METHODS TO PREDICT CLINICAL OUTCOME OF CANCER

Information

  • Patent Application
  • 20190241967
  • Publication Number
    20190241967
  • Date Filed
    January 09, 2019
    6 years ago
  • Date Published
    August 08, 2019
    5 years ago
Abstract
The present invention provides methods to determine the prognosis and appropriate treatment for patients diagnosed with cancer, based on the expression levels of one or more biomarkers. More particularly, the invention relates to the identification of genes, or sets of genes, able to distinguish breast cancer patients with a good clinical prognosis from those with a bad clinical prognosis. The invention further provides methods for providing a personalized genomics report for a cancer patient. The inventions also relates to computer systems and software for data analysis using the prognostic and statistical methods disclosed herein.
Description
INTRODUCTION

Oncologists have a number of treatment options available to them, including different combinations of therapeutic regimens that are characterized as “standard of care.” The absolute benefit from adjuvant treatment is larger for patients with poor prognostic features, and this has resulted in the policy to select only these so-called ‘high-risk’ patients for adjuvant chemotherapy. See, e.g., S. Palk, et al., J Clin Oncol. 24(23):3726-34 (2006). Therefore, the best likelihood of good treatment outcome requires that patients be assigned to optimal available cancer treatment, and that this assignment be made as quickly as possible following diagnosis.


Today our healthcare system is riddled with inefficiency and wasteful spending—one example of this is that the efficacy rate of many oncology therapeutics working only about 25% of the time. Many of those cancer patients are experiencing toxic side effects for costly therapies that may not be working. This imbalance between high treatment costs and low therapeutic efficacy is often a result of treating a specific diagnosis one way across a diverse patient population. But with the advent of gene profiling tools, genomic testing, and advanced diagnostics, this is beginning to change.


In particular, once a patient is diagnosed with breast cancer there is a strong need for methods that allow the physician to predict the expected course of disease, including the likelihood of cancer recurrence, long-term survival of the patient, and the like, and select the most appropriate treatment option accordingly. Accepted prognostic and predictive factors in breast cancer include age, tumor size, axillary lymph node status, histological tumor type, pathological grade and hormone receptor status. Molecular diagnostics, however, have been demonstrated to identify more patients with a low risk of breast cancer than was possible with standard prognostic indicators. S. Paik, The Oncologist 12(6):631-635 (2007).


Despite recent advances, the challenge of breast cancer treatment remains to target specific treatment regimens to pathogenically distinct tumor types, and ultimately personalize tumor treatment in order to maximize outcome. Accurate prediction of prognosis and clinical outcome would allow the oncologist to tailor the administration of adjuvant chemotherapy such that women with a higher risk of a recurrence or poor prognosis would receive more aggressive treatment. Furthermore, accurately stratifying patients based on risk would greatly advance the understanding of expected absolute benefit from treatment, thereby increasing success rates for clinical trials for new breast cancer therapies.


Currently, most diagnostic tests used in clinical practice are frequently not quantitative, relying on immunohistochemistry (IHC). This method often yields different results in different laboratories, in part because the reagents are not standardized, and in part because the interpretations are subjective and cannot be easily quantified. Other RNA-based molecular diagnostics require fresh-frozen tissues, which presents a myriad of challenges including incompatibilities with current clinical practices and sample transport regulations. Fixed paraffin-embedded tissue is more readily available and methods have been established to detect RNA in fixed tissue. However, these methods typically do not allow for the study of large numbers of genes (DNA or RNA) from small amounts of material. Thus, traditionally fixed tissue has been rarely used other than for IHC detection of proteins.


SUMMARY

The present invention provides a set of genes, the expression levels of which are associated with a particular clinical outcome in cancer. For example, the clinical outcome could be a good or bad prognosis assuming the patient receives the standard of care. The clinical outcome may be defined by clinical endpoints, such as disease or recurrence free survival, metastasis free survival, overall survival, etc.


The present invention accommodates the use of archived paraffin-embedded biopsy material for assay of all markers in the set, and therefore is compatible with the most widely available type of biopsy material. It is also compatible with several different methods of tumor tissue harvest, for example, via core biopsy or fine needle aspiration. The tissue sample may comprise cancer cells.


In one aspect, the present invention concerns a method of predicting a clinical outcome of a cancer patient, comprising (a) obtaining an expression level of an expression product (e.g., an RNA transcript) of at least one prognostic gene listed in Tables 1-12 from a tissue sample obtained from a tumor of the patient; (b) normalizing the expression level of the expression product of the at least one prognostic gene, to obtain a normalized expression level; and (c) calculating a risk score based on the normalized expression value, wherein increased expression of prognostic genes in Tables 1, 3, 5, and 7 are positively correlated with good prognosis, and wherein increased expression of prognostic genes in Tables 2, 4, 6, and 8 are negatively associated with good prognosis. In some embodiments, the tumor is estrogen receptor-positive. In other embodiments, the tumor is estrogen receptor negative.


In one aspect, the present disclosure provides a method of predicting a clinical outcome of a cancer patient, comprising (a) obtaining an expression level of an expression product (e.g., an RNA transcript) of at least one prognostic gene from a tissue sample obtained from a tumor of the patient, where the at least one prognostic gene is selected from GSTM2, IL6ST, GSTM3, C8orf4, TNFRSF11B, NAT1, RUNX1, CSF1, ACTR2, LMNB1, TFRC, LAPTM4B, ENO1, CDC20, and IDH2; (b) normalizing the expression level of the expression product of the at least one prognostic gene, to obtain a normalized expression level; and (c) calculating a risk score based on the normalized expression value, wherein increased expression of a prognostic gene selected from GSTM2, IL6ST, GSTM3, C8orf4, TNFRSF11B, NAT1, RUNX1, and CSF1 is positively correlated with good prognosis, and wherein increased expression of a prognostic gene selected from ACTR2, LMNB1, TFRC, LAPTM4B, ENO1, CDC20, and IDH2 is negatively associated with good prognosis. In some embodiments, the tumor is estrogen receptor-positive. In other embodiments, the tumor is estrogen receptor negative.


In various embodiments, the normalized expression level of at least 2, or at least 5, or at least 10, or at least 15, or at least 20, or a least 25 prognostic genes (as determined by assaying a level of an expression product of the gene) is determined. In alternative embodiments, the normalized expression levels of at least one of the genes that co-expresses with prognostic genes in Tables 16-18 is obtained.


In another embodiment, the risk score is determined using normalized expression levels of at least one a stromal or transferrin receptor group gene, or a gene that co-expresses with a stromal or transferrin receptor group gene.


In another embodiment, the cancer is breast cancer. In another embodiment, the patient is a human patient.


In yet another embodiment, the cancer is ER-positive breast cancer.


In yet another embodiment, the cancer is ER-negative breast cancer.


In a further embodiment, the expression product comprises RNA. For example, the RNA could be exonic RNA, intronic RNA, or short RNA (e.g., microRNA, siRNA, promoter-associated small RNA, shRNA, etc.). In various embodiments, the RNA is fragmented RNA.


In a different aspect, the invention concerns an array comprising polynucleotides hybridizing to an RNA transcription of at least one of the prognostic genes listed in Tables 1-12.


In a still further aspect, the invention concerns a method of preparing a personalized genomics profile for a patient, comprising (a) obtaining an expression level of an expression product (e.g., an RNA transcript) of at least one prognostic gene listed in Tables 1-12 from a tissue sample obtained from a tumor of the patient; (b) normalizing the expression level of the expression product of the at least one prognostic gene to obtain a normalized expression level; and (c) calculating a risk score based on the normalized expression value, wherein increased expression of prognostic genes in Tables 1, 3, 5, and 7 are positively correlated with good prognosis, and wherein increased expression of prognostic genes in Tables 2, 4, 6, and 8 are negatively associated with good prognosis. In some embodiments, the tumor is estrogen receptor-positive, and in other embodiments the tumor is estrogen receptor negative.


In various embodiments, a subject method can further include providing a report. The report may include prediction of the likelihood of risk that said patient will have a particular clinical outcome.


The invention further provides a computer-implemented method for classifying a cancer patient based on risk of cancer recurrence, comprising (a) classifying, on a computer, said patient as having a good prognosis or a poor prognosis based on an expression profile comprising measurements of expression levels of expression products of a plurality of prognostic genes in a tumor tissue sample taken from the patient, said plurality of genes comprising at least three different prognostic genes listed in any of Tables 1-12, wherein a good prognosis predicts no recurrence or metastasis within a predetermined period after initial diagnosis, and wherein a poor prognosis predicts recurrence or metastasis within said predetermined period after initial diagnosis; and (b) calculating a risk score based on said expression levels.







DETAILED DESCRIPTION
Definitions

Unless defined otherwise, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Singleton et al., Dictionary of Microbiology and Molecular Biology 2nd ed., J. Wiley & Sons (New York, N.Y. 1994), and March, Advanced Organic Chemistry Reactions, Mechanisms and Structure 4th ed., John Wiley & Sons (New York, N.Y. 1992), provide one skilled in the art with a general guide to many of the terms used in the present application.


One skilled in the art will recognize many methods and materials similar or equivalent to those described herein, which could be used in the practice of the present invention. Indeed, the present invention is in no way limited to the methods and materials described. For purposes of the present invention, the following terms are defined below.


“Prognostic factors” are those variables related to the natural history of cancer, which influence the recurrence rates and outcome of patients once they have developed cancer. Clinical parameters that have been associated with a worse prognosis include, for example, lymph node involvement, and high grade tumors. Prognostic factors are frequently used to categorize patients into subgroups with different baseline relapse risks.


The term “prognosis” is used herein to refer to the prediction of the likelihood of cancer-attributable death or progression, including recurrence, metastatic spread, and drug resistance, of a neoplastic disease, such as breast cancer. The term “good prognosis” means a desired or “positive” clinical outcome. For example, in the context of breast cancer, a good prognosis may be an expectation of no recurrences or metastasis within two, three, four, five or more years of the initial diagnosis of breast cancer. The terms “bad prognosis” or “poor prognosis” are used herein interchangeably herein to mean an undesired clinical outcome. For example, in the context of breast cancer, a bad prognosis may be an expectation of a recurrence or metastasis within two, three, four, five or more years of the initial diagnosis of breast cancer.


The term “prognostic gene” is used herein to refer to a gene, the expression of which is correlated, positively or negatively, with a good prognosis for a cancer patient treated with the standard of care. A gene may be both a prognostic and predictive gene, depending on the correlation of the gene expression level with the corresponding endpoint. For example, using a Cox proportional hazards model, if a gene is only prognostic, its hazard ratio (HR) does not change when measured in patients treated with the standard of care or in patients treated with a new intervention.


The term “predictive gene” is used herein to refer to a gene, the expression of which is correlated, positively or negatively, with response to a beneficial response to treatment. For example, treatment could include chemotherapy.


The terms “risk score” or “risk classification” are used interchangeably herein to describe a level of risk (or likelihood) that a patient will experience a particular clinical outcome. A patient may be classified into a risk group or classified at a level of risk based on the methods of the present disclosure, e.g. high, medium, or low risk. A “risk group” is a group of subjects or individuals with a similar level of risk for a particular clinical outcome.


A clinical outcome can be defined using different endpoints. The term “long-term” survival is used herein to refer to survival for a particular time period, e.g., for at least 3 years, more preferably for at least 5 years. The term “Recurrence-Free Survival” (RFS) is used herein to refer to survival for a time period (usually in years) from randomization to first cancer recurrence or death due to recurrence of cancer. The term “Overall Survival” (OS) is used herein to refer to the time (in years) from randomization to death from any cause. The term “Disease-Free Survival” (DES) is used herein to refer to survival for a time period (usually in years) from randomization to first cancer recurrence or death from any cause.


The calculation of the measures listed above in practice may vary from study to study depending on the definition of events to be either censored or not considered.


The term “biomarker” as used herein refers to a gene, the expression level of which, as measured using a gene product.


The term “microarray” refers to an ordered arrangement of hybridizable array elements, preferably polynucleotide probes, on a substrate.


As used herein, the term “normalized expression level” as applied to a gene refers to the normalized level of a gene product, e.g. the normalized value determined for the RNA expression level of a gene or for the polypeptide expression level of a gene.


The term “Ct” as used herein refers to threshold cycle, the cycle number in quantitative polymerase chain reaction (qPCR) at which the fluorescence generated within a reaction well exceeds the defined threshold, i.e. the point during the reaction at which a sufficient number of amplicons have accumulated to meet the defined threshold.


The term “gene product” or “expression product” are used herein to refer to the RNA transcription products (transcripts) of the gene, including mRNA, and the polypeptide translation products of such RNA transcripts. A gene product can be, for example, an unspliced RNA, an mRNA, a splice variant mRNA, a microRNA, a fragmented RNA, a polypeptide, a post-translationally modified polypeptide, a splice variant polypeptide, etc.


The term “RNA transcript” as used herein refers to the RNA transcription products of a gene, including, for example, mRNA, an unspliced RNA, a splice variant mRNA, a microRNA, and a fragmented RNA. “Fragmented. RNA” as used herein refers to RNA a mixture of intact RNA and RNA that has been degraded as a result of the sample processing (e.g., fixation, slicing tissue blocks, etc.).


Unless indicated otherwise, each gene name used herein corresponds to the Official Symbol assigned to the gene and provided by Entrez Gene (URL: www.ncbi.nlm.nih.gov/sites/entrez) as of the filing date of this application.


The terms “correlated” and “associated” are used interchangeably herein to refer to a strength of association between two measurements (or measured entities). The disclosure provides genes and gene subsets, the expression levels of which are associated with a particular outcome measure. For example, the increased expression level of a gene may be positively correlated (positively associated) with an increased likelihood of good clinical outcome for the patient, such as an increased likelihood of long-term survival without recurrence of the cancer and/or metastasis-free survival. Such a positive correlation may be demonstrated statistically in various ways, e.g. by a low hazard ratio (e.g. HR<1.0). In another example, the increased expression level of a gene may be negatively correlated (negatively associated) with an increased likelihood of good clinical outcome for the patient. In that case, for example, the patient may have a decreased likelihood of long-term survival without recurrence of the cancer and/or cancer metastasis, and the like. Such a negative correlation indicates that the patient likely has a poor prognosis, e.g., a high hazard ratio (e.g., HR>1.0). “Correlated” is also used herein to refer to a strength of association between the expression levels of two different genes, such that expression level of a first gene can be substituted with an expression level of a second gene in a given algorithm in view of their correlation of expression. Such “correlated expression” of two genes that are substitutable in an algorithm usually gene expression levels that are positively correlated with one another, e.g., if increased expression of a first gene is positively correlated with an outcome (e.g., increased likelihood of good clinical outcome), then the second gene that is co-expressed and exhibits correlated expression with the first gene is also positively correlated with the same outcome


The term “recurrence,” as used herein, refers to local or distant (metastasis) recurrence of cancer. For example, breast cancer can come back as a local recurrence (in the treated breast or near the tumor surgical site) or as a distant recurrence in the body. The most common sites of breast cancer recurrence include the lymph nodes, bones, liver, or lungs.


The term “polynucleotide,” when used in singular or plural, generally refers to any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. Thus, for instance, polynucleotides as defined herein include, without limitation, single- and double-stranded DNA, DNA including single- and double-stranded regions, single- and double-stranded RNA, and RNA including single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or include single- and double-stranded regions. In addition, the term “polynucleotide” as used herein refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The strands in such regions may be from the same molecule or from different molecules. The regions may include all of one or more of the molecules, but more typically involve only a region of some of the molecules. One of the molecules of a triple-helical region often is an oligonucleotide. The term “polynucleotide” specifically includes cDNAs. The term includes DNAs (including cDNAs) and RNAs that contain one or more modified bases. Thus, DNAs or RNAs with backbones modified for stability or for other reasons are “polynucleotides” as that term is intended herein. Moreover, DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritiated bases, are included within the term “polynucleotides” as defined herein. In general, the term “polynucleotide” embraces all chemically, enzymatically and/or metabolically modified forms of unmodified polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including simple and complex cells.


The term “oligonucleotide” refers to a relatively short polynucleotide, including, without limitation, single-stranded deoxyribonucleotides, single- or double-stranded ribonucleotides, RNA:DNA hybrids and double-stranded DNAs. Oligonucleotides, such as single-stranded DNA probe oligonucleotides, are often synthesized by chemical methods, for example using automated oligonucleotide synthesizers that are commercially available. However, oligonucleotides can be made by a variety of other methods, including in vitro recombinant DNA-mediated techniques and by expression of DNAs in cells and organisms.


The phrase “amplification” refers to a process by which multiple copies of a gene or RNA transcript are formed in a particular sample or cell line. The duplicated region (a stretch of amplified polynucleotide) is often referred to as “amplicon.” Usually, the amount of the messenger RNA (mRNA) produced, i.e., the level of gene expression, also increases in the proportion of the number of copies made of the particular gene expressed.


The term “estrogen receptor (ER)” designates the estrogen receptor status of a cancer patient. A tumor is ER-positive if there is a significant number of estrogen receptors present in the cancer cells, while ER-negative indicates that the cells do not have a significant number of receptors present. The definition of “significant” varies amongst testing sites and methods (e.g., immunohistochemistry, PCR). The ER status of a cancer patient can be evaluated by various known means. For example, the ER level of breast cancer is determined by measuring an expression level of a gene encoding the estrogen receptor in a breast tumor sample obtained from a patient.


The term “tumor,” as used herein, refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues.


The terms “cancer” and “cancerous” refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth. Examples of cancer include, but are not limited to, breast cancer, ovarian cancer, colon cancer, lung cancer, prostate cancer, hepatocellular cancer, gastric cancer, pancreatic cancer, cervical cancer, liver cancer, bladder cancer, cancer of the urinary tract, thyroid cancer, renal cancer, carcinoma, melanoma, and brain cancer.


The gene subset identified herein as the “stromal group” includes genes that are synthesized predominantly by stromal cells and are involved in stromal response and genes that co-express with stromal group genes. “Stromal cells” are defined herein as connective tissue cells that make up the support structure of biological tissues. Stromal cells include fibroblasts, immune cells, pericytes, endothelial cells, and inflammatory cells. “Stromal response” refers to a desmoplastic response of the host tissues at the site of a primary tumor or invasion. See, e.g., E. Rubin, J. Farber, Pathology, 985-986 (2nd Ed. 1994). The stromal group includes, for example, CDH11, TAGLN, ITGA4, INHBA, COLIA1, COLIA2, FN1, CXCL14, TNFRSF1, CXCL12, C10ORF116, RUNX1, GSTM2, TGFB3, CAV1, DLC1, TNFRSF10, F3, and DICER1, and co-expressed genes identified in Tables 16-18.


The gene subset identified herein as the “metabolic group” includes genes that are associated with cellular metabolism, including genes associated with carrying proteins for transferring iron, the cellular iron homeostasis pathway, and homeostatic biochemical metabolic pathways, and genes that co-express with metabolic group genes. The metabolic group includes, for example, TFRC, ENO1, IDH2, ARF1, CLDN4, PRDX1, and GBP1, and co-expressed genes identified in Tables 16-18.


The gene subset identified herein as the “immune group” includes genes that are involved in cellular immunoregulatory functions, such as T and B cell trafficking, lymphocyte-associated or lymphocyte markers, and interferon regulation genes, and genes that co-express with immune group genes. The immune group includes, for example, CCL19 and IRF1, and co-expressed genes identified in Tables 16-18.


The gene subset identified herein as the “proliferation group” includes genes that are associated with cellular development and division, cell cycle and mitotic regulation, angiogenesis, cell replication, nuclear transport/stability, wnt signaling, apoptosis, and genes that co-express with proliferation group genes. The proliferation group includes, for example, PGF, SPC25, AURKA, BIRC5, BUB1, CCNB1, CENPA, KPNA, LMNB1, MCM2, MELK, NDC80, TPX2M, and WISP1, and co-expressed genes identified in Tables 16-18.


The term “co-expressed”, as used herein, refers to a statistical correlation between the expression level of one gene and the expression level of another gene. Pairwise co-expression may be calculated by various methods known in the art, e.g., by calculating Pearson correlation coefficients or Spearman correlation coefficients. Co-expressed gene cliques may also be identified using a graph theory.


As used herein, the terms “gene clique” and “clique” refer to a subgraph of a graph in which every vertex is connected by an edge to every other vertex of the subgraph.


As used herein, a “maximal clique” is a clique in which no other vertex can be added and still be a clique.


The “pathology” of cancer includes all phenomena that compromise the well-being of the patient. This includes, without limitation, abnormal or uncontrollable cell growth, metastasis, interference with the normal functioning of neighboring cells, release of cytokines or other secretory products at abnormal levels, suppression or aggravation of inflammatory or immunological response, neoplasia, premalignancy, malignancy, invasion of surrounding or distant tissues or organs, such as lymph nodes, etc.


A “computer-based system” refers to a system of hardware, software, and data storage medium used to analyze information. The minimum hardware of a patient computer-based system comprises a central processing unit (CPU), and hardware for data input, data output (e.g., display), and data storage. An ordinarily skilled artisan can readily appreciate that any currently available computer-based systems and/or components thereof are suitable for use in connection with the methods of the present disclosure. The data storage medium may comprise any manufacture comprising a recording of the present information as described above, or a memory access device that can access such a manufacture.


To “record” data, programming or other information on a computer readable medium refers to a process for storing information, using any such methods as known in the art. Any convenient data storage structure may be chosen, based on the means used to access the stored information. A variety of data processor programs and formats can be used for storage, e.g. word processing text file, database format, etc.


A “processor” or “computing means” references any hardware and/or software combination that will perform the functions required of it. For example, a suitable processor may be a programmable digital microprocessor such as available in the form of an electronic controller, mainframe, server or personal computer (desktop or portable). Where the processor is programmable, suitable programming can be communicated from a remote location to the processor, or previously saved in a computer program product (such as a portable or fixed computer readable storage medium, whether magnetic, optical or solid state device based). For example, a magnetic medium or optical disk may carry the programming, and can be read by a suitable reader communicating with each processor at its corresponding station.


As used herein, “graph theory” refers to a field of study in Computer Science and Mathematics in which situations are represented by a diagram containing a set of points and lines connecting some of those points. The diagram is referred to as a “graph”, and the points and lines referred to as “vertices” and “edges” of the graph. In terms of gene co-expression analysis, a gene (or its equivalent identifier, e.g. an array probe) may be represented as a node or vertex in the graph. If the measures of similarity (e.g., correlation coefficient, mutual information, and alternating conditional expectation) between two genes are higher than a significant threshold, the two genes are said to be co-expressed and an edge will be drawn in the graph. When co-expressed edges for all possible gene pairs for a given study have been drawn, all maximal cliques are computed. The resulting maximal clique is defined as a gene clique. A gene clique is a computed co-expressed gene group that meets predefined criteria.


“Stringency” of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures. Hybridization generally depends on the ability of denatured DNA to reanneal when complementary strands are present in an environment below their inciting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature which can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel et al., Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995).


“Stringent conditions” or “high stringency conditions”, as defined herein, typically: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50° C.; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50 mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 4-2° C.; or (3) employ 50% formamide, 5×SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1.% sodium pyrophosphate, 5× Denhardt's solution, sonicated salmon sperm DNA (50 μg/ml), 0.1% SDS, and 10% dextran sulfate at 42° C., with washes at 42° C. in 0.2×SSC (sodium chloride/sodium citrate) and 50% formaniide at 55° C., followed by a high-stringency wash consisting of 0.1×SSC containing EDTA at 55° C.


“Moderately stringent conditions” may be identified as described by Sambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength and % SDS) less stringent that those described above. An example of moderately stringent conditions is overnight incubation at 37° C. in a solution comprising: 20% formamide, 5×SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5× Denhardt's solution, 10% dextran sulfate, and 20 mg/ml denatured sheared salmon sperm DNA, followed by washing the filters in 1×SSC at about 37-50° C. The skilled artisan will recognize how to adjust the temperature, ionic strength, etc. as necessary to accommodate factors such as probe length and the like.


In the context of the present invention, reference to “at least one,” “at least two,” “at least five,” etc. of the genes listed in any particular gene set means any one or any and all combinations of the genes listed.


The term “node negative” cancer, such as “node negative” breast cancer, is used herein to refer to cancer that has not spread to the lymph nodes.


The terms “splicing” and “RNA splicing” are used interchangeably and refer to RNA processing that removes introns and joins exons to produce mature mRNA with continuous coding sequence that moves into the cytoplasm of a eukaryotic cell.


In theory, the term “exon” refers to any segment of an interrupted gene that is represented in the mature RNA product (B. Lewin. Genes IV Cell Press, Cambridge Mass. 1990). In theory the term “intron” refers to any segment of DNA that is transcribed but removed from within the transcript by splicing together the exons on either side of it. Operationally, exon sequences occur in the mRNA sequence of a gene as defined by Ref. SEQ ID numbers. Operationally, intron sequences are the intervening sequences within the genomic DNA of a gene, bracketed by exon sequences and having GT and AG splice consensus sequences at their 5′ and 3′ boundaries.


Gene Expression Assay

The present disclosure provides methods that employ, unless otherwise indicated, conventional techniques of molecular biology (including recombinant techniques), microbiology, cell biology, and biochemistry, which are within the skill of the art. Such techniques are explained fully in the literature, such as, “Molecular Cloning: A Laboratory Manual”, 2nd edition (Sambrook et al., 1989); “Oligonucleotide Synthesis” (M. J. Gait, ed., 1984); “Animal Cell Culture” (R. I. Freshney, ed., 1987); “Methods in Enzymology” (Academic Press, Inc.); “Handbook of Experimental Immunology”, 4th edition (D. M. Weir & C. C. Blackwell, eds., Blackwell Science Inc., 1987); “Gene Transfer Vectors for Mammalian Cells” (J. M. Miller & M. P. Calos, eds., 1987); “Current Protocols in Molecular Biology” (F. M. Ausubel et al., eds., 1987); and “PCR: The Polymerase Chain Reaction”, (Mullis et al., eds., 1994).


1. Gene Expression Profiling


Methods of gene expression profiling include methods based on hybridization analysis of polynucleotides, methods based on sequencing of polynucleotides, and proteomics-based methods. The most commonly used methods known in the art for the quantification of mRNA expression in a sample include northern blotting and in situ hybridization (Parker & Barnes, Methods in Molecular Biology 106:247-283 (1999)); RNAse protection assays (Hod, Biotechniques 13:852-854 (1992)); and PCR-based methods, such as reverse transcription polymerase chain reaction (RT-PCR) (Weis et al., Trends in Genetics 8:263-264 (1992)). Alternatively, antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes.


2. PCR-Based Gene Expression Profiling Methods


a. Reverse Transcriptase PCR (RT-PCR)


Of the techniques listed above, the most sensitive and most flexible quantitative method is RT-PCR, which can be used to compare mRNA levels in different sample populations, in normal and tumor tissues, with or without drug treatment, to characterize patterns of gene expression, to discriminate between closely related mRNAs, and to analyze RNA structure.


The first step is the isolation of mRNA from a target sample. The starting material is typically total RNA isolated from human tumors or tumor cell lines, and corresponding normal tissues or cell lines, respectively. Thus RNA can be isolated from a variety of primary tumors, including breast, lung, colon, prostate, brain, liver, kidney, pancreas, spleen, thymus, testis, ovary, uterus, etc., tumor, or tumor cell lines, with pooled DNA from healthy donors. If the source of mRNA is a primary tumor, mRNA can be extracted, for example, from frozen or archived paraffin-embedded and fixed (e.g. formalin-fixed) tissue samples.


General methods for mRNA extraction are well known in the art and are disclosed in standard textbooks of molecular biology, including Ausubel et al., Current Protocols of Molecular Biology, John Wiley and Sons (1997). Methods for RNA extraction from paraffin embedded tissues are disclosed, for example, in Rupp and Locker, Lab Invest. 56:A67 (1987), and De Andrés et al., BioTechniques 18:42044 (1995). In particular, RNA isolation can be performed using purification kit, buffer set and protease from commercial manufacturers, such as Qiagen, according to the manufacturer's instructions. For example, total RNA from cells in culture can be isolated using Qiagen RNeasy mini-columns. Other commercially available RNA isolation kits include MasterPure™ Complete DNA and RNA Purification Kit (EPICENTRE®, Madison, Wis.), and Paraffin Block RNA isolation Kit (Ambion, Inc.). Total RNA from tissue samples can be isolated using RNA Stat-60 (Tel-Test). RNA prepared from tumor can be isolated, for example, by cesium chloride density gradient centrifugation.


In some cases, it may be appropriate to amplify RNA prior to initiating expression profiling. It is often the case that only very limited amounts of valuable clinical specimens are available for molecular analysis. This may be due to the fact that the tissues have already be used for other laboratory analyses or may be due to the fact that the original specimen is very small as in the case of needle biopsy or very small primary tumors. When tissue is limiting in quantity it is generally also the case that only small amounts of total RNA can be recovered from the specimen and as a result only a limited number of genomic markers can be analyzed in the specimen. RNA amplification compensates for this limitation by faithfully reproducing the original RNA sample as a much larger amount of RNA of the same relative composition. Using this amplified copy of the original RNA specimen, unlimited genomic analysis can be done to discovery biomarkers associated with the clinical characteristics of the original biological sample. This effectively immortalizes clinical study specimens for the purposes of genomic analysis and biomarker discovery.


As RNA cannot serve as a template for PCR, the first step in gene expression profiling by real-time RT-PCR (RT-PCR) is the reverse transcription of the RNA template into cDNA, followed by its exponential amplification in a PCR reaction. The two most commonly used reverse transcriptases are avian myeloblastosis virus reverse transcriptase (AMV-RT) and Moloney murine leukemia virus reverse transcriptase (MMLV-RT). The reverse transcription step is typically primed using specific primers, random hexamers, or oligo-dT primers, depending on the circumstances and the goal of expression profiling. For example, extracted RNA can be reverse-transcribed using a GeneAmp RNA PCR kit (Perkin Elmer, Calif., USA), following the manufacturer's instructions. The derived cDNA can then be used as a template in the subsequent PCR reaction. For further details see, e.g. Held et at., Genome Research 6:986-994 (1996).


Although the PCR step can use a variety of thermostable DNA-dependent DNA polymerases, it typically employs the Taq DNA polymerase, which has a 5′-3′ nuclease activity but lacks a 3′-5′ proofreading endonuclease activity. Thus, TaqMan® PCR typically utilizes the 5′-nuclease activity of Taq or Tth polymerase to hydrolyze a hybridization probe bound to its target amplicon, but any enzyme with equivalent 5′ nuclease activity can be used. Two oligonucleotide primers are used to generate an amplicon typical of a PCR reaction. A third oligonucleotide, or probe, is designed to detect nucleotide sequence located between the two PCR primers. The probe is non-extendible by Taq DNA polymerase enzyme, and is labeled with a reporter fluorescent dye and a quencher fluorescent dye. Any laser-induced emission from the reporter dye is quenched by the quenching dye when the two dyes are located close together as they are on the probe. During the amplification reaction, the Taq DNA polymerase enzyme cleaves the probe in a template-dependent manner. The resultant probe fragments disassociate in solution, and signal from the released reporter dye is free from the quenching effect of the second fluorophore. One molecule of reporter dye is liberated for each new molecule synthesized, and detection of the unquenched reporter dye provides the basis for quantitative interpretation of the data.


TaqMan® RT-PCR can be performed using commercially available equipment, such as, for example, ABI PRISM 7900® Sequence Detection System™ (Perkin-Elmer-Applied Biosystems, Foster City, Calif., USA), or LightCycler® 480 Real-Time PCR System (Roche Diagnostics, GmbH, Penzberg, Germany). In a preferred embodiment, the 5′ nuclease procedure is run on a real-time quantitative PCR device such as the ABI PRISM 7900® Sequence Detection System™. The system consists of a thermocycler, laser, charge-coupled device (CCD), camera and computer. The system amplifies samples in a 384-well format on a thermocycler. During amplification, laser-induced fluorescent signal is collected in real-time through fiber optics cables for all 384 wells, and detected at the CCD. The system includes software for running the instrument and for analyzing the data.


5′-Nuclease assay data are initially expressed as Ct, or the threshold cycle. As discussed above, fluorescence values are recorded during every cycle and represent the amount of product amplified to that point in the amplification reaction. The point when the fluorescent signal is first recorded as statistically significant is the threshold cycle (Ct).


To minimize errors and the effect of sample-to-sample variation, RT-PCR is usually performed using an internal standard. The ideal internal standard is expressed at a constant level among different tissues, and is unaffected by the experimental treatment. RNAs most frequently used to normalize patterns of gene expression are mRNAs for the housekeeping genes glyceraldehyde-3-phosphate-dthydrogenase (GAPDH) and β-actin.


The steps of a representative protocol for profiling gene expression using fixed, paraffin-embedded tissues as the RNA source, including mRNA isolation, purification, primer extension and amplification are given in various published journal articles. M. Cronin, Am J Pathol 164(1):35-42 (2004). Briefly, a representative process starts with cutting about 10 μm thick sections of paraffin-embedded tumor tissue samples. The RNA is then extracted, and protein and DNA are removed. After analysis of the RNA concentration, RNA repair and/or amplification steps may be included, if necessary, and RNA is reverse transcribed using gene specific primers followed by RT-PCR.


b. Design of Intron-Based PCR Primers and Probes


PCR primers and probes can be designed based upon exon or intron sequences present in the mRNA transcript of the gene of interest. Prior to carrying out primer/probe design, it is necessary to map the target gene sequence to the human genome assembly in order to identify intron-exon boundaries and overall gene structure. This can be performed using publicly available software, such as Primer3 (Whitehead Inst.) and Primer Express® (Applied Biosystems).


Where necessary or desired, repetitive sequences of the target sequence can be masked to mitigate non-specific signals. Exemplary tools to accomplish this include the Repeat Masker program available on-line through the Baylor College of Medicine, which screens DNA sequences against a library of repetitive elements and returns a query sequence in which the repetitive elements are masked. The masked intron and exon sequences can then be used to design primer and probe sequences for the desired target sites using any commercially or otherwise publicly available primer/probe design packages, such as Primer Express (Applied Biosystems); MGB assay-by-design (Applied Biosystems); Primer3 (Steve Rozen and Helen J. Skaletsky (2000) Primer3 on the WWW for general users and for biologist programmers. In: Rrawetz S, Misener S (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press, Totowa, N.J., pp 365-386).


Other factors that can influence PCR primer design include primer length, melting temperature (Tm), and G/C content, specificity, complementary primer sequences, and 3′-end sequence. In general, optimal PCR primers are generally 17-30 bases in length, and contain about 20-80%, such as, for example, about 50-60% G+C bases, and exhibit Tm's between 50 and 80° C., e.g. about 50 to 70° C.


For further guidelines for PCR primer and probe design see, e.g. Dieffenbach, C W, et al, “General Concepts for PCR Primer Design” in: PCR Primer, A Laboratory Manual, Cold Spring Harbor Laboratory Press., New York, 1995, pp. 133455; Innis and Gelfand, “Optimization of PCRs” in: PCR Protocols, A Guide to Methods and Applications, CRC Press, London, 1994, pp. 5-11; and Plasterer, T.N. Primerselect: Primer and probe design. Methods MoI. Biol. 70:520-527 (1997), the entire disclosures of which are hereby expressly incorporated by reference.


Table A provides further information concerning the primer, probe, and amplicon sequences associated with the Examples disclosed herein.


c. MassARRAY System


In the MassARRAY-based gene expression profiling method, developed by Sequenom, Inc. (San Diego, Calif.) following the isolation of RNA and reverse transcription, the obtained cDNA is spiked with a synthetic DNA molecule (competitor), which matches the targeted cDNA region in all positions, except a single base, and serves as an internal standard. The cDNA/competitor mixture is PCR amplified and is subjected to a post-PCR shrimp alkaline phosphatase (SAP) enzyme treatment, which results in the dephosphorylation of the remaining nucleotides. After inactivation of the alkaline phosphatase, the PCR products from the competitor and cDNA are subjected to primer extension, which generates distinct mass signals for the competitor- and cDNA-derives PCR products. After purification, these products are dispensed on a chip array, which is pre-loaded with components needed for analysis with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. The cDNA present in the reaction is then quantified by analyzing the ratios of the peak areas in the mass spectrum generated. For further details see, e.g. Ding and Cantor, Proc. Natl. Acad. Sci. USA 100:3059-3064 (2003).


d. Other PCR-Based Methods


Further PCR-based techniques include, for example, differential display (Liang and Pardee, Science 257:967-971 (1992)); amplified fragment length polymorphism (iAFLP) (Kawamoto et al., Genome Res. 12:1305-1312 (1999)); BeadArray™ technology (Illumina, San Diego, Calif.; Oliphant et al., Discovery of Markers for Disease (Supplement to Biotechniques), June 2002; Ferguson et al., Analytical Chemistry 72:5618 (2000)); BeadsArray for Detection of Gene Expression (BADGE), using the commercially available Luminex100 LabMAP system and multiple color-coded microspheres (Luminex Corp., Austin, Tex.) in a rapid assay for gene expression (Yang et al., Genome Res. 11:1888-1898 (2001)); and high coverage expression profiling (HiCEP) analysis (Fukumura et al., Nucl. Acids. Res. 31(16) e94 (2003)).


3. Microarrays


Differential gene expression can also be identified, or confirmed using the microarray technique. Thus, the expression profile of breast cancer-associated genes can be measured in either fresh or paraffin-embedded tumor tissue, using microarray technology. In this method, polynucleotide sequences of interest (including cDNAs and oligonucleotides) are plated, or arrayed, on a microchip substrate. The arrayed sequences are then hybridized with specific DNA probes from cells or tissues of interest. Just as in the RT-PCR method, the source of mRNA typically is total RNA isolated from human tumors or tumor cell lines, and corresponding normal tissues or cell lines. Thus RNA can be isolated from a variety of primary tumors or tumor cell lines. If the source of mRNA is a primary tumor, mRNA can be extracted, for example, from frozen or archived paraffin-embedded and fixed (e.g. formalin-fixed) tissue samples, which are routinely prepared and preserved in everyday clinical practice.


In a specific embodiment of the microarray technique, PCR amplified inserts of cDNA clones are applied to a substrate in a dense array. Preferably at least 10,000 nucleotide sequences are applied to the substrate. The microarrayed genes, immobilized on the microchip at 10,000 elements each, are suitable for hybridization under stringent conditions. Fluorescently labeled cDNA probes may be generated through incorporation of fluorescent nucleotides by reverse transcription of RNA extracted from tissues of interest. Labeled cDNA probes applied to the chip hybridize with specificity to each spot of DNA on the array. After stringent washing to remove non-specifically bound probes, the chip is scanned by confocal laser microscopy or by another detection method, such as a CCD camera. Quantitation of hybridization of each arrayed element allows for assessment of corresponding mRNA abundance. With dual color fluorescence, separately labeled cDNA probes generated from two sources of RNA are hybridized pairwise to the array. The relative abundance of the transcripts from the two sources corresponding to each specified gene is thus determined simultaneously. The miniaturized scale of the hybridization affords a convenient and rapid evaluation of the expression pattern for large numbers of genes. Such methods have been shown to have the sensitivity required to detect rare transcripts, which are expressed at a few copies per cell, and to reproducibly detect at least approximately two-fold differences in the expression levels (Schena et al., Proc. Natl. Acad. Sci. USA 93(2):106-149 (1996)). Microarray analysis can be performed by commercially available equipment, following manufacturer's protocols, such as by using the Affymetrix GenChip technology, or Agilent's microarray technology.


The development of microarray methods for large-scale analysis of gene expression makes it possible to search systematically for molecular markers of cancer classification and outcome prediction in a variety of tumor types.


4. Gene Expression Analysis by Nucleic Acid Sequencing


Nucleic acid sequencing technologies are suitable methods for analysis of gene expression. The principle underlying these methods is that the number of times a cDNA sequence is detected in a sample is directly related to the relative expression of the mRNA corresponding to that sequence. These methods are sometimes referred to by the term Digital Gene Expression (DGE) to reflect the discrete numeric property of the resulting data. Early methods applying this principle were Serial Analysis of Gene Expression (SAGE) and Massively Parallel Signature Sequencing (MPSS). See, e.g., S. Brenner, et al., Nature Biotechnology 18(6):630-634 (2000). More recently, the advent of “next-generation” sequencing technologies has made DGE simpler, higher throughput, and more affordable. As a result, more laboratories are able to utilize DGE to screen the expression of more genes in more individual patient samples than previously possible. See, e.g., J. Marioni, Genome Research 18(9):1509-1517 (2008); R. Morin, Genome Research 18(4):610-621 (2008); A. Mortazavi, Nature Methods 5(7):621-628 (2008); N. Cloonan, Nature Methods 5(7):613-619 (2008).


5. Isolating RNA From Body Fluids


Methods of isolating RNA for expression analysis from blood, plasma and serum (See for example, Tsui N B et al. (2002) 48, 1647-53 and references cited therein) and from urine (See for example, Boom R et al. (990) J Clin Microbiol. 28, 495-503 and reference cited therein) have been described.


6. Immunohistochemistry


Immunohistochemistry methods are also suitable for detecting the expression levels of the prognostic markers of the present invention. Thus, antibodies or antisera, preferably polyclonal antisera, and most preferably monoclonal antibodies specific for each marker are used to detect expression. The antibodies can be detected by direct labeling of the antibodies themselves, for example, with radioactive labels, fluorescent labels, hapten labels such as, biotin, or an enzyme such as horse radish peroxidase or alkaline phosphatase. Alternatively, unlabeled primary antibody is used in conjunction with a labeled secondary antibody, comprising antisera, polyclonal antisera or a monoclonal antibody specific for the primary antibody. Immunohistochemistry protocols and kits are well known in the art and are commercially available.


7. Proteomics


The term “proteome” is defined as the totality of the proteins present in a sample (e.g. tissue, organism, or cell culture) at a certain point of time. Proteomics includes, among other things, study of the global changes of protein expression in a sample (also referred to as “expression proteomics”). Proteomics typically includes the following steps: (1) separation of individual proteins in a sample by 2-D gel electrophoresis (2-D PAGE); (2) identification of the individual proteins recovered from the gel, e.g. my mass spectrometry or N-terminal sequencing, and (3) analysis of the data using bioinformatics. Proteomics methods are valuable supplements to other methods of gene expression profiling, and can be used, alone or in combination with other methods, to detect the products of the prognostic markers of the present invention.


8. General Description of the mRNA Isolation, Purification, and Amplification


The steps of a representative protocol for profiling gene expression using fixed, paraffin-embedded tissues as the RNA source, including mRNA isolation, purification, primer extension and amplification are provided in various published journal articles (for example: T. E. Godfrey et al., J. Molec. Diagnostics 2: 84-91 [2000]; K. Specht et al., Am. J. Pathol. 158: 419-29 [2001]). Briefly, a representative process starts with cutting about 10 μm thick sections of paraffin-embedded tumor tissue samples. The RNA is then extracted, and protein and DNA are removed. After analysis of the RNA concentration, RNA repair and/or amplification steps may be included, if necessary, and RNA is reverse transcribed using gene specific primers followed by RT-PCR. Finally, the data are analyzed to identify the best treatment option(s) available to the patient on the basis of the characteristic gene expression pattern identified in the tumor sample examined, dependent on the predicted likelihood of cancer recurrence.


