MICELLE BASED SYSTEM NUCLEASE ENCAPSULATION FOR IN-VIVO GENE EDITING

Abstract
The invention pertains to therapies that require gene editing, and more specifically to non-viral methods for in vivo delivery of endonuclease reagents to specific tissues or cells. According to the invention, the endonuclease reagents are encapsulated into micelle structures of 50 to 150 nm diameter for intravenous injection. The invention thus provides therapeutic composition including such micelles structures, by which endonuclease reagents can be released into cell under RNA form for their use in the treatment of gene related diseases.
Description
FIELD OF THE INVENTION

The invention pertains to therapies that require gene editing, and more specifically to non-viral methods for in vivo delivery of endonuclease reagents to specific tissues or cells. According to the invention, the endonuclease reagents are encapsulated into micelle structures of 50 to 150 nm diameter for intravenous injection. The invention thus provides therapeutic composition including such micelles structures, by which endonuclease reagents can be released into cell under RNA form for their use in the treatment of gene related diseases.


BACKGROUND OF THE INVENTION

The potential of gene editing in various therapies has long been envisioned by the applicant (WO2004067753), especially to repair or modulate the expression of deficient genes causing genetic disease, or to knock-out deleterious genetic sequences, either sexually inherited or introduced into the cells by infectious agents.


Since the emergence of the first programmable meganuclease reagents by the turn of the century (Smith et al. (2006) A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Res. 34(22):e149), endonucleases reagents have rapidly evolved, offering improved specificity, safety and reliability. In particular, TALE-nucleases, which are fusions of a TALE binding domain with a cleavage catalytic domain (WO2011072246) have proven to be highly specific for therapeutic purposes (Leukaemia success heralds wave of gene-editing therapies (2015) Nature 527:146-147). TALE-nucleases are particularly specific when they are used by pairs under obligatory heterodimeric form, by using the dimeric cleavage domain of Fok-1. Left and right heterodimer members each recognizes a different nucleic sequences of about 14 to 20 bp, together spanning target sequences of 30 to 50 bp overall specificity.


More recently, further endonucleases reagents have been developed based on the components of the type II prokaryotic CRISPR (Clustered Regularly Interspaced Short palindromic Repeats) adaptive immune system of the bacteria S. pyogenes. This multi-component system referred to as RNA-guided nuclease system (Gasiunas, Barrangou et al. 2012; Jinek, Chylinski et al. 2012), involves members of Cas9 or Cpf1 endonuclease families coupled with a guide RNA molecules that have the ability to drive said nuclease to some specific genome sequences (Zetsche et al. (2015). Cpf1 is a single RNA-guided endonuclease that provides immunity in bacteria and can be adapted for genome editing in mammalian cells. Cell 163:759-771). Such programmable RNA-guided endonucleases are easy to produce because the cleavage specificity is conferred by the sequence of the guide RNA, which can be cheaply adapted. Their specificity although stands on shorter sequences than TAL-nucleases of about 10 pb, which must be located near a particular motif (PAM) in the targeted genetic sequence.


Various proofs of concept of the efficiency and safety of the above specific endonuclease reagents have been reported in human cells in-vitro or ex-vivo, but the delivery of the same reagents into the body has still to be very carefully considered due to the risk of off-site mutations inherent to such reagents. This risk increases when the reagents, which are mainly proteins, are being degraded in-vivo, altering their specificity and cleavage properties.


The primary challenge for gene therapy is thus to develop a method that delivers a therapeutic gene (e.g. transgene) or sequence specific reagent (e.g. nuclease) to selected cells where proper gene expression can be achieved. An ideal gene delivery method needs to meet 3 major criteria: (1) it should protect the transgene or reagent against degradation by nucleases in intercellular matrices, (2) it should bring the transgene or reagent across the plasma membrane and into the nucleus of target cells, and (3) it should have no detrimental effects (Gao, X. et al. (2007) Non-viral Gene Delivery: What we know and What is next. APPS Journal. 9(1) Article 9:92-104).


Viral vectors are able to mediate gene transfer with high efficiency and the possibility of long-term gene expression, may satisfy 2 out of 3 criteria. However, the acute immune response, immunogenicity, and insertion mutagenesis uncovered in gene therapy clinical trials have raised serious safety concerns about some commonly used viral vectors.


The inventors have explored safer means for in-vivo delivery and more particularly of endonucleases reagents, which could be used to target specific tissues into the human body especially delivery of sequence specific TAL-nucleases and Cas9/CRISPR into liver cells. They have determined that encapsulating nuclease reagent under RNA form in micelle structures of 50 to 100 nm was particularly appropriate to deliver the reagents into the nucleus of the cells by intravenous injection, in efficient amount and with limited off-site effects. This was primarily demonstrated by targeting cccDNA of HBV into liver cells, but this strategy has since been proven to be expandable to various type of cells by anchoring specific cell surface protein receptors or ligand into the micelle structures, as further detailed herein.


SUMMARY OF THE INVENTION

The present invention is drawn to a method for encapsulating an endonuclease reagent, wherein said endonuclease reagent is prepared under RNA form and complexed with at least one biodegradable matrix comprising at least a core hydrophobic domain and a proximal polar domain to form particles of 50 to 100 nm diameter range, suitable for in-vivo injection.


The endonuclease reagent is generally a RNA molecule coding for a sequence-specific endonuclease reagent, such as a homing endonuclease, a zing finger nuclease, or a TALE-Nuclease, or a RNA guide optionally co-delivered with a RNA-guided endonuclease, such as cas9 or Cpf1.


Various types of biodegradable delivery capsules comprising RNA endonuclease reagents can be manufactured, depending on the structure of the biodegradable matrices involved and the monomers forming said core hydrophobic domain and polar domains.


Such biodegradable delivery capsules according to the invention are useful to deliver endonuclease reagent into the cells under RNA form, especially when co-delivery of different endonuclease reagents is sought, like for instance, messenger RNAs encoding right and left heterodimer TALE-nucleases.


Delivery specificity can be improved by linking a targeting domain to the proximal polar domain of said biodegradable matrix, such that the delivery capsules of the invention can bind surface antigens of different cell types. The delivery capsules are particularly suited for intravenous injection to target endogenous genetic sequences into cells.


The present application more particularly claims pharmaceutical compositions comprising the biodegradable delivery capsules of the invention into treatments involving endonuclease reagents. Such treatments may be part of a gene therapy, where specific genetic sequences have to be knocked-out or repaired, of an anti-infection therapy, by targeting the genome of infectious agents, or cancer therapy. The biodegradable delivery capsules of the present invention have proven to be particularly adapted to treat infectious agents that present a DNA intermediate in the liver cells, such as the cccDNA (covalently closed circular DNA) of Hepadnavirus, in particular HBV (Hepatitis B Virus), which are resistant forms of these viruses lodged into hepatocytes.





BRIEF DESCRIPTION OF THE FIGURES AND TABLES


FIG. 1:.Schematic representation of micelle-based system according to the invention: micelles can be obtained by mixing structures A, B, C, D (described here after) to form particles of 50-100 nm diameter, by optionally incorporating protein E for extra targeting specificity. E is a protein or fusion protein containing a hydrophobic domain (for ex. derived from transmembrane protein) to anchor said protein within the micelle linked to a binding domain for endocytic receptor. The nuclease reagents are complexed to the micelles within the hydrophilic domains of A, B, C or D matrices.


A and B: Structures comprising a distal hydrophilic domain conjugated to a hydrophobic domain, itself conjugated to a proximal hydrophilic domain complexed with the endonuclease reagents under RNA form. In A, said proximal hydrophilic domain is optionally linked to an external binding protein, such as N-acetylgalactosamine. These structures self-assemble under micelles that harbor a central hydrophilic pocket.


C and D: Simpler structures consisting of a hydrophobic domain conjugated to the proximal hydrophilic domain, which is complexed with the endonuclease reagents under RNA form. In A, said proximal hydrophilic domain is optionally linked to an external binding protein, such as N-acetylgalactosamine.



FIG. 2: Schematic representation of the encapsulation of CRISPR based endonuclease reagents to perform gene editing in vivo according to the present invention. A: the guided endonuclease (ex: Cas9) is trapped into the inner hydrophilic core of the micelle, whereas the RNA guide is complexed into the polar domain of the matrix. B: the guided endonuclease (ex: Cas9) is first complexed with the RNA-guide to give a RNP (RiboNucleoProtein) that is complexed as such into the polar domain of the matrix.



FIG. 3: Schematic representation of the encapsulation heterodimeric TAL-nucleases endonuclease reagents to perform gene editing in vivo according to the present invention.



FIG. 4: Schematic representation of HBV genome cloned into cGPS HEK293 showing the position of the TALE-nucleases of the present invention.



FIG. 5: T7 endonuclease assays on TALEN set 1 (T002559 to T002564) chromatography gels and interpretation (Table 3)



FIG. 6: T7 endonuclease assays on TALEN set 2 (T001212 to T001215) chromatography gels and interpretation (Table 4)


Table 1: Exemplary list of target genes that can be modified by the gene editing method according to the invention and their associated diseases.


Table 2:: Engineered TAL-nucleases used in the in-vivo gene editing method to target HBV (cccDNA) and the genes encoding respectively APOC3, TTR, SMN2, IDOL, ANGPTL3, IDOL and PCSK9 (detailed target and polypeptide sequences are provided in Table 7).


Table 3 (FIG. 5): Results of T7 for the HBV TALENs of set 1.


Table 4 (FIG. 6): Results of T7 for the HBV TALENs of set 2.


Table 5: Quantitation of the PCR bands with Biorad Lab Image program obtained upon cleavage with the HBV TALENs of the present invention.


Table 6: Summary of the mice treatment schedule to target factor VII gene in the liver.


Table 7: TALE-nucleases engineered to target the HBV genome, APOC3, TTR, SMN2, IDOL, ANGPTL3 and PCSK9 genes, along with their polypeptide sequences et target polynucleotide sequences.









