can provide for normalization by incorporating the expression of certain normalizing genes, which genes do not significantly differ in expression levels under the relevant conditions. Exemplary normalization genes include housekeeping genes such as PGK1 and UBB. (See, e.g., E. Eisenberg, et al., Trends in Genetics 19(7):362-365 (2003).) Normalization can be based on the mean or median signal (CT) of all of the assayed genes or a large subset thereof (global normalization approach). In general, the normalizing genes, also referred to as reference genes should be genes that are known not to exhibit significantly different expression in colorectal cancer as compared to non-cancerous colorectal tissue, and are not significantly affected by various sample and process conditions, thus provide for normalizing away extraneous effects.


Unless noted otherwise, normalized expression levels for each mRNA/tested tumor/patient will be expressed as a percentage of the expression level measured in the reference set. A reference set of a sufficiently high number (e.g. 40) of tumors yields a distribution of normalized levels of each mRNA species. The level measured in a particular tumor sample to be analyzed falls at some percentile within this range, which can be determined by methods well known in the art.


In exemplary embodiments, one or more of the following genes are used as references by which the expression data is normalized: AAMP, ARF1, EEF1A1, ESD, GPS1, H3F3A, HNRPC, RPL13A, RPL41, RPS23, RPS27, SDHA, TCEA1, UBB, YWHAZ, B-actin, GUS, GAPDH, RPLPO, and TFRC. For example, the calibrated weighted average Ct measurements for each of the prognostic genes may be normalized relative to the mean of at least three reference genes, at least four reference genes, or at least five reference genes.


Those skilled in the art will recognize that normalization may be achieved in numerous ways, and the techniques described above are intended only to be exemplary, not exhaustive.


Reporting Results

The methods of the present disclosure are suited for the preparation of reports summarizing the expected or predicted clinical outcome resulting from the methods of the present disclosure. A “report,” as described herein, is an electronic or tangible document that includes report elements that provide information of interest relating to a likelihood assessment or a risk assessment and its results. A subject report includes at least a likelihood assessment or a risk assessment, e.g., an indication as to the risk of recurrence of breast cancer, including local recurrence and metastasis of breast cancer. A subject report can include an assessment or estimate of one or more of disease-free survival, recurrence-free survival, metastasis-free survival, and overall survival. A subject report can be completely or partially electronically generated, e.g., presented on an electronic display (e.g., computer monitor). A report can further include one or more of: 1) information regarding the testing facility; 2) service provider information; 3) patient data; 4) sample data; 5) an interpretive report, which can include various information including: a) indication; b) test data, where test data can include a normalized level of one or more genes of interest, and 6) other features.


The present disclosure thus provides for methods of creating reports and the reports resulting therefrom. The report may include a summary of the expression levels of the RNA transcripts, or the expression products of such RNA transcripts, for certain genes in the cells obtained from the patient's tumor. The report can include information relating to prognostic covariates of the patient. The report may include an estimate that the patient has an increased risk of recurrence. That estimate may be in the form of a score or patient stratifier scheme (e.g., low, intermediate, or high risk of recurrence). The report may include information relevant to assist with decisions about the appropriate surgery (e.g., partial or total mastectomy) or treatment for the patient.


Thus, in some embodiments, the methods of the present disclosure further include generating a report that includes information regarding the patient's likely clinical outcome, e.g. risk of recurrence. For example, the methods disclosed herein can further include a step of generating or outputting a report providing the results of a subject risk assessment, which report can be provided in the form of an electronic medium (e.g., an electronic display on a computer monitor), or in the form of a tangible medium (e.g., a report printed on paper or other tangible medium).


A report that includes information regarding the patient's likely prognosis (e.g., the likelihood that a patient having breast cancer will have a good prognosis or positive clinical outcome in response to surgery and/or treatment) is provided to a user. An assessment as to the likelihood is referred to below as a “risk report” or, simply, “risk score.” A person or entity that prepares a report (“report generator”) may also perform the likelihood assessment. The report generator may also perform one or more of sample gathering, sample processing, and data generation, e.g., the report generator may also perform one or more of: a) sample gathering; b) sample processing; c) measuring a level of a risk gene; d) measuring a level of a reference gene; and e) determining a normalized level of a risk gene. Alternatively, an entity other than the report generator can perform one or more sample gathering, sample processing, and data generation.


For clarity, it should be noted that the term “user,” which is used interchangeably with “client,” is meant to refer to a person or entity to whom a report is transmitted, and may be the same person or entity who does one or more of the following: a) collects a sample; b) processes a sample; c) provides a sample or a processed sample; and d) generates data (e.g., level of a risk gene; level of a reference gene product(s); normalized level of a risk gene (“prognosis gene”) for use in the likelihood assessment. In some cases, the person(s) or entity(ies) who provides sample collection and/or sample processing and/or data generation, and the person who receives the results and/or report may be different persons, but are both referred to as “users” or “clients” herein to avoid confusion. In certain embodiments, e.g., where the methods are completely executed on a single computer, the user or client provides for data input and review of data output. A “user” can be a health professional (e.g., a clinician, a laboratory technician, a physician (e.g., an oncologist, surgeon, pathologist), etc.).


In embodiments where the user only executes a portion of the method, the individual who, after computerized data processing according to the methods of the present disclosure, reviews data output (e.g., results prior to release to provide a complete report, a complete, or reviews an “incomplete” report and provides for manual intervention and completion of an interpretive report) is referred to herein as a “reviewer.” The reviewer may be located at a location remote to the user (e.g., at a service provided separate from a healthcare facility where a user may be located).


Where government regulations or other restrictions apply (e.g., requirements by health, malpractice, or liability insurance), all results, whether generated wholly or partially electronically, are subjected to a quality control routine prior to release to the user.


Clinical Utility

The gene expression assay and information provided by the practice of the methods disclosed herein facilitates physicians in making more well-informed treatment decisions, and to customize the treatment of cancer to the needs of individual patients, thereby maximizing the benefit of treatment and minimizing the exposure of patients to unnecessary treatments which may provide little or no significant benefits and often carry serious risks due to toxic side-effects.


Single or multi-analyte gene expression tests can be used measure the expression level of one or more genes involved in each of several relevant physiologic processes or component cellular characteristics. The expression level(s) may be used to calculate such a quantitative score, and such score may be arranged in subgroups (e.g., tertiles) wherein all patients in a given range are classified as belonging to a risk category (e.g., low, intermediate, or high). The grouping of genes may be performed at least in part based on knowledge of the contribution of the genes according to physiologic functions or component cellular characteristics, such as in the groups discussed above.


The utility of a gene marker in predicting cancer may not be unique to that marker. An alternative marker having an expression pattern that is parallel to that of a selected marker gene may be substituted for, or used in addition to, a test marker. Due to the co-expression of such genes, substitution of expression level values should have little impact on the overall prognostic utility of the test. The closely similar expression patterns of two genes may result from involvement of both genes in the same process and/or being under common regulatory control in colon tumor cells. The present disclosure thus contemplates the use of such co-expressed genes or gene sets as substitutes for, or in addition to, prognostic methods of the present disclosure.


The molecular assay and associated information provided by the methods disclosed herein for predicting the clinical outcome in cancer, e.g. breast cancer, have utility in many areas, including in the development and appropriate use of drugs to treat cancer, to stratify cancer patients for inclusion in (or exclusion from) clinical studies, to assist patients and physicians in making treatment decisions, provide economic benefits by targeting treatment based on personalized genomic profile, and the like. For example, the recurrence score may be used on samples collected from patients in a clinical trial and the results of the test used in conjunction with patient outcomes in order to determine whether subgroups of patients are more or less likely to demonstrate an absolute benefit from a new drug than the whole group or other subgroups. Further, such methods can be used to identify from clinical data subsets of patients who are expected to benefit from adjuvant therapy. Additionally, a patient is more likely to be included in a clinical trial if the results of the test indicate a higher likelihood that the patient will have a poor clinical outcome if treated with surgery alone and a patient is less likely to be included in a clinical trial if the results of the test indicate a lower likelihood that the patient will have a poor clinical outcome if treated with surgery alone.


Statistical Analysis of Gene Expression Levels

One skilled in the art will recognize that there are many statistical methods that may be used to determine whether there is a significant relationship between an outcome of interest (e.g., likelihood of survival, likelihood of response to chemotherapy) and expression levels of a marker gene as described here. This relationship can be presented as a continuous recurrence score (RS), or patients may stratified into risk groups (e.g., low, intermediate, high). For example, a Cox proportional hazards regression model may fit to a particular clinical endpoint (e.g., RFS, DFS, OS). One assumption of the Cox proportional hazards regression model is the proportional hazards assumption, i.e. the assumption that effect parameters multiply the underlying hazard.


Coexpression Analysis

The present disclosure provides genes that co-express with particular prognostic and/or predictive gene that has been identified as having a significant correlation to recurrence and/or treatment benefit. To perform particular biological processes, genes often work together in a concerted way, i.e. they are co-expressed. Co-expressed gene groups identified for a disease process like cancer can serve as biomarkers for disease progression and response to treatment. Such co-expressed genes can be assayed in lieu of, or in addition to, assaying of the prognostic and/or predictive gene with which they are co-expressed.


One skilled in the art will recognize that many co-expression analysis methods now known or later developed will fall within the scope and spirit of the present invention. These methods may incorporate, for example, correlation coefficients, co-expression network analysis, clique analysis, etc., and may be based on expression data from RT-PCR, microarrays, sequencing, and other similar technologies. For example, gene expression clusters can be identified using pair-wise analysis of correlation based on Pearson or Spearman correlation coefficients. (See, e.g., Pearson K. and Lee A., Biometrika 2, 357 (1902); C. Spearman, Amer. J. Psychol 15:72-101 (1904); J. Myers, A. Well, Research Design and Statistical Analysis, p. 508 (2nd Ed., 2003).) In general, a correlation coefficient of equal to or greater than 0.3 is considered to be statistically significant in a sample size of at least 20. (See, e.g., G. Norman, D. Streiner, Biostatistics: The Bare Essentials, 137-138 (3rd Ed. 2007).) In one embodiment disclosed herein, co-expressed genes were identified using a Spearman correlation value of at least 0.7.


Computer Program

The values from the assays described above, such as expression data, recurrence score, treatment score and/or benefit score, can be calculated and stored manually. Alternatively, the above-described steps can be completely or partially performed by a computer program product. The present invention thus provides a computer program product including a computer readable storage medium having a computer program stored on it. The program can, when read by a computer, execute relevant calculations based on values obtained from analysis of one or more biological sample from an individual (e.g., gene expression levels, normalization, thresholding, and conversion of values from assays to a score and/or graphical depiction of likelihood of recurrence/response to chemotherapy, gene co-expression or clique analysis, and the like). The computer program product has stored therein a computer program for performing the calculation.


The present disclosure provides systems for executing the program described above, which system generally includes: a) a central computing environment; b) an input device, operatively connected to the computing environment, to receive patient data, wherein the patient data can include, for example, expression level or other value obtained from an assay using a biological sample from the patient, or microarray data, as described in detail above; c) an output device, connected to the computing environment, to provide information to a user (e.g., medical personnel); and d) an algorithm executed by the central computing environment (e.g., a processor), where the algorithm is executed based on the data received by the input device, and wherein the algorithm calculates a, risk, risk score, or treatment group classification, gene co-expression analysis, thresholding, or other functions described herein. The methods provided by the present invention may also be automated in whole or in part.


Manual and Computer-Assisted Methods and Products

The methods and systems described herein can be implemented in numerous ways. In one embodiment of particular interest, the methods involve use of a communications infrastructure, for example the Internet. Several embodiments are discussed below. It is also to be understood that the present disclosure may be implemented in various forms of hardware, software, firmware, processors, or a combination thereof. The methods and systems described herein can be implemented as a combination of hardware and software. The software can be implemented as an application program tangibly embodied on a program storage device, or different portions of the software implemented in the user's computing environment (e.g., as an applet) and on the reviewer's computing environment, where the reviewer may be located at a remote site associated (e.g., at a service provider's facility).


For example, during or after data input by the user, portions of the data processing can be performed in the user-side computing environment. For example, the user-side computing environment can be programmed to provide for defined test codes to denote a likelihood “risk score,” where the score is transmitted as processed or partially processed responses to the reviewer's computing environment in the form of test code for subsequent execution of one or more algorithms to provide a results and/or generate a report in the reviewer's computing environment. The risk score can be a numerical score (representative of a numerical value, e.g. likelihood of recurrence based on validation study population) or a non-numerical score representative of a numerical value or range of numerical values (e.g., low, intermediate, or high).


The application program for executing the algorithms described herein may be uploaded to, and executed by, a machine comprising any suitable architecture. In general, the machine involves a computer platform having hardware such as one or more central processing units (CPU), a random access memory (RAM), and input/output (/O) interface(s). The computer platform also includes an operating system and microinstruction code. The various processes and functions described herein may either be part of the microinstruction code or part of the application program (or a combination thereof) that is executed via the operating system. In addition, various other peripheral devices may be connected to the computer platform such as an additional data storage device and a printing device.


As a computer system, the system generally includes a processor unit. The processor unit operates to receive information, which can include test data (e.g., level of a risk gene, level of a reference gene product(s); normalized level of a gene; and may also include other data such as patient data. This information received can be stored at least temporarily in a database, and data analyzed to generate a report as described above.


Part or all of the input and output data can also be sent electronically; certain output data (e.g., reports) can be sent electronically or telephonically (e.g., by facsimile, e.g., using devices such as fax back). Exemplary output receiving devices can include a display element, a printer, a facsimile device and the like. Electronic forms of transmission and/or display can include email, interactive television, and the like. In an embodiment of particular interest, all or a portion of the input data and/or all or a portion of the output data (e.g., usually at least the final report) are maintained on a web server for access, preferably confidential access, with typical browsers. The data may be accessed or sent to health professionals as desired. The input and output data, including all or a portion of the final report, can be used to populate a patient's medical record which may exist in a confidential database at the healthcare facility.


A system for use in the methods described herein generally includes at least one computer processor (e.g., where the method is carried out in its entirety at a single site) or at least two networked computer processors (e.g., where data is to be input by a user (also referred to herein as a “client”) and transmitted to a remote site to a second computer processor for analysis, where the first and second computer processors are connected by a network, e.g., via an intranet or internet). The system can also include a user component(s) for input; and a reviewer component(s) for review of data, generated reports, and manual intervention. Additional components of the system can include a server component(s); and a database(s) for storing data (e.g., as in a database of report elements, e.g., interpretive report elements, or a relational database (RDB) which can include data input by the user and data output. The computer processors can be processors that are typically found in personal desktop computers (e.g., IBM, Dell, Macintosh), portable computers, mainframes, minicomputers, or other computing devices.


The networked client/server architecture can be selected as desired, and can be, for example, a classic two or three tier client server model. A relational database management system (RDMS), either as part of an application server component or as a separate component (RDB machine) provides the interface to the database.


In one example, the architecture is provided as a database-centric client/server architecture, in which the client application generally requests services from the application server which makes requests to the database (or the database server) to populate the report with the various report elements as required, particularly the interpretive report elements, especially the interpretation text and alerts. The server(s) (e.g., either as part of the application server machine or a separate RDB/relational database machine) responds to the client's requests.


The input client components can be complete, stand-alone personal computers offering a full range of power and features to run applications. The client component usually operates under any desired operating system and includes a communication element (e.g., a modem or other hardware for connecting to a network), one or more input devices (e.g., a keyboard, mouse, keypad, or other device used to transfer information or commands), a storage element (e.g., a hard drive or other computer-readable, computer-writable storage medium), and a display element (e.g., a monitor, television, LCD, LED, or other display device that conveys information to the user). The user enters input commands into the computer processor through an input device. Generally, the user interface is a graphical user interface (GUI) written for web browser applications.


The server component(s) can be a personal computer, a minicomputer, or a mainframe and offers data management, information sharing between clients, network administration and security. The application and any databases used can be on the same or different servers.


Other computing arrangements for the client and server(s), including processing on a single machine such as a mainframe, a collection of machines, or other suitable configuration are contemplated. In general, the client and server machines work together to accomplish the processing of the present disclosure.


Where used, the database(s) is usually connected to the database server component and can be any device that will hold data. For example, the database can be a any magnetic or optical storing device for a computer (e.g., CDROM, internal hard drive, tape drive). The database can be located remote to the server component (with access via a network, modem, etc.) or locally to the server component.


Where used in the system and methods, the database can be a relational database that is organized and accessed according to relationships between data items. The relational database is generally composed of a plurality of tables (entities). The rows of a table represent records (collections of information about separate items) and the columns represent fields (particular attributes of a record). In its simplest conception, the relational database is a collection of data entries that “relate” to each other through at least one common field.


Additional workstations equipped with computers and printers may be used at point of service to enter data and, in some embodiments, generate appropriate reports, if desired. The computer(s) can have a shortcut (e.g., on the desktop) to launch the application to facilitate initiation of data entry, transmission, analysis, report receipt, etc. as desired.


Computer-Readable Storage Media

The present disclosure also contemplates a computer-readable storage medium (e.g. CD-ROM, memory key, flash memory card, diskette, etc.) having stored thereon a program which, when executed in a computing environment, provides for implementation of algorithms to carry out all or a portion of the results of a response likelihood assessment as described herein. Where the computer-readable medium contains a complete program for carrying out the methods described herein, the program includes program instructions for collecting, analyzing and generating output, and generally includes computer readable code devices for interacting with a user as described herein, processing that data in conjunction with analytical information, and generating unique printed or electronic media for that user.


Where the storage medium provides a program that provides for implementation of a portion of the methods described herein (e.g., the user-side aspect of the methods (e.g., data input, report receipt capabilities, etc.)), the program provides for transmission of data input by the user (e.g., via the internet, via an intranet, etc.) to a computing environment at a remote site. Processing or completion of processing of the data is carried out at the remote site to generate a report. After review of the report, and completion of any needed manual intervention, to provide a complete report, the complete report is then transmitted back to the user as an electronic document or printed document (e.g., fax or mailed paper report). The storage medium containing a program according to the present disclosure can be packaged with instructions (e.g., for program installation, use, etc.) recorded on a suitable substrate or a web address where such instructions may be obtained. The computer-readable storage medium can also be provided in combination with one or more reagents for carrying out response likelihood assessment (e.g., primers, probes, arrays, or other such kit components).


All aspects of the present invention may also be practiced such that a limited number of additional genes that are co-expressed with the disclosed genes, for example as evidenced by statistically meaningful Pearson and/or Spearman correlation coefficients, are included in a prognostic or predictive test in addition to and/or in place of disclosed genes.


Having described the invention, the same will be more readily understood through reference to the following Examples, which are provided by way of illustration, and are not intended to limit the invention in any way.


Example 1

The study included breast cancer tumor samples obtained from 136 patients diagnosed with breast cancer (“Providence study”). Biostatistical modeling studies of prototypical data sets demonstrated that amplified RNA is a useful substrate for biomarker identification studies. This was verified in this study by including known breast cancer biomarkers along with candidate prognostic genes in the tissues samples. The known biomarkers were shown to be associated with clinical outcome in amplified RNA based on the criteria outlined in this protocol.


Study Design

Refer to the original Providence Phase II study protocol for biopsy specimen information. The study looked at the statistical association between clinical outcome and 384candidate biomarkers tested in amplified samples derived from 25 ng of mRNA that was extracted from fixed, paraffin-embedded tissue samples obtained from 136 of the original Providence Phase II study samples. The expression level of the candidate genes was normalized using reference genes. Several reference genes were analyzed in this study: AAMP, ARF1, EEF1A1, ESD, GPS1, H3F3A, HNRPC, RPL13A, RPL41, RPS23, RPS27, SDHA, TCEA1, UBB, YWHAZ, B-actin, GUS, GAPDH, RPLPO, and TFRC.


The 136 samples were split into 3 automated RT plates each with 2×48 samples and 40 samples and 3 RT positive and negative controls. Quantitative PCR assays were performed in 384 wells without replicate using the QuantiTect Probe PCR Master Mix® (Qiagen). Plates were analyzed on the Light Cycler® 480 and, after data quality control, all samples from the RT plate 3 were repeated and new RT-PCR data was generated. The data was normalized by subtracting the median crossing point (CP) (point at which detection rises above background signal) for five reference genes from the CP value for each individual candidate gene. This normalization is performed on each sample resulting in final data that has been adjusted for differences in overall sample CP. This data set was used for the final data analysis.


Data Analysis

For each gene, a standard z test was run. (S. Darby, J. Reissland, Journal of the Royal Statistical Society 144(3):298-331 (1981)). This returns a z score (measure of distance in standard deviations of a sample from the mean), p value, and residuals along with other statistics and parameters from the model. If the z score is negative, expression is positively correlated with a good prognosis; if positive, expression is negatively correlated to a good prognosis. Using the p values, a q value was created using a library q value. The poorly correlated and weakly expressed genes were excluded from the calculation of the distribution used for the q values. For each gene, Cox Proportional Hazard Model test was run checking survival time matched with the event vector against gene expression. This returned a hazard ratio (HR) estimating the effect of expression of each gene (individually) on the risk of a cancer-related event. The resulting data is provided in Tables 1-6. A HR<1 indicates that expression of that gene is positively associated with a good prognosis, while a HR>1 indicates that expression of that gene is negatively associated with a good prognosis.


Example 2

Study Design


Amplified samples were derived from 25 ng of mRNA that was extracted from fixed, paraffin-embedded tissue samples obtained from 78 evaluable cases from a Phase 11 breast cancer study conducted at Rush University Medical Center. Three of the samples failed to provide sufficient amplified RNA at 25 ng, so amplification was repeated a second time with 50 ng of RNA. The study also analyzed several reference genes for use in normalization: AAMP, ARF1, EEF1A1, ESD, GPS1, H3F3A, HNRPC, RPL13A, RPL41, RPS23, RPS27, SDHA, TCEA1, UBB, YWHAZ, Beta-actin, RPLPO, TFRC, GUS, and GAPDH.


Assays were performed in 384 wells without replicate using the QuantiTect Probe PCR Master Mix. Plates were analyzed on the Light Cycler 480 instruments. This data set was used for the final data analysis. The data was normalized by subtracting the median CP for five reference genes from the CP value for each individual candidate gene. This normalization was performed on each sample resulting in final data that was adjusted for differences in overall sample CP.


Data Analysis


There were 34 samples with average CP values above 35. However, none of the samples were excluded from analysis because they were deemed to have sufficient valuable information to remain in the study. Principal Component Analysis (PCA) was used to determine whether there was a plate effect causing variation across the different RT plates. The first principal component correlated well with the median expression values, indicating that expression level accounted for most of the variation between samples. Also, there were no unexpected variations between plates.


Data for Other Variables


Group—The patients were divided into two groups (cancer/non-cancer). There was little difference between the two in overall gene expression as the difference between median CP value in each group was minimal (0.7).


Sample Age—The samples varied widely in their overall gene expression but there was a trend toward lower CP values as they decreased in age.


Instrument—The overall sample gene expression from instrument to instrument was consistent. One instrument showed a slightly higher median CP compared to the other three, but it was well within the acceptable variation.


RT Plate—The overall sample gene expression between RT plates was also very consistent. The median CP for each of the 3 RT plates (2 automated RT plates and 1 manual plate containing repeated samples) were all within 1 Cr of each other.


Univariate Analyses for Genes Significantly Different Between Study Groups


The genes were analyzed using the z-test and Cox Proportional Hazard Model, as described in Example 1. The resulting data can be seen in Tables 7-12.


Example 3

The statistical correlations between clinical outcome and expression levels of the genes identified in Examples 1 and 2 were validated in breast cancer gene expression datasets maintained by the Swiss Institute of Bioinformatics (SIB). Further information concerning the SIB database, study datasets, and processing methods, is providing in P. Wirapati, et al., Breast Cancer Research 10(4):R65 (2008). Univariate Cox proportional hazards analyses were performed to confirm the relationship between clinical outcome (DFS, MFS, OS) of breast cancer patients and expression levels of the genes identified as significant in the amplified RNA studies described above. The meta-analysis included both fixed-effect and random-effect models, which are further described in L. Hedges and J. Vevea, Psychological Methods 3 (4): 486-504 (1998) and K. Sidik and J. Jonkman, Statistics in Medicine 26:1964-1981 (2006) (the contents of which are incorporated herein by reference). The results of the validation for all genes identified as having a stastistically significant association with breast cancer clinical outcome are described in Table 13. In those tables, “Est” designates an estimated coefficient of a covariate (gene expression); “SE” is standard error; “t” is the t-score for this estimate (i.e., Est/SE); and “fe” is the fixed estimate of effect from the meta analysis. Several of gene families with significant statistical association with clinical outcome (including metabolic, proliferation, immune, and stromal group genes) in breast cancer were confirmed using the SIB dataset. For example, Table 14 contains analysis of genes included in the metabolic group and Table 15 the stromal group.


Example 4

A co-expression analysis was conducted using microarray data from six (6) breast cancer data sets. The “processed” expression values are taken from the GEO website, however, further processing was necessary. If the expression values are RMA, they are median normalized on the sample level. If the expression values are MAS5.0, they are: (1) changed to 10 if they are <10; (2) log base e transformed; and (3) median normalized on the sample level.


Generating Correlation Pairs: A rank matrix was generated by arranging the expression values for each sample in decreasing order. Then a correlation matrix was created by calculating the Spearman correlation values for every pair of probe IDs. Pairs of probes which had a Spearman value ≥0.7 were considered co-expressed. Redundant or overlapping correlation pairs in multiple datasets were identified. For each correlation matrix generated from an array dataset, pairs of significant probes that occur in >1 dataset were identified. This served to filter “non-significant” pairs from the analysis as well as provide extra evidence for “significant” pairs with their presence in multiple datasets. Depending on the number of datasets included in each tissue specific analysis, only pairs which occur in a minimum # or % of datasets were included.


Co-expression cliques were generated using the Bron-Kerbosch algorithm for maximal clique finding in an undirected graph. The algorithm generates thre sets of nodes: compsub, candidates, and not. Compsub contains the set of nodes to be extended or shrunk by one depending on its traversal direction on the tree search. Candidates consists of all the nodes eligible to be added to compsub. Not contains the set of nodes that have been added to compsub and are now excluded from extension. The algorithm consists of five steps: selection of a candidate; adding the candidate node to compsub; creating new sets candidates and not from the old sets by removing all points not connected to the candidate node; recursively calling the extension operator on the new candidates and not sets; and upon return, remove the candidate node from compsub and place in the old not set.


There was a depth-first search with pruning, and the selection of candidate nodes had an effect on the run time of the algorithm. By selecting nodes in decreasing order of frequency in the pairs, the run time was optimized. Also, recursive algorithms generally cannot be implemented in a multi-threaded manner, but was multi-threaded the extension operator of the first recursive level. Since the data between the threads were independent because they were at the top-level of the recursive tree, they were run in parallel.


Clique Mapping and Normalization: Since the members of the co-expression pairs and cliques are at the probe level, one must map the probe IDs to genes (or Refseqs) before they can be analyzed. The Affymetrix gene map information was used to map every probe ID to a gene name. Probes may map to multiple genes, and genes may be represented by multiple probes. The data for each clique is validated by manually calculating the correlation values for each pair from a single clique.


The results of this co-expression analysis are set forth in Tables 16-18.




















TABLE A









SEQ

SEQ

SEQ
Target

SEQ




Official
F
ID
R
ID

ID
Seq

ID


Gene
Sequence ID
Symbol
Primer Seq
NO:
Primer Seq
NO:
Probe Seq
NO:
Length
Amplicon Sequence
NO:


























A-Catenin
NM_001903.1
CTNNA1
CGTTCCGAT
1
AGGTCCCTG
385
ATGCCTACAGCACCCTG
769
78
CGTTCCGATCCTCTATACTGCATCCCG
1153





TTGGCCTTA

TTGGCCTTA

ATGTCGCA


GCATGCCTACAGCACCCTGATGTCGCA






TAGG

TAGG




GCCTATAAGGCCAACAGGGACCT






AAMP
NM_001087.3
AAMP
GTGTGGCA
2
CTCCATCCA
386
CGCTTCAAAGGACCAGA
770
66
GTGTGGCAGGTGGACACTAAGGAGGAG
1154





GGTGGACA

CTCCAGGTC

CCTCCTC


GTCTGGTCCTTTGAAGCGGGAGACCTG






CTAA

TC




GAGTGGATGGAG






ABCB1
NM_000927.2
ABCB1
AAACACCA
3
CAAGCCTGG
387
CTCGCCAATGATGCTGCT
771
77
AAACACCACTGGAGCATTGACTACCAG
1155





CTGGAGCAT

AACCTATAG

CAAGTT


GCTCGCCAATGATGCTGCTCAAGTTAA






TGA

CC




AGGGGCTATAGGTTCCAGGCTTG






ABCC10
NM_033450.2
ABCC10
ACCAGTGCC
4
ATAGCGCTG
388
CCATGAGCTGTAGCCGA
772
68
ACCAGTGCCACAATGCAGTGGCTGGAC
1156





ACAATGCA

ACCACTGCC

ATGTCCA


ATTCGGCTACAGCTCATGGGGGCGGCA






G






GTGGTCAGCGCTAT






ABCC5
NM_005688.1
ABCC5
TGCAGACTG
5
GGCCAGCAC
389
CTGCACACGGTTCTAGG
773
76
TGCAGACTGTACCATGCTGACCATTGC
1157





TACCATGCT

CATAATCCT

CTCCG


CCATCGCCTGCCACGGTTCTAGGCTCC






GA

AT




GATAGGATTATGGTGCTGGCC






ABR
NM_001092.3
ABR
ACACGTCTG
6
ACTAGGGTG
390
TCTGCTCTACAAGCCCAT
774
67
ACACGTCTGTCACCATGGAAGCTCTGC
1158





TCACCATGG

CTCCGAGTG

TGACCG


TCTACAAGCCCATTGACCGGGTCACTC






AA

AC




GGAGCACCCTAGT






ACTR2
NM_005722.2
ACTR2
ATCCGCATT
7
ATCCGCTAG
391
CCCGCAGAAAGCACATG
775
66
ATCCGCATTGAAGACCCACCCCGCAGA
1159





GAAGACCC

AACTGCACC

GTATTCC


AAGCACATGGTATTCCTGGGTGGTGCA






A

AC




GTTCTAGCGGAT






ACVR2B
NM_001106.2
ACVR2B
GACTGTCTC
8
TGGGCTTAG
392
CTCTGTCACCAATGTGG
776
74
GACTGTCTCGTTTCCCTGGTGACCTCTG
1160





GTTTCCCTG

ATGCTTGAC

ACCTGCC


TCACCAATGTGGACCTGCCCCCTAAAG






GT

TC




AGTCAAGCATCTAAGCCCA






AD024
NM_020675.3
SPC25
TCAAAAGT
9
TGCAAATGC
393
TGTAGGTATCTCTTAGTC
777
74
TCAAAAGTACGGACACCTCCTGTCAGA
1161





ACGGACAC

TTTGATGGA

CCGCCATCTGA


TGGCGGGACTAAGAGATACCTACAAGG






CTCCT

AT




ATTCCATCAAAGCATTTGCA






ADAM12
NM_021641.2
ADAM12
GAGCATGC
10
CTGGTCACCG
394
CTGACACTCATCTGAGC
778
66
GAGCATGCGTCTACTGCCTCACTGACA
1162





GTCTACTGC

GTCTCCATG

CCTCCCA


CTCATCTGAGCCCTCCCATGACATGGA






CT

T




GACCGTGACCAG






ADAM17
NM_003183.3
ADAM17
GAAGTGCC
11
CGGGCACTC
395
TGCTACTTGCAAAGGCG
779
73
GAAGTGCCAGGAGGCGATTAATGCTAC
1163





AGGAGGCG

ACTGCTATT

TGTCCTACTGC


TTGCAAAGGCGTGTCCTACTGCACAGG






ATTA

ACC




TAATAGCAGTGAGTGCCCG






ADA23
NM_003812.1
ADAM23
CAAGGCCC
12
ACCCAGAAT
396
CTGCGTCCATGGACAC
780
62
CAAGGCCCCATCTGAATCAGCTGCGCT
1164





CATCTGAAT

CCAACAGTG

CGC


GGATGGACACCGCCTTGCACTGTTGGA






CA

CAA




TTCTGGGT






ADAMTS8
NM_007037.2
ADAMTS8
GCGAGTTCA
13
CACAGATGG
397
CACACAGGGTGCCATCA
781
72
GCGAGTTCAAAGTGTTCGAGGCCAAGG
1165





AAGTGTTCG

CCAGTGTTT

ATCACCT


TGATTGATGGCACCCTGTGTGGGCCAG






AG

CT




AAACACTGGCCATCTGTG






ADM
NM_001124.1
ADM
TAAGCCAC
14
TGGGCGCCT
398
CGAGTGGAAGTGCTCCC
782
75
TAAGCCACAAGCACACGGGGCTCCAGC
1166





AAGCACAC

AAATCCTAA

CACTTTC


CCCCCCGAGTGGAAGTGCTCCCCACTTT






GG






CTTTAGGATTTAGGCGCCCA






AES
NM_001130.4
AES
ACGAGATG
15
GGGCACAAA
399
CGATCTCAGCCTGTTTGT
783
78
ACGAGATGTCCTACGGCTTGAACATCG
1167





TCCTACGGC

TCCCGTTCA

GCATCTCGAT


AGATGCACAAACAGGCTGAGATCGTCA






TTGA

G




AAAGGCTGAACGGGATTTGTGCCC






AGR2
NM_006408.2
AGR2
AGCCAACA
16
TCTGATCTC
400
CAACACGTCACCACCCT
784
70
AGCCAACATGTGACTAATTGGAAGAAG
1168





TGTGACTAA

CATCTGCCT

TTGCTCT


AGCAAAGGGTGGTGACGTGTTGATGAG






TTGGA

CA




GCAGATGGAGATCAGA






AK055699
NM_194317
LYPD6
CTGCATGTG
17
TGTGGACCT
401
TGACCACACCAAAGCCT
785
78
CTGCATGTGATTGAATAAGAAACAAGA
1169





ATTGAATAA

GATCCCTGT

CCCTGG


AAGTGACCACACCAAAGCCTCCCTGGC






GAAACAAG

ACAC




TGGTGTACAGGGATCAGGTCCACA






A













AKR7A3
NM_012067.2
AKR7A3
GTGGAAAC
18
CCAGAGGGT
402
ACCTCAGTCCAAAGTGC
786
67
GTGGAAACGGAGCTCTTCCCCTGCCTC
1170





GGAGCTCTT

TGAAGGCAT

CTGAGGC


AGGCACTTTGGACTGAGGTTCTTGCCT






CC

AG




TCAACCCTCTGG






AKT3
NM_005465.1
AKT3
TTGTCTCTG
19
CCAGCATTA
403
TCACGGTACACAATCTTT
787
75
TTGTCTCTGCCTTGGACTATCTACATTC
1171





CCTTGGACT

GATTCTCCA

CCGGA


CGGAAAGATTGTGTACCGTGATCTCAA






ATCTACA

ACTTGA




GTTGGAGAATCTAATGCTGG






ALCAM
NM_001627.1
ALCAM
GAGGAATA
20
GTGGCGGAG
404
CCAGTTCCTGCCGTCTGC
788
66
GAGGAATATGGAATCCAAGGGGGCCA
1172





TGGAATCCA

ATCAAGAGG

TCTTCT


GTTCCTGCCGTCTGCTCTTCTGCCTCTT






AGGG






GATCTCCGCCAC






ALDH4
NM_003748.2
ALDH4A1
GGACAGGG
21
AACCGGAAG
405
CTGCAGCGTCAATCTCC
789
68
GGACAGGGTAAGACCGTGATCCAAGCG
1173





TAAGACCGT

AAGTCGATG

GCTTG


GAGATTGACGCTGCAGCGGAACTCATC






GAT

AG




GACTTCTTCCGGTT






ANGPT2
NM_001147.1
ANGPT2
CCGTGAAA
22
TTGCAGTGG
406
AAGCTGACACAGCCCTC
790
69
CCGTGAAAGCTGCTCTGTAAAAGCTGA
1174





GCTGCTCTG

GAAGAACAG

CCAAGTG


CACAGCCCTCCCAAGTGAGCAGGACTG






TAA

TC




TTCTTCCCACTGCAA






ANXA2
NM_004039.1
ANXA2
CAAGACAC
23
CGTGTCGGG
407
CCACCACACAGGTACAG
791
71
CAAGACACTAAGGGCGACTACCAGAAA
175





TAAGGGCG

CTTCAGTCA

CAGCGCT


GCGCTGCTGTACCTGTGTGGTGGAGAT






ACTACCA

T




GACTGAAGCCCGACCG






AP-1(JUN
NM_002228.2
JUN
GACTGCAA
24
TAGCCATAA
408
CTATGACGATGCCCTCA
792
81
GACTGCAAAGATGGAAACGACCTTCTA
1176


official)