9. Normalization


The expression data used in the methods disclosed herein can be normalized. Normalization refers to a process to correct for (normalize away), for example, differences in the amount of RNA assayed and variability in the quality of the RNA used, to remove unwanted sources of systematic variation in Ct measurements, and the like. With respect to RT-PCR experiments involving archived fixed paraffin embedded tissue samples, sources of systematic variation are known to include the degree of RNA degradation relative to the age of the patient sample and the type of fixative used to preserve the sample. Other sources of systematic variation are attributable to laboratory processing conditions.


Assays can provide for normalization by incorporating the expression of certain normalizing genes, which genes do not significantly differ in expression levels under the relevant conditions. Exemplary normalization genes include housekeeping genes such as PGK1 and UBB. (See, e.g., E. Eisenberg, et al., Trends in Genetics 19(7):362-365 (2003).) Normalization can be based on the mean or median signal (CT) of all of the assayed genes or a large subset thereof (global normalization approach). In general, the normalizing genes, also referred to as reference genes should be genes that are known not to exhibit significantly different expression in colorectal cancer as compared to non-cancerous colorectal tissue, and are not significantly affected by various sample and process conditions, thus provide for normalizing away extraneous effects.


Unless noted otherwise, normalized expression levels for each mRNA/tested tumor/patient will be expressed as a percentage of the expression level measured in the reference set. A reference set of a sufficiently high number (e.g. 40) of tumors yields a distribution of normalized levels of each mRNA species. The level measured in a particular tumor sample to be analyzed falls at some percentile within this range, which can be determined by methods well known in the art.


In exemplary embodiments, one or more of the following genes are used as references by which the expression data is normalized: AAMP, ARF1, EEF1A1, ESD, GPS1, H3F3A, HNRPC, RPL13A, RPL41, RPS23, RPS27, SDHA, TCEA1, UBB, YWHAZ, B-actin, GUS, GAPDH, RPLPO, and TFRC. For example, the calibrated weighted average Ct measurements for each of the prognostic genes may be normalized relative to the mean of at least three reference genes, at least four reference genes, or at least five reference genes.


Those skilled in the art will recognize that normalization may be achieved in numerous ways, and the techniques described above are intended only to be exemplary, not exhaustive.


Reporting Results

The methods of the present disclosure are suited for the preparation of reports summarizing the expected or predicted clinical outcome resulting from the methods of the present disclosure. A “report,” as described herein, is an electronic or tangible document that includes report elements that provide information of interest relating to a likelihood assessment or a risk assessment and its results. A subject report includes at least a likelihood assessment or a risk assessment, e.g., an indication as to the risk of recurrence of breast cancer, including local recurrence and metastasis of breast cancer. A subject report can include an assessment or estimate of one or more of disease-free survival, recurrence-free survival, metastasis-free survival, and overall survival. A subject report can be completely or partially electronically generated, e.g., presented on an electronic display (e.g., computer monitor). A report can further include one or more of: 1) information regarding the testing facility; 2) service provider information; 3) patient data; 4) sample data; 5) an interpretive report, which can include various information including: a) indication; b) test data, where test data can include a normalized level of one or more genes of interest, and 6) other features.


The present disclosure thus provides for methods of creating reports and the reports resulting therefrom. The report may include a summary of the expression levels of the RNA transcripts, or the expression products of such RNA transcripts, for certain genes in the cells obtained from the patient's tumor. The report can include information relating to prognostic covariates of the patient. The report may include an estimate that the patient has an increased risk of recurrence. That estimate may be in the form of a score or patient stratifier scheme (e.g., low, intermediate, or high risk of recurrence). The report may include information relevant to assist with decisions about the appropriate surgery (e.g., partial or total mastectomy) or treatment for the patient.


Thus, in some embodiments, the methods of the present disclosure further include generating a report that includes information regarding the patient's likely clinical outcome, e.g. risk of recurrence. For example, the methods disclosed herein can further include a step of generating or outputting a report providing the results of a subject risk assessment, which report can be provided in the form of an electronic medium (e.g., an electronic display on a computer monitor), or in the form of a tangible medium (e.g., a report printed on paper or other tangible medium).


A report that includes information regarding the patient's likely prognosis (e.g., the likelihood that a patient having breast cancer will have a good prognosis or positive clinical outcome in response to surgery and/or treatment) is provided to a user. An assessment as to the likelihood is referred to below as a “risk report” or, simply, “risk score.” A person or entity that prepares a report (“report generator”) may also perform the likelihood assessment. The report generator may also perform one or more of sample gathering, sample processing, and data generation, e.g., the report generator may also perform one or more of: a) sample gathering; b) sample processing; c) measuring a level of a risk gene; d) measuring a level of a reference gene; and e) determining a normalized level of a risk gene. Alternatively, an entity other than the report generator can perform one or more sample gathering, sample processing, and data generation.


For clarity, it should be noted that the term “user,” which is used interchangeably with “client,” is meant to refer to a person or entity to whom a report is transmitted, and may be the same person or entity who does one or more of the following: a) collects a sample; b) processes a sample; c) provides a sample or a processed sample; and d) generates data (e.g., level of a risk gene; level of a reference gene product(s); normalized level of a risk gene (“prognosis gene”) for use in the likelihood assessment. In some cases, the person(s) or entity(ies) who provides sample collection and/or sample processing and/or data generation, and the person who receives the results and/or report may be different persons, but are both referred to as “users” or “clients” herein to avoid confusion. In certain embodiments, e.g., where the methods are completely executed on a single computer, the user or client provides for data input and review of data output. A “user” can be a health professional (e.g., a clinician, a laboratory technician, a physician (e.g., an oncologist, surgeon, pathologist), etc.).


In embodiments where the user only executes a portion of the method, the individual who, after computerized data processing according to the methods of the present disclosure, reviews data output (e.g., results prior to release to provide a complete report, a complete, or reviews an “incomplete” report and provides for manual intervention and completion of an interpretive report) is referred to herein as a “reviewer.” The reviewer may be located at a location remote to the user (e.g., at a service provided separate from a healthcare facility where a user may be located).


Where government regulations or other restrictions apply (e.g., requirements by health, malpractice, or liability insurance), all results, whether generated wholly or partially electronically, are subjected to a quality control routine prior to release to the user.


Clinical Utility

The gene expression assay and information provided by the practice of the methods disclosed herein facilitates physicians in making more well-informed treatment decisions, and to customize the treatment of cancer to the needs of individual patients, thereby maximizing the benefit of treatment and minimizing the exposure of patients to unnecessary treatments which may provide little or no significant benefits and often carry serious risks due to toxic side-effects.


Single or multi-analyte gene expression tests can be used measure the expression level of one or more genes involved in each of several relevant physiologic processes or component cellular characteristics. The expression level(s) may be used to calculate such a quantitative score, and such score may be arranged in subgroups (e.g., tertiles) wherein all patients in a given range are classified as belonging to a risk category (e.g., low, intermediate, or high). The grouping of genes may be performed at least in part based on knowledge of the contribution of the genes according to physiologic functions or component cellular characteristics, such as in the groups discussed above.


The utility of a gene marker in predicting cancer may not be unique to that marker. An alternative marker having an expression pattern that is parallel to that of a selected marker gene may be substituted for, or used in addition to, a test marker. Due to the co-expression of such genes, substitution of expression level values should have little impact on the overall prognostic utility of the test. The closely similar expression patterns of two genes may result from involvement of both genes in the same process and/or being under common regulatory control in colon tumor cells. The present disclosure thus contemplates the use of such co-expressed genes or gene sets as substitutes for, or in addition to, prognostic methods of the present disclosure.


The molecular assay and associated information provided by the methods disclosed herein for predicting the clinical outcome in cancer, e.g. breast cancer, have utility in many areas, including in the development and appropriate use of drugs to treat cancer, to stratify cancer patients for inclusion in (or exclusion from) clinical studies, to assist patients and physicians in making treatment decisions, provide economic benefits by targeting treatment based on personalized genomic profile, and the like. For example, the recurrence score may be used on samples collected from patients in a clinical trial and the results of the test used in conjunction with patient outcomes in order to determine whether subgroups of patients are more or less likely to demonstrate an absolute benefit from a new drug than the whole group or other subgroups. Further, such methods can be used to identify from clinical data subsets of patients who are expected to benefit from adjuvant therapy. Additionally, a patient is more likely to be included in a clinical trial if the results of the test indicate a higher likelihood that the patient will have a poor clinical outcome if treated with surgery alone and a patient is less likely to be included in a clinical trial if the results of the test indicate a lower likelihood that the patient will have a poor clinical outcome if treated with surgery alone.


Statistical Analysis of Gene Expression Levels

One skilled in the art will recognize that there are many statistical methods that may be used to determine whether there is a significant relationship between an outcome of interest (e.g., likelihood of survival, likelihood of response to chemotherapy) and expression levels of a marker gene as described here. This relationship can be presented as a continuous recurrence score (RS), or patients may stratified into risk groups (e.g., low, intermediate, high). For example, a Cox proportional hazards regression model may fit to a particular clinical endpoint (e.g., RFS, DFS, OS). One assumption of the Cox proportional hazards regression model is the proportional hazards assumption, i.e. the assumption that effect parameters multiply the underlying hazard.


Coexpression Analysis

The present disclosure provides genes that co-express with particular prognostic and/or predictive gene that has been identified as having a significant correlation to recurrence and/or treatment benefit. To perform particular biological processes, genes often work together in a concerted way, i.e. they are co-expressed. Co-expressed gene groups identified for a disease process like cancer can serve as biomarkers for disease progression and response to treatment. Such co-expressed genes can be assayed in lieu of, or in addition to, assaying of the prognostic and/or predictive gene with which they are co-expressed.


One skilled in the art will recognize that many co-expression analysis methods now known or later developed will fall within the scope and spirit of the present invention. These methods may incorporate, for example, correlation coefficients, co-expression network analysis, clique analysis, etc., and may be based on expression data from RT-PCR, microarrays, sequencing, and other similar technologies. For example, gene expression clusters can be identified using pair-wise analysis of correlation based on Pearson or Spearman correlation coefficients. (See, e.g., Pearson K. and Lee A., Biometrika 2, 357 (1902); C. Spearman, Amer. J. Psychol 15:72-101 (1904); J. Myers, A. Well, Research Design and Statistical Analysis, p. 508 (2nd Ed., 2003).) In general, a correlation coefficient of equal to or greater than 0.3 is considered to be statistically significant in a sample size of at least 20. (See, e.g., G. Norman, D. Streiner, Biostatistics: The Bare Essentials, 137-138 (3rd Ed. 2007).) In one embodiment disclosed herein, co-expressed genes were identified using a Spearman correlation value of at least 0.7.


Computer Program

The values from the assays described above, such as expression data, recurrence score, treatment score and/or benefit score, can be calculated and stored manually. Alternatively, the above-described steps can be completely or partially performed by a computer program product. The present invention thus provides a computer program product including a computer readable storage medium having a computer program stored on it. The program can, when read by a computer, execute relevant calculations based on values obtained from analysis of one or more biological sample from an individual (e.g., gene expression levels, normalization, thresholding, and conversion of values from assays to a score and/or graphical depiction of likelihood of recurrence/response to chemotherapy, gene co-expression or clique analysis, and the like). The computer program product has stored therein a computer program for performing the calculation.


The present disclosure provides systems for executing the program described above, which system generally includes: a) a central computing environment; b) an input device, operatively connected to the computing environment, to receive patient data, wherein the patient data can include, for example, expression level or other value obtained from an assay using a biological sample from the patient, or microarray data, as described in detail above; c) an output device, connected to the computing environment, to provide information to a user (e.g., medical personnel); and d) an algorithm executed by the central computing environment (e.g., a processor), where the algorithm is executed based on the data received by the input device, and wherein the algorithm calculates a, risk, risk score, or treatment group classification, gene co-expression analysis, thresholding, or other functions described herein. The methods provided by the present invention may also be automated in whole or in part.


Manual and Computer-Assisted Methods and Products

The methods and systems described herein can be implemented in numerous ways. In one embodiment of particular interest, the methods involve use of a communications infrastructure, for example the Internet. Several embodiments are discussed below. It is also to be understood that the present disclosure may be implemented in various forms of hardware, software, firmware, processors, or a combination thereof. The methods and systems described herein can be implemented as a combination of hardware and software. The software can be implemented as an application program tangibly embodied on a program storage device, or different portions of the software implemented in the user's computing environment (e.g., as an applet) and on the reviewer's computing environment, where the reviewer may be located at a remote site associated (e.g., at a service provider's facility).


For example, during or after data input by the user, portions of the data processing can be performed in the user-side computing environment. For example, the user-side computing environment can be programmed to provide for defined test codes to denote a likelihood “risk score,” where the score is transmitted as processed or partially processed responses to the reviewer's computing environment in the form of test code for subsequent execution of one or more algorithms to provide a results and/or generate a report in the reviewer's computing environment. The risk score can be a numerical score (representative of a numerical value, e.g. likelihood of recurrence based on validation study population) or a non-numerical score representative of a numerical value or range of numerical values (e.g., low, intermediate, or high).


The application program for executing the algorithms described herein may be uploaded to, and executed by, a machine comprising any suitable architecture. In general, the machine involves a computer platform having hardware such as one or more central processing units (CPU), a random access memory (RAM), and input/output (I/O) interface(s). The computer platform also includes an operating system and microinstruction code. The various processes and functions described herein may either be part of the microinstruction code or part of the application program (or a combination thereof) that is executed via the operating system. In addition, various other peripheral devices may be connected to the computer platform such as an additional data storage device and a printing device.


As a computer system, the system generally includes a processor unit. The processor unit operates to receive information, which can include test data (e.g., level of a risk gene, level of a reference gene product(s); normalized level of a gene; and may also include other data such as patient data. This information received can be stored at least temporarily in a database, and data analyzed to generate a report as described above.


Part or all of the input and output data can also be sent electronically; certain output data (e.g., reports) can be sent electronically or telephonically (e.g., by facsimile, e.g., using devices such as fax back). Exemplary output receiving devices can include a display element, a printer, a facsimile device and the like. Electronic forms of transmission and/or display can include email, interactive television, and the like. In an embodiment of particular interest, all or a portion of the input data and/or all or a portion of the output data (e.g., usually at least the final report) are maintained on a web server for access, preferably confidential access, with typical browsers. The data may be accessed or sent to health professionals as desired. The input and output data, including all or a portion of the final report, can be used to populate a patient's medical record which may exist in a confidential database at the healthcare facility.


A system for use in the methods described herein generally includes at least one computer processor (e.g., where the method is carried out in its entirety at a single site) or at least two networked computer processors (e.g., where data is to be input by a user (also referred to herein as a “client”) and transmitted to a remote site to a second computer processor for analysis, where the first and second computer processors are connected by a network, e.g., via an intranet or internet). The system can also include a user component(s) for input; and a reviewer component(s) for review of data, generated reports, and manual intervention. Additional components of the system can include a server component(s); and a database(s) for storing data (e.g., as in a database of report elements, e.g., interpretive report elements, or a relational database (RDB) which can include data input by the user and data output. The computer processors can be processors that are typically found in personal desktop computers (e.g., IBM, Dell, Macintosh), portable computers, mainframes, minicomputers, or other computing devices.


The networked client/server architecture can be selected as desired, and can be, for example, a classic two or three tier client server model. A relational database management system (RDMS), either as part of an application server component or as a separate component (RDB machine) provides the interface to the database.


In one example, the architecture is provided, as a database-centric client/server architecture, in which the client application generally requests services from the application server which makes requests to the database (or the database server) to populate the report with the various report elements as required, particularly the interpretive report elements, especially the interpretation text and alerts. The server(s) (e.g., either as part of the application server machine or a separate RDB/relational database machine) responds to the client's requests.


The input client components can be complete, stand-alone personal computers offering a full range of power and features to run applications. The client component usually operates under any desired operating system and includes a communication element (e.g., a modem or other hardware for connecting to a network), one or more input devices (e.g., a keyboard, mouse, keypad, or other device used to transfer information or commands), a storage element (e.g., a hard drive or other computer-readable, computer-writable storage medium), and a display element (e.g., a monitor, television, LCD, LED, or other display device that conveys information to the user). The user enters input commands into the computer processor through an input device. Generally, the user interface is a graphical user interface (GUI) written for web browser applications.


The server component(s) can be a personal computer, a minicomputer, or a mainframe and offers data management, information sharing between clients, network administration and security. The application and any databases used can be on the same or different servers.


Other computing arrangements for the client and server(s), including processing on a single machine such as a mainframe, a collection of machines, or other suitable configuration are contemplated. In general, the client and server machines work together to accomplish the processing of the present disclosure.


Where used, the database(s) is usually connected to the database server component and can be any device that will hold data. For example, the database can be a any magnetic or optical storing device for a computer (e.g., CDROM, internal hard drive, tape drive). The database can be located remote to the server component (with access via a network, modem, etc.) or locally to the server component.


Where used in the system and methods, the database can be a relational database that is organized and accessed according to relationships between data items. The relational database is generally composed of a plurality of tables (entities). The rows of a table represent records (collections of information about separate items) and the columns represent fields (particular attributes of a record). In its simplest conception, the relational database is a collection of data entries that “relate” to each other through at least one common field.


Additional workstations equipped with computers and printers may be used at point of service to enter data and, in some embodiments, generate appropriate reports, if desired. The computer(s) can have a shortcut (e.g., on the desktop) to launch the application to facilitate initiation of data entry, transmission, analysis, report receipt, etc. as desired.


Computer-Readable Storage Media

The present disclosure also contemplates a computer-readable storage medium (e.g. CD-ROM, memory key, flash memory card, diskette, etc.) having stored thereon a program which, when executed in a computing environment, provides for implementation of algorithms to carry out all or a portion of the results of a response likelihood assessment as described herein. Where the computer-readable medium contains a complete program for carrying out the methods described herein, the program includes program instructions for collecting, analyzing and generating output, and generally includes computer readable code devices for interacting with a user as described herein, processing that data in conjunction with analytical information, and generating unique printed or electronic media for that user.


Where the storage medium provides a program that provides for implementation of a portion of the methods described herein (e.g., the user-side aspect of the methods (e.g., data input, report receipt capabilities, etc.)), the program provides for transmission of data input by the user (e.g., via the internet, via an intranet, etc.) to a computing environment at a remote site. Processing or completion of processing of the data is carried out at the remote site to generate a report. After review of the report, and completion of any needed manual intervention, to provide a complete report, the complete report is then transmitted back to the user as an electronic document or printed document (e.g., fax or mailed paper report). The storage medium containing a program according to the present disclosure can be packaged with instructions (e.g., for program installation, use, etc.) recorded on a suitable substrate or a web address where such instructions may be obtained. The computer-readable storage medium can also be provided in combination with one or more reagents for carrying out response likelihood assessment (e.g., primers, probes, arrays, or other such kit components).


All aspects of the present invention may also he practiced such that a limited number of additional genes that are co-expressed with the disclosed genes, for example as evidenced by statistically meaningful Pearson and/or Spearman correlation coefficients, are included in a prognostic or predictive test in addition to and/or in place of disclosed genes.


Having described the invention, the same will be more readily understood through reference to the following Examples, which are provided by way of illustration, and are not intended to limit the invention in any way.


EXAMPLE 1

The study included breast cancer tumor samples obtained from 136 patients diagnosed with breast cancer (“Providence study”). Biostatistical modeling studies of prototypical data sets demonstrated that amplified RNA is a useful substrate for biomarker identification studies. This was verified in this study by including known breast cancer biomarkers along with candidate prognostic genesin the tissues samples. The known biomarkers were shown to be associated with clinical outcome in amplified RNA based on the criteria outlined in this protocol.


Study Design


Refer to the original Providence Phase II study protocol for biopsy specimen information. The study looked at the statistical association between clinical outcome and 384 candidate biomarkers tested in amplified samples derived from 25 ng of mRNA that was extracted from fixed, paraffin-embedded tissue samples obtained from 136 of the original Providence Phase II study samples. The expression level of the candidate genes was normalized using reference genes. Several reference genes were analyzed in this study: AAMP, ARF1, EEF1A1, ESD, GPS1, H3F3A, HNRPC, RPL13A, RPL41, RPS23, RPS27, SDHA, TCEA1, UBB, YWHAZ, B-actin, GUS, GAPDH, RPLPO, and TFRC.


The 136 samples were split into 3 automated RT plates each with 2×48 samples and 40 samples and 3 RT positive and negative controls. Quantitative PCR assays were performed in 384 wells without replicate using the QuantiTect Probe PCR Master Mix® (Qiagen). Plates were analyzed on the Light Cycler® 480 and, after data quality control, all samples from the RT plate 3 were repeated and new RT-PCR data was generated. The data was normalized by subtracting the median crossing point (CP) (point at which detection rises above background signal) for five reference genes from the CP value for each individual candidate gene. This normalization is performed on each sample resulting in final data that has been adjusted for differences in overall sample CP. This data set was used for the final data analysis.


Data Analysis


For each gene, a standard z test was run. (S. Darby, J. Reissland, Journal of the Royal Statistical Society 144(3):298-331 (1981)). This returns a z score (measure of distance in standard deviations of a sample from the mean), p value, and residuals along with other statistics and parameters from the model. If the z score is negative, expression is positively correlated with a good, prognosis; if positive, expression is negatively correlated to a good, prognosis. Using the p values, a q value was created using a library q value. The poorly correlated and weakly expressed genes were excluded from the calculation of the distribution used for the q values. For each gene, Cox Proportional Hazard Model test was run checking survival time matched with the event vector against gene expression. This returned a hazard ratio (HR) estimating the effect of expression of each gene (individually) on the risk of a cancer-related event. The resulting data is provided in Tables 1-6. A HR<1 indicates that expression of that gene is positively associated with a good prognosis, while a HR>1 indicates that expression of that gene is negatively associated with a good prognosis.


EXAMPLE 2

Study Design


Amplified samples were derived from 25 ng of mRNA that was extracted from fixed, paraffin-embedded tissue samples obtained from 78 evaluable cases from a Phase II breast cancer study conducted at Rush University Medical Center. Three of the samples failed to provide sufficient amplified RNA at 25 ng, so amplification was repeated a second time with 50 ng of RNA. The study also analyzed several reference genes for use in normalization: AAMP, ARF1, EEF1A1, ESD, GPS1, H3F3A, HNRPC, RPL13A, RPL41, RPS23, RPS27, SDHA, TCEA1, UBB, YWHAZ, Beta-actin, RPLPO, TFRC, GUS, and GAPDH.


Assays were performed in 384 wells without replicate using the QuantiTect Probe PCR Master Mix. Plates were analyzed on the Light Cycler 480 instruments. This data set was used for the final data analysis. The data was normalized by subtracting the median CP for five reference genes from the CP value for each individual candidate gene. This normalization was performed on each sample resulting in final data that was adjusted for differences in overall sample CP.


Data Analysis


There were 34 samples with average CP values above 35. However, none of the samples were excluded from analysis because they were deemed to have sufficient valuable information to remain in the study. Principal Component Analysis (PCA) was used to determine whether there was a plate effect causing variation across the different RT plates. The first principal component correlated well with the median expression values, indicating that expression level accounted for most of the variation between samples. Also, there were no unexpected variations between plates.


Data for Other Variables


Group—The patients were divided into two groups (cancer/non-cancer). There was little difference between the two in overall gene expression as the difference between median CP value in each group was minimal (0.7).


Sample Age—The samples varied widely in their overall gene expression but there was a trend toward lower CP values as they decreased in age.


Instrument—The overall sample gene expression from instrument to instrument was consistent. One instrument showed a slightly higher median CP compared to the other three, but it was well within the acceptable variation.


RT Plate—The overall sample gene expression between RT plates was also very consistent. The median CP for each of the 3 RT plates (2 automated RT plates and 1 manual plate containing repeated samples) were all within 1 CP of each other.


Univariate Analyses for Genes Significantly Different Between Study Groups


The genes were analyzed using the z-test and Cox Proportional Hazard Model, as described in Example 1. The resulting data can be seen in Tables 7-12.


EXAMPLE 3

The statistical correlations between clinical outcome and expression levels of the genes identified in Examples 1 and 2 were validated in breast cancer gene expression datasets maintained by the Swiss Institute of Bioinformatics (SIB). Further information concerning the SIB database, study datasets, and processing methods, is providing in P. Wirapati, et al., Breast Cancer Research 10(4):R65 (2008). Univariate Cox proportional hazards analyses were performed to confirm the relationship between clinical outcome (DFS, MFS, OS) of breast cancer patients and expression levels of the genes identified as significant in the amplified RNA studies described above. The meta-analysis included both fixed-effect and random-effect models, which are further described in L. Hedges and J. Vevea, Psychological Methods 3 (4): 486-504 (1998) and K. Sidik and J. Jonkman, Statistics in Medicine 26:1964-1981 (2006) (the contents of which are incorporated herein by reference). The results of the validation for all genes identified as having a stastistically significant association with breast cancer clinical outcome are described in Table 13. In those tables, “Est” designates an estimated coefficient of a covariate (gene expression); “SE” is standard error; “t” is the t-score for this estimate (i.e., Est/SE); and “fe” is the fixed estimate of effect from the meta analysis. Several of gene families with significant statistical association with clinical outcome (including metabolic, proliferation, immune, and stromal group genes) in breast cancer were confirmed using the SIB dataset. For example, Table 14 contains analysis of genes included in the metabolic group and Table 15 the stromal group.


EXAMPLE 4

A co-expression analysis was conducted using microarray data from six (6) breast cancer data sets. The “processed” expression values are taken from the GEO website, however, further processing was necessary. If the expression values are RMA, they are median normalized on the sample level. If the expression values are MAS5.0, they are: (1) changed to 10 if they are <10; (2) log base e transformed; and (3) median normalized on the sample level.


Generating Correlation Pairs: A rank matrix was generated by arranging the expression values for each sample in decreasing order. Then a correlation matrix was created by calculating the Spearman correlation values for every pair of probe IDs. Pairs of probes which had a Spearman value ≥0.7 were considered co-expressed. Redundant or overlapping correlation pairs in multiple datasets were identified. For each correlation matrix generated from an array dataset, pairs of significant probes that occur in >1 dataset were identified. This served to filter “non-significant” pairs from the analysis as well as provide extra evidence for “significant” pairs with their presence in multiple datasets. Depending on the number of datasets included in each tissue specific analysis, only pairs which occur in a minimum # or % of datasets were included.


Co-expression cliques were generated using the Bron-Kerbosch algorithm for maximal clique finding in an undirected graph. The algorithm generates three sets of nodes: compsub, candidates, and not. Compsub contains the set of nodes to be extended or shrunk by one depending on its traversal direction on the tree search. Candidates consists of all the nodes eligible to be added to compsub. Not contains the set of nodes that have been added to compsub and are now excluded from extension. The algorithm consists of five steps: selection of a candidate; adding the candidate node to compsub; creating new sets candidates and not from the old sets by removing all points not connected to the candidate node; recursively calling the extension operator on the new candidates and not sets; and upon return, remove the candidate node from compsub and place in the old not set.


There was a depth-first search with pruning, and the selection of candidate nodes had an effect on the run time of the algorithm. By selecting nodes in decreasing order of frequency in the pairs, the run time was optimized. Also, recursive algorithms generally cannot be implemented in a multi-threaded manner, but was multi-threaded the extension operator of the first recursive level. Since the data between the threads were independent because they were at the top-level of the recursive tree, they were run in parallel.


Clique Mapping and Normalization: Since the members of the co-expression pairs and cliques are at the probe level, one must map the probe IDs to genes (or Refseqs) before they can be analyzed. The Affymetrix gene map information was used to map every probe ID to a gene name. Probes may map to multiple genes, and genes may be represented by multiple probes. The data for each clique is validated, by manually calculating the correlation values for each pair from a single clique.


The results of this co-expression analysis are set forth in Tables 16-18.




















TABLE A







Offi-

SEQ

SEQ

SEQ
Target

SEQ



Sequence
cial
F Primer
ID
R Primer
ID
Probe
ID
Seq

ID


Gene
ID
Symbol
Seq
NO:
Seq
NO:
Seq
NO:
Length
Amplicon Sequence
NO:







A-Ca-
NM_
CTNNA1
CGTTCCGAT
  1
AGGTCCCTG
385
ATGCCTACA
 769
 78
CGTTCCGATCCTCTATACTGCAT
1153


tenin
001903.1

CCTCTATAC

TTGGCCTTA

GCACCCTG


CCCAGGCATGCCTACAGCACCCT






TGCAT

TAGG

ATGTCGCA


GATGTCGCAGCCTATAAGGCCAA













CAGGGACCT






AAMP
NM_
AAMP
GTGTGGCA
  2
CTCCATCCA
386
CGCTTCAAA
 770
 66
GTGTGGCAGGTGGACACTAAGGA
1154



001087.3

GGTGGACA

CTCCAGGTC

GGACCAGA


GGAGGTCTGGTCCTTTGAAGCGG






CTAA 

TC

CCTCCTC


AGACCTGGAGTGGATGGAG






ABCB1
NM_
ABCB1
AAACACCA
  3
CAAGCCTGG
387
CTCGCCAAT
 771
 77
AAACACCACTGGAGCATTGACTA
1155



000927.2

CTGGAGCAT

AACCTATAG

GATGCTGCT


CCAGGCTCGCCAATGATGCTGCT






TGA

CC

CAAGTT


CAAGTTAAAGGGGCTATAGGTTC













CAGGCTTG






ABCC
NM_
ABCC10
ACCAGTGCC
  4
ATAGCGCTG
388
CCATGAGCT
 772
 68
ACCAGTGCCACAATGCAGTGGCT
1156


10
033450.2

ACAATGCA

ACCACTGCC

GTAGCCGA


GGACATTCGGCTACAGCTCATGG






G



ATGTCCA


GGGCGGCAGTGGTCAGCGCTAT






ABCC5
NM_
ABCC5
TGCAGACTG
  5
GGCCAGCAC
389
CTGCACACG
 773
 76
TGCAGACTGTACCATGCTGACCA
1157



005688.1

TACCATGCT

CATAATCCT

GTTCTAGG


TTGCCCATCGCCTGCACACGGTT






GA

AT

CTCCG


CTAGGCTCCGATAGGATTATGGT













GCTGGCC






ABR
NM_
ABR
ACACGTCTG
  6
ACTAGGGTG
390
TCTGCTCTA
 774
 67
ACACGTCTGTCACCATGGAAGCT
1158



001092.3

TCACCATGG

CTCCGAGTG

CAAGCCCAT


CTGCTCTACAAGCCCATTGACCG






AA

AC

TGACCG


GGTCACTCGGAGCACCCTAGT






ACTR2
NM_
ACTR2
ATCCGCATT
  7
ATCCGCTAG
391
CCCGCAGAA
 775
 66
ATCCGCATTGAAGACCCACCCCG
1159



005722.2

GAAGACCC

AACTGCACC

AGCACATG


CAGAAAGCACATGGTATTCCTGG






A

AC

GTATTCC


GTGGTGCAGTTCTAGCGGAT






ACVR
NM_
ACVR
GACTGTCTC
  8
TGGGCTTAG
392
CTCTGTCAC
 776
 74
GACTGTCTCGTTTCCCTGGTGAC
1160


2B
001106.2
2B
GTTTCCCTG

ATGCTTGAC

CAATGTGG


CTCTGTCACCAATGTGGACCTGC






GT

TC

ACCTGCC


CCCCTAAAGAGTCAAGCATCTAA













GCCCA






AD024
NM_
SPC25
TCAAAAGT
  9
TGCAAATGC
393
TGTAGGTAT
 777
 74
TCAAAAGTACGGACACCTCCTGT
1161



020675.3

ACGGACAC

TTTGATGGA

CTCTTAGTC


CAGATGGCGGGACTAAGAGATAC






CTCCT

AT

CCGCCATCT


CTACAAGGATTCCATCAAAGCAT










GA


TTGCA






ADAM
NM_
ADAM
GAGCATGC
 10
CTGGTCACG
394
CTGACACTC
 778
 66
GAGCATGCGTCTACTGCCTCACT
1162


12
021641.2
12
GTCTACTGC

GTCTCCATG

ATCTGAGC


GACACTCATCTGAGCCCTCCCAT






CT

T

CCTCCCA


GACATGGAGACCGTGACCAG






ADAM
NM_
ADAM
GAAGTGCC
 11
CGGGCACTC
395
TGCTACTTG
 779
 73
GAAGTGCCAGGAGGCGATTAATG
1163


17
003183.3
17
AGGAGGCG

ACTGCTATT

CAAAGGCG


CTACTTGCAAAGGCGTGTCCTAC






ATTA

ACC

TGTCCTACT


TGCACAGGTAATAGCAGTGAGTG










GC


GCCG






ADAM
NM_
ADAM
CAAGGCCC
 12
ACCCAGAAT
396
CTGCGCTGG
 780
 62
CAAGGCCCCATCTGAATCAGCTG
1164


23
003812.1
23
CATCTGAAT

CCAACAGTG

ATGGACAC


CGCTGGATGGACACCGCCTTGCA






CA

CAA

CGC


CTGTTGGATTCTGGGT






ADAMT
NM_
ADAMT
GCGAGTTCA
 13
CACAGATGG
397
CACACAGGG
 781
 72
GCGAGTTCAAAGTGTTCGAGGCC
1165


S8
007037.2
S8
AAGTGTTCG

CCAGTGTTT

TGCCATCA


AAGGTGATTGATGGCACCCTGTG






AG

CT

ATCACCT


TGGGCCAGAAACACTGGCCATCT













GTG






ADM
NM_
ADM
TAAGCCAC
 14
TGGGCGCCT
398
CGAGTGGAA
 782
 75
TAAGCCACAAGCACACGGGGCTC
1166



001124.1

AAGCACAC

AAATCCTAA

GTGCTCCC


CAGCCCCCCCGAGTGGAAGTGCT






GG



CACTTTC


CCCCACTTTCTTTAGGATTTAGG













CGCCCA






AES
NM_
AES
ACGAGATG
 15
GGGCACAAA
399
CGATCTCAG
 783
 78
ACGAGATGTCCTACGGCTTGAAC
1167



001130.4

TCCTACGGC

TCCCGTTCA

CCTGTTTGT


ATCGAGATGCACAAACAGGCTGA






TTGA

G

GCATCTCGA


GATCGTCAAAAGGCTGAACGGGA










T


TTTGTGCCC






AGR2
NM_
AGR2
AGCCAACA
 16
TCTGATCTC
400
CAACACGTC
 784
 70
AGCCAACATGTGACTAATTGGAA
1168



006408.2

TGTGACTAA

CATCTGCCT

ACCACCCT


GAAGAGCAAAGGGTGGTGACGTG






TTGGA

CA

TTGCTCT


TTGATGAGGCAGATGGAGATCAG













A






AK
NM_
LYPD6
CTGCATGTG
 17
TGTGGACCT
401
TGACCACAC
 785
 78
CTGCATGTGATTGAATAAGAAAC
1169


055699
194317

ATTGAATAA

GATCCCTGT

CAAAGCCT


AAGAAAGTGACCACACCAAAGCC






GAAACAAG

ACAC

CCCTGG


TCCCTGGCTGGTGTACAGGGATC






A






AGGTCCACA






AKR7A3
NM_
AKR7
GTGGAAAC
 18
CCAGAGGGT
402
ACCTCAGTC
 786
 67
GTGGAAACGGAGCTCTTCCCCTG
1170



012067.2
A3
GGAGCTCTT

TGAAGGCAT

CAAAGTGC


CCTCAGGCACTTTGGACTGAGGT






CC

AG

CTGAGGC


TCTATGCCTTCAACCCTCTGG






AKT3
NM_
AKT3
TTGTCTCTG
 19
CCAGCATTA
403
TCACGGTAC
 787
 75
TTGTCTCTGCCTTGGACTATCTA
1171



005465.1

CCTTGGACT

GATTCTCCA

ACAATCTTT


CATTCCGGAAAGATTGTGTACCG






ATCTACA

ACTTGA

CCGGA


TGATCTCAAGTTGGAGAATCTAA













TGCTGG






ALCAM
NM_
ALCAM
GAGGAATA
 20
GTGGCGGAG
404
CCAGTTCCT
 788
 66
GAGGAATATGGAATCCAAGGGGG
1172



001627.1

TGGAATCCA

ATCAAGAGG

GCCGTCTGC


CCAGTTCCTGCCGTCTGCTCTTC






AGGG



TCTTCT


TGCCTCTTGATCTCCGCCAC






ALDH4
NM_
ALDH4
GGACAGGG
 21
AACCGGAAG
405
CTGCAGCGT
 789
 68
GGACAGGGTAAGACCGTGATCCA
1173



003748.2
A1
TAAGACCGT

AAGTCGATG

CAATCTCC


AGCGGAGATTGACGCTGCAGCGG






GAT

AG

GCTTG


AACTCATCGACTTCTTCCGGTT






ANGPT2
NM_
ANGPT
CCGTGAAA
 22
TTGCAGTGG
406
AAGCTGACA
 790
 69
CCGTGAAAGCTGCTCTGTAAAAG
1174



001147.1
2
GCTGCTCTG

GAAGAACAG

CAGCCCTC


CTGACACAGCCCTCCCAAGTGAG






TAA

TC

CCAAGTG


CAGGACTGTTCTTCCCACTGCAA






ANXA2
NM_
ANXA2
CAAGACAC
 23
CGTGTCGGG
407
CCACCACAC
 791
 71
CAAGACACTAAGGGCGACTACCA
1175



004039.1

TAAGGGCG

CTTCAGTCA

AGGTACAG


GAAAGCGCTGCTGTACCTGTGTG






ACTACCA

T

CAGCGCT


GTGGAGATGACTGAAGCCCGACA













CG






AP-1 
NM_
JUN
GACTGCAA
 24
TAGCCATA
408
CTATGACGA
 792
 81
GACTGCAAAGATGGAAACGACCT
1176


(JUN
002228.2

AGATGGAA

GGTCCGCTC

TGCCCTCA


TCTATGACGATGCCCTCAACGCC



offi-


ACGA

TC

ACGCCTC


TCGTTCCTCCCGTCCGAGAGCGG



cial)