TABLE 1







Exemplary list of target genes that can be modified in vivo by gene editing and


the associated disease that can be treated according to the invention












NCBI



Target Gene
Symbol
gene ID
Disease













proprotein convertase
PCSK9
255738
(Familial) hypercholesterolemia


subtilisin/kexin type 9


apolipoprotein C-III
APOC3
345
(Familial)





hypertriglyceridemia/dyslipidemia


angiopoietin-like 3
ANGPTL3
27329
Combined hyperlipidemia/familial





mixed hyperlipidemia


Inducible degrader of the LDLR,
MYLIP
29116
(Familial) hypercholesterolemia


IDOL


transthyretin
TTR
7276
Transthyretin (TTR)-mediated





amyloidosis (ATTR)


hydroxyacid oxidase (glycolate
HAO1
54363
Primary hyperoxaluria type 1 (PH1)


oxidase) 1


serpin peptidase inhibitor, clade A
SERPINA1
5265
Alpha 1-antitrypsin deficiency/COPD


transmembrane protease, serine 6
TMPRSS6
164656
Hemochromatosis and β-





thalassemia


serpin peptidase inhibitor, clade C
SERPINC1
462
Haemophilia


(antithrombin)


solute carrier family 30
SLC30A8
169026
Diabetes mellitus type 2


hepatitis B Virus
HBV
N.A.
Hepatitis - liver cancer


hungtingtin
HTT
3064
Huntington disease


myostatin
MSTN
2660
muscular degeneration


dystrophin
DMD
13405
Duchene muscular dystrophy


beta-2-microglobulin
B2M
567
graft


Cytomegalovirus
CMV
N.A.
Infectious disease


Herpes simplex Virus
HSV
N.A.
Infectious disease


Cystic Fibrosis Transmembrane
CFTR
1080
Cystic fibrosis


Conductance Regulator


survival of motor neuron 2
SMN2
6607
Spinal muscular dystrophy


nicotinamide N-methyltransferase
NNMT
4837
obesity


chromosome 9 open reading frame
C9ORF72
203228
Amyotrophic lateral sclerosis


72


farnesyl-diphosphate
FDFT1
2222
(Familial) hypercholesterolemia


farnesyltransferase 1


NPC1-like 1
NPC1L1
29881
(Familial) hypercholesterolemia


3-hydroxy-3-methylglutaryl-CoA
HMGCR
3156
(Familial) hypercholesterolemia


reductase


apolipoprotein B
APOB
338
(Familial) hypercholesterolemia


microsomal triglyceride transfer
MTTP
4547
(Familial) hypercholesterolemia


protein


diacylglycerol O-acyltransferase 1
DGAT1
8694
(Familial) hypercholesterolemia


Hepatitis D virus
HDV
N.A.
infectious disease


Programmed death-ligand 1
CD274
29126
infectious disease


Fibroblast Growth Factor Receptor 4
FGFR4
2264
obesity


microRNA let-7
let-7

cancer


microRNA miR-21
miR-21

cancer


microRNA mir-26
mir-26

cancer


microRNA mir-10
mir-10

cancer


microRNA mir-34
mir-34

cancer


microRNA mir-122
mir-122

infectious disease
















TABLE 2







Engineered TAL-nucleases used in the in-vivo gene editing method












Associated
TALEN ®
SEQ ID



Target gene
disease(s)
name
NO: #
Target sequence














HBV
Hepatitis - liver
T001212
1
HBV1530_T01.L1



cancer
T001212
2
HBV1530_T01.R1




T001213
3
HBV1860_T01.L1




T001213
4
HBV1860_T01.R1




T001214
5
HBV2400_T01.L1




T001214
6
HBV2400_T01.R1




T001215
7
HBV180_T01.L1




T001215
8
HBV180_T01.R1




T002559
9
HBV-core-1.L1




T002559
10
HBV-core-1.R1




T002560
11
HBV-core-2.L1




T002560
12
HBV-core-2.R1




T002561
13
HBV-polym-1.L1




T002561
14
HBV-polym-1.R1




T002562
15
HBV-polym-2.L1




T002562
16
HBV-polym-2.R1




T002563
17
HBV-HBX-1.L1




T002563
18
HBV-HBX-1.R1




T002564
19
HBV-HBX-2.L1




T002564
20
HBV-HBX-2.R1


APOC3
(Familial)
T002657
25
hAPOC3_Ex3A-L1



hypertriglyceridemia/
T002657
26
hAPOC3_Ex3A-R1



dyslipidemia
T002658
27
hAPOC3_Ex3B-L1




T002658
28
hAPOC3_Ex3B-R1




T002671
29
hAPOC3_Ex3_AN-R1




T002671
30
hAPOC3_Ex3A-L1


TTR
Transthyretin (TTR)-
T002659
31
hTTR_Ex1A-L1



mediated
T002659
32
hTTR_Ex1A-R1



amyloidosis (ATTR)
T002660
33
hTTR_Ex1B-L1




T002660
34
hTTR_Ex1B-R1


SMN2
Spinal muscular
T002661
35
hSMN2_3ssEx8A-L1



dystrophy
T002661
36
hSMN2_3ssEx8A-R1




T002662
37
hSMN2_3ssEx8B-L1




T002662
38
hSMN2_3ssEx8B-R1




T002663
39
hSMN2_ISS100A-L1




T002663
40
hSMN2_ISS100A-R1




T002664
41
hSMN2_ISS-N1A-L1




T002664
42
hSMN2_ISS-N1A-R1


IDOL

T002665
43
hIDOL_Ex2A-L1




T002665
44
hIDOL_Ex2A-R1




T002666
45
hIDOL_Ex3A-L1




T002666
46
hIDOL_Ex3A-R1


ANGPTL3
Combined
T002667
47
hANGPTL3_Ex1A-L1



hyperlipidemia/familial
T002667
48
hANGPTL3_Ex1A-R1



mixed
T002668
49
hANGPTL3_Ex2A-L1



hyperlipidemia
T002668
50
hANGPTL3_Ex2A-R1


PCSK9
(Familial)
T002669
51
hPCSK9_Ex3A-L1



hypercholesterolemia
T002669
52
hPCSK9_Ex3A-R1




T002670
53
hPCSK9_Ex12A-L1




T002670
54
hPCSK9_Ex12A-R1




T002672
55
hPCSK9_Ex3_AN-L1




T002672
56
hPCSK9_Ex3A-R1




T002673
57
hPCSK9_Ex12A-L1




T002673
58
hPCSK9_Ex12A-R1












DETAILED DESCRIPTION OF THE INVENTION

Unless specifically defined herein, all technical and scientific terms used have the same meaning as commonly understood by a skilled artisan in the fields of gene therapy, biochemistry, genetics, and molecular biology.


All methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, with suitable methods and materials being described herein. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will prevail. Further, the materials, methods, and examples are illustrative only and are not intended to be limiting, unless otherwise specified.


The practice of the present invention will employ, unless otherwise indicated, conventional techniques of cell biology, cell culture, molecular biology, transgenic biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature. See, for example, Current Protocols in Molecular Biology (Frederick M. AUSUBEL, 2000, Wiley and son Inc, Library of Congress, USA); Molecular Cloning: A Laboratory Manual, Third Edition, (Sambrook et al, 2001, Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press); Oligonucleotide Synthesis (M. J. Gait ed., 1984); Mullis et al. U.S. Pat. No. 4,683,195; Nucleic Acid Hybridization (B. D. Harries & S. J. Higgins eds. 1984); Transcription And Translation (B. D. Hames & S. J. Higgins eds. 1984); Culture Of Animal Cells (R. I. Freshney, Alan R. Liss, Inc., 1987); Immobilized Cells And Enzymes (IRL Press, 1986); B. Perbal, A Practical Guide To Molecular Cloning (1984); the series, Methods In ENZYMOLOGY (J. Abelson and M. Simon, eds.-in-chief, Academic Press, Inc., New York), specifically, Vols.154 and 155 (Wu et al. eds.) and Vol. 185, “Gene Expression Technology” (D. Goeddel, ed.); Gene Transfer Vectors For Mammalian Cells (J. H. Miller and M. P. Calos eds., 1987, Cold Spring Harbor Laboratory); Immunochemical Methods In Cell And Molecular Biology (Mayer and Walker, eds., Academic Press, London, 1987); Handbook Of Experimental Immunology, Volumes I-IV (D. M. Weir and C. C. Blackwell, eds., 1986); and Manipulating the Mouse Embryo, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986).


In a general aspect, the present invention relates to methods for encapsulating an endonuclease reagent, comprising the steps of:

    • a) Engineering a endonuclease reagent,
    • b) Complexing said endonuclease reagent with at least one biodegradable matrix comprising at least a core hydrophobic domain and a proximal polar domain,
    • c) Forming particles encapsulating said endonuclease reagent of 50 to 150 nm diameter range;


The particles are formed from by the association of macromolecular structures as shown in FIG. 1, which are detailed further on. These structures self-assemble due to their hydrophobic and hydrophilic domains upon rapid mixing by microfluidic mixing techniques, which permit millisecond mixing at the nanoliter scale with polydispersity indexes as low as, or lower than 0.02, as described by Song et al. (Microfluidic synthesis of nanomaterials (2008) Small 4:698-711). The particles may be formed by one or several types of those structures. Chimeric Proteins comprising a non-polar or transmembrane domain and displaying a hydrophilic external affinity domain may be mixed with the other structural matrix structures to have these proteins anchored outwards the particles.


The elementary structures that build up the capsules by microfluidic mixing are preferably “biodegradable matrix”, meaning that that they can be made of various materials that can be degraded or eliminated by action of the enzymes naturally present into the body, preferably into the human body.


By “diameter range” is meant that the diameter is not strictly uniform. It corresponds to a statistical measure (distribution of the diameter of a number of particles) centered on a major value. This value is generally comprised between 50 and 150 nm, and more generally preferably set between 50 and 100 nm, more preferably between 50 and 90 nm, and even more preferably between 60 and 80 nm.