AGATGGAA

GGTCCGCTC

ACGCCTC


TGACGATGCCCTCAACGCCTCGTTCCTC






ACGA

TC




CCGTCCGAGAGCGGACCTTATGGCTA






APEX-1
NM_001641.2
APEX1
GATGAAGC
25
AGGTCTCCA
409
CTTTCGGGAAGCCAGGC
793
68
GATGAAGCCTTTCGCAAGTCCTGAAG
1177





CTTTCGCAA

CACAGCACA

CCTT


GGCCTGGCTTCCCGAAAGCCCCTTGTG






GTT

AG




CTGTGTGGAGACCT






APOD
NM_001647.1
APOD
GTTTATGCC
26
GGAATACAC
410
ACTGGATCCTGGCCACC
794
67
GTTTATGCCATCGGCACCGTACTGGATC
1178





ATCGGCACC

GAGGGCATA

GACTATG


CTGGCCACCGACTATGAGAACTATGCC








GTTC




CTCGTGTATTCC






ARF1
NM_001658.2
ARF1
CAGTAGAG
27
ACAAGCACA
411
CTTGTCCTTGGGTCACCC
795
64
CAGTAGAGATCCCCGCAACTCGCTTGT
1179





ATCCCCGCA

TGGCTATGG

TGCA


CCTTGGGTCACCCTGCATTCCATAGCCA






ACT

AA




TGTGCTTGT






ARH1
NM_004675.1
DIRAS3
ATCAGAGA
28
ACTTGTGCA
412
ACACCAGCGGTGCCGAC
796
67
ATCAGAGATTACCGCGTCGTGGTAGTC
1180





TTACCGCGT

GCAGCGTAC

TACC


GGCACCGCTGGTGTGGGGAAAAGTACG






CGT

TT




CTGCTGCACAAGT






ARNT2
NM_014862.3
ARNT2
GACTGGGTC
29
GGAGTGACG
413
CTAGAGCCATCCTTGGC
797
68
GACTGGGTCAGTGATGGCAACAGGATG
1181





AGTGATGG

CATGGACAG

CATCCTG


GCCAAGGATGGCTCTAGAACACTCTG






CA

A




CCATGCGTCACTCC






ARSD
NM_001669.1
ARSD
TCCCTGAGA
30
TGGTGCCAT
414
CAAGAATCTTGCAGCAG
798
79
TCCCTGAGAACGAAACCACTTTTGCAA
1182





ACGAAACC

TTTCCTATG

CATGGCT


GAATCTTGCAGCAGCATGGCTATGCAA






ACT

AG




CCGGCCTCATAGGAAAATGGCACCA






AURKB
NM_004217.1
AURKB
AGCTGCAG
31
GCATCTGCC
415
TGACGAGCAGCGAACAG
799
67
AGCTGCAGAAGAGCGCACATTTGACG
1183





AAGAGCTG

AACTCCTCC

CCACG


AGCAGCGAACAGCCACGATCATGGAGG






CACAG

AT




AGTTGGCAGATGC






B-actin
NM_001101.2
ACTB
CAGCAGAT
32
GCATTTGCG
416
AGGAGTATGACGAGTCC
800
66
CAGCAGATGTGGATCAGCAAGCAGGAG
1184





GTGGATCA

GTGGACGAT

GGCCCC


TATGACGAGTCCGGCCCCTCCATCGTCC






GCAAG






ACCGCAAATGC






B-Catenin
NM_001904.1
CTNNB1
GGCTCTTGT
33
TCAGATGAC
417
AGGCTCAGTGATGTCTTC
801
80
GGCTCTTGTGCGTACTGTCCTTCGGGCT
1185





GCGTACTGT

GAAGAGCAC

CCTGTCACCAG


GGTGACAGGGAAGACATCACTGAGCCT






CCTT

AGATG




GCCATCTGTGCTCTTCGTCATCTGA






BAD
NM_032989.1
BAD
GGGTCAGG
34
CTGCTCACT
418
TGGGCCCAGAGCATGTT
802
73
GGGTCAGGTGCCTCGAGATCGGGCTTG
1186





TGCCTCGAG

CGGCTCAAA

CCAGATC


GGCCCAGAGCATGTTCCAGATCCCAGA






AT

CTC




GTTTGAGCCGAGTGAGCAG






BAG1
NM_004323.2
BAG1
CGTTGTCAG
35
GTTCAACCT
419
CCCAATTAACATGACCC
803
81
CGTTGTCAGCACTTGGAATACAAGATG
1187





CACTTGGAA

CTTCCTGTG

GGCAACCAT


GTTGCCGGGTCATGTTAATTGGGAAAA






TACAA

GACTGT




AGAACAGTCCACAGGAAGAGGTTGAAC






BAG4
NM_004874.2
BAG4
CCTACGGCC
36
GGGCGAAGA
420
AGATGTGCCGGTACACC
804
76
CCTACGGCCGCTACTACGGGCCTGGGG
1188





GCTACTACG

GGATATAAG

CACCTC


GTGGAGATGTGCCGGTACACCCACCTC








GG




CACCCTTATATCCTCTTCGCCC






BASE
NM_173859.1

GACTCCTCA
37
CGAAGGCAC
421
CCAGCCTGCAGACAACT
805
72
GACTCCTCAGGGCAGACTTTCTTCCCAG
1189





GGGCAGAC

TACTCAATG

GGCCTC


CCTGCAGACAACTGGCCTCCAGAAACC






TTTCTT

GTTTC




ATTGAGTAGTGCCTTCG






Bax
NM_004324.1
BAX
CCGCCGTGG
38
TTGCCGTCA
422
TGCCACTCGGAAAAAGA
806
70
CCGCCGTGGACACAGACTCCCCCCGAG
1190





ACACAGAC

GAAAACATG

CCTCTCGG


AGGTCTTTTTCCGAGTGGCAGCTGACAT






T

TCA




GTTTTCTGACGGCAA






BBC3
NM_014417.1
BBC3
CCTGGAGG
39
CTAATTGGG
423
CATCATGGGACTCCTGC
807
83
CCTGGAGGGTCCTGTACAATCTCATCAT
1191





GTCCTGTAC

CTCCATCT

CCTTACC


GGGACTCCTGCCCTTACCCAGGGGCCA






AAT

G




CAGAGCCCCCGAGATGGAGCCCAATTA













G






BCAR1
NM_014567.1
BCAR1
ACTGACAA
40
TCCTGGGAG
424
AGTCACGACCCCTGCCC
808
65
ACTGACAAGACCAGCAGCATCCAGTCA
1192





GACCAGCA

GTGAACTTA

TCAC


CGACCCCTGCCCTCACCCCCTAAGTTCA






GCAT

GG




CCTCCCAGGA






BCAR3
NM_003567.1
BCAR3
TGACTTCCT
41
TGAGCGAGG
425
CAGCCCTGGGAACTTTG
809
75
TGACTTCCTAGTTCGTGACTCTCTGTCC
1193





AGTTCGTGA

TTCTTCCACT

TCCTGACC


AGCCCTGGGAACTTTGTCCTGACCTGTC






CTCTCTGT

GA




AGTGGAAGAACCTCGCTCA






BCAS1
NM_003657.1
BCAS1
CCCCGAGA
42
CTCGGGTTT
426
CTTTCCGTTGGCATCCGC
810
73
CCCCGAGACAACGGAGATAAGTGCTGT
1194





CAACGGAG

GGCCTCTTT

AACAG


TGCGGATGCCAACGGAAAGAATCTTGG






ATAA

C




GAAAGAGGCCAAACCCGAG






Bcl2
NM_000633.1
BCL2
CAGATGGA
43
CCTATGATT
427
TTCCACGCCGAAGGACA
811
73
CAGATGGACCTAGTACCCACTGAGATT
1195





CCTAGTACC

TAAGGGCAT

GCGAT


TCCACGCCGAAGGACAGCGATGGGAAA






CACTGAGA

TTTTCC




AATGCCCTTAAATCATAGG






BCL2L12
NM_138639.1
BCL2L12
AACCCACCC
44
CTCAGCTGA
428
TCCGGGTAGCTCTCAAA
812
73
AACCCACCCCTGTCTTGGAGCTCCGGG
1196





CTGTCTTGG

CGGGAAAGG

CTCGAGG


TAGCTCTCAAACTCGAGGCTGCGCACC













CCCTTTCCCGTCAGCTGAG






BGN
NM_001711.3
BGN
GAGCTCCGC
45
CTTGTTGTTC
429
CAAGGGTCTCCAGCACC
813
66
GAGCTCCGCAAGGATGACTTCAAGGGT
1197





AAGGATGA

ACCAGGACG

TCTACGC


CTCCAGCACCTCTACGCCCTCGTCCTGG






C

A




TGAACAACAAG






BIK
NM_001197.3
BIK
ATTCCTATG
46
GGCAGGAGT
430
CCGGTTAACTGTGGCCT
814
70
ATTCCTATGGCTCTGCAATTGTCACCGG
1198





GCTCTGCAA

GAATGGCTC

GTGCCC


TTAACTGTGGCCTGTGCCCAGGAAGAG






TTGTC

TTC




CCATTCACTCCTGCC






BNIP3
NM_004052.2
BNIP3
CTGGACGG
47
GGTATCTTG
431
CTCTCACTGTGACAGCCC
815
68
CTGGACGGAGTAGCTCCAAGAGCTCTC
1199





AGTAGCTCC

TGGTGTCTG

ACCTCG


ACTGTGACAGCCCACCTCGCTCGCAGA






AAG

CG




CACCACAAGATACC






BSG
NM_001728.2
BSG
AATTTTATG
48
GTGGCCAAG
432
CTGTGTTCGACTCAGCCT
816
66
AATTTTATGAGGGCCACGGGTCTGTGTT
1200





AGGGCCAC

AGGTCAGAG

CAGGGA


CGACTCAGCCTCAGGGACGACTCTGAC






GG

TC




CTCTTGGCCAC






BTRC
NM_033637.2
BTRC
GTTGGGAC
49
TGAAGCAGT
433
CAGTCGGCCCAGGACGG
817
63
GTTGGGACACAGTTGGTCTGCAGTCGG
1201





ACAGTTGGT

CAGTTGTGC

TCTACT


CCCAGGACGGTCTACTCAGCACAACTG






CTG

TG




ACTGCTTCA






BUB1
NM_004336.1
BUB1
CCGAGGTTA
50
AAGACATGG
434
TGCTGGGAGCCTACACT
818
68
CCGAGGTTAATCCAGCACGTATGGGGC
1202





ATCCAGCAC

CGCTCTCAG

TGGCCC


CAAGTGTAGGCTCCCAGCAGGAACTGA






GTA

TTC




GAGCGCCATGTCTT






BUB1B
NM_001211.3
BUB1B
TCAACAGA
51
CAACAGAGT
435
TACAGTCCCAGCACCGA
819
82
TCAACAGAAGGCTGAACCACTAGAAAG
1203





AGGCTGAA

TTGCCGAGA

CAATTCC


ACTACAGTCCCAGCACCGACAATTCCA






CCACTAGA

CACT




AGCTCGAGTGTCTCGGCAAACTCTGTTG













G






BUB3
NM_004725.1
BUB3
CTGAAGCA
52
GCTGATTCC
436
CCTCGCTTTGTTTAACAG
820
73
CTGAAGCAGATGGTTCATCATTTCCTGG
1204





GATGGTTCA

CAAGAGTCT

CCCAGG


GCTGTTAAACAAAGCGAGGTTAAGGTT






TCATT

AACC




AGACTCTTGGGAATCAGC






c-kit
NM_000222.1
KIT
GAGGCAAC
53
GGCACTCGG
437
TTACAGCGACAGTCATG
821
75
GAGGCAACTGCTTATGGCTTAATTAAG
1205





TGCTTATGG

CTTGAGCAT

GCCGCAT


TCAGATGCGGCCATGACTGTCGCTGTA






CTTAATTA






AAGATGCTCAAGCCGAGTGCC






C10orf116
NM_006829.2
C10orf116
CAAGAGCA
54
TGAGACCGT
438
CCGGAGTCCTAGCCTCC
822
67
CAAGAGCAGAGCCACCGTAGCCGGAGT
1206





GAGCCACC

TGGATTGGA

CAAATTC


CCTAGCCTCCCAAATTCGGAAATCCAA






GT

TT




TCCAACGGTCTCA






C17orf37
NM_032339.3
C17orf37
GTGACTGCA
35
AGGACCAAA
439
CCTGCTCTGTTCTGGGGT
823
67
GTGACTGCACAGGACTCTGGGTTCCTG
1207





CAGGACTCT

GGGAGACCA

CCAAAC


CTCTGTTCTGGGGTCCAAACCTTGGTCT






GG

A




CCCTTTGGTCCT






C20orf1
NM_012112
TPX2
TCAGCTGTG
56
ACGGTCCTA
440
CAGGTCCCATTGCCGGG
824
65
TCAGCTGTGAGCTGCGGATACCGCCCG
1208





AGCTGCGG

GGTTTGAGG

CG


GCAATGGGACCTGCTCTTAACCTCAAA






ATA

TTAAGA




CCTAGGACCGT






C6orf66
NM_014165.1
NDUFAF4
GCGGTATCA
57
GCGACAGAG
441
TGATTTCCCGTTCCGCTC
825
70
GCGGTATCAGGAATTTCAACCTAGAGA
1209





GGAATTTCA

GGCTTCATC

GGTTCT


ACCGAGCGGAACGGGAAATCAGCAAG






ACCT

TT




ATGAAGCCCTCTGTCGC






C8orf4
NM_020130.2
C8orf4
CTACGAGTC
58
TGCCCACGG
442
CATGGCTACCACTTCA
826
67
CTACGAGTCAGCCCATCCATCCATGGC
1210





AGCCCATCC

CTTTCTTAC

CACAGCC


TACCACTTCGACACAGCCTCTCGTAAG






AT






AAAGCCGTGGGCA






CACNA2D2
NM_006030.1
CACNA2D2
TGATGCTGC
59
CACGATGTC
443
AAAGCACACCGCTGGCA
827
67
TGATGCTGCAGAGAACTTCCAGAAAGC
1211





AGAGAACT

TTCCTCCTTG




ACACCGCTGGCAGGACAACATCAAGGA






TCC

A




GGAAGACATCGTG






CAT
NM_001752.1
CAT
ATCCATTCG
60
TCCGGTTTA
444
TGGCCTCACAAGGACTA
828
78
ATCCATTCGATCTCACCAGGTTTGGCC
1212





ATCTCACCA

AGACCAGTT

CCCTCTCATCC


TCACAAGGACTACCCTCTCATCCCAGTT






AGGT

TACCA




GGTAAACTGGTCTTAAACCGGA






CAV1
NM_001753.3
CAV1
GTGGCTCAA
61
CAATGGCCT
445
ATTTCAGCTGATCAGTG
829
74
GTGGCTCAACATTGTGTTCCCATTTCAG
1213





CATTGTGTT

CCATTTTAC

GGCCTCC


CTGATCAGTGGGCCTCCAAGGAGGGGC






CC

AG




TGTAAAATGGAGGCCATTG






CBX5
NM_012117.1
CBX5
AGGGGATG
62
AAAGGGGTG
446
CATAATACATTCACCTCC
830
78
AGGGGATGGTCTCTGTCATTTCTCTTTG
1214





GTCTCTGTC

GGTAGAAAG

CTGCCTCCTC


TACATAATACATTCACCTCCCTGCCTCC






ATT

GA




TCTCCTTTCTACCCACCCCTTT






CCL19
NM_006274.2
CCL19
GAACGCAT
63
CCTCTGCAC
447
CGCTTCATCTTGGCTGAG
831
78
GAACGCATCATCCAGAGACTGCAGAGG
1215





CATCCAGA

GGTCATAGG

GTCCTC


ACCTCAGCCAAGATGAAGCGCCGCAGC






GACTG

TT




AGTTAACCTATGACCGTGCAGAGG






CCL3
NM_002983.1
CCL3
AGCAGACA
64
CTGCATGAT
448
CTCTGCTGACACTCGAG
832
77
AGCAGACAGTGGTCAGTCCTTTCTTGG
1216





GTGGTCAGT

TCTGAGCAG

CCCACAT


CTCTGCTGACACTCGAGCCCACATTCCG






CCTT

GT




TCACCTGCTCAGAATCATGCAG






CCL5
NM_002985.2
CCL5
AGGTTCTGA
65
ATGCTGACT
449
ACAGAGCCCTGGCAAAG
833
65
AGGTTCTGAGCTCTGGCTTTGCCTTGGC
1217





GCTCTGGCT

TCCTTCCTG

CCAAG


TTTGCCAGGGCTCTGTGACCAGGAAGG






TT

GT




AAGTCAGCAT






CCNB1
NM_031966.1
CCNB1
TTCAGGTTG
66
CATCTTCTTG
450
TGTCTCCATTATTGATCG
834
84
TTCAGGTTGTTGCAGGAGACCATGTAC
1218





TTGCAGGA

GGCACACAA

GTTCATGCA


ATGACTGTCTCCATTATTGATCGGTTCA






GAC

T




TGCAGAATAATTGTGTGCCCAAGAAGA













TG






CCND3
NM_001760.2
CCND3
CCTCTGTGC
67
CACTGCAGC
451
TACCCGCCATCCATGATC
835
76
CCTCTGTGCTACAGATTATACCTTTGCC
1219





TACAGATTA

CCCAATGCT

GCCA


ATGTACCCGCCATCCATGATCGCCACG






TACCTTTGC






GGCAGCATTGGGGCTGCAGTG






CCNE2
NM_057749var
CCNE2
GGTCACCA
68
TTCAATGAT
452
CCCAGATAATACAGGTG
836
85
GGTCACCAAGAAACATCAGTATGAAAT
1220


variant 1
1

AGAAACAT

AATGCAAGG

GCCAACAATTCCT


TAGGAATTGTTGGCCACCTGTATTATCT






CAGTATGA

ACTGATC




GGGGGGATCAGTCCTTGCATTATCATT






A






GAA






CCR5
NM_000579.1
CCR5
CAGACTGA
69
CTGGTTTGT
453
TGGAATAAGTACCTAAG
837
67
CAGACTGAATGGGGGTGGGGGGGGCG
1221





ATGGGGGT

CTGGAGAAG

GCGCCCCC


CCTTAGGTACTTATTCCAGATGCCTTCT






GG

GC




CCAGACAAACCAG






CCR7
NM_001838.2
CCR7
GGATGACA
70
CCTGACATT
454
CTCCCATCCCAGTGGAG
838
64
GGATGACATGCACTCAGCTCTTGGCTC
1222





TGCACTCAG

TCCCTTGTCC

CCAA


CACTGGGATGGGAGGAGAGGACAAGG






CTC

T




GAAATGTCAGG






CD1A
NM_001763.1
CD1A
GGAGTGGA
71
TCATGGGCG
455
CGCACCATTCGGTCATTT
839
78
GGAGTGGAAGGAACTGGAAACATTATT
1223





AGGAACTG

TATCTACGA

GAGG


CCGTATACGCACCATTCGGTCATTTGAG






GAAA

AT




GGAATTCGTAGATACGCCCATGA






CD24
NM_013230.1
CD24
TCCAACTAA
72
GAGAGAGTG
456
CTGTTGACTGCAGGGCA
840
77
TCCAACTAATGCCACCACCAAGGCGGC
1224





TGCCACCAC

AGACCACGA

CCACCA


TGGTGGTGCCCTGCAGTCAACAGCCAG






CAA

AGAGACT




TCTCTTCGTGGTCTCACTCTCTC






CD4
NM_000616.2
CD4
GTGCTGGA
73
TCCCTGCAT
457
CAGGTCCCTTGTCCCAA
841
67
GTGCTGGAGTCGGGACTAACCCAGGTC
1225





GTCGGGACT

TCAAGAGGC

GTTCCAC


CCTTGTCCCAAGTTCCACTGCTGCCTCT






AAC






TGAATGCAGGGA






CD44E
X55150

ATCACCGAC
74
ACCTGTGTT
458
CCCTGCTACCAATATGG
842
90
ATCACCGACAGCACAGACAGAATCCCT
1226





AGCACAGA

TGGATTTGC

ACTCCAGTCA


GCTACCAATATGGACTCCAGTCATAGT






CA

AG




ACAACGCTTCAGCCTACTGCAAATCCA













AACACAGGT






CD44s
M59040.1

GACGAAGA
75
ACTGGGGTG
459
CACCGACAGCACAGACA
843
78
GACGAAGACAGTCCCTGGATCACCGAC
1227





CAGTCCCTG

GAATGTGTC

GAATCCC


AGCACAGACAGAATCCCTGCTACCAGA






GAT

TT




GACCAAGACACATTCCACCCCAGT






CD44v6
AJ251595v6

CTCATACCA
76
TTGGGTTGA
460
CACCAAGCCCAGAGGAC
844
78
CTCATACCAGCCATCCAATGCAAGGAA
1228





GCCATCCAA

AGAAATCAG

AGTTCCT


GGACAACACCAAGCCCAGAGGACAGTT






TG

TCC




CCTGGACTGATTTCTTCAACCCAA






CD68
NM_001251.1

TGGTTCCCA
77
CTCCTCCAC
461
CTCCAAGCCCAGATTCA
845
74
TGGTTCCCAGCCCTGTGTCCACCTCCAA
1229





GCCCTGTGT

CCTGGGTTG

GATTCGAGTCA


GCCCAGATTCAGATTCGAGTCATGTAC








T




ACAACCCAGGGTGGAGGAG






CD82
NM_002231.2
CD82
GTGCAGGCT
78
GACCTCAGG
462
TCAGCTTCTACAACTGG
846
84
GTGCAGGCTCAGGTGAAGTGCTGCGGC
1230





CAGGTGAA

GCGATTCAT

ACAGACAACGCTG


TGGGTCAGCTTCTACAACTGGACAGAC






GTG

GA




AACGCTGAGCTCATGAATCGCCCTGAG













GTC






CDC20
NM_001255.1
CC20
TGGATTGGA
79
GCTTGCACT
463
ACTGGCCGTGGCACTGG
847
68
TGGATTGGAGTTCTGGGAATGTACTGG
1231





GTTCTGGGA

CCACAGGTA

ACAACA


CCGTGGCACTGGACAACAGTGTGTACC






ATG

CACA




TGTGGAGTGCAAGC






cdc25A
NM_001789.1
CDC25A
TCTTGCTGG
80
CTGCATTGT
464
TGTCCCTGTTAGACGTCC
848
71
TCTTGCTGGCTACGCCTCTTCTGTCCCT
1232





CTACGCCTC

GGCACAGTT

TCCGTCCATA


GTTAGACGTCCTCCGTCCATATCAGAA






TT

CTG




CTGTGCCACAATGCAG






CDC25C
NM_001790.2
CDC25C
GGTGAGCA
81
CTTCAGTCTT
465
CTCCCCGTCGATGCCAG
849
67
GGTGAGCAGAAGTGGCCTATATCGCTC
1233





GAAGTGGC

GGCCTGTTC

AGAACT


CCCGTCGATGCCAGAGAACTTGAACAG






CTAT

A




GCCAAGACTGAAG






CDC4
NM_018315.2
FBXW7
GCAGTCCGC
82
GGATCCCAC
466
TGCTCCACTAACAACCCT
850
77
GCAGTCCGCTGTGTTCAATATGATGGC
1234





TGTGTTCAA

ACCTTTACC

CCTGCC


AGGAGGGTTGTTAGTGGAGCATATGAT








ATAA




TTTATGGTAAAGGTGTGGGATCC






CDC42BPA
NM_003607.2
CDC42BPA
GAGCTGAA
83
GCCGCTCAT
467
AATTCCTGCATGGCCAG
851
67
GAGCTGAAAGACGCACACTGTCAGAGG
1235





AGACGCAC

TGATCTCCA

TTTCCTC


AAACTGGCCATGCAGGAATTCATGGAG






ACTG






ATCAATGAGCGGC






CDC42EP4
NM_012121.4
CDC42EP4
CGGAGAAG
84
CCGTCATTG
468
CTGCCCAAGAGCCTGTC
852
67
CGGAGAAGGGCACCAGTAAGCTGCCCA
1236





GGCACCAG

GCCTTCTTC

ATCCAG


AGAGCCTGTCATCCAGCCCCGTGAAGA






TA






AGGCCAATGACGG






CDH11
NM_001797.2
CDH11
GTCGGCAG
85
CTACTCATG
469
CCTTCTGCCCATAGTGAT
853
70
GTCGGCAGAAGCAGGACTTGTACCTTC
1237





AAGCAGGA

GGCGGGATG

CAGCGA


TGCCCATAGTGATCAGCGATGGCGGCA






CT






TCCCGCCCATGAGTAG






CDH3
NM_001793.3
CDH3
ACCCATGTA
86
CCGCCTTCA
470
CCAACCCAGATGAAATC
854
71
ACCCATGTACCGTCCTCGGCCAGCCAA
1238





CCGTCCTCG

GGTTCTCAA

GGCAACT


CCCAGATGAAATCGGCAACTTTATAAT








T




TGAGAACCTGAAGGCGG






CDK4
NM_000075.2
CDK4
CCTTCCCAT
87
TTGGGATGC
471
CCAGTCGCCTCAGTAAA
855
66
CCTTCCCATCAGCACAGTTCGTGAGGT
1239





CAGCACAG

TCAAAAGCC

GCCACCT


GGCTTTACTGAGGCGACTGGAGGCTTT






TTC






TGAGCATCCCAA






CDK5
NM_004935.2
CDK5
AAGCCCTAT
88
CTGTGGCAT
472
CACAACATCCCTGGTGA
856
67
AAGCCCTATCCGATGTACCCGGCCACA
1240





CCGATGTAC

TGAGTTTGG

ACGTCGT


ACATCCCTGGTGAACGTCGTGCCCAAA






CC

G




CTCAATGCCACAG






CDKN3
NM_005192.2
CDKN3
TGGATCTCT
89
ATGTCAGGA
473
ATCACCCATCATCATCCA
857
70
TGGATCTCTACCAGCAATGTGGAATTA
1241





ACCAGCAA

GTCCCTCCA

ATCGCA


TCACCCATCATCATCCAATCGCAGATG






TGTG

TC




GAGGGACTCCTGACAT






CEACAM1
NM_001712.2
CEACAM1
ACTTGCCTG
90
TGGCAAATC
474
TCCTTCCCACCCCCAGTC
858
71
ACTTGCCTGTTCAGAGCACTCATTCCTT
1242





TTCAGAGCA

CGAATTAGA

CTGTC


CCCACCCCCAGTCCTGTCCTATCACTCT






CTCA

GTGA




AATTCGGATTTGCCA






CEBPA
NM_004364.2
CEBPA
TTGGTTTTG
91
GTCTCAGAC
475
AAAATGAGACTCTCCGT
859
66
TTGGTTTTGCTCGGATACTTGCCAAAAT
1243





CTCGGATAC

CCTTCCCCC

CGGCAGC


GAGACTCTCCGTCGGCAGCTGGGGGAA






TTG






GGGTCTGAGAC






CEGP1
NM_020974.1
SCUBE2
TGACAATCA
92
TGTGACTAC
476
CAGGCCCTCTTCCGAGC
860
77
TGACAATCAGCACACCTGCATTCACCG
1244





GCACACCTG

AGCCGTGAT

GGT


CTCGGAAGAGGGCCTGAGCTGCATGAA






CAT

CCTTA




TAAGGATCACGGCTGTAGTCACA






CENPA
NM_001809.2
CENPA
TAAATTCAC
93
GCCTCTTGT
477
CTTCAATTGGCAAGCCC
861
63
TAAATTCACTCGTGGTGTGGACTTCAAT
1245





TCGTGGTGT

AGGGCCAAT

AGGC


TGGCAAGCCCAGGCCCTATTGGCCCTA






GGA

AG




CAAGAGGC






CGA
NM_001275.2
CHGA
CTGAAGGA
94
CAAAACCGC
478
TGCTGATGTGCCCTCTCC
862
76
CTGAAGGAGCTCCAAGACCTCGCTCTC
1246


(CHGA


GCTCCAAG

TGTGTTTCTTC

TTGG


CAAGGCGCCAAGGAGAGGGCACATCA



official)