ACCTTATGGCTA






APEX-
NM_
APEX1
GATGAAGC
 25
AGGTCTCCA
409
CTTCGGGAA
 793
 68
GATGAAGCCTTTCGCAAGTTCCT
1177


1
001641.2

CTTTCGCAA

CACAGCACA

GCCAAGGC


GAAGGGCCTGGCTTCCCGAAAGC






GTT

AG

CCTT


CCCTTGTGCTGTGTGGAGACCT






APOD
NM_
APOD
GTTTATGCC
 26
GGAATACAC
410
ACTGGATCC
 794
 67
GTTTATGCCATCGGCACCGTACT
1178



001647.1

ATCGGCCC

GAGGGCATA

TGGCCACC


GGATCCTGGCCACCGACTATGAG








GTTC

GACTATG


AACTATGCCCTCGTGTATTCC






ARF1
NM_
ARF1
CAGTAGAG
 27
ACAAGCACA
411
CTTGTCCTT
 795
 64
CAGTAGAGATCCCCGCAACTCGC
1179



001658.2

ATCCCCGCA

TGGCTATGG

GGGTCACCC


TTGTCCTTGGGTCACCCTGCATT






ACT

AA

TGCA


CCATAGCCATGTGCTTGT






ARHI
NM_
DIRAS
ATCAGAGA
 28
ACTTGTGCA
412
ACACCAGCG
 796
 67
ATCAGAGATTACCGCGTCGTGGT
1180



004675.1
3
TTACCGCGT

GCAGCGTAC

GTGCCGAC


AGTCGGCACCGCTGGTGTGGGGA






CGT

TT

TACC


AAAGTACGCTGCTGCACAAGT






ARNT2
NM_
ARNT2
GACTGGGTC
 29
GGAGTGACG
413
CTAGAGCCA
 797
 68
GACTGGGTCAGTGATGGCAACAG
1181



014862.3

AGTGATGG

CATGGACAG

TCCTTGGC


GATGGCCAAGGATGGCTCTAGAA






CA

A

CATCCTG


CACTCTGTCCATGCGTCACTCC






ARSD
NM_
ARSD
TCCCTGAGA
 30
TGGTGCCAT
414
CAAGAATCT
 798
 79
TCCCTGAGAACGAAACCACTTTT
1182



001669.1

ACGAAACC

TTTCCTATG

TGCAGCAG


GCAAGAATCTTGCAGCAGCATGG






ACT

AG

CATGGCT


CTATGCAACCGGCCTCATAGGAA













AATGCACCA






AURKB
NM_
AURKB
AGCTGCAG
 31
GCATCTGCC
415
TGACGAGCA
 799
 67
AGCTGCAGAAGAGCTGCACATTT
1183



004217.1

AAGAGCTG

AACTCCTCC

GCGAACAG


GACGAGCACCGAACAGCCACGAT






CACAT

AT

CCACG


CATGGAGGAGTTGGCAGATGC






B-
NM_
ACTB
CAGCAGAT
 32
GCATTTGCG
416
AGGAGTATG
 800
 66
CAGCAGATGTGGATCAGCAACCA
1184


actin
001101.2

GTGGATCA

GTGGACGAT

ACGAGTCC


GGAGTATGACGAGTCCGGCCCCT






GCAAG



GGCCCC


CCATCGTCCACCGCAAATGC






B-Ca-
NM_
CTNNB
GGCTCTTGT
 33
TCAGATGAC
417
AGGCTCAGT
 801
 80
GGCTCTTGTGCGTACTGTCCTTC
1185


tenin
001904.1
1
GCGTACTGT

GAAGAGCAC

GATGTCTTC


GGGCTGGTGACAGGGAAGACATC






CCTT

AGATG

CCTGTCACC


ACTGAGCCTGCCATCTGTGCTCT










AG


TCGTCATCTGA






BAD
NM_
BAD
GGGTCAGG
 34
CTGCTCACT
418
TGGGCCCAG
 802
 73
GGGTCAGGTGCCTCGAGATCGGG
1186



032989.1

TGCCTCGAG

CGGCTCAAA

AGCATGTT


CTTGGGCCCAGAGCATGTTCCAG






AT

CTC

CCAGATC


ATCCCAGAGTTTGAGCCGAGTGA













GCAG






BAG1
NM_
BAG1
CGTTGTCAG
 35
GTTCAACCT
419
CCCAATTAA
 803
 81
CGTTGTCAGCACTTGGAATACAA
1187



004323.2

CACTTGGAA

CTTCCTGTG

CATGACCC


GATGGTTGCCGGGTCATGTTAAT






TACAA

GACTGT

GGCAACCAT


TGGGAAAAAGAACAGTCCACAGG













AAGAGGTTGAAC






BAG4
NM_
BAG4
CCTACGGCC
 36
GGGCGAAGA
420
AGATTGCCG
 804
 76
CCTACGGCCGCTACTACGGGCCT
1188



004874.2

GCTACTACG

GGATATAAG

GTACACC


GGGGGTGGAGATGTGCCGGTACA








GG

CACCTC


CCCACCTCCACCCTTATATCCTC













TTCGCCC






BASE
NM_

GACTCCTCA
 37
CGAAGGCAC
421
CCAGCCTGC
 805
 72
GACTCCTCAGGGCAGACTTTCTT
1189



173859.1

GGGCAGAC

TACTCAATG

AGACAACT


CCCAGCCTGCAGACAACTGGCCT






TTTCTT

GTTTC

GGCCTC


CCAGAAACCATTGAGTAGTGCCT













TCG






Bax
NM_
BAX
CCGCCGTGG
 38
TTGCCGTCA
422
TGCCACTCG
 806
 70
CCGCCGTGGACACAGACTCCCCC
1190



004324.1

ACACAGAC

GAAAACATG

GAAAAAGA


CGAGAGGTCTTTTTCCGAGTGGC






T

TCA

CCTCTCGG


AGCTGACATGTTTTCTGACGCCA













A






BBC3
NM_
BBC3
CCTGGAGG
 39
CTAATTGGG
423
CATCATGGG
 807
 83
CCTGGAGGGTCCTGTACAATCTC
1191



014417.1

GTCCTGTAC

CTCCATCTC

ACTCCTGC


ATCATGGGACTCCTGCCCTTACC






AAT

G

CCTTACC


CAGGGGCCACAGAGCCCCCGAGA













TGGAGCCCAATTAG






BCAR1
NM_
BCAR1
ACTGACAA
 40
TCCTGGGAG
424
AGTCACGAC
 808
 65
ACTGACAAGACCAGCAGCATCCA
1192



014567.1

GACCAGCA

GTGAACTTA

CCCTGCCC


GTCACGACCCCTGCCCTCACCCC






GCAT

GG

TCAC


CTAAGTTCACCTCCCAGGA






BCAR3
NM_
BCAR3
TGACTTCCT
 41
TGAGCGAGG
425
CAGCCCTGG
 809
 75
TGACTTCCTAGTTCGTGACTCTC
1193



003567.1

AGTTCGTGA

TTCTTCCAC

GAACTTTG


TGTCCAGCCCTGGGAACTTTGTC






CTCTCTGT

TGA

TCCTGACC


CTGACCTGTCAGTGGAAGAACCT













CGCTCA






BAS1
NM_
BCAS1
CCCCGAGA
 42
CTCGGGTTT
426
CTTTCCGTT
 810
 73
CCCCGAGACAACGGAGATAAGTG
1194



003657.1

CAACGGAG

GGCCTCTTT

GGCATCCGC


CTGTTGCGGATGCCAACGGAAAG






ATAA

C

AACAG


AATCTTGGGAAAGAGGCCAAACC













CGAG






Bcl2
NM_
BCL2
CAGAATGGA
 43
CCTATGATT
427
TTCCACGCC
 811
 73
CAGATGGACCTAGTACCACTGGA
1195



000633.1

CCTAGTACC

TAAGGGCAT

GAAGGACA


TTTCCACGCCGAAGGACAGCGAT






CACTGAGA

TTTTCC

GCGAT


GGGAAAAATGCCCTTAAATCATA













GG






BCL2
NM_
BCL2
AACCCACCC
 44
CTCAGCTGA
428
TCCGGGTGC
 812
 73
AACCCACCCCTGTCTTGGAGCTC
1196


L12
138639.1
L12
CTGTCTTGG

CGGGAAAGG

TCTCAAA


CGGGTAGCTCTCAAACTCGAGGC










CTCGAGG


TGCGCACCCCCTTTCCCGTCAGC













TGAG






BGN
NM_
BGN
GAGCTCCGC
 45
CTTGTTGTT
429
CAAGGGTCT
 813
 66
GAGCTCCGCAAGGATGACTTCAA
1197



001711.3

AAGGATGA

CACCAGGAC

CCAGCACC


GGGTCTCCAGCACCTCTACGCCC






C

GA

TCTACGC


TCGTCCTGGTGAACAACAAG






BIK
NM_
BIK
ATTCCTATG
 46
GGCAGGAGT
430
CCGGTTAAC
 814
 70
ATTCCTATGGCTCTGCAATTGTC
1198



001197.3

GCTCTGCA

GAATGGCTC

TGTGGCCT


ACCGGTTAACTGTGGCCTGTGCC






TTGTC

TTC

GTGCCC


CAGGAAGAGCCATTCACTCCTGC













C






BNIP3
NM_
BNIP3
CTGGACGG
 47
GGTATCTTG
431
CTCTCACTG
 815
 68
CTGGACGGAGTGCTCCAGAGCTC
1199



004052.2

AGTGCTCC

TGGTGTCTG

TGACAGCCC


TCACTGTGACAGCCCACCTCGCT






AAG

CG

ACCTCG


CGCAGACACCACAAGATACC






BSG
NM_
BSG
AATTTTATG
 48
GTGGCCAAG
432
CTGTGTTCG
 816
 66
AATTTTATGAGGGCCACGGGTCT
1200



001728.2

AGGGCCAC

AGGTCAGAG

ACTCAGCCT


GTGTTCGACTCAGCCTCAGGGAC






GG

TC

CAGGGA


GACTCTGACCTCTTGGCCAC






BTRC
NM_
BTRC
GTTGGGAC
 49
TGAAGCAGT
433
CAGTCGGCC
 817
 63
GTTGGGACACAGTTGGTCTGCAG
1201



033637.2

ACAGTTGGT

CAGTTGTGC

CAGGACGG


TCGGCCCAGGACGGTCTACTCAG






CTG

TG

TCTACT


CACAACTGACTGCTTCA






BUB1
NM_
BUB1
CCGAGGTTA
 50
AAGACATGG
434
GCTGGGAGC
 818
 68
CCGAGGTTAATCCAGCACGTATG
1202



004336.1

ATCCAGCAC

CGCTCTCAG

CTACACT


GGGCCAAGTGTAGGCTCCCAGCA






GTA

TTC

TGGCCC


GGAACTGAGAGCGCCATGTCTT






BUB1B
NM_
BUB1B
TCAACAGA
 51
CAACAGAGT
435
TACAGTCCC
 819
 82
TCAACAGAAGGCTGAACCACTAG
1203



001211.3

AGGCTGAA

TTGCCGAGA

AGCACCGA


AAAGACTACAGTCCCAGCACCGA






CCACTAGA

CACT

CAATTCC


CAATTCCAAGCTCGAGTGTCTCG













GCAAACTCTGTTG






BUB3
NM_
BUB3
CTGAAGCA
 52
GCTGATTCC
436
CCTCGCTTT
 820
 73
CTGAAGCAGATGGTTCATCATTT
1204



004725.1

GATGGTTCA

CAAGAGTCT

GTTTAACAG


CCTGGGCTGTTAAACAAAGCGAG






TCATT

AACC

CCCAGG


GTTAAGGTTAGACTCTTGGGAAT













CAGC






c-kit
NM_
KIT
GAGGCAAC
 53
GGCACTCGG
437
TTACAGCGA
 821
 75
GAGGCAACTGCTTATGGCTTAAT
1205



0002222.1

TGCTTATGG

CTTGAGCAT

CAGTCATG


TAAGTCAGATGCGGCCATGACTG






CTTAATTA



GCCGCAT


TCGCTGTAAAGATGCTCAAGCCG













AGTGCC






C10orf
NM_
C10orf
CAAGAGCA
 54
TGAGACCGT
438
CCGGAGTCC
 822
 67
CAAGAGCAGAGCCACCGTAGCCG
1206


116
006829.2
116
GAGCCACC

TGGATTGGA

TAGCCTCC


GAGTCCTAGCCTCCCAAATTCGG






GT

TT

CAAATTC


AAATCCAATCCAACGGTCTCA






C17orf
NM_
C17orf
GTGACTGCA
 55
AGGACCAAA
439
CCTGCTCTG
 823
 67
GTGACTGCACAGGACTCTGGGTT
1207


37
032339.3
37
CAGGACTCT

GGGAGACCA

TTCTGGGGT


CCTGCTCTGTTCTGGGGTCCAAA






GG

A

CCAAAC


CCTTGGTCTCCCTTTGGTCCT






C20orf
NM_
TPX2
TCAGCTGTG
 56
ACGGTCCTA
440
CAGGTCCCA
 824
 65
TCAGCTGTGAGCTGCGGATACCG
1208


1
012112

AGCTGCGG

GGTTTGAGG

TTGCCGGG


CCCGGCAATGGGACCTGCTCTTA






ATA

TTAAGA

CG


ACCTCAAACCTAGGACCGT






C6orf
NM_
NDUFA
GCGGTATCA
 57
GCGACAGAG
441
TGATTTCCC
 825
 70
GCGGTATCAGGAATTTCAACCTA
1209


66
014165.1
F4
GGAATTTCA

GGCTTCATC

GTTCCGCTC


GAGAACCGAGCGGAACGGGAAAT






ACCT

TT

GGTTCT


CAGCAAGATGAAGCCCTCTGTCG













C






Corf4
NM_
C8orf4
CTACGAGTC
 58
TGCCCACGG
442
CATGGCTAC
 826
 67
CTACGAGTCAGCCCATCCATCCA
1210



020130.2

AGCCCATCC

CTTTCTTAC

CACTTCGA


TGGCTACCACTTCGACACAGCCT






AT



CACAGCC


CTCGTAAGAAAGCCGTGGGCA






CACN
NM_
CACN
TGATGCTGC
 59
CACGATGTC
443
AAAGCACAC
 827
 67
TGATGCTGCAGAGAACTTCCAGA
1211


A2D2
006030.1
A2D2
AGAGAACT

TTCCTCCTT

CGCTGGCA


AAGCACACCGCTGGCAGGACAAC






TCC

GA

GGAC


ATCAAGGAGGAAGACATCGTG






CAT
NM_
CAT
ATCCATTCG
 60
TCCGGTTTA
444
TGGCCTCAC
 828
 78
ATCCATTCGATCTCACCAAGGTT
1212



001752.1

ATCTCACCA

AGACCAGTT

AAGGACTA


TGGCCTCACAAGGACTACCCTCT






AGGT

TACCA

CCCTCTCAT


CATCCCAGTTGGTAAACTGGTCT










CC


TAAACCGGA






CAV1
NM_
CAV1
GTGGCTCAA
 61
CAATGGCCT
445
ATTTCAGCT
 829
 74
GTGGCTCAACATTGTGTTCCCTT
1213



001753.3

CATTGTGTT

CCATTTTAC

GATCAGTG


TCAGCTGATCAGTGGGCCTCCAA






CC

AG

GGCCTCC


GGAGGGGCTGTAAAATGGAGGCC













ATTG






CBX5
NM_
CBX5
AGGGGATG
 62
AAAGGGGTG
446
CATAATACA
 830
 78
AGGGGATGGTCTCTGTCATTTCT
1214



012117.1

GTCTCTGTC

GGTAGAAAG

TTCACCTCC


CTTTGTACATAATCATTCACCTC






ATT

GA

CTGCCTCCT


CCTGCCTCCTCTCCTTTCTACCC










C


ACCCCTTT






CCL19
NM_
CCL19
GAACGCAT
 63
CCTCTGCAC
447
CGCTTCATC
 831
 78
GAACGCATCATCCAGAGACTGCA
1215



006274.2

CATCCAGA

GGTCATAGG

TTGGCTGAG


GAGGACCTCAGCCAAGATGAAGC






GACTG

TT

GTCCTC


GCCGCAGCAGTTAACCTATGACC













GTGCAGAGG






CCL3
NM_
CCL3
AGCAGACA
 64
CTGCATGAT
448
CTCTGCTGA
 832
 77
AGCAGACAGTGGTCAGTCCTTTC
1216



002983.1

GTGGTCAGT

TCTGAGCAG

CACTCGAG


TTGGCTCTGCTGACACTCGAGCC






CCTT

GT

CCCACAT


CACATTCCGTCACCTGCTCAGAA













TCATGCAG






CCL5
NM_
CCL5
AGGTTCTGA
 65
ATGCTGACT
449
ACAGAGCCC
 833
 65
AGGTTCTGAGCTCTGGCTTTGCC
1217



002985.2

GCTCTGGCT

TCCTTCCTG

TGGCAAAG


TTGGCTTTGCCAGGGCTCTGTGA






TT

GT

CCAAG


CCAGGAAGGAAGTCAGCAT






CCNB1
NM_
CCNB1
TTCAGGTTG
 66
CATCTTCTT
450
TGTCTCCAT
 834
 84
TTCAGGTTGTTGCAGGAGACCAT
1218



031966.1

TTGCAGGA

GGGCACACA

TATTGATCG


GTACATGACTGTCTCCATTATTG






GAC

AT

GTTCATGCA


ATCGGTTCATGCAGAATAATTGT













GTGCCCAAGAAGATG






CCND3
NM_
CCND3
CCTCTGTGC
 67
CACTGCAGC
451
TACCCGCCA 
 835
 76
CCTCTGTGCTACAGATTATACCT
1219



001760.2

TACAGATTA

CCCAATGCT

TCCATGATC


TTGCCATGTACCCGCCATCCATG






TACCTTTGC



GCCA


ATCGCCACGGGCAGCATTGGGGC













TGCAGTG






CCNE2
NM_
CCNE2
GGTCACCA
 68
TTCAATGAT
452
CCCAGATAA
 836
 85
GGTCACCAAGAAACATCAGTATG
1220


vari- 
057749

AGAAACAT

AATGCAAGG

TACAGGTGG


AAATTAGGAATTGTTGGCCACCT



ant
var1

CAGTATGA

ACTGATC

CCAACAAT


GTATTATCTGGGGGGATCAGTCC



1


A



TCCT


TTGCATTATCATTGAA






CCR5
NM_
CCR5
CAGACTGA
 69
CTGGTTTGT
453
TGGAATAGT
 837
 67
CAGACTGAATGGGGGTGGGGGGG
1221



000579.1

ATGGGGGT

CTGGAGAAG

ACCTAAG


GCGCCTTAGGTACTTATTCCAGA






GG

GC

GCGCCCCC


TGCCTTCTCCAGACAAACCAG






CCR7
NM_
CCR7
GGATGACA
 70
CCTGACATT
454
CTCCCATCC
 838
 64
GGATGACATGCACTCAGCTCTTG
1222



001838.2

TGCACTCAG

TCCCTTGTC

CAGTGGAG


GCTCCACTGGGATGGGAGGAGAG






CTC

CT

CCAA


GACAAGGGAAATGTCAGG






CD1A
NM_
CD1A
GGAGTGGA
 71
TCATGGGCG
455
CGCACCATT
 839
 78
GGAGTGGAAGGAACTGGAAACAT
1223



991763.1

AGGAACTG

TATCTACGA

CGGTCATTT


TATTCCGTATACGCACCATTCGG






GAAA

AT

GAGG


TCATTTGAGGGAATTCGTAGATA













CGCCCATGA






CD24
NM_
CD24
TCCAACTAA
 72
GAGAGAGTG
456
CTGTTGACT
 840
 77
TCCAACTAATGCCACCACCAAGG
1224



013230.1

TGCCACCAC

AGACCACGA

GCAGGGCA


CGGCTGGTGGTGCCCTGAGTCAA






CAA

AGAGACT

CCACCA


CAGCCAGTCTCTTCGTGGTCTCA













CTCTCTC






CD4
NM_
CD4
GTGCTGGA
 73
TCCCTGCAT
457
CAGGTCCCT
 841
 67
GTGCTGGAGTCGGGACTAACCCA
1225



000616.2

GTCGGGCT

TCAAGAGGC

TGTCCCA


GGTCCCTTGTCCCAAGTTCCACT






AAC



GTTCCAC


GCTGCCTCTTGAATGCAGGGA






CD44E
X55150

ATCACCGAC
 74
ACCTGTGTT
458
CCCTGCTAC
 842
 90
ATCACCGACAGCACAGACAGAAT
1226





AGCACAGA

TGGATTTGC

CAATATGG


CCCTGCTACCAATATGGACTCCA






CA

AG

ACTCCAGT


GTCATAGTACAACGCTTCAGCCT










CA


ACTGCAAATCCAAACACAGGT






CD44s
M59040.1

GACGAAGA
 75
ACTGGGGTG
459
CACCGACAG
 843
 78
GACGAAGACAGTCCCTGGATCAC
1227





CAGTCCCTG

GAATGTGTC

CACAGACA


CGACAGCACAGCAGAATCCCTGC






GAT

TT

GAATCCC


TACCAGAGACCAAGACACATTCC













ACCCCAGT






CD44v6
AJ251595

CTCATACCA
 76
TTGGGTTGA
460
CACCAAGCC
 844
 78
CTCATACCAGCCATCCAATGCAA
1228



v6

GCCATCCAA

AGAAATCAG

CAGAGGAC


GGAAGGACAACACCAAGCCCAGA






TG

TCC

AGTTCCT


GGACAGTTCCTGGACTGATTTCT













TCAACCCAA






CD68
NM_
CD68
TGGTTCCCA
 77
CTCCTCCAC
461
CTCCAAGCC
 845
 74
TGGTTCCCAGCCCTGTGTCCACC
1229



001251.1

GCCCTGTGT

CCTGGGTTG

CAGATTCA


TCCAAGCCCAGATTCAGATTCGA








T

GATTCGAGT


GTCATGTACACAACCCAGGGTGG










CA


AGGAG






CD82
NM_
CD82
GTGCAGGCT
 78
GACCTCAGG
462
TCAGCTTCT
 846
 84
GTGCAGGCTCAGGTGAAGTGCTG
1230



002231.2

CAGGTGAA

GCGATTCAT

ACAACTGG


CGGCTGGGTCAGCTTCTACAACT






GTG

GA

ACAGACAAC


GGACAGACAACGCTGAGCTCATG










GCTG


AATCGCCCTGAGGTC






CDC20
NM_
CDC20
TGGATTGGA
 79
GCTTGCACT
463
ACTGGCCGT
 847
 68
TGGATTGGAGTTCTGGGAATGTA
1231



001255.1

GTTCTGGGA

CCACAGGTA

GGCACTGG


CTGGCCGTGGCACTGGACAACAG






ATG

CACA

ACAACA


TGTGTACCTGTGGAGTGCAAGC






cdc25A
NM_
CDC25A
TCTTGCTGG
 80
CTGCATTGT
464
TGTCCCTGT
 848
 71
TCTTGCTGGCTACGCCTCTTCTG
1232



001789.1

CTACGCCTC

GGCACAGTT

TAGACGTCC


TCCCTGTTAGACGTCCTCCGTCC






TT

CTG

TCCGTCCAT


ATATCAGAACTGTGCCACAATGC










A


AG






CDC25C
NM_
CDC25C
GGTGAGCA
 81
CTTCAGTCT
465
CTCCCCGTC
 849
 67
GGTGAGCAGAAGTGGCCTATATC
1233



001790.2

GAAGTGGC

TGGCCTGTT

GATGCCAG


GCTCCCCGTCGATGCCAGAGAAC






CTAT

CA

AGAACT


TTGAACAGGCCAAGACTGAAG






CDC4
NM_
FBXW7
GCAGTCCGC
 82
GGATCCCAC
466
TGCTCCACT
 850
 77
GCAGTCCGCTGTGTTCAATATGA
1234



018315.2

TGTGTTCAA

ACCTTTACC

AACAACCCT


TGGCAGGAGGGTTGTTAGTGGAG








ATAA

CCTGCC


CATATGATTTTATGGTAAAGGTG













TGGGATCC






CDC42
NM_
CDC42
GAGCTGAA
 83
GCCGCTCAT
467
AATTCCTGC
 851
 67
GAGCTGAAAGACGCACACTGTCA
1235


BPA
003607.2
BPA
AGACGCAC

TGATCTCCA

ATGGCCAG


GAGGAAACTGGCCATGCAGGAAT






ACTG



TTTCCTC


TCATGGAGATCAATGAGCGGC






CDC42
NM_
CDC42
CGGAGAAG
 84
CCGTCATTG
468
CTGCCCAAG
 852
 67
CGGAGAAGGGCACCAGTAAGCTG
1236


EP4
012121.4
EP4
GGCACCAG

GCCTTCTTC

AGCCTGTC


CCCAAGAGCCTGTCATCCAGCCC






TA



ATCCAG


CGTGAAGAAGGCCAATGACGG






CDH11
NM_
CDH11
GTCGGCAG
 85
CTACTCATG
469
CCTTCTGCC
 853
 70
GTCGGCAGAAGCAGGACTTGTAC
1237



001797.2

AAGCAGGA

GGCGGGATG

CATAGTGAT


CTTCTGCCCATAGTGATCAGCGA






CT



CAGCGA


TGGCGGCATCCCGCCCATGAGTA













G






CDH3
NM_
CDH3
ACCCATGTA
 86
CCGCCTTCA
470
CCAACCCAG
 854
 71
ACCCATGTACCGTCCTCGGCCAG
1238



001793.3

CCGTCCTCG

GGTTCTCAA

ATGAAATC


CCAACCCAGATGAAATCGGCAAC








T

GGCAACT


TTTATAATTGAGAACCTGAAGGC













GG






CDK4
NM_
CDK4
CCTTCCCAT
 87
TTGGGATGC
471
CCAGTCGCC
 855
 66
CCTTCCCATCAGCACAGTTCGTG
1239



000075.2

CAGCACAG

TCAAAAGCC

TCAGTAAA


AGGTGGCTTTACTGAGGCGACTG






TTC



GCCACCT


GAGGCTTTTGAGCATCCCAA






CDK5
NM_
CDK5
AAGCCCTAT
 88
CTGTGGCAT
472
CACAACATC
 856
 67
AAGCCCTATCCGATGTACCCGGC
1240



004935.2

CCGATGTAC

TGAGTTTGG

CCTGGTGA


CACAACATCCCTGGTGAACGTCG






CC

G

ACGTCGT


TGCCCAAACTCAATGCCACAG






CDKN3
NM_
CDKN3
TGGATCTCT
 89
ATGTCAGGA
473
ATCACCCAT
 857
 70
TGGATCTCTACCAGCAATGTGGA
1241



005192.2

ACCAGCAA

GTCCCTCCA

CATCATCCA


ATTATCACCCATCATCATCCAAT






TGTG

TC

ATCGCA


CGCAGATGGAGGGACTCCTGAC













AT






CEA
NM_
CEA
ACTTGCCTG
 90
TGGCAAATC
474
TCCTTCCCA
 858
 71
ACTTGCCTGTTCAGAGCACTCAT
1242


CAM1
001712.2
CAM1
TTCAGAGCA

CGAATTAGA

CCCCCAGTC


TCCTTCCCACCCCCAGTCCTGTC






CTCA

GTGA

CTGTC


CTATCACTCTAATTCGGATTTGC













CA






CEBPA
NM_
CEBPA
TTGGTTTTG
 91
GTCTCAGAC
475
AAAATGAGA
 859
 66
TTGGTTTTGCTCGGATACTTGCC
1243



004364.2

CTCGGATAC

CCTTCCCCC

CTCTCCGT


AAAATGAGACTCTCCGTCGGCAG






TTG



CGGCAGC


CTGGGGGAAGGTCTGAGAC






CEGP1
NM_
SCUBE2
TGACAATCA
 92
TGTGACTAC
476
CAGGCCCTC
 860
 77
TGACAATCAGCACACCTGCATTC
1244



020974.1

GCACACCTG

AGCCGTGAT

TTCCGAGC


ACCGCTCGGAAGAGGGCCTGAGC






CAT

CCTTA

GGT


TGCATGAATAAGGATCACGGCTG













TAGTCACA






CENPA
NM_
CENPA
TAAATTCAC
 93
GCCTCTTGT
477
CTTCAATTG
 861
 63
TAAATTCACTCGTGGTGTGGACT
1245



001809.2

TCGTGGTGT

AGGGCCAAT

GCAAGCCC


TCAATTGGCAAGCCCAGGCCCTA






GGA

AG

AGGC


TTGGCCCTACAAGAGGC






CGA
NM_
CHGA
CTGAAGGA
 94
CAAAACCGC
478
TGCTGATGT
 862
 76
CTGAAGGAGCTCCAAGACCTCGC
1246


(CHGA
001275.2

GCTCCAAG

TGTGTTTCT

GCCCTCTCC


TCTCCAAGGCGCCAAGGAGAGGG



offi-


ACCT

TC

TTGG


CACATCAGCAGAAGAAACACAGC



cial)