By “endonuclease reagent” is meant a nucleic acid molecule that contributes to an endonuclease catalytic reaction in the target cell, itself or as a subunit of a complex, preferably leading to the cleavage of a nucleic acid sequence target. The “endonuclease reagents” of the invention are generally sequence-specific reagents, meaning that they can induce DNA cleavage in the cells at predetermined loci, referred to by extension as “gene targets”, by specific recognition of a nucleic acid “target sequence”. Said target sequence is usually selected to be rare or unique in the cell's genome, and more extensively in the human genome, as determined by using the available human genome databases and related common software.


“Rare-cutting endonucleases” are sequence-specific endonuclease reagents of choice, insofar as their recognition sequences generally range from 10 to 50 successive base pairs, preferably from 12 to 30 bp, and more preferably from 14 to 20 bp.


According to a preferred aspect of the invention, said endonuclease reagent is a nucleic acid encoding an “engineered” or “programmable” rare-cutting endonuclease, such as a homing endonuclease as described for instance by Arnould S., et al. (WO2004067736), a zing finger nuclease as described, for instance, by Urnov F., et al. (Highly efficient endogenous human gene correction using designed zinc-finger nucleases (2005) Nature 435:646-651), a TALE-Nuclease as described, for instance, by Mussolino et al. (A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity (2011) Nucl. Acids Res. 39(21):9283-9293), or a MegaTAL nuclease as described, for instance by Boissel et al. (MegaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering (2013) Nucleic Acids Research 42 (4):2591-2601).


According to the invention, the endonuclease reagent is preferentially under RNA form to allow transient endonuclease activity of said reagent into the target cell and make the entire capsule biodegradable in-vivo. Even more preferably, the endonuclease reagent is under the form of a mRNA for the expression of the rare cutting endonuclease into the cells. The endonuclease under mRNA form is preferably synthetized with a cap to enhance its stability according to techniques well known in the art, as described, for instance, by Kore A. L., et al. (Locked nucleic acid (LNA)-modified dinucleotide mRNA cap analogue: synthesis, enzymatic incorporation, and utilization (2009) J Am Chem Soc. 131(18):6364-5).


Due to their higher specificity, TALE-nuclease have proven to be particularly appropriate for therapeutic applications, especially under heterodimeric forms—i.e. working by pairs with a “right” monomer (also referred to as “5′” or “forward”) and “left” monomer (also referred to as “3″” or “reverse”) as reported for instance by Mussolino et al. (TALEN® facilitate targeted genome editing in human cells with high specificity and low cytotoxicity (2014) Nucl. Acids Res. 42(10): 6762-6773). However, before the invention, it was difficult to deliver in-vivo pairs of TALE-nuclease, even using viral vectors, especially because TAL-nuclease are large proteins having long genetic sequences. Delivery of these reactive proteins in-vivo was therefore remaining a considerable challenge before the present invention. This was all the more challenging that the proteins are active and specific when they are simultaneously delivered into the cell nucleus. Otherwise, the activity may be lost or the reagents may become less specific increasing the risk of off-site mutations.


The inventors have more particularly sought how to efficiently target cccDNA (covalently closed circular DNA), an intracellular viral replication intermediate of some viruses, which forms persistence reservoir and key obstacle for a cure of viral disease.


The cccDNA of HBV is at the origin of some common forms of chronic hepatitis B. Upon infection, cccDNA is generated as a plasmid-like episome in the host cell nucleus from the protein-linked relaxed circular (RC) DNA genome in incoming virions. It has a fundamental role as template for all viral RNAs, and in the production of new virions in the liver cells (Nassal et al., HBV cccDNA: viral persistence reservoir and key obstacle for a cure of chronic hepatitis B. (2015) Gut 64 (12):1972-1984). Beyond the difficulty to deliver specific TALE-nucleases into the nucleus of liver cells, it must be recalled that HBV comprises different genotypes, at least 24 subtypes, displaying genome variability, which are reported to respond to treatment in different ways (Palumbo E., Hepatitis B genotypes and response to antiviral therapy: a review. (2007). American Journal of Therapeutics 14 (3): 306-9). As detailed in Example 1 herein, the inventors have designed specific TALE-nucleases that are able to target both the cccDNA of the main HBV subtypes, namely at least type A, B and C. The sequences of the successful TALE-nucleases used by the inventors to target HBV are listed in Table 7.


The present application claims any of the polypeptide or polynucleotide sequences having at least 80% identity, preferably at least 90%, more preferably 95%, and even more preferably 99% identity with any sequences referred to in Table 7. The present application claims the polynucleotides encoding said sequences, especially under RNA form.


The present invention more broadly provides a method for delivering in-vivo two endonuclease reagents under RNA form, preferably under mRNA, form to be expressed simultaneously into a cell.


Accordingly, the invention has also for object a pair of heterodimeric TALE- nucleases, preferably those targeting the cccDNA of HBV such as those referred in Table 2, which are encapsulated according to the method described herein to target liver cells—i.e.: into a biodegradable delivery capsule for gene targeting of a cell in vivo, characterized in that a endonuclease reagent under RNA form is complexed with at least one polar domain, which is linked to biodegradable conjugate(s) of hydrophobic monomers to form spherical particles as previously described.


According to another embodiment, the endonuclease reagent is a RNA-guide to be used in conjunction with a RNA guided endonuclease, such as Cas9 or Cpf1, as per, inter alia, the teaching by Doudna, J., and Chapentier, E., (The new frontier of genome engineering with CRISPR-Cas9 (2014) Science 346 (6213):1077), which is incorporated herein by reference.


According to a preferred aspect the RNA guide is complexed with its associated RNA-guided endonuclease protein into the hydrophilic domain of the capsule. Alternatively the RNA-guided endonuclease protein can be retained within the hydrophilic core of the micelle structure (situation where the elementary structures have a second distal hydrophilic domain as illustrated in FIG. 1—structures A and B).


According to another embodiment, at least two different endonuclease reagents are encapsulated under RNA form into the particles, which means that, for instance, a RNA guide and mRNA encoding a RNA guided endonuclease can be both complexed with the distal hydrophilic domain of the matrix.


The present method provides that the core hydrophobic domain can be a biodegradable conjugate of hydrophobic monomers.


According to one aspect of the invention, said hydrophobic monomers conjugate comprise aminolipids, such as ionized cationic lipid 1,2-dilinoleyloxy-3-dimethylaminopropane (DLinDMA) as described elsewhere, for instance, by Hafez, I. M. et al. (On the mechanism whereby cationic lipids promote intracellular delivery of the polynucleic acids (2001) Gene Therapy 8:1188-1196). Said aminolipids can be advantageously mixed with PEG-lipids, since endogenous apolipoprotein E (Apo E) specifically targets these delivery systems to hepatocytes by Apo E-dependent, receptor mediated endocytosis. The core hydrophobic domain can also include structural lipids such as cholesterol and saturated phosphatidylcholine. Apo E mediated endocytosis is one of the mechanism by which capsules comprising hydrophobic domain with PEG-lipids more particularly target liver cells by mimicking intermediate-density lipoprotein (IDL).


According to an alternative aspect of the invention, said hydrophobic domain comprises a polymer, such as poly-N,N-di(C1-C6)alkyl-amino(C1-C6)alkyl-ethacrylate, poly-N,N-di(C1-C6)alkyl-amino(C1-C6)alkyl-methacrylate, or poly-N,N-di(C1-C6)alkyl-amino(C1-C6)alkyl-acrylate, or a combination thereof. Preferentially, said hydrophobic domain comprises monomers including at least (C2-C8)alkyl-ethacrylate, a (C2-C8)alkyl-methacrylate, or a (C2-C8)alkyl-acrylate, which can be mixed with carboxylic acid monomers and tertiary amino monomers.


According to the present invention, a proximal polar “targeting domain” can be covalently linked to the core hydrophobic domain to specifically target desired cell type or tissue. Such targeting domain can be linked through usual peptide linker, such as Gly-rich linkers (GSn linkers) according to standard procedures known in the art. By “targeting domain” is meant any molecule that may be inserted or linked to the matrix providing more affinity of the capsule to a cell type, more generally to a specific cell surface marker.


Said targeting domain are mostly ligand or binding domains that are reported to have some affinity with cell surface receptors or antigens. Binding domains can be fusion proteins comprising ScFvs from antibodies generated against a cell surface antigen.


According to a preferred embodiment of the invention, the targeting domain recognizes a cell surface antigen from a LDL or VLDL receptor, which are abundantly present at the surface of liver cells, allowing easier internalization of the delivery capsule. According to another embodiment, the targeting domain has affinity with heparan sulfate proteoglycans.


According to another aspect of the invention N-acetylgalactosamine ligand is used as a targeting domain as a ligand of for asialoglycoprotein receptors (ASGP-r). Galactoside-containing cluster ligands, in particular glycopeptides containing N-acetyl-D-galactosamine (GaINAc) have high affinity to ASGP-r, which are found in abundance in mammalian parenchymal liver cells. Such ligands may be conjugated with the core hydrophobic domain to improve the efficiency of delivery to diseased liver cells as previously described by Wu Y. T., et al. (A new N-acetylgalactosamine containing peptide as a targeting vehicle for mammalian hepatocytes via asialoglycoprotein receptor endocytosis (2004) Curr Drug Deliv. April; 1(2):119-27).


As per the method described above, the invention provides with biodegradable delivery capsule for performing gene targeting into a cell in-vivo. These delivery capsules, are, at least in part, characterized in that a RNA endonuclease reagent is complexed with at least one polar domain, which can be linked to biodegradable conjugate(s) of hydrophobic monomers, under the form of spherical particles of 50 to 100 nm diameter range. The structure of these delivery capsules allowed the inclusion of at least two RNA endonuclease reagents, such as TALE nucleases, which was surprising given the reduced size of the particles.