ACCT






GCAGAAGAAACACAGCGGTTTTG






CGalpha
NM_000735.2
CGA
CCAGAATG
95
GCCCATGCA
479
ACCCATTCTTCTCCCAGC
863
69
CCAGAATGCACGCTACAGGAAAACCCA
1247





CACGCTACA

CTGAAGTAT

CGGG


TTCTTCTCCCAGCCGGGTGCCCCAATAC






GGAA

TGG




TTCAGTGCATGGGC






CGB
NM_000737.2
CGB
CCACCATAG
96
AGTCGTCGA
480
ACACCCTACTCCCTGTGC
864
80
CCACCATAGGCAGAGGCAGGCCTTCCT
1248





GCAGAGGC

GTGCTAGGG

CTCCAG


ACACCCTACTCCCTGTGCCTCCGCCTC






A

AC




GACTAGTCCCTAGCACTCGACGACT






CHAF1B
NM_005441.1
CHAF1B
GAGGCCAG
97
TCCGAGGCC
481
AGCTGATGAGTCTGCCC
865
72
GAGGCCAGTGGTGGAAACAGGTGTGGA
1249





TGGTGGAA

ACAGCAAAC

TACCGCCTG


GCTGATGAGTCTGCCCTACCGCCTGGT






ACAG






GTTTGCTGTGGCCTCGGA






CHR
NM_018223.1
CHFR
AAGGAAGT
98
GACGCAGTC
482
TGAAGTCTCCAGCTTTGC
866
76
AAGGAAGTGGTCCCTCTGTGGCAAGTG
1250





GGTCCCTCT

TTTCTGTCTG

CTCAGC


ATGAAGTCTCCAGCTTTGCCTCAGCTCT






GTG

G




CCCAGACAGAAAGACTGCGTC






CHI3L1
NM_001276.1
CHI3L1
AGAATGGG
99
TGCAGAGCA
483
CACCAGGACCACAAAGC
867
66
AGAATGGGTGTGAAGGCGTCTCAAACA
1251





TGTGAAGG

GCACTGGAG

CTGTTTG


GGCTTTGTGGTCCTGGTGCTGCTCCAGT






CG






GCTGCTCTGCA






CKS2
NM_001827.1
CKS2
GGCTGGAC
100
CGCTGCAGA
484
CTGCGCCCGCTCTTCGCG
868
62
GGCTGGACGTGGTTTTGTCTGCTGCGCC
1252





GTGGTTTTG

AAATGAAAC




CGCTCTTCGCGCTCTCGTTTCATTTTCT






TCT

GA




GCAGCG






Claudin 4
NM_001305.2
CLDN4
GGCTGCTTT
101
CAGAGCGGG
485
CGCACAGACAAGCCTTA
869
72
GGCTGCTTTGCTGCAACTGTCCACCCCG
1253





GCTGCAACT

CAGCAGAAT

CTCCGCC


CACAGACAAGCCTTACTCCGCCAAGTA






G

A




TTCTGCTGCCCGCTCTG






CLIC1
NM_001288.3
CLIC1
CGGTACTTC
102
TCGATCTCC
486
CGGGAAGAATTCGCTTC
870
68
CGGTACTTGAGCAATGCCTACGCCCGG
1254





AGCAATGC

TCATCATCT

CACCTG


GAAGAATTCGCTTCCACCTGTCCAGAT






CTA

GG




GATGAGGAGATCGA






CLU
NM_001831.1
CLU
CCCCAGGAT
103
TGCGGGACT
487
CCCTTCAGCCTGCCCCAC
871
76
CCCCAGGATACCTACCACTACCTGCCCT
1255





ACCTACCAC

TGGGAAAGA

CG


TCAGCCTGCCCCACCGGAGGCCTCACT






TACCT






TCTTCTTTCCCAAGTCCCGCA






CNOT2
NM_0145153
CNOT2
AAATCGCA
104
TGTTGGTAC
488
ACTCAGTTACCGAGCCA
872
67
AAATCGCAGCTTATCACAAGGCACTCA
1256





GCTTATCAC

CCCTGTTGTT

CGTCACG


GTTACCGAGCCACGTCACGCCAACAAC






AAGG

G




AGGGGTACCAACA






COL1A1
NM_000088.2
COL1A1
GTGGCCATC
105
CAGTGGTAG
489
TCCTGCGCCTGATGTCCA
873
68
GTGGCCATCCAGCTGACCTTCCTGCGCC
1257





CAGCTGACC

GTGATGTTC

CCG


TGATGTCCACCGAGGCCTCCCAGAACA








TGGGA




TCACCTACCACTG






COL1A2
NM_000089.2
COL1A2
CAGCCAAG
106
AAACTGGCT
490
TCTCCTAGCCAGACGTG
874
80
CAGCCAAGAACTGGTATAGGAGCTCCA
1258





AACTGGTAT

GCCAGCATT

TTCTTGTCCTTG


AGGACAAGAAACACGTCTGGCTAGGAG






AGGAGCT

G




AAACTATCAATGCTGGCAGCCAGTTT






COMT
NM_000754.2
COMT
CCTTATCGG
107
CTCCTTGGT
491
CCTGCAGCCCATCCACA
875
67
CCTTATCGGCTGGAACGAGTTCATCCTG
1259





CTGGAACG

GTCACCCAT

ACCT


CAGCCCATCCACAACCTGCTCATGGGT






AGTT

GAG




GACACCAAGGAG






Contig
NM_198477
CXCL17
CGACAGTTG
108
GGCTGCTAG
492
CCTCCTCCTGTTGCTGCC
876
81
CGACAGTTGCGATGAAAGTTCTAATCT
1260


51037


CGATGAAA

AGACCATGG

ACTAATGCT


CTTCCCTCCTCCTGTTGCTGCCACTAAT






GTTCTAA

ACAT




GCTGATGTCCATGGTCTCTAGCAGCC






COPS3
NM_003653.2
COPS3
ATGCCCAGT
109
CTCCCCATT
493
CGAAACGCTATTCTCAC
877
72
ATGCCCAGTGTTCCTGACTTCGAAACG
1261





GTTCCTGAC

ACAAGTGCT

AGGTTCAGC


CTATTCTCACAGGTTCAGCTCTTCATCA






TT

GA




GCACTTGTAATGGGGAG






CRYAB
NM_001885.1
CRYAB
GATGTGATT
110
GAACTCCCT
494
TGTTCATCCTGGCGCTCT
878
69
GATGTGATTGAGGTGCATGGAAAACAT
1262





GAGGTGCA

GGAGATGAA

TCATGT


GAAGAGCGCCAGGATGAACATGGTTTC






TGG

ACC




ATCTCCAGGGAGTTC






CRYZ
NM_001889.2
CRYZ
AAGTCCTGA
111
CACATGCAT
495
CCGATTCCAAAAGACCA
879
78
AAGTCCTGAAATTGCGATCAGATATTG
1263





AATTGCGAT

GGACCTTGA

TCAGGTTCT


CAGTACCGATTCCAAAAGACCATCAGG






CA

TT




TTCTAATCAAGGTCCATGCATGTG






CSF1 isoC
NM_172211.1
CSF1
CAGCAAGA
112
ATCCCTCGG
496
TTTGCTGAATGCTCCAGC
880
68
CAGCAAGAATGCAACAACGCTTTGC
1264





ACTGCAAC

ACTGCCTCT

CAAGG


TGAATGCTCCAGCCAAGGCCATGAGAG






AACA






GCAGTCCGAGGGAT






CSF1
NM_000757.3
CSF1
TGCAGCGG
113
CAACTGTTC
497
TCAGATGGAGACCTCGT
881
74
TGCAGCGGCTGATTGACAGTCAGATGG
1265





CTGATTGAC

CTGGTCTAC

GCCAAATTACA


AGACCTCGTGCCAAATTACATTTGAGTT






A

AAACTCA




TGTAGACCAGGAACAGTTG






CSF1R
NM_005211.1
CSF1R
GAGCACAA
114
CCTGCAGA
498
AGCCACTCCCCACGCTG
882
80
GAGCACAACCAAACCTACGAGTGCAGG
1266





CCAAACCTA

ATGGGTATG

TTGT


GCCCACAACAGCGTGGGGAGTGGCTCC






CGA

AA




TGGGCCTTCATACCCATCTCTGCAGG






CSF2RA
NM_006140.3
CSF2RA
TACCACACC
115
CTAGAGGCT
499
CGCAGATCCGATTTCTCT
883
67
TACCACACCCAGCATTCCTCCTGATCCCC
1267





CAGCATTCC

GGTGCCACT

GGGATC


AGAGAAATCGGATCTGCGAACAGTGGC






TC

GT




ACCAGCCTCTAG






CSK (SRC)
NM_004383.1
CSK
CCTGAACAT
116
CATCACGTC
500
TCCCGATGGTCTGCAGC
884
64
CCTGAACATGAAGGAGCTGAAGCTGCT
1268





GAAGGAGC

TCCGAACTC

AGCT


GCAGACCATCGGGAAGGGGGAGTTCGG






TGA

C




AGACGTGATG






CTGF
NM_001901.1
CTGF
GAGTTCAA
117
AGTTGTAAT
501
AACATCATGTTCTTCTTC
885
76
GAGTTCAAGTGCCCTGACGGCGAGGTC
1269





GTGCCCTGA

GGCAGGCAC

ATGACCTCGC


ATGAAGAAGAACATGATGTTCATCAAG






CG

AG




ACCTGTGCCTGCCATTACAACT






CTHRC1
NM_138455.2
CTHRC1
GCTCACTTC
118
TCAGCTCCA
502
ACCAACGCTGACAGCAT
886
67
GCTCACTTCGGCTAAAATGCAGAAATG
1270





GGCTAAAA

TTGAATGTG

GCATTTC


CATGCTGTCAGCGTTGGTATTTCACATT






TGC

AAA




CAATGGAGCTGA






CTSD
NM_001909.1
CTSB
GTACATGAT
119
GGGACAGCT
503
ACCCTGCCCGCGATCAC
887
80
GTACATGTCCCCTGTGAGAAGGTGTC
1271





CCCCTGTGA

TGTAGCCTT

ACTGA


CACCCTGCCCGCGATCACACTGAAGCT






GAAGGT

TGC




GGGAGGCAAAGGCTACAAGCTGTCCC






CTSL2
NM_001333.2
CTSL2
TGTCTCACT
120
ACCATTGCA
504
CTTGAGGACGCGAACAG
888
67
TGTCTCACTGAGCGAGCAGAATCTGGT
1272





GAGCGAGC

GCCCTGATT

TCCACCA


GGACTGTTCGCGTCCTCAAGGCAATCA






AGAA

G




GGGCTGCAATGGT






CTSL2int2
NM_001333.2

ACCAGGCA
121
CTGTTCTCC
505
AGGTGCAATATGGGCAT
889
79
ACCAGGCAATAACCTAACAGCACCCAT
1273



int

ATAACCTAA

AAGCCAAGA

ATATCTCCATTG


TATAGGTGCAATATGGGCATATATCTC






CAGC

CA




CATTGTGTCTTGGCTTGGAGAACAG






CXCL10
NM_001565.1
CXCL10
GGAGCAAA
122
TAGGGAAGT
506
TCTGTGTGGTCCATCCTT
890
68
GGAGCAAAATCGATGCAGTGCTTCCAA
1274





ATCGATGCA

GATGGGAGA

GGAAGC


GGATGGACCACACAGAGGCTGCCTCTC






GT

GG




CCATCACTTCCCTA






CXCL12
NM_000609.3
CXCL12
GAGCTACA
123
TTTGAGATG
507
TTCTTCGAAAGCCATGTT
891
67
GAGCTACAGATGCCCATGCCGATTCTT
1275





GATGCCCAT

CTTGACGTT

GCCAGA


CGAAAGCCATGTTGCCAGAGCCAACGT






GC

GG




CAAGCATCTCAAA






CXCL14
NM_004887.3
CXCL14
TGCGCCCTT
124
CAATGCGGC
508
TACCCTTAAGAACGCCC
892
74
TGCGCCCTTTCCTCTGTACATATACCCT
1276





TCCTCTGTA

ATATACTGG

CCTCCAC


TAAGAACGCCCCCTCCACACACTGCCC








G




CCCAGTATATGCCGCATTG






CXCR4
NM_003467.1
CXCR4
TGACCGCTT
125
AGGATAAGG
509
CTGAAACTGGAACACAA
893
72
TGACCGCTTCTACCCCAATGACTTGTGG
1277





CTACCCCAA

CCAACCATG

CCACCCACAAG


GTGGTTGTGTTCCAGTTTCAGCACATCA






TG

ATGT




TGGTTGGCCTTATCCT






CYP17A1
NM_000102.2
CYP17A1
CCGGAGTG
126
GCCAGCATT
510
TGGACACACTGATGCAA
894
76
CCGGAGTGACTCTATCACCAACATGCT
1278





ACTCTATCA

GCCATTATC

GCCAAGA


GGACACACTGATGCAAGCCAAGATGAA






CCA

T




CTCAGATAATGGCAATGCTGGC






CYP19A1
NM_000103.2
CYP19A1
TCCTTATAG
127
CACCATGGC
511
CACAGCCACGGGGCCCA
895
70
TCCTTATAGGTACTTTCAGCCATTTGGC
1279





GTACTTTCA

GATGTACTT

AA


TTTGGGCCCCGTGGCTGTGCAGGAAAG






GCCATTTG

TCC




TACATCGCCATGGTG






CYP1B1
NM_000104.2
CYP1B1
CCAGCTTTG
128
GGGAATGTG
512
CTCATGCCACCACTGCC
896
71
CCAGCTTTGTGCCTGTCACTATTCCTCA
1280





TGCCTGTCA

GTAGCCCAA

AACACCTC


TGCCACCACTGCCAACACCTCTGTCTTG






CTAT

GA




GGCTACCACATTCCC






CYR61
NM_001554.3
CYR61
TGCTCATTC
129
GTGGCTGCA
513
CAGCACCCTTGGCAGTTT
897
76
TGCTCATTCTTGAGGAGCATTAAGGTAT
1281





TTGAGGAG

TTAGTGTCC

CGAAAT


TTCGAAACTGCCAAGGGTGCTGGTGCG






CAT

AT




GATGGACACTAATGCAGCCAC






DAB2
NM_001343.1
DAB2
TGGTGGGTC
130
ACCAAAGAT
514
CTGTCACACTCCCTCAGG
898
67
TGGTGGGTCTAGGTGGTGTAACTGTCA
1282





TAGGTGGTG

GCTGTGTTC

CAGGAC


CACTCCCTCAGGCAGGACCATGGAACA






TA

CA




CAGCATCTTTGGT






DCC
NM_005215.1
DCC
AAATGTCCT
131
TGAATGCCA
515
ATCACTGGAACTCCTCG
899
75
AAATGTCCTCCTCGACTGCTCCGCGGA
1283





CCTCGACTC

TCTTTCTTCC

GTCGGAC


GTCCGACCGAGGAGTTCCAGTGATCAA






CT

A




GTGGAAGAAAGATGGCATTCA






DCC_exons
X76132_18-23

GGTCACCGT
132
GAGCGTCGG
516
CAGCCACGATGACCACT
900
66
GGTCACCGTTGGTGTCATCACAGTGCT
1284


18-23


TGGTGTCAT

GTGCAAATC

ACCAGCACT


GGTAGTGGTCATCGTGGTGTGATTTGC






CA






ACCCGACGCTC






DCC_exons
X76132_6-7

ATGGAGAT
133
CACCACCCC
517
TGCTTCCTCCCACTATCT
901
74
ATGGAGATGTGGTCATTCCTAGTGATT
1285


6-7


GTGGTCATT

AAGTATCCG

GAAAATAA


ATTTTCAGATAGTGGGAGGAAGCAACT






CCTAGTG

TAAG




TACGGATACTTGGGGTGGTG






DCK
NM_000788.1
DCK
GCCGCCAC
134
CGATGTTCC
518
AGCTGCCCGTCTTTCTCA
902
110
GCCGCCACAAGACTAAGGAATGGCCAC
1286





AAGACTAA

CTTCGATGG

GCCAGC


CCCGCCCAAGAGAAGCTGCCCGTCTTT






GGAAT

AG




CTCAGCCAGCTCTGAGGGGACCCGCAT













CAAGAAAATCTCCATCGAAGGGAACAT













CG






DICER1
NM_177438.1
DICER1
TCCAATTCC
135
GGCAGTGAA
519
AGAAAAGCTGTTTGTCT
903
68
TCCAATTCCAGCATCACTGTGGAGAAA
1287





AGCATCACT

GGCGATAAA

CCCCAGCA


AGCTGTTTGTCTCCCCAGCATACTTTAT






GT

GT




CGCCTTCACTGCC






DLC1
NM_006094.3
DLC1
GATTCAGAC
136
CACCTCTTG
520
AAAGTCCATTTGCCACT
904
68
GATTCAGACGAGGATGAGCCTTGTGCC
1288





GAGGATGA

CTGTCCCTTT

GATGGCA


ATCAGTGGCAAATGGACTTTCCAAAGG






GCC

G




GACAGCAAGAGGTG






DLL4
NM_019074.2
DLL4
CACGGAGG
137
AGAAGGAAG
521
CTACCTGGACATCCCTGC
905
67
CACGGAGGTATAAGGCAGGAGCCTACC
1289





TATAAGGC

GTCCAGCCG

TCAGCC


TGGACATCCCTGCTCAGCCCCGCGGCT






AGGAG






GGACCTTCCTTCT






DR5
NM_003842.2
TNFRSF10B
CTCTGAGAC
138
CCATGAGGC
522
CAGACTTGGTGCCCTTTG
906
84
CTCTGAGACAGTGCTTCGATGACTTTGC
1290





AGTGCTTCG

CCAACTTCC

ACTCC


AGACTTGGTGCCCTTTGACTCCTGGGA






ATGACT

T




GCCGCTCATGAGGAAGTTGGGCCTCAT













GG






DSP
NM_004415.1
DSP
TGGCACTAC
139
CCTGCCGCA
523
CAGGGCCATGACAATCG
907
73
TGGCACTACTGCATGATTGACATAGAG
1291





TGCATGATT

TTGTTTTCAG

CCAA


AAGATCAGGGCCATGACAATCGCCAAG






GACA






CTGAAAACAATGCGGCAGG






DTYMK
NM_012145.1
DTYMK
AAATCGCTG
140
AATGCGTAT
524
CGCCCTGGCTCAACTTTT
908
78
AAATCGCTGGGAACAAGTGCCGTTAAT
1292





GGAACAAG

CTGTCCACG

CCTTAA


TAAGGAAAAGTTGAGCCAGGGCGTGAC






TG

AC




CCTCGTCGTGGACAGATACGCATT






DUSP1
NM_004417.2
DUSP1
AACATCA
141
GACAAACAC
525
CGAGGCCATTGACTTCA
909
76
AGACATCAGCTCCTGGTTCAACGAGGC
1293





GCTCCTGGT

CCTTCCTCC

TAGACTCCA


CATTGACTTCATAGACTCCATCAAGAA






TCA

AG




TGCTGGAGGAAGGGTGTTTGTC






DUSP4
NM_001394.4
DUSP4
TGGTGACG
142
CTCGTCCCG
526
TTGAGCACACTGCAGTC
910
68
TGGTGACGATGGAGGAGCTGCGGGAGA
1294





ATGGAGGA

GTTCATCAG

CATCTCC


TGGACTGCAGTGTGCTCAAAAGGCTGA






GC






TGAACCGGGACGAG






E2F1
NM_005225.1
E2F1
ACTCCCTCT
143
CAGGCCTCA
527
CAGAAGAACAGCTCAGG
911
75
ACTCCCTCTACCCTTGAGCAAGGGCAG
1295





ACCCTTGAG

GTTCCTTCA

GACCCCT


GGGTCCCTGAGCTGTTCTTCTGCCCCAT






CA

GT




ACTGAAGGAACTGAGGCCTG






EBRP
AF243433.1

CTGTGGAT
144
CCAACAGTA
528
CTCACCAGAAGCCCCAA
912
76
CTGCTGGATGACCTTCCTCCCAGAGTG
1296





GACCTTCCT

CAGCCAGTT

CCTCAAC


GCTCACCAGAAGCCCCAACCTCAACAC






C

GC




CAGCAACTGGCTGTACTGTTGG






EDN1
NM_001955.1
EDN1
TGCCACCTC
145
TGGACCTAG
529
CACTCCCGAGCACGTTG
913
73
TGCCACCTGGACATCATTTGGGTCAAC
1297


endothelin


GACATCATT

GGCTTCCAA

TTCCGT


ACTCCCGAGCACGTTGTTCCGTATGGA






TG

GTC




CTTGGAAGCCCTAGGTCCA






EDN2
NM_001956.2
DEN2
CGACAAGG
146
CAGGCCGTA
530
CCACTTGGACATCATCTG
914
79
CGACAAGGAGTGCGTCTACTTCTGCCA
1298





AGTGCGTCT

AGGAGCTGT

GGTGAACACTC


CTTGGACATCATCTGGGTGAACACTCCT






ACTTCT

CT




GAACAGACAGCTCCTTACGGCCTG






EDNRA
NM_001957.1
EDNRA
TTTCCTCAA
147
TTACACATC
531
CCTTTGCCTCAGGGCATC
915
76
TTTCCTCAAATTTGCCTCAAGATGGAAA
1299





ATTTGCCTC

CAACCAGTGCC

CTTTT


CCCTTTGCCTCAGGGCATCCTTTTGGCT






AAG






GGCACTGGTTGGATGTGTAA






EDNRB
NM_000115.1
EDNRB
ACTGTGAAC
148
ACCACAGCA
532
TGCTACCTGCCCCTTTGT
916
72
ACTGTGAACTGCCTGGTGCAGTGTCCA
1300





TGCCTGGTG

TGGGTGAGA

CATGTG


CATGACAAAGGGGCAGGTAGCACCCTC






C

G




TCTCACCCATGCTGTGGT






EEF1A1
NM_001402.5
EEF1A1
CGAGTGGA
149
CCGTTGTAA
533
CAAAGGTGACCACCATA
917
67
CGAGTGGAGACTGGTGTTCTCAAACCC
1301





GACTGGTGT

CGTTGACTG

CCGGGTT


GGTATGGTGGTCACCTTTGCTCCAGTCA






TCTC

GA




ACGTTACAACGG






EEF1A2
NM_001958.2
EEF1A2
ATGGACTCC
150
GGCGCTGAC
534
CTCGTCGTAGCGCTTCTC
918
66
ATGGACTCCACAGAGCCGGCCTACAGC
1302





ACAGAGCC

TTCCTTGAC

GCTGTA


GAGAAGCGCTACGACGAGATCGTCAAG






G






GAAGTCAGCGCC






EFP
NM_005082.2
TRIM25
TTGAACAG
151
TGTTGAGAT
535
TGATGCTTTCTCCAGAAA
919
74
TTGAACAGAGCCTGACCAAGAGGGATG
1303





AGCCTGACC

TCCTCGCAG

CTCGAACTCA


AGTTCGAGTTTCTGGAGAAAGCATCAA






AAG

TT




AACTGCGAGGAATCTCAACA






EGR1
NM_001964.2
EGR1
GTCCCCGCT
152
CTCCAGCTT
536
CGGATCCTTTCCTCACTC
920
76
GTCCCCGCTGCAGATCTCTGACCCGTTC
1304





GCAGATCTC

AGGGTAGTT

GCCCA


GGATCCTTTCCTCACTCGCCCACCATGG






T

GTCCAT




ACAACTACCCTAAGCTGGAG






EGR3
NM_004430.2
EGR3
CCATGTGGA
153
TGCCTGAGA
537
ACCCAGTCTCACCTTCTC
921
78
CCATGTGGATGAATGAGGTGTCTCCTTT
1305





TGAATGAG

AGAGGTGAG

CCCACC


CCATACCCAGTCTCACCTTCTCCCCACC






GTG

GT




CTACCTCACCTCTTCTCAGGCA






EIF4EBP1
NM_004095.2
EIF4EBP1
GGCGGTGA
154
TTGGTAGTG
538
TGAGATGGACATTTAAA
922
66
GGCGGTGAAGAGTCACAGTTTGAGATG
1306





AGAGTCAC

CTCCACACG

GCACCAGCC


GACATTTAAAGCACCAGCCATCGTGTG






AGT

AT




GAGCACTACCAA






ELF3
NM_004433.2
ELF3
TCGAGGGC
155
GATGAGGAT
539
CGCCCAGAGGCACCCAC
923
71
TCGAGGGCAAGAAGAGCAAGCACGCG
1307





AAGAAGAG

GTCCCGGAT

CTG


CCCAGAGGCACCCACCTGTGGGAGTTC






CAA

GA




ATCCGGGACATCCTCATC






EMP1
NM_001423.1
EMP1
GCTAGTACT
156
GAACAGCTG
540
CCAGAGAGCCTCCCTGC
924
75
GCTAGTACTTTGATGCTCCCTTGATGGG
1308





TTGATGCTC

GAGGCCAAG

AGCCA


GTCCAGAGAGCCTCCCTGCAGCCACCA






CCTTGAT

TC




GACTTGGCCTCCAGCTGTTC






ENO1
NM_001428.2
ENO1
CAAGGCCG
157
CGGTCACGG
541
CTGCAACTGCCTCCTGCT
925
68
CAAGGCCGTGAACGAGAAGTCCTGCAA
1309





TGAACGAG

AGCCAATCT

CAAAGTCA


CTGCCTCCTGCTCAAAGTCAACCAGATT






AAGT






GGCTCCGTGACCG






EP300
NM_001429.1
EP300
AGCCCCAG
158
TGTTCAAAG
542
CACTGACATCATGGCTG
926
75
AGCCCCAGCAACTACAGTCTGGGATGC
1310





CAACTACA

GTTGACCAT

GCCTTG


CAAGGCCAGCCATGATGTCAGTGGCCC






GTCT

GC




AGCATGGTCAACCTTTGAACA






EpCAM
NM_002354.1
EPCAM
GGGCCCTCC
159
TGCACTGCT
543
CCGCTCTCATCGCAGTCA
927
75
GGGCCCTCCAGAACAATGATGGGCTTT
1311





AGAACAAT

TGGCCTTAA

GGATCAT


ATGATCCTGACTGCGATGAGAGCGGGC






GAT

AGA




TCTTTAAGGCCAAGCAGTGCA






EPHA2
NM_004431.2
EPHA2
CGCCTGTTC
160
GTGGCGTGC
544
TGCGCCCGATGAGATCA
928
72
CGCCTGTTCACCAAGATTGACACCATT
1312





ACCAAGATT

CTCGAAGTC

CCG


GCGCCCGATGAGATCACCGTCAGCAGC






GAC






GACTTCGAGGCACGCCAC






EPHB2
NM_004442.4
EPHB2
CAACCAGG
161
GTAATGCTG
545
CACCTGATGCATGATGG
929
66
CAACCAGGCAGCTCCATCGGCAGTGTC
1313





CAGCTCCAT

TCCACGGTG

ACACTGC


CATCATGCATCAGGTGAGCCGCACCGT






C

C




GGACAGCATTAC






EPHB4
NM_004444.3
EPHB4
TGAACGGG
162
AGGTACCTC
546
CGTCCCATTTGAGCCTGT
930
77
TGAACGGGGTATCCTCCTTAGCCACGG
1314





GTATCCTCC

TCGGTCAGT

CAATGT


GGCCCGTCCCATTTGAGCCTGTCAATGT






TTA

GG




CACCACTGACCGAGAGGTACCT






ER2
NM_00147.1
ESR2
TGGTCCATC
163
TGTTCTAGC
547
ATCTGTATGCGGAACCT
931
76
TGGTCCATCGCCAGTTATCACATCTGTA
1315





GCCAGTTAT

GATCTTGCT

CAAAAGAGTCCCT


TGCGGAACCTCAAAAGAGTCCCTGGTG






CA

TCACA




TGAAGCAAGATCGCTAGAACA






ERBB4
NM_005235.1
ERBB4
TGGCTCTTA
164
CAAGGCATA
548
TGTCCCACGAATAATGC
932
86
TGGCTCTTAATCAGTTTCGTTACCTGCC
1316





ATCAGTTTC

TCGATCCTC

GTAAATTCTCCAG


TCTGGAGAATTTACGCATTATTCGTGGG






GTTACCT

ATAAAGT




ACAAAACTTTATGAGGATCGATATGCC













TTG






ERCC1
NM_001983.1
ERCC1
GTCCAGGTG
165
CGGCCAGGA
549
CAGCAGGCCCTCAAGGA
933
67
GTCCAGGTGGATGTGAAAGATCCCCAG
1317





GATGTGAA

TACACATCT

GCTG


CAGGCCCTCAAGGAGCTGGCTAAGATG






AGA

TA




TGTATCCTGGCCG






ERG
NM_004449.3
ERG
CCAACACTA
166
CCTCCGCCA
550
AGCCATATGCCTTCTCAT
934
70
CCAACACTAGGCTCCCCACCAGCCATA
1318





GGCTCCCCA

GGTCTTTAG

CTGGGC


TGCCTTCTCATCTGGGCACTTACTACTA








T




AAGACCTGGCGGAGG






ERRa
NM_004451.3
ESRRA
GGCATTGA
167
TCTCCGAGG
551
AGAGCCGGCCAGCCCTG
935
67
GGCATTGAGCCTCTCTACATCAAGGCA
1319





GCCTCTCTA

AACCCTTTG

ACAG


GAGCCGGCCAGCCCTGACAGTCCAAAG






CATCA

G




GGTTCCTCGGAGA






ESD
NM_001984.1
ESD
GTCACTCCG
168
CTGTCCAAT
552
TCGCCTACCATTTGGTGC
936
66
GTCACTCCGCCACCGTAGAATCGCCTA
1320





CCACCGTAG

TGCTGATTG

AAGCAA


CCATTTGGTGCAAGCAAAAAGCAATCA








CTT




GCAATTGGACAG






ESPL1
NM_012291.1
ESPL1
ACCCCCAG
169
TGTAGGGCA
553
CTGGCCCTCATGTCCCCT
937
70
ACCCCCAGACCGGATCAGGCAAGCTGG
1321





ACCGGATC

GACTTCCTC

TCACG


CCCTCATGTCCCCTTCACGGTGTTTGAG






AG

AAACA




GAAGTCGCCCTACA






ESRRG
NM_001438.1
ESRRG
CCAGCACC
170
AGTCTCTTG
554
CCCCAGACCAAGTGTGA
938
67
CCAGCACCATTGTTGAAGATCCCCAGA
1322





ATTGTTGAA

GGCATCGAG

ATACATGCT


CCAAGTGTGAATACATGCTCAACTGGA






GAT

TT




TGCCCAAGAGACT






EstR1
NM_000125.1
ESR1
CGTGGTGCC
171
GGCTAGTGG
555
CTGGAGATGCTGGACGC
939
68
CGTGGTGCCCCTCTATGACCTGCTGCTG
1323





CCTCTATGA

GCGCATGTA

CC


GAGATGCTGGACGCCCACCGCCTACAT






C

G




GCGCCCACTAGCC






ETV5
NM_004454.1
ETV5
ACCATGTAT
172
TGACCAGGA
556
TTACCAGAGGCGAGGTT
940
67
ACCATGTATCGAGAGGGGCCCCCTTAC
1324





CGAGAGGG

ACTGCCACA

CCCTTCA


CAGAGGCGAGGTTCCCTTCAGCTGTGG






GC

G




CAGTTCCTGGTCA






EZH2
NM_004456.3
EZH2
TGGAAACA
173
CACCGAACA
557
TCCTGACTTCTGTGAGCT
941
78
TGGAAACAGCGAAGGATACAGCCTGTG
1325





GCGAAGGA

CTCCCTAGT

CATTGCG


CACATCCTGACTTCTGTGAGCTCATTGC






TACA

CC




GCGGGACTAGGGAGTGTTCGGTG






F3
NM_001993.2
F3
GTGAAGGA
174
AACCGGTGC
558
TGGCACGGGTCTTCTCCT
942
73
GTGAAGGATGTGAAGCAGACGTACTTG
1326





TGTGAAGC

TCTCCACAT

ACC


GCACGGGTCTTCTCCTACCCGGCAGGG






AGACGTA

TC




AATGTGGAGAGCACCGGTT






FAP
NM_004460.2
FAP
CTGACCAG
175
GGAAGTGGG
559
CGGCCTGTCCACGAACC
943
66
CTGACCAGAACCACGGCTTATCCGGCC
1327





AACCACGG

TCATGTGGG

ACTTATA


TGTCCACGAACCACTTATACACCCACA






CT






TGACCCACTTCC






FASN
NM_004104.4
FASN
GCCTCTTCC
176
GCTTTGCCC
560
TCGCCCACCTACGTACTG
944
66
GCCTCTTCCTGTTCGACGGCTCGCCCAC
1328





TGTTCGACC

GGTAGCTCT

GCCTAC


CTACGTACTGGCCTACACCCAGAGCTA













CCGGGCAAAGC






FGFR2
NM_000141.2
FGFR2
GAGGGACT
177
GAGTGAGAA
561
TCCCAGAGACCAACGTT
945
80
GAGGGACTGTTGGCATGCAGTGCCCTC
1329


isoform 1


GTTGGCATG

TTCGATCCA

CAAGCAGTTG


CCAGAGACCAACGTTCAAGCAGTTGGT






CA

AGTCTTC




AGAAGACTTGGATCGAATTCTCACTC






FGFR4
NM_002011.3
FGFR4
CTGGCTTAA
178
ACGAGACTC
562
CCTTTCATGGGGAGAAC
946
81
CTGGCTTAAGGATGGACAGGCCTTTCA
1330





GGATGGAC

CAGTGCTGA

CGCATT


TGGGGAGAACCGCATTGGAGGCATTCG






AGG

TG




GCTGCGCCATCAGCACTGGAGTCTCGT






FHIT
NM_002012.1
FHIT
CCAGTGGA
179
CTCTCTGGG
563
TCGGCCACTTCATCAGG
947
67
CCAGTGGAGCGCTTCCATGACCTGCGT
1331





GCGCTTCCA

TCGTCTGAA

ACGCAG


CCTGATGAAGTGGCCGATTTGTTTCAG






T

ACAA




ACGACCCAGAGAG






FLOT2
NM_004475.1
FLOT2
GACATCTGC
180
CAAACTGGT
564
AATCTGCTCCACTGTCAG
948
66
GACATCTGCGCTCCATCCTCGGGACCCT
1332





GCTCCATCC

CCCGGTCCT

GGTCCC


GACAGTGGAGCAGATTTATCAGGACCG













GGACCAGTTTG






FN1
NM_002026.2
FN1
GGAAGTGA
181
ACACGGTAG
565
ACTCTCAGGCGGTGTCC
949
69
GGAAGTGACAGACGTGAAGGTCACCAT
1333





CAGACGTG

CCGGTCACT

ACATGAT


CATGTGGACACCGCTGAGAGTGCAGT






AAGGT






GACCGGCTACCGTGT






FOS
NM_005252.2
FOS
CGAGCCCTT
182
GGAGCGGGC
566
TCCCAGCATCATCCAGG
950
67
CGAGCCCTTTGATGACTTCCTGTTCCCA
1334





TGATGACTT

TGTCTCAGA

CCCAG


GCATATCCAGGCCCAGTGGCTCTGAG






CCT






ACAGCCCGCTCC






FOXC2
NM_005251.1
FOXC2
GAGAACAA
183
CTTGACGAA
567
AGAACAGCATCCGCCAC
951
66
GAGAACAAGCAGGGCTGGCAGAACAG
1335





GCAGGGCT

GCACTCGTT

AACCTCT


CATCCGCCACAACCTCTCGCTCAACGA






GG

GA




GTGCTTCGTCAAG






FOXO3A
NM_001455.1
FOXO3
TGAAGTCCA
184
ACGGCTTGC
568
CTCTACAGCAGCTCAGC
952
83
TGAAGTCCAGGACGATGATGCGCCTCT
1336





GGACGATG

TTACTGAAG

CAGCCTG


CTCGCCCATGCTCTACAGCAGCTCAGC






ATG

GT




CAGCCTGTCACCTTCAGTAAGCAAGCC













GT






FOXP1
NM_032682.3
FOXP1
CGACAGAG
185
GGTCGTCCA
569
CAGACCAAGCCTTTGCC
953
70
CGACAGAGCTTGTGCACCTAAGCTGCA
1337





CTTGTGCAC

TTGGAATCC

CAGATT


GACCAAGCCTTTGCCCAGAATTTAAGG






CT

T




ATTCCAATGGACGACC






FOXP3
NM_014009.2
FOXP3
CTGTTTGCT
186
GTGGAGGAA
570
TGTTTCCATGGCTACCCC
854
66
CTGTTTGCTGTCCGGAGGCACCTGTGG
1338





GTCCGGAG

CTCTGGGAA

ACAGGT


GGTAGCCATGGAAACAGCACATTCCCA






G

TG




GAGTTCCTCCAC






FSCN1
NM_003088.1
FSCN1
CCAGCTGCT
187
GGTCACAAA
571
TGACCGGCGCATCACAC
955
74
CCAGCTGCTACTTTGACATCGAGTGGC
1339





ACTTTGACA

CTTGCCATT

TGAGG


GTGACCGGCGCATCACACTGAGGGCGT






TCGA

GGA




CCAATGGCAAGTTTGTGACC






FUS
NM_004960.1
FUS
GGATAATTC
188
TGAAGTAAT
572
TCAATTGTAACATTCTCA
956
80
GGATAATTCAGACAACAACACCATCTT
1340





AGACAACA

CAGCCACAG

CCCAGGCCTTG


TGTGCAAGGCCTGGGTGAGAATGTTAC






ACACCATCT

ACTCAAT




AATTGAGTCTGTGGCTGATTACTTCA






FYN
NM_002037.3
FYN
GAAGCGCA
189
CTCCTCAGA
573
CTGAAGCACGACAAGCT
957
69
GAAGCGCAGATCATGAAGAAGCTGAA
1341





GATCATGA

CACCACTGC

GGTCCAG


GCACGACAAGCTGGTCCAGCTCRATGC






AGAA

AT




AGTGGTGTCTGAGGAG






G-Catenin
NM_002230.1
JUP
TCAGCAGC
190
GGTGGTTTT
574
CGCCCGCAGGCCTCATC
958
68
TCAGCAGCAAGGGCATCATGGAGGAGG
1342





AAGGGCAT

CTTGAGCGT

CT


ATGAGGCCTGCGGGCGCCAGTACACGC






CAT

GTACT




TCAAGAAAACCACC






GAB2
NM_012296.2
GAB2
TGTTTGGAG
191
GAAGATAGC
575
TGAGCCAGATTCCACAC
959
74
TGTTTGGAGGGAAGGGCTGGGGCTCTG
1343





GGAAGGGC

TGAGGGCTG

CTCACGT


AGCCAGATTCCACACCTCACGTTCAGT






T

TGAC




CACAGCCCTCAGCTATCTTC






GADD45
NM_001924.2
FADD45A
GTGCTGGTG
192
CCCGGCAAA
576
TTCATCTCAATGGAAGG
960
73
GTGCTGGTGACGAATCCACATTCATCTC
1344





ACGAATCC

AACAAATAA

ATCCTGCC


AATGGAAGGATCCTGCCTTAAGTCAAC






A

GT




TTATTTGTTTTTGCCGGG






GADD45B
NM_015675.1
GADD45B
ACCCTCGAC
193
TGGGAGTTC
577
AACTTCAGCCCCAGCTC
961
70
ACCCTCGACAAGACCACACTTTGGGAC
1345





AAGACCAC

ATGGGTACA

CCAAGTC


TTGGGAGCTGGGGCTGAAGTTGCTCTG






ACT

GA




TACCCATGAACTCCCA






GAPDH
NM_002046.2
GAPDH
ATTCCACCC
194
GATGGGATT
578
CCGTTCTCAGCCTTGACG
962
74
ATTCCACCCATGGCAAATTCCATGGCA
1346





ATGGCAAA

TCCATTGAT

GTGC


CCGTCAAGGCTGAGAACGGGAAGCTTG






TTC

GACA




TCATCAATGGAAATCCCATC






GATA3
NM_002051.1
GATA3
CAAAGGAG
195
GAGTCAGAA
579
TGTTCCAACCACTGAATC
963
75
CAAAGGAGCTCACTGTGGTGTCTGTGT
1347





CTCACTGTG

TGGCTTATT

TGGACC


TCCAACCACTGAATCTGGACCCCATCT






GTGTCT

CACAGATG




GTGAATAAGCCATTCTGACTC






GBP1
NM_002053.1
GBP1
TTGGGAAAT
196
AGAAGCTAG
580
TTGGGACATTGTAGACTT
964
73
TTGGGAAATATTTGGGCATTGGTCTGG
1348





ATTTGGGCA

GGTGGTTGT

GGCCAGAC


CCAAGTCTACAATGTCCCAATATCAAG






TT

CC




GACAACCACCCTAGCTTCT






GBP2
NM_004120.2
GBP2
GCATGGGA
197
TGAGGAGT
581
CCATGGACCAACTTCAC
965
83
GCATGGGAACCATCAACCAGCAGGCCA
1349





ACCATCAAC

TGCCTTGAT

TATGTGACAGAGC


TGGACCAACTTCACTATGTGACAGAGC






CA

TCG




TGACAGATCGAATCAAGGCAAACTCCT













CA






GCLM
NM_002061.1
GCLM
TGTAGAATC
198
CACAGAATC
582
TGCAGTTGACATGGCCT
966
85
TGTAGAATCAAACTCTTCATCATCAACT
1350





AAACTCTTC

CAGCTGTGC

GTTCAGTCC


AGAAGTGCAGTTGACATGGCCTGTTCA






ATCATCAAC