GGTTTTG






CG
NM_
CGA
CCAGAATG
 95
GCCCATGCA
479
ACCCATTCT
 863
 69
CCAGAATGCACGCTACAGGAAAA
1247


alpha
000735.2

CACGCTACA

CTGAAGTAT

TCTCCCAGC


CCCATTCTTCTCCCAGCCGGGTG






GGAA

TGG

CGGG


CCCCAATACTTCAGTGCATGGGC






CGB
NM_
CGB
CCACCATAG
 96
AGTCGTCGA
480
ACACCCTAC
 864
 80
CCACCATAGGCAGAGGCAGGCCT
1248



000737.2

GCAGAGGC

GTGCTAGGG

TCCCTGTGC


TCCTACACCCTCTCCCTGTGCCT






A

AC

CTCCAG


CCAGCCTCGACTAGTCCCTAGCA













CTCGACGACT






CHAF1B
NM_
CHAF1B
GAGGCCAG
 97
TCCGAGGCC
481
AGCTGATGA
 865
 72
GAGGCCAGTGGTGGAAACAGGTG
1249



005441.1

TGGTGGAA

ACAGCAAAC

GTCTGCCC


TGGAGCTGATGAGTCTGCCCTAC






ACAG



TACCGCCTG


CGCCTGGTGTTTGCTGTGGCCTC













GGA






CHFR
NM_
CHFR
AAGGAAGT
 98
GACGCAGTC
482
TGAAGTCTC
 866
 76
AAGGAAGTGGTCCCTCTGTGGCA
1250



018223.1

GGTCCCTCT

TTTCTGTCT

CAGCTTTGC


AGTGATGAAGTCTCCAGCTTTGC






GTG

GG

CTCAGC


CTCAGCTCTCCCAGACAGAAAGA













CTGCGTC






CHI3L1
NM_
CHI3L1
AGAATGGG
 99
TGCAGAGCA
483
CACCAGGCC
 867
 66
AGAATGGGTGTGAAGGCGTCTCA
1251



001276.1

TGTGAAGG

GCACTGGAG

ACAAGC


ACAGGCTTTGTGGTCCTGGTGCT






CG



CTGTTTG


GCTCCAGTGCTGCTCTGCA






CKS2
NM_
CKS2
GGCTGGAC
100
CGCTGCAGA
484
CTGCGCCCG
 868
 62
GGCTGGACGTGGTTTTGTCTGCT
1252



991827.1

GTGGTTTTG

AAATGAAAC

CTCTTCGCG


GCGCCCGCTCTTCGCGCTCTCGT






TCT

GA




TTCATTTTCTGCAGCG






Claudin 
NM_
CLDN4
GGCTGCTTT
101
CAGAGCGGG
485
CGCACAGAC
 869
 72
GGCTGCTTTGCTGCAACTGTCCA
1253


4
001305.2

GCTGCAACT

CAGCAGAAT

AAGCCTTA


CCCCGCACAGACAAGCCTTACTC






G

A

CTCCGCC


CGCCAAGTATTCTGCTGCCCGCT













CTG






CLIC1
NM_
CLIC1 
CGGTACTTG
102
TCGATCTCC
486
CGGGAAGAA
 870
 68
CGGTACTTGAGCAATGCCTACGC
1254



001288.3

AGCAATGC

TCATCATCT

TTCGCTTC


CCGGGAAGAATTCGCTTCCACCT






CTA

GG

CACCTG


GTCCAGATGATGAGGAGATCGA






CLU
NM_
CLU
CCCCAGGAT
103
TGCGGGACT
487
CCCTTCAGC
 871
 76
CCCCAGGATACCTACCACTCCTG
1255



001831.1

ACCTACCAC

TGGGAAAGA

CTGCCCCAC


CCCTTCAGCCTGCCCCACCGGAG






TACCT



CG


GCCTCACTTCTTCTTTCCCAAGT













CCCGCA






CNOT2
NM_
CNOT2
AAATCGCA
104
TGTTGGTAC
488
ACTCAGTTA
 872
 67
AAATCGCAGCTTATCACAAGGCA
1256



014515.3

GCTTATCAC

CCCTGTTGT

CCGAGCCA


CTCAGTTACCGAGCCACGTCACG






AAGG

TG

CGTCACG


CCAACAACAGGGGTACCAACA






COL1A1
NM_
COL1A1
GTGGCCATC
105
CAGTGGTAG
489
TCCTGCGCC
 873
 68
GTGCCCATCCAGCTGACCTTCCT
1257



000088.2

CAGCTGACC

GTGATGTTC

TGATGTCCA


GCGCCTGATGTCCACCGAGGCCT








TGGGA

CCG


CCCAGAACATCACCTACCACTG






COL1A2
NM_
COL1A2
CAGCCAAG
106
AAACTGGCT
490
TCTCCTAGC
 874
 80
CAGCCAAGAACTGGTATAGGAGC
1258



000089.2

AACTGGTAT

GCCAGCATT

CAGACGTGT


TCCAAGGACAAGAAACACGTCTG






AGGAGCT

G

TTCTTGTCC


GCTAGGAGAAACTATCAATGCTG










TTG


GCAGCCAGTTT






COMT
NM_
COMT
CCTTATCGG
107
CTCCTTGGT
491
CCTGCAGCC
 875
 67
CCTTATCGGCTGGAACGAGTTCA
1259



000754.2

CTGGAACG

GTCACCCAT

CATCCACA


TCCTGCAGCCCATCCACAACCTG






AGTT

GAG

ACCT


CTCATGGGTGACACCAAGGAG






Contig
NM_
CXCL17
CGACAGTTG
108
GGCTGCTAG
492
CCTCCTCCT
 876
 81
CGACAGTTGCGATGAAAGTTCTA
1260


51037
198477

CGATGAAA

AGACCATGG

GTTGCTGCC


ATCTCTTCCCTCCTCCTGTTGCT






GTTCTAA

ACAT

ACTAATGCT


GCCACTAATGCTGATGTCCATGG













TCTCTAGCAGCC






COPS3
NM_
COPS3
ATGCCCAGT
109
CTCCCCATT
493
CGAAACGCT
 877
 72
ATGCCCAGTGTTCCTGACTTCGA
1261



003653.2

GTTCCTGAC

ACAAGTGCT

ATTCTCAC


AACGCTATTCTCACAGGTTCAGC






TT

GA

AGGTTCAGC


TCTTCATCAGCACTTGTAATGGG













GAG






CRYAB
NM_
CRYAB
GATGTGATT
110
GAACTCCCT
494
TGTTCATCC
 878
 69
GATGTGATTGAGGTGCATGGAAA
1262



001885.1

GAGGTGCA

GGAGATGAA

TGGCGCTCT


ACATGAAGAGCGCCAGGATGAAC






TGG

ACC

TCATGT


ATGGTTTCATCTCCAGGGAGTTC






CRYZ
NM_
CRYZ
AAGTCCTGA
111
CACATGCAT
495
CCGATTCCA
 879
 78
AAGTCCTGAAATTGCGATCAGAT
1263



001889.2

AATTGCGAT

GGACCTTGA

AAAGACCA


ATTGCAGTACCGATTCCAAAAGA






CA

TT

TCAGGTTCT


CCATCAGGTTCTAATCAAGGTCC













ATGCATGTG






CSF1 
NM_
CSF1
CAGCAAGA
112
ATCCCTCGG
496
TTTGCTGAA
 880
 68
CAGCAAGAACTGCAACAACAGCT
1264


isoC
172211.1

ACTGCAAC

ACTGCCTCT

TGCTCCAGC


TTGCTGAATGCTCCAGCCAAGGC






AACA



CAAGG


CATGAGAGGCAGTCCGAGGGAT






CSF1
NM_
CSF1
TGCAGCGG
113
CAACTGTTC
497
TCAGATGGA
 881
 74
TGCAGCGGCTGATTGACAGTCAG
1265



000757.3

CTGATTGAC

CTGGTCTAC

GACCTCGT


ATGGAGACCTCGTGCCAAATTAC






A

AAACTCA

GCCAAATTA


ATTTGAGTTTGTAGACCAGGAAC










CA


AGTTG






CSF1R
NM_
CSF1R
GAGCACAA
114
CCTGCAGAG
498
AGCCACTCC
 882
 80
GAGCACAACCAAACCTACGAGTG
1266



005211.1

CCAAACCTA

ATGGGTATG

CCACGCTG


CAGGGCCCACAACAGCGTGGGGA






CGA

AA

TTGT


GTGGCTCCTGGGCCTTCATACCC













ATCTCTGCAGG






CSF2RA
NM_
CSF2RA
TACCACACC
115
CTAGAGGCT
499
CGCAGATCC
 883
 67
TACCACACCCAGCATTCCTCCTG
1267



006140.3

CAGCATTCC

GGTGCCACT

GATTTCTCT


ATCCCAGAGAAATCGGATCTGCG






TC

GT

GGGATC


AACAGTGGCACCAGCCTCTAG






CSK 
NM_
CSK
CCTGAACAT
116
CATCACGTC
500
TCCCGATGG
 884
 64
CCTGAACATGAAGGAGCTGAAGC
1268


(SRC)
004383.1

GAAGGAGC

TCCGAACTC

TCTGCAGC


TGCTGCAGACCATCGGGAAGGGG






TGA

C

AGCT


GAGTTCGGAGACGTGATG






CTGF
NM_
CTGF
GAGTTCAA
117
AGTTGTAAT
501
AACATCATG
 885
 76
GAGTTCAAGTGCCCTGACGGCGA
1269



001901.1

GTGCCGTGA

GCCAGGCAC

TTCTTCTTC


GGTCATGAAGAAGAACATGATGT






CG

AG

ATGACCTCG


TCATCAAGACCTGTGCCTGCCAT










C


TACAACT






CTHRC1
NM_
CTHRC1
GCTCACTTC
118
TCAGCTCCA
502
ACCAACGCT
 886
 67
GCTCACTTCGGCTAAAATGCAGA
1270



138455.2

GGCTAAAA

TTGAATGTG

GACAGCAT


AATGCATGCTGTCAGCGTTGGTA






TGC

AAA

GCATTTC


TTTCACATTCAATGGAGCTGA






CTSD
NM_
CTSD
GTACATGAT
119
GGGACAGCT
503
ACCCTGCCC
 887
 80
GTACATGATCCCCTGTGAGAAGG
1271



001909.1

CCCCTGTGA

TGTAGCCTT

GCGATCAC


TGTCCACCCTGCCCGCGATCACA






GAAGGT

TGC

ACTGA


CTGAAGCTGGGAGGCAAAGGCTA













CAAGCTGTCCC






CTSL2
NM_
CTSL2
TGTCTCACT
120
ACCATTGCA
504
CTTGAGGAC
 888
 67
TGTCTCACTGAGCGAGCAGAATC
1272



001333.2

GAGCGAGC

GCCCTGATT

GCGAACAG


TGGTGGACTGTTCGCGTCCTCAA






AGAA

G

TCCACCA


GGCAATCAGGGCTGCAATGGT






CTSL2
NM_

ACCAGGCA
121
CTGTTCTCC
505
AGGTGCAAT
 889
 79
ACCAGGCAATAACCTAACAGCAC
1273


int2
001333.2

ATAACCTAA

AAGCCAAGA

ATGGGCAT


CCATTATAGGTGCAATATGGGCA




int2

CAGC

CA

ATATCTCC


TATATCTCCATTGTGTCTTGGCT










ATTG


TGGAGAACAG






CXCL10
NM_
CXCL10
GGAGCAAA
122
TAGGGAAGT
506
TCTGTGTGG
 890
 68
GGAGCAAAATCGATGCAGTGCTT
1274



001565.1

ATCGATGCA

GATGGGAGA

TCCATCCTT


CCAAGGATGGACCACACAGAGGC






GT

GG

GGAAGC


TGCCTCTCCCATCACTTCCCTA






CXCL12
NM_
CXCL12
GAGCTACA
123
TTTGAGATG
507
TTCTTCGAA
 891
 67
GAGCTACAGATGCCCATGCCGAT
1275



000609.3

GATGCCCAT

CTTGACGTT

AGCCATGTT


TCTTCGAAAGCCATGTTGCCAGA






GC

GG

GCCAGA


GCCAACGTCAAGCATCTCAAA






CXCL14
NM_
CXCL14
TGCGCCCTT
124
CAATGCGGC
508
TACCCTTAG
 892
 74
TGCGCCCTTTCCTCTGTACATAT
1276



004887.3

TCCTCTGTA

ATATACTGG

AACGCCC


ACCCTTAAGAACGCCCCCTCCAC








G

CCTCCAC


ACACTGCCCCCCAGTATATGCCG













CATTG






CXCR4
NM_
CXCR4
TGACCGCTT
125
AGGATAAGG
509
CTGAAACTG
 893
 72
TGACCGCTTCTACCCCAATGACT
1277



003467.1

CTACCCCAA

CCAACCATG

GAACACAA


TGTGGGTGGTTGTGTTCCAGTTT






TG

ATGT

CCACCCACA


CAGCACATCATGGTTGGCCTTAT










AG


CCT






CYP17
NM_
CYP17
CCGGAGTG
126
GCCAGCATT
510
TGGACACAC
 894
 76
CCGGAGTGACTCTATCACCAACA
1278


A1
000102.2
A1
ACTCTATCA

GCCATTATC

TGATGCAA


TGCTGGACACACTGATGCAAGCC






CCA

T

GCCAAGA


AAGATGAACTCAGATAATGGCAA













TGCTGGC






CYP19
NM_
CYP19
TCCTTATAG
127
CACCATGGC
511
CACAGCCAC
 895
 70
TCCTTATAGGTACTTTCAGCCAT
1279


A1
000103.2
A1
GTACTTTCA

GATGTACTT

GGGGCCCA


TTGGCTTTGGGCCCCGTGGCTGT






GCCATTTG

TCC

AA


GCAGGAAAGTACATCGCCATGGT













G






CYP1B1
NM_
CYP1B1
CCAGCTTTG
128
GGGAATGTG
512
CTCATGCCA
 896
 71
CCAGCTTTGTGCCTGTCACTATT
1280



000104.2

TGCCTGTCA

GTAGCCCAA

CCACTGCC


CCTCATGCCACCACTGCCACACC






CTAT

GA

AACACCTC


TCTGTCTTGGGCTACCACATTCC













C






CYR61
NM_
CYR61
TGCTCATTC
129
GTGGCTGCA
513
CAGCACCCT
 897
 76
TGCTCATTCTTGAGGAGCATTAA
1281



001554.3

TTGAGGAG

TTAGTGTCC

TGGCAGTTT


GGTATTTCGAAACTGCCAAGGGT






CAT

AT

CGAAAT


GCTGGTGCGGATGGACACTAATG













CAGCCAC






DAB2
NM_
DAB2
TGGTGGGTC
130
ACCAAAGAT
514
CTGTCACAC
 898
 67
TGGTGGGTCTAGGTGGTGTAACT
1282



001343.1

TAGGTGGTG

GCTGTGTTC

TCCCTCAGG


GTCACACTCCCTCAGGCAGGACC






TA

CA

CAGGAC


ATGGAACACAGGCATCTTTGGT






DCC
NM_
DCC
AAATGTCCT
131
TGAATGCCA
515
ATCACTGGA
 899
 75
AAATGTCCTCCTCGACTGCTCCG
1283



005215.1

CCTCGACTG

TCTTTCTTC

ACTCCTCG


CGGAGTCCGACCGAGGAGTTCCA






CT

CA

GTCGGAC


GTGATCAAGTGGAAGAAAGATGG













CATTCA






DCC_
X76132_

GGTCACCGT
132
GAGCGTCGG
516
CAGCCACG
 900
 66
GGTCACCGTTGGTGTCATCACAG
1284


exons
18-23

TGGTGTCAT

GTGCAAATC

ATGACCACT


TGCTGGTAGTGGTCATCGTGGCT



8-23


CA



ACCAGCACT


GTGATTTGCACCCGACGCTC






DCC_
X76132_

ATGGAGAT
133
CACCACCCC
517
TGCTTCCTC
 901
 74
ATGGAGATGTGGTCATTCCTAGT
1285


exons
6-7

GTGGTCATT

AAGTATCCG

CCACTATCT


GATTATTTTCAGATAGTGGGAGG



6-7


CCTAGTG

TAAG

GAAAATAA


AAGCAACTTACGGATACTTGGGG













TGGTG






DCK
NM_
DCK
GCCGCCAC
134
CGATGTTCC
518
AGCTGCCCG
 902
110
GCCGCCACAAGACTAAGGAATGG
1286



000788.1

AAGACTAA

CTTCGATGG

TCTTTCTCA


CCACCCCGCCCAAGAGAAGCTGC






GGAAT

AG

GCCAGC


CCGTCTTTCTCAGCCAGCTCTGA













GGGGACCCGCATCAAGAAAATCT













CCATCGAAGGGAACATCG






DICER1
NM_
DICER1
TCCAATTCC
135
GGCAGTGAA
519
AGAAAAGCT
 903
 68
TCCAATTCCAGCATCACTGTGGA
1287



177438.1

AGCATCACT

GGCGATAAA

GTTTGTCT


GAAAAGCTGTTTGTCTCCCCAGC






GT

GT

CCCCAGCA


ATACTTTATCGCCTTCACTGCC






DLC1
NM_
DLC1
GATTCAGAC
136
CACCTCTTG
520
AAAGTCCAT
 904
 68
GATTCAGACGAGGATGAGCCTTG
1288



006094.3

GAGGATGA

CTGTCCCTT

TTGCCACT


TGCCATCAGTGGCAAATGGACTT






GCC

TG

GATGGCA


TCCAAAGGGACAGCAAGAGGTG






DLL4
NM_
DLL4
CACGGAGG
137
AGAAGGAAG
521
CTACCTGGA
 905
 67
CACGGAGGTATAAGGCAGGAGCC
1289



019074.2

TATAAGGC

GTCCAGCCG

CATCCCTGC


TACCTGGACATCCCTGCTCAGCC






AGGAG



TCAGCC


CCGCGGCTGGACCTTCCTTCT






DR5
NM_
TNFRS
CTCTGAGAC
138
CCATGAGGC
522
CAGACTTGG
 906
 84
CTCTGAGACAGTGCTTCGATGAC
1290



003842.2
F10B
AGTGCTTCG

CCAACTTCC

TGCCCTTTG


TTTGCAGACTTGGTGCCCTTTGA






ATGACT

T

ACTCC


CTCCTGGGAGCCGCTCATGAGGA













AGTTGGGCCTCATGG






DSP
NM_
DSP
TGGCACTAC
139
CCTGCCGCA
523
CAGGGCCAT
 907
 73
TGGCACTACTGCATGATTGACAT
1291



004415.1

TGCATGATT

TTGTTTTCA

GACAATCG


AGAGAAGATCAGGGCCATGACAA






GACA

G

CCAA


TCGCCAAGCTGAAAACAATGCGG













CAGG






DTYMK
NM_
DTYMK
AAATCGCTG
140
AATGCGTAT
524
CGCCCTGGC
 908
 78
AAATCGCTGGGAACAAGTGCCGT
1292



012145.1

GGAACAAG

CTGTCCACG

TCAACTTTT


TAATTAAGGAAAAGTTGAGCCAG






TG

AC

CCTTAA


GGCGTGACCCTCGTCGTGGACAG













ATACGCATT






DUSP1
NM_
DUSP1
AGACATCA
141
GACAAACAC
525
CGAGGCCAT
 909
 76
AGACATCAGCTCCTGGTTCAACG
1293



004417.2

GCTCCTGGT

CCTTCCTCC

TGACTTCA


AGGCCATTGACTTCATAGACTCC






TCA

AG

TAGACTCCA


ATCAAGAATGCTGGAGGAAGGG













TGTTTGTC






DUSP4
NM_
DUSP4
TGGTGACG
142
CTCGTCCCG
526
TTGAGCACA
 910
 68
TGGTGACGATGGAGGAGCTGCGG
1294



001394.4

ATGGAGGA

GTTCATCAG

CTGCAGTC


GAGATGGACTGCAGTGTGCTCAA






GC



CATCTCC


AAGGCTGATGAACCGGGACGAG






E2F1
NM_
E2F1
ACTCCCTCT
143
CAGGCCTCA
527
CAGAAGAAC
 911
 75
ACTCCCTCTACCCTTGAGCAAGG
1295



005225.1

ACCCTTGAG

GTTCCTTCA

AGCTCAGG


GCAGGGGTCCCTGAGCTGTTCTT






CA

GT

GACCCCT


CTGCCCCATACTGAAGGAACTGA













GGCCTG






ERBP
AF

CTGCTGGAT
144
CCAACAGTA
528
CTCACCAGA
 912
 76
CTGCTGGATGACCTTCCTCCCAG
1296



243433.1

GACCTTCCT

CAGCCAGTT

AGCCCCAA


AGTGGCTCACCAGAAGCCCCAAC






C

GC

CCTCAAC


CTCAACACCAGCAACTGGCTGTA













CTGTTGG






EDN1
NM_
EDN1
TGCCACCTG
145
TGGACCTAG
529
CACTCCCGA
 913
 73
TGCCACCTGGACATCATTTGGGT
1297


endo-
001955.1

GACATCATT

GGCTTCCAA

GCACGTTG


CAACACTCCCGAGCACGTTGTTC



thelin


TG

GTC

TTCCGT


CGTATGGACTGGAAGCCCTAGGT













CCA






EDN2
NM_
EDN2
CGACAAGG
146
CAGGCCGTA
530
CCACTTGGA
 914
 79
CGACAAGGAGTGCGTCTACTTCT
1298



001956.2

AGTGCGTCT

AGGAGCTGT

CATCATCTG


GCCACTTGGACATCATCTGGGTG






ACTTCT

CT

GGTGAACAC


AACACTCCTGAACAGACAGCTCC










TC


TTACGGCCTG






EDNRA
NM_
EDNRA
TTTCCTCAA
147
TTACACATC
531
CCTTTGCCT
 915
 76
TTTCCTCAAATTTGCCTCAAGAT
1299



001957.1

ATTTGCCTC

CAACCAGTG

CAGGGCATC


GGAAACCCTTTGCCTCAGGGCAT






AAG

CC

CTTTT


CCTTTTGGCTGGCACTGGTTGGA













TGTGTAA






EDNRB
NM_
EDNRB
ACTGTGAAC
148
ACCACAGCA
532
TGCTACCTG
 916
 72
ACTGTGAACTGCCTGGTGCAGTG
1300



000115.1

TGCCTGGTG

TGGGTGAGA

CCCCTTTGT


TCCACATGACAAAGGGGCAGGTA






C

G

CATGTG


GCACCCTCTCTCACCCATGCTGT













GGT






EEF1A1
NM_
EEF1A1
CGAGTGGA
149
CCGTTGTAA
533
CAAAGGTGA
 917
 67
CGAGTGGAGACTGGTGTTCTCAA
1301



001402.5

GACTGGTGT

CGTTGACTG

CCACCATA


ACCCGGTATGGTGGTCACCTTTG






TCTC

GA

CCGGGTT


CTCCAGTCAACGTTACAACGG






EEF1A2
NM_
EEF1A2 
ATGGACTCC
150
GGCGCTGAC
534
CTCGTCGTA
 918
 66
ATGGACTCCACAGAGCCGGCCTA
1302



001958.2

ACAGAGCC

TTCCTTGAC

GCGCTTCTC


CAGCGAGAAGCGCTACGACGAGA






G



GCTGTA


TCGTCAAGGAAGTCAGCGCC






EFP
NM_
TRIM25
TTGAACAG
151
TGTTGAGAT
535
TGATGCTTT
 919
 74
TTGAACAGAGCCTGACCAAGAGG
1303



005082.2

AGCCTGACC

TCCTCGCAG

CTCCAGAAA


GATGAGTTCGAGTTTCTGGAGAA






AAG

TT

CTCGAACTC


GCATCAAAAACTGCGAGGAAT










A


CTCAACA






EGR1
NM_
EGR1
GTCCCCGCT
152
CTCCAGCTT
536
CGGATCCTT
 920
 76
GTCCCCGCTGCAGATCTCTGACC
1304



001964.2

GCAGATCTC

AGGGTAGTT

TCCTCACTC


CGTTCGGATCCTTTCCTCACTCG






T

GTCCAT

GCCCA


CCCACCATGGACAACTACCCTAA













GCTGGAG






EGR3
NM_
EGR3
CCATGTGGA
153
TGCCTGAGA
537
ACCCAGTCT
 921
 78
CCATGTGGATGAATGAGGTGTCT
1305



004430.2

TGAATGAG

AGAGGTGAG

CACCTTCTC


CCTTTCCATACCCAGTGTCACCT






GTG

GT

CCCACC


TCTCCCCACCCTACCTCACCTCT













TCTCAGGCA






EIF4
NM_
EIF4
GGCGGTGA
154
TTGGTAGTG
538
TGAGATGGA
 922
 66
GGCGGTGAAGAGTCACAGTTTGA
1306


EBP1
004095.2
EBP1
AGAGTCAC

CTCCACACG

CATTTAAA


GATGGACATTTAAAGCACCAGCC






AGT

AT

GCACCAGCC


ATCGTGTGGAGCACTACCAA






ELF3
NM_
ELF3
TCGAGGGC
155
GATGAGGAT
539
CGCCCAGAG
 923
 71
TCGAGGGCAAGAAGAGCAAGCAC
1307



004433.2

AAGAAGAG

GTCCCGGAT

GCACCCAC


GCGCCCAGAGGCACCCACCTGTG






CAA

GA

CTG


GGAGTTCATCCGGGACATCCTCA













TC






EMP1
NM_
EMP1
GCTAGTACT
156
GAACAGCTG
540
CCAGAGAGC
 924
 75
GCTAGTACTTTGATGCTCCCTTG
1308



001423.1

TTGATGCTC

GAGGCCAAG

CTCCCTGC


ATGGGGTCCAGAGAGCCTCCCTG






CCTTGAT

TC

AGCCA


CAGCCACCAGACTTGGCCTCCAG













CTGTTC






ENO1
NM_
ENO1
CAAGGCCG
157
CGGTCACGG
541
CTGCAACTG
 925
 68
CAAGGCCGTGAACGAGAAGTCCT
1309



001428.2

TGAACGAG

AGCCAATCT

CCTCCTGCT


GCAACTGCCTCCTGCTCAAAGTC






AAGT



CAAAGTCA


AACCAGATTGGCTCCGTGACCG






EP300
NM_
EP300
AGCCCCAG
158
TGTTCAAAG
542
CACTGACAT
 926
 75
AGCCCCAGCAACTACAGTCTGGG
1310



001429.1

CAACTACA

GTTGACCAT

CATGGCTG


ATGCCAAGGCCAGCCATGATGTC






GTCT

GC

GCCTTG


AGTGGCCCAGCATGGTCAACCTT













TGAACA






EpCAM
NM_
EPCAM
GGGCCCTCC
159
TGCACTGCT
543
CCGCTCTCA
 927
 75
GGGCCCTCCAGAACAATGATGGG
1311



002354.1

AGAACAAT

TGGCCTTAA

TCGCAGTCA


CTTTATGATCCTGACTGCGATGA






GAT

AGA

GGATCAT


GAGCGGGCTCTTTAAGGCCAAGC













AGTGCA






EPHA2
NM_
EPHA2
CGCCTGTTC
160
GTGGCGTGC
544
TGCGCCCGA
 928
 72
CGCCTGTTCACCAAGATTGACAC
1312



004431.2

ACCAAGATT

CTCGAAGTC

TGAGATCA


CATTGCGCCCGATGAGATCACCG






GAC



CCG


TCAGCAGCGACTTCGAGGCACGC













CAC






EPHB2
NM_
EPHB2
CAACCAGG
161
GTAATGCTG
545
CACCTGATG
 929
 66
CAACCAGGCAGCTCCATCGGCAG
1313



004442.4

CAGCTCCAT

TCCACGGTG

CATGATGG


TGTCCATCATGCATCAGGTGAGC






C

C

ACACTGC


CGCACCGTGGACAGCATTAC






EPHB4
NM_
EPHB4
TGAACGGG
162
AGGTACCTC
546
CGTCCCATT
 930
 77
TGAACGGGGTATCCTCCTTAGCC
1314



004444.3

GTATCCTCC

TCGGTCAGT

TGAGCCTGT


ACGGGGCCCGTCCCATTTGAGCC






TTA

GG

CAATGT


TGTCAATGTCACCACTGACCGAG













AGGTACCT






ER2
NM_
ESR2
TGGTCCATC
163
TGTTCTAGC
547
ATCTGTATG
 931
 76
TGGTCCATCGCCAGTTATCACAT
1315



001437.1

GCCAGTTAT

GATCTTGCT

CGGAACCT


CTGTATGCGGAACCTCAAAAGAG






CA

TCACA

CAAAAGAGT


TCCCTGGTGTGAAGCAAGATCGC










CCCT


TAGAACA






ERBB4
NM_
ERBBR
TGGCTCTTA
164
CAAGGCATA
548
TGTCCCACG
 932
 86
TGGCTCTTAATCAGTTTCGTTAC
1316



005235.1

ATCAGTTTC

TCGATCCTC

AATAATGC


CTGCCTCTGGAGAATTTACGCAT






GTTACCT

ATAAAGT

GTAAATTC


TATTCGTGGGACAAAACTTTATG










TCCAG


AGGATCGATATGCCTTG






ERCC1
NM_
ERCC1
GTCCAGGTG
165
CGGCCAGGA
549
CAGCAGGCC
 933
 67
GTCCAGGTGGATGTGAAAGATCC
1317



001983.1

GATGTGAA

TACACATCT

CTCAAGGA


CCAGCAGGCCCTCAAGGAGCTGG






AGA

TA

GCTG


CTAAGATGTCTATCCTGGCCG






ERG
NM_
ERG
CCAACACTA
166
CCTCCGCCA
550
AGCCATATG
 934
 70
CCAACACTAGGCTCCCCACCAGC
1318



004449.3

GGCTCCCCA

GGTCTTTAG

CCTTCTCAT


CATATGCCTTCTCATCTGGGCAC








T

CTGGGC


TTACTACTAAAGACCTGGCGGAG













G






ERRa
NM_
ESRRA
GGCATTGA
167
TCTCCGAGG
551
AGAGCCGGC
 935
 67
GGCATTGAGCCTCTCTACATCAA
1319



004451.3

GCCTCTCTA

AACCCTTTG

CAGCCCTG


GGCAGAGCCGGCCAGCCCTGACA






CATCA

G

ACAG


GTCCAAAGGGTTCCTCGGAGA






ESD
NM_
ESD
GTCACTCCG
168
CTGTCCAAT
552
TCGCCTACC
 936
 66
GTCACTCCGCCACCGTAGAATCG
1320



001984.1

CCACCGTAG

TGCTGATTG

ATTTGGTGC


CCTACCATTTGGTGCAAGCAAAA








CTT

AAGCAA


AGCAATCAGCAATTGGACAG






ESPL1
NM_
ESPL1
ACCCCCAG
169
TGTAGGGCA
553
CTGGCCCTC
 937
 70
ACCCCCAGACCGGATCAGGCAAG
1321



012291.1

ACCGGATC

GACTTCCTC

ATGTCCCCT


CTGGCCCTCATGTCCCCTTCACG






AG

AAACA

TCACG


GTGTTTGAGGAAGTCTGCCCTAC













A






ESRRG
NM_
ESRRG
CCAGCACC
170
AGTCTCTTG
554
CCCCAGACC
 938
 67
CCAGCACCATTGTTGAAGATCCC
1322



001438.1

ATTGTTGAA

GGCATCGAG

AAGTGTGA


CAGACCAAGTGTGAATACATGCT






GAT

TT

ATACATGCT


CAACTCGATGCCCAAGAGACT






EstR1
NM_
ESR1
CGTGGTGCC
171
GGCTAGTGG
555
CTGGAGATG
 939
 68
CGTGGTGCCCCTCTATGACCTGC
1323



000125.1

CCTCTATGA

GCGCATGTA

CTGGACGC


TGCTGGAGATGCTGGACGCCCAC






C

G

CC


CGCCTACATGCGCCCACTAGCC






ETV5
NM_
ETV5
ACCATGTAT
172
TGACCAGGA
556
TTACCAGAG
 940
 67
ACCATGTATCGAGAGGGGCCCCC
1324



004454.1

CGAGAGGG

ACTGCCACA

GCGAGGTT


TTACCAGAGGCGAGGTTCCCTTC






GC

G

CCCTTCA


AGCTGTGGCAGTTCCTGGTCA






EZH2
NM_
EZH2
TGGAAACA
173
CACCGAACA
557
TCCTGACTT
 941
 78
TGGAAACAGCGAAGGATACAGCC
1325



004456.3

GCGAAGGA

CTCCCTAGT

CTGTGAGCT


TGTGCACATCCTGACTTCTGTGA






TACA

CC

CATTGCG


GCTCATTGCGCGGGACTAGGGAG













TGTTCGGTG






F3
NM_
F3
GTGAAGGA
174
AACCGGTGC
558
TGGCACGGG
 942
 73
GTGAAGGATGTGAAGCAGACGTA
1326



001993.2

TGTGAAGC

TCTCCACAT

TCTTCTCCT


CTTGGCACGGGTCTTCTCCTACC






AGACGTA

TC

ACC


CGGCAGGGAATGTGGAGAGCACC













GGTT






FAP
NM_
FAP
CTGACCAG
175
GGAAGTGGG
559
CGGCCTGTC
 943
 66
CTGACCAGAACCACGGCTTATCC
1327



004460.2

AACCACGG

TCATGTGGG

CACGAACC


GGCCTGTCCACGAACCACTTATA






CT



ACTTATA


CACCCACATGACCCACTTCC






FASN
NM_
FASN
GCCTCTTCC
176
GCTTTGCCC
560
TCGCCCACC
 944
 66
GCCTCTTCCTGTTCGACGGCTCG
1328



004104.4

TGTTCGACG

GGTAGCTCT

TACGTACTG


CCCACCTACGTACTGGCCTACAC










GCCTAC


CCAGAGCTACCGGGCAAAGC






FGFR2
NM_
FGFR2
GAGGGACT
177
GAGTGAGAA
561
TCCCAGAGA
 945
 80
GAGGGACTGTTGGCATGCAGTGC
1329


iso- 
000141.2

GTTGGCATG

TTCGATCCA

CCAACGTT


CCTCCCAGAGACCAACGTTCAAG



form


CA

AGTCTTC

CAAGCAGTT


CAGTTGGTAGAAGACTTGGATCG



1






G


AATTCTCACTC






FGFR4
NM_
FGFR4
CTGGCTTAA
178
ACGAGACTC
562
CCTTTCATG
 946
 81
CTGGCTTAAGGATGGACAGGCCT
1330



002011.3

GGATGGAC

CAGTGCTGA

GGGAGAAC


TTCATGGGGAGAACCGCATTGGA






AGG

TG

CGCATT


GGCATTCGGCTGCGCCATCAGCA













CTGGAGTCTCGT






FHIT
NM_
FHIT
CCAGTGGA
179
CTCTCTGGG
563
TCGGCCACT
 947
 67
CCAGTGGAGCGCTTCCATGACCT
1331



002012.1

GCGCTTCCA

TCGTCTGAA

TCATCAGG


GCGTCCTGATGAAGTGGCCGATT






T

ACAA

ACGCAG


TGTTTCAGACGACCCAGAGAG






FLOT2
NM_
FLOT2
GACATCTGC
180
CAAACTGGT
564
AATCTGCTC
 948
 66
GACATCTGCGCTCCATCCTCGGG
1332



004475.1

GCTCCATCC

CCCGGTCCT

CACTGTCAG


ACCCTGACAGTGGAGCAGATTTA










GGTCCC


TCAGGACCGGGACCAGTTTG






FN1
NM_
FN1
GGAAGTGA
181
ACACGGTAG
565
ACTCTCAGG
 949
 69
GGAAGTGACAGACGTGAAGGTCA
1333



002026.2

CAGACGTG

CCGGTCACT

CGGTGTCC


CCATCATGTGGACACCGCCTGAG






AAGGT



ACATGAT


AGTGCAGTGACCGGCTACCGTGT






FOS
NM_
FOS
CGAGCCCTT
182
GGAGCGGGC
566
TCCCAGCAT
 950
 67
CGAGCCCTTTGATGACTTCCTGT
1334



005252.2

TGATGACTT

TGTCTCAGA

CATCCAGG


TCCCAGCATCATCCAGGCCCAGT






CCT



CCCAG


GGCTCTGAGACAGCCCGCTCC






FOXC2
NM_
FOXC2
GAGAACAA
183
CTTGACGAA
567
AGAACAGCA
 951
 66
GAGAACAAGCAGGGCTGGCAGAA
1335



005251.1

GCAGGGCT

GCACTCGTT

TCCGCCAC


CAGCATCCGCCACAACCTCTCGC






GG

GA

AACCTCT


TCAACGAGTGCTTCGTCAAG






FOXO3A
NM_
FOXO3
TGAAGTCCA
184
ACGGCTTGC
568
CTCTACAGC
 952
 83
TGAAGTCCAGGACGATGATGCGC
1336



001455.1

GGACGATG

TTACTGAAG

AGCTCAGC


CTCTCTCGCCCATGCTCTACAGC






ATG

GT

CAGCCTG


AGCTCAGCCAGCCTGTCACCTTC













AGTAAGCAAGCCGT






FOXP1
NM_
FOXP1
CGACAGAG
185
GGTCGTCCA
569
CAGACCAAG
 953
 70
CGACAGAGCTTGTGCACCTAAGC
1337



032682.3

CTTGTGCAC

TTGGAATCC

CCTTTGCC


TGCAGACCAAGCCTTTGCCCAGA






CT

T

CAGAATT


ATTTAAGGATTCCAATGGACGAC













C






FOXP3
NM_
FOXP3
CTGTTTGCT
186
GTGGAGGAA
570
TGTTTCCAT
 954
 66
CTGTTTGCTGTCCGGAGGCACCT
1338



014009.2

GTCCGGAG

CTCTGGGAA

GGCTACCCC


GTGGGGTAGCCATGGAAACAGCA






G

TG

ACAGGT


CATTCCCAGAGTTCCTCCAC






FSCN1
NM_
FSCN1
CCAGCTGCT
187
GGTCACAAA
571
TGACCGGCG
 955
 74
CCAGCTGCTACTTTGACATCGAG
1339



003088.1

ACTTTGACA

CTTGCCATT

CATCACAC


TGGCGTGACCGGCGCATCACACT






TCGA

GGA

TGAGG


GAGGGCGTCCAATGGCAAGTTTG













TGACC






FUS
NM_
FUS
GGATAATTC
188
TGAAGTAAT
572
TCAATTGTA
 956
 80
GGATAATTCAGACAACAACACCA
1340



004960.1

AGACAACA

CAGCCACAG

ACATTCTCA


TCTTTGTGCAAGGCCTGGGTGAG






ACACCATCT

ACTCAAT

CCCAGGCCT


AATGTTACAATTGAGTCTGTGGC










TG


TGATTACTTCA






FYN
NM_
FYN
GAAGCGCA
189
CTCCTCAGA
573
CTGAAGCAC
 957
 69
GAAGCGCAGATCATGAAGAAGCT
1341



002037.3

GATCATGA

CACCACTGC

GACAAGCT


GAAGCACGACAAGCTGGTCCAGC






AGAA

AT

GGTCCAG


TCTATGCAGTGGTGTCTGAGGAG






G-
NM_
JUP
TCAGCAGC
190
GGTGGTTTT
574
CGCCCGCAG
 958
 68
TCAGCAGCAAGGGCATCATGGAG
1342


Cate-
002230.1

AAGGGCAT

CTTGAGCGT

GCCTCATC


GAGGATGAGGCCTGCGGGCGCCA



nin


CAT

GTACT

CT


GTACACGCTCAAGAAAACCACC






GAB2
NM_
GAB2
TGTTTGGAG
191
GAAGATAGC
575
TGAGCCAGA
 959
 74
TGTTTGGAGGGAAGGGCTGGGGC
1343



012296.2

GGAAGGGC

TGAGGGCTG

TTCCACAC


TCTGAGCCAGATTCCACACCTCA






T

TGAC

CTCACGT


CGTTCAGTCACAGCCCTCAGCTA













TCTTC






GADD45
NM_
GADD
GTGCTGGTG
192
CCCGGCAAA
576
TTCATCTCA
 960
 73
GTGCTGGTGACGAATCCACATTC
1344



001924.2
45A
AGAATCC

AACAAATAA

ATGGAAGG


ATCTCAATGGAAGGATCCTGCCT






A

GT

ATCCTGCC


TAAGTCAACTTATTTGTTTTTGC













CGGG






GADD
NM_
GADD
ACCCTCGAC
193
TGGGAGTTC
577
AACTTCAGC
 961
 70
ACCCTCGACAAGACCACACTTTG
1345


45B
015675.1
45B
AAGACCAC

ATGGGTACA

CCCAGCTC


GGACTTGGGAGCTGGGGCTGAAG






ACT

GA

CCAAGTC


TTGCTCTGTACCCATGAACTCCC













A






GAPDH
NM_
GAPDH
ATTCCACCC
194
GATGGGATT
578
CCGTTCTCA
 962
 74
ATTCCACCCATGGCAAATTCCAT
1346



002046.2

ATGGCAAA

TCCATTGAT

GCCTTGACG


GGCACCGTCAAGGCTGAGAACGG






TTC

GACA

GTGC


GAAGCTTGTCATCAATGGAAATC













CCATC






GATA3
NM_
GATA3
CAAAGGAG
195
GAGTCAGAA
579
TGTTCCAAC
 963
 75
CAAAGGAGCTCACTGTGGTGTCT
1347



002051.1

CTCACTGTG

TGGCTTATT

CACTGAATC


GTGTTCCAACCACTGAATCTGGA






GTGTCT

CACAGATG

TGGACC


CCCCATCTGTGAATAAGCCATTC













TGACTC






GBP1
NM_
GBP1
TTGGGAAAT
196
AGAAGCTAG
580
TTGGGACAT
 964
 73
TTGGGAAATATTTGGGCATTGGT
1348



002053.1

ATTTGGGCA

GGTGGTTGT

TGTAGACTT


CTGGCCAAGTCTACAATGTCCCA






TT

CC

GGCCAGAC


ATATCAAGGACAACCACCCTAGC













TTCT






GBP2
NM_
GBP2
GCATGGGA
197
TGAGGAGTT
581
CCATGGACC
 965
 83
GCATGGGAACCATCAACCAGCAG
1349



004120.2

ACCATCAAC

TGCCTTGAT

AACTTCAC


GCCATGGACCAACTTCACTATGT






CA

TCG

TATGTGACA


GACAGAGCTGACAGATCGAATCA










GAGC


AGGCAAACTCCTCA






GCLM
NM_
GCLM
TGTAGAATC
198
CACAGAATC
582
TGCAGTTGA
 966
 85
TGTAGAATCAAACTCTTCATCAT
1350



002061.1

AAACTCTTC

CAGCTGTGC

CATGGCCT


CAACTAGAAGTGCAGTTGACATG






ATCATCAAC

CAGCTGTGC

GTTCAGTCC


GCCTGTTCAGTCCTTGGAGTTGC






TAG






ACAGCTGGATTCTGTG






GDF15
NM_
GDF15
CGCTCCAGA
199
ACAGTGGAA
583
TGTTAGCCA
 967
 72
CGCTCCAGACCTATGATGACTTG
1351



004864.1

CCTATGATG

GGACCAGGA

AAGACTGC


TTAGCCAAAGACTGCCACTGCAT






ACT

CT

CACTGCA


ATGAGCAGTCCTGGTCCTTCCAC













TGT






GH1
NM_
GH1
GATCCCAA
200
AGCCATTGC
584
TGTCCACAG
 968
 66
GATCCCAAGGCCCAACTCCCCGA
1352



000515.3

GGCCCAACT

AGCTAGGTG

GACCCTGA


ACCACTCAGGGTCCTGTGGACAG






C

AG

GTGGTTC


CTCACCTAGCTGCAATGGCT






GJA1
NM_
GJA1
GTTCACTGG
201
AAATACCAA
585
ATCCCCTCC
 969
 68
GTTCACTGGGGGTGTATGGGGTA
1353



000165.2

GGGTGTATG

CATGCACCT

CTCTCCACC


GATGGGTGGAGAGGGAGGGGATA






G

CTCTT

CATCTA


AGAGAGGTGCATGTTGGTATTT






GIB2
NM_
GJB2
TGTCATGTA
202
AGTCCACAG
586
AGGCGTTGC
 970
 74
TGTCATGTACGACGGCTTCTCCA
1354



004004.3

CGACGGCTT

TGTTGGGAC

ACTTCACC


TGCAGCGGCTGGTGAAGTGCAAC






CT

AA

AGCC


GCCTGGCCTTGTCCCAACACTGT













GGACT






GMNN
NM_
GMNN
GTTCGCTAC
203
TGCGTACCC
587
CCTCTTGCC
 971
 67
GTTCGCTACGAGGATTGAGCGTC
1355



015895.3

GAGGATTG

ACTTCCTGC

CACTTACTG


TCCACCCAGTAAGTGGGCAAGAG






AGC



GGTGGA


GCGGCAGGAAGTGGGTACGCA






GNAZ
NM_
GNAZ
TTCTGGACC
204
AAAGAGCTG
588
CCGGGTGAC
 972
 68
TTCTGGACCTGGGACCTTAGGAG
1356



002073.2

TGGGACCTT

TGAGTGGCT

AGCACTAA


CCGGGTGACAGCACTAACCAGAC






AG

GG

CCAGACC


CTCCAGCCACTCACAGCTCTTT






GPR30
NM_
GPER
CGTGCCTCT
205
ATGTTCACC
589
CTCTTCCCC
 973
 70
CGTGCCTCTACACCATCTTCCTC
1357



001505.1

ACACCATCT

ACCAGGATC

ATCGGCTTT


TTCCCCATCGGCTTTGTGGGCAA






TC

AG

GTGG


CATCCTGATCCTGGTGGTGAACA













T






GPS1
NM_
GPS1
AGTACAAG
206
GCAGCTCAG
590
CCTCCTGCT
 974
 66
AGTACAAGCAGGCTGCCAAGTGC
1358



004127.4

CAGGCTGCC

GGAAGTCAC

GGCTTCCTT


CTCCTGCTGGCTTCCTTTGATCA






AAG

A

TGATCA


CTGTGACTTCCCTGAGCTGC






GPX1
NM_
GPX1
GCTTATGAC
207
AAAGTTCCA
591
CTCATCACC
 975
 67
GCTTATGACCGACCCCAAGCTCA
1359



000581.2

CGACCCCA

GGCAACATC

TGGTCTCCG


TCACCTGGTCTCCGGTGTGTCGC






A

GT

GTGTGT


AACGATGTTGCCTGGAACTTT






GPX2
NM_
GPX2
CACACAGA
208
GGTCCAGCA
592
CATGCTGCA
 976
 75
CACACAGATCTCCTACTCCATCC
1360



002083.1

TCTCCTACT

GTGTCTCCT

TCCTAAGG


AGTCCTGAGGAGCCTTAGGATGC






CCATCCA

GAA

CTCCTCAGG


AGCATGCCTTCAGGAGACACTGC













TGGACC






GPX4
NM_
GPX4
CTGAGTGTG
209
TACTCCCTG
593
CTGGCCTTC
 977
 66
CTGAGTGTGGTTTGCGGATCCTG
1361



002085.1

GTTTGCGGA

GCTCCTGCT

CCGTGTAAC


GCCTTCCCGTGTAACCAGTTCGG






T

T

CAGTTC


GAAGCAGGAGCCAGGGAGTA






GRB7
NM_
GRB7
CCATCTGCA
210
GGCCACCAG
594
CTCCCCACC
 978
 67
CCATCTGCATCCATCTTGTTTGG
1362



005310.1

TCCATCTTG

GGTATTATC

CTTGAGAA


GCTCCCCACCCTTGAGAAGTGCC






TT

TG

GTGCCT


TCAGATAATACCCTGGTGGCC






GREB1
NM_
GREB1
CAGATGAC
211
GAAGCCTTT
595
CACAATTCC
 979
 71
CAGATGACAATGGCCACAATGCT
1363


vari- 
014668.2

AATGGCCA

CTTTCCACA

CAGAGAAA


CTTCTTGGTTTCTCTGGGAATTG



ant a


CAAT

GC

CCAAGAAGA


TGTTGGCTGTGGAAAGAAAGGCT










GC


TC






GREB1
NM_
GREB1
TGCTTAGGT
212
CAAGAGCCT
596
ACCACGCGA
 980
 73
TGCTTAGGTGCGGTAAAACCAGC
1364


vari- 
033090.1

GCGGTAAA

GAATGCGTC

ACGGTGCA


GCTTGTCCGATGCACCGTTCGCG



ant b


ACCA

AGT

TCG


TGGTAAACTGACGCATTCAGGC













TCTTG






GREB1
NM_
GREB1
CCCCAGGC
213
ACTTCGGCT
597
TCCCCGCCC
 981
 64
CCCCAGGCACCAGCTTTACTCCC
1365


vari- 
148903.1

ACCAGCTTT

GTGTGTTAT

AGCAGG


CGAGCCCAGCAGGACATCTGCAT



ant c


A

ATGCA

ACA


ATAACACACAGCCGAAGT






GRN
NM_
GRN
TGCCCCCAA
214
GAGGTCCGT
598
TGACCTGAT
 982
 72
TGCCCCCAAGACACTGTGTGTGA
1366



002087.1

GACACTGTG

GGTAGCGTT

CCAGAGTA


CCTGATCCAGAGTAAGTGCCTCT






T

CTC

AGTGCCTCT


CCAAGGAGAACGCTACCACGGAC










CCA


CTC






GSTM1
NM_
GSTM1
AAGCTATG
215
GGCCCAGCT
599
TCAGCCACT
 983
 86
AAGCTATGAGGAAAAGAAGTACA
1367



000561.1

AGGAAAAG

TGAATTTTTC

GGCTTCTGT


CGATGGGGGACGCTCCTGATTAT






AAGTACAC

A

CATAATCAG


GACAGAAGCCAGTGGCTGAATGA






GAT



GAG


AAAATTCAAGCTGGGCC






GSTM2
NM_

CTGGGCTGT
216
GCGAATCTG
600
CCCGCCTAC
 984
 71
CTGGGCTGTGAGGCTGAGAGTGA
1368


gene
000848

GAGGCTGA

CTCCTTTTC

CCTCGTAAA


ATCTGCTTTACGAGGGTAGGCGG




gene

GA

TGA

GCAGATTCA


GGAATCAGAAAAGGAGCAGATTC













GC






GSTM2
NM_
GSTM2
CTGCAGGC
217
CCAAGAAAC
601
CCCGCCTAC
 984
 68
CTGCAGGCACTCCCTGAAATGCT
1369



000848.2

ACTCCCTGA

CATGGCTGC

CCTCGTAA


GAAGCTCTACTCACAGTTTCTGG






AAT

TT

GTTTCTGGG


GGAAGCAGCCATGGTTTCTTGG






GSTM3
NM_
GSTM3
CAATGCCAT
218
GTCCACTCG
602
CTCGCAAGC
 986
 76
CAATGCCATCTTGCGCTACATCG
1370



000849.3

CTTGCGCTA

AATCTTTTCT

ACAACATGT


CTCGCAAGCACAACATGTGTGGT






CAT

TCTTCA

GTGGTGAGA


GAGACTGAAGAAGAAAAGATTCG













AGTGGAC






GSTT1
NM_
GSTT1
CACCATCCC
219
GGCCTCAGT
603
CACAGCCGC
 987
 66
CACCATCCCCACCCTGTCTTCCA
1371



000853.1

CACCCTGTC

GTGCATCAT

CTGAAAGC


CAGCCGCCTGAAAGCCACAATGA






T

TCT

CACAAT


GAATGATGCACACTGAGGCC






GUS
NM_
GUSB
CCCACTCAG
220
CACGCAGGT
604
TCAAGTAAA
 988
 73
CCCACTCAGTAGCCAAGTCACAA
1372



000181.1

TAGCCAAGT

GGTATCAGT

CGGGCTGTT


TGTTTGGAAAACAGCCCGTTTAC






CA

CT

TTCCAAACA


TTGAGCAAGACTGATACCACCTG













CGTG






H3F3A
NM_
H3F3A
CCAAACGT
221
TCTTAAGCA
605
AAAGACATC
 989
 70
CCAAACGTGTAACAATTATGCCA
1373



002107.3

GTAACAATT

CGTTCTCCA

CAGCTAGC


AAAGACATCCAGCTAGCACGCCG






ATGCC

CG

ACGCCG


CATACGTGGAGAACGTGCTTAAG













A






HDAC1
NM_
HDAC1
CAAGTACC
222
GCTTGCTGT
606
TTCTTGCGC
 990
 74
CAAGTACCACAGCGATGACTACA
1374



004964.2

ACAGCGAT

ACTCCGACA

TCCATCCGT


TTAAATTCTTGCGCTCCATCCGT






AA

TGTT

CCAGA


CCAGATAACATGTCGGAGTACAG













CAAGC






HDAC6
NM_
HDAC6
TCCTGTGCT
223
CTCCACGGT
607
CAAGAACCT
 991
 66
TCCTGTGCTCTGGAAGCCCTTGA
1375



006044.2

CTGGAAGC

CTCAGTTGA

CCCAGAAG


GCCCTTCTGGGAGGTTCTTGTGA