According to one aspect, said biodegradable matrix that is complexed with the RNA endonuclease reagents comprises at least two polar domains, in such a manner that the inner core particle is hydrophilic. The inner core particle may then encapsulate a further endonuclease reagent, in particular under polypeptide form, such as a RNA or DNA-guided endonuclease, for instance, a Cas9 or Cpf1 protein.


Various combinations of reagents can be included in the biodegradable delivery capsules of the present invention, as illustrated in FIGS. 1 to 3.


The present invention is also drawn to a medicament or pharmaceutical compositions permitting the safe injection in-vivo of the above biodegradable delivery systems in view of editing a target gene. By “pharmaceutically injectable medium” is meant a suitable pharmaceutical carrier, which are well known in the art, such as phosphate buffered saline solutions, water, emulsions, such as oil/water emulsions, various types of wetting agents, sterile solutions, etc. Injections according to the present invention can be intracerebral, intramuscular, inside spinal chord or subcutaneous.


Preparations for intravenous administration include sterile aqueous or non-aqueous solutions, suspensions, and emulsions. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. Parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's, or fixed oils. Intravenous vehicles include fluid and nutrient replenishes, electrolyte replenishers (such as those based on Ringer's dextrose), and the like. Preservatives and other additives may also be present such as, for example, antimicrobials, anti-oxidants, chelating agents, and inert gases and the like. In addition, the pharmaceutical composition of the present disclosure might comprise proteinaceous carriers, like, e.g., serum albumin or immunoglobulin, preferably of human origin.


The pharmaceutical compositions according to the present invention can have many different therapeutic indications. Examples of indications are those referred to in Table 1. Specifically, Table 1 lists particular target genes in connection with several diseases, which can be treated using the endonuclease delivery means according to the present invention. One particular aspect of this approach is the gene editing of these specific target genes in view of obtaining the treatment of their associated disease in vivo.


As a preferred embodiment is the therapeutic use of the endonuclease reagents of the present invention to target in-vivo the genetic sequences expressing microRNAs involved into drug resistance in cancer treatment, especially after prolonged cycles of chemotherapy. Proposed targets in this respect are sequence encoding miRNA genes, especially those from let7, miR-21, mir-26, mir-10, mir-34 and/or mir-122 families. Drug resistance is a major problem in the treatment of cancer patients. Resistance can develop after prolonged cycles of chemotherapy or can be present intrinsically in the patient. There is an emerging role of microRNAs (miRNAs) in resistance to cancer treatments. miRNAs are small non-coding RNAs that are evolutionarily conserved and also involved as regulators of gene expression through the silencing of mRNA targets. They are involved in many different cancer types and a plethora of mechanisms have been postulated for the roles that miRNAs play in the development of drug resistance. Hence, miRNA-based gene therapy may provide a novel approach for the future of cancer therapy. This review focuses on an overview of recent findings on the role of miRNAs in the resistance to chemotherapy in different tumors.


According to a preferred embodiment of the invention, the biodegradable endonuclease delivery capsules are used against infection agents' genomes, in particular those agents that presents a DNA intermediate into the liver. By “DNA intermediate into the liver” is meant that the infectious agent has, even temporarily, at least one intermediate stage of its replication taking place into a hepatic cell under a DNA form.


HBV is such as infectious agent that presents a DNA intermediate as per its cccDNA, which forms a reservoir for the virus lodged into hepatic cells. Chronic hepatitis is mostly due to this cccDNA remaining in hepatic cells.


One aspect of the present invention is to provide with new endonuclease reagents, especially TALE-nucleases (TALEN presented in Table 1) under RNA form for encapsulation into delivery particles for in-vivo targeting of HBV into liver cells. Preferred target sequences and TALEN monomers are those identified by the inventors in Example 1, through the cloning of large pieces of cccDNA into the genome of HEK293 cells (FIG. 4).


Also, the present invention claims TAL-nuclease monomer, which polypeptide sequence has at least 80% identity with any of SEQ ID NO.1 to 20, which are, useful for treating HBV related infections, and more particularly those having at least 80% identity with SEQ ID NO. 1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 17 and 18 (TALEN 1212, 1213, 1214, 2559, 2561, 2562, and 2563 respectively displaying more than 40% activity in Example 1).


With respect to antiviral treatments, and in particular those related to HBV, the endonuclease reagents of the present invention can be advantageously used in combination with other antiviral molecules, which do not target cccDNA, in particular those selected from: lamivudine (Epivir), entecavir (Baraclude), adefovir (Hepsera), tenofovir (Viread), Telbivudine (Tyzeka, Sebivo), Pegylated Interferon (Pegasys) or Interferon Alpha (Intron A).


A further aspect of the present invention is a method for delivering an endonuclease reagent into a cell in vivo, comprising the step of:

    • Producing a biodegradable delivery capsule as previously described; and
    • Injecting, parenterally or enterally, preferably intravenously said capsule into the blood circulation of a patient;


More broadly, the present invention can be regarded as a method for gene editing a target gene into a cell in-vivo, comprising the steps of introducing into the blood stream of an animal a biodegradable delivery capsule comprising an endonuclease reagent under RNA form.


Other Definitions

    • Amino acid residues in a polypeptide sequence are designated herein according to the one-letter code, in which, for example, Q means Gln or Glutamine residue, R means Arg or Arginine residue and D means Asp or Aspartic acid residue.
    • Amino acid substitution means the replacement of one amino acid residue with another, for instance the replacement of an Arginine residue with a Glutamine residue in a peptide sequence is an amino acid substitution.
    • Nucleotides are designated as follows: one-letter code is used for designating the base of a nucleoside: a is adenine, t is thymine, c is cytosine, and g is guanine. For the degenerated nucleotides, r represents g or a (purine nucleotides), k represents g or t, s represents g or c, w represents a or t, m represents a or c, y represents t or c (pyrimidine nucleotides), d represents g, a or t, v represents g, a or c, b represents g, t or c, h represents a, t or c, and n represents g, a, t or c.
    • “As used herein, “nucleic acid” or “polynucleotides” refers to nucleotides and/or polynucleotides, such as deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), oligonucleotides, fragments generated by the polymerase chain reaction (PCR), and fragments generated by any of ligation, scission, endonuclease action, and exonuclease action. Nucleic acid molecules can be composed of monomers that are naturally-occurring nucleotides (such as DNA and RNA), or analogs of naturally-occurring nucleotides (e.g., enantiomeric forms of naturally-occurring nucleotides), or a combination of both. Modified nucleotides can have alterations in sugar moieties and/or in pyrimidine or purine base moieties. Sugar modifications include, for example, replacement of one or more hydroxyl groups with halogens, alkyl groups, amines, and azido groups, or sugars can be functionalized as ethers or esters. Moreover, the entire sugar moiety can be replaced with sterically and electronically similar structures, such as aza-sugars and carbocyclic sugar analogs. Examples of modifications in a base moiety include alkylated purines and pyrimidines, acylated purines or pyrimidines, or other well-known heterocyclic substitutes. Nucleic acid monomers can be linked by phosphodiester bonds or analogs of such linkages. Nucleic acids can be either single stranded or double stranded.
    • The term “endonuclease” refers to any wild-type or variant enzyme capable of catalyzing the hydrolysis (cleavage) of bonds between nucleic acids within a DNA or RNA molecule, preferably a DNA molecule. Endonucleases do not cleave the DNA or RNA molecule irrespective of its sequence, but recognize and cleave the DNA or RNA molecule at specific polynucleotide sequences, further referred to as “target sequences” or “target sites”. Endonucleases can be classified as rare-cutting endonucleases when having typically a polynucleotide recognition site greater than 10 base pairs (bp) in length, more preferably of 14-55 bp. Rare-cutting endonucleases significantly increase homologous recombination by inducing DNA double-strand breaks (DSBs) at a defined locus thereby allowing gene repair or gene insertion therapies (Pingoud, A. and G. H. Silva (2007). Precision genome surgery. Nat. Biotechnol. 25(7): 743-4.).
    • by “DNA target”, “DNA target sequence”, “target DNA sequence”, “nucleic acid target sequence”, “target sequence”, or “processing site” is intended a polynucleotide sequence that can be targeted and processed by a rare-cutting endonuclease according to the present invention. These terms refer to a specific DNA location, preferably a genomic location in a cell, but also a portion of genetic material that can exist independently to the main body of genetic material such as plasmids, episomes, virus, transposons or in organelles such as mitochondria as non-limiting example. As non- limiting examples of RNA guided target sequences, are those genome sequences that can hybridize the guide RNA which directs the RNA guided endonuclease to a desired locus.
    • By “delivery capsule” is intended any delivery mean which can be used in the present invention to put into cell contact (i.e “contacting”) or deliver inside cells or subcellular compartments (i.e “introducing”) the endonuclease reagents of the present invention. It includes, but is not limited to liposomal delivery vectors, viral delivery vectors, drug delivery vectors, chemical carriers, polymeric carriers, lipoplexes, polyplexes, dendrimers, microbubbles (ultrasound contrast agents), nanoparticles or emulsions.
    • by “mutation” is intended the substitution, deletion, insertion of up to one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, twenty, twenty five, thirty, fourty, fifty, or more nucleotides/amino acids in a polynucleotide (cDNA, gene) or a polypeptide sequence. The mutation can affect the coding sequence of a gene or its regulatory sequence. It may also affect the structure of the genomic sequence or the structure/stability of the encoded mRNA.
    • by “variant” is intended a catalytically active mutant of an endonuclease reagent according to the present invention.
    • As used herein, the term “locus” is the specific physical location of a DNA sequence (e.g. of a gene) into a genome. The term “locus” can refer to the specific physical location of a rare-cutting endonuclease target sequence on a chromosome or on an infection agent's genome sequence. Such a locus can comprise a target sequence that is recognized and/or cleaved by a sequence-specific endonuclease according to the invention. It is understood that the locus of interest of the present invention can not only qualify a nucleic acid sequence that exists in the main body of genetic material (i.e. in a chromosome) of a cell but also a portion of genetic material that can exist independently to said main body of genetic material such as plasmids, episomes, virus, transposons or in organelles such as mitochondria as non-limiting examples.
    • The term “cleavage” refers to the breakage of the covalent backbone of a polynucleotide. Cleavage can be initiated by a variety of methods including, but not limited to, enzymatic or chemical hydrolysis of a phosphodiester bond. Both single-stranded cleavage and double-stranded cleavage are possible, and double-stranded cleavage can occur as a result of two distinct single-stranded cleavage events. Double stranded DNA, RNA, or DNA/RNA hybrid cleavage can result in the production of either blunt ends or staggered ends.
    • By “fusion protein” is intended the result of a well-known process in the art consisting in the joining of two or more genes which originally encode for separate proteins or part of them, the translation of said “fusion gene” resulting in a single polypeptide with functional properties derived from each of the original proteins.
    • “identity” refers to sequence identity between two nucleic acid molecules or polypeptides. Identity can be determined by comparing a position in each sequence which may be aligned for purposes of comparison. When a position in the compared sequence is occupied by the same base, then the molecules are identical at that position. A degree of similarity or identity between nucleic acid or amino acid sequences is a function of the number of identical or matching nucleotides at positions shared by the nucleic acid sequences. Various alignment algorithms and/or programs may be used to calculate the identity between two sequences, including FASTA, or BLAST which are available as a part of the GCG sequence analysis package (University of Wisconsin, Madison, Wis.), and can be used with, e.g., default setting. For example, polypeptides having at least 70%, 85%, 90%, 95%, 98% or 99% identity to specific polypeptides described herein and preferably exhibiting substantially the same functions, as well as polynucleotide encoding such polypeptides, are contemplated.
    • The term “subject” or “patient” as used herein includes all members of the animal kingdom including non-human primates and humans.
    • The above written description of the invention provides a manner and process of making and using it such that any person skilled in this art is enabled to make and use the same, this enablement being provided in particular for the subject matter of the appended claims, which make up a part of the original description.