AACT




GTCCTTGGAGTTGCACAGCTGGATTCTG






TAG






TG






GDF15
NM_004864.1
GDF15
CGCTCCAGA
199
ACAGTGGAA
583
TGTTAGCCAAAGACTGC
967
72
CGCTCCAGACCTATGATGACTTGTTAGC
1351





CCTATGATG

GGACCAGGA

CACTGCA


CAAAGACTGCCACTGCATATGAGCAGT






ACT

CT




CCTGGTCCCTTCCACTGT






GH1
NM_000515.3
GH1
GATCCCAA
200
AGCCATTGC
584
TGTCCACAGGACCCTGA
968
66
GATCCCAAGGCCCAACTCCCCGAACCA
1352





GGCCCAACT

AGCTAGGTG

GTGGTTC


CTCAGGGTCCTGTGGACAGCTCACCTA






C

AG




GCTGCAATGGCT






GJA1
NM_000165.2
GJA1
GTTCACTGG
201
AAATACCAA
585
ATCCCCTCCCTCTCCACC
969
68
GTTCACTGGGGGTGTATGGGGTAGATG
1353





GGGTGTATG

CATGCACCT

CATCTA


GGTGGAGAGGGAGGGGATAAGAGAGG






G

CTCTT




TGCATGTTGGTATTT






GJB2
NM_004004.3
GJB2
TGTCATGTA
202
AGTCCACAG
586
AGGCGTTGCACTTCACC
970
74
TGTCATGTACGACGGCTTCTCCATGCAG
1354





CGACGGCTT

TGTTGGGAC

AGCC


CGGCTGGTGAAGTGCAACGCCTGGCCT






CT

AA




TGTCCCAACACTGTGGACT






GMNN
NM_015895.3
GMNN
GTTCGCTAC
203
TGCGTACCC
587
CCTCTTGCCCACTTACTG
971
67
GTTCGCTACGAGGATTGAGCGTCTCCA
1355





GAGGATTG

ACTTCCTGC

GGTGGA


CCCAGTAAGTGGGCAAGAGGCGGCAG






AGC






GAAGTGGGTACGCA






GNAZ
NM_002073.2
GNAZ
TTCTGGACC
204
AAAGAGCTG
588
CCGGGTGACAGCACTAA
972
68
TTCTGGACCTGGGACCTTAGGAGCCGG
1356





TGGGACCTT

TGAGTGGCT

CCAGACC


GTGACAGCACTAACCAGACCTCCAGCC






AG

GG




ACTCACAGCTCTTT






GPR30
NM_001505.1
GPER
CGTGCCTCT
205
ATGTTCACC
589
CTCTTCCCCATCGCTTT
973
70
CGTGCCTCTACACCATCTTCCTCTTCCC
1357





ACACCATCT

ACCAGGATC

GTGG


CATCGGCTTTGTGGGCAACATCCTGATC






TC

AG




CTGGTGGTGAACAG






GPS1
NM_004127.4
GPS1
AGTACAAG
206
GCAGCTCAG
590
CCTCCTGCTGGCTTCCTT
974
66
AGTACAAGCAGGCTGCCAAGTGCCTCC
1358





CAGGCTGCC

GGAAGTCAC

TGATCA


TGCTGGCTTCCTTTGATCACTGTGACTT






AAG

A




CCCTGAGCTGC






GPX1
NM_000581.2
GPX1
GCTTATGAC
207
AAAGTTCCA
591
CTCATCACCTGGTCTCCG
975
67
GCTTATGACCGACCCCAAGCTCATCAC
1359





CGACCCCA

GGCAACATC




CTGGTCTCCGGTGTGTCGCAACGATGTT






A

GT




GCCTGGAACTTT






GPX2
NM_002083.1
GPX2
CACACAGA
208
GGTCCAGCA
592
CATGCTGCATCCTAAGG
976
75
CACACAGATCTCCTACTCCATCCAGTCC
1360





TCTCCTACT

GTGTCTCCT

CTCCTCAGG


TGAGGAGCCTTAGGATGCAGCATGCCT






CCATCCA

GAA




TCAGGAGACACTGCTGGACC






GPX4
NM_002085.1
GPX4
CTGAGTGTG
209
TACTCCCTG
593
CTGGCCTTCCCGTGTAAC
977
66
CTGAGTGTGGTTTGCGGATCCTGGCCTT
1361





GTTTGCGGA

GCTCCTGCT

CAGTTC


CCCGTGTAACCAGTTCGGGAAGCAGGA






A

T




GCCAGGGAGTA






GRB7
NM_005310.1
GRB7
CCATCTGCA
210
GGCCACCAG
594
CTCCCCACCCTTGAGAA
978
67
CCATCTGCATCCATCTTGTTTGGGCTCC
1362





TCCATCTTG

GGTATTATC

GTGCCT


CCACCCTTGAGAAGTGCCTCAGATAAT






TT

TG




ACCCTGGTGGCC






GREB1
NM_014668.2
GREB1
CAGATGAC
211
GAAGCCTTT
595
CACAATTCCCAGAGAAA
979
71
CAGATGACAATGGCCACAATGCTCTTG
1363


variant a


AATGGCCA

CTTTCCACA

CCAAGAAGAGC


TTGGTTTCTCTGGGAATTGTGTTGGCTG






CAAT

GC




TGGAAAGAAAGGCTTC






GREB1
NM_033090.1
GREB1
TGCTTAGGT
212
CAAGAGCCT
596
ACCACGCGAACGGTGCA
980
73
TGCTTAGGTGCGGTAAAACCAGCGCTT
1364


variant b


GCGGTAAA

GAATGCGTC

TCG


GTCCGATGCACCGTTCGCGTGGTAAAC






ACCA

AGT




TGACGCATTCAGGCTCTTG






GREB1
NM_148903.1
GREB1
CCCCAGGC
213
ACTTCGGCT
597
TCCCCGAGCCCAGCAGG
981
64
CCCCAGGCACAAGCTTTACTCCCCGAG
1365


variant c


ACCAGCTTT

GTGTGTTAT

ACA


CCCAGCAGGACATCTGCATATAACACA






A

ATGCA




CAGCCGAAGT






GRN
NM_002087.1
GRN
TGCCCCCAA
214
GAGGTCCGT
598
TGACCTGATCCAGAGTA
982
72
TGCCCCCAAGACACTGTGTGTGACCTG
1366





GACACTGTG

GGTAGCGTT

AGTGCCTCTCCA


ATCCAGAGTAAGTGCCTCTCCAAGGAG






T

CTC




AACGCTACCACGGACCTC






GSTM1
NM_000561.1
GSTM1
AAGCTATG
215
GGCCCAGCT
599
TCAGCCACTGGCTTCTGT
983
86
AAGCTATGAGGAAAAGAAGTACACGAT
1367





AGGAAAAG

TGAATTTTTC

CATAATCAGGAG


GGGGGACGCTCCTGATTATGACAGAAG






AAGTACAC

A




CCAGTGGCTGAATGAAAAATTCAAGCT






GAT






GGGCC






GSTM2
NM_000848

CTGGGCTGT
216
GCGAATCTG
600
CCCGCCTACCCTCGTAA
984
71
CTGGGCTGTGAGGCTGAGAGTGAATCT
1368


gene
gene

GAGGCTGA

CTCCTTTTCT

AGCAGATTCA


GCTTTACGAGGGTAGGCGGGGAATCAG






GA

GA




AAAAGGAGCAGATTCGC






GSTM2
NM_000848.2
GSTM2
CTGCAGGC
217
CCAAGAAAC
601
CTGAAGCTCTACTCACA
985
68
CTGCAGGCACTCCCTGAAATGCTGAAG
1369





ACTCCCTGA

CATGGCTGC

GTTTCTGGG


CTCTACTCACAGTTTCTGGGGAAGCAG






AAT

TT




CCATGGTTTCTTGG






GSTM3
NM_000849.3
GSTM3
CAATGCCAT
218
GTCCACTCG
602
CTCGCAAGCACAACATG
986
76
CAATGCCATCTTGCGCTACATCGCTCGC
1370





CTTGCGCTA

AATCTTTTCT

TGTGGTGAGA


AAGCACAACATGTGTGGTGAGACTGAA






CAT

TCTTCA




GAAGAAAAGATTCGAGTGGAC






GSTT1
NM_000853.1
GSTT1
CACCATCCC
219
GGCCTCAGT
603
CACAGCCGCCTGAAAGC
987
66
CACCATCCCCACCCTGTCTTCCACAGCC
1371





CACCCTGTC

GTGCATCAT

CACAAT


GCCTGAAAGCCACAATGAGAATGATGC






T

TCT




ACACTGAGGCC






GUS
NM_000181.1
GUSB
CCCACTCAG
220
CACGCAGGT
604
TCAAGTAAACGGGCTGT
988
73
CCCACTCAGTAGCCAAGTCACAATGTT
1372





TAGCCAAGT

GGTATCAGT

TTTCCAAACA


TGGAAAACAGCCCGTTTACTTGAGCAA






CA

CT




GACTGATACCACCTGCGTG






H3F3A
NM_002107.3
H3F3A
CCAAACGT
221
TCTTAAGCA
605
AAAGACATCCAGCTAGC
989
70
CCAAACGTGTAACAATTATGCCAAAAG
1373





GTAACAATT

CGTTCTCCA

ACGCCG


ACATCCAGCTAGCACGCCGCATACGTG






ATGCC

CG




GAGAACGTGCTTAAGA






HDAC1
NM_004964.2
HDAC1
CAAGTACC
222
GCTTGCTGT
606
TTCTTGCGCTCCATCCGT
990
74
CAAGTACCACAGCGATGACTACATTAA
1374





ACAGCGAT

ACTCCGACA

CCAGA


ATTCTTGCGCTCCATCCGTCCAGATAAC






GACTACATT

TGTT




ATGTCGGAGTACAGCAAGC






AA













HDAC6
NM_006044.2
HDAC6
TCCTGTGCT
223
CTCCACGGT
607
CAAGAACCTCCCAGAAG
991
66
TCCTGTGCTCGGAAGCCCTTGAGCCCT
1375





CTGGAAGC

CTCAGTTGA

GGCTCAA


TCTGGGAGGTTCTTGTGAGATCAACT






C

TCT




AGACCGTGGAG






HER2
NM_004448.1
ERBB2
CGGTGTGA
224
CCTCTCGCA
608
CCAGACCATAGCACACT
992
70
CGGTGTGAGAAGTGCAGCAAGCCCTGT
1376





GAAGTGCA

AGTGCTCCA

CGGGCAC


GCCCGAGTGTGCTATGGTCTGGGCATG






GCAA

T




GAGCACTTGCGAGAGG






HES1
NM_005524.2
HES1
GAAAGATA
225
GGAGGTGCT
609
CAGAATGTCCGCCTTCTC
993
68
GAAAGATAGCTCGCGGCATTCCAAGCT
1377





GCTCGCGGC

TCACTGTCA

CAGCTT


GGAGAAGGCGGACATTCTGGAAATGAC






A

TTT




AGTGAAGCACCTCC






HGFAC
NM_001528.2
HGFAC
CAGGACAC
226
GCAGGGAGC
610
CGCTCACGTTCTCATCCA
994
72
CAGGACACAAGTGCCAGATTGCGGGCT
1378





AAGTGCCA

TGGAGTAGC

AGTGG


GGGGCCACTTGGATGAGAACGTGAGCG






GATTT






GCTACTCCAGCTCCCTGC






HLA-DPB1
NM_002121.4
HLA-DPB1
TCCATGATG
227
TGAGCAGCA
611
CCCCGGACAGTGGCTCT
995
73
TCCATGATGGTTCTGCAGGTTTCTGCGG
1379





GTTCTGCAG

CCATCAGTA

GACG


CCCCCCGGACAGTGGCTCTGACGGCGT






GTT

ACG




TACTGATGGTGCTGCTCA






HMGB1
NM_002128.3
HMGB1
TGGCCTGTC
228
GCTTGTCAT
612
TTCCACATCTCTCCCAGT
996
71
TGGCCTGTCCATTGGTGATGTTGCGAA
1380





CATTGGTGA

CTGCAGCAG

TTCTTCGCAA


GAAACTGGGAGAGATGTGGAATAACAC






T

TGTT




TGCTGCAGATGACAAGC






HNF3A
NM_004496.1
FOXA1
TCCAGGATG
229
GCGTGTCTG
613
AGTCGCTGGTTTCATGCC
997
73
TCCAGGATGTTAGGAACTGTGAAGATG
1381





TTAGGAACT

CGTAGTAGC

CTTCCA


GAAGGGCATGAAACCAGCGACTGGAA






GTGAAG

TGTT




CAGCTACTACGCAGACACGC






HNRPAB
NM_004499.3
HNRNPAB
AGCAGGAG
230
GTTTGCCAA
614
CTCCATATCCAAACAAA
998
84
AGCAGGAGCGACCAACTGATCGCACAC
1382





CGACCAACT

GTTAAATTT

GCATGTGTGCG


ATGCTTTGTTTGGATATGGAGTGAACA






GA

GGTACATAA




CAATTATGTACCAAATTTAACTTGGCA








T











HNRPC
NM_004500.3
HNRNPC
GCAGCAGT
231
GGGAGGGAG
615
AGTCTCCTACTCCCGGGT
999
68
GCAGCAGTCGGCTTCTCTACGCAGAAC
1383





CGGCTTCTC

AAGAGATTC

TCTGCG


CCGGGAGTAGGAGACTCAGAATCGAAT






T

GAT




CTCTTCTCCCTCCCC






HoxA1
NM_005522.3
HOXA1
AGTGACAG
232
CCGAGTCGC
616
TGAACTCCTTCCTGGAAT
1000
69
AGTGACAGATGGACAATGCAAGAATGA
1384





ATGGACAA

CACTGCTAA

ACCCCA


ACTCCTTCCTGGAATACCCCATACTTAG






TGCAAGA

GT




CAGTGGCGACTCGG






HoxA5
NM_019102.2
HOXA5
TCCCTTGTG
233
GGCAATAAA
617
AGCCCTGTTCTCGTTGCCC
1001
78
TCCCTTGTGTTCCTTCTGTGAAGAAGCC
1385





TTCCTTCTG

CAGGCTCAT

CTAATTCATC


CTGTTCTCGTTGCCCTAATTCATCTTTT






TGAA

GATTA




AATCATGAGCCTGTTTATTGCC






HOBX13
NM_006361.2
HOXB13
CGTGCCTTA
234
CACAGGGTT
618
ACACTCGGCAGGAGTAG
1002
71
CGTGCCTTATGGTTACTTTGGAGGCGG
1386





TGGTTACTT

TCAGCGAGC

TACCCGC


GTACTACTCCTGCCGAGTGTCCCGGAG






TGG






CTCGCTGAAACCCTGTG






HOXB7
NM_004502.2
HOXB7
CAGCCTCAA
235
GTTGGAAGC
618
ACCGGAGCCTTCCCCAGA
1003
68
CAGCCTCAAGTTCGGTTTTCGCTACCGG
1387





GTTCGGTTT

AAACGCACA

ACAAACT


AGCCTTCCCAGAACAAACTTCTTGTGC






TC






GTTTGCTTCCAAC






HSD17B1
NM_000413.1
HSD17B1
CTGGACCGC
236
CGCCTCGCG
620
ACCGCTTCTACCAATACC
1004
78
CTGGACCGCACGGACATCCACACCTTC
1388





ACGGACAT

AAAGACTTG

TCGCCCA


CACCGCTTCTACCAATACCTCGCCCACA






C






GCAAGCAAGTCTTTCGCGAGGCG






HSD17B2
NM_002153.1
HSD17B2
GCTTTCCAA
237
TGCCTGCGA
621
AGTTGCTTCCATCCAACC
1005
68
GCTTTCCAAGTGGGGAATTAAAGTTGC
1389





GTGGGGAA

TATTTGTTA

TGGAGG


TTCCATCCAACCTGGAGGCTTCCTAACA






TTA

GG




AATATCGCAGGCA






HSH1N1
NM_017493.3
OTUD4
CAGTCTCGC
238
ATAAACGCT
622
CAGAATGGCCTGTATTC
1006
77
CAGTCTCGCCATGTTGAAGTCAGAATG
1390





CATGTTGAA

TCAAATTTC

ACTATCTTCGAGA


GCCTGTATTCACTATCTTCGAGAGAAC






GT

TCTCTG




AGAGAGAAATTTGAAGCGTTTAT






HSPA1A
NM_005345.4
HSPA1A
CTGCTGCGA
239
CAGGTTCGC
623
AGAGTGACTCCCGTTGT
1007
70
CTGCTGCGACAGTCCACTACCTTTTTCG
1391





CAGTCCACT

TCTGGGAAG

CCCAAGG


AGAGTGACTCCCGTTGTCCCAAGGCTT






A






CCCAGAGCGAACCTG






HSPA1B
NM_005346.3
HSPA1B
GGTCCGCTT
240
GCACAGGTT
624
TGACTCCCGCGGTCCCA
1008
63
GGTCCGCTTCGTCTTTCGAGAGTGACTC
1392





CGTCTTTCG

CGCTCTGGA

AGG


CCGCGGTCCCAAGGCTTTCCAGAGCGA






A

A




ACCTGTGC






HSPA4
NM_002154.3
HSPA4
TTCAGTGTG
241
ATCTGTTTCC
625
CATTTTCCTCAGACTTGT
1009
72
TTCAGTGTGTCCAGTGCATCTTTAGTGG
1393





TCCAGTGCA

ATTGGCTCC

GAACCTCCACT


AGGTTCACAAGTCTGAGGAAAATGAGG






TC

T




AGCCAATGGAAACAGAT






HSPA5
NM_005347.2
HSPA5
GGCTAGTA
242
GGTCTGCCC
626
TAATTAGACCTAGGCCT
1010
84
GGCTAGTAGAACTGGATCCCAACACCA
1394





GAACTGGA

AAATGCTTT

CAGCTGCACTGCC


AACTCTTAATTAGACCTAGGCCTCAGCT






TCCCAACA

TC




GCACTGCCCGAAAAGCATTTGGGCAGA













CC






HSPA8
NM_006597.3
HSPA8
CCTCCCTCT
243
GCTACATCT
627
CTCAGGGCCCACCATTG
1011
73
CCTCCCTCTGGTGGTGCTTCCTCAGGGC
1395





GGTGGTGCT

ACACTTGGT

AAGAGGTTG


CCACCATTGAAGAGGTTGATTAAGCCA






T

TGGCTTAA




ACCAAGTGTAGATGTAGC






HSPB1
NM_001540.2
HSPB1
CCGACTGG
244
ATGCTGGCT
628
CGCACTTTTCTGAGCAG
1012
84
CCGACTGGAGGAGCATAAAAGCGCAGC
1396





AGGAGCAT

GACTCTGCT

ACGTCCA


CGAGCCCAGCGCCCCGCACTTTTCTGA






AAA

C




GCAGACGTCCAGAGCAGAGTCAGCCAG













CAT






IBSP
NM_004967.2
IBSP
GAATACCA
245
GGATTGCAG
629
CCAGGCGTGGCGTCCTC
1013
83
GAATACCACACTTTCTGCTACAACACT
1397





CACTTTCTG

CTAACCCTG

TCCATA


GGGCTATGGAGAGGACGCCACGCCTGG






CTACAACAC

TATACC




CACAGGGTATACAGGGTTAGCTGCAAT






T






CC






ICAM1
NM_000201.1
ICAM1
GCAGACAG
246
CTTCTGAGA
630
CCGGCGCCCAACGTGAT
1014
68
GCAGACAGTGACCATCTACAGCTTTCC
1398





TGACCATCT

CCTCTGGCT

TCT


GGCGCCCAACGTGATTCTGACGAAGCC






ACAGCTT

TCGT




AGAGGTCTCAGAAG






ID1
NM_002165.1
ID1
AGAACCGC
247
TCCAACTGA
631
TGGAGATTCTCCAGCAC
1015
70
AGAACCGCAAGGTGAGCAAGGTGGAG
1399





AAGGTGAG

AGGTCCCTG

GTCATCGAC


ATTCTCCAGCACGTCATCGACTACATCA






CAA

ATG




GGGACCTTCAGTTGGA






ID4
NM_001546.2
ID4
TGGCCTGGC
248
TGCAATCAT
632
CTTTTGTTTTGCCCAGTA
1016
83
TGGCCTGGCTCTTAATTTGCTTTTGTTTT
1400





TCTTAATTT

GCAAGACCA

TAGACTCGGAAG


GCCCAGTATAGACTCGGAAGTAACAGT






G

C




TATAGCTAGTGGTCTTGCATGATTGCA






IDH2
NM_002168.2
IDH2
GGTGGAGA
249
GCTCGTTCA
633
CCGTGAATGCAGCCCGC
1017
74
GGTGGAGAGTGGAGCCATGACCAAGG
1401





GTGGAGCC

GCTTCACAT

CAG


ACCTGGCGGGCTGCATTCACGGCCTCA






ATGA

TGC




GCAATGTGAAGCTGAACGAGC






IGF1R
NM_000875.2
IGF1R
GCATGGTA
250
TTTCCGGTA
634
CGCGTCATACCAAAATC
1018
83
GCATGGTAGCCGAAGATTTCACAGTCA
1402





GCCGAAGA

ATAGTCTGT

TCCGATTTTGA


AAATCGGAGATTTTGGTATGACGCGAG






TTTCA

CTCATAGAT




ATATCTATGAGACAGACTATTACCGGA








ATC




AA






IGF2
NM_000612.2
IGF2
CCGTGCTTC
251
TGGACTGCT
635
TACCCCGTGGGCAAGTT
1019
72
CCGTGCTTCCGGACAACTTCCCCAGAT
1403





CGGACAAC

TCCAGGTGT

CTTCCAA


ACCCCGTGGGCAAGTTCTTCCAATATG






TT

CA




ACACCTGGAAGCAGTCCA






IGFBP6
NM_002178.1
IGFBP6
TGAACCGC
252
GTCTTGGAC
636
ATCCAGGCACCTCTACC
1020
77
TGAACCGCAGAGACCAACAGAGGAATC
1404





AGAGACCA

ACCCGCAGA

ACGCCCTC


CAGGCACCTCTACCACGCCCTCCCAGC






ACAG

AT




CCAATTCTGCGGGTGTCCAAGAC






IGFBP7
NM_001553.1
IGFBP7
GGGTCACTA
253
GGGTCTGAA
637
CCCGGTCACCAGGCAGG
1021
68
GGGTCACTATGGAGTTCAAAGGACAGA
1405





TGGAGTTCA

TGGCCAGGT

AGTTCT


ACTCCTGCCTGGTGACCGGGACAACCT






AAGGA

T




GGCCATTCAGACCC






IKBKE
NM_014002.2
IKBKE
GCCTCCCAT
254
CAGAGCTCT
638
CAGCCCTACACGAAAGG
1022
66
GCCTCCCATAGCTCCTTACCCCAGCCCT
1406





AGCTCCTTA

TGCATGTGG

ACCTGCT


ACACGAAAGGACCTGCTTCTCCACATG






CC

AG




CAAGAGCTCTG






IL-8
NM_000584.2
IL8
AAGGAACC
255
ATCAGGAAG
639
TGACTTCCAAGCTGGCC
1023
70
AAGGAACCATCTCACTGTGTGTAAACA
1407





ATCTCACTG

GCTGCCAAG

GTGGC


TGACTTCCAAGCTGGCCGTGGCTCTCTT






TGTGTAAAC

AG




GGCAGCCTTCCTGAT






IL10
NM_000572.1
IL10
GGCGCTGTC
256
TGGAGCTTA
640
CTGCTCCACGGCCTTGCT
1024
79
GGCGCTGTCATCGATTTCTTCCCTGTGA
1408





ATCGATTTC

TTAAAGGCA

CTTG


AAACAAGAGCAAGGCCGTGGAGCAGG






TT

TTCTTCA




TGAAGAATGCCTTTAATAAGCTCCA






IL11
NM_000641.2
IL11
TGGAAGGTT
257
TCTTGACCTT
641
CCTGTGATCAACAGTAC
1025
66
TGGAAGGTTCCACAAGTCACCCTGTGA
1409





CCACAAGTC

GCAGCTTTG

CCGTATGGG


TCAACAGTACCCGTATGGGACAAAGCT






AC

T




GCAAGTCAAGA






IL17RB
NM_018725.2
IL17RB
ACCCTCTGG
258
GGCCCCAAT
642
TCGGCTTCCCTGTAGAGC
1026
76
ACCCTCTGGTGGTAAATGGACATTTTCC
1410





TGGTAAATG

GAAATAGAC

TGAACA


TACATCGGCTTCCCTGTAGAGCTGAAC






GA

TG




ACAGTCTATTTCATTGGGGCC






IL6ST
NM_002184.2
IL6ST
GGCCTAATG
259
AAAATTGTG
643
CATATTGCCCAGTGGTC
1027
74
GGCCTAATGTTCCAGATCCTTCAAAGA
1411





TTCCAGATC

CCTTGGAGG

ACCTCACA


GTCATATTGCCCAGTGGTCACCTCACAC






CT

AG




TCCTCCAAGGCACAATTTT






ING1
NM_005537.2
ING1
ACTTTCCTG
260
AACTCCGAG
644
ATTCAAAACAGAGCCCC
1028
66
ACTTTCCTGCGAGGTCAGTCAAGGCTTT
1412





CGAGGTCA

TGGTGATCC

CAAAGCC


GGGGGCTCTGTTTTGAATGTGGATCAC






GTC

A




CACTCGGAGTT






INHBA
NM_002192.1
INHBA
GTGCCCGA
261
CGGTAGTGG
645
ACGTCCGGGTCCTCACT
1029
72
GTGCCCGAGCCATATAGCAGGCACGTC
1413





GCCATATAG

TTGATGACT

GTCCTTCC


CGGGTCCTCACTGTCCTTCCACTCAACA






CA

GTTGA




GTCATCAACCACTACCG






IRF1
NM_002198.1
IRF1
AGTCCAGCC
262
AGAAGGTAT
646
CCCACATGACTTCCTCTT
1030
69
AGTCCAGCCGAGATGCTAAGAGCAAGG
1414





GAGATGCT

CAGGGCTGG

GGCCTT


CCAAGAGGAAGTCATGTGGGGATTCCA






AAG

AA




GCCCTGATACCTTCT






IRS1
NM_005544.1
IRS1
CCACAGCTC
263
CCTCAGTGC
647
TCCATCCCAGCTCCAGCC
1031
74
CCACAGCTCACCTTCTGTCAGGTGTCCA
1415





ACCTTCTGT

CAGTCTCTT

AG


TCCCAGCTCCAGCCAGCTCCCAGAGAG






CA

CC




GAAGAGACTGGCACTGAGG






ITGA3
NM_002204.1
ITGA3
CCATGATCC
264
GAAGCTTTG
648
CACTCCAGACCTCGCTTA
1032
77
CCATGATCCTCACTCTGCTGGTGGACTA
1416





TCACTCTGC

TAGCCGGTG

GCATGG


TACACTCCAGACCTCGCTTAGCATGGT






TG

AT




AAATCACCGGCTACAAAGCTTC






ITGA4
NM_000885.2
ITGA4
CAACGCTTC
265
GTCTGGCCG
649
CGATCCTGCATCTGTAA
1033
66
CAACGCTTCAGTGATCAATCCCGGGGC
1417





AGTGATCA

GGATTCTTT

ATCGCCC


GATTTACAGATGCAGGATCGGAAAGAA






ATCC






TCCCGGCCAGAC






ITGA5
NM_002205.1
ITGA5
AGGCCAGC
266
GTCTTCTCC
650
TCTGAGCCTTGTCCTCTA
1034
75
AGGCCAGCCCTACATTATCAGAGCAAG
1418





CCTACATTA

ACAGTCCAG

TCCGGC


AGCCGGATAGAGGACAAGGCTCAGATC






TCA

CA




TTGCTGGACTGTGGAGAAGAC






ITGA6
NM_000210.1
ITGA6
CAGTGACA
267
GTTTAGCCT
651
TCGCCATCTTTTGTGGGA
1035
69
CAGTGACAAACAGCCCTTCCAACCCAA
1419





AACAGCCCT

CATGGGCGT

TTCCTT


GGAATCCCACAAAAGATGGCGATGACG






TCC

C




CCCATGAGGCTAAAC






ITGAV
NM_002210.2
ITGAV
ACTCGGACT
268
TGCCATCAC
652
CCGACAGCCACAGAATA
1036
79
ACTCGGACTGCACAAGCTATTTTTGATG
1420





GCACAAGC

CATTGAAAT

ACCCAAA


ACAGCTATTTGGGTTATTCTGTGGCTGT






TATT

CT




CGGAGATTTCAATGGTGATGGCA






ITGB1
NM_002211.2
ITGB1
TCAGAATTG
269
CCTGAGCTT
653
TGCTAATGTAAGGCATC
1037
74
TCAGAATTGGATTTGGCTCATTTGTGGA
1421





GATTTGGCT

AGCTGGTGT

ACAGTCTTTTCCA


AAAGACTGTGATGCCTTACATTAGCAC






CA

TG




AACACCAGCTAAGCTCAGG






ITGB3
NM_000212.2
ITGB3
ACCGGGGA
270
CCTTAAGCT
654
AAATACCTGCAACCGTT
1038
78
ACCGGGGAGCCCTACATGACGAAAATA
1422





GCCCTACAT

CTTTCACTG

ACTGCCGTGAC


CCTGCAACCGTTACTGCCGTGACGAGA






GA

ACTCAATCT




TTGAGTCAGTGAAAGAGCTTAAGG






ITGB4
NM_000213.2
ITGB4
CAAGGTGC
271
GCGCACACC
655
CACCAACCTGTACCCGT
1039
66
CAAGGTGCCCTCAGTGAGCTCACCAA
1423





CCTCAGTGG

TTCATCTCAT

ATTGCGA


CCTGTACCCGTATTGCGACTATGAGAT






A






GAAGGTGTGCGC






ITGB5
NM_002213.2
ITGB5
TCGTGAAA
272
GGTGAACAT
656
TGCTATGTTTCTACAAAA
1040
71
TCGTGAAAGATGACCAGGAGGCTGTGC
1424





GATGACCA

CATGACGCA

CCGCCAAGG


TATGTTTCTACAAAACCGCCAAGGACT






GGAG

GT




GCGTCATGATGTTCACC






JAG1
NM_000214.1
JAG1
TGGCTTACA
273
GCATAGCTG
657
ACTCGATTTCCCAGCCA
1041
69
TGGCTTACACTGGCAATGGTAGTTTCTG
1425





CTGGCAATG

TGAGATGCG

ACCACAG


TGGTTGGCTGGGAAATCGAGTGCCGCA






G

G




TCTCACAGCTATGC






JUNB
NM_002229.2
JUNB
CTGTCAGCT
274
AGGGGGTGT
658
CAAGGGACACGCCTTCT
1042
70
CTGTCAGCTGCTGCTTGGGGTCAAGGG
1426





GCTGCTTGG

CCGTAAAGG

GAACGT


ACACGCCTTCTGAACGTCCCCTGCCCCT













TTACGGACACCCCCT






Ki-67
NM_002417.1
MKI67
CGGACTTTG
275
TTACAACTC
659
CCACTTGTCGAACCACC
1043
80
CGGACTTTGGGTGCGACTTGACGAGCG
1427





GGTGCGACT

TTCCACTGG

GCTCGT


GTGGTTCGACAAGTGGCCTTGCGGGCC






T

GACGAT




GGATCGTCCCAGTGGAAGAGTTGTAA






KIAA0555
NM_014790.3
JAKMIP2
AAGCCCGA
276
TGTCTGTGA
660
CCCTTCAAGCTGCCAAT
1044
67
AAGCCCGAGGCACTCATTGTTGCCCTTC
1428





GGCACTCAT

GCTTGGTCC

GAAGACC


AAGCTGCCAATGAAGACCTCAGGACCA






T

TG




AGCTCACAGACA






KIAA1199
NM_018689.1
KIAA1199
GCTGGGAG
277
GAAGCAGGT
661
CTTCAAGGCCATGCTGA
1045
66
GCTGGGAGGCAGGACTTCCTCTTCAAG
1429





GCAGGACTT

CAGAGTGAG

CCATCAG


GCCATGCTGACCATCAGCTGGCTCACT






C

CC




CTGACCTGCTTC






KIF14
NM_014875.1
KIF14
GAGCTCCAT
278
TCACACCCA
662
TGCATTCCTCTGAGCTCA
1046
69
GAGCTCCATGGCTCATCCCCAGCAGTG
1430





GGCTCATCC

CTGAATCCT

CTGCTG


AGCTCAGAGGAATGCACACCCAGTAGG








ACTG




ATTCAGTGGGTGTGA






KIF20A
NM_005733.1
KIF20A
TCTCTTGCA
279
CCGTAGGGC
663
AGTCAGTGGCCCATCAG
1047
67
TCTCTTGCAGGAAGCCAGACAACAGTC
1431





GGAAGCCA

CAATTCAGA

CAATCAG


AGTGGCCCATCAGCAATCAGGGTCTGA






GA

C




ATTGGCCCTACGG






KIF2C
NM_006845.2
KIF2C
AATTCCTGC
280
CGTGATGCG
664
AAGCCGCTCCACTCGCA
1048
73
AATTCCTGCTCCAAAAGAAAGTCTTCG
1432





TCCAAAAG

AAGCTCTGA

TGTCC


AAGCCGCTCCACTCGCATGTCCACTGTC






AAAGTCTT

GA




TCAGAGCTTCGCATCACG






KLK11
NM_006853.1
KLK11
CACCCCGGC
281
CATCTTCAC
665
CCTCCCCAACAAAGACC
1049
66
CACCCCGGCTTCAACAACAGCCTCCCC
1433





TTCAACAAC

CAGCATGAT

ACCGCA


AACAAAGACCACCGCAATGACATCATG








GTCA




CTGGTGAAGATG






KLK6
NM_002774.2
KLK6
GACGTGAG
282
TCCTCACTC
666
TTACCCCAGCTCCATCCT
1050
78
GACGTGAGGGTCCTGATTCTCCCTGGTT
1434





GGTCCTGAT

ATCACGTCC

TGCATC


TTACCCAGCTCCATCCTTGCATCACTG






TCT

TC




GGGAGGACGTGATGAGTGAGGA






KLRC1
NM_002259.3
KLRC1
CATCCTCAT
283
GCCAAACCA
667
TTCGTAACAGCAGTCAT
1051
67
CATCCTCATGGATTGGTGTGTTTCGTAA
1435





GGATTGGTG

TTCATTGTC

CATCCATGG


CAGCAGTCATCATCCATGGGTGACAAT






TG

AC




GAATGGTTTGGC






KNSL2
BC000712.1

CCACCTCGC
284
GCAATCTCT
668
TTTGACCGGGTATTCCCA
1052
77
CCACCTCGCCATGATTTTTCCTTTGACC
1436





CATGATTTT

TCAAACACT

CCAGGAA


GGGTATTCCCACCAGGAAGTGGACAGG






TC

TCATCCT




ATGAAGTGTTTGAAGAGATTGC






KNTC2
NM_006101.1
NDC80
ATGTGCCAG
285
TGAGCCCCT
669
CCTTGGAGAAACACAAG
1053
71
ATGTGCCAGTGAGCTTGAGTCCTTGGA
1437





TGAGCTTGA

GGTTAACAG

CACCTGC


GAAACACAAGCACCTGCTAGAAAGTAC






GT

TA




TGTTAACCAGGGGCTCA






KPNA2
NM_002266.1
KPNA2
TGATGGTCC
286
AAGCTTCAC
670
ACTCCTGTTTTCACCACC
1054
67
TGATGGTCCAAATGAACGAATTGGCAT
1438





AAATGAAC

AAGTTGGGG

ATGCCA


GGTGGTGAAACAGGAGTTGTGCCCCA






GAA

C




ACTTGTGAAGCTT






L1CAM
NM_000425.2
L1CAM
CTTGCTGGC
287
TGATTGTCC
671
ATCTACGTTGTCCAGCTG
1055
66
CTTGCTGGCCAATGCCTACATCTACGTT
1439





CAATGCCTA

GCAGTCAGG

CCAGCC


GTCCAGCTGCCAGCCAAGATCCTGACT













GCGGACAATCA






LAMA3
NM_000227.2
LAMA3
CAGATGAG
288
TTGAAATGG
672
CTGATTCCTCAGGTCCTT
1056
73
CAGATGAGGCACATGGAGACCCAGGCC
1440





GCACATGG

CAGAACGGT

GGCCTG


AAGGACCTGAGGAATCAGTTGCTCAAC






AGAC

AG




TACCGTTCTGCCATTTCAA






LAMA5
NM_005560.3
LAMA5
CTCCTGGCC
289
ACACAAGGC
673
CTGTTCCTGGAGCATGG
1057
67
CTCCTGGCCAACAGCACTGCACTAGAA
1441





AACAGCAC

CCAGCCTCT

CCTCTTC


GAGGCCATGCTCCAGGAACAGCAGAGG






T






CTGGGCCTTGTG






LAMB1
NM_002291.1
LAMB1
CAAGGAGA
290
CGGCAGAAC
674
CAAGTGCCTGTACCACA
1058
66
CAAGGAGACTGGGAGGTGTCTCAAGTG
1442





CTGGGAGG

TGACAGTGT

CGGAAGG


CCTGTACCACACGGAAGGGGAACACTG






TGTC

TC




TCAGTTCTGCCG






LAMB3
NM_000228.1
LAMB3
ACTGACCA
291
GTCACACTT
675
CCACTCGCCATACTGGG
1059
67
ACTGACCAAGCCTGAGACCTACTGCAC
1443





AGCCTGAG

GCAGCATTT

TGCAGT


CCAGTATGGCGAGTGGCAGATGAAATG






ACCT

CA




CTGCAAGTGTGAC






LAMC2
NM_005562.1
LAMC2
ACTCAAGC
292
ACTCCCTGA
676
AGGTCTTATCAGCACAG
1060
80
ACTCAAGCGGAAATTGAAGCAGATAGG
1444





GGAAATTG

AGCCGAGAC

TCTCCGCCTCC


TCTTATCAGCACAGTCTCCGCCTCCTGG






AAGCA

ACT




ATTCAGTGTCTCGGCTTCAGGGAGT






LAPTM4B
NM_018407.4
LAPTM4B
AGCGATGA
293
GACATGGCA
677
CTGGACGCGGTTCTACTC
1061
67
AGCGATGAAGATGGTCGCGCCCTGGAC
1445





AGATGGTC

GCACAAGCA

CAACAG


GCGGTTCTACTCCAACAGCTGCTGCTTG






GC






TGCTGCCATGTC






LGALS3
NM_002306.1
LGALS3
AGCGGAAA
294
CTTGAGGGT
678
ACCCAGATAACGCATCA
1062
69
AGCGGAAAATGGCAGACAATTTTTCGC
1446





ATGGCAGA

TTGGGTTTC

TGGAGCGA


TCCATGATGCGTTATCTGGGTCTGGAA






CAAT

CA




ACCCAAACCCTCAAG






LIMK1
NM_016735.1

GCTTCAGGT
295
AAGAGCTGC
679
TGCCTCCCTGTCGCACCA
1063
67
GCTTCAGGTGTTGTGACTGCAGTGCCTC
1447





GTTGTGACT

CCATCCTTCT

GTACTA


CCTGTCGCACCAGTACTATGAGAAGGA






GC

C




TGGGCAGCTCTT






LIMS1
NM_004987.3
LIMS1
TGAACAGT
296
TTCTGGGAA
680
ACTGAGCGCACACGAAA
1064
71
TGAACAGTAATGGGGAGCTGTACCATG
1448





AATGGGGA

CTGCTGGAA

CACTGCT


AGCAGTGTTTCGTGTGCGCTCAGTGCTT






GCTG

G




CCAGCAGTTCCCAGAA






LMNB1
NM_005573.1
LMNB1
TGCAAACG
297
CCCCACGAG
681
CAGCCCCCCAACTGACC
1065
66
TGCAAACGCTGGTGTCACAGCCAGCCC
1449





CTGGTGTCA

TTCTGGTTCT

TCATC


CCCAACTGACCTCATCTGGAAGAACCA






CA

TC




GAACTCGTGGGG






LOX
NM_002317.3
LOX
CCAATGGG
298
CGCTGAGGC
682
CAGGCTCAGCAAGCTGA
1066
66
CCAATGGGAGAACAACGGGCAGGTGTT
1450





AGAACAAC

TGGTACTGT

ACACCTG


CAGCTTGCTGAGCCTGGGCTCACAGTA






GG

G




CCAGCCTCAGCG






LRIG1
NM_015541.1

CTGCAACAC
299
GTCTCTGGA
683
TTACTCCAGGGGACAAG
1067
67
CTGCAACACCGAAGTGGACTGTTACTC
1451





CGAAGTGG

CACAGGCTG

CCTTCCA


CAGGGGACAAGCCTTCCACCCCCAGCC






AC

G




TGTGTCCAGAGAC






LSM1
NM_014462.1
LSM1
AGACCAAG
300
GAGGAATGG
684
CCTTCAGGGCCTGCACTT
1068
66
AGACCAAGCTGGAAGCAGAGAAGTTG
1452





CTGGAAGC

AAAGACCTC

TCAACT


AAAGTGCAGGCCCTGAAGGACCGAGGT






AGAG

GG




CTTTCCATTCCTC






LTBP1
NM_206943.1
LTBP1
ACATCCAG
301
GCAGACACA
685
CTGTGTTTAGGCACTCCC
1069
67
ACATCCAGGGCTCTGTGGTCCGCAAGG
1453





GGCTCTGTG

ATGGAAAGA

CTTGCG


GGAGTGCCTAAACACAGAGGGTTCTTT






G

ACC




CCATTGTGTCTGC






LYRIC
NM_178812.2
MTDH
GACCTGGCC
302
CGGACAGTT
686
TTCTTCTTCTGTTCCTCG
1070
67
GACCTGGCCTTGCTGAAGAATCTCCGG
1454





TTGCTGAAG