C

TCT

GGCTCAA


GATCAACTGAGACCGTGGAG






HER2
NM_
ERBB2
CGGTGTGA
224
CCTCTCGCA
608
CCAGACCAT
 992
 70
CGGTGTGAGAAGTGCAGCAAGCC
1376



004448.1

GAAGTGCA

AGTGCTCCA

AGCACACT


CTGTGCCCGAGTGTGCTATGGTC






GCAA

T

CGGGCAC


TGGGCATGGAGCACTTGCGAGAG













G






HES1
NM_
HES1
GAAAGATA
225
GGAGGTGCT
609
CAGAATGTC
 993
 68
GAAAGATAGCTCGCGGCATTCCA
1377



005524.2

GCTCGCGGC

TCACTGTCA

CGCCTTCTC


AGCTGGAGAAGGCGGACATTCTG






A

TTT

CAGCTT


GAAATGACAGTGAAGCACCTCC






HGFAC
NM_
HGFAC
CAGGACAC
226
GCAGGGAGC
610
CGCTCACGT
 994
 72
CAGGACACAAGTGCCAGATTGCG
1378



001528.2

AAGTGCCA

TGGAGTAGC

TCTCATCCA


GGCTGGGGCCACTTGGATGAGAA






GATT



AGTGG


CGTGAGCGGCTACTCCAGCTCCC













TGC






HLA-
NM_
HLA-
TCCATGATG
227
TGAGCAGCA
611
CCCCGGACA
 995
 73
TCCATGATGGTTCTGCAGGTTTC
1379


DPB1
002121.4
DPB1
GTTCTGCAG

CCATCAGTA

GTGGCTCT


TGCGGCCCCCCGGACAGTGGCTC






GTT

ACG

GACG


TGACGGCGTTACTGATGGTGCTG













CTCA






HMGB1
NM_
HMGB1
TGGCCTGTC
228
GCTTGTCAT
612
TTCCACATC
 996
 71
TGGCCTGTCCATTGGTGATGTTG
1380



002128.3

CATTGGTGA

CTGCAGCAG

TCTCCCAGT


CGAAGAAACTGGGAGAGATGTGG






T

TGTT

TTCTTCGCA


AATAACACTGCTGCAGATGACAA










A


GC






HNF3A
NM_
FOXA1
TCCAGGATG
229
GCGTGTCTG
613
AGTCGCTGG
 997
 73
TCCAGGATGTTAGGAACTGTGAA
1381



004496.1

TTAGGAACT

CGTAGTAGC

TTTCATGCC


GATGGAAGGGCATGAAACCAGCG






GTGAAG

TGTT

CTTCCA


ACTGGAACAGCTACTACGCAGAC













ACGC






HNRP
NM_
HNRNP
AGCAGGAG
230
GTTTGCCAA
614
CTCCATATC
 998
 84
AGCAGGAGCGACCAACTGATCGC
1382


AB
004499.3
AB
CGACCAACT

GTTAAATTT

CAAACAAA


ACACATGCTTTGTTTGGATATGG






GA

GGTACATAA

GCATGTGT


AGTGAACACAATTATGTACCAAA








T

GCG


TTTAACTTGGCAAAC






HNRPC
NM_
HNRN
GCAGCAGT
231
GGGAGGGAG
615
AGTCTCCTA
 999
 68
GCAGCAGTCGGCTTCTCTACGCA
1383



004500.3
PC
CGGCTTCTC

AAGAGATTC

CTCCCGGGT


GAACCCGGGAGTAGGAGACTCAG






T

GAT

TCTGCG


AATCGAATCTCTTCTCCCTCCC






HoxA1
NM_
HOXA1
AGTGACAG
232
CCGAGTCGC
616
TGAACTCCT
1000
 69
AGTGACAGATGGACAATGCAAGA
1384



005522.3

ATGGACAA

CACTGCTAA

TCCTGGAAT


ATGAACTCCTTCCTGGAATACCC






TGCAAGA

GT

ACCCCA


CATACTTAGCAGTGGCGACTCGG






HoxA5
NM_
HOXA5
TCCCTTGTG
233
GGCAATAAA
617
AGCCCTGTT
1001
 78
TCCCTTGTGTTCCTTCTGTGAAG
1385



019102.2

TTCCTTCTG

CAGGCTCAT

CTCGTTGCC


AAGCCCTGTTCTCGTTGCCCTAA






TGAA

GATTAA

CTAATTCAT


TTCATCTTTTAATCATGAGCCTG










C


TTTATTGCC






HOXB13
NM_
HOXB13
CGTGCCTTA
234
CACAGGGTT
618
ACACTCGGC
1002
 71
CGTGCCTTATGGTTACTTTGGAG
1386



006361.2

TGGTTACTT

TCAGCGAGC

AGGAGTAG


GCGGGTACTACTCCTGCCGAGTG






TGG



TACCCGC


TCCCGGAGCTCGCTGAAACCCTG













TG






HOXB7
NM_
HOXB7
CAGCCTCAA
235
GTTGGAAGC
619
ACCGGAGCC
1003
 68
CAGCCTCAAGTTCGGTTTTCGCT
1387



004502.2

GTTCGGTTT

AAACGCACA

TTCCCAGA


ACCGGAGCCTTCCCAGAACAAAC






TC



ACAAACT


TTCTTGTGCGTTTGCTTCCAAC






HSD17
NM_
HSD17
CTGGACCGC
236
CGCCTCGCG
620
ACCGCTTCT
1004
 78
CTGGACCGCACGGACATCCACAC
1388


B1
000413.1
B1
ACGGACAT

AAAGACTTG

ACCAATACC


CTTCCACCGCTTCTACCAATACC






C



TCGCCCA


TCGCCCACAGCAAGCAAGTCTTT













CGCGAGGCG






HSD17
NM_
HDS17
GCTTTCCAA
237
TGCCTGCGA
621
AGTTGCTTC
1005
 68
GCTTTCCAAGTGGGGAATTAAAG
1389


B2
002153.1
B2
GTGGGGAA

TATTTGTTA

CATCCAACC


TTGCTTCCATCCAACCTGGAGGC






TTA

GG

TGGAGG


TTCCTAACAAATATCGCAGGCA






HSHIN1
NM_
OTUD4
CAGTCTCGC
238
ATAAACGCT
622
CAGAATGGC
1006
 77
CAGTCTCGCCATGTTGAAGTCAG
1390



017493.3

CATGTTGAA

TCAAATTTC

CTGTATTC


AATGGCCTGTATTCACTATCTTC






GT

TCTCTG

ACTATCTT


GAGAGAACAGAGAGAAATTTGAA










CGAGA


GCGTTTAT






HSPA1A
NM_
HSPA
CTGCTGCGA
239
CAGGTTCGC
623
AGAGTGACT
1007
 70
CTGCTGCGACAGTCCACTACCTT
1391



005345.4
1A
CAGTCCACT

TCTGGGAAG

CCCGTTGT


TTTCGAGAGTGACTCCCGTTGTC






A



CCCAAGG


CCAAGGCTTCCCAGAGCGAACCT













G






HSPA1B
NM_
HSPA
GGTCCGCTT
240
GCACAGGTT
624
TGACTCCCG
1008
 63
GGTCCGCTTCGTCTTTCGAGAGT
1392



005346.3
1B
CGTCTTTCG

CGCTCTGGA

CGGTCCCA


GACTCCCGCGGTCCCAAGGCTTT






A

A

AGG


CCAGAGCGAACCTGTGC






HSPA4
NM_
HSPA4
TTCAGTGTG
241
ATCTGTTTC
625
CATTTTCCT
1009
 72
TTCAGTGTGTCCAGTGCATCTTT
1393



002154.3

TCCAGTGCA

CATTGGCTC

CAGACTTGT


AGTGGAGGTTCACAAGTCTGAGG






TC

CT

GAACCTCCA


AAAATGAGGAGCCAATGGAAACA










CT


GAT






HSPA5
NM_
HSPA5
GGCTAGTA
242
GGTCTGCCC
626
TAATTAGAC
1010
 84
GGCTAGTAGAACTGGATCCCAAC
1394



005347.2

GAACTGGA

AAATGCTTT

CTAGGCCT


ACCAAACTCTTAATTAGACCTAG






TCCCAACA

TC

CAGCTGCA


GCCTCAGCTGCACTGCCCGAAAA










CTGCC


GCATTTGGGCAGACC






HSPA8
NM_
HSPA8
CCTCCCTCT
243
GCTACATCT
627
CTCAGGGCC
1011
 73
CCTCCCTCTGGTGGTGCTTCCTC
1395



006597.3

GGTGGTGCT

ACACTTGGT

CACCATTG


AGGGCCCACCATTGAAGAGGTTG






T

TGGCTTAA

AAGAGGTTG


ATTAAGCCAACCAAGTGTAGATG













TAGC






HSPB1
NM_
HSPB1
CCGACTGG
244
ATGCTGGCT
628
CGCACTTTT
1012
 84
CCGACTGGAGGAGCATAAAAGCG
1396



001540.2

AGGAGCAT

GACTCTGCT

CTGAGCAG


CAGCCGAGCCCAGCGCCCCGCAC






AAA

C

ACGTCCA


TTTTCTGAGCAGACGTCCAGAGC













AGAGTCAGCCAGCAT






IBSP
NM_
IBSP
GAATACCA
245
GGATTGCAG
629
CCAGGCGTG
1013
 83
GAATACCACACTTTCTGCTACAA
1397



004967.2

CACTTTCTG

CTAACCCTG

GCGTCCTC


CACTGGGCTATGGAGAGGACGCC






CTACAACAC

TATACC

TCCATA


ACGCCTGGCACAGGGTATACAGG













GTTAGCTGCAATCC






ICAM1
NM_
ICAM1
GCAGACAG
246
CTTCTGAGA
630
CCGGCGCCC
1014
 68
GCAGACAGTGACCATCTACAGCT
1398



000201.1

TGACCATCT

CCTCTGGCT

AACGTGAT


TTCCGGCGCCCAACGTGATTCTG






ACAGCTT

TCGT

TCT


ACGAAGCCAGAGGTCTCAGAAG






ID1
NM_
ID1
AGAACCGC
247
TCCAACTGA
631
TGGAGATTC
1015
 70
AGAACCGCAAGGTGAGCAAGGTG
1399



002165.1

AAGGTGAG

AGGTCCCTG

TCCAGCAC


GAGATTCTCCAGCACGTCATCGA






CAA

ATG

GTCATCGAC


CTACATCAGGGACCTTCAGTTGG













A






ID4
NM_
ID4
TGGCCTGGC
248
TGCAATCAT
632
CTTTTGTTT
1016
 83
TGGCCTGGCTCTTAATTTGCTTT
1400



001546.2

TCTTAATTT

GCAAGACCA

TGCCCAGTA


TGTTTTGCCCAGTATAGACTCGG






G

C

TAGACTCGG


AAGTAACAGTTATAGCTAGTGGT










AAG


CTTGCATGATTGCA






IDH2
NM_
IDH2
GGTGGAGA
249
GCTCGTTCA
633
CCGTGAATG
1017
 74
GGTGGAGAGTGGAGCCATGACCA
1401



002168.2

GTGGAGCC

GCTTCACAT

CAGCCCGC


AGGACCTGGCGGGCTGCATTCAC






ATGA

TGC

CAG


GGCCTCAGCAATGTGAAGCTGAA













CGAGC






IGF1R
NM_
IGF1R
GCATGGTA
250
TTTCCGGTA
634
CGCGTCATA
1018
 83
GCATGGTAGCCGAAGATTTCACA
1402



000875.2

GCCGAAGA

ATAGTCTGT

CCAAAATC


GTCAAAATCGGAGATTTTGGTAT






TTTCA

CTCATAGAT

TCCGATTT


GACGCGAGATATCTATGAGACAG








ATC

TGA


ACTATTACCGGAAA






IGF2
NM_
IGF2
CCGTGCTTC
251
TGGACTGCT
635
TACCCCGTG
1019
 72
CCGTGCTTCCGGACAACTTCCCC
1403



000612.2

CGGACAAC

TCCAGGTGT

GGCAAGTT


AGATACCCCGTGGGCAAGTTCTT






TT

CA

CTTCCAA


CCAATATGACACCTGGAAGCAGT













CCA






IGFBP6
NM_
IGFBP6
TGAACCGC
252
GTCTTGGAC
636
ATCCAGGCA
1020
 77
TGAACCGCAGAGACCAACAGAGG
1404



002178.1

AGAGACCA

ACCCGCAGA

CCTCTACC


AATCCAGGCACCTCTACCACGCC






ACAG

AT

ACGCCCTC


CTCCCAGCCCAATTCTGCGGGTG













TCCAAGAC






IGFBP7
NM_
IGFBP7
GGGTCACTA
253
GGGTCTGAA
637
CCCGGTCAC
1021
 68
GGGTCACTATGGAGTTCAAAGGA
1405



001553.1

TGGAGTTCA

TGGCCAGGT

CAGGCAGG


CAGAACTCCTGCCTGGTGACCGG






AAGGA

T

AGTTCT


GACAACCTGGCCATTCAGACCC






IKBKE
NM_
IKBKE
GCCTCCCAT
254
CAGAGCTCT
638
CAGCCCTAC
1022
 66
GCCTCCCATAGCTCCTTACCCCA
1406



014002.2

AGCTCCTTA

TGCATGTGG

ACGAAAGG


GCCCTACACGAAAGGACCTGCTT






CC

AG

ACTGCT


CTCCACATGCAAGAGCTCTG






IL-8
NM_
IL8
AAGGAACC
255
ATCAGGAAG
639
TGACTTCCA
1023
 70
AAGGAACCATCTCACTGTGTGTA
1407



000584.2

ATCTCACTG

GCTGCCAAG

AGCTGGCC


AACATGACTTCCAAGCTGGCCGT






TGTGTAAAC

AG

GTGGC


GGCTCTCTTGGCAGCCTTCCTGA













T






IL10
NM_
IL10
GGCGCTGTC
256
TGGAGCTTA
640
CTGCTCCAC
1024
 79
GGCGCTGTCATCGATTTCTTCCC
1408



000572.1

ATCGATTTC

TTAAAGGCA

GGCCTTGCT


TGTGAAAACAAGAGCAAGGCCGT






TT

TTCTTCA

CTTG


GGAGCAGGTGAAGAATGCCTTTA













ATAAGCTCCA






IL11
NM_
IL11
TGGAAGGTT
257
TCTTGACCT
641
CCTGTGATC
1025
 66
TGGAAGGTCCACAAGTCACCCTG
1409



000641.2

CCACAAGTC

TGCAGCTTT

AACAGTAC


TGATCAACAGTACCCGTATGGGA






AC

GT

CCGTATGGG


CAAAGCTGCAAGGTCAAGA






IL17RB
NM_
IL17RB
ACCCTCTGG
258
GGCCCCAAT
642
TCGCCTTCC
1026
 76
ACCCTCTGGTGGTAAATGGACAT
1410



018725.2

TGGTAAATG

GAAATAGAC

CTGTAGAGC


TTTCCTACATCGGCTTCCCTGTA






GA

TG

TGAACA


GAGCTGAACACAGTCTATTTCAT













TGGGGCC






IL6ST
NM_
IL6ST
GGCCTAATG
259
AAAATTGTG
643
CATATTGCC
1027
 74
GGCCTAATGTTCCAGATCCTTCA
1411



002184.2

TTCCAGATC

CCTTGGAGG

CAGTGGTC


GAAGATCATATTGCCCAGTGGTC






CT

AG

ACCTCACA


ACCTCACACTCCTCCAAGGCACA













ATTTT






ING1
NM_
ING1
ACTTTCCTG
260
AACTCCGAG
644
ATTCAAAAC
1028
 66
ACTTTCCTGCGAGGTCAGTCAAG
1412



005537.2

CGAGGTCA

TGGTGATCC

AGAGCCCC


GCTTTGGGGGCTCTGTTTTGAAT






GTC

A

CAAAGCC


GTGGATCACCACTCGGAGTT






INHBA
NM_
INHBA
GTGCCCGA
261
CGGTAGTGG
645
ACGTCCGGG
1029
 72
GTGCCCGAGCCATATAGCAGGCA
1413



002192.1

GCCATATAG

TTGATGACT

TCCTCACT


CGTCCGGGTCCTCACTGTCCTTC






CA

GTTGA

GTCCTTCC


CACTCAACAGTCATCAACCACTA













CCG






IRF1
NM_
IRF1
AGTCCAGCC
262
AGAAGGTAT
646
CCCACATGA
1030
 69
AGTCCAGCCGAGATGCTAAGAGC
1414



002198.1

GAGATGCT

CAGGGCTGG

CTTCCTCTT


AAGGCCAAGAGGAAGTCATGTGG






AAG

AA

GGCCTT


GGATTCCAGCCCTGATACCTTCT






IRS1
NM_
IRS1
CCACAGCTC
263
CCTCAGTGC
647
TCCATCCCA
1031
 74
CCACAGCTCACCTTCTGTCAGGT
1415



005544.1

ACCTTCTGT

CAGTCTCTT

GCTCCAGCC


GTCCATCCCAGCTCCAGCCAGCT






CA

CC

AG


CCCAGAGAGGAAGAGACTGGCAC













TGAGG






ITGA3
NM_
ITGA3
CCATGATCC
264
GAAGCTTTG
648
CACTCCAGA
1032
 77
CCATGATCCTCACTCTGCTGGTG
1416



002204.1

TCACTCTGC

TAGCCGGTG

CCTCGCTTA


GACTATACACTCCAGACCTCGCT






TG

AT

GCATGG


TAGCATGGTAAATCACCGGCTAC













AAAGCTTC






ITGA4
NM_
ITGA4
CAACGCTTC
265
GTCTGGCCG
649
CGATCCTGC
1033
 66
CAACGCTTCAGTGATCAATCCCG
1417



000885.2

AGTGATCA

GGATTCTTT

ATCTGTAA


GGGCGATTTACAGATGCAGGATC






ATCC



ATCGCCC


GGAAAGAATCCCGGCCAGAC






ITGA5
NM_
ITGA5
AGGCCAGC
266
GTCTTCTCC
650
TCTGAGCCT
1034
 75
AGGCCAGCCCTACATTATCAGAG
1418



002205.1

CCTACATTA

ACAGTCCAG

TGTCCTCTA


CAAGAGCCGGATAGAGGACAAGG






TCA

CA

TCCGGC


CTCAGATCTTGCTGGACTGTGGA













GAAGAC






ITGA6
NM_
ITGA6
CAGTGACA
267
GTTTAGCCT
651
TCGCCATCT
1035
 69
CAGTGACAAACAGCCCTTCCAAC
1419



000210.1

AACAGCCCT

CATGGGCGT

TTTGTGGGA


CCAAGGAATCCCACAAAAGATGG






TCC

C

TTCCTT


CGATGACGCCCATGAGGCTAAAC






ITGAV
NM_
ITGAV
ACTCGGACT
268
TGCCATCAC
652
CCGACAGCC
1036
 79
ACTCGGACTGCACAAGCTATTTT
1420



002210.2

GCACAAGC

CATTGAAAT

ACAGAATA


TGATGACAGCTATTTGGGTTATT






TATT

CT

ACCCAAA


CTGTGGCTGTCGGAGATTTCAAT













GGTGATGGCA






ITGB1
NM_
ITGB1
TCAGAATTG
269
CCTGAGCTT
653
TGCTAATGT
1037
 74
TCAGAATTGGATTTGGCTCATTT
1421



002211.2

GATTTGGCT

AGCTGGTGT

AAGGCATC


GTGGAAAAGACTGTGATGCCTTA






CA

TG

ACAGTCTT


CATTAGCACAACACCAGCTAAGC










TTCCA


TCAGG






ITGB3
NM_
ITGB3
ACCGGGGA
270
CCTTAAGCT
654
AAATACCTG
1038
 78
ACCGGGGAGCCCTACATGACGAA
1422



000212.2

GCCCTACAT

CTTTCACTG

CAACCGTT


AATACCTGCAACCGTTACTGCCG






GA

ACTCAATCT

ACTGCCGT


GTGACGAGATTGAGTCAGTGAAA










GAC


GAGCTTAAGG






ITGB4
NM_
ITGB4
CAAGGTGC
271
GCGCACACC
655
CACCAACCT
1039
 66
CAAGGTGCCCTCAGTGGAGCTCA
1423



000213.2

CCTCAGTGG

TTCATCTCA

GTACCCGT


CCAACCTGTACCCGTATTGCGAC






A

T

ATTGCGA


TATGAGATGAAGGTGTGCGC






ITGB5
NM_
ITGB5
TCGTGAAA
272
GGTGAACAT
656
TGCTATGTT
1040
 71
TCGTGAAAGATGACCAGGAGGCT
1424



002213.3

GATGACCA

CATGACGCA

TCTACAAAA


GTGCTATGTTTCTACAAAACCGC






GGAG

GT

CCGCCAAGG


CAAGGACTGCGTCATGATGTTCA













CC






JAG1
NM_
JAG1
TGGCTTACA
273
GCATAGCTG
657
ACTCGATTT
1041
 69
TGGCTTACACTGGCAATGGTAGT
1425



000214.1

CTGGCAATG

TGAGATGCG

CCCAGCCA


TTCTGTGGTTGGCTGGGAAATCG






G

G

ACCACAG


AGTGCCGCATCTCACAGCTATGC






JUNB
NM_
JUNB
CTGTCAGCT
274
AGGGGGTGT
658
CAAGGGACA
1042
 70
CTGTCAGCTGCTGCTTGGGGTCA
1426



002229.2

GCTGCTTGG

CCGTAAAGG

CGCCTTCT


AGGGACACGCCTTCTGAACGTCC










GAACGT


CCTGCCCCTTTACGGACACCCCC













T






Ki-67
NM_
MKI67
CGGACTTTG
275
TTACAACTC
659
CCACTTGTC
1043
 80
CGGACTTTGGGTGCGACTTGACG
1427



002417.1

GGTGCGACT

TTCCACTGG

GAACCACC


AGCGGTGGTTCGACAAGTGGCCT






T

GACGAT

GCTCGT


TGCGGGCCGGATCGTCCCAGTGG













AAGAGTTGTAA






KIAA
NM_
JAKMI
AAGCCCGA
276
TGTCTGTGA
660
CCCTTCAAG
1044
 67
AAGCCCGAGGCACTCATTGTTGC
1428


0555
014790.3
P2
GGCACTCAT

GCTTGGTCC

CTGCCAAT


CCTTCAAGCTGCCAATGAAGACC






T

TG

GAAGACC


TCAGGACCAAGCTCACAGACA






KIAA
NM_
KIAA
GCTGGGAG
277
GAAGCAGGT
661
CTTCAAGGC
1045
 66
GCTGGGAGGCAGGACTTCCTCTT
1429


1199
018689.1
1199
GCAGGACTT

CAGAGTGAG

CATGCTGA


CAAGGCCATGCTGACCATCAGCT






C

CC

CCATCAG


GGCTCACTCTGACCTGCTTC






KIF14
NM_
KIF14
GAGCTCCAT
278
TCACACCCA
662
TGCATTCCT
1046
 69
GAGCTCCATGGCTCATCCCCAGC
1430



014875.1

GGCTCATCC

CTGAATCCT

CTGAGCTCA


AGTGAGCTCAGAGGAATGCACAC








ACTG

CTGCTG


CCAGTAGGATTCAGTGGGTGTGA






KIF20A
NM_
KIF20A
TCTCTTGCA
279
CCGTAGGGC
663
AGTCAGTGG
1047
 67
TCTCTTGCAGGAAGCCAGACAAC
1431



005733.1

GGAAGCCA

CAATTCAGA

CCCATCAG


AGTCAGTGGCCCATCAGCAATCA








C

CAATCAG


GGGTCTGAATTGGCCCTACGG






KIF2C
NM_
KIF2C
AATTCCTGC
280
CGTGATGCG
664
AAGCCGCTC
1048
 73
AATTCCTGCTCCAAAAGAAAGTC
1432



006845.2

TCCAAAAG

AAGCTCTGA

CACTCGCA


TTCGAAGCCGCTCCACTCGCATG






AAAGTCTT

GA

TGTCC


TCCACTGTCTCAGAGCTTCGCAT













CACG






KLK11
NM_
KLK11
CACCCCGGC
281
CATCTICAC
665
CCTCCCCAA
1049
 66
CACCCCGGCTTCAACAACAGCCT
1433



006853.1

TTCAACAAC

CAGCATGAT

CAAAGACC


CCCCAACAAAGACCACCGCAATG








GTCA

ACCGCA


ACATCATGCTGGTGAAGATG






KLK6
NM_
KLK6
GACGTGAG
282
TCCTCACTC
666
TTACCCCAG
1050
 78
GACGTGAGGGTCCTGATTCTCCC
1434



002774.2

GGTCCTGAT

ATCACGTCC

CTCCATCCT


TGGTTTTACCCCAGCTCCATCCT






TCT

TC

TGCATC


TGCATCACTGGGGAGGACGTGAT













GAGTGAGGA






KLRC1
NM_
KLRC1
CATCCTCAT
283
GCCAAACCA
667
TTCGTAACA
1051
 67
CATCCTCATGGATTGGTGTGTTT
1435



002259.3

GGATTGGTG

TTCATTGTC

GCAGTCAT


CGTAACAGCAGTCATCATCCATG






TG

AC

CATCCATGG


GGTGACAATGAATGGTTTGGC






KNSL2
BC

CCACCTCGC
284
GCAATCTCT
668
TTTGACCGG
1052
 77
CCACCTCGCCATGATTTTTCCTT
1436



000712.1

CATGATTTT

TCAAACACT

GTATTCCCA


TGACCGGGTATTCCCACCAGGAA






TC

TCATCCT

CCAGGAA


AGTGGACAGGATGAAGTGTTTGA













AGAGATTGC






KNTC2
NM_
NDC80
ATGTGCCAG
285
TGAGCCCCT
669
CCTTGGAGA
1053
 71
ATGTGCCAGTGAGCTTGAGTCCT
1437



006101.1

TGAGCTTGA

GGTTAACAG

AACACAAG


TGGAGAAACACAAGCACCTGCTA






GT

TA

CACCTGC


GAAAGTACTGTTAACCAGGGCCT













CA






KPNA2
NM_
KPNA2
TGATGGTCC
286
AAGCTTCAC
670
ACTCCTGTT
1054
 67
TGATGGTCCAAATGAACGAATTG
1438



002266.1

AAATGAAC

AAGTTGGGG

TTCACCACC


GCATGGTGGTGAAAACAGGAGTT






GAA

C

ATGCCA


GTGCCCCAACTTGTGAAGCTT






L1CAM
NM_
L1CAM
CTTGCTGGC
287
TGATTGTCC
671
ATCTACGTT
1055
 66
CTTGCTGGCCAATGCCTACATCT
1439



000425.2

CAATGCCTA

GCAGTCAGG

GTCCAGCTG


ACGTTGTCCAGCTGCCAGCCAAG










CCAGCC


ATCCTGACTGCGGACAATCA






LAMA3
NM_
LAMA3
CAGATGAG
288
TTGAAATGG
672
CTGATTCCT
1056
 73
CAGATGAGGCACATGGAGACCCA
1440



000227.2

GCACATGG

CAGAACGGT

CAGGTCCTT


GGCCAAGGACCTGAGGAATCAGT






AGAC

AG

GGCCTG


TGCTCAACTACCGTTCTGCCATT













TCAA






LAMA5
NM_
LAMA5
CTCCTGGCC
289
ACACAAGGC
673
CTGTTCCTG
1057
 67
CTCCTGGCCAACAGCACTGCACT
1441



005560.3

AACAGCAC

CCAGCCTCT

GAGCATGG


AGAAGAGGCCATGCTCCAGGAAC






T



CCTCTTC


AGCAGAGGCTGGGCCTTGTGT






LAMB1
NM_
LAMIB1
CAAGGAGA
290
CGGCAGAAC
674
CAAGTGCCT
1058
 66
CAAGGAGACTGGGAGGTGTCTCA
1442



002291.1

CTGGGAGG

TGACAGTGT

GTACCACA


AGTGCCTGTACCACACGGAAGGG






TGTC

TC

CGGAAGG


GAACACTGTCAGTTCTGCCG






LAMB3
NM_
LAMB3
ACTGACCA
291
GTCACACTT
675
CCACTCGCC
1059
 67
ACTGACCAAGCCTGAGACCTACT
1443



000228.1

AGCCTGAG

GCAGCATTT

ATACTGGG


GCACCCAGTATGGCGAGTGGCAG






ACCT

CA

TGCAGT


ATGAAATGCTGCAAGTGTGAC






LAMC2
NM_
LAMC2
ACTCAAGC
292
ACTCCCTGA
676
AGGTCTTAT
1060
 80
ACTCAAGCGCAAATTGAAGCAGA
1444



005562.1

GGAAATTG

AGCCGAGAC

CAGCACAG


TAGGTCTTATCAGCACAGTCTCC






AAGCA

ACT

TCTCCGCCT


GCCTCCTGGATTCAGTGTCTCGG










CC


CTTCAGGGAGT






LAPTM
NM_
LAPTM
AGCGATGA
293
GACATGGCA
677
CTGGACGCG
1061
 67
AGCGATGAAGATGGTCGCGCCCT
1445


4B
018407.4
4B
AGATGGTC

GCACAAGCA

GTTCTACTC


GGACGCGGTTCTACTCCAACAGT






GC



CAACAG


CTGCTGCTTGGCTGCCATGTC






LGALS3
NM_
LGALS3
AGCGGAAA
294
CTTGAGGGT
678
ACCCAGATA
1062
 69
AGCGGAAAATGGCAGACAATTTT
1446



002306.1

ATGGCAGA

TTGGGTTTC

ACGCATCA


TCGCTCCATGATGCGTTATCTGG






CAAT

CA

TGGAGCGA


GTCTGGAAACCCAAACCCTCAAG






LIMK1
NM_

GCTTCAGGT
295
AAGAGCTGC
679
TGCCTCCCT
1063
 67
GCTTCAGGTGTTGTGACTGCAGT
1447



016735.1

GTTGTGACT

CCATCCTTC

GTCGCACCA


GCCTCCCTGTCGCACCAGTACTA






GC

TC

GTACTA


TGAGAAGGATGGGCAGCTCTT






LIMS1
NM_
LIMS1
TGAACAGT
296
TTCTGGGAA
680
ACTGAGCGC
1064
 71
TGAACAGTAATGGGGAGCTGTAC
1448



004987.3

AATGGGGA

CTGCTGGAA

ACACGAAA


CATGAGCAGTGTTTCGTGTGCGC






GCTG

G

CACTGCT


TCAGTGCTTCCAGCAGTTCCCAG













AA






LMNB1
NM_
LMNB1
TGCAAACG
297
CCCCACGAG
681
CAGCCCCC
1065
 66
TGCAAACGCTGGTGTCACAGCCA
1449



005573.1

CTGGTGTCA

TTCTGGTTCT

CAACTGACC


GCCCCCCAACTGACCTCATCTGG






CA

TC

TCATC


AAGAACCAGAACTCGTGGGG






LOX
NM_
LOX
CCAATGGG
298
CGCTGAGGC
682
CAGGCTCAG
1066
 66
CCAATGGGAGAACAACGGGCAGG
1450



002317.3

AGAACAAC

TGGTACTGT

CAAGCTGA


TGTTCAGCTTGCTGAGCCTGGGC






GG

G

ACACCTG


TCACAGTACCAGCCTCAGCG






LRIG1
NM_

CTGCAACAC
299
GTCTCTGGA
683
TTACTCCA
1067
 67
CTGCAACACCGAAGTGGACTGTT
1451



015541.1

CGAAGTGG

CACAGGCTG

GGGGACAAG


ACTCCAGGGGACAAGCCTTCCAC






AC

G

CCTTCCA


CCCCAGCCTGTGTCCAGAGAC






LSM1
NM_
LSM1
AGACCAAG
300
GAGGAATGG
684
CCTTCAGGG
1068
 66
AGACCAAGCTGGAAGCAGAGAAG
1452



014462.1

CTGGAAGC

AAAGACCTC

CCTGCACTT


TTGAAAGTGCAGGCCCTGAAGGA






AGAG

GG

TCAACT


CCGAGGTCTTTCCATTCCTC






LTBP1
NM_
LTBP1
ACATCCAG
301
GCAGACACA
685
CTGTGTTTA
1069
 67
ACATCCAGGGCTCTGTGGTCCGC
1453



206943.1

GGCTCTGTG

ATGGAAAGA

GGCACTCCC


AAGGGGAGTGCCTAAACACAGAG






G

ACC

CTTGCG


GGTTCTTTCCATTGTGTCTGC






LYRIC
NM_
MTDH
GACCTGGCC
302
CGGACAGTT
686
TTCTTCTTC
1070
 67
GACCTGGCCTTGCTGAAGAATCT
1454



178812.2

TTGCTGAAG

TCTTCCGGT

TGTTCCTCG


CCGGAGCGAGGAACAGAAGAAGA








T

CTCCGG


AGAACCGGAAGAAACTGTCCG






MAD1L1
NM_
MADIL1
AGAAGCTG
303
AGCCGTACC
687
CATGTTCTT
1071
 67
AGAAGCTGTCCCTGCAAGAGCAG
1455



003550.1

TCCCTGCAA

AGCTCAGAC

CACAATCGC


GATGCAGCGATTGTCAAGAACAT






GAG

TT

TGCATCC


GAAGTCTGAGCTGGTACGGCT






MCM2
NM_
MCM2
GACTTTTGC
304
GCCACTAAC
688
ACAGCTCAT
1072
 75
GACTTTTGCCCGCTACCTTTCAT
1456



004526.1

CCGCTACCT

TGCTTCAGT

TGTTGTCAC


TCCGGCGTGACAACAATGAGCTG






TTC

ATGAAGAG

GCCGGA


TTGCTCTTCATACTGAAGCAGTT













AGTGGC






MELK
NM_
MELK
AGGATCGC
305
TGCACATAA
689
CCCGGGTTG
1073
 70
AGGATCGCCTGTCAGAAGAGGAG
1457



014791.1

CTGTCAGAA

GCAACAGCA

TCTTCCGTC


ACCCGGGTTGTCTTCCGTCAGAT






GAG

GA

AGATAG


AGTATCTGCTGTTGCTTATGTGC













A






MGMT
NM_
MGMT
GTGAAATG
306
GACCCTGCT
690
CAGCCCTTT
1074
 69
GTGAAATGAAACGCACCACACTG
1458



002412.1

AAACGCAC

CACAACCAG

GGGGAAGC


GACAGCCCTTTGGGGAAGCTGGA






CACA

AC

TGG


GCTGTCTGGTTGTGAGCAGGGTC






mGST1
NM_
MGST1
ACGGATCTA
307
TCCATATCC
691
TTTGACACC
1075
 79
ACGGATCTACCACACCATTGCAT
1459



020300.2

CCACACCAT

AACAAAAAA

CCTTCCCCA


ATTTGACACCCCTTCCCCAGCCA






TGC

ACTCAAAG

GCCA


AATAGAGCTTTGAGTTTTTTTGT













TGGATATGGA






MMP1
NM_
MMP1
GGGAGATC
308
GGGCCTGGT
692
AGCAAGATT
1076
 72
GGGAGATCATCGGGACAACTCTC
1460



002421.2

ATCGGGAC

TGAAAAGCA

TCCTCCAG


CTTTTGATGGACCTGGAGGAAAT






AACTC

T

GTCCATCAA


CTTGCTCATGCTTTTCAACCAGG










AAGG


CCC






MMP12
NM_
MMP12
CCAACGCTT
309
ACGGTAGTG
693
AACCAGCTC
1077
 78
CCAACGCTTGCCAAATCCTGACA
1461



002426.1

GCCAAATCC

ACAGCATCA

TCTGTGAC


ATTCAGAACCAGCTCTCTGTGAC






T

AAACTC

CCCAATT


CCCAATTTGAGTTTTGATGCTGT













CACTACCGT






MMP2
NM_
MMP2
CCATGATGG
310
GGAGTCCGT
694
CTGGGAGCA
1078
 86
CCATGATGGAGAGGCAGACATCA
1462



004530.1

AGAGGCAG

CCTTACCGT

TGGCGATG


TGATCAACTTTGGCCGCTGGGAG






ACA

CAA

GATACCC


CATGGCGATGGATACCCCTTTGA













CGGTAAGGACGGACTCC






MMP7
NM_
MMP7
GGATGGTA
311
GGAATGTCC
695
CCTGTATGC
1079
 79
GGATGGTAGCAGTCTAGGGATTA
1463



002423.2

GCAGTCTAG

CATACCCAA

TGCAACTCA


ACTTCCTGTATGCTGCAACTCAT






GGATTAACT

AGAA

TGAACTTGG


GAACTTGGCCATTCTTTGGGTAT










C


GGGACATTCC






MMP8
NM_
MMP8
TCACCTCTC
312
TGTCACCGT
696
AAGCAATGT
1080
 79
TCACCTCTCATCTTCACCAGGAT
1464



002424.1

ATCTTCACC

GATCTCTTT

TGATATCT


CTCACAGGGAGAGGCAGATATCA






AGGAT

GGTAA

GCCTCTCC


ACATTGCTTTTTACCAAAGAGAT










CTGTG


CACGGTGACA






MMTV-
AF

CCATACGTG
313
CCTAAAGGT
697
TCATCAAAC
1081
 72
CCATACGTGCTGCTACCTGTAGA
1465


like
346816.1

CTGCTACCT

TTGAATGGC

CATGGTTC


TATTGGTGATGAACCATGGTTTG



env


GT

AGA

ATCACCAA


ATGATTCTGCCATTCAAACCTTT










TATC


AGG






MNAT1
NM_
MNAT1
CGAGAGTCT
314
GGTTCCGAT
698
CGAGGGCAA
1082
 75
CGAGAGTCTGTAGGAGGGAAACC
1466



002431.1

GTAGGAGG

ATTTGGTGG

CCCTGATC


GCCATGGACGATCAGGGTTGCCC






GAAACC

TCTTAC

GTCCA


TCGGTGTAAGACCACCAAATATC













GGAACC






MRP1
NM_
ABCC1
TCATGGTGC
315
CGATTGTCT
699
ACCTGATAC
1083
 79
TCATGGTGCCCGTCAATGCTGTG
1467



004996.2

CCGTCAATG

TTGCTCTTC

GTCTTGGTC


ATGGCGATGAAGACCAAGACGTA








ATGTG

TTCATCGCC


TCAGGTGGCCCACATGAAGAGCA










AT


AAGACAATCG






MRP3
NM_
ABCC3
TCATCCTGG
316
CCGTTGAGT
700
TCTGTCCTG
1084
 91
TCATCCTGGCGATCTACTTCCTC
1468



003786.2

CGATCTACT

GGAATCAGC

GCTGGAGTC


TGGCAGAACCTAGGTCCCTCTGT






TCCT

AA

GCTTTCAT


CCTGGCTGGAGTCGCTTTCATGG













TCTTGCTGATTCCACTCAACGG






MS4A1
NM_
MS4A1
TGAGAAAC
317
CAAGGCCTC
701
TGAACTCCG
1085
 70
TGAGAAACAAACTGCACCCACTG
1469



02l950.2

AAACTGCA

AAATCTCAA

CAGCTAGC


AACTCCGCAGCTAGCATCCAAAT






CCCA

GG

ATCCAAA


CAGCCCTTGAGATTTGAGGCCTT













G






MSH2
NM_
MSH2
GATGCAGA
318
TCTTGGCAA
702
CAAGAAGAT
1086
 73
GATGCAGAATTGAGGCAGACTTT
1470



000251.1

ATTGAGGC

GTCGGTTAA

TTACTTCG


ACAAGAAGATTTACTTCGTCGAT






AGAC

GA

TCGATTCCC


TCCCAGATCTTAACCGACTTGCC










AGA


AAGA






MTA3
XM_

GCTCGTGGT
319
ACAAAGGGA
703
TCAGTCAAC
1087
 69
GCTCGTGGTTCTGTAGTCCAGTC
1471



038567

TCTGTAGTC

GAGCGTGAA

ATCACCCTC


ATCCTAGGAGGGTGATGTTGACT






CA

GT

CTAGGATGA


GAGACTTCACGCTCTCCTTTGT






MX1
NM_
MX1
GAAGGAAT
320
GTCTATTAG
704
TCACCCTGG
1088
 78
GAAGGAATGGGAATCAGTCATGA
1472



002462.2

GGGAATCA

AGTCAGATC

AGATCAGC


GCTAATCACCCTGGAGATCAGCT






GTCATGA

CGGGACAT

TCCCGA


CCCGAGATGTCCCGGATCTGACT













CTAATAGAC






MYBL2
NM_
MYBL2
GCCGAGAT
321
CTTTGATG
705
CAGCATTGT
1089
 74
GCCGAGATCGCCAAGATGTTGCC
1473



002466.1

CGCCAAGA

GTAGAGTTC

CTGTCCTCC


AGGGAGGACAGACAATGCTGTGA






TG

CAGTGATTC

CTGGCA


AGAATCACTGGAACTCTACCATC













AAAAG






NAT1
NM_
NAT1
TGGTTTTGA
322
TGAATCATG
706
TGGAGTGCT
1090
 75
TGTTTTGAGACCACGATGTTGGG
1474



000662.4

GACCACGA

CCAGTGCTG

GTAAACAT


AGGGTATGTTTACAGCACTCCAG






TGT

TA

ACCCTCCCA


CCAAAAAATACAGCACTGGCATG













ATTCA






NAT2
NM_
NAT2
TAACTGACA
323
ATGGCTTGC
707
CGGGCTGTT
1091
 73
TAACTGACATTCTTGACCACCAG
1475



000015.1

TTCTTGAGC

CCACAATGC

CCCTTTGAG


ATCCGGGCTGTTCCCTTTGAGAA






ACCAGAT



AACCTTAAC


CCTTAACATGCATTGTGGGCAAG










A


CCAT






NRG1
NM_
NRG1
CGAGACTCT
324
CTTGGCGTG
708
ATGACCACC
1092
 83
CGAGACTCTCCTCATAGTGAAAG
1476



013957.1

CCTCATAGT

TGGAAATCT

CCGGCTCG


GTATGTGTCAGCCATGACCACCC






GAAAGGTA

ACAG

TATGTCA


CGGCTCGTATGTCACCTGTAGAT






T






TTCCACACGCCAAG






OPN,
NM_
SPP1
CAACCGAA
325
CCTCAGTCC
709
TCCCCACAG
1093
 80
CAACCGAAGTTTTCACTCCAGTT
1477


osteo-
000582.1

GTTTTCACT

ATAAACCAC

TAGACACA


GTCCCCACAGTAGACACATATGA



pontin


CCAGTT

ACTATCA

TATGATGGC


TGGCCGAGGTGATAGTGTGGTTT










CG


ATGACTGAGG






p16-
L27211.1

GCGGAAGG
326
TGATGATCT
710
CTCAGAGCC
1094
 76
GCGGAAGGTCCCTCAGACATCCC
1478


INK4


TCCCTCAGA

AAGTTTCCC

TCTCTGGTT


CGATTGAAAGAACCAGAGAGGCT






CA

GAGGTT

CTTTCAATC


CTGAGAAACCTCGGGAAACTTAG










GG


ATCATCA






PAI1
NM_
SER-
CCGCAACGT
327
TGCTGGGTT
711
CTCGGTGTT
1095
 81
CCGCAACGTGGTTTTCTCACCCT
1479



000602.1
PINE1
GGTTTTCTC

TCTCCTCCTG

GGCCATGCT


ATGGGGTGCCCTCGGTGTTGGCC






A

TT

CCAG


ATGCTCCAGCTGACAACAGGAGG













AGAAACCCAGCA






PGF
NM_

GTGGTTTTC
328
AGCAAGGGA
712
ATCTTCTCA
1096
 71
GTGGTTTTCCCTCGGAGCCCCCT
1480



002632.4

CCTCGGAGC

ACAGCCTCA

GACGTCCCG


GGCTCGGGACGTCTGAGAAGATG








T

AGCCAG


CCGGTCATGAGGCTGTTCCCTTG













CT






PR
NM_
PGR
GCATCAGG
329
AGTAGTTGT
713
TGTCCTTAC
1097
 85
GCATCAGGCTGTCATTATGGTGT
1481



000926.2

CTGTCATTA

GCTGCCCTT

CTGTGGGAG


CCTTACCTGTGGGAGCTGTAAGG






TGG

CC

CTGTAAGGT


TCTTCTTTAAGAGGGCAATGGAA










C


GGGCAGCACAACTACT






PRDX1
NM_
PRDX1
AGGACTGG
330
CCCATAATC
714
TCCTTTGGT
1098
 67
AGGACTGGGACCCATGAACATTC
1482



002574.2

GACCCATG

CTGAGCAAT

ATCAGACCC


CTTTGGTATCAGACCCGAAGCGC






AAC

GG

GAAGCG


ACCATTGCTCAGGATTATGGG






PTEN
NM_
PTEN
TGGCTAAGT
331
TGCACATAT
715
CCTTTCCAG
1099
 81
TGGCTAAGTGAAGATGACAATCA
1483



000314.1

GAAGATGA

CATTACACC

CTTTACAGT


TGTTGCAGCAATTCACTGTAAAG






CAATCATG

AGTTCGT

GAATTGCTG


CTGGAAAGGGACGAACTGGTGTA










CA


ATGATATGTGCA






PTP4A3
NM_
PTP4A3
AATATTTGT
332
AACGAGATC
716
CCAAGAGAA
1100
 70
AATATTTGTGCGGGGTATGGGGG
1484



007079.2

GCGGGGTA

CCTGTGCTT

ACGAGATT


TGGGTTTTTAAATCTCGTTTCTC






TGG

GT

TAAAAACCC


TTGGACAAGCACAGGGATCTCGT










ACC


T






RhoB
NM_
RhOB
AAGCATGA
333
CCTCCCCAA
717
CTTTCCAAC
1101
 67
AAGCATGAACAGGACTTGACCAT
1485



004040.2

ACAGGACTT

GTCAGTTGC

CCCTGGGG


CTTTCCAACCCCTGGGGAAGACA






GACC



AAGACAT


TTTGCAACTGACTTGGGGAGG






RPL13A
NM_
RPL13A
GCAAGGAA
334
ACACCTGCA
718
CCTCCCGAA
1102
 68
GCAAGGAAAGGGTCTTAGTCACT
1486



012423.2

AGGGTCTTA

CAATTCTCC

GTTGCTTGA


GCCTCCCGAAGTTGCTTGAAAGC






GTCAC

G

AAGCAC


ACTCGGAGAATTGTGCAGGTGT






RPL41
NM_
RPL41
GAAACCTCT
335
TTCTTTTGCG
719
CATTCGCTT
1103
 66
GAAACCTCTGCGCCATGAGAGCC
1487



021104.1

GCGCCATG

CTTCAGCC

CTTCCTCCA


AAGTGGAGGAAGAAGCGAATGCG






A



CTTGGC


CAGGCTGAAGCGCAAAAGAA






RPLPO
NM_
RPLP0
CCATTCTAT
336
TCAGCAAGT
720
TCTCCACAG
1104
 75
CCATTCTATCATCAACGGGTACA
1488



001002.2

CATCAACG

GGGAAGGTG

ACAAGGCC


AACGAGTCCTGGCCTTGTCTGTG






GGTACAA

TAATC

AGGACTCG


GAGACGGATTACACCTTCCCACT













TGCTGA






RPS23
NM_
RPS23
GTTCTGGTT
337
CCTTAAAGC
721
ATCACCAA
1105
 67
GTTCTGGTTGCTGGATTTGGTCG
1489



001025.1

GCTGGATTT

GGACTCCAG

CAGCATGAC


CAAAGGTCATGCTGTTGGTGATA






GG

G

CTTTGCG


TTCCTGGAGTCCGCTTTAAGG






RPS27
NM_
RPS27
TCACCACGG
338
TCCTCCTGT
722
AGGACAGTG
1106
 80
TCACCACGGTCTTTAGCCATGCA
1490



001030.3

TCTTTAGCC

AGGCTGGCA

GAGCAGCC


CAAACGGTAGTTTTGTGTGTTGG






A



AACACAC


CTGCTCCACTGTCCTCTGCCAGC













CTACAGGAGGA






RRM1
NM_
RRM1
GGGCTACTG
339
CTCTCAGCA
723
CATTGGAAT
1107
 66
GGGCTACTGGCAGCTACATTGCT
1491



001033.1

GCAGCTAC

TCGGTACAA

TGCCATTA


GGGACTAATGGCAATTCCAATGG






ATT

GG

GTCCCAGC


CCTTGTACCGATGCTGAGAG






RRM2
NM_
RRM2
CAGCGGGA
340
ATCTGCGTT
724
CCAGCACAG
1108
 71
CAGCGGGATTAAACAGTCCTTTA
1492



001034.1

TTAAACAGT

GAAGCAGTG

CCAGTTAA


ACCAGCACAGCCAGTTAAAAGAT






CCT

AG

AAGATGCA


GCAGCCTCACTGCTTCAACGCAG













AT






RUNX1
NM_
RUNX1
AACAGAGA
341
GTGATTTGC
725
TTGGATCTG
1109
 69
AACAGAGACATTGCCAACCATAT
1493



001754.2

CATTGCCAA

CCAGGAAAG

CTTGCTGTC


TGGATCTGCTTGCTGTCCAAACC






CCA

TTT

CAAACC


AGCAAACTTCCTGGGCAAATCAC






S100
NM_
S100
ACACCAAA
342
TTTATCCCC
726
CACGCCATG
1110
 77
ACACCAAAATGCCATCTCAAATG
1494


A10
002966.1
A10
ATGCCATCT

AGCGAATTT

GAAACCAT


GAACACGCCATGGAAACCATGAT






CAA

GT

GATGTTT


GTTTACATTTCACAAATTCGCTG













GGGATAAA






S100A2
NM_
S100A2
TGGCTGTGC
343
TCCCCCTTA
727
CACAAGTAC
1111
 73
TGGCTGTGCTGGTCACTACCTTC
1495



005978.2

TGGTCACTA

CTCAGCTTG

TCCTGCCA


CACAAGTACTCCTGCCAAGAGGG






CCT

AACT

AGAGGGCGA


CGACAAGTTCAAGCTGAGTAAGG










C


GGGA






S100A4
NM_
S100A4
GACTGCTGT
344
CGAGTACTT
728
ATCACATCC
1112
 70
GACTGCTGTCATGGCGTCCCCTC
1496



002961.2

CATGGCGTG

GTGGAAGGT

AGGGCCTT


TGGAGAAGGCCCTGGATGTGATG








GGAC

CTCCAGA


GTGTCCACCTTCCACAAGTACTC













G






S100A7
NM_
S100A7
CCTGCTGAC
345
GCGAGGTAA
729
TCCCCAACT
1113
 75
CCTGCTGACGATGATGAAGGAGA
1497



002963.2

GATGATGA

TTTGTGCCCT

TCCTTAGTG


ACTTCCCCAACTTCCTTAGTGCC






AGGA

TT

CCTGTGACA


TGTGACAAAAAGGGCACAAATTA













CCTCGC






S100A8
NM_
S100A8
ACTCCCTGA
346
TGAGGACAC
730
CATGCCGTC
1114
 76
ACTCCCTGATAAAGGGGAATTTC
1498



002964.3

TAAAGGGG

TCGGTCTCT

TACAGGGA


CATGCCGTCTACAGGGATGACCT






AATTT

AGC

TGACCTG


GAAGAAATTGCTAGAGACCGAGT













GTCCTCA






S100A9
NM_
S100A9
CACCCTGCC
347
CTAGCCCCA
731
CCCGGGGCC
1115
 67
CACCCTGCCTCTACCCAACCAGG
1499



002965.3

TCTACCCAA

CAGCCAAGA

TGTTATGTC


GCCCCGGGGCCTGTTATGTCAAA






C



AAACT


CTGTCTTGGCTGTGGGGCTAG






S100B
NM_
S100B
CATGGCCGT
348
AGTTTTAAG
732
CCGGAGGGA
1116
 70
CATGGCCGTGTAGACCCTAACCC
1500



006272.1

GTAGACCCT

GGTGCCCCG

ACCCTGAC


GGAGGGAACCCTGACTACAGAAA






AA



TACAGAA


TTACCCCGGGGCACCCTTAAAAC













T






S100G
NM_
S100G
ACCCTGAGC
349
GAGACTTTG
733
AGGATAAGA
1117
 67
ACCCTGAGCACTGGAGGAAGAGC
1501



004057.2

ACTGGAGG

GGGGATTCC

CCACAGCA


GCCTGTGCTGTGGTCTTATCCTA






AA

A

CAGGCGC


TGTGGAATCCCCCAAAGTCTC






S100P
NM_
S100P
AGACAAGG
350
GAAGTCCAC
734
TTGCTCAAG
1118
 67
AGACAAGGATGCCGTGGATAAAT
1502



005980.2

ATGCCGTGG

CTGGGCATC

GACCTGGA


TGCTCAAGGACCTGGACGCCAAT






ATAA

TC

CGCCAA


GGAGATGCCCAGGTGGACTTC






SDHA
NM_
SDHA
GCAGAACT
351
CCCTTTCCA
735
CTGTCCACC
1119
 67
GCAGAACTGAAGATGGGAAGATT
1503



004168.1

GAAGATGG

AACTTGAGG

AAATGCAC