Where a numerical limit or range is stated herein, the endpoints are included. Also, all values and subranges within a numerical limit or range are specifically included as if explicitly written out.


Having generally described this invention, a further understanding can be obtained by reference to certain specific examples, which are provided herein for purposes of illustration only, and are not intended to be limiting unless otherwise specified.


EXAMPLE 1

Design of TAL-Nucleases Targeting HBV Subtypes cccDNA


Hepatitis B virus (HBV) is a member of the Hepadnaviridae family of viruses. Infection with HBV can lead to cirrhosis and hepatocellular carcinoma. The genome of HBV is made of circular DNA, which is not fully double-stranded. One end of the full length strand is linked to the viral DNA polymerase. The genome is -3000 nucleotides long (for the full-length strand) and -2000 nucleotides long (for the short length-strand). The partially double-stranded DNA is rendered fully double-stranded by completion of the (+) sense strand and removal of a protein molecule from the (−) sense strand and a short sequence of RNA from the (+) sense strand. Non-coding bases are removed from the ends of the (−) sense strand and the ends are rejoined. There are four known genes encoded by the genome, called C, X, P, and S. The core protein is coded for by gene C (HBcAg), and its start codon is preceded by an upstream in-frame AUG start codon from which the pre-core protein is produced. HBeAg is produced by proteolytic processing of the pre-core protein. The DNA polymerase is encoded by gene P. Gene S is the gene that codes for the surface antigen (HBsAg). The function of the protein coded for by gene X is not fully understood but it is associated with the development of liver cancer. It stimulates genes that promote cell growth and inactivates growth regulating molecules.


The life cycle of hepatitis B virus is complex. Hepatitis B is one of a few known pararetroviruses: non-retroviruses that still use reverse transcription in their replication process. The virus gains entry into the cell by binding to NTCP on the surface and being endocytosed. Because the virus multiplies via RNA made by a host enzyme, the viral genomic DNA has to be transferred to the cell nucleus by cellular chaperones. The partially double stranded viral DNA is then made fully double stranded by viral polymerase and transformed into covalently closed circular DNA (cccDNA). This cccDNA serves as a template for transcription of four viral mRNAs by host RNA polymerase. The largest mRNA, (which is longer than the viral genome), is used to make the new copies of the genome and to make the capsid core protein and the viral DNA polymerase. These four viral transcripts undergo additional processing and go on to form progeny virions that are released from the cell or returned to the nucleus and re-cycled to produce more copies. The long mRNA is then transported back to the cytoplasm where the virion P protein (the DNA polymerase) synthesizes DNA via its reverse transcriptase activity.


The goal of the project was to generate TAL-nucleases able to cut HBV cccDNA and decrease its level in cell culture and in vivo. It should also cut the Relaxed Circular DNA (RC DNA), therefore acting of two different pools of virus. It could also cut integrated HBV partial genomes that are most often found in hepatocarcinomas.


There are no known inhibitors of the cccDNA. Some inhibitors are claimed to inhibit the formation of the cccDNA but none are targeting the pool of long lasting episomal reservoir of HBV in patients. The destruction of this pool could be a tool toward the cure of HBV.


HBV genome is difficult to express in cells line due to the complexity of its replication process and its toxicity. Also cells that produce HBV are difficult to transfect. We therefore decide to generate a stable cell line in 293 cells containing reference HBV genome (ayw) integrated at a known locus using a cGPS approach as described in WO2010046786, so that endonuclease reagent activity could be monitored in an easy and non -infectious manner.


HBV HEK 293 cells were very useful to select efficient TALE-nucleases targeting HBV. Cells M1-1000, M801-1800 and M1601-2006 were used to test TALE-nucleases: TALEN T002559-2564 (set 1) and TALEN T001212-1215 (set2). All of them were able to cut their target, with different level of efficiency. We were able to generate at least one very efficient TALEN per gene.


PCR on Transfected cGPS


The activity of the above TALENs was measured by transfecting plasmids in the above HBV 293 cGPS cells. 1.5 millions of each kind of HBV cGPS HEK 293 cells were plated in T25 the evening before transfection. 2 μg of each set of appropriate of plasmids (so 4 μg per TALEN, see table 1 and table 2) were transfected using Mirus TranslT-293 transfection reagent for 3 to 4 days. A control GFP was transfected in parallel (4 μg) for all cell lines and the efficiency of the transfection was monitored with a fluorescent microscope and estimated at ˜95%. Genomic DNA was then extracted using the Zymo Research quick-gDNA miniprep kit and PCR.


T7 Endonuclease Assay on HBV cGPS Cells Tranfected with TALENs


PCR products were annealed slowly, treated by T7 Endonuclease, run on a 10% polyacrylamide gel and stained with Sybergreen (T7 assay). One expects that the TALEN cut and NHEJ repair would result in the formation of a population of genomic DNA (and hence PCR product) that do not overlap at the surroundings of the TALEN cut site. After annealing those fragment would form a bulge that could be cleaved by the Endonuclease T7 and create fragments of expected sizes. Results are shown in FIGS. 5 and 6. After T7 assay, digested fragments of PCR appeared at the expected size for all the TALEN tested. The PCR bands and cut the products presented in FIGS. 5 and 6 were quantitated. Quantitation of digests with Biorad Image Lab program are presented in table 5. The efficiency of the cut was estimated by calculating the sum of the volume of the cut bands and dividing by the sum of the volume of total of the bands (cut and uncut). This approach does not take into account that the intensity of the bands is proportional to their size, and therefore this calculation is a rough estimate of the efficiency of the TALEN on the target.


All the TALEN tested had an estimated efficiency of more than 10%, while 6 were more than 40% active.


CONCLUSION

HBV HEK 293 cells were very useful to select efficient TALENs targeting HBV. We were able to create at least one very efficient TALEN per gene. The activity of T002561 (which cuts S and P), T001212 (which cuts X and P), T002559 (which cuts C and P) was more than 40% based on T7 assay and are therefore eligible for being encapsulated for in-vivo targeting of liver cells.









TABLE 5







Quantitation of the PCR bands with Biorad Lab Image program












TALEN #
PCR bands
Volume
SUM
Volume
% Cut of Total















T002561
PCR Uncut
1624248
Total
5073480
68



PCR Cut 1
2180088
Cut
3449232



PCR Cut 2
1269144


T002563
PCR Uncut
2315160
Total
3354624
31



PCR Cut 1
684432
Cut
1039464



PCR Cut 2
355032


T002564
PCR Uncut
2654136
Total
3024216
12



PCR Cut 1
237312
Cut
370080



PCR Cut 2
132768


T002559
PCR Uncut
2056032
Total
7750578
73



PCR Cut 1
3415896
Cut
5694546



PCR Cut 2
2278650


T002560
PCR Uncut
2505030
Total
3014946
17



PCR Cut 1
308220
Cut
509916



PCR Cut 2
201696


T002562
PCR Uncut
1507440
Total
5514894
73



PCR Cut 1
2345508
Cut
4007454



PCR Cut 2
1661946


T001215
PCR Uncut
1675328
Total
2451712
32



PCR Cut 1
621312
Cut
776384



PCR Cut 2
155072


T001212
PCR Uncut
1453760
Total
2613760
44



PCR Cut 1
690688
Cut
1160000



PCR Cut 2
469312


T001213
PCR Uncut
939200
Total
2262848
58



PCR Cut 1
825408
Cut
1323648



PCR Cut 2
498240


T001214
PCR Uncut
975552
Total
1789696
45



PCR Cut 1
632000
Cut
814144



PCR Cut 2
182144









EXAMPLE 2

In-Vivo Targeting of Factor VII Gene into the Genome of Liver Cells


The liver is a key organ for most metabolic pathways and therefore numerous metabolic inherited diseases have their origin in this organ. It is an attractive target for in vivo gene transfer studies due to the accessibility of the hepatocytes via the blood stream. The liver is the largest organ in the body and a highly vascularized organ. It is the only organ in the body to have two circulation systems, the systemic with the hepatic artery that brings oxygenated blood directly from the heart and the portal vein that brings nutrients from the gut and supplies 70% of the blood flow to the liver. In addition, it has a system of ducts that transports toxins out of the liver via bile into the small intestine, which is of importance for liver gene therapy applications since it allows hepatocytes to excrete bile salts, copper, bilirubin, etc, which cause liver diseases. Candidate diseases for liver gene therapy include primary liver diseases in which hepatocytes are injured and genetic defects altering a specific function of the hepatocyte but causing extrahepatic manifestations.