TCTTCCGGTT

CTCCGG


AGCGAGGAACAGAAGAAGAAGAACCG













GAAGAAACTGTCCG






MAD1L1
NM_003550.1
MAD1L1
AGAAGCTG
303
AGCCGTACC
687
CATGTTCTTCACAATCGC
1071
67
AGAAGCTGTCCCTGCAAGAGCAGGATG
1455





TCCCTGCAA

AGCTCAGAC

TGCATCC


CAGCGATTGTGAAGAACATGAAGTCTG






GAG

TT




AGCTGGTACGGCT






MCM2
NM_004526.1
MCM2
GACTTTTGC
304
GCCACTAAC
688
ACAGCTCATTGTTGTCAC
1072
75
GACTTTTGCCCGCTACCTTTCATTCCGG
1456





CCGCTACCT

TGCTTCAGT

GCCGGA


CGTGACAACAATGAGCTGTTGCTCTTC






TTC

ATGAAGAG




ATACTGAAGCAGTTAGTGGC






MELK
NM_014791.1
MELK
AGGATCGC
305
TGCACATAA
689
CCCGGGTTGTCTTCCGTC
1073
70
AGGATCGCCTGTCAGAAGAGGAGACCC
1457





CTGTCAGAA

GCAACAGCA

AGATAG


GGGTTGTCTTCCGTCAGATAGTATCTGC






GAG

GA




TGTTGCTTATGTGCA






MGMT
NM_002412.1
MGMT
GTGAAATG
306
GACCCTGCT
690
CAGCCCTTTGGGGAAGC
1074
69
GTGAAATGAAACGCACCACACTGGACA
1458





AAACGCAC

CACAACCAG

TGG


GCCCTTTGGGGAAGCTGGAGCTGTCTG






CACA

AC




GTTGTGAGCAGGGTC






mGST1
NM_020300.2
MGST1
ACGGATCTA
307
TCCATATCC
691
TTTGACACCCCTTCCCCA
1075
79
ACGGATCTACCACACCATTGCATATTTG
1459





CCACACCAT

AACAAAAAA

GCCA


ACACCCCTTCCCCAGCCAAATAGAGCT






TGC

ACTCAAAG




TTGAGTTTTTTTGTTGGATATGGA






MMP1
NM_002421.2
MMP1
GGGAGATC
308
GGGCCTGGT
692
AGCAAGATTTCCTCCAG
1076
72
GGGAGATCATCGGGACAACTCTCCTTT
1460





ATCGGGAC

TGAAAAGCA

GTCCATCAAAAGG


TGATGGACCTGGAGGAAATCTTGCTCA






AACTC

T




TGCTTTTCAACCAGGCCC






MMP12
NM_002426.1
MMP12
CCAACGCTT
309
ACGGTAGTG
693
AACCAGCTCTCTGTGAC
1077
78
CCAACGCTTGCCAAATCCTGACAATTC
1461





GCCAAATCC

ACAGCATCA

CCCAATT


AGAACCAGCTCTCTGTGACCCCAATTT






T

AAACTC




GAGTTTTGATGCTGTCACTACCGT






MMP2
NM_004530.1
MMP2
CCATGATGG
310
GGAGTCCGT
694
CTGGGAGCATGGCGATG
1078
86
CCATGATGGAGAGGCAGACATCATGAT
1462





AGAGGCAG

CCTTACCGT

GATACCC


CAACTTTGGCCGCTGGGAGCATGGCGA






ACA

CAA




TGGATACCCCTTTGACGGTAAGGACGG













ACTCC






MMP7
NM_002423.2
MMP7
GGATGGTA
311
GGAATGTCC
695
CCTGTATGCTGCAACTCA
1079
79
GGATGGTAGCAGTCTAGGGATTAACTT
1463





GCAGTCTAG

CATACCCAA

TGAACTTGGC


CCTGTATGCTGCAACTCATGAACTTGGC






GGATTAACT

AGAA




CATTCTTTGGGTATGGGACATTCC






MMP8
NM_002424.1
MMP8
TCACCTCTC
312
TGTCACCGT
696
AAGCAATGTTGATATCT
1080
79
TCACCTCTCATCTTCACCAGGATCTCAC
1464





ATCTTCACC

GATCTCTTT

GCCTCTCCCTGTG


AGGGAGAGGCAGATATCAACATTGCTT






AGGAT

GGTAA




TTTACCAAAGAGATCACGGTGACA






MMTV-like
AF346816.1

CCATACGTG
313
CCTAAAGGT
697
TCATCAAACCATGGTTC
1081
72
CCATACGTGCTGCTACCTGTAGATATTG
1465


env


CTGCTACCT

TTGAATGGC

ATCACCAATATC


GTGATGAACCATGGTTTGATGATTCTGC






GT

AGA




CATTCAAACCTTTAGG






MNAT1
NM_002431.1
MNAT1
CGAGAGTCT
314
GGTTCCGAT
698
CGAGGGCAACCCTGATC
1082
75
CGAGAGTCTGTAGGAGGGAAACCGCCA
1466





GTAGGAGG

ATTTGGTGG

GTCCA


TGGACGATCAGGGTTGCCCTCGGTGTA






GAAACC

TCTTAC




AGACCACCAAATATCGGAACC






MRP1
NM_004996.2
ABCC1
TCATGGTGC
315
CGATTGTCT
699
ACCTGATACGTCTTGGTC
1083
79
TCATGGTGCCCGTCAATGCTGTGATGG
1467





CCGTCAATG

TTGCTCTTCA

TTCATCGCCAT


CGATGAAGACCAAGACGTATCAGGTGG








TGTG




CCCACATGAAGAGCAAAGACAATCG






MRP3
NM_003786.2
ABCC3
TCATCCTGG
316
CCGTTGAGT
700
TCTGTCCTGGCTGGAGTC
1084
91
TCATCCTGGCGATCTACTTCCTCTGGCA
1468





CGATCTACT

GGAATCAGC

GCTTTCAT


GAACCTAGGTCCCTCTGTCCTGGCTGG






TCCT

AA




AGTCGCTTTCATGGTCTTGCTGATTCCA













CTCAACGG






MS4A1
NM_021950.2
MS4A1
TGAGAAAC
317
CAAGGCCTC
701
TGAACTCCGCAGCTAGC
1085
70
TGAGAAACAAACTGCACCCACTGAACT
1469





AAACTGCA

AAATCTCAA

ATCCAAA


CCGCAGCTAGCATCCAAATCAGCCCTT






CCCA

GG




GAGATTTGAGGCCTTG






MSH2
NM_000251.1
MSH2
GATGCAGA
318
TCTTGGCAA
702
CAAGAAGATTTACTTCG
1086
73
GATGCAGAATTGAGGCAGACTTTACAA
1470





ATTGAGGC

GTCGGTTAA

TCGATTCCCAGA


GAAGATTTACTTCGTCGATTCCCAGATC






AGAC

GA




TTAACCGACTTGCCAAGA






MTA3
XM_038567

GCTCGTGGT
319
ACAAAGGGA
703
TCAGTCAACATCACCCTC
1087
69
GCTCGTGGTTCTGTAGTCCAGTCATCCT
1471





TCTGTAGTC

GAGCGTGAA

CTAGGATGA


AGGAGGGTGATGTTGACTGAGACTTCA






CA

GT




CGCTCTCCCTTTGT






MX1
NM_002462.2
MX1
GAAGGAAT
320
GTCTATTAG
704
TCACCCTGGAGATCAGC
1088
78
GAAGGAATGGGAATCAGTCATGAGCTA
1472





GGGAATCA

AGTCAGATC

TCCCGA


ATCACCCTGGAGATCAGCTCCCGAGAT






GTCATGA

CGGGACAT




GTCCCGGATCTGACTCTAATAGAC






MYBL2
NM_002466.1
MYBL2
GCCGAGAT
321
CTTTTGATG
705
CAGCATTGTCTGTCCTCC
1089
74
GCCGAGATCGCCAAGATGTTGCCAGGG
1473





CGCCAAGA

GTAGAGTTC

CTGGCA


AGGACAGACAATGCTGTGAAGAATCAC






TG

CAGTGATTC




TGGAACTCTACCATCAAAAG






NAT1
NM_000662.4
NAT1
TGGTTTTGA
322
TGAATCATG
706
TGGAGTGCTGTAAACAT
1090
75
TGGTTTTGAGACCACGATGTTGGGAGG
1474





GACCACGA

CCAGTGCTG

ACCCTCCCA


GTATGTTTACAGCACTCCAGCCAAAAA






TGT

TA




ATACAGCACTGGCATGATTCA






NAT2
NM_000015.1
NAT2
TAACTGACA
323
ATGGCTTGC
707
CGGGCTGTTCCCTTTGAG
1091
73
TAACTGACATTCTTGAGCACCAGATCC
1475





TTCTTGAGC

CCACAATGC

AACCTTAACA


GGGCTGTTCCCTTTGAGAACCTTAACAT






ACCAGAT






GCATTGTGGGCAAGCCAT






NRG1
NM_013957.1
NRG1
CGAGACTCT
324
CTTGGCGTG
708
ATGACCACCCCGGCTCG
1092
83
CGAGACTCTCCTCATAGTGAAAGGTAT
1476





CCTCATAGT

TGGAAATCT

TATGTCA


GTGTCAGCCATGACCACCCCGGCTCGT






GAAAGGTA

ACAG




ATGTCACCTGTAGATTTCCACACGCCA






T






AG






OPN,
NM_000582.1
SPP1
CAACCGAA
325
CCTCAGTCC
709
TCCCCACAGTAGACACA
1093
80
CAACCGAAGTTTTCACTCCAGTTGTCCC
1477


osteopontin


GTTTTCACT

ATAAACCAC

TATGATGGCCG


CACAGTAGACACATATGATGGCCGAGG






CCAGTT

ACTATCA




TGATAGTGTGGTTTATGGACTGAGG






p16-INK4
L27211.1

GCGGAAGG
326
TGATGATCT
710
CTCAGAGCCTCTCTGGTT
1094
76
GCGGAAGGTCCCTCAGACATCCCCGAT
1478





TCCCTCAGA

AAGTTTCCC

CTTTCAATCGG


TGAAAGAACCAGAGAGGCTCTGAGAA






CA

GAGGTT




ACCTCGGGAAACTTAGATCATCA






PAI1
NM_000602.1
SERPINE1
CCGCAACGT
327
TGCTGGGTT
711
CTCGGTGTTGGCCATGCT
1095
81
CCGCAACTGGTTTTCTCACCCTATGGG
1479





GGTTTTCTC

TCTCCTCCTG

CCAG


GTGGCCTCGGTGTTGGCCATGCTCCAG






A

TT




CTGACAACAGGAGGAGAAACCCAGCA






PGF
NM_002632.4
PGF
GTGGTTTTC
328
AGCAAGGGA
712
ATCTTCTCAGACGTCCCG
1096
71
GTGGTTTTCCCTCGGAGCCCCCTGGCTC
1480





CCTCGGAGC

ACAGCCTCA

AGCCAG


GGGACGTCTGAGAAGATGCCGGTCATG








T




AGGCTGTTCCCTTGCT






PR
NM_000926.2
PGR
GCATCAGG
329
AGTAGTTGT
713
TGTCCTTACCTGTGGGAG
1097
85
GCATCAGGCTGTCATTATGGTGTCCTTA
1481





CTGTCATTA

GCTGCCCTT

CTGTAAGGTC


CCTGTGGGAGCTGTAAGGTCTTCTTTAA






TGG

CC




GAGGGCAATGGAAGGGCAGCACAACT













ACT






PRDX1
NM_002574.2
PRDX1
AGGACTGG
330
CCCATAATC
714
TCCTTTGGTATCAGACCC
1098
67
AGGACTGGGACCCATGAACATTCCTTT
1482





GACCCATG

CTGAGCAAT

GAAGCG


GGTATCAGACCCGAAGCGCACCATTGC






AAC

GG




TCAGGATTATGGG






PTEN
NM_000314.1
PTEN
TGGCTAAGT
331
TGCACATAT
715
CCTTTCCAGCTTTACAGT
1099
81
TGGCTAAGTGAAGATGACAATCATGTT
1483





GAAGATGA

CATTACACC

GAATTGCTGCA


GCAGCAATTCACTGTAAAGCTGGAAAG






CAATCATG

AGTTCGT




GGACGAACTGGTGTAATGATATGTGCA






PTP4A3
NM_007079.2
PTP4A3
AATATTTGT
332
AACGAGATC
716
CCAAGAGAAACGAGATT
1100
70
AATATTTGTGCGGGGTATGGGGGTGGG
1484





GCGGGGTA

CCTGTGCTT

TAAAAACCCACC


TTTTTAAATCTCGTTTCTCTTGGACAAG






TGG

GT




CACAGGGATCTCGTT






RhoB
NM_004040.2
RHOB
AAGCATGA
333
CCTCCCCAA
717
CTTTCCAACCCCTGGGG
1101
67
AAGCATGAACAGGACTTGACCATCTTT
1485





ACAGGACTT

GTCAGTTGC

AAGACAT


CCAACCCCTGGGGAAGACATTTGCAAC






GACC






TGACTTGGGGAGG






RPL13A
NM_012423.2
RPL13A
GCAAGGAA
334
ACACCTGCA
718
CCTCCCGAAGTTGCTTGA
1102
68
GCAAGGAAAGGGTCTTAGTCACTGCCT
1486





AGGGTCTTA

CAATTCTCC

AAGCAC


CCCGAAGTTGCTTGAAAGCACTCGGAG






GTCAC

G




AATTGTGCAGGTGT






RPL41
NM_021104.1
RPL41
GAAACCTCT
335
TTCTTTTGCG
719
CATTCGCTTCTTCCTCCA
1103
66
GAAACCTCTGCGCCATGAGAGCCAAGT
1487





GCGCCATG

CTTCAGCC

CTTGGC


GGAGGAAGAAGCGAATGCGCAGGCTG






A






AAGCGCAAAAGAA






RPLPO
NM_001002.2
RPLPO
CCATTCTAT
336
TCAGCAAGT
720
TCTCCACAGACAAGGCC
1104
75
CCATTCTATCATCAACGGGTACAAACG
1488





CATCAACG

GGGAAGGTG

AGGACTCG


AGTCCTGGCCTTGTCTGTGGAGACGGA






GGTACAA

TAATC




TTACACCTTCCCACTTGCTGA






RPS23
NM_001025.1
RPS23
GTTCTGGTT
337
CCTTAAAGC
721
ATCACCAACAGCATGAC
1105
67
GTTCTGGTTGCTGGATTTGGTCGCAAAG
1489





GCTGGATTT

GGACTCCAG

CTTTGCG


GTCATGCTGTTGGTGATATTCCTGGAGT






GG

G




CCGCTTTAAGG






RPS27
NM_001030.3
RPS27
TCACCACGG
338
TCCTCCTGT
722
AGGACAGTGGAGCAGCC
1106
80
TCACCACGGTCTTTAGCCATGCACAAA
1490





TCTTTAGCC

AGGCTGGCA

AACACAC


CGGTAGTTTTGTGTGTTGGCTGCTCCAC






A






TGTCCTCTGCCAGCCTACAGGAGGA






RRM1
NM_001033.1
RRM1
GGGCTACTG
339
CTCTCAGCA
723
CATTGGAATTGCCATTA
1107
66
GGGCTACTGGCAGCTACATTGCTGGGA
1491





GCAGCTAC

TCGGTACAA

GTCCCAGC


CTAATGGCAATTCCAATGGCCTTGTACC






ATT

GG




GATGCTGAGAG






RRM2
NM_001034.1
RRM2
CAGCGGGA
340
ATCTGCGTT
724
CCAGCACAGCCAGTTAA
1108
71
CAGCGGGATTAAACAGTCCTTTAACCA
1492





TTAAACAGT

GAAGCAGTG

AAGATGCA


GCACAGCCAGTTAAAAGATGCAGCCTC






CCT

AG




ACTGCTTCAACGCAGAT






RUNX1
NM_001754.2
RUNX1
AACAGAGA
341
GTGATTTGC
725
TTGGATCTGCTTGCTGTC
1109
69
AACAGAGACATTGCCAACCATATTGGA
1493





CATTGCCAA

CCAGGAAAG

CAAACC


TCTGCTTGCTGTCCAAACCAGCAAACTT






CCA

TTT




CCTGGGCAAATCAC






S100A10
NM_002966.1
S100A10
ACACCAAA
342
TTTATCCCC
726
CACGCCATGGAAACCAT
1110
77
ACACCAAAATGCCATCTCAAATGGAAC
1494





ATGCCATCT

AGCGAATTT

GATGTTT


ACGCCATGGAAACCATGATGTTTACAT






CAA

GT




TTCACAAATTCGCTGGGGATAAA






S100A2
NM_005978.2
S100A2
TGGCTGTGC
343
TCCCCCTTA
727
CACAAGTACTCCTGCCA
1111
73
TGGCTGTGCTGGTCACTACCTTCCACAA
1495





TGGTCACTA

CTCAGCTTG

AGAGGGCGAC


GTACTCCTGCCAAGAGGGCGACAAGTT






CCT

AACT




CAAGCTGAGTAAGGGGGA






S100A4
NM_002961.2
S100A4
GACTGCTGT
344
CGAGTACTT
728
ATCACATCCAGGGCCTT
1112
70
GACTGCTGTCATGGCGTGCCCTCTGGA
1496





CATGGCGTG

GTGGAAGGT

CTCCAGA


GAAGGCCCTGGATGTGATGGTGTCCAC








GGAC




CTTCCACAAGTACTCG






S100A7
NM_002963.2
S100A7
CCTGCTGAC
345
GCGAGGTAA
729
TTCCCCAACTTCCTTAGT
1113
75
CCTGCTGACGATGATGAAGGAGAACTT
1497





GATGATGA

TTTGTGCCCT

GCCTGTGACA


CCCCAACTTCCTTAGTGCCTGTGACAAA






AGGA

TT




AAGGGCACAAATTACCTCGC






S100A8
NM_002964.3
S100A8
ACTCCCTGA
346
TGAGGACAC
730
CATGCCGTCTACAGGGA
1114
76
ACTCCCTGATAAAGGGGAATTTCCATG
1498





TAAAGGGG

TCGGTCTCT

TGACCTG


CCGTCTACAGGGATGACCTGAAGAAAT






AATTT

AGC




TGCTAGAGACCGAGTGTCCTCA






S100A9
NM_002965.3
S100A9
CACCCTGCC
347
CTAGCCCCA
731
CCCGGGGCCTGTTATGTC
1115
67
CACCCTGCCTCTACCCAACCAGGGCCC
1499





TCTACCCAA

CAGCCAAGA

AAACT


CGGGGCCTGTTATGTCAAACTGTCTTGG






C






CTGTGGGGCTAG






S100B
NM_006272.1
S100B
CATGGCCGT
348
AGTTTTAAG
732
CCGGAGGGAACCCTGAC
1116
70
CATGGCCGTGTAGACCCTAACCCGGAG
1500





GTAGACCCT

GGTGCCCCG

TACAGAA


GGAACCTGACTACAGAAATTACCCCG






AA






GGGCACCCTTAAAACT






S100G
NM_004057.2
S100G
ACCCTGAGC
349
GAGACTTTG
733
AGGATAAGACCACAGCA
1117
67
ACCCTGAGCACTGGAGGAAGAGCGCCT
1501





ACTGGAGG

GGGGATTCC

CAGGCGC


GTGCTGTGGTCTTATCCTATGTGGAATC






AA

A




CCCCAAAGTCTC






S100P
NM_005980.2
S100P
AGACAAGG
350
GAAGTCCAC
734
TTGCTCAAGGACCTGGA
1118
67
AGACAAGGATGCCGTGGATAAATTGCT
1502





ATGCCGTGG

CTGGGCATC

CGCCAA


CAAGGACCTGGACGCCAATGAGATGC






ATAA

TC




CCAGGTGGACTTC






SDHA
NM_004168.1
SDHA
GCAGAACT
351
CCCTTTCCA
735
CTGTCCACCAAATGCAC
1119
67
GCAGAACTGAAGATGGGAAGATTTATC
1503





GAAGATGG

AACTTGAGG

GCTGATA


AGCGTGCATTTGGTGGACAGAGCCTCA






GAAGAT

C




AGTTTGGAAAGGG






SEMA3F
NM_004186.1
SEMA3F
CGCGAGCC
352
CACTCGCCG
736
CTCCCCACAGCGCATCG
1120
86
CGCGAGCCCTCATTATACACTGGGCA
1504





CCTCATTAT

TTGACATCC

AGGAA


GCCTCCCCACAGCGCATCGAGGAATGC






ACA

T




GTGCTCTCAGGCAAGGATGTCAACGGC













GAGTG






SFRP2
NM_003013.2
SFRP2
CAAGCTGA
353
TGCAAGCTG
737
CAGCACCGATTTCTTCAG
1121
66
CAAGCTGAACGGTGTGTCCGAAAGGGA
1505





ACGGTGTGT

TCTTTGAGC

GTCCCT


CCTGAAGAAATCGGTGCTGTGGCTCAA






CC

C




AGACAGCTTGCA






SIR2
NM_012238.3
SIRT1
AGCTGGGG
354
ACAGCAAGG
738
CCTGACTTCAGGTCAAG
1122
72
AGCTGGGGTGTCTGTTTCATGTGGAAT
1506





TGTCTGTTT

CGAGCATAA

GGATGG


ACCTGACTTCAGGTCAAGGGATGGTAT






CAT

AT




TTATGCTCGCCTTGCTGT






SKIL
NM_005414.2
SKIL
AGAGGCTG
355
CTATCGGCC
739
CCAATCTCTGCCTCAGTT
1123
66
AGAGGCTGAATATGCAGGACAGTTGGC
1507





AATATGCA

TCAGCATGG

CTGCCA


AGAACTGAGGCAGAGATTGGACCATGC






GGACA






TGAGGCCGATAG






SKP2
NM_005983.2
SKP2
AGTTGCAG
356
TGAGTTTTTT
740
CCTGCGGCTTTCGGATCC
1124
71
AGTTGCAGAATCTAAGCCTGGAAGGCC
1508





AATCTAAGC

GCGAGAGTA

CA


TGCGGCTTTCGGATCCCATTGTCATAC






CTGGAA

TTGACA




TCTCGCAAAAAACTCA






SLPI
NM_003064.2
SLPI
ATGGCCAAT
357
ACACTTCAA
741
TGGCCATCCATCTCACA
1125
74
ATGGCCAATGTTTGATGCTTAACCCCCC
1509





GTTTGATGC

GTCACGCTT

GAAATTGG


CAATTTCTGTGAGATGGATGGCCAGTG






T

GC




CAAGCGTGACTTGAAGTGT






SNAI1
NM_005985.2
SNAI1
CCCAATCGG
358
GTAGGGCTG
742
TCTGGATTAGAGTCCTGC
1126
69
CCCAATCGGAAGCCTAACTACAGCGAG
1510





AAGCCTAA

CTGGAAGGT

AGCTCGC


CTGCAGGACTCTAATCCAGAGTTTACCT






CTA

AA




TCCAGCAGCCCTAC






STK15
NM_003600.1
AURKA
CATCTTCCA
359
TCCGACCTT
743
CTCTGTGGCACCCTGGA
1127
69
CATCTTCCAGGAGGACCACTCTCTGTG
1511





GGAGGACC

CAATCATTT

CTACCTG


GCACCCTGGACTACCTGCCCCCTGAAA






ACT

CA




TGATTGAAGGTCGGA






STMN1
NM_005563.2
STMN1
AATACCCA
360
GGAGACAAT
744
CACGTTCTCTGCCCCGTT
1128
71
AATACCCAACGCACAAATGACCGCACG
1512





ACGCACAA

GCAAACCAC

TCTTG


TTCTCTGCCCCGTTTCTTGCCCCAGTGT






ATGA

AC




GGTTTGCATTGTCTCC






STMY3
NM_005940.2
MMP11
CCTGGAGG
361
TACAATGGC
745
ATCCTCCTGAAGCCCTTT
1129
90
CCTGGAGGCTGCAACATACCTCAATCC
1513





CTGCAACAT

TTTGGAGGA

TCGCAGC


TGTCCCAGGCCGGATCCTCCTGAAGCC






ACC

TAGCA




CTTTTCGCAGCACTGCTATCCTCCAAAG













CCATTGTA






SURV
NM_001168.1
BIRC5
TGTTTTGAT
362
CAAAGCTGT
746
TGCCTTCTTCCTCCCTCA
1130
80
TGTTTTGATTCCCGGGCTTACCAGGTGA
1514





TCCCGGGCT

CAGCTCTAG

CTTCTCACCT


GAAGTGAGGGAGGAAGAAGGCAGTGT






TA

CAAAAG




CCCTTTTGCTAGAGCTGACAGCTTTG






SYK
NM_003177.1
SYK
TCTCCAGCA
363
TTCATCCCTC
747
CCATAGGAGAATGCTTC
1131
85
TCTCCAGCAAAAGCGATGTCTGGAGCT
1515





AAAGCGAT

GATATGGCT

CCACATCAACACT


TTGGAGTGTTGATGTGGGAAGCATTCT






GTCT

TCT




CCTATGGGCAGAAGCCATATCGAGGGA













TGAA






TAGLN
NM_003186.2
TAGLN
GATGGAGC
364
AGTCTGGAA
748
CCCATAGTCCTCAGCCG
1132
73
GATGGAGCAGGTGGCTCAGTTCCTGAA
1516





AGGTGGCTC

CATGTCAGT

CCTTCAG


GGCGGCTGAGGACTCTGGGGTCATCAA






AGT

CTTGATG




GACTGACATGTTCCAGACT






TCEA1
NM_201437.1
TCEA1
CAGCCCTGA
365
CGAGCATTT
749
CTTCCAGCGGCAATGTA
1133
72
CAGCCCTGAGGCAAGAGAAGAAAGTA
1517





GGCAAGAG

GTCTCATCC

AGCAACA


CTTCCAGCGGCAATGTAAGCAACAGAA






A

TTT




AGGATGAGACAAATGCTCG






TFRC
NM_003234.1
TFRC
GCCAACTGC
366
ACTCAGGCC
750
AGGGATCTGAACCAATA
1134
68
GCCAACTGCTTTCATTTGTGAGGGATCT
1518





TTTCATTTG

CATTTCCTTT

CAGAGCAGACA


GAACCAATACAGAGCAGACATAAAGG






TG

A




AAATGGGCCTGAGT






TGFB2
NM_003238.1
TGFB2
ACCAGTCCC
367
CCTGGTGCT
751
TCCTGAGCCCGAGGAAG
1135
75
ACCAGTCCCCCAGAAGACTATCCTGAG
1519





CCAGAAGA

GTTGTAGAT

TCCC


CCCGAGGAAGTCCCCCCGGAGGTGATT






CTA

GG




TCCATCTACAACAGCACCAGG






TGFB3
NM_003239.1
TGFB3
GGATCGAG
368
GCCACCGAT
752
CGGCCAGATGAGCACAT
1136
65
GGATCGAGCTCTTCCAGATCCTTCGGCC
1520





CTCTTCCAG

ATAGCGCTG

TGCC


AGATGAGCACATTGCCAAACAGCGCTA






ATCCT

TT




TATCGGTGGC






TGFBR2
NM_003242.2
TGFBR2
AACACCAA
369
CCTCTTCATC
753
TTCTGGGCTCCTGATTGC
1137
66
AACACCAATGGGTTCCATCTTTCTGGGC
1521





TGGGTTCCA

AGGCCAAAC

TCAAGC


TCCTGATTGCTCAAGCACAGTTTGGCCT






TCT

T




GATGAAGAGG






TIMP3
NM_000362.2
TIMP3
CTACCTGCC
370
ACCGAAATT
754
CCAAGAACGAGTGTCTC
1138
67
CTACCTGCCTTGCTTTGTGACTTCCAAG
1522





TTGCTTTGT

GGAGAGCAT

TGGACCG


AACGAGTGTCTCTGGACCGACATGCTC






GA

GT




TCCAATTTCGGT






TNFRSF11A
NM_003839.2
TNFRSF11A
CCAGCCCAC
371
TTCAGAGAA
755
TGTTCCTCACTGAGCCTG
1139
67
CCAGCCCACAGACCAGTTACTGTTCCTC
1523





AGACCAGTT

AGGAGGTGT

GAAGCA


ACTGAGCCTGGAAGCAAATCCACACCT






A

GGA




CCTTTCTCTGAA






TNFRSF11B
NM_002546.2
TNFRSF11B
TGGCGACC
372
GGGAAAGTG
756
AGGGCCTAATGCACGCA
1140
67
TGGCGACCAAGACACCTTGAAGGGCCT
1524





AAGACACC

GTACGTCTT

CTAAAGC


AATGCACGCACTAAAGCACTCAAAGAC






TT

TGAG




GTACCACTTTCCC






TNRSF11
NM_003701.2
TNFSF11
CATATCGTT
373
TTGGCCAGA
757
TCCACCATCGCTTTCTCT
1141
71
CATATCGTTGGATCACAGCACATCAGA
1525





GGATCACA

TCTAACCAT

GCTCTG


GCAGAGAAAGCGATGGTGGATGGCTCA






GCAC

GA




TGGTTAGATCTGGCCAA






TWIST1
NM_000474.2
TWIST1
GCGCTGCG
374
GCTTGAGGG
758
CCACGCTGCCCTCGGAC
1142
64
GCGCTGCGGAAGATCATCCCCACGCTG
1526





GAAGATCA

TCTGAATCT

AAGC


CCCTCGGACAAGCTGAGCAAGATTCAG






TC

TGCT




ACCCTCAAGC






UBB
NM_018955.1
UBB
GAGTCGAC
375
GCGAATGCC
759
AATTAACAGCCACCCCT
1143
522
GAGTCGACCCTGCACCTGGTCCTGCGT
1527





CCTGCACCT

ATGACTGAA

CAGGCG


CTGAGAGGTGGTATGCAGATCTTCGTG






G






AAGACCCTGACCGGCAAGACCATCACC













CTGGAAGTGGAGCCCAGTGACACCATC













GAAAATGTGAAGGCCAAGATCCAGGAT













AAAGAAGGCATCCCTCCCGACCAGCAG













AGGCTCATCTTTGCAGGCAAGCAGCTG













GAAGATGGCCGCACTCTTTCTGACTAC













AACATCCAGAAGGAGTCGACCCTGCAC













CTGGTCCTGCGTCTGAGAGGTGGTATG













CAGATCTTCGTGAAGACCCTGACCGGC













AAGACCATCACTCTGGAAGTGGAGCCC













AGTGACACCATCGAAAATGTGAAGGCC













AAGATCCAAGAATAAAGAAGGCATCCCT













CCCGACCAGCAGAGGCTCATCTTTGCA













GGCAAGCAGCTGGAAGATGGCCGCACT













CTTTCTGACTACAACATCCAGAAGGAG













TCGACCCTGCACCTGGTCCTGCGCCTGA













GGGGTGGCTGTTAATTCTTCAGTCATGG













CATTCGC






VCAM1
NM_001078.2
VCAM1
TGGCTTCAG
376
TGCTGTCGT
760
CAGGCACACACAGGTGG
1144
89
TGGCTTCAGGAGCTGAATACCCTCCCA
1528





GAGCTGAA

GATGAGAAA

GACACAAAT


GGCACACACAGGTGGGACACAAATAA






TACC

ATAGTG




GGGTTTTGGAACCACTATTTTCTCATCA













CGACAGCA






VIM
NM_003380.1
VIM
TGCCCTTAA
377
GCTTCAACG
761
ATTTCACGCATCTGGCGT
1145
72
TGCCCTTAAAGGAACCAATGAGTCCCT
1529





AGGAACCA

GCAAAGTTC

TCCA


GGAACGCCAGATGCGTGAAATGGAAG






ATGA

TCTT




AGAACTTTGCCGTTGAAGC






VTN
NM_000638.2
VTN
AGTCAATCT
378
GTACTGAGC
762
TGGACACTGTGGACCCT
1146
67
AGTCAATCTTCGCACACGGCGAGTGGA
1530





TCGCACACG

GATGGAGCG

CCCTACC


CACTGTGGACCCTCCCTACCCACGCTCC






G

T




ATCGCTCAGTAC






WAVE3
NM_006646.4
WASF3
CTCTCCAGT
379
GCGGTGTAG
763
CCAGAACAGATGCGAGC
1147
68
CTCTCCAGTGTGGGCACCAGCCGGCCA
1531





GTGGGCAC

CTCCCAGAG

AGTCCAT


GAACAGATGCGAGCAGTCCATGACTCT






A

T




GGGAGCTACACCGC






WISP1
NM_003882.2
WISP1
AGAGGCAT
380
CAAACTCCA
764
CGGGCTGCATCAGCACA
1148
75
AGAGGCATCCATGAACTTCACACTTGC
1532





CCATGAACT

CAGTACTTG

CGC


GGGCTGCATCAGCACACGCTCCATCA






TCACA

GGTTGA




ACCCAAGTACTGTGGAGTTTG






Wnt-5a
NM_003392.2
WNT5A
GTATCAGG
381
TGTCGGAAT
765
TTGATGCCTGTCTTCGCG
1149
75
GTATCAGGACCACATGCAGTACATCGG
1533





ACCACATGC

TGATACTGG

CCTTCT


AGAAGGCGCGAAGACAGGCATCAAAG






AGTACATC

CATT




AATGCCAGTATCAATTCCGACA






Wnt-5b
NM_032642.2
WNT5B
TGTCTTCAG
382
GTGCACGTG
766
TTCCGTAAGAGGCCTGG
1150
79
TGTCTTCAGGGTCTTGTCCAGAATGTAG
1534





GGTCTTGTC

GATGAAAGA

TGCTCTC


ATGGGTTCCGTAAGAGGCCTGGTGCTC






CA

GT




TCTTACTCTTTCATCCACGTGCAC






WWOX
NM_016373.1
WWOX
ATCGCAGCT
383
AGCTCCCTG
767
CTGCTGTTTACCTTGGCG
1151
74
ATCGCAGCTGGTGGGTGTACACACTGC
1535





GGTGGGTGT

TTGCATGGA

AGGCCTTTC


TGTTTACCTTGGCGAGGCCTTTCACCAA






AC

CTT




GTCCATGCAACAGGGAGCT






YWHAZ
NM_003406.2
YWHAZ
GTGGACATC
384
GCAGACAAA
768
CCCCTCCTTCTCCTGCTT
1152
81
GTGGACATCGGATACCCAAGGAGACGA
1536





GGATACCC

AGTTGGAAG

CAGCTT


AGCTGAAGCAGGAGAAGGAGGGGAAA






AAG

GC




ATTAACCGGCCTTCCAACTTTTGTCTGC
















TABLE 1







Table 1: Cox proportional hazards for Prognostic


Genes that are positively associated with good


prognosis for breast cancer (Providence study)












Gene_all
z (Coef)
HR
p (Wald)
















GSTM2
−4.306
0.525
0.000



IL6ST
−3.730
0.522
0.000



CEGP1
−3.712
0.756
0.000



Bcl2
−3.664
0.555
0.000



GSTM1
−3.573
0.679
0.000



ERBB4
−3.504
0.767
0.000



GADD45
−3.495
0.601
0.000



PR
−3.474
0.759
0.001



GPR30
−3.348
0.660
0.001



CAV1
−3.344
0.649
0.001



C10orf116
−3.194
0.681
0.001



DR5
−3.102
0.543
0.002



DICER1
−3.097
0.296
0.002



EstR1
−2.983
0.825
0.003



BTRC
−2.976
0.639
0.003



GSTM3
−2.931
0.722
0.003



GATA3
−2.874
0.745
0.004



DLC1
−2.858
0.564
0.004



CXCL14
−2.804
0.693
0.005



IL17RB
−2.796
0.744
0.005



C8orf4
−2.786
0.699
0.005



FOXO3A
−2.786
0.617
0.005



TNFRSF11B
−2.690
0.739
0.007



BAG1
−2.675
0.451
0.008



SNAI1
−2.632
0.692
0.009



TGFB3
−2.617
0.623
0.009



NAT1
−2.576
0.820
0.010



FUS
−2.543
0.376
0.011



F3
−2.527
0.705
0.012



GSTM2 gene
−2.461
0.668
0.014



EPHB2
−2.451
0.708
0.014



LAMA3
−2.448
0.778
0.014



BAD
−2.425
0.506
0.015



IGF1R
−2.378
0.712
0.017



RUNX1
−2.356
0.511
0.018



ESRRG
−2.289
0.825
0.022



HSHIN1
−2.275
0.371
0.023



CXCL12
−2.151
0.623
0.031



IGFBP7
−2.137
0.489
0.033



SKIL
−2.121
0.593
0.034



PTEN
−2.110
0.449
0.035



AKT3
−2.104
0.665
0.035



MGMT
−2.060
0.571
0.039



LRIG1
−2.054
0.649
0.040



S100B
−2.024
0.798
0.043



GREB1 variant a
−1.996
0.833
0.046



CSF1
−1.976
0.624
0.048



ABR
−1.973
0.575
0.048



AK055699
−1.972
0.790
0.049

















TABLE 2







Table 2: Cox proportional hazards for Prognostic


Genes that are negatively associated with good


prognosis for breast cancer (Providence study)












Gene_all
z (Coef)
HR
p (Wald)
















S100A7
1.965
1.100
0.049



MCM2
1.999
1.424
0.046



Contig 51037
2.063
1.185
0.039



S100P
2.066
1.170
0.039



ACTR2
2.119
2.553
0.034



MYBL2
2.158
1.295
0.031



DUSP1
2.166
1.330
0.030



HOXB13
2.192
1.206
0.028



SURV
2.216
1.329
0.027



MELK
2.234
1.336
0.026



HSPA8
2.240
2.651
0.025



cdc25A
2.314
1.478
0.021



C20_orf1
2.336
1.497
0.019



LMNB1
2.387
1.682
0.017



S100A9
2.412
1.185
0.016



CENPA
2.419
1.366
0.016



CDC25C
2.437
1.384
0.015



GAPDH
2.498
1.936
0.012



KNTC2
2.512
1.450
0.012



PRDX1
2.540
2.131
0.011



RRM2
2.547
1.439
0.011



ADM
2.590
1.445
0.010



ARF1
2.634
2.973
0.008



E2F1
2.716
1.486
0.007



TFRC
2.720
1.915
0.007



STK15
2.870
1.860
0.004



LAPTM4B
2.880
1.538
0.004



EpCAM
2.909
1.919
0.004



ENO1
2.958
2.232
0.003



CCNB1
3.003
1.738
0.003



BUB1
3.018
1.590
0.003



Claudin 4
3.034
2.151
0.002



CDC20
3.056
1.555
0.002



Ki-67
3.329
1.717
0.001



KPNA2
3.523
1.722
0.000



IDH2
3.994
1.638
0.000

















TABLE 3







Cox proportional hazards for Prognostic Genes that


are positively associated with good prognosis for


ER-negative (ER0) breast cancer (Providence study)












Gene_ER0
HR
z (Coef)
p (Wald)
















SYK
0.185
−2.991
0.003



Wnt-5a
0.443
−2.842
0.005



WISP1
0.455
−2.659
0.008



CYR61
0.405
−2.484
0.013



GADD45
0.520
−2.474
0.013



TAGLN
0.364
−2.376
0.018



TGFB3
0.465
−2.356
0.018



INHBA
0.610
−2.255
0.024



CDH11
0.584
−2.253
0.024



CHAF1B
0.551
−2.113
0.035



ITGAV
0.192
−2.101
0.036



SNAI1
0.655
−2.077
0.038



IL11
0.624
−2.026
0.043



KIAA1199
0.692
−2.005
0.045



TNFRSF11B
0.659
−1.989
0.047

















TABLE 4







Cox proportional hazards for Prognostic Genes that


are negatively associated with good prognosis for


ER-negative (ER0) breast cancer (Providence study)