TATCAGCGTGCATTTGGTGGACA






GAAGAT

C

GCTGATA


GAGCCTCAAGTTTGGAAAGGG






SEMA3F
NM_
SEMA3F
CGCGAGCC
352
CACTCGCCG
736
CTCCCCACA
1120
 86
CGCGAGCCCCTCATTATACACTG
1501



004186.1

CCTCATTAT

TTGACATCC

GCGCATCG


GGCAGCCTCCCCACAGCGCATCG






ACA

T

AGGAA


AGGAATGCGTGCTCTCAGGCAAG













GATGTCAACGGCGAGTG






SFRP2
NM_
SFRP2
CAAGCTGA
353
TGCAAGCTG
737
CAGCACCGA
1121
 66
CAAGCTGAACGGTGTGTCCGAAA
1505



003013.2

ACGGTGTGT

TCTTTGAGC

TTTCTTCAG


GGGACCTGAAGAAATCGGTGCTG






CC

C

GTCCCT


TGGCTCAAAGACAGCTTGCA






SIR2
NM_
SIRT1
AGCTGGGG
354
ACAGCAAGG
738
CCTGACTTC
1122
 72
AGCTGGGGTGTCTGTTTCATGTG
1506



012238.3

TGTCTGTTT

CGAGCATAA

AGGTCAAG


GAATACCTGACTTCAGGTCAAGG






CAT

AT

GGATGG


GATGGTATTTATGCTCGCCTTGC













TGT






SKIL
NM_
SKIL
AGAGGCTG
355
CTATCGGCC
739
CCAATCTCT
1123
 66
AGAGGCTGAATATGCAGGACAGT
1507



005414.2

AATATGCA

TCAGCATGG

GCCTCAGTT


TGGCAGAACTGAGGCAGAGATTG






GGACA



CTGCCA


GACCATGCTGAGGCCGATAG






SKP2
NM_
SKP2
AGTTGCAG
356
TGAGTTTTTT
740
CCTGCGGCT
1124
 71
AGTTGCAGAATCTAAGCCTGGAA
1508



005983.2

AATCTAAGC

GCGAGAGTA

TTCGGATCC


GGCCTGCGGCTTTCGGATCCCAT






CTGGAA

TTGACA

CA


TGTCAATACTCTCGCAAAAAACT













CA






SLPI
NM_
SLPI
ATGGCCAAT
357
ACACTTCAA
741
TGGCCATCC
1125
 74
ATGGCCAATGTTTGATGCTTAAC
1509



003064.2

GTTTGATGC

GTCACGCTT

ATCTCACA


CCCCCCAATTTCTGTGAGATGGA






T

GC

GAAATTGG


TGGCCAGTGCAAGCGTGACTTGA













AGTGT






SNAI1
NM_
SNAI1
CCCAATCGG
358
GTAGGGCTG
742
TCTGGATTA
1126
 69
CCCAATCGGAAGCCTAACTACAG
1510



005985.2

AAGCCTAA

CTGGAAGGT

GAGTCCTGC


CGAGCTGCAGGACTCTAATCCAG






CTA

AA

AGCTCGC


AGTTTACCTTCCAGCAGCCCTAC






STK15
NM_
AURKA
CATCTTCCA
359
TCCGACCTT
743
CTCTGTGGC
1127
 69
CATCTTCCAGGAGGACCACTCTC
1511



003600.1

GGAGGACC

CAATCATTT

ACCCTGGA


TGTGGCACCCTGGACTACCTGCC






ACT

CA

CTACCTG


CCCTGAAATGATTGAAGGTCGGA






STMN1
NM_
STMN1
AATACCCA
360
GGAGACAAT
744
CACGTTCTC
1128
 71
AATACCCAACGCACAAATGACCG




005563.2

ACGCACAA

GCAAACCAC

TGCCCCGTT


CACGTTCTCTGCCCCGTTTCTTG






ATGA

AC

TCTTG


CCCCAGTGTGGTTTGCATTGTCT













CC






STMY3
NM_
MMP11
CCTGGAGG
361
TACAATGGC
745
ATCCTCCTG
1129
 90
CCTGGAGGCTGCAACATACCTCA
1513



005940.2

CTGCAACAT

TTTGGAGGA

AAGCCCTTT


ATCCTGTCCCAGGCCGGATCCTC






ACC

TAGCA

TCGCAGC


CTGAAGCCCTTTTCGCAGCACTG













CTATCCTCCAAAGCCATTGTA






SURV
NM_
BIRC5
TGTTTTGAT
362
CAAAGCTGT
746
TGCCTTCTT
1130
 80
TGTTTTGATTCCCGGGCTTACCA
1514



001168.1

TCCCGGGCT

CAGCTCTAG

CCTCCCTCA


GGTGAGAAGTGAGGGAGGAAGAA






TA

CAAAAG

CTTCTCACC


GGCAGTGTCCCTTTTGCTAGAGC










T


TGACAGCTTTG






SYK
NM_
SYK
TCTCCAGCA
363
TTCATCCCTC
747
CCATAGGAG
1131
 85
TCTCCAGCAAAAGCGATGTCTGG
1515



003177.1

AAAGCGAT

GATATGGCT

AATGCTTC


AGCTTTGGAGTGTTGATGTGGGA






GTCT

TCT

CCACATCAA


AGCATTCTCCTATGGGCAGAAGC










CACT


CATATCGAGGGATGAA






TAGLN
NM_
TAGLN
GATGGAGC
364
AGTCTGGAA
748
CCCATAGTC
1132
 73
GATGGAGCAGGTGGCTCAGTTCC
1516



003186.2

AGGTGGCTC

CATGTCAGT

CTCAGCCG


TGAAGGCGGCTGAGGACTCTGGG






AGT

CTTGATG

CCTTCAG


GTCATCAAGACTGACATGTTCCA













GACT






TCEA1
NM_
TCEA1
CAGCCCTGA
365
CGAGCATTT
749
CTTCCAGCG
1133
 72
CAGCCCTGAGGCAAGAGAAGAAA
1517



201437.1

GGCAAGAG

GTCTCATCC

GCAATGTA


GTACTTCCAGCGGCAATGTAAGC






A

TTT

AGCAACA


AACAGAAAGGATGAGACAAATGC













TCG






TFRC
NM_
TFRC
GCCAACTGC
366
ACTCAGGCC
750
AGGGATCTG
1134
 68
GCCAACTGCTTTCATTTGTGAGG
1518



003234.1

TTTCATTTG

CATTTCCTTT

AACCAATA


GATCTGAACCAATACAGAGCAGA






TG

A

CAGAGCAGA


CATAAAGGAAATGGGCCTGAGT










CA









TGFB2
NM_
TGFB2
ACCAGTCCC
367
CCTGGTGCT
751
TCCTGAGCC
1135
 75
ACCAGTCCCCCAGAAGACTATCC
1519



003238.1

CCAGAAGA

GTTGTAGAT

CCGAGGAAG


TGAGCCCGAGGAAGTCCCCCCGG






CTA

GG

TCCC


AGGTGATTTCCATCTACAACAGC













ACCAGG






TGFB3
NM_
IGFB3
GGATCGAG
368
GCCACCGAT
752
CGGCCAGAT
1136
 65
GGATCGAGCTCTTCCAGATCCTT
1520



003239.1

CTCTTCCAG

ATAGCGCTG

GAGCACAT


CGGCCAGATGAGCACATTGCCAA






ATCCT

TT

TGCC


ACAGCGCTATATCGGTGGC






TGFBR2
NM_
TGFBR2
AACACCAA
369
CCTCTTCATC
753
TTCTGGGCT
1137
 66
AACACCAATGGGTTCCATCTTTC
1521



003242.2

TGGGTTCCA

AGGCCAAAC

CCTGATTGC


TGGGCTCCTGATTGCTCAAGCAC






TCT

T

TCAAGC


AGTTTGGCCTGATGAAGAGG






TIMP3
NM_
TIMP3
CTACCTGCC
370
ACCGAAATT
754
CCAAGAACG
1138
 67
CTACCTGCCTTGCTTTGTGACTT
1522



000362.2

TTGCTTTGT

GGAGAGCAT

AGTGTCTC


CCAAGAACGAGTGTCTCTGGACC






GA

GT

TGGACCG


GACATGCTCTCCAATTTCGGT






TNFRS
NM_
TNFRS
CCAGCCCAC
371
TTCAGAGAA
755
TGTTCCTCA
1139
 67
CCAGCCCACAGACCAGTTACTGT
1523


F11A
003839.2
F11A
AGACCAGTT

AGGAGGTGT

CTGAGCCTG


TCCTCACTGAGCCTGGAAGCAAA






A

GGA

GAAGCA


TCCACACCTCCTTTCTCTGAA






TNFRS
NM_
TNFRS
TGGCGACC
372
GGGAAAGTG
756
AGGGCCTAA
1140
 67
TGGCGACCAAGACACCTTGAAGG
1524


F11B
002546.2
F11B
AAGACACC

GTACGTCTT

TGCACGCA


GCCTAATGCACGCACTAAAGCAC






TT

TGAG

CTAAAGC


TCAAAGACGTACCACTTTCCC






TNFS
NM_
TNFS
CATATCGTT
373
TTGGCCAGA
757
TCCACCATC
1141
 71
CATATCGTTGGATCACAGCACAT
1525


F11
003701.2
F11
GGATCACA

TCTAACCAT

GCTTTCTCT


CAGAGCAGAGAAAGCGATGGTGG






GCAC

GA

GCTCTG


ATGGCTCATGGTTAGATCTGGCC













AA






TWIST1
NM_
TWIST1
GCGCTGCG
374
GCTTGAGGG
758
CCACGCTGC
1142
 64
GCGCTGCGGAAGATCATCCCCAC
1526



000474.2

GAAGATCA

TCTGAATCT

CCTCGGAC


GCTGCCCTCGGACAAGCTGAGCA






TC

TGCT

AAGC


AGATTCAGACCCTCAAGC






UBB
NM_
UBB
GAGTCGAC
375
GCGAATGCC
759
AATTAACAG
1143
522
GAGTCGACCCTGCACCTGGTCCT
1527



018955.1

CCTGCACCT

ATGACTGAA

CCACCCCT


GCGTCTGAGAGGTGGTATGCAGA






G



CAGGCG


TCTTCGTGAAGACCCTGACCGGC













AAGACCATCACCCTGGAAGTGGA













GCCCAGTGACACCATCGAAAATG













TGAAGGCCAAGATCCAGGATAAA













GAAGGCATCCCTCCCGACCAGCA













GAGGCTCATCTTTGCAGGCAAGC













AGCTGGAAGATGGCCGCACTCTT













TCTGACTACAACATCCAGAAGGA













GTCGACCCTGCACCTGGTCCTGC













GTCTGAGAGGTGGTATGCAGATC













TTCGTGAAGACCCTGACCGGCAA













GACCATCACTCTGGAAGTGGAGC













CCAGTGACACCATCGAAAATGTG













AAGGCCAAGATCCAAGATAAAGA













AGGCATCCCTCCCGACCAGCAGA













GGCTCATCTTTGCAGGCAAGCAG













CTGGAAGATGGCCGCACTCTTTC













TGACTACAACATCCAGAAGGAGT













CGACCCTGCACCTGGTCCTGCGC













CTGAGGGGTGGCTGTTAATTCTT













CAGTCATGGCATTCGC






VCAM1
NM_
VCAM1
TGGCTTCAG
376
TGCTGGCGT
760
CAGGCACAC
1144
 89
TGGCTTCAGGAGCTGAATACCCT
1528



001078.2

GAGCTGAA

GATGAGAAA

ACAGGTGG


CCCAGCCACACACAGGTGGGACA






TACC

ATAGTG

GACACAAAT


CAAATAAGGGTTTTGGAACCACT













ATTTTCTCATCACGACAGCA






VIM
NM_
VIM
TGCCCTTAA
377
GCTTCAACG
761
ATTTCACGC
1145
 72
TGCCCTTAAAGGAACCAATGAGT
1529



003380.1

AGGAACCA

GCAAAGTTC

ATCTGGCGT


CCCTGGAACGCCAGATGCGTGAA






ATGA

TCTT

TCCA


ATGGAAGAGAACTTTGCCGTTGA













AGC






VTN
NM_
VTN
AGTCAATCT
378
GTACTGAGC
762
TGGACACTG
1146
 67
AGTCAATCTTCGCACACGGCGAG
1530



000638.2

TCGCACACG

GATGGAGCG

TGGACCCT


TGGACACTGTGGACCCTCCCTAC






G

T

CCCTACC


CCACGCTCCATCGCTCAGTAC






WAVE3
NM_
WASF3
CTCTCCAGT
379
GCGCTGTAG
763
CCAGAACAG
1147
 68
CTCTCCAGTGTGGGCACCAGCCG
1531



006646.4

GTGGGCAC

CTCCCAGAG

ATGCGAGC


GCCAGAACAGATGCGAGCAGTCC






C

T

AGTCCAT


ATGACTCTGGGAGCTACACCGC






WISP1
NM_
WISP1
AGAGGCAT
380
CAAACTCCA
764
CGGGCTGCA
1148
 75
AGAGGCATCCATGAACTTCACAC
1532



003882.2

CCATGAACT

CAGTACTTG

TCAGCACA


TTGCGGGCTGCATCAGCACACGC






TCACA

GGTTGA

CGC


TCCTATCAACCCAAGTACTGTGG













AGTTTG






Wnt-5a
NM_
WNT5A
GTATCAGG
381
TGTCGGAAT
765
TTGATCCCT
1149
 75
GTATCAGGACCACATGCAGTACA
1533



003392.2

ACCACATGC

TGATACTGG

GTCTTCGCG


TCGGAGAAGGCGCGAAGACAGGC






AGTACATC

CATT

CCTTCT


ATCAAAGAATGCCAGTATCAATT













CCGACA






Wnt-5b
NM_
WNT5B
TGTCTTCAG
382
GTGCACGTG
766
TTCCGTAAG
1150
 79
TGTCTTCAGGGTCTTGTCCAGAA
1534



032642.2

GGTCTTGTC

GATGAAAGA

AGGCCTGG


TGTAGATGGGTTCCGTAAGAGGC






CA

GT

TGCTCTC


CTGGTGCTCTCTTACTCTTTCAT













CCACGTGCAC






WWOX
NM_
WWOX
ATCGCAGCT
383
AGCTCCCTG
767
CTGCTGTTT
1151
 74
ATCGCAGCTGGTGGGTGTACACA
1535



016373.1

GGTGGGTGT

TTGCATGGA

ACCTTGGCG


CTGCTGTTTACCTTGGCGAGGCC






AC

CTT

AGGCCTTTC


TTTCACCAAGTCCATGCAACAGG













GAGCT






YWHAZ
NM_
YWHAZ
GTGGACATC
384
GCAGACAAA
768
CCCCTCCTT
1152
 81
GTGGACATCGGATACCCAAGGAG
1536



003406.2

GGATACCC

AGTTGGAAG

CTCCTGCTT


ACGAAGCTGAAGCAGGAGAAGGA






AAG

GC

CAGCTT


GGGGAAAATTAACCGGCCTTCCA













ACTTTTGTCTGC
















TABLE 1







Cox proportional hazards for Prognostic Genes that are positively


associated with good prognosis for breast cancer (Providence study)












Gene_all
z (Coef)
HR
p (Wald)
















GSTM2
−4.306
0.525
0.000



IL6ST
−3.730
0.522
0.000



CEGP1
−3.712
0.756
0.000



Bcl2
−3.664
0.555
0.000



GSTM1
−3.573
0.679
0.000



ERBB4
−3.504
0.767
0.000



GADD45
−3.495
0.601
0.000



PR
−3.474
0.759
0.001



GPR30
−3.348
0.660
0.001



CAV1
−3.344
0.649
0.001



C10orf116
−3.194
0.681
0.001



DR5
−3.102
0.543
0.002



DICER1
−3.097
0.296
0.002



EstR1
−2.983
0.825
0.003



BTRC
−2.976
0.639
0.003



GSTM3
−2.931
0.722
0.003



GATA3
−2.874
0.745
0.004



DLC1
−2.858
0.564
0.004



CXCL14
−2.804
0.693
0.005



IL17RB
−2.796
0.744
0.005



C8orf4
−2.786
0.699
0.005



FOXO3A
−2.786
0.617
0.005



TNFRSF11B
−2.690
0.739
0.007



BAG1
−2.675
0.451
0.008



SNAI1
−2.632
0.692
0.009



TGFB3
−2.617
0.623
0.009



NAT1
−2.576
0.820
0.010



FUS
−2.543
0.376
0.011



F3
−2.527
0.705
0.012



GSTM2 gene
−2.461
0.668
0.014



EPHB2
−2.451
0.708
0.014



LAMA3
−2.448
0.778
0.014



BAD
−2.425
0.506
0.015



IGF1R
−2.378
0.712
0.017



RUNX1
−2.356
0.511
0.018



ESRRG
−2.289
0.825
0.022



HSHIN1
−2.275
0.371
0.023



CXCL12
−2.151
0.623
0.031



IGFBP7
−2.137
0.489
0.033



SKIL
−2.121
0.593
0.034



PTEN
−2.110
0.449
0.035



AKT3
−2.104
0.665
0.035



MGMT
−2.060
0.571
0.039



LRIG1
−2.054
0.649
0.040



S100B
−2.024
0.798
0.043



GREB1 variant a
−1.996
0.833
0.046



CSF1
−1.976
0.624
0.048



ABR
−1.973
0.575
0.048



AK055699
−1.972
0.790
0.049

















TABLE 2







Cox proportional hazards for Prognostic Genes that are negatively


associated with good prognosis for breast cancer (Providence study)












Gene_all
z (Coef)
HR
p (Wald)
















S100A7
1.965
1.100
0.049



MCM2
1.999
1.424
0.046



Contig 51037
2.063
1.185
0.039



S100P
2.066
1.170
0.039



ACTR2
2.119
2.553
0.034



MYBL2
2.158
1.295
0.031



DUSP1
2.166
1.330
0.030



HOXB13
2.192
1.206
0.028



SURV
2.216
1.329
0.027



MELK
2.234
1.336
0.026



HSPA8
2.240
2.651
0.025



cdc25A
2.314
1.478
0.021



C20_orf1
2.336
1.497
0.019



LMNB1
2.387
1.682
0.017



S100A9
2.412
1.185
0.016



CENPA
2.419
1.366
0.016



CDC25C
2.437
1.384
0.015



GAPDH
2.498
1.936
0.012



KNTC2
2.512
1.450
0.012



PRDX1
2.540
2.131
0.011



RRM2
2.547
1.439
0.011



ADM
2.590
1.445
0.010



ARF1
2.634
2.973
0.008



E2F1
2.716
1.486
0.007



TFRC
2.720
1.915
0.007



STK15
2.870
1.860
0.004



LAPTM4B
2.880
1.538
0.004



EpCAM
2.909
1.919
0.004



ENO1
2.958
2.232
0.003



CCNB1
3.003
1.738
0.003



BUB1
3.018
1.590
0.003



Claudin 4
3.034
2.151
0.002



CDC20
3.056
1.555
0.002



Ki-67
3.329
1.717
0.001



KPNA2
3.523
1.722
0.000



IDH2
3.994
1.638
0.000

















TABLE 3







Cox proportional hazards for Prognostic Genes that


are positively associated with good prognosis for


ER-negative (ER0) breast cancer (Providence study)












Gene_ER0
HR
z (Coef)
p (Wald)
















SYK
0.185
−2.991
0.003



Wnt-5a
0.443
−2.842
0.005



WISP1
0.455
−2.659
0.008



CYR61
0.405
−2.484
0.013



GADD45
0.520
−2.474
0.013



TAGLN
0.364
−2.376
0.018



TGFB3
0.465
−2.356
0.018



INHBA
0.610
−2.255
0.024



CDH11
0.584
−2.253
0.024



CHAF1B
0.551
−2.113
0.035



ITGAV
0.192
−2.101
0.036



SNAI1
0.655
−2.077
0.038



IL11
0.624
−2.026
0.043



KIAA1199
0.692
−2.005
0.045



TNFRSF11B
0.659
−1.989
0.047

















TABLE 4







Cox proportional hazards for Prognostic Genes that


are negatively associated with good prognosis for


ER-negative (ER0) breast cancer (Providence study)












Gene_ER0
HR
z (Coef)
p (Wald)
















RPL41
3.547
2.062
0.039



Claudin 4
2.883
2.117
0.034



LYRIC
4.029
2.364
0.018



TFRC
3.223
2.596
0.009



VTN
2.484
3.205
0.001

















TABLE 5







Cox proportional hazards for Prognostic Genes that


are positively associated with good prognosis for


ER-positive (ER1) breast cancer (Providence study)












Gene_ER1
HR
z (Coef)
p (Wald)
















DR5
0.428
−3.478
0.001



GSTM2
0.526
−3.173
0.002



HSHIN1
0.175
−3.031
0.002



ESRRG
0.736
−3.028
0.003



VTN
0.622
−2.935
0.003



Bcl2
0.469
−2.833
0.005



ERBB4
0.705
−2.802
0.005



GPR30
0.625
−2.794
0.005



BAG1
0.339
−2.733
0.006



CAV1
0.635
−2.644
0.008



IL6ST
0.503
−2.551
0.011



C10orf116
0.679
−2.497
0.013



FOXO3A
0.607
−2.473
0.013



DICER1
0.311
−2.354
0.019



GADD45
0.645
−2.338
0.019



CSF1
0.500
−2.312
0.021



F3
0.677
−2.300
0.021



GBP2
0.604
−2.294
0.022



APEX-1
0.234
−2.253
0.024



FUS
0.322
−2.252
0.024



BBC3
0.581
−2.248
0.025



GSTM3
0.737
−2.203
0.028



ITGA4
0.620
−2.161
0.031



EPHB2
0.685
−2.128
0.033



IRF1
0.708
−2.105
0.035



CRYZ
0.593
−2.103
0.035



CCL19
0.773
−2.076
0.038



SKIL
0.540
−2.019
0.043



MRP1
0.515
−1.964
0.050

















TABLE 6







Cox proportional hazards for Prognostic Genes that


are negatively associated with good prognosis for


ER-positive (ER1) breast cancer (Providence study)












Gene_ER1
HR
z (Coef)
p (Wald)
















CTHRC1
2.083
1.958
0.050



RRM2
1.450
1.978
0.048



BUB1
1.467
1.988
0.047



LMNB1
1.764
2.009
0.045



SURV
1.380
2.013
0.044



EpCAM
1.966
2.076
0.038



CDC20
1.504
2.081
0.037



GAPDH
2.405
2.126
0.033



STK15
1.796
2.178
0.029



HSPA8
3.095
2.215
0.027



LAPTM4B
1.503
2.278
0.023



MCM2
1.872
2.370
0.018



CDC25C
1.485
2.423
0.015



ADM
1.695
2.486
0.013



MMP1
1.365
2.522
0.012



CCNB1
1.893
2.646
0.008



Ki-67
1.697
2.649
0.008



E2F1
1.662
2.689
0.007



KPNA2
1.683
2.701
0.007



DUSP1
1.573
2.824
0.005



GDF15
1.440
2.896
0.004

















TABLE 7







Cox proportional hazards for Prognostic Genes that are positively


associated with good prognosis for breast cancer (Rush study)












Gene_all
z (Coef)
HR
p (Wald)
















GSTM2
−3.275
0.752
0.001



GSTM1
−2.946
0.772
0.003



C8orf4
−2.639
0.793
0.008



ELF3
−2.478
0.769
0.013



RUNX1
−2.388
0.609
0.017



IL6ST
−2.350
0.738
0.019



AAMP
−2.325
0.715
0.020



PR
−2.266
0.887
0.023



FHIT
−2.193
0.790
0.028



CD44v6
−2.191
0.754
0.028



GREB1 variant c
−2.120
0.874
0.034



ADAM17
−2.101
0.686
0.036



EstR1
−2.084
0.919
0.037



NAT1
−2.081
0.878
0.037



TNFRSF11B
−2.074
0.843
0.038



ITGB4
−2.006
0.740
0.045



CSF1
−1.963
0.750
0.050

















TABLE 8







Cox proportional hazards for Prognostic Genes that are negatively


associated with good prognosis for breast cancer (Rush study)












Gene_all
z (Coef)
HR
p (Wald)
















STK15
1.968
1.298
0.049



TFRC
2.049
1.399
0.040



ITGB1
2.071
1.812
0.038



ITGAV
2.081
1.922
0.037



MYBL2
2.089
1.205
0.037



MRP3
2.092
1.165
0.036



SKP2
2.143
1.379
0.032



LMNB1
2.155
1.357
0.031



ALCAM
2.234
1.282
0.025



COMT
2.271
1.412
0.023



CDC20
2.300
1.253
0.021



GAPDH
2.307
1.572
0.021



GRB7
2.340
1.205
0.019



S100A9
2.374
1.120
0.018



S100A7
2.374
1.092
0.018



HER2
2.425
1.210
0.015



ACTR2
2.499
1.788
0.012



S100A8
2.745
1.144
0.006



ENO1
2.752
1.687
0.006



MMP1
2.758
1.212
0.006



LAPTM4B
2.775
1.375
0.006



FGFR4
3.005
1.215
0.003



C17orf37
3.260
1.387
0.001

















TABLE 9







Cox proportional hazards for Prognostic Genes that


are positively associated with good prognosis for


ER-negative (ER0) breast cancer (Rush study)












Gene_ER0
z (Coef)
HR
p (Wald)
















SEMA3F
−2.465
0.503
0.014



LAMA3
−2.461
0.519
0.014



CD44E
−2.418
0.719
0.016



AD024
−2.256
0.617
0.024



LAMB3
−2.237
0.690
0.025



Ki-67
−2.209
0.650
0.027



MMP7
−2.208
0.768
0.027



GREB1 variant c
−2.019
0.693
0.044



ITGB4
−1.996
0.657
0.046



CRYZ
−1.976
0.662
0.048



CD44s
−1.967
0.650
0.049

















TABLE 10







Cox proportional hazards for Prognostic Genes that


are negatively associated with good prognosis for


ER-negative (ER0) breast cancer (Rush study)












Gene_ER0
z (Coef)
HR
p (Wald)
















S100A8
1.972
1.212
0.049



EEF1A2
2.031
1.195
0.042



TAGLN
2.072
2.027
0.038



GRB7
2.086
1.231
0.037



HER2
2.124
1.232
0.034



ITGAV
2.217
3.258
0.027



CDH11
2.237
2.728
0.025



COL1A1
2.279
2.141
0.023



C17orf37
2.319
1.329
0.020



COL1A2
2.336
2.577
0.020



ITGB5
2.375
3.236
0.018



ITGA5
2.422
2.680
0.015



RPL41
2.428
6.665
0.015



ALCAM
2.470
1.414
0.013



CTHRC1
2.687
3.454
0.007



PTEN
2.692
8.706
0.007



FN1
2.833
2.206
0.005

















TABLE 11







Cox proportional hazards for Prognostic Genes that


are positively associated with good prognosis for


ER-positive (ER1) breast cancer (Rush study)












Gene_ER1
z (Coef)
HR
p (Wald)
















GSTM1
−3.938
0.628
0.000



HNF3A
−3.220
0.500
0.001



EstR1
−3.165
0.643
0.002



Bcl2
−2.964
0.583
0.003



GATA3
−2.641
0.624
0.008



ELF3
−2.579
0.741
0.010



C8orf4
−2.451
0.730
0.014



GSTM2
−2.416
0.774
0.016



PR
−2.416
0.833
0.016



RUNX1
−2.355
0.537
0.019



CSF1
−2.261
0.662
0.024



IL6ST
−2.239
0.627
0.025



AAMP
−2.046
0.704
0.041



TNFRSF11B
−2.028
0.806
0.043



NAT1
−2.025
0.833
0.043



ADAM17
−1.981
0.642
0.048

















TABLE 12







Cox proportional hazards for Prognostic Genes that


are negatively associated with good prognosis for


ER-positive (ER1) breast cancer (Rush study)












Gene_ER1
z (Coef)
HR
p (Wald)
















HSPA1B
1.966
1.382
0.049



AD024
1.967
1.266
0.049



FGFR4
1.991
1.175
0.047



CDK4
2.014
1.576
0.044



ITGB1
2.021
2.163
0.043



EPHB2
2.121
1.342
0.034



LYRIC
2.139
1.583
0.032



MYBL2
2.174
1.273
0.030



PGF
2.176
1.439
0.030



EZH2
2.199
1.390
0.028



HSPA1A
2.209
1.452
0.027



RPLPO
2.273
2.824
0.023



LMNB1
2.322
1.529
0.020



IL-8
2.404
1.166
0.016



C6orf66
2.468
1.803
0.014



GAPDH
2.489
1.950
0.013



P16-INK4
2.490
1.541
0.013



CLIC1
2.557
2.745
0.011



ENO1
2.719
2.455
0.007



ACTR2
2.878
2.543
0.004



CDC20
2.931
1.452
0.003



SKP2
2.952
1.916
0.003



LAPTM4B
3.124
1.558
0.002

















TABLE 13





Validation of Prognostic Genes in SIB data sets
























Official











Symbol
EMC2~Est
EMC2~SE
EMC2~t
JRH1~Est
JRH1~SE
JRH1−18 t
JRH2~Est
JRH2~SE
JRH2~t





AAMP
NA
NA
NA
−0.05212
0.50645
−0.10291
0.105615
1.01216
0.104346


ARCC1
NA
NA
NA
NA
NA
NA
2.36153
0.76485
3.087573


ABCC3
NA
NA
NA
0.386945
0.504324
0.767255
0.305901
0.544322
0.561985


ABR
NA
NA
NA
0.431151
0.817818
0.527197
0.758422
1.0123
0.749207


ACTR2
NA
NA
NA
NA
NA
NA
0.26297
0.4774
−0.55084


ADAM17
NA
NA
NA
0.078212
0.564555
0.138538
−0.20948
1.06045
−0.19754


ADM
NA
NA
NA
NA
NA
NA
0.320052
0.201407
1.589081


LYPD6
NA
NA
NA
NA
NA
NA
NA
NA
NA


AKT3
NA
NA
NA
NA
NA
NA
−2.10931
1.58606
−1.32991


ALCAM
NA
NA
NA
−0.17112
0.224449
−0.7624
0.120168
0.212325
0.565963


APEX1
NA
NA
NA
0.068917
0.410873
0.167732
−0.02247
0.790107
−0.02843


ARF1
NA
NA
NA
0.839013
0.346692
2.420053
0.369609
0.40789
0.906149


AURKA
NA
NA
NA
0.488329
0.248241
1.967157
0.285095
0.243026
1.173105


BAD
NA
NA
NA
0.027049
0.547028
0.049446
0.121904
0.587599
0.207461


BAG1
NA
NA
NA
0.505074
0.709869
0.711503
−0.13983
0.36181
−0.38648


BBC3
NA
NA
NA
NA
NA
NA
0.182425
0.78708
0.231774


BCAR3
NA
NA
NA
NA
NA
NA
−0.29238
0.522706
−0.55935


BCL2
NA
NA
NA
−1.10678
0.544697
−2.03192
0.124104
0.228026
0.544254


BIRC5
NA
NA
NA
−0.40529
0.608667
−0.66586
0.319899
0.242736
1.317889


BTRC
NA
NA
NA
NA
NA
NA
0.017988
0.648834
0.027723


BUB1
NA
NA
NA
0.84036
0.319874
2.627159
0.565139
0.322406
1.75288


C10orf116
NA
NA
NA
−0.1418
0.261554
−0.54216
0.036378
0.182183
0.19968


C17orf37
NA
NA
NA
NA
NA
NA
NA
NA
NA


TPX2
NA
NA
NA
NA
NA
NA
0.311175
0.271756
1.145053


C8orf4
NA
NA
NA
NA
NA
NA
−0.06402
0.197663
−0.32386


CAV1
NA
NA
NA
−0.20701
0.254401
−0.81372
−0.19588
0.289251
−0.67721


CCL19
NA
NA
NA
0.101779
0.483649
0.21044
−0.45509
0.26597
−1.71104


CCNB1
NA
NA
NA
0.14169
0.276165
0.513063
0.587021
0.249935
2.348695


CDC20
NA
NA
NA
−0.82502
0.360648
−2.2876
0.075789
0.208662
0.363213


CDC25A
NA
NA
NA
−0.15046
0.724766
−0.2076
0.358589
0.638958
0.561209


CDC25C
NA
NA
NA
0.047781
0.511454
0.093422
1.07486
0.456637
2.353861


CDH11
NA
NA
NA
−0.55211
0.469473
−1.17601
0.072308
0.265898
0.27194


CDK4
NA
NA
NA
NA
NA
NA
0.759572
0.757398
1.00287


SCUBE2
NA
NA
NA
NA
NA
NA
−0.0454
0.120869
−0.37564


CENPA
NA
NA
NA
NA
NA
NA
0.296857
0.253493
1.171066


CHAF1B
NA
NA
NA
0.591417
0.58528
1.010486
0.284056
0.637446
0.445616


CLDN4
NA
NA
NA
−0.54144
0.470758
−1.15014
0.33033
0.351865
0.938798


CLICI
NA
NA
NA
0.678131
0.359483
1.886406
0.764626
0.767633
0.996083


COLIA1
NA
NA
NA
NA
NA
NA
0.273073
0.249247
1.095592


COLIA2
NA
NA
NA
NA
NA
NA
0.216939
0.367138
0.590892


COMT
NA
NA
NA
0.749278
0.356566
2.101373
−0.05068
0.448567
−0.11298


CRYZ
NA
NA
NA
NA
NA
NA
−0.31201
0.303615
−1.02766


CSF1
NA
NA
NA
NA
NA
NA
−1.40833
1.21432
−1.15977


CTHRC1
NA
NA
NA
NA
NA
NA
NA
NA
NA


CXCL12
NA
NA
NA
−0.36476
0.372499
−0.97921
−0.4566
0.219587
−2.07935


CXCL14
NA
NA
NA
−0.23692
0.333761
−0.70985
0.361375
0.159544
2.265049


CYR61
NA
NA
NA
0.310818
0.515557
0.602878
−0.24435
0.252867
−0.9663


DICER1
NA
NA
NA
NA
NA
NA
−0.33943
0.39364
−0.8623


DLC1
NA
NA
NA
0.13581
0.37927
0.358083
−0.4102
0.387258
−1.05923


TNFRSF10B
NA
NA
NA
−0.09001
0.619057
−0.1454
0.80742
0.544479
1.482922


DUSP1
NA
NA
NA
−0.20229
0.200782
−1.00753
−0.02736
0.224043
−0.12212


E2F1
NA
NA
NA
NA
NA
NA
0.845576
0.685556
1.233416


EEF1A2
0.26278
0.091435
2.873951
NA
NA
NA
0.362569
0.17103
2.119915


ELF3
NA
NA
NA
1.34589
0.628064
2.142919
0.569231
0.430739
1.321522


ENO1
NA
NA
NA
NA
NA
NA
0.179739
0.312848
0.574525


EPHB2
NA
NA
NA
0.155831
0.717587
0.21716
−0.19469
0.90381
−0.21541


ERBB2
NA
NA
NA
−0.32795
0.215691
−1.51044
0.065275
0.189094
0.3452


ERBB4
NA
NA
NA
NA
NA
NA
−0.12516
0.182846
−0.68451


ESRRG
NA
NA
NA
NA
NA
NA
0.122595
0.204322
0.600009


ESR1
NA
NA
NA
−0.14448
0.127214
−1.13569
0.009283
0.107091
0.086687


EZH2
NA
NA
NA
NA
NA
NA
0.36213
0.244107
1.483489


F3
NA
NA
NA
0.719395
0.524742
1.37095
−0.21237
0.363632
−0.58402


FGFR4
NA
NA
NA
0.864262
0.479596
1.802063
0.451249
0.296065
1.524155


FHIT
NA
NA
NA
1.00058
0.938809
1.065797
−1.58314
0.766553
−2.06527


FN1
NA
NA
NA
0.056943
0.154068
0.369595
0.282152
0.407361
0.692634


FOXA1
NA
NA
NA
NA
NA
NA
0.054619
0.1941
0.281398


FUS
NA
NA
NA
NA
NA
NA
2.73816
1.95693
1.399212


GADD45A
NA
NA
NA
NA
NA
NA
−0.09194
0.324263
−0.28352


GAPDH
−0.00386
0.125637
−0.03075
0.869317
0.274798
3.163476
0.728889
0.497848
1.464079


GATA3
NA
NA
NA
−0.33431
0.127225
−2.62767
−0.00759
0.145072
−0.05233


GBP2
NA
NA
NA
0.126016
0.247997
0.485554
−0.49134
0.289525
−1.69704


GDF15
NA
NA
NA
0.219861
0.231613
0.94926
0.317951
0.183188
1.735654


GRB7
NA
NA
NA
−0.46505
0.485227
−0.95842
0.143585
0.218034
0.658544


GSTM1
NA
NA
NA
NA
NA
NA
NA
NA
NA


GSTM2
NA
NA
NA
NA
NA
NA
NA
NA
NA


GSTM3
NA
NA
NA
−1.19919
0.478486
−2.50622
−0.08173
0.176832
−0.46219


HOXB13
NA
NA
NA
NA
NA
NA
0.780988
0.524939
1.487712


OTUD4
NA
NA
NA
NA
NA
NA
−0.54088
1.59038
−0.34009


HSPA1A
NA
NA
NA
0.199478
0.304533
0.655029
0.56215
0.592113
0.949396


HSPA1B
NA
NA
NA
NA
NA
NA
0.60089
0.32867
1.828247


HSPA8
NA
NA
NA
0.88406
0.420719
2.101308
1.13504
0.667937
1.699322


IDH2
NA
NA
NA
−0.0525
0.232201
−0.22611
0.151299
0.327466
0.46203


IGF1R
NA
NA
NA
−0.62963
0.509985
−1.23461
−0.05773
0.176259
−0.32753


IGFBP7
NA
NA
NA
NA
NA
NA
0.047112
0.479943
0.098162


IL11
NA
NA
NA
NA
NA
NA
1.19114
1.41017
0.844678


IL17RB
NA
NA
NA
NA
NA
NA
0.143131
0.294647
0.485771


IL6ST
NA
NA
NA
−0.08851
0.151324
−0.58488
−0.00958
0.287723
−0.03329


IL8
NA
NA
NA
0.222258
0.235694
0.942994
0.262285
0.346572
0.756798


INHBA
NA
NA
NA
0.095254
0.476446
0.199927
0.342597
0.27142
1.262239


IRF1
NA
NA
NA
0.87337
0.941443
0.927693
−0.39282
0.392589
−1.00059


ITGA4
NA
NA
NA
NA
NA
NA
−0.91318
0.542311
−1.68389


ITGA5
NA
NA
NA
1.4044
0.636806
2.261976
0.97846
0.67341
1.452993


TTGAV
NA
NA
NA
0.14845
0.345246
0.429983
0.383127
0.60722
0.630953


ITGB1
NA
NA
NA
1.22836
0.683544
1.797046
−0.0587
1.73799
−0.03378


ITGB4
NA
NA
NA
0.548277
0.334628
1.638467
0.252015
0.365768
0.689002


ITGB5
NA
NA
NA
−0.17231
0.250618
−0.68752
0.037961
0.401861
0.094464


MKI67
NA
NA
NA
−0.43304
0.708832
−0.61092
0.482583
0.321739
1.499921


KIAA1199
NA
NA
NA
NA
NA
NA
−0.02195
0.382802
−0.05735


KPNA2
0.301662
0.171052
1.763569
−0.5507
0.55364
−0.99468
0.21269
0.256724
0.828477


LAMA3
NA
NA
NA
−0.74591
0.563373
−1.32401
−0.21092
0.29604
−0.71245


LAPTM4B
NA
NA
NA
NA
NA
NA
−0.04029
0.234986
−0.17148


LMNB1
NA
NA
NA
0.648703
0.285233
2.274292
0.621431
0.389912
1.593772


LRIG1
NA
NA
NA
NA
NA
NA
−0.00217
0.260339
−0.00832


MTDH
NA
NA
NA
NA
NA
NA
−0.10827
0.493025
−0.21961


MCM2
NA
NA
NA
0.875004
0.492588
1.77634
0.77667
0.376275
2.064102


MELK
NA
NA
NA
0.850914
0.313784
2.711783
0.16347
0.256575
0.637124


MGMT
NA
NA
NA
NA
NA
NA
0.151967
0.583459
0.260459


MMP1
NA
NA
NA
0.43277
0.16023
2.70093
−0.02427
0.158939
−0.15272


MMP7
NA
NA
NA
0.198055
0.143
1.385
0.106475
0.193338
0.550719


MYBL2
NA
NA
NA
0.731162
0.267911
2.729123
0.098974
0.600361
0.164857


NAT1
NA
NA
NA
−0.57746
15.1186
−0.0382
−0.01397
0.117033
−0.11939


PGF
NA
NA
NA
0.901309
0.501058
1.798812
1.43389
1.27617
1.123389


PGR
NA
NA
NA
NA
NA
NA
−0.33243
0.276025
−1.20435


PRDX1
NA
NA
NA
NA
NA
NA
−0.41082
0.47383
−0.86703


PTEN
NA
NA
NA
−0.17429
0.629039
−0.27708
−0.15599
0.541475
−0.28808


RPL41
NA
NA
NA
NA
NA
NA
1.02038
1.83528
0.535981


RPLP0
NA
NA
NA
0.398754
0.282913
1.409458
0.246775
1.2163
0.20289


RRM2
NA
NA
NA
NA
NA
NA
0.196643
0.262745
0.748418


RUNX1
NA
NA
NA
−0.22834
0.318666
−0.71656
0.302803
0.420043
0.720886


S100A8
NA
NA
NA
NA
NA
NA
0.066629
0.11857
0.561939


S109A9
NA
NA
NA
NA
NA
NA
0.111103
0.13176
0.843223


S100B
NA
NA
NA
0.097319
0.589664
0.165041
−0.2365
0.349444
−0.67678


S100P
NA
NA
NA
0.378047
0.120687
3.132458
0.302607
0.133752
2.262448


SEMA3F
NA
NA
NA
−0.27556
0.615782
−0.4475
0.498631
0.616195
0.80921


SKIL
NA
NA
NA
NA
NA
NA
0.026279
0.587743
0.044712


SKP2
NA
NA
NA
NA
NA
NA
0.2502
0.469372
0.533053


SNAI1
NA
NA
NA
NA
NA
NA
0.165897
1.09586
0.151385


SYK
NA
NA
NA
−0.26425
0.588491
−0.44903
−0.22515
0.492582
−0.45707


TAGLN
NA
NA
NA
NA
NA
NA
0.042223
0.251268
0.168039


TFRC
NA
NA
NA
−0.91825
0.636275
−1.44317
0.162921
0.352486
0.462206


TGFB3
NA
NA
NA
−1.0219
0.358953
−2.84689
−0.39774
0.470041
−0.84619


TNFRSF11B
NA
NA
NA
NA
NA
NA
−0.10399
0.440721
−0.23595


VTN
NA
NA
NA
−0.18721
0.475541
−0.39367
−2.39601
1.83129
−1.30837


WISP1
NA
NA
NA
NA
NA
NA
0.437936
0.592058
0.739684


WNT5A
NA
NA
NA.
NA
NA
NA
0.180255
0.286462
0.629246


C6orf66
NA
NA
NA
NA
NA
NA
0.35565
0.504627
0.704778


FOXO3A
NA
NA
NA
NA
NA
NA
−0.04428
0.39855
−0.1111


GPR30
NA
NA
NA
0.01829
0.925976
0.019752
−0.298
0.747388
−0.39872


KNTC2
NA
NA
NA
NA
NA
NA
−0.02315
0.289403
−0.07999





Official











Symbol
MGH~Est
MGH~SE
MGH~t
NCH~Est
NCH~SE
NCH~t
NKI~Est
NKI~SE
NKI~t





AAMP
−0.26943
0.620209
−0.43441
0.088826
0.283082
0.313782
0.312939
0.228446
1.36986


ARCC1
0.253516
0.284341
0.891591
0.213191
0.154486
1.380002
0.094607
0.258279
0.366298


ABCC3
0.126882
0.221759
0.572162
−0.00756
0.167393
−0.04517
0.06613
0.096544
0.684974


ABR
NA
NA
NA
NA
NA
NA
−0.06114
0.095839
−0.63795


ACTR2
0.071853
0.205648
0.349398
0.131215
0.267434
0.490644
0.539449
0.254409
2.120401


ADAM17
0.29698
0.435924
0.681266
−0.18523
0.407965
−0.45402
0.068689
0.12741
0.539115


ADM
0.225324
0.142364
1.582732
0.314064
0.201161
1.561257
0.264131
0.06376
4.142582


LYPD6
−0.38423
0.120883
−3.17855
−0.23802
0.209786
−1.1346
−0.4485
0.106865
−4.19691


AKT3
−1.43148
0.576851
−2.48154
0.181912
0.147743
1.231273
0.149731
0.140716
1.064065


ALCAM
−0.36428
0.239833
−1.51888
0.002712
0.084499
0.032094
−0.3019
0.094459
−3.19609


APEX1
−0.07674
0.181782
−0.42215
−0.00097
0.268651
−0.00361
−0.13398
0.232019
−0.57746


ARF1
2.03958
0.804729
2.534493
−0.15337
0.204529
−0.74984
0.944168
0.204641
4.613777


AURKA
0.270093
0.169472
1.593732
−0.07663
0.213247
−0.35934
0.643963
0.101097
6.369754


BAD
NA
NA
NA
0.38364
0.389915
0.983907
0.149641
0.221188
0.676533


BAG1
−0.36295
0.282963
−1.28267
−0.11976
0.203911
−0.58733
−0.41603
0.138093
−3.01265


BBC3
NA
NA
NA
0.056993
0.249671
0.228274
−0.5633
0.158825
−3.54669


BCAR3
−0.41595
0.216837
−1.91825
0.072246
0.301443
0.237306
−0.26067
0.114992
−2.26685


BCL2
−2.47368
1.23296
−2.00629
NA
NA
NA
−0.30738
0.079518
−3.86557


BIRC5
NA
NA
NA
0.268836
0.122325
2.197719
0.390779
0.069127
5.6531


BTRC
NA
NA
NA
−0.63958
0.485936
−1.31618
−0.52394
0.130699
−3.75051


BUB1
0.206656
0268687
0.769133
0.104644
0.142318
0.735283
0.426611
0.094852
4.49763


C10orf116
NA
NA
NA
0.064337
0.14087
0.456713
−0.22589
0.082836
−2.72696


C17orf37
NA
NA
NA
0.1532
0.294177
0.520775
NA
NA
NA


TPX2
NA
NA
NA
−0.01014
0.317222
−0.03198
0.536914
0.116472
4.609812


C8orf4
−0.07043
0.106335
−0.66236
−0.03221
0.189009
−0.1704
−0.3396
0.083273
−4.07813