As a proof of principle, the liver has been chosen as a target organ in view of inactivating in-vivo mouse factor VII . Mouse Factor VII is a secreted protein secreted by liver cells, which can be easily quantitated in the blood. Inactivation of the gene in mouse liver is expected to lead to a decrease of the secreted protein into the circulating blood as described elsewhere (Akin, A. et al. (2009) Development of Lipidoid—siRNA Formulations. Molecular Therapy 17 5: 872-879.)


TAL-nucleases were engineered at the DNA level using the golden gate cloning assembly method described by Weber E., et al. (Assembly of Designer TAL Effectors by Golden Gate Cloning (2011) PLoS ONE 6(5): e19722) and cloned into a mammalian expression vector under the control of a pEF1alpha long promoter and tested in a human cell line by using a T7 experiment as described in Example 1.


Transcripts of mRNA encoding respectively forward (SEQ ID NO:21 or 23) and reverse (SEQ ID NO: 20 or 22) of the most efficient TALEN monomer pairs were produced using standard procedure (Ambion kit, Thermo Fisher Scientific). The capped transcripts were complexed with ionized cationic lipid 1,2-dilinoleyloxy-3-dimethylaminopropane (DLinDMA) and PEG- lipids to generate 80 nm range diameter range nanoparticles for systemic delivery to the liver. Controls were PBS (negative control) and siRNA against Factor VII (positive control from Ambion, #4457292 Thermofisher) as such siRNA have proven efficiency in previous studies.


The injection volume was 10 mL/kg (i.e for one mouse weighing 20 g, 200 μL of dosing solution is administered). Injection were at 2 mg/kg, of a 0.2 mg/ml solution, so that 200 μl were injected for a 20 g mouse, intravenously (IV, bolus) into the caudal vein of mice.


The treatment starts on Day 0 (Do) using sixteen (18) healthy female CD-1 mice.


The treatment schedule is as follows:

    • The animals from group 1 received one single IV injection of Control Buffer (Q1Dx1),
    • The animals from group 2 received one single IV injection of mRNA TALEN® complexed into capsules at 2 mgRNA/kg (Q1Dx1),
    • The animals from group 3 received one ingle IV injection of Positive siRNA control (siRNA FVII) at 2 mg/kg (Q1Dx1).


The treatment schedule is summarized in the table hereafter:









TABLE 6







Mice treatment schedule













Nb

Dose
Adm.
Treatment


Group
animals
Treatment
(mg/kg/adm)
Route
schedule





1
6
Control Buffer

IV
Q1Dx1


2
6
TALEN
2 mg/kg
IV
Q1Dx1




Complex


3
6
Positive
2 mg/kg
IV
Q1Dx1




siRNA control









Blood was collected on D0 (just before IV treatment) and then on D3, D5, D10, D15, D20 and D25. All mice were terminated on D25. Approximately 150-200 μL of blood was collected at each time point, plasma was then flash-frozen in liquid nitrogen and stored at −80° C. Liver from each mouse was collected at the time of termination, flash-frozen in liquid nitrogen and stored at −80° C. Factor VII activity in the collected plasma was measured using BIOPHEN FVII kit #221304.


Gene modifications were measured in livers by extracting genomic DNA on powdered frozen liver using ZR Genomic DNA™-Tissue MidiPrep from ZymoResearch # D3110, then performing a T7 assay and deep sequencing on the PCR product of the locus of interest.


Results show in FIG. 5, that a quickest effect is obtained with siRNA by D3 to D10. However by D15, siRNA starts to decline, whereas the inhibition induced by TALE-nucleases delivery remains stable up to D20. Together with the results of the deep sequencing (data not shown), it appears that the stable inhibition observed with the TALE-nucleases is due to mutations conferring permanent inactivation of a large number of factor VII gene copies in the liver cells.









TABLE 7







TALE-nucleases engineered to target the HBV genome, APOC3, TTR, SMN2, IDOL, ANGPTL3 and PCSK9 genes,


along with their polypeptide sequences et target polynucleotide sequences














RVD



TALEN


polynucleotide



Number
Gene target
RVD Motif
target sequence
Polypeptide Sequence





T001212
HBV1530_T0111
HD-NG-NN-NG-
(SEQ ID NO: 59)
(SEQ ID NO: 1)




NN-HD-HD-NG-
CTGTGCCTTCTCAT
MGDPKKKRKVIDYPYDVPDYAIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAAL




NG-HD-NG-HD-
CT#
PEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPEQVVAIASHDGGKQA




NI-NG-HD-NG#

LETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQ






VVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLL






PVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNG






GGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHG






LTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGKQALET






VQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLV






ALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSR






KPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLN






HITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T001212
HBV1530_T01.R1
NN-HD-NI-NN-
(SEQ ID NO: 60)
(SEQ ID NO: 2)




NI-NN-NN-NG-
GCAGAGGTGAAGCG
MGDPKKKRKVIDKETAAAKFERQHMDSIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQ




NN-NI-NI-NN-
AT#
DMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASN




HD-NN-NI-NG#

NGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAH






GLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALE






TVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVV






AIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPV






LCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGG






KQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAAL






TNDHLVALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGK






HLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKA






QLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T001213
HBV1860_T01.L1
NN-NG-NG-HD-
(SEQ ID NO: 61)
(SEQ ID NO: 3)




NI-NI-NN-HD-
GTTCAAGCCTCCAA
MGDPKKKRKVIDYPYDVPDYAIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAAL




HD-NG-HD-HD-
GT#
PEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASNNGGKQA




NI-NI-NN-NG#

LETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQ






VVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALL






PVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHD






GGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHG






LTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALET






VQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLV






ALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSR






KPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLN






HITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T001213
HBV1860_T01.R1
NN-NG-HD-HD-
(SEQ ID NO: 62)
(SEQ ID NO: 4)




NI-NG-NN-HD-
GTCCATGCCCCAAA
MGDPKKKRKVIDKETAAAKFERQHMDSIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQ




HD-HD-HD-NI-
GT#
DMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASN




NI-NI-NN-NG#

NGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAH






GLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGKQALE






TVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVV






AIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPV






LCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGG






KQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAAL






TNDHLVALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGK






HLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKA






QLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T001214
HBV2400_T01.L1
HD-NN-HD-NI-
(SEQ ID NO: 63)
(SEQ ID NO: 5)




NN-NI-NI-NN-
CGCAGAAGATCTCA
MGDPKKKRKVIDYPYDVPDYAIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAAL




NI-NG-HD-NG-
AT#
PEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPEQVVAIASHDGGKQA




HD-NI-NI-NG#

LETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQ






VVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALL






PVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNI






GGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHG






LTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALET






VQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLV






ALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSR






KPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLN






HITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T001214
HBV2400_T01.R1
HD-HD-NI-NI-
(SEQ ID NO: 64)
(SEQ ID NO: 6)




NN-NN-NN-NI-
CCAAGGGATACTAA
MGDPKKKRKVIDKETAAAKFERQHMDSIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQ




NG-NI-HD-NG-
CT#
DMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPEQVVAIASH




NI-NI-HD-NG#

DGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAH






GLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALE






TVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVV






AIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPV






LCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGG






KQALETVQALLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAAL






TNDHLVALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGK






HLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKA






QLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T001215
HBV180_T01.R1
NN-NG-NG-NI-
(SEQ ID NO: 65)
(SEQ ID NO: 7)




HD-NI-NN-NN-
GTTACAGGCGGGGT
MGDPKKKRKVIDYPYDVPDYAIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAAL




HD-NN-NN-NN-
TT#
PEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASNNGGKQA




NN-NG-NG-NG#

LETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQ






VVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALL






PVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHD






GGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHG






LTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALET






VQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLV






ALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSR






KPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLN






HITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T001215
HBV180_T01.R1
NN-NG-NN-NN-
(SEQ ID NO: 66)
(SEQ ID NO: 8)




NG-NI-NG-NG-
GTGGTATTGTGAGG
MGDPKKKRKVIDKETAAAKFERQHMDSIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQ




NN-NG-NN-NI-
AT#
DMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASN




NN-NN-NI-NG#

NGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAH






GLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALE






TVQALLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVV






AIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPV






LCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGG






KQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAAL






TNDHLVALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGK






HLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKA






QLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002559
HBV-core-1.L1
NN-NG-NN-NN-
(SEQ ID NO: 67)
(SEQ ID NO: 9)




NI-NG-NG-HD-
GTGGATTCGCACTC
MGDPKKKRKVIDYPYDVPDYAIDIADPIRSRTPSPARELLPGPQPDGVQPTADRGVSPPAGGPLDGLPARRTMSRTRLPSPPAPSPAFS




NN-HD-NI-HD-
CT#
AGSFSDLLRQFDPSLFNTSLFDSLPPFGAHHTEAATGEWDEVQSGLRAADAPPPTMRVAVTAARPPRAKPAPRRRAAQPSDASPAAQVD




NG-HD-HD-NG#

LRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAALPEATHEAIVGVGKQWSGARALEALLT






VAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIA






SNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQ






AHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQA






LETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQ






VVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLL






PVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHD






GGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPSGSGSGGDPISRSQLVKSELEEKKSELRHKLKYVPHE






YIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRN






KHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002559
HBV-core-1.R1
NI-NN-NN-NN-
(SEQ ID NO: 68)
(SEQ ID NO: 10)