Gene_ER0
HR
z (Coef)
p (Wald)
















RPL41
3.547
2.062
0.039



Claudin 4
2.883
2.117
0.034



LYRIC
4.029
2.364
0.018



TFRC
3.223
2.596
0.009



VTN
2.484
3.205
0.001

















TABLE 5







Cox proportional hazards for Prognostic Genes that


are positively associated with good prognosis for


ER-positive (ER1) breast cancer (Providence study)












Gene_ER1
HR
z (Coef)
p (Wald)
















DR5
0.428
−3.478
0.001



GSTM2
0.526
−3.173
0.002



HSHIN1
0.175
−3.031
0.002



ESRRG
0.736
−3.028
0.003



VTN
0.622
−2.935
0.003



Bcl2
0.469
−2.833
0.005



ERBB4
0.705
−2.802
0.005



GPR30
0.625
−2.794
0.005



BAG1
0.339
−2.733
0.006



CAV1
0.635
−2.644
0.008



IL6ST
0.503
−2.551
0.011



C10orf116
0.679
−2.497
0.013



FOXO3A
0.607
−2.473
0.013



DICER1
0.311
−2.354
0.019



GADD45
0.645
−2.338
0.019



CSF1
0.500
−2.312
0.021



F3
0.677
−2.300
0.021



GBP2
0.604
−2.294
0.022



APEX-1
0.234
−2.253
0.024



FUS
0.322
−2.252
0.024



BBC3
0.581
−2.248
0.025



GSTM3
0.737
−2.203
0.028



ITGA4
0.620
−2.161
0.031



EPHB2
0.685
−2.128
0.033



IRF1
0.708
−2.105
0.035



CRYZ
0.593
−2.103
0.035



CCL19
0.773
−2.076
0.038



SKIL
0.540
−2.019
0.043



MRP1
0.515
−1.964
0.050

















TABLE 6







Cox proportional hazards for Prognostic Genes that


are negatively associated with good prognosis for


ER-positive (ER1) breast cancer (Providence study)












Gene_ER1
HR
z (Coef)
p (Wald)
















CTHRC1
2.083
1.958
0.050



RRM2
1.450
1.978
0.048



BUB1
1.467
1.988
0.047



LMNB1
1.764
2.009
0.045



SURV
1.380
2.013
0.044



EpCAM
1.966
2.076
0.038



CDC20
1.504
2.081
0.037



GAPDH
2.405
2.126
0.033



STK15
1.796
2.178
0.029



HSPA8
3.095
2.215
0.027



LAPTM4B
1.503
2.278
0.023



MCM2
1.872
2.370
0.018



CDC25C
1.485
2.423
0.015



ADM
1.695
2.486
0.013



MMP1
1.365
2.522
0.012



CCNB1
1.893
2.646
0.008



Ki-67
1.697
2.649
0.008



E2F1
1.662
2.689
0.007



KPNA2
1.683
2.701
0.007



DUSP1
1.573
2.824
0.005



GDF15
1.440
2.896
0.004

















TABLE 7







Cox proportional hazards for Prognostic Genes that are positively


associated with good prognosis for breast cancer (Rush study)












Gene_all
z (Coef)
HR
p (Wald)
















GSTM2
−3.275
0.752
0.001



GSTM1
−2.946
0.772
0.003



C8orf4
−2.639
0.793
0.008



ELF3
−2.478
0.769
0.013



RUNX1
−2.388
0.609
0.017



IL6ST
−2.350
0.738
0.019



AAMP
−2.325
0.715
0.020



PR
−2.266
0.887
0.023



FHIT
−2.193
0.790
0.028



CD44v6
−2.191
0.754
0.028



GREB1 variant c
−2.120
0.874
0.034



ADAM17
−2.101
0.686
0.036



EstR1
−2.084
0.919
0.037



NAT1
−2.081
0.878
0.037



TNFRSF11B
−2.074
0.843
0.038



ITGB4
−2.006
0.740
0.045



CSF1
−1.963
0.750
0.050

















TABLE 8







Cox proportional hazards for Prognostic Genes that are negatively


associated with good prognosis for breast cancer (Rush study)












Gene_all
z (Coef)
HR
p (Wald)
















STK15
1.968
1.298
0.049



TFRC
2.049
1.399
0.040



ITGB1
2.071
1.812
0.038



ITGAV
2.081
1.922
0.037



MYBL2
2.089
1.205
0.037



MRP3
2.092
1.165
0.036



SKP2
2.143
1.379
0.032



LMNB1
2.155
1.357
0.031



ALCAM
2.234
1.282
0.025



COMT
2.271
1.412
0.023



CDC20
2.300
1.253
0.021



GAPDH
2.307
1.572
0.021



GRB7
2.340
1.205
0.019



S100A9
2.374
1.120
0.018



S100A7
2.374
1.092
0.018



HER2
2.425
1.210
0.015



ACTR2
2.499
1.788
0.012



S100A8
2.745
1.144
0.006



ENO1
2.752
1.687
0.006



MMP1
2.758
1.212
0.006



LAPTM4B
2.775
1.375
0.006



FGFR4
3.005
1.215
0.003



C17orf37
3.260
1.387
0.001

















TABLE 9







Cox proportional hazards for Prognostic Genes that


are positively associated with good prognosis


for ER-negative (ER0) breast cancer (Rush study)












Gene_ER0
z (Coef)
HR
p (Wald)
















SEMA3F
−2.465
0.503
0.014



LAMA3
−2.461
0.519
0.014



CD44E
−2.418
0.719
0.016



AD024
−2.256
0.617
0.024



LAMB3
−2.237
0.690
0.025



Ki-67
−2.209
0.650
0.027



MMP7
−2.208
0.768
0.027



GREB1 variant c
−2.019
0.693
0.044



ITGB4
−1.996
0.657
0.046



CRYZ
−1.976
0.662
0.048



CD44s
−1.967
0.650
0.049

















TABLE 10







Cox proportional hazards for Prognostic Genes that


are negatively associated with good prognosis


for ER-negative (ER0) breast cancer (Rush study)












Gene_ER0
z (Coef)
HR
p (Wald)
















S100A8
1.972
1.212
0.049



EEF1A2
2.031
1.195
0.042



TAGLN
2.072
2.027
0.038



GRB7
2.086
1.231
0.037



HER2
2.124
1.232
0.034



ITGAV
2.217
3.258
0.027



CDH11
2.237
2.728
0.025



COL1A1
2.279
2.141
0.023



C17orf37
2.319
1.329
0.020



COL1A2
2.336
2.577
0.020



ITGB5
2.375
3.236
0.018



ITGA5
2.422
2.680
0.015



RPL41
2.428
6.665
0.015



ALCAM
2.470
1.414
0.013



CTHRC1
2.687
3.454
0.007



PTEN
2.692
8.706
0.007



FN1
2.833
2.206
0.005

















TABLE 11







Cox proportional hazards for Prognostic Genes that


are positively associated with good prognosis


for ER-positive (ER1) breast cancer (Rush study)












Gene_ER1
z (Coef)
HR
p (Wald)
















GSTM1
−3.938
0.628
0.000



HNF3A
−3.220
0.500
0.001



EstR1
−3.165
0.643
0.002



Bcl2
−2.964
0.583
0.003



GATA3
−2.641
0.624
0.008



ELF3
−2.579
0.741
0.010



C8orf4
−2.451
0.730
0.014



GSTM2
−2.416
0.774
0.016



PR
−2.416
0.833
0.016



RUNX1
−2.355
0.537
0.019



CSF1
−2.261
0.662
0.024



IL6ST
−2.239
0.627
0.025



AAMP
−2.046
0.704
0.041



TNFRSF11B
−2.028
0.806
0.043



NAT1
−2.025
0.833
0.043



ADAM17
−1.981
0.642
0.048

















TABLE 12







Cox proportional hazards for Prognostic Genes that


are negatively associated with good prognosis


for ER-positive (ER1) breast cancer (Rush study)












Gene_ER1
z (Coef)
HR
p (Wald)
















HSPA1B
1.966
1.382
0.049



AD024
1.967
1.266
0.049



FGFR4
1.991
1.175
0.047



CDK4
2.014
1.576
0.044



ITGB1
2.021
2.163
0.043



EPHB2
2.121
1.342
0.034



LYRIC
2.139
1.583
0.032



MYBL2
2.174
1.273
0.030



PGF
2.176
1.439
0.030



EZH2
2.199
1.390
0.028



HSPA1A
2.209
1.452
0.027



RPLPO
2.273
2.824
0.023



LMNB1
2.322
1.529
0.020



IL-8
2.404
1.166
0.016



C6orf66
2.468
1.803
0.014



GAPDH
2.489
1.950
0.013



P16-INK4
2.490
1.541
0.013



CLIC1
2.557
2.745
0.011



ENO1
2.719
2.455
0.007



ACTR2
2.878
2.543
0.004



CDC20
2.931
1.452
0.003



SKP2
2.952
1.916
0.003



LAPTM4B
3.124
1.558
0.002

















TABLE 13





Table 13: Validation of Prognostic Genes in SIB data sets.

























Official












Symbol
EMC2~Est
EMC2~SE
EMC2~t
JRH1~Est
JRH1~SE
JRH1~t
JRH2~Est
JRH2~SE
JRH2~t
MGH~Est