CAV1
−0.06896
0.2269
−0.30391
0.078825
0.340843
0.231265
−0.30885
0.133788
−2.30848


CCL19
0.246585
0.153468
1.606752
0.024132
0.130045
0.185564
−0.08897
0.087102
−1.02143


CCNB1
NA
NA
NA
−0.02016
0.230327
−0.08751
0.495483
0.10424
4.75329


CDC20
0.095023
0.198727
0.478159
0.482934
0.216025
2.235547
0.35587
0.125008
2.846778


CDC25A
0.257084
0.227966
1.12773
0.078265
0.111013
0.705008
0.48387
0.105238
4.597864


CDC25C
0.340882
0.240266
1.418769
−0.22371
0.269481
−0.83013
0.287063
0.136568
2.101979


CDH11
0.028252
0.199053
0.141931
−0.0883
0.124418
−0.70971
−0.13223
0.097541
−1.35564


CDK4
0.18468
0.129757
1.423276
0.304045
0.17456
1.741779
0.267465
0.148641
1.799403


SCUBE2
NA
NA
NA
−0.01783
0.063429
−0.28108
−0.24635
0.048622
−5.0667


CENPA
NA
NA
NA
0.225878
0.249928
0.903772
0.467131
0.081581
5.726013


CHAF1B
0.47534
0.323193
1.470762
0.233081
0.291389
0.799896
0.519868
0.125204
4.152168


CLDN4
0.185116
0.314723
0.588187
−0.13129
0.426627
−0.54213
0.564756
0.210595
2.681716


CLICI
0.171995
0.821392
0.209395
−0.05548
0.414451
−0.13385
0.383134
0.165674
2.312578


COLIA1
NA
NA
NA
0.004033
0.146511
0.027527
NA
NA
NA


COLIA2
0.157848
0.123812
1.274901
0.057815
0.163831
0.352894
−0.00235
0.064353
−0.03653


COMT
−2.45771
1.02805
−2.39065
0.526063
0.226489
2.322687
−0.00764
0.129967
−0.05878


CRYZ
−0.53751
0.214408
−2.50696
−0.32472
0.253244
−1.28224
−0.25514
0.124909
−2.04264


CSF1
NA
NA
NA
−0.14894
0.352724
−0.42226
−0.11194
0.240555
−0.46532


CTHRC1
0.571897
0.535382
1.073807
−0.08389
0.137325
−0.6109
0.024002
0.097692
0.245691


CXCL12
NA
NA
NA
−0.08863
0.138097
−0.64183
−0.36944
0.138735
−2.66293


CXCL14
NA
NA
NA
−0.06592
0.093353
−0.70609
−0.16877
0.054117
−3.11866


CYR61
0.571476
0.323114
1.768487
−0.11281
0.164296
−0.68663
0.087147
0.082372
1.057965


DICER1
0.038811
0.409835
0.0947
0.086141
0.143687
0.599504
−0.46887
0.150367
−3.11814


DLC1
−0.09793
0.247069
−0.39638
−0.03473
0.238947
−0.14533
−0.35001
0.130472
−2.68262


TNFRSF10B
0.159018
0.456205
0.348567
−0.19927
0.160381
−1.24248
0.053214
0.164091
0.324294


DUSP1
NA
NA
NA
−0.03006
0.152909
−0.19657
−0.0472
0.09086
−0.51952


E2F1
−1.06849
0.824212
−1.29638
0.356102
0.38254
0.930888
0.617258
0.121385
5.085126


EEF1A2
NA
NA
NA
−0.0028
0.233293
−0.01199
−0.01585
+0.06608
−0.23987


ELF3
0.209853
0.239225
0.87722
0.026264
0.109569
0.2397
0.165848
0.143091
1.159039


ENO1
NA
NA
NA
−0.01727
0.097939
−0.17629
0.3681
0.094778
3.884888


EPHB2
1.38257
0.444196
3.112522
−0.46953
0.395102
−1.18837
0.318437
0.123672
2.574851


ERBB2
0.314084
0.126321
2.486396
0.23616
0.121533
1.943176
0.08469
0.056744
1.492504


ERBB4
−0.13567
0.114364
−1.18626
0.191218
0.114326
1.672568
−0.28508
0.066294
−4.30028


ESRRG
0.356845
0.216506
1.648199
0.023341
0.078378
0.297795
−0.16542
0.093598
−1.76733


ESR1
−0.12127
−0.111184
−1.09075
0.127143
0.109672
1.159302
−0.16933
0.044665
−3.79121


EZH2
NA
NA
NA
0.008861
0.200897
0.044106
0.478266
0.107424
4.452134


F3
−0.00167
0.448211
−0.00372
−0.13187
0.134218
−0.98248
−0.29217
0.093753
−3.11637


FGFR4
0.230309
0.229234
1.00469
−0.15142
0.109674
−1.3806
−0.04922
0.146198
−0.33666


FHIT
0.087228
0.322399
0.270559
−0.08366
0.344886
−0.24256
−0.1378
0.121745
−1.13183


FN1
0.417442
0.859619
0.485613
−0.05187
0.111777
−0.46402
0.112875
0.066759
1.690796


FOXA1
NA
NA
NA
−0.04211
0.103534
−0.40677
−0.08953
0.043624
−2.05225


FUS
−0.18397
0.269637
−0.68227
0.119801
0.199389
0.600841
0.115971
0.188545
0.615084


GADD45A
−0.33447
0.236846
−1.41219
−0.43753
0.333292
−1.31276
−0.15889
0.115794
−1.37217


GAPDH
NA
NA
NA
0.396067
0.169944
2.330574
0.286211
0.073946
3.870541


GATA3
0.190453
0.170135
1.119423
0.058244
0.115942
0.502355
−0.13285
0.054984
−2.41625


GBP2
0.517501
0.299148
1.729916
0.082647
0.173301
0.4769
−0.19825
0.1358
−1.45985


GDF15
NA
NA
NA
0.200247
0.14325
1.397885
0.052347
0.063101
0.829563


GRB7
NA
NA
NA
0.027699
0.459937
0.060224
0.126284
0.054856
2.302117


GSTM1
NA
NA
NA
NA
NA
NA
−0.18141
0.14912
−1.21652


GSTM2
NA
NA
NA
NA
NA
NA
−0.15655
0.118111
−1.32547


GSTM3
NA
NA
NA
−0.09058
0.129247
−0.70086
−0.336
0.086817
−3.87028


HOXB13
0.461343
0.122399
3.769173
0.453876
0.324863
1.39713
0.161713
0.053047
3.048485


OTUD4
0.154269
0.633438
−0.243542
0.150174
0.149267
1.006076
−0.08847
0.130112
−0.67992


HSPA1A
NA
NA
NA
0.187486
0.231047
0.811463
0.174571
0.117296
1.488295


HSPA1B
NA
NA
NA
NA
NA
NA
0.249602
0.129038
1.934329


HSPA8
0.647034
0.346081
1.869603
0.208652
0.225656
0.924646
0.054243
0.178314
0.304198


IDH2
NA
NA
NA
0.265828
0.105592
2.517501
0.284862
0.089145
3.195498


IGF1R
−0.11077
0.162941
−0.67982
−0.37931
0.371019
−1.02236
−0.13655
0.08362
−1.63299


IGFBP7
NA
NA
NA
0.163138
0.200674
0.81295
0.06541
0.10077
0.649097


IL11
NA
NA
NA
−0.17423
0.144228
−0.20804
−0.048
0.126254
−0.38015


IL17RB
−0.44343
0.132744
−3.3405
NA
NA
NA
−0.01632
0.122679
−0.13305


IL6ST
−0.76052
0.386504
−1.96769
−0.4336
0.319875
−1.35553
−0.41477
0.111102
−3.73322


IL8
−0.12567
0.154036
−0.81583
−1.28729
0.493461
−2.6087
0.171912
0.07248
2.371858


INHBA
NA
NA
NA
−0.12767
0.132531
−0.96331
0.133895
0.111083
1.20536


IRF1
0.474132
0.503423
0.941816
−0.2456
0.294202
−0.8348
−0.08017
0.171067
−0.46864


ITGA4
NA
NA
NA
0.034844
0.074049
0.470549
−0.05101
0.133497
−0.38211


ITGA5
0.206218
0.263291
0.793232
0.367111
0.333768
1.099899
0.500604
0.163986
3.052724


TTGAV
−0.23212
0.278464
−0.83358
−0.14166
0.22286
−0.6373
−0.21993
0.158945
−1.28371


ITGB1
−0.13651
0.121624
−1.12236
−0.52799
0.346298
−1.52468
0.150333
0.133246
1.126714


ITGB4
−0.1271
0.168517
−0.76973
0.189568
0.163609
1.158665
0.166748
0.175308
0.951172


ITGB5
0.682674
0.74847
0.912093
−0.04952
0.16668
−0.29707
0.010302
0.104545
0.098544


MKI67
NA
NA
NA
0.128582
0.129422
0.99351
0.397232
0.176102
2.255693


KIAA1199
0.081394
0.121221
0.671448
NA
NA
NA
0.238809
0.113748
2.099457


KPNA2
−1.6447
1.00101
−1.64304
0.213725
0.196767
1.086183
0.422135
0.089135
4.735922


LAMA3
NA
NA
NA
−0.03143
0.133752
−0.23497
−0.30023
0.122124
−2.45838


LAPTM4B
0.352765
0.40304
0.875261
0.156358
0.140366
1.113931
0.334588
0.083358
4.013853


LMNB1
NA
NA
NA
−0.1517
0.242463
−0.62567
0.461325
0.098382
4.689115


LRIG1
−0.61468
0.216033
−2.84532
−0.24368
0.172969
−1.40878
−0.50209
0.1119
−4.48694


MTDH
0.084824
0.292285
0.290209
0.039288
0.233351
0.168365
0.430557
0.145357
2.962066


MCM2
0.118904
0.288369
0.412333
0.586577
0.252123
2.326551
0.504911
0.154078
3.276983


MELK
NA
NA
NA
0.216763
0.1352
1.603277
0.471343
0.103644
4.547711


MGMT
0.267185
0.295678
0.903635
−0.37332
0.507157
−0.73611
−0.14716
0.165874
−0.88716


MMP1
0.180359
0.078781
2.289386
0.559716
0.331212
1.689903
0.167053
0.064595
2.586172


MMP7
−1.06791
1.30502
0.81831
0.012294
0.101346
0.121311
NA
NA
NA


MYBL2
0.612646
0.509356
1.202785
0.396938
0.171503
2.314467
0.751827
0.151477
4.963308


NAT1
−0.05035
0.105736
−0.47614
−0.15619
0.139368
−1.12073
−0.20435
0.058054
−3.52


PGF
NA
NA
NA
0.05255
0.14245
0.368898
0.055127
0.36118
0.152631


PGR
−0.95852
0.593621
−1.61469
−0.01033
0.08386
−0.12312
−0.30421
0.073055
−4.16405


PRDX1
NA
NA
NA
0.253047
0.182621
1.38564
0.231612
0.161791
1.431551


PTEN
−0.10814
0.287261
−0.37645
0.113229
0.228164
0.496261
−0.3204
0.149745
−2.13962


RPL41
0.213155
0.288282
0.739398
0.030854
0.188269
0.163881
−0.08602
0.122667
−0.70126


RPLP0
0.488909
0.174981
2.794069
0.004595
0.198497
0.023148
0.008104
0.079365
0.102105


RRM2
NA
NA
NA
0.229458
0.11665
1.967064
0.434693
0.152104
2.857867


RUNX1
0.277566
0.267511
1.037587
0.124568
0.088457
1.408231
−0.18878
0.138365
−1.36435


S100A8
NA
NA
NA
0.142073
0.080349
1.768194
0.094631
0.041656
2.271738


S109A9
NA
NA
NA
0.090314
0.058415
1.546083
0.111093
0.045472
2.443086


S100B
NA
NA
NA
0.239753
0.145105
1.652272
0.195383
0.295751
0.660633


S100P
NA
NA
NA
0.202856
0.092114
2.202218
0.103276
0.04811
2.146677


SEMA3F
0.107802
0.274191
0.393164
−0.17978
0.185166
−0.97092
NA
NA
NA


SKIL
NA
NA
NA
0.143484
0.103564
1.385462
0.124124
0.120741
1.028019


SKP2
0.470759
0.2802
1.680082
−0.71691
0.354699
−2.02117
0.056728
0.128585
0.441174


SNAI1
0.163855
0.228308
0.717693
−0.04601
0.259767
−0.17711
0.057651
0.124454
0.463235


SYK
NA
NA
NA
−1.30716
0.591071
−2.21151
0.178238
0.168423
1.058276


TAGLN
0.010727
0.098919
0.108442
0.194543
0.115463
1.684895
0.077881
0.119491
0.651776


TFRC
0.029015
0.193689
0.149803
0.056174
0.166875
0.366622
0.157216
0.10845
1.449663


TGFB3
0.046498
0.2296
0.202518
−0.30473
0.247338
−1.23202
−0.36531
0.09592
−3.80851


TNFRSF11B
−1.15976
0.400921
−2.89274
−0.2492
0.289075
−0.86207
−0.22072
0.10171
−2.17005


VTN
NA
NA
NA
0.048066
0.34143
0.140779
−0.05675
0.116352
−0.48774


WISP1
−0.03674
0.212861
−0.1726
NA
NA
NA
−0.26317
0.153002
−2.3736


WNT5A
0.06984
0.223411
0.312605
−0.14987
0.146576
−1.02248
−0.29433
0.084559
−3.48081


C6orf66
0.179742
0.364806
0.492706
−0.53606
0.448343
−1.19564
0.296686
0.199046
1.49054


FOXO3A
0.176454
0.221502
0.796625
0.059822
0.171485
0.348846
−0.2855
0.194121
−1.47074


GPR30
−0.03208
0.1214
−0.26427
0.157898
0.174583
0.904429
0.080079
0.104254
0.768115


KNTC2
−0.14241
0.246904
−0.57677
0.274706
0.14532
1.890352
0.432186
0.120356
3.590897





Official






TRANS
TRANS
TRANS


Symbol
STNO~Est
STNO~SE
STNO~t
STOCK~Est
STOCK~SE
STOCK~t
BIG~Est
BIG~SE
BIG~t





AAMP
0.189376
0.309087
0.612695
0.836415
0.549695
1.521598
0.051406
0.111586
0.460681


ABCC1
NA
NA
NA
0.640672
0.375725
1.705162
NA
NA
NA


ABCC3
0.311364
0.100031
3.112675
0.166453
0.159249
1.045237
NA
NA
NA


ABR
0.095087
0.266216
0.357181
0.08129
0.196114
0.111525
NA
NA
NA


ACTR2
NA
NA
NA
0.302753
0.39656
0.763148
NA
NA
NA


ADAM17
NA
NA
NA
0.137069
0.276977
1.577997
NA
NA
NA


ADM
NA
NA
NA
0.555634
0.212705
2.289339
1.025583
0.038218
0.669405


LYPD6
NA
NA
NA
−0.42358
0.145799
−2.90525
−0.06178
0.031054
−1.98944


AKT3
NA
NA
NA
0.12232
0.182253
0.671155
NA
NA
NA


ALCAM
−0.14634
0.126842
−1.15369
−0.41301
0.190485
−2.16822
NA
NA
NA


APEX1
0.005151
0.257871
0.019976
0.739037
0.539346
1.370247
NA
NA
NA


ARF1
0
0.107397
0
0.862387
0.279535
3.085077
NA
NA
NA


AURKA
0.38795
0.127032
3.053955
0.688845
0.210275
3.275924
0.020041
0.064473
0.310835


BAD
−0.30035
0.25027
−1.20006
0.228387
0.543492
0.420221
NA
NA
NA


BAG1
NA
NA
NA
−0.39593
0.380547
−1.04043
NA
NA
NA


BBC3
NA
NA
NA
−0.26155
0.219839
−1.18974
−0.04709
0.086372
−0.5452


BCAR3
NA
NA
NA
−0.49692
0.265837
−1.86927
NA
NA
NA


BCL2
−0.38181
0.112494
−3.39408
−0.73699
0.228055
−3.23162
NA
NA
NA


BIRC5
0.190434
0.126151
1.510265
0.582957
0.159354
3.658251
0.007906
0.045316
0.174454


BTRC
NA
NA
NA
−0.92763
0.307218
−3.01944
NA
NA
NA


BUB1
0.357653
0.101235
3.532899
1.09451
0.258044
4.241563
0.014276
0.040135
0.355694


C10orf116
−0.09621
0.085948
−1.11936
−0.34745
0.112777
−3.08087
NA
NA
NA


C17orf37
NA
NA
NA
0.382862
0.185356
2.06555
NA
NA
NA


TPX2
NA
NA
NA
0.800822
0.195737
4.091316
NA
NA
NA


C8orf4
NA
NA
NA
−0.36113
0.130038
−2.77713
NA
NA
NA


CAV1
0.135002
0.093948
1.436991
−0.65852
0.275751
−2.38811
NA
NA
NA


CCL19
−0.0546
2531.93
−2.16E−05
−0.15743
0.154207
−1.02087
NA
NA
NA


CCNB1
0.37726
0.156356
2.412827
0.828029
0.223403
3.706436
NA
NA
NA


CDC20
0.059565
1057.7
5.63E−05
0.642601
0.178622
3.597547
NA
NA
NA


CDC25A
0.288245
0.213701
1.348824
0.168571
0.225272
0.7483
NA
NA
NA


CDC25C
0.420797
0.155926
2.698697
1.02036
0.337803
3.020577
NA
NA
NA


CDH11
−0.05652
0.1231
−0.45913
−0.21142
0.211537
−0.99942
NA
NA
NA


CDK4
0.279447
0.142472
1.961417
1.40458
0.463254
3.031987
NA
NA
NA


SCUBE2
−0.21559
0.074112
−2.90896
−0.24679
0.122745
−2.01059
0.016505
0.023486
0.702739


CENPA
NA
NA
NA
0.724539
0.195614
3.703922
0.002888
0.04791
0.060269


CHAF1B
0.259119
0.162074
1.59877
0.281358
0.148493
1.894756
NA
NA
NA


CLDN4
0.40922
0.128817
3.176755
1.20235
0.33711
3.56664
0.03236
0.053171
0.608591


CLIC1
0.238723
0.209629
1.138788
2.00024
0.600443
3.331274
−0.26608
0.160756
−1.65519


COL1A1
0.127256
0.081743
1.556791
0.05098
1.156488
0.325773
0.087944
0.034256
2.567237


COL1A2
−0.01925
0.078156
−0.24625
−0.17504
0.228915
−0.76466
NA
NA
NA


COMT
NA
NA
NA
0.643165
0.360056
1.786292
NA
NA
NA


CRYZ
−0.38719
0.143353
−2.70092
0.122949
0.34718
0.360853
NA
NA
NA


CSF1
NA
NA
NA
−0.11449
0.197258
−0.58042
−0.09782
0.196881
−0.49684


CTHRC1
NA
NA
NA
0.263783
0.247606
1.065334
NA
NA
NA


CXCL12
0.066487
0.189775
0.350348
−0.65036
0.168426
−3.86137
NA
NA
NA


CXCL14
−0.20969
0.073458
−2.8546
−0.14079
0.096118
−1.46476
NA
NA
NA


CYR61
NA
NA
NA
−0.38308
0.231645
−1.65372
NA
NA
NA


DICER1
NA
NA
NA
−1.06544
0.322204
−3.30672
NA
NA
NA


DLC1
0.519601
0.221066
2.350434
−0.66099
0.298518
−2.21425
NA
NA
NA


TNFRSF10B
−0.03773
0.174479
−0.21623
−0.03558
0.198203
−0.1795
NA
NA
NA


DUSP1
0.095682
0.223995
0.42716
−0.14883
0.12682
−1.17351
NA
NA
NA


E2F1
0.171825
0.110793
1.550865
0.699408
0.207377
3.37264
NA
NA
NA


EFF1A2
NA
NA
NA
−0.01256
0.130353
−0.09633
NA
NA
NA


ELF3
0.406692
0.148275
2.742822
0.233332
0.357735
0.652248
NA
NA
NA


ENO1
NA
NA
NA
0.428884
0.194952
2.199947
NA
NA
NA


EPHB2
NA
NA
NA
0.192999
0.451341
0.427612
NA
NA
NA


ERBB2
0.268938
0.074504
3.609693
0.092164
0.188964
0.487734
NA
NA
NA


ERBB4
−0.10396
0.068988
−1.50697
−0.73759
0.209821
−3.51532
NA
NA
NA


ESRRG
NA
NA
NA
−0.32843
0.127583
−2.57425
NA
NA
NA


ESR1
−0.14983
0.057346
−2.61275
−0.2159
0.120078
−1.798
−0.0019
0.019742
−0.0963


EZH2
0.293772
0.156133
1.88155
0.79436
0.243012
3.26881
−0.03007
0.04916
−0.61166


F3
NA
NA
NA
−0.3284
0.132658
−2.47552
NA
NA
NA


FGFR4
0.201581
0.15216
1.324796
−0.06118
0.171787
−0.35001
NA
NA
NA


FHIT
−0.16819
0.17858
−0.94181
−0.27141
0.367689
−0.73815
NA
NA
NA


FN1
0.049279
0.11577
0.425659
0.185381
0.202933
0.913508
NA
NA
NA


FOXA1
NA
NA
NA
−0.18849
0.161048
−1.17039
NA
NA
NA


FUS
NA
NA
NA
0.368833
0.437273
0.843485
NA
NA
NA


GADD45A
0.390085
0.342821
1.137868
−0.24644
0.303688
−0.81148
NA
NA
NA


GAPDH
NA
NA
NA
0.907441
0.296513
3.060375
NA
NA
NA


GATA3
−0.20281
0.068842
−2.94607
−0.25592
0.122639
−2.08677
NA
NA
NA


GBP2
0.104968
0.124764
0.841332
−0.17667
0.338601
−0.52176
NA
NA
NA


GDF15
−0.02683
0.097032
−0.27646
0.251857
0.169158
1.488886
NA
NA
NA


GRB7
0.28938
0.08099
3.573025
0.464983
0.21274
2.185687
NA
NA
NA


GSTM1
NA
NA
NA
NA
NA
NA
NA
NA
NA


GSTM2
NA
NA
NA
NA
NA
NA
NA
NA
NA


GSTM3
−0.38478
0.15382
−2.50148
−0.43469
0.17404
−2.49766
0.035771
0.038412
0.931246


HOXB13
NA
NA
NA
0.193
0.369898
0.521765
NA
NA
NA


OTUD4
0.372577
0.253393
1.470352
−0.19372
0.251083
−0.77155
NA
NA
NA


HSPA1A
NA
NA
NA
0.765501
0.440826
1.736515
NA
NA
NA


HSPA1B
0.033372
0.19398
0.172039
0.069621
0.248436
0.280237
NA
NA
NA


HSPA8
0.22166
0.199205
1.112723
0.32649
0.265007
1.232005
NA
NA
NA


IDH2
0.127942
0.255302
0.50114
0.574289
0.193387
2.969636
NA
NA
NA


IGF1R
−0.16723
0.112062
−1.49233
−0.35887
0.141569
−2.53498
NA
NA
NA


IGFBP7
0.121056
0.164973
0.733793
−0.55896
0.34775
−1.60736
NA
NA
NA


ILI1
NA
NA
NA
0.086327
0.225669
0.38254
NA
NA
NA


IL17RB
NA
NA
NA
−0.01403
0.212781
−0.06594
NA
NA
NA


IL6ST
NA
NA
NA
−0.65682
0.195937
−3.35217
NA
NA
NA


IL8
0.548269
0.238841
2.29554
0.382317
0.203112
1.882296
NA
NA
NA


INHBA
−0.12998
0.113709
−1.14313
0.249729
0.181419
1.354139
NA
NA
NA


IRF1
0.307333
0.166134
1.84991
0.248132
0.447433
0.554568
NA
NA
NA


ITGA4
0.02688
2341.09
1.15E−05
0.198854
0.302824
0.656665
NA
NA
NA


ITGA5
NA
NA
NA
0.025981
0.423908
0.061288
NA
NA
NA


ITGAV
0
0.216251
0
−0.403
0.45413
−0.88742
NA
NA
NA


ITGB1
0.131284
0.165432
0.793583
0.195878
0.3192
0.613653
NA
NA
NA


ITGB4
0.100533
0.106548
0.943547
0.035914
0.241068
0.14898
NA
NA
NA


ITGB5
−0.19722
0.165947
−1.18843
−0.29946
0.281956
−1.06207
NA
NA
NA


MKI67
−0.07823
0.080982
−0.87915
0.96424
0.257398
3.746105
NA
NA
NA


KIAA1199
NA
NA
NA
0.293164
0.194272
1.509039
NA
NA
NA


KPNA2
0.328818
0.112579
2.920776
0.857218
0.267225
3.207851
NA
NA
NA


LAMA3
−0.28334
0.120229
−2.3567
−0.42291
0.12869
−3.28625
NA
NA
NA


LAMB3
NA
NA
NA
−0.15767
0.230936
−0.68274
NA
NA
NA


LAPTM4B
0.405684
0.113287
3.581029
0.28652
0.19422
1.475234
NA
NA
NA


LMNB1
NA
NA
NA
0.755925
0.25541
2.959653
NA
NA
NA.


LRI64
−0.31422
0.128149
−2.45197
−0.95351
0.258142
−3.69375
NA
NA
NA


MTDH
0.242242
0.285145
0.84954
0.472647
0.340076
1.389828
0.052038
0.077589
0.670683


MCM2
0.008185
0.084857
0.096455
0.732131
0.216462
3.382275
NA
NA
NA


MELK
NA
NA
NA
0.749617
0.195032
3.843559
0.022669
0.036962
0.613293


MGMT
NA
NA
NA
0.377527
0.48364
0.780595
NA
NA
NA


MMP1
0.083945
0.055744
1.505895
0.28871
0.081435
3.545299
NA
NA
NA


MMP7
0.102783
0.072986
1.408258
−0.00343
0.153901
−0.0223
NA
NA
NA


MYBL2
0.399355
0.118084
3.381957
0.579872
0.191026
3.019758
NA
NA
NA


NAT1
−0.14333
0.060602
−2.36509
−0.26529
0.117131
−2.26487
NA
NA
NA


PGF
−0.17016
0.153912
−1.10557
−0.08334
0.183966
−0.45304
0.095422
0.145828
0.654349


PGR
NA
NA
NA
−0.18022
0.108941
−1.65427
NA
NA
NA


PRDX1
NA
NA
NA
1.52553
0.420489
3.62799
NA
NA
NA


PTEN
0
226.764
0
−0.26976
0.225651
−1.19546
NA
NA
NA


RPL41
NA
NA
NA
−0.40807
0.786496
−0.51884
NA
NA
NA


RPLP0
NA
NA
NA
0.018324
0.458438
0.039971
NA
NA
NA


RRM2
0.305217
0.104337
2.9253
0.926244
0.22125
4.186414
0.038487
0.042471
0.906208


RUNX1
−0.17832
0.165636
−1.07657
−0.39722
0.244634
−1.62372
NA
NA
NA


S100A8
0.093477
0.04547
2.055818
0.164366
0.096581
1.701846
NA
NA
NA


S100A9
NA
NA
NA
0.15514
0.10905
1.42265
NA
NA
NA


S100B
0.136825
0.163838
0.835124
−0.11862
0.158461
−0.74859
−0.01591
0.034049
−0.46712


S100P
0.19922
0.078236
2.546395
0.201435
0.097583
2.064251
NA
NA
NA


SEMA3F
0.023257
0.162267
0.143327
0.472655
0.292764
1.614457
NA
NA
NA


SKIL
NA
NA
NA
0.015831
0.262101
0.060402
NA
NA
NA


SKP2
NA
NA
NA
0.312141
0.339582
0.919192
NA
NA
NA


SNAI1
NA
NA
NA
0.152799
0.210056
0.72742
NA
NA
NA


SYK
0.21812
0.150626
1.44809
−0.06882
0.155403
−0.44285
NA
NA
NA


TAGLN
−0.00434
0.106525
−0.04003
−0.2578
0.197826
−1.30316
NA
NA
NA


TFRC
0.406546
0.131339
3.095394
0.178145
0.153331
1.161833
−0.03263
0.051129
−0.63826


TGFB3
−0.07166
0.134442
−0.53298
−1.08462
0.322799
−3.36005
0.013681
0.046103
0.296755


TNFRSF11B
0
0.08306
0
−0.10987
0.128194
−0.85708
NA
NA
NA


VIN
−0.01674
0.109545
−0.15278
0.100648
0.186529
0.539584
0.226938
0.091337
2.484623


WISP1
0.03435
0.194412
0.176685
0.236658
0.340736
0.694549
−0.00282
0.068308
−0.04121


WNT5A
0.121343
0.108022
1.123317
−0.01524
0.172902
−0.08815
NA
NA
NA


C6orf66
NA
NA
NA
0.530409
0.355488
1.492059
NA
NA
NA


FOXO3A
NA
NA
NA
0.087341
0.128833
0.67794
NA
NA
NA


GPR30
NA
NA
NA
−0.36866
0.173755
−2.12169
NA
NA
NA


KNTC2
NA
NA
NA
0.442783
0.170315
2.599789
−0.00276
0.041235
−0.06696



Official











Symbol
UCSF~Est
UCSF~SE
UCSF~t
UPP~Est
UPP~SE
UPP~t
fe
sefe






AAMP
0.770516
0.762039
1.011124
1.25423
0.577991
2.169982
0.146929
0.085151



ABCC1
NA
NA
NA
0.274551
0.271361
1.011756
0.281451
0.10466



ABCC3
0.381707
0.250896
1.521375
0.178151
0.097231
1.835219
0.172778
0.148133



ABR
−0.17319
0.728313
−0.23779
−0.16409
0.120793
−1.35847
−0.06034
0.067134



ACTR2
NA
NA
NA
0.21163
0.353554
0.607064
0.199885
0.117995



ADAM17
0.35188
0.133785
0.827322
0.131216
0.194946
0.673213
0.129961
0.090699



ADM
NA
NA
NA
0.361033
0.203319
1.775435
0.119028
0.030564



LYPD6
NA
NA
NA
−0.1514
0.073668
−2.09587
−0.12675
0.026288



AKT3
NA
NA
NA
−0.06832
0.125172
−0.5458
0.05204
0.071861



ALCAM
−0.25661
0.251874
−1.01819
−0.1468
0.143998
−1.01942
−0.15502
0.046361



APEX1
−0.96165
0.704753
−1.36878
1.23743
0.466987
2.619817
0.019915
0.10214



ARF1
0.304097
0.58718
0.517894
0.751279
0.361093
2.080569
0.281544
0.07587



AURKA
−0.0146
0.28312
−0.05156
0.427382
0.126638
3.374832
0.262652
0.041246



BAD
−0.43933
0.659711
−0.66594
0.351434
0.360157
0.97578
0.059151
0.126378



BAG1
0.516764
0.524112
0.98598
0.380154
0.211079
1.801003
−0.16426
0.087173



BBC3
0.263477
0.606256
0.434597
−0.13039
0.141473
−0.92165
−0.14598
0.061462



BCAR3
NA
NA
NA
−0.29435
0.182614
−1.61186
−0.28755
0.080198



BCL2
−0.3453
0.410691
−1.84078
−0.11988
0.1474734
−0.68605
−0.32009
0.056047



BIRC5
0.357332
0.286621
1.246706
0.43455
0.110681
3.926148
0.186649
0.031964



BTRC
NA
NA
NA
−0.0225
0.1807
−0.12451
−0.40405
0.100468



BUB1
0.376719
0.340175
1.107427
0.469009
0.162539
2.885517
0.154368
0.032048



C10orf116
0.013111
156.117
8.40E−05
−0.00923
0.100902
−0.09148
−0.13
0.042521



C17orf37
NA
NA
NA
0.385651
0.113625
3.394068
0.362223
0.092012



TPX2
0.213479
0.284008
0.751665
0.44053
0.139377
3.160708
0.480408
0.073094



C8orf4
NA
NA
NA
0.0037
0.109064
0.033921
−0.18346
0.048256



CAV1
−0.54391
0.428883
−1.2682
−0.31503
0.150431
−2.09415
−0.11726
0.058989



CCL19
0
0.434462
0
−0.1048
0.106112
−0.98765
−0.05608
0.050769



CCNB1
−0.35808
0.431863
−0.82915
0.611916
0.142007
4.309055
0.456916
0.062513



CDC20
−0.65381
0.404188
−1.61759
0.490188
0.130676
3.751171
0.319134
0.064899



CDC25A
−0.31967
0.397525
−0.80414
0.330359
0.191096
1.728759
0.267201
0.060819



CDC25C
−0.33774
0.477196
−0.70776
0.827213
0.232669
3.555321
0.382935
0.077595



CDH11
−0.20567
0.246195
−0.83541
−0.22621
0.164541
−1.37482
−0.11417
0.053045



CDK4
−0.37577
0.674081
−0.55746
0.814832
0.297251
2.741225
0.305255
0.069562



SCUBE2
NA
NA
NA
−0.14287
0.077009
−1.8552
−0.05439
0.018349



CENPA
0.679912
0.275146
2.471095
0.536476
0.157029
3.416414
0.185486
0.037867



CHAF1B
−0.03447
0.352745
−0.09773
0.209129
0.093425
2.238469
0.300765
0.05807



CLDN4
0
1.8541
0
0.08503
0.258939
0.328378
0.125868
0.045235



CLIC1
0.377361
0.552842
0.682584
0.999191
0.414232
2.412153
0.222753
0.088912



COL1A1
NA
NA
NA
−0.05544
0.13355
−0.41509
0.083989
0.029343



COL1A2
−0.1405
0.184661
−0.76085
−0.15924
0.220113
−0.72346
−0.00069
0.041375



COMT
0.356582
0.628139
0.56768
0.404183
0.257299
1.570869
0.212925
0.092124



CRYZ
−0.52792
0.412283
−1.28048
−0.37265
0.225119
−1.65534
−0.33167
0.071579



CSF1
NA
NA
NA
0.120517
0.1485659
0.810694
−0.0334
0.090261



CTHRC1
NA
NA
NA
−0.14789
0.176843
−0.83626
−0.00169
0.069075



CXCL12
−0.05795
0.270065
−0.21456
−0.35344
0.150278
−2.35189
−0.28998
0.062826



CXCL14
NA
NA
NA
−0.1861
0.08384
−2.21976
−0.14219
0.032611



CYR61
−0.22327
0.263371
−0.84773
−0.41188
0.174362
−2.36221
−0.04446
0.059831



DICER1
0
0.311799
0
0.208326
0.307144
0.678268
−0.19602
0.085879



DLC1
−0.31503
−0.345828
−0.91094
−0.404
0.200673
−2.01324
−0.19876
0.076441



TNFRSF10B
0.932144
0.524911
1.775808
0.127348
0.157658
0.807748
0.02034
0.072745



DUSP1
0.008053
0.779738
0.010327
−0.41475
0.153012
−2.71055
−0.11225
0.054628



E2F1
NA
NA
NA
0.570954
0.172882
3.302565
0.433836
0.067966



EFF1A2
0.433528
0.267338
1.621648
−0.04242
0.091692
−0.46259
0.068177
0.041066



ELF3
0.841389
0.55748
1.509272
0.096421
0.256911
0.375307
0.196003
0.066053



ENO1
0.899319
0.369574
2.433394
0.288434
0.179833
1.603899
0.233559
0.058687



EPHB2
0.355634
0.604801
0.588018
0.211632
0.199057
1.063173
0.284709
0.094113



ERBB2
0.301674
0.170749
0.1766769
0.349689
0.107646
3.248509
0.181046
0.034939



ERBB4
NA
NA
NA
−0.1859
0.117619
−1.58055
−0.16266
0.037384



ESRRG
NA
NA
NA
−0.04663
0.091723
−0.50839
−0.0602
0.044609



ESR1
−0.30054
0.138369
−2.17201
−0.05086
0.082082
−0.6196
−0.04576
0.015905



EZH2
0.123884
0.404373
0.306361
0.615257
0.155425
3.958546
0.134411
0.0393



F3
−0.08026
0.491948
−0.16315
−0.20405
0.109227
−1.86809
−0.22911
0.055029



FGFR4
0.149034
0.333338
0.447096
0.204299
0.102078
2.001401
0.075374
0.053791



FHIT
0.225378
0.678656
0.332095
0.053025
0.245338
0.216132
−0.11401
0.082797



FN1
0.13258
0.244458
0.542343
−0.15952
0.26761
−0.59607
0.070337
0.045477



FOXA1
NA
NA
NA
0.139273
0.160139
0.869701
−0.07105
0.037194



FUS
NA
NA
NA
−0.15247
0.345172
−0.44173
0.063142
0.111165



GADD45A
0.153778
0.296619
0.518384
−0.4297
0.20668
−2.07904
−0.18353
0.077839



GAPDH
NA
NA
NA
0.493907
0.232859
2.121856
0.303991
0.05522



GATA3
−0.2038
0.135112
−1.50836
0.052882
0.108852
0.485817
−0.12484
0.03218



GBP2
0.161775
0.233299
0.687529
0.215873
0.198252
1.088882
0.030811
0.064103



GDF15
0.462744
0.465751
0.993544
0.139286
0.128201
1.086466
0.095577
0.04245



GRB7
0.492397
0.361768
1.361085
0.39613
0.142688
2.776197
0.203411
0.041043



GSTM1
NA
NA
NA
NA
NA
NA
−0.18141
0.14912



GSTM2
−0.12675
0.336406
−0.37676
NA
NA
NA
−0.15328
0.111442



GSTM3
0.11963
0.323329
0.369995
−0.05308
0.123135
−0.43107
−0.06296
0.030752



HOXB13
0.540678
0.49567
1.090802
0.342881
0.212428
1.614105
0.227421
0.046188



OTUD4
−0.97971
0.713147
−1.37378
0.231981
0.294286
0.788284
0.034041
0.081167



HSPA1A
NA
NA
NA
0.722677
0.40563
1.781616
0.243271
0.092738



HSPA1B
NA
NA
NA
0.187302
0.176407
1.061761
0.198207
0.083268



HSPA8
−0.30224
0.477926
−0.63239
0.126525
0.166299
0.760828
0.218804
0.082393



IDH2
−0.009
0.554612
−0.01623
0.659908
0.186426
3.539785
0.303626
0.056121



IGF1R
0.2777384
0.391147
0.709155
−0.04996
0.122321
−0.40843
−0.14872
0.0484



IGFBP7
−0.50275
0.332753
−1.51087
−0.16594
0.185086
−0.89655
0.005398
0.068861



ILI1
NA
NA
NA
0.000507
0.151608
0.003346
−0.05199
0.075711



IL17RB
NA
NA
NA
−0.1861
0.139748
−1.33168
−0.16557
0.069337



IL6ST
−0.11749
0.19789
−0.5937
−0.26213
0.150485
−1.74192
−0.31568
0.063376



IL8
−0.3673
0.460322
−0.79791
0.076262
0.135635
0.562257
0.136391
0.05243



INHBA
0.094476
0.303634
0.311152
0.036575
0.162207
0.225185
0.026824
0.056655



IRF1
0.380822
0.370842
1.026912
−0.01044
0.283877
−0.03676
0.082446
0.091982



ITGA4
−0.54938
0.583992
−0.94073
−0.01192
0.18086
−0.659
0.002027
0.059101



ITGA5
NA
NA
NA
0.406364
0.36399
1.116415
0.431369
0.112958



ITGAV
−0.59197
0.499066
−1.18615
−0.24399
0.30418
−0.80213
−0.15415
0.089488



ITGB1
0.430257
0.540622
0.795856
−0.18009
0.530248
−0.33962
0.026471
0.072949



ITGB4
0.754519
0.285307
2.644586
0.075057
0.181963
0.412483
0.132678
0.060938



ITGB5
−−0.19391
0.378906
−0.51177
−0.21379
0.157719
−1.35549
−0.09296
0.063571



MKI67
−0.19193
0.462712
−0.4148
0.597931
0.152281
3.926498
0.183915
0.058442



KIAA1199
NA
NA
NA
0.070065
0.141965
0.493538
0.153718
0.066186



KPNA2
0.32028
0.315031
1.016662
0.615022
0.206117
2.981849
0.374909
0.054897



LAMA3
−0.14266
0.366741
−0.38899
−0.27285
0.091038
−2.99711
−0.26764
0.050305



LAMB3
NA
NA
NA
−0.1353
0.168256
−0.8091
−0.00591
0.051501



LAPTM4B
NA
NA
NA
0.095487
0.136338
0.7042367
0.270104
0.051492



LMNB1
0.121429
0.364263
0.316005
0.805734
0.199208
4.044687
0.481816
0.073226



LRI64
NA
NA
NA
−0.05954
0.178366
−0.33383
−0.37679
0.062403



MTDH
NA
NA
NA
0.45556
0.239663
1.900836
0.158361
0.059133



MCM2
0.138969
0.340074
0.408643
0.601555
0.182898
3.294487
0.275153
0.05978



MELK
NA
NA
NA
0.46629
0.128065
3.641042
0.132605
0.031744



MGMT
0.368174
0.453282
0.812241
0.725329
0.346508
2.093253
0.085317
0.117786



MMP1
0.150509
0.33411
0.450477
0.11015
0.051829
2.12525
0.151235
0.027295



MMP7
0.166646
0.143301
1.162909
0.059637
0.10332
0.57721
0.08418
0.042799



MYBL2
0.030169
0.282699
0.106717
0.445705
0.102011
4.369186
0.479924
0.057205



NAT1
−0.1696
0.138069
−1.22836
−0.05668
0.076583
−0.7401
−0.14009
0.030446



PGF
−1.00442
0.630097
−1.59407
0.038005
0.124883
0.304328
0.009034
0.063633



PGR
0.451216
0.527475
0.855426
−0.01652
0.065638
−0.25164
−0.12464
0.038764



PRDX1
0.358079
0.32938
1.08713
0.706059
0.303105
2.32942
0.347764
0.10081



PTEN
NA
NA
NA
0.110294
0.254356
0.433621
−0.15381
0.092467



RPL41
NA
NA
NA
0.24408
0.604521
0.403758
−0.01769
0.094765



RPLP0
NA
NA
NA
0.961584
0.554848
1.738465
0.108162
0.064823



RRM2
−0.03281
0.279791
−0.11727
0.674794
0.149386
4.517117
0.159696
0.03419



RUNX1
−0.58909
0.365997
−1.52616
−0.2142
0.105479
−2.03071
−0.07498
0.052758



S100A8
0.123771
0.178963
0.691601
0.125784
0.065874
1.909478
0.106936
0.024582



S100A9
NA
NA
NA
0.135096
0.074987
1.801592
0.112811
0.030203



S100B
−0.05362
0.218098
−0.24584
−0.13315
0.115177
−1.15608
−0.01134
0.030069



S100P
0.416003
0.200351
2.076371
0.174292
0.063687
2.736705
0.179884
0.028697



SEMA3F
NA
NA
NA
0.545294
0.227357
2.398404
0.117569
0.092557



SKIL
0.141701
0.348326
0.406814
0.179419
0.152532
1.176271
0.134826
0.065866



SKP2
NA
NA
NA
0.482115
0.194873
2.17415
0.167902
0.091018



SNAI1
NA
NA
NA
0.329059
0.159704
2.060431
0.140674
0.078745



SYK
0.159029
0.431388
0.368645
0.066162
0.136668
0.484107
0.063381
0.072639



TAGLN
NA
NA
NA
−0.06802
0.191196
−0.35574
0.032416
0.049944



TFRC
−0.22576
0.249301
−0.90558
0.545839
0.208978
2.611945
0.062825
0.038345



TGFB3
−0.25719
0.253264
−1.01551
−0.49773
0.225603
−2.20621
−0.10353
0.03709



TNFRSF11B
NA
NA
NA
−0.03866
0.087545
−0.44163
−0.09599
0.046815



VIN
−0.22804
0.193542
−1.17822
0.167418
0.152274
1.099452
0.063022
0.050706



WISP1
NA
NA
NA
−0.29710
0.212939
−1.39552
−0.05687
0.054306



WNT5A
−0.96994
0.719267
−1.34851
−0.23507
0.152819
−1.5382
−0.12181
0.051129



C6orf66
NA
NA
NA
−0.04983
0.251179
−0.19837
0.167784
0.123636



FOXO3A
−0.03591
0.49687
−0.074227
−0.03291
0.074227
−0.03914
0.007101
0.054798



GPR30
NA
NA
NA
−0.07779
0.125956
−0.61763
−0.02487
0.058543



KNTC2
−0.02041
0.366566
−0.05568
0.347484
0.117596
2.954896
0.093083
0.034359
















TABLE 14







Validation of Transferrin Receptor Group genes in SIB data sets.