NN-HD-NI-NG-
AGGGGCATTTGGTG
MGDPKKKRKVIDKETAAAKFERQHMDSIDIADPIRSRTPSPARELLPGPQPDGVQPTADRGVSPPAGGPLDGLPARRTMSRTRLPSPPA




NG-NG-NN-NN-
GT#
PSPAFSAGSFSDLLRQFDPSLFNTSLFDSLPPFGAHHTEAATGEWDEVQSGLRAADAPPPTMRVAVTAARPPRAKPAPRRRAAQPSDAS




NG-NN-NN-NG#

PAAQVDLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAALPEATHEAIVGVGKQWSGARA






LEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQ






QVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRL






LPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASN






IGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAH






GLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALE






TVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVV






AIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPSGSGSGGDPISRSQLVKSELEEKKSELRHKL






KYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVE






ENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINF






AAD





T002560
HBV-core-2.L1
NN-HD-HD-HD-
(SEQ ID NO: 69)
(SEQ ID NO: 11)




HD-NG-NI-NG-
GCCCCTATCTTATC
MGDPKKKRKVIDYPYDVPDYAIDIADPIRSRTPSPARELLPGPQPDGVQPTADRGVSPPAGGPLDGLPARRTMSRTRLPSPPAPSPAFS




HD-NG-NG-NI-
AT#
AGSFSDLLRQFDPSLFNTSLFDSLPPFGAHHTEAATGEWDEVQSGLRAADAPPPTMRVAVTAARPPRAKPAPRRRAAQPSDASPAAQVD




NG-HD-NI-NG#

LRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAALPEATHEAIVGVGKQWSGARALEALLT






VAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIA






SHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQ






AHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQA






LETVQALLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQ






VVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALL






PVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNI






GGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPSGSGSGGDPISRSQLVKSELEEKKSELRHKLKYVPHE






YIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRN






KHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002560
HBV-core-2.R1
HD-NN-NG-HD-
(SEQ ID NO: 70)
(SEQ ID NO: 12)




NG-NI-NI-HD-
CGTCTAACAACAGT
MGDPKKKRKVIDKETAAAKFERQHMDSIDIADPIRSRTPSPARELLPGPQPDGVQPTADRGVSPPAGGPLDGLPARRTMSRTRLPSPPA




NI-NI-HD-NI-
AT#
PSPAFSAGSFSDLLRQFDPSLFNTSLFDSLPPFGAHHTEAATGEWDEVQSGLRAADAPPPTMRVAVTAARPPRAKPAPRRRAAQPSDAS




NN-NG-NI-NG#

PAAQVDLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAALPEATHEAIVGVGKQWSGARA






LEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQ






QVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRL






LPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASN






IGGKQALETVQALLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAH






GLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALE






TVQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVV






AIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPSGSGSGGDPISRSQLVKSELEEKKSELRHKL






KYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVE






ENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINF






AAD





T002561
HBV-polym-1.L1
NN-NG-HD-NG-
(SEQ ID NO: 71)
(SEQ ID NO: 13)




NN-HD-NN-NN-
GTCTGCGGCGTTTT
MGDPKKKRKVIDYPYDVPDYAIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAAL




HD-NN-NG-NG-
AT#
PEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASNNGGKQA




NG-NG-NI-NG#

LETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQ






VVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLL






PVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHD






GGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHG






LTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALET






VQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLV






ALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSR






KPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLN






HITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002561
HBV-polym-1.R1
NN-NI-NN-NN-
(SEQ ID NO: 72)
(SEQ ID NO: 14)




HD-NI-NG-NI-
GAGGCATAGCAGCA
MGDPKKKRKVIDKETAAAKFERQHMDSIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQ




NN-HD-NI-NN-
GT#
DMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASN




HD-NI-NN-

NGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAH




NG#

GLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALE






TVQALLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVV






AIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPV






LCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGG






KQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAAL






TNDHLVALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGK






HLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKA






QLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002562
HBV-polym-2.L1
HD-HD-HD-NG-
(SEQ ID NO: 73)
(SEQ ID NO: 15)




HD-NN-HD-HD-
CCCTCGCCTCGCAG
MGDPKKKRKVIDYPYDVPDYAIDIADPIRSRTPSPARELLPGPQPDGVQPTADRGVSPPAGGPLDGLPARRTMSRTRLPSPPAPSPAFS




NG-HD-NN-HD-
AT#
AGSFSDLLRQFDPSLFNTSLFDSLPPFGAHHTEAATGEWDEVQSGLRAADAPPPTMRVAVTAARPPRAKPAPRRRAAQPSDASPAAQVD




NI-NN-NI-NG#

LRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAALPEATHEAIVGVGKQWSGARALEALLT






VAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIA






SHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQ






AHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQA






LETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQ






VVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLL






PVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNI






GGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPSGSGSGGDPISRSQLVKSELEEKKSELRHKLKYVPHE






YIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRN






KHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002562
HBV-polym-2.R1
HD-NG-NG-HD-
(SEQ ID NO: 74)
(SEQ ID NO: 16)




NG-NN-HD-NN-
CTTCTGCGACGCGG
MGDPKKKRKVIDKETAAAKFERQHMDSIDIADPIRSRTPSPARELLPGPQPDGVQPTADRGVSPPAGGPLDGLPARRTMSRTRLPSPPA




NI-HD-NN-HD-
CT#
PSPAFSAGSFSDLLRQFDPSLFNTSLFDSLPPFGAHHTEAATGEWDEVQSGLRAADAPPPTMRVAVTAARPPRAKPAPRRRAAQPSDAS




NN-NN-HD-NG#

PAAQVDLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAALPEATHEAIVGVGKQWSGARA






LEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQ






QVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRL






LPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASH






DGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAH






GLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALE






TVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVV






AIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPSGSGSGGDPISRSQLVKSELEEKKSELRHKL






KYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVE






ENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINF






AAD





T002563
HBV-HBX-1.L1
NG-HD-NG-HD-
(SEQ ID NO: 75)
(SEQ ID NO: 17)




NI-NG-HD-NG-
TCTCATCTGCCGGT
MGDPKKKRKVIDYPYDVPDYAIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAAL




NN-HD-HD-NN-
CT#
PEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASNGGGKQA




NN-NG-HD-NG#

LETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQ






VVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLL






PVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNN






GGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHG






LTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALET






VQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLV






ALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSR






KPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLN






HITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002563
HBV-HBX-1.R1
NN-HD-NI-NI-
(SEQ ID NO: 76)
(SEQ ID NO: 18)




HD-NN-NG-NN-
GCAACGTGCAGAGG
MGDPKKKRKVIDKETAAAKFERQHMDSIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQ




HD-NI-NN-NI-
TT#
DMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASN




NN-NN-NG-NG#

NGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAH






GLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALE






TVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVV






AIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPV






LCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGG






KQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAAL






TNDHLVALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGK






HLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKA






QLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002564
HBV-HBX-2.L1
NG-NG-NI-HD-
(SEQ ID NO: 77)
(SEQ ID NO: 19)




NN-HD-NN-NN-
TTACGCGGTCTCCC
MGDPKKKRKVIDYPYDVPDYAIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAAL




NG-HD-NG-HD-
CT#
PEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASNGGGKQA




HD-HD-HD-NG#

LETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQ






VVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLL






PVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNG






GGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHG






LTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALET






VQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLV






ALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSR






KPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLN






HITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002564
HBV-HBX-2.R1
NN-HD-NI-HD-
(SEQ ID NO: 78)
(SEQ ID NO: 20)




NI-HD-NN-NN-
GCACACGGACCGGC
MGDPKKKRKVIDKETAAAKFERQHMDSIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQ




NI-HD-HD-NN-
AT#
DMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASN




NN-HD-NI-NG#

NGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAH






GLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASHDGGKQALE






TVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVV






AIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPV






LCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGG






KQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAAL






TNDHLVALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGK






HLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKA






QLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002569
mm_F7_exon1-311
HD-NG-HD-NG-
(SEQ ID NO: 79)
(SEQ ID NO: 21)




NN-HD-NG-NG-
CTCTGCTTTCTGCT
MGDPKKKRKVIDYPYDVPDYAIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAAL




NG-HD-NG-NN-
CT#
PEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPEQVVAIASHDGGKQA




HD-NG-HD-NG#

LETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQ






VVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLL






PVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNG






GGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHG






LTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALET






VQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLV






ALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSR






KPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLN






HITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002569
mm_F7_exon1-3.R1
NI-NG-NI-HD-
(SEQ ID NO: 80)
(SEQ ID NO: 22)




HD-NG-NN-HD-
ATACCTGCAGTCCC
MGDPKKKRKVIDKETAAAKFERQHMDSIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQ




NI-NN-NG-HD-
TT#
DMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPEQVVAIASN




HD-HD-NG-NG#

IGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAH






GLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALE






TVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVV






AIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPV






LCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGG






KQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAAL






TNDHLVALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGK






HLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKA






QLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002575
mm_F7_exon6-2.L1
HD-NG-HD-NG-
(SEQ ID NO: 81)
(SEQ ID NO: 23)




HD-NG-NN-NI-
CTCTCTGACTTCTG
MGDPKKKRKVIDYPYDVPDYAIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAAL




HD-NG-NG-HD-
TT#
PEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPEQVVAIASHDGGKQA




NG-NN-NG-NG#

LETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQ






VVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLL






PVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASHD






GGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHG






LTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALET






VQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPSGSGSGGDPIS






RSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSRKPDGAIYTVGSPIDYGVIVDTKA






YSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLNHITNCNGAVLSVEELLIGGEMIK






AGTLTLEEVRRKFNNGEINFAAD





T002575
mm_F7_exon6-2.R1
NG-HD-NG-HD-
(SEQ ID NO: 82)
(SEQ ID NO: 24)