AAMP
NA
NA
NA
−0.05212 
0.50645 
−0.10291 
0.105615
1.01216
0.104346
−0.26943 


ABCC1
NA
NA
NA
NA
NA
NA
2.36153
0.76485
3.087573
0.253516


ABCC3
NA
NA
NA
0.386945
0.504324
0.767255
0.305901
0.544322
0.561985
0.126882


ABR
NA
NA
NA
0.431151
0.817818
0.527197
0.758422
1.0123
0.749207
NA


ACTR2
NA
NA
NA
NA
NA
NA
−0.26297
0.4774
−0.55084
0.071853


ADAM17
NA
NA
NA
0.078212
0.564555
0.138538
−0.20948
1.06045
−0.19754
0.29698 


ADM
NA
NA
NA
NA
NA
NA
0.320052
0.201407
1.589081
0.225324


LYPD6
NA
NA
NA
NA
NA
NA
NA
NA
NA
−0.38423 


AKT3
NA
NA
NA
NA
NA
NA
−2.10931
1.58606
−1.32991
−1.43148 


ALCAM
NA
NA
NA
−0.17112 
0.224449
−0.7624  
0.120168
0.212325
0.565963
−0.36428 


APEX1
NA
NA
NA
0.068917
0.410873
0.167732
−0.02247
0.790107
−0.02843
−0.07674 


ARF1
NA
NA
NA
0.839013
0.346692
2.420053
0.369609
0.40789
0.906149
2.03958 


AURKA
NA
NA
NA
0.488329
0.248241
1.967157
0.285095
0.243026
1.173105
0.270093


BAD
NA
NA
NA
0.027049
0.547028
0.049446
0.121904
0.587599
0.207461
NA


BAG1
NA
NA
NA
0.505074
0.709869
0.711503
−0.13983
0.36181
−0.38648
−0.36295 


BBC3
NA
NA
NA
NA
NA
NA
0.182425
0.78708
0.231774
NA


BCAR3
NA
NA
NA
NA
NA
NA
−0.29238
0.522706
−0.55935
−0.41595 


BCL2
NA
NA
NA
−1.10678 
0.544697
−2.03192 
0.124104
0.228026
0.544254
−2.47368 


BIRC5
NA
NA
NA
−0.40529 
0.608667
−0.66586 
0.319899
0.242736
1.317889
NA


BTRC
NA
NA
NA
NA
NA
NA
0.017988
0.648834
0.027723
NA


BUB1
NA
NA
NA
0.84036 
0.319874
2.627159
0.565139
0.322406
1.75288
0.206656


C10orf116
NA
NA
NA
−0.1418  
0.261554
−0.54216 
0.036378
0.182183
0.19968
NA


C17orf37
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA


TPX2
NA
NA
NA
NA
NA
NA
0.311175
0.271756
1.145053
NA


C8orf4
NA
NA
NA
NA
NA
NA
−0.06402
0.197663
−0.32386
−0.07043 


CAV1
NA
NA
NA
−0.20701 
0.254401
−0.81372 
−0.19588
0.289251
−0.67721
−0.06896 


CCL19
NA
NA
NA
0.101779
0.483649
0.21044 
−0.45509
0.26597
−1.71104
0.246585


CCNB1
NA
NA
NA
0.14169 
0.276165
0.513063
0.587021
0.249935
2.348695
NA


CDC20
NA
NA
NA
−0.82502 
0.360648
−2.2876  
0.075789
0.208662
0.363213
0.095023


CDC25A
NA
NA
NA
−0.15046 
0.724766
−0.2076  
0.358589
0.638958
0.561209
0.257084


CDC25C
NA
NA
NA
0.047781
0.511454
0.093422
1.07486
0.456637
2.353861
0.340882


CDH11
NA
NA
NA
−0.55211 
0.469473
−1.17601 
0.072308
0.265898
0.27194
0.028252


CDK4
NA
NA
NA
NA
NA
NA
0.759572
0.757398
1.00287
0.18468 


SCUBE2
NA
NA
NA
NA
NA
NA
−0.0454
0.120869
−0.37564
NA


CENPA
NA
NA
NA
NA
NA
NA
0.296857
0.253493
1.171066
NA


CHAF1B
NA
NA
NA
0.591417
0.58528 
1.010486
0.284056
0.637446
0.445616
0.47534 


CLDN4
NA
NA
NA
−0.54144 
0.470758
−1.15014 
0.33033
0.351865
0.938798
0.185116


CLIC1
NA
NA
NA
0.678131
0.359483
1.886406
0.764626
0.767633
0.996083
0.171995


COL1A1
NA
NA
NA
NA
NA
NA
0.273073
0.249247
1.095592
NA


COL1A2
NA
NA
NA
NA
NA
NA
0.216939
0.367138
0.590892
0.157848


COMT
NA
NA
NA
0.749278
0.356566
2.101373
−0.05068
0.448567
−0.11298
−2.45771 


CRYZ
NA
NA
NA
NA
NA
NA
−0.31201
0.303615
−1.02766
−0.53751 


CSF1
NA
NA
NA
NA
NA
NA
−1.40833
1.21432
−1.15977
NA


CTHRC1
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.574897


CXCL12
NA
NA
NA
−0.36476 
0.372499
−0.97921 
−0.4566
0.219587
−2.07935
NA


CXCL14
NA
NA
NA
−0.23692 
0.333761
−0.70985 
0.361375
0.159544
2.265049
NA


CYR61
NA
NA
NA
0.310818
0.515557
0.602878
−0.24435
0.252867
−0.9663
0.571476


DICER1
NA
NA
NA
NA
NA
NA
−0.33943
0.39364
−0.8623
0.038811


DLC1
NA
NA
NA
0.13581 
0.37927 
0.358083
−0.4102
0.387258
−1.05923
−0.09793 


TNFRSF10B
NA
NA
NA
−0.09001 
0.619057
−0.1454  
0.80742
0.544479
1.482922
0.159018


DUSP1
NA
NA
NA
−0.20229 
0.200782
−1.00753 
−0.02736
0.224043
−0.12212
NA


E2F1
NA
NA
NA
NA
NA
NA
0.845576
0.685556
1.233416
−1.06849 


EEF1A2
0.26278 
0.091435
2.873951
NA
NA
NA
0.362569
0.17103
2.119915
NA


ELF3
NA
NA
NA
1.34589 
0.628064
2.142919
0.569231
0.430739
1.321522
0.209853


ENO1
NA
NA
NA
NA
NA
NA
0.179739
0.312848
0.574525
NA


EPHB2
NA
NA
NA
0.155831
0.717587
0.21716 
−0.19469
0.90381
−0.21541
1.38257 


ERBB2
NA
NA
NA
−0.32795 
0.215691
−1.52044 
0.065275
0.189094
0.3452
0.314084


ERBB4
NA
NA
NA
NA
NA
NA
−0.12516
0.182846
−0.68451
−0.13567 


ESRRG
NA
NA
NA
NA
NA
NA
0.122595
0.204322
0.600009
0.356845


ESR1
NA
NA
NA
−0.14448 
0.127214
−1.13569 
0.009283
0.107091
0.086687
−0.12127 


EZH2
NA
NA
NA
NA
NA
NA
0.36213
0.244107
1.483489
NA


F3
NA
NA
NA
0.719395
0.524742
1.37095 
−0.21237
0.363632
−0.58402
−0.00167 


FGFR4
NA
NA
NA
0.864262
0.479596
1.802063
0.451249
0.296065
1.524155
0.230309


FHIT
NA
NA
NA
1.00058 
0.938809
1.065797
−1.58314
0.766553
−2.06527
0.087228


FN1
NA
NA
NA
0.056943
0.154068
0.369595
0.282152
0.407361
0.692634
0.417442


FOXA1
NA
NA
NA
NA
NA
NA
0.054619
0.1941
0.281398
NA


FUS
NA
NA
NA
NA
NA
NA
2.73816
1.95693
1.399212
−0.18397 


GADD45A
NA
NA
NA
NA
NA
NA
−0.09194
0.324263
−0.28352
−0.33447 


GAPDH
−0.00386 
0.125637
−0.03075 
0.869317
0.274798
3.163476
0.728889
0.497848
1.464079
NA


GATA3
NA
NA
NA
−0.33431 
0.127225
−2.62767 
−0.00759
0.145072
−0.05233
0.190453


GBP2
NA
NA
NA
0.120416
0.247997
0.485554
−0.49134
0.289525
−1.69704
0.517501


GDF15
NA
NA
NA
0.219861
0.231613
0.94926 
0.317951
0.183188
1.735654
NA


GRB7
NA
NA
NA
−0.46505 
0.485227
−0.95842 
0.143585
0.218034
0.658544
NA


GSTM1
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA


GSTM2
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA


GSTM3
NA
NA
NA
−1.19919 
0.478486
−2.50622 
−0.08173
0.176832
−0.46219
NA


HOXB13
NA
NA
NA
NA
NA
NA
0.780988
0.524959
1.487712
0.461343


OTUD4
NA
NA
NA
NA
NA
NA
−0.54088
1.59038
−0.34009
0.154269


HSPA1A
NA
NA
NA
0.199478
0.304533
0.655029
0.56215
0.592113
0.949396
NA


HSPA1B
NA
NA
NA
NA
NA
NA
0.60089
0.32867
1.828247
NA


HSPA8
NA
NA
NA
0.88406 
0.420719
2.101308
1.13504
0.667937
1.699322
0.647034


IDH2
NA
NA
NA
−0.0525  
0.232201
−0.22611 
0.151299
0.327466
0.46203
NA


IGF1R
NA
NA
NA
−0.62963 
0.509985
−1.23461 
−0.05773
0.176259
−0.32753
−0.11077 


IGFBP7
NA
NA
NA
NA
NA
NA
0.047112
0.479943
0.098162
NA


IL11
NA
NA
NA
NA
NA
NA
1.19114
1.41017
0.844678
NA


IL17RB
NA
NA
NA
NA
NA
NA
0.143131
0.294647
0.485771
−0.44343 


IL6ST
NA
NA
NA
−0.08851 
0.151324
−0.58488 
−0.00958
0.287723
−0.03329
−0.76052 


IL8
NA
NA
NA
0.222258
0.235694
0.942994
0.262285
0.346572
0.756798
−0.12567 


INHBA
NA
NA
NA
0.095254
0.476446
0.199927
0.342597
0.27142
1.262239
NA


IRF1
NA
NA
NA
0.87337 
0.941443
0.927693
−0.39282
0.392589
−1.00059
0.474132


ITGA4
NA
NA
NA
NA
NA
NA
−0.91318
0.542311
−1.68388
NA


ITGA5
NA
NA
NA
1.44044 
0.636806
2.261976
0.97846
0.67341
1.452993
0.206218


ITGAV
NA
NA
NA
0.14845 
0.345246
0.429983
0.383127
0.60722
0.630953
−0.23212 


ITGB1
NA
NA
NA
1.22836 
0.683544
1.797046
−0.0587
1.73799
−0.03378
−0.13651 


ITGB4
NA
NA
NA
0.548277
0.334628
1.638467
0.252015
0.365768
0.689002
−0.12971 


ITGB5
NA
NA
NA
−0.17231 
0.250618
−0.68752 
0.037961
0.401861
0.094464
0.682674


MKI67
NA
NA
NA
−0.43304 
0.708832
−0.61092 
0.482583
0.321739
1.499921
NA


KIAA1199
NA
NA
NA
NA
NA
NA
−0.02195
0.382802
−0.05735
0.081394


KPNA2
0.301662
0.171052
1.763569
−0.5507  
0.55364 
−0.99468 
0.21269
0.256724
0.828477
−1.6447  


LAMA3
NA
NA
NA
−0.74591 
0.563373
−1.32401 
−0.21092
0.29604
−0.71245
NA


LAMB3
NA
NA
NA
NA
NA
NA
0.345497
0.263827
1.309559
0.03108 


LAPTM4B
NA
NA
NA
NA
NA
NA
−0.04029
0.234986
−0.17148
0.352765


LMNB1
NA
NA
NA
0.648703
0.285233
2.274292
0.621431
0.389912
1.593772
NA


LRIG1
NA
NA
NA
NA
NA
NA
−0.00217
0.260339
−0.00832
−0.61468 


MTDH
NA
NA
NA
NA
NA
NA
−0.10827
0.493025
−0.21961
0.084824


MCM2
NA
NA
NA
0.875004
0.492588
1.77634 
0.77667
0.376275
2.064102
0.118904


MELK
NA
NA
NA
0.850914
0.313784
2.711783
0.16347
0.256575
0.637124
NA


MGMT
NA
NA
NA
NA
NA
NA
0.151967
0.583459
0.260459
0.267185


MMP1
NA
NA
NA
0.43277 
0.16023 
2.70093
−0.02427
0.158939
−0.15272
0.180359


MMP7
NA
NA
NA
0.198055
0.143  
1.385  
0.106475
0.193338
0.550719
−1.06791 


MYBL2
NA
NA
NA
0.731162
0.267911
2.729123
0.098974
0.600361
0.164857
0.612646


NAT1
NA
NA
NA
−0.57746 
15.1186 
−0.0382  
−0.01397
0.117033
−0.11939
−0.05035 


PGF
NA
NA
NA
0.901309
0.501058
1.798812
1.43389
1.27617
1.123589
NA


PGR
NA
NA
NA
NA
NA
NA
−0.33243
0.276025
−1.20435
−0.95852 


PRDX1
NA
NA
NA
NA
NA
NA
−0.41082
0.47383
−0.86703
NA


PTEN
NA
NA
NA
−0.17429 
0.629039
−0.27708 
−0.15599
0.541475
−0.28808
−0.10814 


RPL41
NA
NA
NA
NA
NA
NA
1.02038
1.83528
0.555981
0.213155


RPLP0
NA
NA
NA
0.398754
0.282913
1.409458
0.246775
1.2163
0.20289
0.488909


RRM2
NA
NA
NA
NA
NA
NA
0.196643
0.262745
0.748418
NA


RUNX1
NA
NA
NA
−0.22834 
0.318666
−0.71656 
0.302803
0.420043
0.720886
0.277566


S100A8
NA
NA
NA
NA
NA
NA
0.066629
0.11857
0.561939
NA


S100A9
NA
NA
NA
NA
NA
NA
0.111103
0.13176
0.843223
NA


S100B
NA
NA
NA
0.097319
0.589664
0.165041
−0.2365
0.349444
−0.67678
NA


S100P
NA
NA
NA
0.378047
0.120687
3.132458
0.302607
0.133752
2.262448
NA


SEMA3F
NA
NA
NA
−0.27556 
0.615782
−0.4475  
0.498631
0.616195
0.80921
0.107802


SKIL
NA
NA
NA
NA
NA
NA
0.026279
0.587743
0.044712
NA


SKP2
NA
NA
NA
NA
NA
NA
0.2502
0.469372
0.533053
0.470759


SNAI1
NA
NA
NA
NA
NA
NA
0.165897
1.09586
0.151385
0.163855


SYK
NA
NA
NA
−0.26425 
0.588491
−0.44903 
−0.22515
0.492582
−0.45707
NA


TAGLN
NA
NA
NA
NA
NA
NA
0.042223
0.251268
0.168039
0.010727


TFRC
NA
NA
NA
−0.91825 
0.636275
−1.44317 
0.162921
0.352486
0.462206
0.029015


TGFB3
NA
NA
NA
−1.0219  
0.358953
−2.84689 
−0.39774
0.470041
−0.84619
0.046498


TNFRSF11B
NA
NA
NA
NA
NA
NA
−0.10399
0.440721
−0.23595
−1.15976 


VTN
NA
NA
NA
−0.18721 
0.475541
−0.39367 
−2.39601
1.83129
−1.30837
NA


WISP1
NA
NA
NA
NA
NA
NA
0.437936
0.592058
0.739684
−0.03674 


WNT5A
NA
NA
NA
NA
NA
NA
0.180255
0.286462
0.629246
0.06984 


C6orf66
NA
NA
NA
NA
NA
NA
0.35565
0.504627
0.704778
0.179742


FOXO3A
NA
NA
NA
NA
NA
NA
−0.04428
0.39855
−0.1111
0.176454


GPR30
NA
NA
NA
0.01829 
0.925976
0.019752
−0.298
0.747388
−0.39872
−0.03208 


KNTC2
NA
NA
NA
NA
NA
NA
−0.02315
0.289403
−0.07999
−0.14241 


















Official










Symbol
MGH~SE
MGH~t
NCH~Est
NCH~SE
NCH~t
NKI~Est
NKI~SE
NKI~t





AAMP
0.620209
−0.43441 
0.088826
0.283082
0.313782
0.312939
0.228446
1.36986


ABCC1
0.284341
0.891591
0.213191
0.154486
1.380002
0.094607
0.258279
0.366298


ABCC3
0.221759
0.572162
−0.00756
0.167393
−0.04517
0.06613
0.096544
0.684974


ABR
NA
NA
NA
NA
NA
−0.06114
0.095839
−0.63795


ACTR2
0.205648
0.349398
0.131215
0.267434
0.490644
0.539449
0.254409
2.120401


ADAM17
0.435924
0.681266
−0.18523
0.407965
−0.45402
0.068689
0.12741
0.539115


ADM
0.142364
1.582732
0.314064
0.201161
1.561257
0.264131
0.06376
4.142582


LYPD6
0.120883
−3.17855 
−0.23802
0.209786
−1.1346
−0.4485
0.106865
−4.19691


AKT3
0.576851
−2.48154 
0.181912
0.147743
1.231273
0.149731
0.140716
1.064065


ALCAM
0.239833
−1.51888 
0.002712
0.084499
0.032094
−0.3019
0.094459
−3.19609


APEX1
0.181782
−0.42215 
−0.00097
0.268651
−0.00361
−0.13398
0.232019
−0.57746


ARF1
0.804729
2.534493
−0.15337
0.204529
−0.74984
0.944168
0.204641
4.613777


AURKA
0.169472
1.593732
−0.07663
0.213247
−0.35934
0.643963
0.101097
6.369754


BAD
NA
NA
0.38364
0.389915
0.983907
0.149641
0.221188
0.676533


BAG1
0.282963
−1.28267 
−0.11976
0.203911
−0.58733
−0.41603
0.138093
−3.01265


BBC3
NA
NA
0.056993
0.249671
0.228274
−0.5633
0.158825
−3.54669


BCAR3
0.216837
−1.91825 
0.072246
0.304443
0.237306
−0.26067
0.114992
−2.26685


BCL2
1.23296 
−2.00629 
NA
NA
NA
−0.30738
0.079518
−3.86557


BIRC5
NA
NA
0.268836
0.122325
2.197719
0.390779
0.069127
5.6531


BTRC
NA
NA
−0.63958
0.485936
−1.31618
−0.52394
0.139699
−3.75051


BUB1
0.268687
0.769133
0.104644
0.142318
0.735283
0.426611
0.094852
4.49763


C10orf116
NA
NA
0.064337
0.14087 
0.456713
−0.22589
0.082836
−2.72696


C17orf37
NA
NA
0.1532
0.294177
0.520775
NA
NA
NA


TPX2
NA
NA
−0.01014
0.317222
−0.03198
0.536914
0.116472
4.609812


C8orf4
0.106335
−0.66236 
−0.03221
0.189009
−0.1704
−0.3396
0.083273
−4.07813


CAV1
0.2269 
−0.30391 
0.078825
0.340843
0.231265
−0.30885
0.133788
−2.30848


CCL19
0.153468
1.606752
0.024132
0.130045
0.185564
−0.08897
0.087102
−1.02143


CCNB1
NA
NA
−0.02016
0.230327
−0.08751
0.495483
0.10424
4.75329


CDC20
0.198727
0.478159
0.482934
0.216025
2.235547
0.35587
0.125008
2.846778


CDC25A
0.227966
1.12773 
0.078265
0.111013
0.705008
0.48387
0.105238
4.597864


CDC25C
0.240266
1.418769
−0.22371
0.269481
−0.83013
0.287063
0.136568
2.101979


CDH11
0.199053
0.141931
−0.0883
0.124418
−0.70971
−0.13223
0.097541
−1.35564


CDK4
0.129757
1.423276
0.304045
0.17456 
1.741779
0.267465
0.148641
1.799403


SCUBE2
NA
NA
−0.01783
0.063429
−0.28108
−0.24635
0.048622
−5.0667


CENPA
NA
NA
0.225878
0.249928
0.903772
0.467131
0.081581
5.726013


CHAF1B
0.323193
1.470762
0.233081
0.291389
0.799896
0.519868
0.125204
4.152168


CLDN4
0.314723
0.588187
−0.23129
0.426627
−0.54213
0.564756
0.210595
2.681716


CLIC1
0.821392
0.209395
−0.05548
0.414451
−0.13385
0.383134
0.165674
2.312578


COL1A1
NA
NA
0.004033
0.146511
0.027527
NA
NA
NA


COL1A2
0.123812
1.274901
0.057815
0.163831
0.352894
−0.00235
0.064353
−0.03653


COMT
1.02805 
−2.39065 
0.526063
0.226489
2.322687
−0.00764
0.129967
−0.05878


CRYZ
0.214408
−2.50696 
−0.32472
0.253244
−1.28224
−0.25514
0.124909
−2.04264


CSF1
NA
NA
−0.14894
0.352724
−0.42226
−0.11194
0.240555
−0.46532


CTHRC1
0.535382
1.073807
−0.08389
0.137325
−0.6109
0.024002
0.097692
0.245691


CXCL12
NA
NA
−0.08863
0.138097
−0.64183
−0.36944
0.138735
−2.66293


CXCL14
NA
NA
−0.06592
0.093353
−0.70609
−0.16877
0.054117
−3.11866


CYR61
0.323144
1.768487
−0.11281
0.164296
−0.68663
0.087147
0.082372
1.057965


DICER1
0.409835
0.0947 
0.086141
0.143687
0.599504
−0.46887
0.150367
−3.11814


DLC1
0.247069
−0.39638 
−0.03473
0.238947
−0.14533
−0.35001
0.130472
−2.68262


TNFRSF10B
0.456205
0.348567
−0.19927
0.160381
−1.24248
0.053214
0.164091
0.324294


DUSP1
NA
NA
−0.03006
0.152909
−0.19657
−0.0472
0.09086
−0.51952


E2F1
0.824212
−1.29638 
0.356102
0.38254 
0.930888
0.617258
0.121385
5.085126


EEF1A2
NA
NA
−0.0028
0.233293
−0.01199
−0.01585
0.06608
−0.23987


ELF3
0.239225
0.87722 
0.026264
0.109569
0.2397
0.165848
0.143091
1.159039


ENO1
NA
NA
−0.01727
0.097939
−0.17629
0.3682
0.094778
3.884888


EPHB2
0.444196
3.112522
−0.46953
0.395102
−1.18837
0.318437
0.123672
2.574851


ERBB2
0.126321
2.486396
0.23616
0.121533
1.943176
0.08469
0.056744
1.492504


ERBB4
0.114364
−1.18626 
0.191218
0.114326
1.672568
−0.28508
0.066294
−4.30028


ESRRG
0.216506
1.648199
0.023341
0.078378
0.297795
−0.16542
0.093598
−1.76733


ESR1
0.111184
−1.09075 
0.127143
0.109672
1.159302
−0.16933
0.044665
−3.79121


EZH2
NA
NA
0.008861
0.200897
0.044106
0.478266
0.107424
4.452134


F3
0.448211
−0.00372 
−0.13187
0.134218
−0.98248
−0.29217
0.093753
−3.11637


FGFR4
0.229234
1.00469 
−0.15142
0.109674
−1.3806
−0.04922
0.146198
−0.33666


FHIT
0.322399
0.270559
−0.08366
0.344886
−0.24256
−0.1378
0.121745
−1.13183


FN1
0.859619
0.485613
−0.05187
0.111777
−0.46402
0.112875
0.066759
1.690796


FOXA1
NA
NA
−0.04211
0.103534
−0.40677
−0.08953
0.043624
−2.05225


FUS
0.269637
−0.68227 
0.119801
0.199389
0.600841
0.115971
0.188545
0.615084


GADD45A
0.236846
−1.41219 
−0.43753
0.333292
−1.31276
−0.15889
0.115794
−1.37217


GAPDH
NA
NA
0.396067
0.169944
2.330574
0.286211
0.073946
3.870541


GATA3
0.170135
1.119423
0.058244
0.115942
0.502355
−0.13285
0.054984
−2.41625


GBP2
0.299148
1.729916
0.082647
0.173301
0.4769
−0.19825
0.1358
−1.45985


GDF15
NA
NA
0.200247
0.14325 
1.397885
0.052347
0.063101
0.829563


GRB7
NA
NA
0.027699
0.459937
0.060224
0.126284
0.054856
2.302117


GSTM1
NA
NA
NA
NA
NA
−0.18141
0.14912
−1.21652


GSTM2
NA
NA
NA
NA
NA
−0.15655
0.118111
−1.32547


GSTM3
NA
NA
−0.09058
0.129247
−0.70086
−0.336
0.086817
−3.87028


HOXB13
0.122399
3.769173
0.453876
0.324863
1.39713
0.161713
0.053047
3.048485


OTUD4
0.633438
0.243542
0.150174
0.149267
1.006076
−0.08847
0.130112
−0.67992


HSPA1A
NA
NA
0.187486
0.231047
0.811463
0.174571
0.117296
1.488295


HSPA1B
NA
NA
NA
NA
NA
0.249602
0.129038
1.934329


HSPA8
0.346081
1.869603
0.208652
0.225656
0.924646
0.054243
0.178314
0.304198


IDH2
NA
NA
0.265828
0.105592
2.517501
0.284862
0.089145
3.195498


IGF1R
0.162941
−0.67982 
−0.37931
0.371019
−1.02236
−0.13655
0.08362
−1.63299


IGFBP7
NA
NA
0.163138
0.200674
0.81295
0.06541
0.10077
0.649097


IL11
NA
NA
−0.17423
0.144228
−1.20804
−0.048
0.126254
−0.38015


IL17RB
0.132744
−3.3405  
NA
NA
NA
−0.01632
0.122679
−0.13305


IL6ST
0.386504
−1.96769 
−0.4336
0.319875
−1.35553
−0.41477
0.111102
−3.73322


IL8
0.154036
−0.81583 
−1.28729
0.493461
−2.6087
0.171912
0.07248
2.371858


INHBA
NA
NA
−0.12767
0.132531
−0.96331
0.133895
0.111083
1.20536


IRF1
0.503423
0.941816
−0.2456
0.294202
−0.8348
−0.08017
0.171067
−0.46864


ITGA4
NA
NA
0.034844
0.074049
0.470549
−0.05101
0.133497
−0.38211


ITGA5
0.263291
0.783232
0.367111
0.333768
1.099899
0.500604
0.163986
3.052724


ITGAV
0.278464
−0.83358 
−0.14166
0.222286
−0.6373
−0.21993
0.158945
−1.38371


ITGB1
0.121624
−1.12236 
−0.52799
0.346298
−1.52468
0.150333
0.133426
1.126714


ITGB4
0.168517
−0.76973 
0.189568
0.163609
1.158665
0.166748
0.175308
0.951172


ITGB5
0.74847 
0.912093
−0.04952
0.16668 
−0.29707
0.010302
0.104545
0.098544


MKI67
NA
NA
0.128582
0.129422
0.99351
0.397232
0.176102
2.255693


KIAA1199
0.121221
0.671448
NA
NA
NA
0.238809
0.113748
2.099457


KPNA2
1.00101 
−1.64304 
0.213725
0.196767
1.086183
0.422135
0.089135
4.735922


LAMA3
NA
NA
−0.03143
0.133752
−0.23497
−0.30023
0.122124
−2.45838


LAMB3
0.139904
0.222154
0.106874
0.139587
0.765644
−0.03167
0.069644
−0.45477


LAPTM4B
0.40304 
0.875261
0.156358
0.140366
1.113931
0.334588
0.083358
4.013853


LMNB1
NA
NA
−0.1517
0.242463
−0.62567
0.461325
0.098382
4.689115


LRIG1
0.216033
−2.84532 
−0.24368
0.172969
−1.40878
−0.50209
0.1119
−4.48694


MTDH
0.292285
0.290209
0.039288
0.233351
0.168365
0.430557
0.145357
2.962066


MCM2
0.288369
0.412333
0.586577
0.252123
2.326551
0.504911
0.154078
3.276983


MELK
NA
NA
0.216763
0.1352 
1.603277
0.471343
0.103644
4.547711


MGMT
0.295678
0.903635
−0.37332
0.507157
−0.73611
−0.14716
0.165874
−0.88716


MMP1
0.078781
2.289386
0.559716
0.331212
1.689903
0.167053
0.064595
2.586172


MMP7
1.30502 
−0.81831 
0.012294
0.101346
0.121311
NA
NA
NA


MYBL2
0.509356
1.202785
0.396938
0.171503
2.314467
0.751827
0.151477
4.963308


NAT1
0.105736
−0.47614 
−0.15619
0.139368
−1.12073
−0.20435
0.058054
−3.52


PGF
NA
NA
0.05255
0.14245 
0.368898
0.055127
0.36118
0.152631


PGR
0.593621
−1.61469 
−0.01033
0.08386 
−0.12312
−0.30421
0.073055
−4.16405


PRDX1
NA
NA
0.253047
0.182621
1.38564
0.231612
0.161791
1.431551


PTEN
0.287261
−0.37645 
0.113229
0.228164
0.496261
−0.3204
0.149745
−2.13962


RPL41
0.288282
0.739398
0.030854
0.188269
0.163881
−0.08602
0.122667
−0.70126


RPLP0
0.174981
2.794069
0.004595
0.198497
0.023148
0.008104
0.079365
0.102105


RRM2
NA
NA
0.229458
0.11665 
1.967064
0.434693
0.152104
2.857867


RUNX1
0.267511
1.037587
0.124568
0.088457
1.408231
−0.18878
0.138365
−1.36435


S100A8
NA
NA
0.142073
0.080349
1.768194
0.094631
0.041656
2.271738


S100A9
NA
NA
0.090314
0.058415
1.546083
0.111093
0.045472
2.443086


S100B
NA
NA
0.239753
0.145105
1.652272
0.195383
0.295751
0.660633


S100P
NA
NA
0.202856
0.092114
2.202218
0.103276
0.04811
2.146677


SEMA3F
0.274191
0.393164
−0.17978
0.185166
−0.97092
NA
NA
NA


SKIL
NA
NA
0.143484
0.103564
1.385462
0.124124
0.120741
1.028019


SKP2
0.2802 
1.680082
−0.71691
0.354699
−2.02117
0.056728
0.128585
0.441174


SNAI1
0.228308
0.717693
−0.04601
0.259767
−0.17711
0.057651
0.124454
0.463235


SYK
NA
NA
−1.30716
0.591071
−2.21151
0.178238
0.168423
1.058276


TAGLN
0.098919
0.108442
0.194543
0.115463
1.684895
0.077881
0.119491
0.651776


TFRC
0.193689
0.149803
0.056174
0.166875
0.336622
0.157216
0.10845
1.449663


TGFB3
0.2296 
0.202518
−0.30473
0.247338
−1.23202
−0.36531
0.09592
−3.80851


TNFRSF11B
0.400921
−2.89274 
−0.2492
0.289075
−0.86207
−0.22072
0.10171
−2.17005


VTN
NA
NA
0.048066
0.34143 
0.140779
−0.05675
0.116352
−0.48774


WISP1
0.212861
−0.1726  
NA
NA
NA
−0.36317
0.153002
−2.3736


WNT5A
0.223411
0.312605
−0.14987
0.146576
−1.02248
−0.29433
0.084559
−3.48081


C6orf66
0.364806
0.492706
−0.53606
0.448343
−1.19564
0.296686
0.199046
1.49054


FOXO3A
0.221502
0.796625
0.059822
0.171485
0.348846
−0.2855
0.194121
−1.47074


GPR30
0.1214 
−0.26427 
0.157898
0.174583
0.904429
0.080079
0.104254
0.768115


KNTC2
0.246904
−0.57677 
0.274706
0.14532 
1.890352
0.432186
0.120356
3.590897



















Official






TRANS
TRANS
TRANS


Symbol
STNO~Est
STNO~SE
STNO~t
STOCK~Est
STOCK~SE
STOCK~t
BIG~Est
BIG~SE
BIG~t





AAMP
0.189376
0.309087
0.612695
0.836415
0.549695
1.521598
0.051406
0.111586
0.460681


ABCC1
NA
NA
NA
0.640672
0.375725
1.705162
NA
NA
NA


ABCC3
0.311364
0.100031
3.112675
0.166453
0.159249
1.045237
NA
NA
NA


ABR
0.095087
0.266216
0.357181
0.08129
0.196104
0.414525
NA
NA
NA


ACTR2
NA
NA
NA
0.302753
0.39656
0.763448
NA
NA
NA


ADAM17
NA
NA
NA
0.437069
0.276977
1.577997
NA
NA
NA


ADM
NA
NA
NA
0.555634
0.242705
2.289339
0.025583
0.038218
0.669405


LYPD6
NA
NA
NA
−0.42358
0.145799
−2.90525
−0.06178 
0.031054
−1.98944 


AKT3
NA
NA
NA
0.12232
0.182253
0.671155
NA
NA
NA


ALCAM
−0.14634 
0.126842
−1.15369 
−0.41301
0.190485
−2.16822
NA
NA
NA


APEX1
0.005151
0.257871
0.019976
0.739037
0.539346
1.370247
NA
NA
NA


ARF1
0    
0.107397
0    
0.862387
0.279535
3.085077
NA
NA
NA


AURKA
0.38795 
0.127032
3.053955
0.688845
0.210275
3.275924
0.020041
0.064473
0.310835


BAD
−0.30035 
0.250277
−1.20006 
0.228387
0.543493
0.420221
NA
NA
NA


BAG1
NA
NA
NA
−0.39593
0.380547
−1.04043
NA
NA
NA


BBC3
NA
NA
NA
−0.26155
0.219839
−1.18974
−0.04709 
0.086372
−0.5452  


BCAR3
NA
NA
NA
−0.49692
0.265837
−1.86927
NA
NA
NA


BCL2
−0.38181 
0.112494
−3.39408 
−0.73699
0.228055
−3.23162
NA
NA
NA


BIRC5
0.190534
0.126151
1.510365
0.582957
0.159354
3.658251
0.007906
0.045316
0.174454


BTRC
NA
NA
NA
−0.92763
0.307218
−3.01944
NA
NA
NA


BUB1
0.357653
0.101235
3.532899
1.09451
0.258044
4.241563
0.014276
0.040135
0.355694


C10orf116
−0.09621 
0.085948
−1.11936 
−0.34745
0.112777
−3.08087
NA
NA
NA


C17orf37
NA
NA
NA
0.382862
0.185356
2.06555
NA
NA
NA


TPX2
NA
NA
NA
0.800822
0.195737
4.091316
NA
NA
NA


C8orf4
NA
NA
NA
−0.36113
0.130038
−2.77713
NA
NA
NA


CAV1
0.135002
0.093948
1.436991
−0.65852
0.275751
−2.38811
NA
NA
NA


CCL19
−0.0546  
2531.93    
−2.16E−05 
−0.15743
0.154207
−1.02087
NA
NA
NA


CCNB1
0.37726 
0.156356
2.412827
0.828029
0.223403
3.706436
NA
NA
NA


CDC20
0.059565
1057.7     
5.63E−05
0.642601
0.178622
3.597547
NA
NA
NA


CDC25A
0.288245
0.213701
1.348824
0.168571
0.225272
0.7483
NA
NA
NA


CDC25C
0.420797
0.155926
2.698697
1.02036
0.337803
3.020577
NA
NA
NA


CDH11
−0.05652 
0.1231 
−0.45913 
−0.21142
0.211537
−0.99942
NA
NA
NA


CDK4
0.279447
0.142472
1.961417
1.40458
0.463254
3.031987
NA
NA
NA


SCUBE2
−0.21559 
0.074112
−2.90896 
−0.24679
0.122745
−2.01059
0.016505
0.023486
0.702739


CENPA
NA
NA
NA
0.724539
0.195614
3.703922
0.002888
0.04791 
0.060269


CHAF1B
0.259119
0.162074
1.59877 
0.281358
0.148493
1.894756
NA
NA
NA


CLDN4
0.40922 
0.128817
3.176755
1.20235
0.33711
3.56664
0.03236 
0.053171
0.608591


CLIC1
0.238723
0.209629
1.138788
2.00024
0.600443
3.331274
−0.26608 
0.160756
−1.65519 


COL1A1
0.127256
0.081743
1.556791
0.05098
0.156488
0.325773
0.087944
0.034256
2.567237


COL1A2
−0.01925 
0.078156
−0.24625 
−0.17504
0.228915
−0.76466
NA
NA
NA


COMT
NA
NA
NA
0.643165
0.360056
1.786292
NA
NA
NA


CRYZ
−0.38719 
0.143353
−2.70092 
0.122949
0.340718
0.360853
NA
NA
NA


CSF1
NA
NA
NA
−0.11449
0.197258
−0.58042
−0.09782 
0.196881
−0.49684 


CTHRC1
NA
NA
NA
0.263783
0.247606
1.065334
NA
NA
NA


CXCL12
0.066487
0.189775
0.350348
−0.65036
0.168426
−3.86137
NA
NA
NA


CXCL14
−0.20969 
0.073458
−2.8546  
−0.14079
0.096118
−1.46476
NA
NA
NA


CYR61
NA
NA
NA
−0.38308
0.231645
−1.65372
NA
NA
NA


DICER1
NA
NA
NA
−1.06544
0.322204
−3.30672
NA
NA
NA


DLC1
0.519601
0.221066
2.350434
−0.66099
0.298518
−2.21425
NA
NA
NA


TNFRSF10B
−0.03773 
0.174479
−0.21623 
−0.03558
0.198203
−0.1795
NA
NA
NA


DUSP1
0.095682
0.223995
0.42716 
−0.14883
0.12682
−1.17351
NA
NA
NA


E2F1
0.171825
0.110793
1.550865
0.699408
0.207377
3.37264
NA
NA
NA


EEF1A2
NA
NA
NA
−0.01256
0.130353
−0.09633
NA
NA
NA


ELF3
0.406692
0.148275
2.742822
0.233332
0.357735
0.652248
NA
NA
NA


ENO1
NA
NA
NA
0.428884
0.194952
2.199947
NA
NA
NA


EPHB2
NA
NA
NA
0.192999
0.451341
0.427612
NA
NA
NA


ERBB2
0.268938
0.074504
3.609693
0.092164
0.188964
0.487734
NA
NA
NA


ERBB4
−0.10396 
0.068988
−1.50697 
−0.73759
0.209821
−3.51532
NA
NA
NA


ESRRG
NA
NA
NA
−0.32843
0.127583
−2.57425
NA
NA
NA


ESR1
−0.14983 
0.057346
−2.61275 
−0.2159
0.120078
−1.798
−0.0019  
0.019747
−0.0963  


EZH2
0.293772
0.156133
1.88155
0.79436
0.243012
3.26881
−0.03007 
0.04916 
−0.61166 


F3
NA
NA
NA
−0.3284
0.132658
−2.47552
NA
NA
NA


FGFR4
0.201581
0.15216 
1.324796
−0.06118
0.174787
−0.35001
NA
NA
NA


FHIT
−0.16819 
0.17858 
−0.94184 
−0.27141
0.367689
−0.73815
NA
NA
NA


FN1
0.049279
0.11577 
0.425659
0.185381
0.202933
0.913508
NA
NA
NA


FOXA1
NA
NA
NA
−0.18849
0.161048
−1.17039
NA
NA
NA


FUS
NA
NA
NA
0.368833
0.437273
0.843485
NA
NA
NA


GADD45A
0.390085
0.342821
1.137868
−0.24644
0.303688
−0.81148
NA
NA
NA


GAPDH
NA
NA
NA
0.907441
0.296513
3.060375
NA
NA
NA


GATA3
−0.20281 
0.068842
−2.94607 
−0.25592
0.122639
−2.08677
NA
NA
NA


GBP2
0.104968
0.124764
0.841332
−0.17667
0.338601
−0.52176
NA
NA
NA


GDF15
−0.02683 
0.097032
−0.27646 
0.251857
0.169158
1.488886
NA
NA
NA


GRB7
0.28938 
0.08099 
3.573025
0.464983
0.21274
2.185687
NA
NA
NA


GSTM1
NA
NA
NA
NA
NA
NA
NA
NA
NA


GSTM2
NA
NA
NA
NA
NA
NA
NA
NA
NA


GSTM3
−0.38478 
0.15382 
−2.50148 
−0.43469
0.17404
−2.49766
0.035771
0.038412
0.931246


HOXB13
NA
NA
NA
0.193
0.369898
0.521765
NA
NA
NA


OTUD4
0.372577
0.253393
1.470352
−0.19372
0.251083
−0.77155
NA
NA
NA


HSPA1A
NA
NA
NA
0.765501
0.440826
1.736515
NA
NA
NA


HSPA1B
0.033372
0.19398 
0.172039
0.069621
0.248436
0.280237
NA
NA
NA


HSPA8
0.22166
0.199205
1.112723
0.32649
0.265007
1.232005
NA
NA
NA


IDH2
0.127942
0.255302
0.50114 
0.574289
0.193387
2.969636
NA
NA
NA


IGF1R
−0.16723 
0.112062
−1.49233 
−0.35887
0.141569
−2.53498
NA
NA
NA


IGFBP7
0.121056
0.164973
0.733793
−0.55896
0.34775
−1.60736
NA
NA
NA


IL11
NA
NA
NA
0.086327
0.225669
0.38254
NA
NA
NA


IL17RB
NA
NA
NA
−0.01403
0.212781
−0.06594
NA
NA
NA


IL6ST
NA
NA
NA
−0.65682
0.195937
−3.35217
NA
NA
NA


IL8
0.548269
0.238841
2.29554 
0.382317
0.203112
1.882296
NA
NA
NA


INHBA
−0.12998 
0.113709
−1.14313 
0.249729
0.184419
1.354139
NA
NA
NA


IRF1
0.307333
0.166134
1.84991 
0.248132
0.447433
0.554568
NA
NA
NA


ITGA4
0.02688 
2341.09    
1.15E−05
0.198854
0.302824
0.656665
NA
NA
NA


ITGA5
NA
NA
NA
0.025981
0.423908
0.061288
NA
NA
NA


ITGAV
0    
0.216251
0    
−0.403
0.45413
−0.88742
NA
NA
NA


ITGB1
0.131284
0.165432
0.793583
0.195878
0.3192
0.613653
NA
NA
NA


ITGB4
0.100533
0.106548
0.943547
0.035914
0.241068
0.14898
NA
NA
NA


ITGB5
−0.19722 
0.165947
−1.18843 
−0.29946
0.281956
−1.06207
NA
NA
NA


MKI67
−0.07823 
0.088982
−0.87915 
0.96424
0.257398
3.746105
NA
NA
NA


KIAA1199
NA
NA
NA
0.293164
0.194272
1.509039
NA
NA
NA


KPNA2
0.328818
0.112579
2.920776
0.857218
0.267225
3.207851
NA
NA
NA


LAMA3
−0.28334 
0.120229
−2.3567  
−0.42291
0.12869
−3.28625
NA
NA
NA


LAMB3
NA
NA
NA
−0.15767
0.230936
−0.68274
NA
NA
NA


LAPTM4B
0.405684
0.113287
3.581029
0.28652
0.19422
1.475234
NA
NA
NA


LMNB1
NA
NA
NA
0.755925
0.25541
2.959653
NA
NA
NA


LRIG1
−0.31422 
0.128149
−2.45197 
−0.95351
0.258142
−3.69375
NA
NA
NA


MTDH
0.242242
0.285145
0.84954 
0.472647
0.340076
1.389828
0.052038
0.077589
0.670683


MCM2
0.008185
0.084857
0.096455
0.732134
0.216462
3.382275
NA
NA
NA


MELK
NA
NA
NA
0.749617
0.195032
3.843559
0.022669
0.036962
0.613293


MGMT
NA
NA
NA
0.377527
0.48364
0.780595
NA
NA
NA


MMP1
0.083945
0.055744
1.505895
0.28871
0.081435
3.545299
NA
NA
NA


MMP7
0.102783
0.072986
1.408258
−0.00343
0.153901
−0.0223
NA
NA
NA


MYBL2
0.399355
0.118084
3.381957
0.579872
0.192026
3.019758
NA
NA
NA


NAT1
−0.14333 
0.060602
−2.36509 
−0.26529
0.117131
−2.26487
NA
NA
NA


PGF
−0.17016 
0.153912
−1.10557 
−0.08334
0.183966
−0.45304
0.095422
0.145828
0.654349


PGR
NA
NA
NA
−0.18022
0.108941
−1.65427
NA
NA
NA


PRDX1
NA
NA
NA
1.52553
0.420489
3.62799
NA
NA
NA


PTEN
0    
226.764   
0
−0.26976
0.225651
−1.19546
NA
NA
NA


RPL41
NA
NA
NA
−0.40807
0.786496
−0.51884
NA
NA
NA


RPLP0
NA
NA
NA
0.018324
0.458438
0.039971
NA
NA
NA


RRM2
0.305217
0.104337
2.9253 
0.926244
0.22125
4.186414
0.038487
0.042471
0.906208


RUNX1
−0.17832 
0.165636
−1.07657 
−0.39722
0.244634
−1.62372
NA
NA
NA


S100A8
0.093477
0.04547 
2.055818
0.164366
0.096581
1.701846
NA
NA
NA


S100A9
NA
NA
NA
0.15514
0.10905
1.42265
NA
NA
NA


S100B
0.136825
0.163838
0.835124
−0.11862
0.158461
−0.74859
−0.01591 
0.034049
−0.46712 


S100P
0.19922 
0.078236
2.546395
0.201435
0.097583
2.064251
NA
NA
NA


SEMA3F
0.023257
0.162267
0.143327
0.472655
0.292764
1.614457
NA
NA
NA


SKIL
NA
NA
NA
0.015831
0.262101
0.060402
NA
NA
NA


SKP2
NA
NA
NA
0.312141
0.339582
0.919192
NA
NA
NA


SNAI1
NA
NA
NA
0.152799
0.210056
0.72742
NA
NA
NA


SYK
0.21812 
0.150626
1.44809 
−0.06882
0.155403
−0.44285
NA
NA
NA


TAGLN
−0.00434 
0.108525
−0.04003 
−0.2578
0.197826
−1.30316
NA
NA
NA


TFRC
0.406546
0.131339
3.095394
0.178145
0.153331
1.161833
−0.03263 
0.051129
−0.63826 


TGFB3
−0.07166 
0.134442
−0.53298 
−1.08462
0.322799
−3.36005
0.013681
0.046103
0.296755


TNFRSF11B
0    
0.08306 
0    
−0.10987
0.128194
−0.85708
NA
NA
NA


VTN
−0.01674 
0.109545
−0.15278 
0.100648
0.186529
0.539584
0.226938
0.091337
2.484623


WISP1
0.03435 
0.194412
0.176685
0.236658
0.340736
0.694549
−0.00282 
0.068308
−0.04121 


WNT5A
0.121343
0.108022
1.123317
−0.01524
0.172902
−0.08815
NA
NA
NA


C6orf66
NA
NA
NA
0.530409
0.355488
1.492059
NA
NA
NA


FOXO3A
NA
NA
NA
0.087341
0.128833
0.67794
NA
NA
NA


GPR30
NA
NA
NA
−0.36866
0.173755
−2.12169
NA
NA
NA


KNTC2
NA
NA
NA
0.442783
0.170315
2.599789
−0.00276 
0.041235
−0.06696 




















Official











Symbol
UCSF~Est
UCSF~SE
UCSF~t
UPP~Est
UPP~SE
UPP~t
fe
sefe







AAMP
0.770516
0.762039
1.011124
1.25423
0.577991
2.169982
0.146929
0.085151



ABCC1
NA
NA
NA
0.274551
0.271361
1.011756
0.281451
0.104466



ABCC3
0.381707
0.250896
1.521375
0.178451
0.097237
1.835219
0.172778
0.048133



ABR
−0.17319
0.728313
−0.23779 
−0.16409
0.120793
−1.35847
−0.06034
0.067134



ACTR2
NA
NA
NA
0.21463
0.353554
0.607064
0.199885
0.117995



ADAM17
0.35888
0.433785
0.827322
0.131246
0.194946
0.673243
0.129961
0.090699



ADM
NA
NA
NA
0.361033
0.203349
1.775435
0.119028
0.030564



LYPD6
NA
NA
NA
−0.1544
0.073668
−2.09587
−0.12675
0.026288



AKT3
NA
NA
NA
−0.06832
0.125172
−0.5458
0.05204
0.071861



ALCAM
−0.25661
0.251874
−1.01879 
−0.1468
0.143998
−1.01942
−0.15502
0.046361



APEX1
−0.96465
0.704753
−1.36878 
1.23743
0.466987
2.649817
0.019915
0.10244



ARF1
0.304097
0.58718 
0.517894
0.751279
0.361093
2.080569
0.281544
0.07587



AURKA
−0.0146
0.28312 
−0.05156 
0.427382
0.126638
3.374832
0.262652
0.041246



BAD
−0.43933
0.659711
−0.66594 
0.351434
0.360157
0.97578
0.059151
0.126378



BAG1
0.516764
0.524112
0.98598 
0.380154
0.211079
1.801003
−0.16426
0.087173



BBC3
0.263477
0.606256
0.434597
−0.13039
0.141473
−0.92165
−0.14598
0.061462



BCAR3
NA
NA
NA
−0.29435
0.182614
−1.61186
−0.28755
0.080198



BCL2
−0.3453
0.410691
−0.84078 
−0.11988
0.174734
−0.68605
−0.32009
0.056047



BIRC5
0.357332
0.286621
1.246706
0.43455
0.110681
3.926148
0.186649
0.031964



BTRC
NA
NA
NA
−0.0225
0.1807
−0.12451
−0.40405
0.100468



BUB1
0.376719
0.340175
1.107427
0.469009
0.162539
2.885517
0.154368
0.032048



C10orf116
0.013111
156.117   
8.40E−05
−0.00923
0.100902
−0.09148
−0.13
0.042521



C17orf37
NA
NA
NA
0.385651
0.113625
3.394068
0.362223
0.092012



TPX2
0.213479
0.284008
0.751665
0.44053
0.139377
3.160708
0.480408
0.073094



C8orf4
NA
NA
NA
0.0037
0.109064
0.033921
−0.18346
0.048256



CAV1
−0.54391
0.428883
−1.2682  
−0.31503
0.150431
−2.09415
−0.11726
0.058989



CCL19
0
0.434462
0    
−0.1048
0.106112
−0.98765
−0.05608
0.050769



CCNB1
−0.35808
0.431863
−0.82915 
0.611916
0.142007
4.309055
0.456916
0.062513



CDC20
−0.65381
0.404188
−1.61759 
0.490188
0.130676
3.751171
0.319134
0.064899



CDC25A
−0.31967
0.397525
−0.80414 
0.330359
0.191096
1.728759
0.267201
0.060819



CDC25C
−0.33774
0.477196
−0.70776 
0.827213
0.232669
3.555321
0.382935
0.077595



CDH11
−0.20567
0.246195
−0.83541 
−0.22621
0.164541
−1.37482
−0.11417
0.053045



CDK4
−0.37577
0.674081
−0.55746 
0.814832
0.297251
2.741225
0.305255
0.069562



SCUBE2
NA
NA
NA
−0.14287
0.077009
−1.8552
−0.05439
0.018349



CENPA
0.679912
0.275146
2.471095
0.536476
0.157029
3.416414
0.185486
0.037867



CHAF1B
−0.03447
0.352745
−0.09773 
0.209129
0.093425
2.238469
0.300765
0.05807



CLDN4
0
1.8541 
0    
0.08503
0.258939
0.328378
0.125868
0.045235



CLIC1
0.377361
0.552842
0.682584
0.999191
0.414232
2.412153
0.222753
0.088912



COL1A1
NA
NA
NA
−0.05544
0.13355
−0.41509
0.083989
0.029343



COL1A2
−0.1405
0.184661
−0.76085 
−0.15924
0.220113
−0.72346
−0.00069
0.041375



COMT
0.356582
0.628139
0.56768 
0.404183
0.257299
1.570869
0.212925
0.092124



CRYZ
−0.52792
0.412283
−1.28048 
−0.37265
0.225119
−1.65534
−0.33167
0.071579



CSF1
NA
NA
NA
0.120517
0.148659
0.810694
−0.0334
0.090261



CTHRC1
NA
NA
NA
−0.14789
0.176843
−0.83626
−0.00169
0.069075



CXCL12
−0.05795
0.270065
−0.21456 
−0.35344
0.150278
−2.35189
−0.28998
0.062826



CXCL14
NA
NA
NA
−0.1861
0.08384
−2.21976
−0.14219
0.032611



CYR61
−0.22327
0.263371
−0.84773 
−0.41188
0.174362
−2.36221
−0.04446
0.059831



DICER1
0
0.311799
0    
0.208326
0.307144
0.678268
−0.19602
0.085879



DLC1
−0.31503
0.345828
−0.91094 
−0.404
0.200673
−2.01324
−0.19876
0.076441



TNFRSF10B
0.932141
0.524911
1.775808
0.127348
0.157658
0.807748
0.02034
0.072745



DUSP1
0.008053
0.779738
0.010327
−0.41475
0.153012
−2.71055
−0.11225
0.054628



E2F1
NA
NA
NA
0.570954
0.172882
3.302565
0.433836
0.067966



EEF1A2
0.433528
0.267338
1.621648
−0.04242
0.091692
−0.46259
0.068177
0.041066



ELF3
0.841389
0.55748 
1.509272
0.096421
0.256911
0.375307
0.196003
0.066053



ENO1
0.899319
0.369574
2.433394
0.288434
0.179833
1.603899
0.233559
0.058687



EPHB2
0.355634
0.604801
0.588018
0.211632
0.199057
1.063173
0.284709
0.094113



ERBB2
0.301674
0.170749
1.766769
0.349689
0.107646
3.248509
0.181046
0.034939



ERBB4
NA
NA
NA
−0.1859
0.117619
−1.58055
−0.16266
0.037384



ESRRG
NA
NA
NA
−0.04663
0.091723
−0.50839
−0.0602
0.044609



ESR1
−0.30054
0.138369
−2.17201 
−0.05086
0.082082
−0.6196
−0.04576
0.015905



EZH2
0.123884
0.404373
0.306361
0.615257
0.155425
3.958546
0.134411
0.0393



F3
−0.08026
0.491948
−0.16315 
−0.20405
0.109227
−1.86809
−0.22911
0.055029



FGFR4
0.149034
0.333338
0.447096
0.204299
0.102078
2.001401
0.075374
0.053791



FHIT
0.225378
0.678656
0.332095
0.053025
0.245338
0.216132
−0.11401
0.082797



FN1
0.13258
0.244458
0.542343
−0.15952
0.26761
−0.59607
0.070337
0.045477



FOXA1
NA
NA
NA
0.139273
0.160139
0.869701
−0.07105
0.037194



FUS
NA
NA
NA
−0.15247
0.345172
−0.44173
0.063142
0.111165



GADD45A
0.153778
0.296649
0.518384
−0.4297
0.20668
−2.07904
−0.18353
0.077839



GAPDH
NA
NA
NA
0.493907
0.232859
2.121056
0.303991
0.05522



GATA3
−0.2038
0.135112
−1.50836 
0.052882
0.108852
0.485817
−0.12484
0.03218



GBP2
0.161775
0.235299
0.687529
0.215873
0.198252
1.088882
0.030811
0.064103



GDF15
0.462744
0.465751
0.993544
0.139286
0.128201
1.086466
0.095577
0.04245



GRB7
0.492397
0.361768
1.361085
0.39613
0.142688
2.776197
0.203411
0.041043



GSTM1
NA
NA
NA
NA
NA
NA
−0.18141
0.14912



GSTM2
−0.12675
0.336406
−0.37676 
NA
NA
NA
−0.15328
0.111442



GSTM3
0.11963
0.323329
0.369995
−0.05308
0.123135
−0.43107
−0.06296
0.030752



HOXB13
0.540678
0.49567 
1.090802
0.342881
0.212428
1.614105
0.227421
0.046188



OTUD4
−0.97971
0.713147
−1.37378 
0.231981
0.294286
0.788284
0.034041
0.081167



HSPA1A
NA
NA
NA
0.722677
0.40563
1.781616
0.243271
0.092738



HSPA1B
NA
NA
NA
0.187302
0.176407
1.061761
0.198207
0.083268



HSPA8
−0.30224
0.477926
−0.63239 
0.126525
0.166299
0.760828
0.218804
0.082393



IDH2
−0.009
0.554612
−0.01623 
0.659908
0.186426
3.539785
0.303626
0.056121



IGF1R
0.277384
0.391147
0.709155
−0.04996
0.122321
−0.40843
−0.14872
0.0484



IGFBP7
−0.50275
0.332753
−1.51087 
−0.16594
0.185086
−0.89655
0.005398
0.068861



IL11
NA
NA
NA
0.000507
0.151608
0.003346
−0.05199
0.075711



IL17RB
NA
NA
NA
−0.1861
0.139748
−1.33168
−0.16557
0.069337



IL6ST
−0.11749
0.19789 
−0.5937  
−0.26213
0.150485
−1.74192
−0.31568
0.063376



IL8
−0.3673
0.460322
−0.79791 
0.076262
0.135635
0.562257
0.136391
0.05243



INHBA
0.094476
0.303634
0.311152
0.036575
0.162207
0.225485
0.026824
0.056655



IRF1
0.380822
0.370842
1.026912
−0.01044
0.283877
−0.03676
0.082446
0.091982



ITGA4
−0.54938
0.583992
−0.94073 
−0.01192
0.18086
−0.0659
0.002027
0.059101



ITGA5
NA
NA
NA
0.406364
0.36399
1.116415
0.431369
0.112958



ITGAV
−0.59197
0.499066
−1.18615 
−0.24399
0.30418
−0.80213
−0.15415
0.089488



ITGB1
0.430257
0.540622
0.795856
−0.18009
0.530248
−0.33962
0.026471
0.072949



ITGB4
0.754519
0.285307
2.644586
0.075057
0.181963
0.412483
0.132678
0.060938



ITGB5
−0.19391
0.378906
−0.51177 
−0.21379
0.157719
−1.35549
−0.09296
0.063571



MKI67
−0.19193
0.462712
−0.4148  
0.597931
0.152281
3.926498
0.183915
0.058442



KIAA1199
NA
NA
NA
0.070065
0.141965
0.493538
0.153718
0.066186



KPNA2
0.32028
0.315031
1.016662
0.615022
0.206117
2.983849
0.374909
0.054897



LAMA3
−0.14266
0.366741
−0.38899 
−0.27285
0.091038
−2.99711
−0.26764
0.050305



LAMB3
NA
NA
NA
−0.1353
0.168256
−0.8041
−0.00591
0.051501



LAPTM4B
NA
NA
NA
0.095487
0.136338
0.700367
0.270104
0.051492



LMNB1
0.121429
0.384263
0.316005
0.805734
0.199208
4.044687
0.481816
0.073226



LRIG1
NA
NA
NA
−0.05954
0.178366
−0.33383
−0.37679
0.062403



MTDH
NA
NA
NA
0.45556
0.239663
1.900836
0.158361
0.059133



MCM2
0.138969
0.340074
0.408643
0.602555
0.182898
3.294487
0.275153
0.05978



MELK
NA
NA
NA
0.46629
0.128065
3.641042
0.132605
0.031744



MGMT
0.368174
0.453282
0.812241
0.725329
0.346508
2.093253
0.085317
0.117786



MMP1
0.150509
0.33411 
0.450477
0.11015
0.051829
2.12525
0.151235
0.027295



MMP7
0.166646
0.143301
1.162909
0.059637
0.10332
0.57721
0.08418
0.042799



MYBL2
0.030169
0.282699
0.106717
0.445705
0.102011
4.369186
0.479924
0.057205



NAT1
−0.1696
0.138069
−1.22836 
−0.05668
0.076583
−0.7401
−0.14009
0.030446



PGF
−1.00442
0.630097
−1.59407 
0.038005
0.124883
0.304328
0.009034
0.063633



PGR
0.451216
0.527475
0.855426
−0.01652
0.065638
−0.25164
−0.12464
0.038764



PRDX1
0.358079
0.32938 
1.08713 
0.706059
0.303105
2.32942
0.347764
0.10081



PTEN
NA
NA
NA
0.110294
0.254356
0.433621
−0.15381
0.092467



RPL41
NA
NA
NA
0.24408
0.604521
0.403758
−0.01769
0.094765



RPLP0
NA
NA
NA
0.964584
0.554848
1.738465
0.108162
0.064823



RRM2
−0.03281
0.279791
−0.11727 
0.674794
0.149386
4.517117
0.159696
0.03419



RUNX1
−0.58909
0.385997
−1.52616 
−0.2142
0.105479
−2.03071
−0.07498
0.052758



S100A8
0.123771
0.178963
0.691601
0.125784
0.065874
1.909478
0.106936
0.024582



S100A9
NA
NA
NA
0.135096
0.074987
1.801592
0.112811
0.030203



S100B
−0.05362
0.218098
−0.24584 
−0.13315
0.115177
−1.15608
−0.01134
0.030069



S100P
0.416003
0.200351
2.076371
0.174292
0.063687
2.736705
0.179884
0.028697



SEMA3F
NA
NA
NA
0.545294
0.227357
2.398404
0.117569
0.092557



SKIL
0.141704
0.348326
0.406814
0.179419
0.152532
1.176271
0.134826
0.065866



SKP2
NA
NA
NA
0.482145
0.194873
2.47415
0.167902
0.091018



SNAI1
NA
NA
NA
0.329059
0.159704
2.060431
0.140674
0.078745



SYK
0.159029
0.431388
0.368645
0.066162
0.136668
0.484107
0.063381
0.072639



TAGLN
NA
NA
NA
−0.06802
0.191196
−0.35574
0.032416
0.049944



TFRC
−0.22576
0.249301
−0.90558 
0.545839
0.208978
2.611945
0.062825
0.038345



TGFB3
−0.25719
0.253264
−1.01551 
−0.49773
0.225603
−2.20621
−0.10353
0.03709



TNFRSF11B
NA
NA
NA
−0.03866
0.087545
−0.44163
−0.09599
0.046815



VTN
−0.22804
0.193542
−1.17822 
0.167418
0.152274
1.099452
0.063022
0.050706



WISP1
NA
NA
NA
−0.29716
0.212939
−1.39552
−0.05687
0.054306



WNT5A
−0.96994
0.719267
−1.34851 
−0.23507
0.152819
−1.5382
−0.12181
0.051129



C6orf66
NA
NA
NA
−0.04983
0.251179
−0.19837
0.167784
0.123636



FOXO3A
−0.03591
0.49687 
−0.07227 
−0.00291
0.074227
−0.03914
0.007101
0.054798



GPR30
NA
NA
NA
−0.07779
0.125956
−0.61763
−0.02487
0.058543



KNTC2
−0.02041
0.366566
−0.05568 
0.347484
0.117596
2.954896
0.093083
0.034359

















TABLE 14







Validation of Transferrin Receptor Group genes in SIB data sets.









Genes














Study data set
TFRC
ENO1
IDH2
ARF1
CLDN4
PRDX1
GBP1





EMC2~Est
NA
NA
NA
NA
NA
NA
NA


EMC2~SE
NA
NA
NA
NA
NA
NA
NA


EMC2~t
NA
NA
NA
NA
NA
NA
NA


JRH1~Est
−0.91825
NA
−0.0525
0.839013
−0.54144
NA
0.137268


JRH1~SE
0.636275
NA
0.232201
0.346692
0.470758
NA
0.159849


JRH1~t
−1.44317
NA
−0.22611
2.420053
−1.15014
NA
0.858735


JRH2~Est
0.162921
0.179739
0.151299
0.369609
0.33033
−0.41082
−0.07418


JRH2~SE
0.352486
0.312848
0.327466
0.40789
0.351865
0.47383
0.198642


JRH2~t
0.462206
0.574525
0.46203
0.906149
0.938798
−0.86703
−0.37345


MGH~Est
0.029015
NA
NA
2.03958
0.185116
NA
0.15434


MGH~SE
0.193689
NA
NA
0.804729
0.314723
NA
0.188083


MGH~t
0.149803
NA
NA
2.534493
0.588187
NA
0.820595


NCH~Est
0.056174
−0.01727 
0.265828
−0.15337
−0.23129
0.253047
0.095457


NCH~SE
0.166875
0.097939
0.105592
0.204529
0.426627
0.182621
0.1323


NCH~t
0.336622
−0.17629 
2.517501
−0.74984
−0.54213
1.38564
0.721522


NKI~Est
0.157216
0.3682 
0.284862
0.944168
0.564756
0.231612
0.13712


NKI~SE
0.10845
0.094778
0.089145
0.204641
0.210595
0.161791
0.075391


NKI~t
1.449663
3.884888
3.195498
4.613777
2.681716
1.431551
1.818777


STNO~Est
0.406546
NA
0.127942
0
0.40922
NA
0.298139


STNO~SE
0.131339
NA
0.255302
0.107397
0.128817
NA
0.113901


STNO~t
3.095394
NA
0.50114
0
3.176755
NA
2.617528


STOCK~Est
0.178145
0.428884
0.574289
0.862387
1.20235
1.52553
0.068821


STOCK~SE
0.153331
0.194952
0.193387
0.279535
0.33711
0.420489
0.183692


STOCK~t
1.161833
2.199947
2.969636
3.085077
3.56664
3.62799
0.374652


TRANSBIG~Est
−0.03263
NA
NA
NA
0.03236
NA
NA


TRANSBIG~SE
0.051129
NA
NA
NA
0.053171
NA
NA


TRANSBIG~t
−0.63826
NA
NA
NA
0.608591
NA
NA


UCSF~Est
−0.22576
0.899319
−0.009
0.304097
0
0.358079
−0.43879


UCSF~SE
0.249301
0.369574
0.554612
0.58718
1.8541
0.32938
0.874728


UCSF~t
−0.90558
2.433394
−0.01623
0.517894
0
1.08713
−0.50163


UPP~Est
0.545839
0.288434
0.659908
0.751279
0.08503
0.706059
0.119778


UPP~SE
0.208978
0.179833
0.186426
0.361093
0.258939
0.303105
0.117879


UPP~t
2.611945
1.603899
3.539785
2.080569
0.328378
2.32942
1.01611


Fe
0.062825
0.233559
0.303626
0.281544
0.125868
0.347764
0.139381


Sefe
0.038345
0.058687
0.056121
0.07587
0.045235
0.10081
0.044464
















TABLE 15





Validation of Stromal Group genes in SIB data sets.






