Genes














Study data set
TFRC
ENO1
IDH2
ARF1
CLDN4
PRDX1
GBP1





EMC2~Est
NA
NA
NA
NA
NA
NA.
NA


EMC2~SE
NA
NA
NA
NA
NA
NA
NA


EMC2~t
NA
NA
NA
NA
NA
NA
NA


JRH1~Est
−0.91825
NA
−0.0525
0.839013
−0.54144
NA
0.137268


JRH1~SE
0.6362.75
NA
0.232201
0.346692
0.470758
NA
0.159849


JRH1~t
−1.44317
NA
−0.22611
2.420053
−1.15014
NA
0.858735


JRH2~Est
0.162921
0.179739
0.151299
0.369609
0.33033
−0.41082
−0.07418


JRH2~SE
0.352486
0.312848
0.327466
0.40789
0.351865
0.47383
0.198642


JRH2~t
0.462206
0.574525
0.46203
0.906149
0.938798
−0.86703
−0.37345


MGH~Est
0.029015
NA
NA
2.03958
0.185116
NA
0.15434


MGH~SE
0.193689
NA
NA
0.804729
0.314723
NA
0.188083


MGH~t
0.149803
NA
NA
2.534493
0.588187
NA
0.820595


NCH~Est
0.056174
−0.01727
0.265828
−0.15337
−0.23129
0.253047
0.095457


NCH~SE
0.166875
0.097939
0.105592
0.204529
0.426627
0.182621
0.1323


NCH~t
0.336622
−0.17629
2.517501
−0.74984
−0.5421.3
1.38564
0.721522


NKI~Est
0.157216
0.3682
0.284862
0.944168
0.564756
0.231612
0.13712


NKI~SE
0.10845
0.094778
0.089145
0.204641
0.210595
0.161791
0.075391


NKI~t
1.449663
3.884888
3.195498
4.613777
2.681716
1.431551
1.818777


STNO~Est
0.406546
NA
0.127942
0
0.40922
NA
0.298139


STNO~SE
0.131339
NA
0.255302
0.1107397
0.128817
NA
0.113901


STNO~t
3.095394
NA
0.50114
0
3.176755
NA
2.617528


STOCK~Est
0.178145
0.428884
0.574289
0.862387
1.20235
1.52553
0.068821


STOCK~SE
0.153331
0.194952
0.193387
0.279535
0.33711
0.420489
0.183692


STOCK~t
1.161833
2.199947
2.969636
3.085077
3.56664
3.62799
0.374652


TRANSBIG~Est
−0.03263
NA
NA
NA
0.03236
NA
NA


TRANSBIG~SE
0.051129
NA
NA
NA
0.053171
NA
NA


TRANSBIG~t
−0.63826
NA
NA
NA
0.608591
NA
NA


UCSF~Est
−0.22576
0.899319
−0.009
0.304097
0
0.358079
−0.43879


UCSF~SE
0.249301
0.369574
0.554612
0.58718
1.8541
0.32938
0.874728


UCSF~t
−0.90558
2.433394
−0.01623
0.517894
0
1.08713
−0.50163


UPP~Est
0.545839
0.288434
0.659908
0.751279
0.08503
0.706059
0.119778


UPP~SE
0.208978
0.179833
0.186426
0.361093
0.258939
0.303105
0.117879


UPP~t
2.611945
1.603899
3.539785
2.080569
0.328378
2.32942
1.01611


Fe
0.062825
0.233559
0.303626
0.281544
0.125868
0.347764
0.139381


Sefe
0.038345
0.058687
0.056121
0.07587
0.045235
0.10081
0.044464
















TABLE 15







Validation of Stromal Group genes in SIB data sets.




















Gene
CXCL14
TNFRSF11B
CXCL12
C10orf116
RUNX1
GSTM2
TGFB3
BCAR3
CAV1
DLC1
TNFRSF10B
F3
DICER1





EMC2~Est
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA


EMC2~SE
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA


EMC2~t
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA


JRH1~Est
−0.23692
NA
−0.36476
−0.1418
−0.22834
NA
−1.0219
NA
−0.20701
0.13581
−0.09001
0.719395
NA


JRH1~SE
0.333761
NA
0.372499
0.261554
0.318666
NA
0.358953
NA
0.254401
0.37927
0.619057
0.524742
NA


JRH1~t
−0.70985
NA
−0.97921
−0.54216
−0.71656
NA
−2.84689
NA
−0.81372
0.358083
−0.1454
1.37095
NA


JRH1~Est
0.361375
−0.10399
−0.4566
0.036378
0.302803
NA
−0.39774
−0.29238
−0.19588
−0.4102
0.80742
−0.21237
−0.33943


JRH2~SE
0.159544
0.440721
0.219587
0.182183
0.420043
NA
0.470041
0.522706
0.289251
0.387258
0.544479
0.363632
0.39364


JRH2~t
2.265049
−0.23595
−2.07935
0.19968
0.720886
NA
−0.84619
−0.55935
−0.67721
−1.05923
1.482922
−0.58402
−0.8623


MGH~Est
NA
−1.15976
NA
NA
0.277566
NA
0.046498
−0.41595
−0.06896
−0.09793
0.159018
−0.00167
0.038811


MGH~SE
NA
0.400921
NA
NA
0.267511
NA
0.2296
0.216837
0.2269
0.247069
0.456205
0.448211
0.409835


MGH~t
NA
−2.89274
NA
NA
1.037587
NA
0.202518
−1.91825
−0.30391
−0.39638
0.348567
−0.00372
0.0947


NCH~Est
−0.06592
−0.2492
−0.08863
0.064337
0.124568
NA
−0.30473
0.072246
0.078825
−0.03473
−0.19927
−0.13187
0.086141


NCH~SE
0.093353
0.289075
0.138097
0.14087
0.088457
NA
0.247338
0.304443
0.340843
0.238947
0.169381
0.134218
0.143687


NCH~t
−0.70609
−0.86207
−0.64183
0.456713
1.4138231
NA
−1.23202
0.237306
0.231265
−0.14533
−1.24248
−0.98248
0.599504


NKI~Est
−0.16877
−0.22072
−0.36944
−0.22589
−0.18878
−0.15655
−0.36531
−0.26067
−0.30885
−0.35001
0.053214
−0.29217
−0.46887


NKI~SE
0.054117
0.10171
0.138735
0.082836
0.138365
0.118111
0.09592
0.114992
0.133788
0.130472
0.164091
0.093753
0.150367


NKI~t
−3.11866
−2.17005
−2.66293
−2.72696
−1.36435
−1.32547
−3.80851
−2.26685
−2.30848
−2.68262
0.324294
−3.11637
−3.11814


SINO~Est
−0.20969
0
0.066487
−0.09621
−0.17832
NA
−0.07166
NA
0.135002
0.519601
−0.03773
NA
NA


SINO~SE
0.073458
0.08306
0.189775
0.085948
0.165636
NA
0.134442
NA
0.093948
0.221066
0.171479
NA
NA


SINO~t
−2.8546
0
0.350348
−1.11936
−1.07657
NA
−0.53298
NA
1.436991
2.350434
−0.21623
NA
NA


STOCK~Est
−0.14079
−0.10987
−0.65036
−0.34745
−0.39722
NA
−1.08462
−0.49692
−0.65852
−0.66099
−0.03558
−0.3284
−1.06544


STOCK~SE
0.096118
0.128194
0.168426
0.112777
0.244634
NA
0.322799
0.265837
0.275751
0.298518
0.198203
0.132658
0.322204


STOCK~t
−1.46476
−0.85708
−3.86137
−3.08087
−1.62372
NA
−3.36005
−1.86927
−2.38811
−2.21425
−0.1795
−2.47552
−3.30672


TRANSBIG~Est
NA
NA
NA
NA
NA
NA
0.013681
NA
NA
NA
NA
NA
N/A


FRANSBIG~SE
NA
NA
NA
NA
NA
NA
0.046103
NA
NA
NA
NA
NA
N/A


TRANSBIG~t
NA
NA
NA
NA
NA
NA
0.296755
NA
NA
NA
NA
NA
N/A


UCSF~Est
NA
NA
−0.05795
0.013111
−0.58909
−0.12675
−0.25719
NA
−0.54391
−0.31503
0.932141
−0.08026
0


UCSF~SE
NA
NA
0.270065
156.117
0.385997
0.336406
0.253264
NA
0.428883
0.345828
0.524911
0.491948
0.311799


UCSF~t
NA
NA
−0.21456
8.40E−05
−1.52616
−0.37676
−1.01551
NA
−1.2682
−0.91094
1.775808
−0.16315
0


UPP~Est
−0.1861
−0.03866
−0.35344
−0.00923
−0.2142
NA
−0.49773
−0.29435
−0.31503
−0.404
0.127348
−0.20405
0.208326


UPP~SE
0.08384
0.087545
0.150278
0.100902
0.105479
NA
0.225603
0.182614
0.150431
0.200673
0.157458
0.109227
0.307144


UPP~t
−2.21976
−0.44163
−2.35189
−0.09148
−2.03071
NA
−2.20621
−1.61186
−2.09415
−2.01324
0.807748
−1.86809
0.678268


Fe
−0.14219
−0.09599
−0.28998
−0.13
−0.07498
−0.15328
−0.10353
−0.28755
−0.11726
−0.19876
0.02034
−0.22911
−0.19602


Sefe
0.032611
0.046815
0.062826
0.042521
0.052758
0.111442
0.03709
0.080198
0.058989
0.076441
0.072745
0.055029
0.085879
















TABLE 16







Genes that co-express with Prognostic genes in ER+ breast


cancer tumors (Spearman corr. coef. ≥ 0.7)








Prognostic Gene
Co-expressed Genes















INHBA
AEBP1
CDH11
COL10A1
COL11A1
COL1A2



COL5A1
COL5A2
COL8A2
ENTPD4
LOXL2



LRRC15
MMP11
NOX4
PLAU
THBS2



THY1
VCAN


CAV1
ANK2
ANXA1
AQP1
C10orf56
CAV2



CFH
COL14A1
CRYAB
CXCL12
DAB2



DCN
ECM2
FHL1
FLRT2
GNG11



GSN
IGF1
JAM2
LDB2
NDN



NRN1
PCSK5
PLSCR4
PROS1
TGFBR2


NAT1
PSD3


GSTM1
GSTM2


GSTM2
GSTM1


ITGA4
ARHGAP15
ARHGAP25
CCL5
CD3D
CD48



CD53
CORO1A
EVI2B
FGL2
GIMAP4



IRF8
LCK
PTPRC
TFEC
TRAC



TRAF3IP3
TRBC1
EVI2A
FLI1
GPR65



IL2RB
LCP2
LOC100133233
MNDA
PLAC8



PLEK
TNFAIP8


CCL19
ARHGAP15
ARHGAP25
CCL5
CCR2
CCR7



CD2
CD247
CD3D
CD3E
CD48



CD53
FLJ78302
GPR171
IL10RA
IL7R



IRF8
LAMP3
LCK
LTB
PLAC8



PRKCB1
PTPRC
PTPRCAP
SASH3
SPOCK2



TRA@
TRBC1
TRD@
PPP1R16B
TRAC


CDH11
TAGLN
ADAM12
AEBP1
ANGPTL2
ASPN



BGN
BICC1
C10orf56
C1R
C1S



C20orf39
CALD1
COL10A1
COL11A1
COL1A1



COL1A2
COL3A1
COL5A1
COL5A2
COL6A1



COL6A2
COL6A3
COL8A2
COMP
COPZ2



CRISPLD2
CTSK
DACT1
DCN
DPYSL3



ECM2
EFEMP2
ENTPD4
FAP
FBLN1



FBLN2
FBN1
FERMT2
FLRT2
FN1



FSTL1
GAS1
GLT8D2
HEPH
HTRA1



ISLR
ITGBL1
JAM3
KDELC1
LAMA4



LAMB1
LOC100133502
LOX
LOXL2
LRRC15



LRRC17
LUM
MFAP2
MFAP5
MMP2



MRC2
MXRA5
MXRA8
MYL9
NDN



NIDI
NID2
NINJ2
NOX4
OLFML2B



OMD
PALLD
PCOLCE
PDGFRA
PDGFRB



PDGFRL
POSTN
PRKCDBP
PRKD1
PTRF



RARRES2
RCN3
SERPINF1
SERPINH1
SFRP4



SNAI2
SPARC
SPOCK1
SPON1
SRPX2



SSPN
TCF4
THBS2
THY1
TNFAIP6



VCAN
WWTR1
ZEB1
ZFPM2
INHBA



PLS3
SEC23A
WISP1


TAGLN
CDH11
ADAM12
AEBP1
ANGPTL2
ASPN



BGN
BICC1
C10orf56
C1R
C1S



C20orf39
CALD1
COL10A1
COL11A1
COL1A1



COL1A2
COL3A1
COL5A1
COL5A2
COL6A1



COL6A2
COL6A3
COL8A2
COMP
COPZ2



CRISPLD2
CTSK
DACT1
DCN
DPYSL3



ECM2
EFEMP2
ENTPD4
FAP
FBLN1



FBLN2
FBN1
FERMT2
FLRT2
FN1



FSTL1
GAS1
GLT8D2
HEPH
HTRA1



ISLR
ITGBL1
JAM3
KDELC1
LAMA4



LAMB1
LOC100133502
LOX
LOXL2
LRRC15



LRRC17
LUM
MFAP2
MFAP5
MMP2



MRC2
MXRA5
MXRA8
MYL9
NDN



NID1
NID2
NINJ2
NOX4
OLFML2B



OMD
PALLD
PCOLCE
PDGFRA
PDGFRB



PDGFRL
POSTN
PRKCDBP
PRKD1
PTRF



RARRES2
RCN3
SERPINF1
SERPINH1
SFRP4



SNAI2
SPARC
SPOCK1
SPON1
SRPX2



SSPN
TCF4
THBS2
THY1
TNFAIP6



VCAN
WWTR1
ZEB1
ZFPM2
ACTA2



CNN1
DZIP1
EMILIN1


ENO1
ATP5J2
C10orf10
CLDN15
CNGB1
DET1



EIF3CL
HS2ST1
IGHG4
KIAA0195
KIR2DS5



PARP6
PRH1
RAD1
RIN3
RPL10



SGCG
SLC16A2
SLC9A3R1
SYNPO2L
THBS1



ZNF230


IDH2
AEBP1
HIST1H2BN
PCDHAC1


ARF1
CRIM1


DICER1
ADM
LOC100133583


AKT3
AKAP12
ECM2
FERMT2
FLRT2
JAM3



LOC100133502
PROS1
TCF4
WWTR1
ZEB1


CXCL12
ANXA1
C1R
C1S
CAV1
DCN



FLRT2
SRPX


CYR61
CTGF


IGFBP7
VIM


KIAA1199
COL11A1
PLAU


SPC25
ASPM
BUB1
BUB1B
CCNA2
CCNE2



CDC2
CDC25C
CENPA
CEP55
FANCI



GINS1
HJURP
KIAA0101
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF4A
MAD2L1



MELK
NCAPG
NEK2
NUSAP1
PRC1



STIL
ZWINT


WISP1
CDH11
COL5A2
















TABLE 17







Genes that co-express with Prognostic Genes in ER− breast cancer tumors (Spearman corr. coef. ≥ 0.7)








Prognostic Gene
Co-expressed Genes















IRF1
APOL6
CXCL10
GABBR1
GBP1
HCP5



HLA-E
HLA-F
HLA-G
HLA-J
INDO



PSMB8
PSMB9
STAT1
TAP1
UBD



UBE2L6
WARS
APOBEC3F
APOBEC3G
APOL1



APOL3
ARHGAP25
BTN3A1
BTN3A2
BTN3A3



C1QB
CCL5
CD2
CD38
CD40



CD53
CD74
CD86
CSF2RB
CTSS



CYBB
FGL2
GIMAP5
GZMA
hCG_1998957



HCLS1
HLA-C
HLA-DMA
HLA-DMB
HLA-DPA1



HLA-DQB1
HLA-DQB2
HLA-DRA
HLA-DRB1
HLA-DRB2



HLA-DRB3
HLA-DRB4
HLA-DRB5
HLA-DRB6
IL10RA



IL2RB
LAP3
LAPTM5
LOC100133484
LOC100133583



LOC100133661
LOC100133811
LOC730415
NKG7
PLEK



PSMB10
PTPRC
RNASE2
SLAMF8
TFEC



TNFRSF1B
TRA@
TRAC
TRAJ17
TRAV20



ZNF749


CDH11
ADAM12
AEBP1
ANGPTL2
ASPN
CFH



CFHR1
COL10A1
COL11A1
COL1A1
COL1A2



COL3A1
COL5A1
COL5A2
COL6A3
CRISPLD2



CTSK
DACT1
DCN
FAP
FBN1



FN1
HTRA1
LOX
LRRC15
LUM



NID2
PCOLCE
PDGFRB
POSTN
SERPINF1



SPARC
THBS2
THY1
VCAN
DAB2



GLT8D2
ITGB5
JAM3
LOC100133502
MMP2



PRSS23
TIMP3
ZEB1


CCL19
ITGA4
ADAM28
AIF1
APOBEC3F
APOBEC3G



APOL3
ARHGAP15
ARHGAP25
CASP1
CCDC69



CCR2
CCR7
CD2
CD247
CD27



CD37
CD3D
CD3G
CD48
CD52



CD53
CD74
CD86
CD8A
CLEC4A



CORO1A
CTSS
CXCL13
DOCK10
EVI2A



EVI2B
FGL2
FLJ78302
FYB
GIMAP4





(CCR2)



GIMAP5
GIMAP6
GMFG
GPR171
GPR18



GPR65
GZMA
GZMB
GZMK
hCG_1998957



HCLS1
HLA-DMA
HLA-DMB
HLA-DPA1
HLA-DQA1



HLA-DQA2
HLA-DQB1
HLA-DQB2
HLA-DRB1
HLA-DRB2



HLA-DRB3
HLA-DRB4
HLA-DRB5
HLA-E
IGHM



IGSF6
IL10RA
IL2RG
IL7R
IRF8



KLRB1
KLRK1
LAPTM5
LAT2
LCK



LCP2
LOC100133484
LOC100133583
LOC100133661
LOC100133811



LOC730415
LPXN
LRMP
LST1
LTB



LY96
LYZ
MFNG
MNDA
MS4A4A



NCKAP1L
PLAC8
PLEK
PRKCB1
PSCDBP



PTPRC
PTPRCAP
RAC2
RNASE2
RNASE6



SAMHD1
SAMSN1
SASH3
SELL
SELPLG



SLA
SLAMF1
SLC7A7
SP140
SRGN



TCL1A
TFEC
TNFAIP8
TNFRSF1B
TRA@



TRAC
TRAJ17
TRAT1
TRAV20
TRBC1



TYROBP
ZNF749
ITM2A
LTB
P2RY13



PRKCB1
PTPRCAP
SELL
TRBC1


ITGA4
CCL19
ADAM28
AIF1
APOBEC3F
APOBEC3G



APOL3
ARHGAP15
ARHGAP25
CASP1
CCDC69



CCR2
CCR7
CD2
CD247
CD27



CD37
CD3D
CD3G
CD48
CD52



CD53
CD74
CD86
CD8A
CLEC4A



CORO1A
CTSS
CXCL13
DOCK10
EVI2A



EVI2B
FGL2
FLJ78302
FYB
GIMAP4





(CCR2)



GIMAP5
GIMAP6
GMFG
GPR171
GPR18



GPR65
GZMA
GZMB
GZMK
hCG_1998957



HCLS1
HLA-DMA
HLA-DMB
HLA-DPA1
HLA-DQA1



HLA-DQA2
HLA-DQB1
HLA-DQB2
HLA-DRB1
HLA-DRB2



HLA-DRB3
HLA-DRB4
HLA-DRB5
HLA-E
IGHM



IGSF6
IL10RA
IL2RG
IL7R
IRF8



KLRB1
KLRK1
LAPTM5
LAT2
LCK



LCP2
LOC100133484
LOC100133583
LOC100133661
LOC100133811



LOC730415
LPXN
LRMP
LST1
LTB



LY96
LYZ
MFNG
MNDA
MS4A4A



NCKAP1L
PLAC8
PLEK
PRKCB1
PSCDBP



PTPRC
PTPRCAP
RAC2
RNASE2
RNASE6



SAMHD1
SAMSN1
SASH3
SELL
SELPLG



SLA
SLAMF1
SLC7A7
SP140
SRGN



TCL1A
TFEC
TNFAIP8
TNFRSF1B
TRA@



TRAC
TRAJ17
TRAT1
TRAV20
TRBC1



TYROBP
ZNF749
MARCH1
C17orf60
CSF1R



FLI1
FLJ78302
FYN
IKZF1
INPP5D



NCF4
NR3C1
P2RY13
PLXNC1
PSCD4



PTPN22
SERPINB9
SLCO2B1
VAMP3
WIPF1


IDH2
AEBP1
DSG3
HIST1H2BN
PCDHAC1


ARF1
FABP5L2
FLNB
IL1RN
PAX6


DICER1
ARS2
IGHA1
VDAC3


TFRC
RGS20


ADAM17
TFDP3
GPR107


CAV1
CAV2
CXCL12
IGF1


CYR61
CTGF


ESR1
CBLN1
SLC45A2


GSTM1
GSTM2


GSTM2
GSTM1


IL11
FAM135A


IL6ST
P2RY5


IGFBP7
SPARCL1
TMEM204


INHBA
COL10A1
FN1
SULF1


SPC25
KIF4A
KIF20A
NCAPG


TAGLN
ACTA2
MYL9
NNMT
PTRF


TGFB3
GALNT10
HTRA1
LIMA1


TNFRSF10B
BIN3


FOXA1
CLCA2
TFAP2B
AGR2
MLPH
SPDEF


CXCL12
DCN
CAV1
IGF1
CFH


GBP2
APOL1
APOL3
CD2
CTSS
CXCL9



CXCR6
GBP1
GZMA
HLA-DMA
HLA-DMB



IL2RB
PTPRC
TRBC1
















TABLE 18







Genes that co-express with Prognostic Genes in all breast cancer tumors (Spearman corr. coef. ≥ 0.7)








Prognostic Gene
Co-expressed Genes















S100A8
S100A9






S100A9
S100A8


MKI67
BIRC5
KIF20A
MCM10


MTDH
ARMC1
AZIN1
ENY2
MTERFD1
POLR2K



PTDSS1
RAD54B
SLC25A32
TMEM70
UBE2V2


GSTM1
GSTM2


GSTM2
GSTM1


CXCL12
AKAP12
DCN
F13A1


TGFB3
C10orf56
JAM3


TAGLN
ACTA2
CALD1
COPZ2
FERMT2
HEPH



MYL9
NNMT
PTRF
TPM2


PGF
ALMS1
ATP8B1
CEP27
DBT
FAM128B



FBXW12
FGFR1
FLJ12151
FLJ42627
GTF2H3



HCG2P7
KIAA0894
KLHL24
LOC152719
PDE4C



PODNL1
POLR1B
PRDX2
PRR11
RIOK3



RP5-886K2.1
SLC35E1
SPN
USP34
ZC3H7B



ZNF160
ZNF611


CCL19
ARHGAP15
ARHGAP25
CCL5
CCR2
CCR7



CD2
CD37
CD3D
CD48
CD52



CSF2RB
FLJ78302
GIMAP5
GIMAP6
GPR171



GZMK
IGHM
IRF8
LCK
LTB



PLAC8
PRKCB1
PTGDS
PTPRC
PTPRCAP



SASH3
TNFRSF1B
TRA@
TRAC
TRAJ17



TRAV20
TRBC1


IRF1
ITGA4
MARCH1
AIF1
APOBEC3F
APOBEC3G



APOL1
APOL3
ARHGAP15
ARHGAP25
BTN3A2



BTN3A3
CASP1
CCL4
CCL5
CD2



CD37
CD3D
CD48
CD53
CD69



CD8A
CORO1A
CSF2RB
CST7
CYBB



EVI2A
EVI2B
FGL2
FLI1
GBP1



GIMAP4
GIMAP5
GIMAP6
GMFG
GPR65



GZMA
GZMK
hCG_1998957
HCLS1
HLA-DMA



HLA-DMB
HLA-DPA1
HLA-DQB1
HLA-DQB2
HLA-DRA



HLA-DRB1
HLA-DRB2
HLA-DRB3
HLA-DRB4
HLA-DRB5



HLA-E
HLA-F
IGSF6
IL10RA
IL2RB



IRF8
KLRK1
LCK
LCP2
LOC100133583



LOC100133661
LOC100133811
LST1
LTB
LY86



MFNG
MNDA
NKG7
PLEK
PRKCB1



PSCDBP
PSMB10
PSMB8
PSMB9
PTPRC



PTPRCAP
RAC2
RNASE2
RNASE6
SAMSN1



SLA
SRGN
TAP1
TFEC
TNFAIP3



TNFRSF1B
TRA@
TRAC
TRAJ17
TRAV20



TRBC1
TRIM22
ZNF749


ITGA4
IRF1
MARCH1
AIF1
APOBEC3F
APOBEC3G



APOL1
APOL3
ARHGAP15
ARHGAP25
BTN3A2



BTN3A3
CASP1
CCL4
CCL5
CD2



CD37
CD3D
CD48
CD53
CD69



CD8A
CORO1A
CSF2RB
CST7
CYBB



EVI2A
EVI2B
FGL2
FLI1
GBP1



GIMAP4
GIMAP5
GIMAP6
GMFG
GPR65



GZMA
GZMK
hCG_1998957
HCLS1
HLA-DMA



HLA-DMB
HLA-DPA1
HLA-DQB1
HLA-DQB2
HLA-DRA



HLA-DRB1
HLA-DRB2
HLA-DRB3
HLA-DRB4
HLA-DRB5



HLA-E
HLA-F
IGSF6
IL10RA
IL2RB



IRF8
KLRK1
LCK
LCP2
LOC100133583



LOC100133661
LOC100133811
LST1
LTB
LY86



MFNG
MNDA
NKG7
PLEK
PRKCB1



PSCDBP
PSMB10
PSMB8
PSMB9
PTPRC



PTPRCAP
RAC2
RNASE2
RNASE6
SAMSN1



SLA
SRGN
TAP1
TFEC
TNFAIP3



TNFRSF1B
TRA@
TRAC
TRAJ17
TRAV20



TRBC1
TRIM22
ZNF749
CTSS


SPC25
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEK1
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
AURKA
BIRC5
BUB1
CCNB1



CENPA
KPNA2
LMNB1
MCM2
MELK



NDC80
TPX2


AURKA
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEK1
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
SPC25
BIRC5
BUB1
CCNB1



CENPA
KPNA2
LMNB1
MCM2
MELK



NDC80
TPX2
PSMA7
CSE1L


BIRC5
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEKA
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
AURKA
SPC25
BUB1
CCNB1



CENPA
KPNA2
LMNB1
MCM2
MELK



NDC80
TPX2
MKI67


BUB1
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEK1
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
AURKA
BIRC5
SPC25
CCNB1



CENPA
KPNA2
LMNB1
MCM2
MELK



NDC80
TPX2


CCNB1
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEK1
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
AURKA
BIRC5
BUB1
SPC25



CENPA
KPNA2
LMNB1
MCM2
MELK



NDC80
TPX2


CENPA
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEK1
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
AURKA
BIRC5
BUB1
CCNB1



SPC25
KPNA2
LMNB1
MCM2
MELK



NDC80
TPX2


KPNA2
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEK1
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
AURKA
BIRC5
BUB1
CCNB1



CENPA
SPC25
LMNB1
MCM2
MELK



NDC80
TPX2
NOL11
PSMD12


LMNB1
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEK1
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
AURKA
BIRC5
BUB1
CCNB1



CENPA
KPNA2
SPC25
MCM2
MELK



NDC80
TPX2


MCM2
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEK1
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
AURKA
BIRC5
BUB1
CCNB1



CENPA
KPNA2
LMNB1
SPC25
MELK



NDC80
TPX2


MELK
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEK1
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
AURKA
BIRC5
BUB1
CCNB1



CENPA
KPNA2
LMNB1
MCM2
SPC25



NDC80
TPX2


NDC80
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEK1
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
AURKA
BIRC5
BUB1
CCNB1



CENPA
KPNA2
LMNB1
MCM2
MELK



SPC25
TPX2


TPX2
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEK1
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
AURKA
BIRC5
BUB1
CCNB1



CENPA
KPNA2
LMNB1
MCM2
MELK



NDC80
SPC25


CDH11
INHBA
WISP1
COL1A1
COL1A2
FN1



ADAM12
AEBP1
ANGPTL2
ASPN
BGN



BNC2
C1QTNF3
COL10A1
COL11A1
COL3A1



COL5A1
COL5A2
COL5A3
COL6A3
COMP



CRISPLD2
CTSK
DACT1
DCN
DKK3



DPYSL3
EFEMP2
EMILIN1
FAP
FBN1



FSTL1
GLT8D2
HEG1
HTRA1
ITGBL1



JAM3
KIAA1462
LAMA4
LOX
LOXL1



LRP1
LRRC15
LRRC17
LRRC32
LUM



MFAP5
MICAL2
MMP11
MMP2
MXRA5



MXRA8
NID2
NOX4
OLFML2B
PCOLCE



PDGFRB
PLAU
POSTN
SERPINF1
SPARC



SPOCK1
SPON1
SRPX2
SULF1
TCF4



THBS2
THY1
VCAN
ZEB1


INHBA
CDH11
WISP1
COL1A1
COL1A2
FN1



ADAM12
AEBP1
ANGPTL2
ASPN
BGN



BNC2
C1QTNF3
COL10A1
COL11A1
COL3A1



COL5A1
COL5A2
COL5A3
COL6A3
COMP



CRISPLD2
CTSK
DACT1
DCN
DKK3



DPYSL3
EFEMP2
EMILIN1
FAP
FBN1



FSTL1
GLT8D2
HEG1
HTRA1
ITGBL1



JAM3
KIAA1462
LAMA4
LOX
LOXL1



LRP1
LRRC15
LRRC17
LRRC32
LUM



MFAP5
MICAL2
MMP11
MMP2
MXRA5



MXRA8
NID2
NOX4
OLFML2B
PCOLCE



PDGFRB
PLAU
POSTN
SERPINF1
SPARC



SPOCK1
SPON1
SRPX2
SULF1
TCF4



THBS2
THY1
VCAN
ZEB1


WISP1
INHBA
CDH11
COL1A1
COL1A2
FN1



ADAM12
AEBP1
ANGPTL2
ASPN
BGN



BNC2
C1QTNF3
COL10A1
COL11A1
COL3A1



COL5A1
COL5A2
COL5A3
COL6A3
COMP



CRISPLD2
CTSK
DACT1
DCN
DKK3



DPYSL3
EFEMP2
EMILIN1
FAP
FBN1



FSTL1
GLT8D2
HEG1
HTRA1
ITGBL1



JAM3
KIAA1462
LAMA4
LOX
LOXL1



LRP1
LRRC15
LRRC17
LRRC32
LUM



MFAP5
MICAL2
MMP11
MMP2
MXRA5



MXRA8
NID2
NOX4
OLFML2B
PCOLCE



PDGFRB
PLAU
POSTN
SERPINF1
SPARC



SPOCK1
SPON1
SRPX2
SULF1
TCF4



THBS2
THY1
VCAN
ZEB1


COL1A1
INHBA
WISP1
CDH11
COL1A2
FN1



ADAM12
AEBP1
ANGPTL2
ASPN
BGN



BNC2
C1QTNF3
COL10A1
COL11A1
COL3A1



COL5A1
COL5A2
COL5A3
COL6A3
COMP



CRISPLD2
CTSK
DACT1
DCN
DKK3



DPYSL3
EFEMP2
EMILIN1
FAP
FBN1



FSTL1
GLT8D2
HEG1
HTRA1
ITGBL1



JAM3
KIAA1462
LAMA4
LOX
LOXL1



LRP1
LRRC15
LRRC17
LRRC32
LUM



MFAP5
MICAL2
MMP11
MMP2
MXRA5



MXRA8
NID2
NOX4
OLFML2B
PCOLCE



PDGFRB
PLAU
POSTN
SERPINF1
SPARC



SPOCK1
SPON1
SRPX2
SULF1
TCF4



THBS2
THY1
VCAN
ZEB1


COL1A2
INHBA
WISP1
COL1A1
CDH11
FN1



ADAM12
AEBP1
ANGPTL2
ASPN
BGN



BNC2
C1QTNF3
COL10A1
COL11A1
COL3A1



COL5A1
COL5A2
COL5A3
COL6A3
COMP



CRISPLD2
CTSK
DACT1
DCN
DKK3



DPYSL3
EFEMP2
EMILIN1
FAP
FBN1



FSTL1
GLT8D2
HEG1
HTRA1
ITGBL1



JAM3
KIAA1462
LAMA4
LOX
LOXL1



LRP1
LRRC15
LRRC17
LRRC32
LUM



MFAP5
MICAL2
MMP11
MMP2
MXRA5



MXRA8
NID2
NOX4
OLFML2B
PCOLCE



PDGFRB
PLAU
POSTN
SERPINF1
SPARC



SPOCK1
SPONI
SRPX2
SULF1
TCF4



THBS2
THY1
VCAN
ZEB1


FN1
INHBA
WISP1
COL1A1
COL1A2
CDH11



ADAM12
AEBP1
ANGPTL2
ASPN
BGN



BNC2
C1QTNF3
COL10A1
COL11A1
COL3A1



COL5A1
COL5A2
COL5A3
COL6A3
COMP



CRISPLD2
CTSK
DACT1
DCN
DKK3



DPYSL3
EFEMP2
EMILIN1
FAP
FBN1



FSTL1
GLT8D2
HEG1
HTRA1
ITGBL1



JAM3
KIAA1462
LAMA4
LOX
LOXL1



LRP1
LRRC15
LRRC17
LRRC32
LUM



MFAP5
MICAL2
MMP11
MMP2
MXRA5



MXRA8
NID2
NOX4
OLFML2B
PCOLCE



PDGFRB
PLAU
POSTN
SERPINF1
SPARC



SPOCK1
SPON1
SRPX2
SULF1
TCF4



THBS2
THY1
VCAN
ZEB1








Claims
  • 1.-18. (canceled)
  • 19. A method of treating a human patient diagnosed with breast cancer, comprising administering adjuvant therapy, wherein prior to treatment the patient has been assessed for risk of a recurrence or metastasis by a diagnostic method comprising:(a) obtaining a breast cancer tissue sample from the patient;(b) quantitatively determining a level of RNA transcripts of a panel of genes comprising BIRC5 (Survivin; SURV) and UBE2C in the tissue sample obtained from the patient;(c) normalizing the level of the RNA transcripts of the genes to the level of an RNA transcript of at least one reference gene to obtain normalized RNA expression levels;(d) comparing the normalized RNA expression levels of the genes to a range of normalized RNA expression levels of the same genes obtained from a breast cancer reference set, wherein the breast cancer reference set is obtained from a population of patients with breast cancer and with known clinical outcome; and(e) predicting a risk of recurrence or metastasis for the patient based on the comparison of the normalized RNA expression levels of the genes of the panel to the normalized RNA expression levels for the genes of the panel obtained from the breast cancer reference set, wherein normalized BIRC5 and UBE2C RNA expression levels positively correlate with risk of recurrence or metastasis.
  • 20. The method of claim 19, wherein the breast cancer tissue sample is a fixed paraffin-embedded tissue sample.
  • 21. The method of claim 19, wherein determining the level of RNA transcripts in the tissue sample is performed using a PCR-based method.
  • 22. The method of claim 19, wherein the gene panel comprises P2RY5.
  • 23. The method of claim 19, wherein the breast cancer is estrogen receptor (ER) positive breast cancer and wherein the gene panel comprises IL6ST, and wherein the diagnostic method comprises predicting a risk of recurrence or metastasis for the patient based on the comparison of the normalized RNA expression levels of the genes of the panel to the normalized RNA expression levels for the genes of the panel obtained from the breast cancer reference set, wherein normalized BIRC5 and UBE2C RNA expression levels positively correlate with risk of recurrence or metastasis and normalized IL6ST RNA expression levels negatively correlate with risk of recurrence or metastasis.
  • 24. The method of claim 19, wherein the tissue sample is obtained by core biopsy or fine needle aspiration.
  • 25. The method of claim 19, wherein the breast cancer is estrogen receptor (ER) positive breast cancer.
  • 26. The method of claim 19, wherein the levels of the RNA transcripts are crossing point (CP) values and the normalized RNA expression levels are normalized CP values.
  • 27. The method of claim 19, wherein the levels of the RNA transcripts are threshold cycle (Ct) values and the normalized RNA expression levels are normalized Ct values.
  • 28. A method for predicting the clinical outcome of a human patient diagnosed with breast cancer comprising: (a) quantitatively measuring a level of an RNA transcript of each of BIRC5 (Survivin; SURV) and UBE2C in a sample obtained from a breast cancer tumor of the patient;(b) normalizing the level of the RNA transcripts of BIRC5 and UBE2C against a level of at least one reference gene in the sample to obtain normalized BIRC5 and UBE2C expression levels;(c) comparing the normalized BIRC5 and UBE2C expression levels to normalized BIRC5 and UBE2C expression levels obtained from a breast cancer reference set; and(d) determining a likelihood of recurrence or metastasis for the patient based on the normalized BIRC5 and UBE2C expression levels, wherein the normalized BIRC5 and UBE2C expression levels positively correlate with likelihood of recurrence or metastasis.
  • 29. The method of claim 28, wherein the breast cancer tissue sample is a fixed paraffin-embedded tissue sample.
  • 30. The method of claim 28, wherein determining the level of RNA transcripts in the tissue sample is performed using a PCR-based method.
  • 31. The method of claim 28, wherein the gene panel comprises P2RY5.
  • 32. The method of claim 28, wherein the breast cancer is estrogen receptor (ER) positive breast cancer and wherein the gene panel comprises IL6ST, and wherein the method comprises predicting a risk of recurrence or metastasis for the patient based on the comparison of the normalized RNA expression levels of the genes of the panel to the normalized RNA expression levels for the genes of the panel obtained from the breast cancer reference set, wherein normalized BIRC5 and UBE2C RNA expression levels positively correlate with risk of recurrence or metastasis and normalized IL6ST RNA expression levels negatively correlate with risk of recurrence or metastasis.
  • 33. The method of claim 28, wherein the tissue sample is obtained by core biopsy or fine needle aspiration.
  • 34. The method of claim 28, wherein the breast cancer is estrogen receptor (ER) positive breast cancer.
  • 35. The method of claim 28, wherein the levels of the RNA transcripts are crossing point (CP) values and the normalized RNA expression levels are normalized CP values.
  • 36. The method of claim 28, wherein the levels of the RNA transcripts are threshold cycle (Ct) values and the normalized RNA expression levels are normalized Ct values.
CROSS REFERENCE

This application claims the benefit of U.S. Provisional Patent Application No. 61/263,763, filed Nov. 23, 2009, which application is incorporated herein by reference in its entirety.

Provisional Applications (1)
Number Date Country
61263763 Nov 2009 US
Continuations (2)
Number Date Country
Parent 15423977 Feb 2017 US
Child 16243207 US
Parent 12950732 Nov 2010 US
Child 15423977 US