Gene
CXCL14
TNFRSF11B
CXCL12
C10orf116
RUNX1
GSTM2
TGFB3





EMC2~Est
NA
NA
NA
NA
NA
NA
NA


EMC2~SE
NA
NA
NA
NA
NA
NA
NA


EMC2~t
NA
NA
NA
NA
NA
NA
NA


JRH1~Est
−0.23692
NA
−0.36476
−0.1418
−0.22834
NA
−1.0219


JRH1~SE
0.333761
NA
0.372499
0.261554
0.318666
NA
0.358953


JRH1~t
−0.70985
NA
−0.97921
−0.54216
−0.71656
NA
−2.84689


JRH2~Est
0.361375
−0.10399
−0.4566
0.036378
0.302803
NA
−0.39774


JRH2~SE
0.159544
0.440721
0.219587
0.182183
0.420043
NA
0.470041


JRH2~t
2.265049
−0.23595
−2.07935
0.19968
0.720886
NA
−0.84619


MGH~Est
NA
−1.15976
NA
NA
0.277566
NA
0.046498


MGH~SE
NA
0.400921
NA
NA
0.267511
NA
0.2296


MGH~t
NA
−2.89274
NA
NA
1.037587
NA
0.202518


NCH~Est
−0.06592
−0.2492
−0.08863
0.064337
0.124568
NA
−0.30473


NCH~SE
0.093353
0.289075
0.138097
0.14087
0.088457
NA
0.247338


NCH~t
−0.70609
−0.86207
−0.64183
0.456713
1.408231
NA
−1.23202


NKI~Est
−0.16877
−0.22072
−0.36944
−0.22589
−0.18878
−0.15655
−0.36531


NKI~SE
0.054117
0.10171
0.138735
0.082836
0.138365
0.118111
0.09592


NKI~t
−3.11866
−2.17005
−2.66293
−2.72696
−1.36435
−1.32547
−3.80851


STNO~Est
−0.20969
0
0.066487
−0.09621
−0.17832
NA
−0.07166


STNO~SE
0.073458
0.08306
0.189775
0.085948
0.165636
NA
0.134442


STNO~t
−2.8546
0
0.350348
−1.11936
−1.07657
NA
−0.53298


STOCK~Est
−0.14079
−0.10987
−0.65036
−0.34745
−0.39722
NA
−1.08462


STOCK~SE
0.096118
0.128194
0.168426
0.112777
0.244634
NA
0.322799


STOCK~t
−1.46476
−0.85708
−3.86137
−3.08087
−1.62372
NA
−3.36005


TRANSBIG~Est
NA
NA
NA
NA
NA
NA
0.013681


TRANSBIG~SE
NA
NA
NA
NA
NA
NA
0.046103


TRANSBIG~t
NA
NA
NA
NA
NA
NA
0.296755


UCSF~Est
NA
NA
−0.05795
0.013111
−0.58909
−0.12675
−0.25719


UCSF~SE
NA
NA
0.270065
156.117
0.385997
0.336406
0.253264


UCSF~t
NA
NA
−0.21456
8.40E−05
−1.52616
−0.37676
−1.01551


UPP~Est
−0.1861
−0.03866
−0.35344
−0.00923
−0.2142
NA
−0.49773


UPP~SE
0.08384
0.087545
0.150278
0.100902
0.105479
NA
0.225603


UPP~t
−2.21976
−0.44163
−2.35189
−0.09148
−2.03071
NA
−2.20621


Fe
−0.14219
−0.09599
−0.28998
−0.13
−0.07498
−0.15328
−0.10353


Sefe
0.032611
0.046815
0.062826
0.042521
0.052758
0.111442
0.03709


















Gene
BCAR3
CAV1
DLC1
TNFRSF10B
F3
DICER1







EMC2~Est
NA
NA
NA
NA
NA
NA



EMC2~SE
NA
NA
NA
NA
NA
NA



EMC2~t
NA
NA
NA
NA
NA
NA



JRH1~Est
NA
−0.20701
0.13581
−0.09001
0.719395
NA



JRH1~SE
NA
0.254401
0.37927
0.619057
0.524742
NA



JRH1~t
NA
−0.81372
0.358083
−0.1454
1.37095
NA



JRH2~Est
−0.29238
−0.19588
−0.4102
0.80742
−0.21237
−0.33943



JRH2~SE
0.522706
0.289251
0.387258
0.544479
0.363632
0.39364



JRH2~t
−0.55935
−0.67721
−1.05923
1.482922
−0.58402
−0.8623



MGH~Est
−0.41595
−0.06896
−0.09793
0.159018
−0.00167
0.038811



MGH~SE
0.216837
0.2269
0.247069
0.456205
0.448211
0.409835



MGH~t
−1.91825
−0.30391
−0.39638
0.348567
−0.00372
0.0947



NCH~Est
0.072246
0.078825
−0.03473
−0.19927
−0.13187
0.086141



NCH~SE
0.304443
0.340843
0.238947
0.160381
0.134218
0.143687



NCH~t
0.237306
0.231265
−0.14533
−1.24248
−0.98248
0.599504



NKI~Est
−0.26067
−0.30885
−0.35001
0.053214
−0.29217
−0.46887



NKI~SE
0.114992
0.133788
0.130472
0.164091
0.093753
0.150367



NKI~t
−2.26685
−2.30848
−2.68262
0.324294
−3.11637
−3.11814



STNO~Est
NA
0.135002
0.519601
−0.03773
NA
NA



STNO~SE
NA
0.093948
0.221066
0.174479
NA
NA



STNO~t
NA
1.436991
2.350434
−0.21623
NA
NA



STOCK~Est
−0.49692
−0.65852
−0.66099
−0.03558
−0.3284
−1.06544



STOCK~SE
0.265837
0.275751
0.298518
0.198203
0.132658
0.322204



STOCK~t
−1.86927
−2.38811
−2.21425
−0.1795
−2.47552
−3.30672



TRANSBIG~Est
NA
NA
NA
NA
NA
N/A



TRANSBIG~SE
NA
NA
NA
NA
NA
N/A



TRANSBIG~t
NA
NA
NA
NA
NA
N/A



UCSF~Est
NA
−0.54391
−0.31503
0.932141
−0.08026
0



UCSF~SE
NA
0.428883
0.345828
0.524911
0.491948
0.311799



UCSF~t
NA
−1.2682
−0.91094
1.775808
−0.16315
0



UPP~Est
−0.29435
−0.31503
−0.404
0.127348
−0.20405
0.208326



UPP~SE
0.182614
0.150431
0.200673
0.157658
0.109227
0.307144



UPP~t
−1.61186
−2.09415
−2.01324
0.807748
−1.86809
0.678268



Fe
−0.28755
−0.11726
−0.19876
0.02034
−0.22911
−0.19602



Sefe
0.080198
0.058989
0.076441
0.072745
0.055029
0.085879

















TABLE 16







Table 16: Genes that co-express with Prognostic genes in ER+


breast cancer tumors (Spearman corr. coef. ≥ 0.7)








Prognostic Gene
Co-expressed Genes















INHBA
AEBP1
CDH11
COL10A1
COL11A1
COL1A2



COL5A1
COL5A2
COL8A2
ENTPD4
LOXL2



LRRC15
MMP11
NOX4
PLAU
THBS2



THY1
VCAN


CAV1
ANK2
ANXA1
AQP1
C10orf56
CAV2



CFH
COL14A1
CRYAB
CXCL12
DAB2



DCN
ECM2
FHL1
FLRT2
GNG11



GSN
IGF1
JAM2
LDB2
NDN



NRN1
PCSK5
PLSCR4
PROS1
TGFBR2


NAT1
PSD3


GSTM1
GSTM2


GSTM2
GSTM1


ITGA4
ARHGAP15
ARHGAP25
CCL5
CD3D
CD48



CD53
CORO1A
EVI2B
FGL2
GIMAP4



IRF8
LCK
PTPRC
TFEC
TRAC



TRAF3IP3
TRBC1
EVI2A
FLI1
GPR65



IL2RB
LCP2
LOC100133233
MNDA
PLAC8



PLEK
TNFAIP8


CCL19
ARHGAP15
ARHGAP25
CCL5
CCR2
CCR7



CD2
CD247
CD3D
CD3E
CD48



CD53
FLJ78302
GPR171
IL10RA
IL7R



IRF8
LAMP3
LCK
LTB
PLAC8



PRKCB1
PTPRC
PTPRCAP
SASH3
SPOCK2



TRA@
TRBC1
TRD@
PPP1R16B
TRAC


CDH11
TAGLN
ADAM12
AEBP1
ANGPTL2
ASPN



BGN
BICC1
C10orf56
C1R
C1S



C20orf39
CALD1
COL10A1
COL11A1
COL1A1



COL1A2
COL3A1
COL5A1
COL5A2
COL6A1



COL6A2
COL6A3
COL8A2
COMP
COPZ2



CRISPLD2
CTSK
DACT1
DCN
DPYSL3



ECM2
EFEMP2
ENTPD4
FAP
FBLN1



FBLN2
FBN1
FERMT2
FLRT2
FN1



FSTL1
GAS1
GLT8D2
HEPH
HTRA1



ISLR
ITGBL1
JAM3
KDELC1
LAMA4



LAMB1
LOC100133502
LOX
LOXL2
LRRC15



LRRC17
LUM
MFAP2
MFAP5
MMP2



MRC2
MXRA5
MXRA8
MYL9
NDN



NID1
NID2
NINJ2
NOX4
OLFML2B



OMD
PALLD
PCOLCE
PDGFRA
PDGFRB



PDGFRL
POSTN
PRKCDBP
PRKD1
PTRF



RARRES2
RCN3
SERPINF1
SERPINH1
SFRP4



SNAI2
SPARC
SPOCK1
SPON1
SRPX2



SSPN
TCF4
THBS2
THY1
TNFAIP6



VCAN
WWTR1
ZEB1
ZFPM2
INHBA



PLS3
SEC23A
WISP1


TAGLN
CDH11
ADAM12
AEBP1
ANGPTL2
ASPN



BGN
BICC1
C10orf56
C1R
C1S



C20orf39
CALD1
COL10A1
COL11A1
COL1A1



COL1A2
COL3A1
COL5A1
COL5A2
COL6A1



COL6A2
COL6A3
COL8A2
COMP
COPZ2



CRISPLD2
CTSK
DACT1
DCN
DPYSL3



ECM2
EFEMP2
ENTPD4
FAP
FBLN1



FBLN2
FBN1
FERMT2
FLRT2
FN1



FSTL1
GAS1
GLT8D2
HEPH
HTRA1



ISLR
ITGBL1
JAM3
KDELC1
LAMA4



LAMB1
LOC100133502
LOX
LOXL2
LRRC15



LRRC17
LUM
MFAP2
MFAP5
MMP2



MRC2
MXRA5
MXRA8
MYL9
NDN



NID1
NID2
NINJ2
NOX4
OLFML2B



OMD
PALLD
PCOLCE
PDGFRA
PDGFRB



PDGFRL
POSTN
PRKCDBP
PRKD1
PTRF



RARRES2
RCN3
SERPINF1
SERPINH1
SFRP4



SNAI2
SPARC
SPOCK1
SPON1
SRPX2



SSPN
TCF4
THBS2
THY1
TNFAIP6



VCAN
WWTR1
ZEB1
ZFPM2
ACTA2



CNN1
DZIP1
EMILIN1


ENO1
ATP5J2
C10orf10
CLDN15
CNGB1
DET1



EIF3CL
HS2ST1
IGHG4
KIAA0195
KIR2DS5



PARP6
PRH1
RAD1
RIN3
RPL10



SGCG
SLC16A2
SLC9A3R1
SYNPO2L
THBS1



ZNF230


IDH2
AEBP1
HIST1H2BN
PCDHAC1


ARF1
CRIM1


DICER1
ADM
LOC100133583


AKT3
AKAP12
ECM2
FERMT2
FLRT2
JAM3



LOC100133502
PROS1
TCF4
WWTR1
ZEB1


CXCL12
ANXA1
C1R
C1S
CAV1
DCN



FLRT2
SRPX


CYR61
CTGF


IGFBP7
VIM


KIAA1199
COL11A1
PLAU


SPC25
ASPM
BUB1
BUB1B
CCNA2
CCNE2



CDC2
CDC25C
CENPA
CEP55
FANCI



GINS1
HJURP
KIAA0101
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF4A
MAD2L1



MELK
NCAPG
NEK2
NUSAP1
PRC1



STIL
ZWINT


WISP1
CDH11
COL5A2
















TABLE 17







Table 17: Genes that co-express with Prognostic Genes in ER−


breast cancer tumors (Spearman corr. coef. ≥ 0.7)








Prognostic Gene
Co-expressed Genes















IRF1
APOL6
CXCL10
GABBR1
GBP1
HCP5



HLA-E
HLA-F
HLA-G
HLA-J
INDO



PSMB8
PSMB9
STAT1
TAP1
UBD



UBE2L6
WARS
APOBEC3F
APOBEC3G
APOL1



APOL3
ARHGAP25
BTN3A1
BTN3A2
BTN3A3



C1QB
CCL5
CD2
CD38
CD40



CD53
CD74
CD86
CSF2RB
CTSS



CYBB
FGL2
GIMAP5
GZMA
hCG_1998957



HCLS1
HLA-C
HLA-DMA
HLA-DMB
HLA-DPA1



HLA-DQB1
HLA-DQB2
HLA-DRA
HLA-DRB1
HLA-DRB2



HLA-DRB3
HLA-DRB4
HLA-DRB5
HLA-DRB6
IL10RA



IL2RB
LAP3
LAPTM5
LOC100133484
LOC100133583



LOC100133661
LOC100133811
LOC730415
NKG7
PLEK



PSMB10
PTPRC
RNASE2
SLAMF8
TFEC



TNFRSF1B
TRA@
TRAC
TRAJ17
TRAV20



ZNF749


CDH11
ADAM12
AEBP1
ANGPTL2
ASPN
CFH



CFHR1
COL10A1
COL11A1
COL1A1
COL1A2



COL3A1
COL5A1
COL5A2
COL6A3
CRISPLD2



CTSK
DACT1
DCN
FAP
FBN1



FN1
HTRA1
LOX
LRRC15
LUM



NID2
PCOLCE
PDGFRB
POSTN
SERPINF1



SPARC
THBS2
THY1
VCAN
DAB2



GLT8D2
ITGB5
JAM3
LOC100133502
MMP2



PRSS23
TIMP3
ZEB1


CCL19
ITGA4
ADAM28
AIF1
APOBEC3F
APOBEC3G



APOL3
ARHGAP15
ARHGAP25
CASP1
CCDC69



CCR2
CCR7
CD2
CD247
CD27



CD37
CD3D
CD3G
CD48
CD52



CD53
CD74
CD86
CD8A
CLEC4A



CORO1A
CTSS
CXCL13
DOCK10
EVI2A



EVI2B
FGL2
FLJ78302
FYB
GIMAP4





(CCR2)



GIMAP5
GIMAP6
GMFG
GPR171
GPR18



GPR65
GZMA
GZMB
GZMK
hCG_1998957



HCLS1
HLA-DMA
HLA-DMB
HLA-DPA1
HLA-DQA1



HLA-DQA2
HLA-DQB1
HLA-DQB2
HLA-DRB1
HLA-DRB2



HLA-DRB3
HLA-DRB4
HLA-DRB5
HLA-E
IGHM



IGSF6
IL10RA
IL2RG
IL7R
IRF8



KLRB1
KLRK1
LAPTM5
LAT2
LCK



LCP2
LOC100133484
LOC100133583
LOC100133661
LOC100133811



LOC730415
LPXN
LRMP
LST1
LTB



LY96
LYZ
MFNG
MNDA
MS4A4A



NCKAP1L
PLAC8
PLEK
PRKCB1
PSCDBP



PTPRC
PTPRCAP
RAC2
RNASE2
RNASE6



SAMHD1
SAMSN1
SASH3
SELL
SELPLG



SLA
SLAMF1
SLC7A7
SP140
SRGN



TCL1A
TFEC
TNFAIP8
TNFRSF1B
TRA@



TRAC
TRAJ17
TRAT1
TRAV20
TRBC1



TYROBP
ZNF749
ITM2A
LTB
P2RY13



PRKCB1
PTPRCAP
SELL
TRBC1


ITGA4
CCL19
ADAM28
AIF1
APOBEC3F
APOBEC3G



APOL3
ARHGAP15
ARHGAP25
CASP1
CCDC69



CCR2
CCR7
CD2
CD247
CD27



CD37
CD3D
CD3G
CD48
CD52



CD53
CD74
CD86
CD8A
CLEC4A



CORO1A
CTSS
CXCL13
DOCK10
EVI2A



EVI2B
FGL2
FLJ78302
FYB
GIMAP4





(CCR2)



GIMAP5
GIMAP6
GMFG
GPR171
GPR18



GPR65
GZMA
GZMB
GZMK
hCG_1998957



HCLS1
HLA-DMA
HLA-DMB
HLA-DPA1
HLA-DQA1



HLA-DQA2
HLA-DQB1
HLA-DQB2
HLA-DRB1
HLA-DRB2



HLA-DRB3
HLA-DRB4
HLA-DRB5
HLA-E
IGHM



IGSF6
IL10RA
IL2RG
IL7R
IRF8



KLRB1
KLRK1
LAPTM5
LAT2
LCK



LCP2
LOC100133484
LOC100133583
LOC100133661
LOC100133811



LOC730415
LPXN
LRMP
LST1
LTB



LY96
LYZ
MFNG
MNDA
MS4A4A



NCKAP1L
PLAC8
PLEK
PRKCB1
PSCDBP



PTPRC
PTPRCAP
RAC2
RNASE2
RNASE6



SAMHD1
SAMSN1
SASH3
SELL
SELPLG



SLA
SLAMF1
SLC7A7
SP140
SRGN



TCL1A
TFEC
TNFAIP8
TNFRSF1B
TRA@



TRAC
TRAJ17
TRAT1
TRAV20
TRBC1



TYROBP
ZNF749
MARCH1
C17orf60
CSF1R



FLI1
FLJ78302
FYN
IKZF1
INPP5D



NCF4
NR3C1
P2RY13
PLXNC1
PSCD4



PTPN22
SERPINB9
SLCO2B1
VAMP3
WIPF1


IDH2
AEBP1
DSG3
HIST1H2BN
PCDHAC1


ARF1
FABP5L2
FLNB
IL1RN
PAX6


DICER1
ARS2
IGHA1
VDAC3


TFRC
RGS20


ADAM17
TFDP3
GPR107


CAV1
CAV2
CXCL12
IGF1


CYR61
CTGF


ESR1
CBLN1
SLC45A2


GSTM1
GSTM2


GSTM2
GSTM1


IL11
FAM135A


IL6ST
P2RY5


IGFBP7
SPARCL1
TMEM204


INHBA
COL10A1
FN1
SULF1


SPC25
KIF4A
KIF20A
NCAPG


TAGLN
ACTA2
MYL9
NNMT
PTRF


TGFB3
GALNT10
HTRA1
LIMA1


TNFRSF10B
BIN3


FOXA1
CLCA2
TFAP2B
AGR2
MLPH
SPDEF


CXCL12
DCN
CAV1
IGF1
CFH


GBP2
APOL1
APOL3
CD2
CTSS
CXCL9



CXCR6
GBP1
GZMA
HLA-DMA
HLA-DMB



IL2RB
PTPRC
TRBC1
















TABLE 18







Table 18: Genes that co-express with Prognostic Genes in


all breast cancer tumors (Spearman corr. coef. ≥ 0.7)








Prognostic Gene
Co-expressed Genes















S100A8
S100A9






S100A9
S100A8


MKI67
BIRC5
KIF20A
MCM10


MTDH
ARMC1
AZIN1
ENY2
MTERFD1
POLR2K



PTDSS1
RAD54B
SLC25A32
TMEM70
UBE2V2


GSTM1
GSTM2


GSTM2
GSTM1


CXCL12
AKAP12
DCN
F13A1


TGFB3
C10orf56
JAM3


TAGLN
ACTA2
CALD1
COPZ2
FERMT2
HEPH



MYL9
NNMT
PTRF
TPM2


PGF
ALMS1
ATP8B1
CEP27
DBT
FAM128B



FBXW12
FGFR1
FLJ12151
FLJ42627
GTF2H3



HCG2P7
KIAA0894
KLHL24
LOC152719
PDE4C



PODNL1
POLR1B
PRDX2
PRR11
RIOK3



RP5-886K2.1
SLC35E1
SPN
USP34
ZC3H7B



ZNF160
ZNF611


CCL19
ARHGAP15
ARHGAP25
CCL5
CCR2
CCR7



CD2
CD37
CD3D
CD48
CD52



CSF2RB
FLJ78302
GIMAP5
GIMAP6
GPR171



GZMK
IGHM
IRF8
LCK
LTB



PLAC8
PRKCB1
PTGDS
PTPRC
PTPRCAP



SASH3
TNFRSF1B
TRA@
TRAC
TRAJ17



TRAV20
TRBC1


IRF1
ITGA4
MARCH1
AIF1
APOBEC3F
APOBEC3G



APOL1
APOL3
ARHGAP15
ARHGAP25
BTN3A2



BTN3A3
CASP1
CCL4
CCL5
CD2



CD37
CD3D
CD48
CD53
CD69



CD8A
CORO1A
CSF2RB
CST7
CYBB



EVI2A
EVI2B
FGL2
FLI1
GBP1



GIMAP4
GIMAP5
GIMAP6
GMFG
GPR65



GZMA
GZMK
hCG_1998957
HCLS1
HLA-DMA



HLA-DMB
HLA-DPA1
HLA-DQB1
HLA-DQB2
HLA-DRA



HLA-DRB1
HLA-DRB2
HLA-DRB3
HLA-DRB4
HLA-DRB5



HLA-E
HLA-F
IGSF6
IL10RA
IL2RB



IRF8
KLRK1
LCK
LCP2
LOC100133583



LOC100133661
LOC100133811
LST1
LTB
LY86



MFNG
MNDA
NKG7
PLEK
PRKCB1



PSCDBP
PSMB10
PSMB8
PSMB9
PTPRC



PTPRCAP
RAC2
RNASE2
RNASE6
SAMSN1



SLA
SRGN
TAP1
TFEC
TNFAIP3



TNFRSF1B
TRA@
TRAC
TRAJ17
TRAV20



TRBC1
TRIM22
ZNF749


ITGA4
IRF1
MARCH1
AIF1
APOBEC3F
APOBEC3G



APOL1
APOL3
ARHGAP15
ARHGAP25
BTN3A2



BTN3A3
CASP1
CCL4
CCL5
CD2



CD37
CD3D
CD48
CD53
CD69



CD8A
CORO1A
CSF2RB
CST7
CYBB



EVI2A
EVI2B
FGL2
FLI1
GBP1



GIMAP4
GIMAP5
GIMAP6
GMFG
GPR65



GZMA
GZMK
hCG_1998957
HCLS1
HLA-DMA



HLA-DMB
HLA-DPA1
HLA-DQB1
HLA-DQB2
HLA-DRA



HLA-DRB1
HLA-DRB2
HLA-DRB3
HLA-DRB4
HLA-DRB5



HLA-E
HLA-F
IGSF6
IL10RA
IL2RB



IRF8
KLRK1
LCK
LCP2
LOC100133583



LOC100133661
LOC100133811
LST1
LTB
LY86



MFNG
MNDA
NKG7
PLEK
PRKCB1



PSCDBP
PSMB10
PSMB8
PSMB9
PTPRC



PTPRCAP
RAC2
RNASE2
RNASE6
SAMSN1



SLA
SRGN
TAP1
TFEC
TNFAIP3



TNFRSF1B
TRA@
TRAC
TRAJ17
TRAV20



TRBC1
TRIM22
ZNF749
CTSS


SPC25
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEK1
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
AURKA
BIRC5
BUB1
CCNB1



CENPA
KPNA2
LMNB1
MCM2
MELK



NDC80
TPX2


AURKA
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEK1
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
SPC25
BIRC5
BUB1
CCNB1



CENPA
KPNA2
LMNB1
MCM2
MELK



NDC80
TPX2
PSMA7
CSE1L


BIRC5
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEKA
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
AURKA
SPC25
BUB1
CCNB1



CENPA
KPNA2
LMNB1
MCM2
MELK



NDC80
TPX2
MKI67


BUB1
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEK1
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
AURKA
BIRC5
SPC25
CCNB1



CENPA
KPNA2
LMNB1
MCM2
MELK



NDC80
TPX2


CCNB1
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEK1
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
AURKA
BIRC5
BUB1
SPC25



CENPA
KPNA2
LMNB1
MCM2
MELK



NDC80
TPX2


CENPA
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEK1
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
AURKA
BIRC5
BUB1
CCNB1



SPC25
KPNA2
LMNB1
MCM2
MELK



NDC80
TPX2


KPNA2
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEK1
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
AURKA
BIRC5
BUB1
CCNB1



CENPA
SPC25
LMNB1
MCM2
MELK



NDC80
TPX2
NOL11
PSMD12


LMNB1
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEK1
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
AURKA
BIRC5
BUB1
CCNB1



CENPA
KPNA2
SPC25
MCM2
MELK



NDC80
TPX2


MCM2
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEK1
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
AURKA
BIRC5
BUB1
CCNB1



CENPA
KPNA2
LMNB1
SPC25
MELK



NDC80
TPX2


MELK
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEK1
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
AURKA
BIRC5
BUB1
CCNB1



CENPA
KPNA2
LMNB1
MCM2
SPC25



NDC80
TPX2


NDC80
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEK1
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
AURKA
BIRC5
BUB1
CCNB1



CENPA
KPNA2
LMNB1
MCM2
MELK



SPC25
TPX2


TPX2
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEK1
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
AURKA
BIRC5
BUB1
CCNB1



CENPA
KPNA2
LMNB1
MCM2
MELK



NDC80
SPC25


CDH11
INHBA
WISP1
COL1A1
COL1A2
FN1



ADAM12
AEBP1
ANGPTL2
ASPN
BGN



BNC2
C1QTNF3
COL10A1
COL11A1
COL3A1



COL5A1
COL5A2
COL5A3
COL6A3
COMP



CRISPLD2
CTSK
DACT1
DCN
DKK3



DPYSL3
EFEMP2
EMILIN1
FAP
FBN1



FSTL1
GLT8D2
HEG1
HTRA1
ITGBL1



JAM3
KIAA1462
LAMA4
LOX
LOXL1



LRP1
LRRC15
LRRC17
LRRC32
LUM



MFAP5
MICAL2
MMP11
MMP2
MXRA5



MXRA8
NID2
NOX4
OLFML2B
PCOLCE



PDGFRB
PLAU
POSTN
SERPINF1
SPARC



SPOCK1
SPON1
SRPX2
SULF1
TCF4



THBS2
THY1
VCAN
ZEB1


INHBA
CDH11
WISP1
COL1A1
COL1A2
FN1



ADAM12
AEBP1
ANGPTL2
ASPN
BGN



BNC2
C1QTNF3
COL10A1
COL11A1
COL3A1



COL5A1
COL5A2
COL5A3
COL6A3
COMP



CRISPLD2
CTSK
DACT1
DCN
DKK3



DPYSL3
EFEMP2
EMILIN1
FAP
FBN1



FSTL1
GLT8D2
HEG1
HTRA1
ITGBL1



JAM3
KIAA1462
LAMA4
LOX
LOXL1



LRP1
LRRC15
LRRC17
LRRC32
LUM



MFAP5
MICAL2
MMP11
MMP2
MXRA5



MXRA8
NID2
NOX4
OLFML2B
PCOLCE



PDGFRB
PLAU
POSTN
SERPINF1
SPARC



SPOCK1
SPON1
SRPX2
SULF1
TCF4



THBS2
THY1
VCAN
ZEB1


WISP1
INHBA
CDH11
COL1A1
COL1A2
FN1



ADAM12
AEBP1
ANGPTL2
ASPN
BGN



BNC2
C1QTNF3
COL10A1
COL11A1
COL3A1



COL5A1
COL5A2
COL5A3
COL6A3
COMP



CRISPLD2
CTSK
DACT1
DCN
DKK3



DPYSL3
EFEMP2
EMILIN1
FAP
FBN1



FSTL1
GLT8D2
HEG1
HTRA1
ITGBL1



JAM3
KIAA1462
LAMA4
LOX
LOXL1



LRP1
LRRC15
LRRC17
LRRC32
LUM



MFAP5
MICAL2
MMP11
MMP2
MXRA5



MXRA8
NID2
NOX4
OLFML2B
PCOLCE



PDGFRB
PLAU
POSTN
SERPINF1
SPARC



SPOCK1
SPON1
SRPX2
SULF1
TCF4



THBS2
THY1
VCAN
ZEB1


COL1A1
INHBA
WISP1
CDH11
COL1A2
FN1



ADAM12
AEBP1
ANGPTL2
ASPN
BGN



BNC2
C1QTNF3
COL10A1
COL11A1
COL3A1



COL5A1
COL5A2
COL5A3
COL6A3
COMP



CRISPLD2
CTSK
DACT1
DCN
DKK3



DPYSL3
EFEMP2
EMILIN1
FAP
FBN1



FSTL1
GLT8D2
HEG1
HTRA1
ITGBL1



JAM3
KIAA1462
LAMA4
LOX
LOXL1



LRP1
LRRC15
LRRC17
LRRC32
LUM



MFAP5
MICAL2
MMP11
MMP2
MXRA5



MXRA8
NID2
NOX4
OLFML2B
PCOLCE



PDGFRB
PLAU
POSTN
SERPINF1
SPARC



SPOCK1
SPON1
SRPX2
SULF1
TCF4



THBS2
THY1
VCAN
ZEB1


COL1A2
INHBA
WISP1
COL1A1
CDH11
FN1



ADAM12
AEBP1
ANGPTL2
ASPN
BGN



BNC2
C1QTNF3
COL10A1
COL11A1
COL3A1



COL5A1
COL5A2
COL5A3
COL6A3
COMP



CRISPLD2
CTSK
DACT1
DCN
DKK3



DPYSL3
EFEMP2
EMILIN1
FAP
FBN1



FSTL1
GLT8D2
HEG1
HTRA1
ITGBL1



JAM3
KIAA1462
LAMA4
LOX
LOXL1



LRP1
LRRC15
LRRC17
LRRC32
LUM



MFAP5
MICAL2
MMP11
MMP2
MXRA5



MXRA8
NID2
NOX4
OLFML2B
PCOLCE



PDGFRB
PLAU
POSTN
SERPINF1
SPARC



SPOCK1
SPONI
SRPX2
SULF1
TCF4



THBS2
THY1
VCAN
ZEB1


FN1
INHBA
WISP1
COL1A1
COL1A2
CDH11



ADAM12
AEBP1
ANGPTL2
ASPN
BGN



BNC2
C1QTNF3
COL10A1
COL11A1
COL3A1



COL5A1
COL5A2
COL5A3
COL6A3
COMP



CRISPLD2
CTSK
DACT1
DCN
DKK3



DPYSL3
EFEMP2
EMILIN1
FAP
FBN1



FSTL1
GLT8D2
HEG1
HTRA1
ITGBL1



JAM3
KIAA1462
LAMA4
LOX
LOXL1



LRP1
LRRC15
LRRC17
LRRC32
LUM



MFAP5
MICAL2
MMP11
MMP2
MXRA5



MXRA8
NID2
NOX4
OLFML2B
PCOLCE



PDGFRB
PLAU
POSTN
SERPINF1
SPARC



SPOCK1
SPON1
SRPX2
SULF1
TCF4



THBS2
THY1
VCAN
ZEB1








Claims
  • 1.-18. (canceled)
  • 19. A method of analyzing expression levels of RNA transcripts of genes in a breast cancer patient, comprising: obtaining a breast tumor tissue sample from the breast cancer patient;extracting RNA from the tissue sample;reverse transcribing RNA transcripts from the extracted RNA to produce cDNA amplicons; anddetermining levels of cDNA amplicons of each of GRB7, ERBB2, ESR1, PGR, BCL2, SCUBE2 (CEGP1), BIRC5 (SURV), Ki67 (MKI67), CCNB1, STK15 (AURKA), GSTM1, and BAG1, wherein the cDNA levels are determined by digital gene expression DNA sequencing, and wherein at least one of the following primer and probe sequence sets is used to determine the levels of the cDNA amplicons:GRB7, SEQ ID Nos: 210, 594, and 978;ERBB2, SEQ ID Nos: 224, 608, and 992;ESR1, SEQ ID Nos: 163, 547, and 931;PGR, SEQ ID Nos: 329, 713, and 1097;BCL2, SEQ ID Nos: 43, 427, and 811;SCUBE2 (CEGP1), SEQ ID Nos: 92, 476, and 860;BIRC5 (SURV), SEQ ID Nos: 362, 746, and 1130;Ki67 (MK167), SEQ ID Nos: 275, 659, and 1043;CCNB1, SEQ ID Nos: 66, 450, and 834;STK15 (AURKA), SEQ ID Nos: 359, 743, and 1127;GSTM1, SEQ ID Nos: 215, 599, and 983; orBAG1: SEQ ID Nos: 35, 419, and 803.
  • 20. The method of claim 19, wherein the sample is a fixed, paraffin-embedded tissue sample.
  • 21. The method of claim 19, wherein the patient is an ER positive breast cancer patient.
  • 22. The method of claim 19, wherein the cDNA levels are normalized based on either the total RNA level in the sample or the cDNA level of at least one reference RNA transcript.
  • 23. The method of claim 22, wherein the cDNA levels are normalized based on the cDNA level of one or more of AAMP, ARF1, EEF1A1, ESD, GPS1, H3F3A, HNRPC, RPL13A, RPL41, RPS23, RPS27, SDHA, TCEA1, UBB, YWHAZ, B-actin, GUS, GAPDH, RPLPO, or TFRC.
  • 24. The method of claim 19, further comprising providing a report based on the digital gene expression data from each of GRB7, ERBB2, ESR1, PGR, BCL2, SCUBE2 (CEGP1), BIRC5 (SURV), Ki67 (MK167), CCNB1, STK15 (AURKA), GSTM1, and BAG1.
  • 25. The method of claim 19, wherein cDNA amplicons of 15 to 25 genes are determined.
  • 26. A method of analyzing expression levels of RNA transcripts of genes in a breast cancer patient, comprising: obtaining a breast tumor tissue sample from the breast cancer patient;extracting RNA from the tissue sample;reverse transcribing RNA transcripts from the extracted RNA to produce cDNA amplicons; anddetermining levels of cDNA amplicons of each of GRB7, ERBB2, ESR1, PGR, BCL2, SCUBE2 (CEGP1), BIRC5 (SURV), Ki67 (MKI67), CCNB1, STK15 (AURKA), GSTM1, and BAG1, wherein the cDNA levels are determined by digital gene expression DNA sequencing, wherein the cDNA amplicons comprise at least one of the following polynucleotides:SEQ ID NO: 1362 (for GRB7);SEQ ID NO: 1376 (for ERBB2);SEQ ID NO: 1323 (for ESR1);SEQ ID NO: 1481 (for PGR);SEQ ID NO: 1196 (for BCL2);SEQ ID NO: 1514 (for BIRC5 (SURV));SEQ ID NO: 1427 (for Ki67 (MK167));SEQ ID NO: 1218 (for CCNB1);SEQ ID NO: 1511 (for STK15 (AURKA));SEQ ID NO: 1367 (for GSTM1); orSEQ ID NO: 1187 (for BAG1).
  • 27. The method of claim 26, wherein the sample is a fixed, paraffin-embedded tissue sample.
  • 28. The method of claim 26, wherein the patient is an ER positive breast cancer patient.
  • 29. The method of claim 26, wherein the cDNA levels are normalized based on either the total RNA level in the sample or the cDNA level of at least one reference RNA transcript.
  • 30. The method of claim 29, wherein the cDNA levels are normalized based on the cDNA level of one or more of AAMP, ARF1, EEF1A1, ESD, GPS1, H3F3A, HNRPC, RPL13A, RPL41, RPS23, RPS27, SDHA, TCEA1, UBB, YWHAZ, B-actin, GUS, GAPDH, RPLPO, or TFRC.
  • 31. The method of claim 26, further comprising providing a report based on the digital gene expression data from each of GRB7, ERBB2, ESR1, PGR, BCL2, SCUBE2 (CEGP1), BIRC5 (SURV), Ki67 (MKI67), CCNB1, STK15 (AURKA), GSTM1, and BAG1.
  • 32. The method of claim 26, wherein cDNA amplicons of 15 to 25 genes are determined.
CROSS REFERENCE

This application claims the benefit of U.S. Provisional Patent Application No. 61/263,763, filed Nov. 23, 2009, which application is incorporated herein by reference in its entirety.

Provisional Applications (1)
Number Date Country
61263763 Nov 2009 US
Divisions (1)
Number Date Country
Parent 16243207 Jan 2019 US
Child 17018143 US
Continuations (2)
Number Date Country
Parent 15423977 Feb 2017 US
Child 16243207 US
Parent 12950732 Nov 2010 US
Child 15423977 US