HD-HD-NI-HD-
TCTCCCACACGGGT
MGDPKKKRKVIDKETAAAKFERQHMDSIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQ




NI-HD-NN-NN-
AT#
DMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASN




NN-NG-NI-NG#

GGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAH






GLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALE






TVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVV






AIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPV






LCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGG






KQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPSGSGS






GGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSRKPDGAIYTVGSPIDYGV






IVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLNHITNCNGAVLSVEELLI






GGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002657
hAPOC3_Ex3A-L1
HD-NG-NN-NG-
(SEQ ID NO: 83)
(SEQ ID NO: 25)




NG-NN-HD-NG-
CTGTTGCTTCCCCT
MGDPKKKRKVIDYPYDVPDYAIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAAL




NG-HD-HD-HD-
GT#
PEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPEQVVAIASHDGGKQA




HD-NG-NN-NG#

LETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQ






VVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLL






PVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNG






GGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHG






LTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALET






VQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLV






ALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSR






KPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLN






HITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002657
hAPOC3_Ex3A-R1
NN-NI-NI-NN-
(SEQ ID NO: 84)
(SEQ ID NO: 26)




HD-HD-NI-NG-
GAAGCCATCGGTCA
MGDPKKKRKVIDKETAAAKFERQHMDSIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQ




HD-NN-NN-NG-
CT#
DMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASN




HD-NI-HD-NG#

NGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAH






GLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALE






TVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVV






AIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPV






LCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGG






KQALETVQALLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAAL






TNDHLVALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGK






HLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKA






QLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002658
hAPOC3_Ex3B-L1
NN-NI-NI-NI-
(SEQ ID NO: 85)
(SEQ ID NO: 27)




NN-NI-HD-NG-
GAAAGACTACTGGA
MGDPKKKRKVIDYPYDVPDYAIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAAL




NI-HD-NG-NN-
GT#
PEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASNNGGKQA




NN-NI-NN-NG#

LETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQ






VVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALL






PVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNI






GGKQALETVQALLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHG






LTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALET






VQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLV






ALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSR






KPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLN






HITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002658
hAPOC3_Ex3B-R1
HD-HD-HD-NI-
(SEQ ID NO: 86)
(SEQ ID NO: 28)




NN-NI-NI-HD-
CCCAGAACTCAGAG
MGDPKKKRKVIDKETAAAKFERQHMDSIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQ




NG-HD-NI-NN-
AT#
DMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPEQVVAIASH




NI-NN-NI-NG#

DGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAH






GLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALE






TVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVV






AIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPV






LCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGG






KQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAAL






TNDHLVALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGK






HLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKA






QLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002671
hAPOC3_Ex3_AN-R1
NN-NI-NI-NN-
(SEQ ID NO: 87)
(SEQ ID NO: 29)




HD-HD-NI-NG-
GAAGCCAT5GGTCA
MGDPKKKRKVIDKETAAAKFERQHMDSIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQ




N-NN-NN-NG-
CT#
DMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASN




HD-NI-HD-NG#

NGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAH






GLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALE






TVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVV






AIASNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVL






CQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGK






QALETVQALLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAALT






NDHLVALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKH






LGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQ






LTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002671
hAPOC3_Ex3A-L1
HD-NG-NN-NG-
(SEQ ID NO: 88)
(SEQ ID NO: 30)




NG-NN-HD-NG-
CTGTTGCTTCCCCT
MGDPKKKRKVIDYPYDVPDYAIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAAL




NG-HD-HD-HD-
GT#
PEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPEQVVAIASHDGGKQA




HD-NG-NN-NG#

LETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQ






VVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLL






PVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNG






GGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHG






LTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALET






VQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLV






ALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSR






KPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLN






HITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002659
hTTR_Ex1A-L1
HD-NG-NG-NN-
(SEQ ID NO: 89)
(SEQ ID NO: 31)




NN-HD-NI-NN-
CTTGGCAGGATGGC
MGDPKKKRKVIDYPYDVPDYAIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAAL




NN-NI-NG-NN-
TT#
PEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPEQVVAIASHDGGKQA




NN-HD-NG-NG#

LETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQ






VVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLL






PVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNN






GGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHG






LTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALET






VQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLV






ALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSR






KPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLN






HITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002659
hTTR_Ex1A-R1
HD-HD-NI-NN-
(SEQ ID NO: 90)
(SEQ ID NO: 32)




HD-NI-NI-NN-
CCAGCAAGGCAGAG
MGDPKKKRKVIDKETAAAKFERQHMDSIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQ




NN-HD-NI-NN-
GT#
DMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPEQVVAIASH




NI-NN-NN-NG#

DGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAH






GLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALE






TVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVV






AIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPV






LCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGG






KQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAAL






TNDHLVALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGK






HLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKA






QLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002660
hTTR_Ex1B-L1
NN-NG-HD-NG-
(SEQ ID NO: 91)
(SEQ ID NO: 33)




NN-NI-NN-NN-
GTCTGAGGCTGGCC
MGDPKKKRKVIDYPYDVPDYAIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAAL




HD-NG-NN-NN-
CT#
PEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASNNGGKQA




HD-HD-HD-NG#

LETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQ






VVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALL






PVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHD






GGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHG






LTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALET






VQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLV






ALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSR






KPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLN






HITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002660
hTTR_Ex1B-R1
NI-NN-NN-NI-
(SEQ ID NO: 92)
(SEQ ID NO: 34)




NI-NG-NN-NN-
AGGAATGGGATGTC
MGDPKKKRKVIDKETAAAKFERQHMDSIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQ




NN-NI-NG-NN-
AT#
DMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPEQVVAIASN




NG-HD-NI-NG#

IGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAH






GLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGKQALE






TVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVV






AIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPV






LCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGG






KQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAAL






TNDHLVALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGK






HLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKA






QLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002661
hSMN2_3ssEx8A-L1
HD-NG-NN-NN-
(SEQ ID NO: 93)
(SEQ ID NO: 35)




NG-NG-HD-NG-
CTGGTTCTAATTTC
MGDPKKKRKVIDYPYDVPDYAIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAAL




NI-NI-NG-NG-
TT#
PEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPEQVVAIASHDGGKQA




NG-HD-NG-NG#

LETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQ






VVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLL






PVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNI






GGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHG






LTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALET






VQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPSGSGSGGDPIS






RSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSRKPDGAIYTVGSPIDYGVIVDTKA






YSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLNHITNCNGAVLSVEELLIGGEMIK






AGTLTLEEVRRKFNNGEINFAAD





T002661
hSMN2_3ssEx8A-R1
NN-HD-NG-NN-
(SEQ ID NO: 94)
(SEQ ID NO: 36)




HD-NG-HD-NG-
GCTGCTCTATGCCA
MGDPKKKRKVIDKETAAAKFERQHMDSIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQ




NI-NG-NN-HD-
GT#
DMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASN




HD-NI-NN-NG#

NGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAH






GLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALE






TVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVV






AIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPV






LCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGG






KQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPSGSGS






GGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSRKPDGAIYTVGSPIDYGV






IVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLNHITNCNGAVLSVEELLI






GGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002662
hSMN2_3ssEx8B-L1
NN-NN-NG-NG-
(SEQ ID NO: 95)
(SEQ ID NO: 37)




HD-NG-NI-NI-
GGTTCTAATTTCTC
MGDPKKKRKVIDYPYDVPDYAIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAAL




NG-NG-NG-HD-
AT#
PEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASNNGGKQA




NG-HD-NI-NG#

LETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQ






VVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLL






PVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNG






GGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHG






LTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALET






VQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLV






ALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSR






KPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLN






HITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002662
hSMN2_3ssEx8B-R1
NG-NI-NN-NG-
(SEQ ID NO: 96)
(SEQ ID NO: 38)




NN-HD-NG-NN-
TAGTGCTGCTCTAT
MGDPKKKRKVIDKETAAAKFERQHMDSIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQ




HD-NG-HD-NG-
GT#
DMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASN




NI-NG-NN-NG#

GGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAH






GLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALE






TVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVV






AIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPV






LCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGG






KQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAAL






TNDHLVALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGK






HLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKA






QLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002663
hSMN2_ISS100A-L1
NG-HD-NI-NN-
(SEQ ID NO: 97)
(SEQ ID NO: 39)




NI-NG-NN-NG-
TCAGATGTTAGAAA
MGDPKKKRKVIDYPYDVPDYAIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAAL




NG-NI-NN-NI-
GT#
PEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASNGGGKQA




NI-NI-NN-NG#

LETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQ






VVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLL






PVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNG






GGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHG






LTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALET






VQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLV






ALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSR






KPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLN






HITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002663
hSMN2_ISS100A-R1
NG-NG-NI-NI-
(SEQ ID NO: 98)
(SEQ ID NO: 40)




NG-NI-NG-NG-
TTAATATTGATTGT
MGDPKKKRKVIDKETAAAKFERQHMDSIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQ




NN-NI-NG-NG-
TT#
DMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASN




NN-NG-NG-NG#

GGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAH






GLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALE






TVQALLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVV






AIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPV






LCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGG






KQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAAL






TNDHLVALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGK






HLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKA






QLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002664
hSMN2_ISS-N1A-L1
NG-NI-NI-NN-
(SEQ ID NO: 99)
(SEQ ID NO: 41)




NN-NI-NN-NG-
TAAGGAGTAAGTCT
MGDPKKKRKVIDYPYDVPDYAIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAAL




NI-NI-NN-NG-
GT#
PEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASNGGGKQA




HD-NG-NN-NG#

LETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQ






VVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALL






PVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNI






GGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHG






LTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALET






VQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLV






ALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSR






KPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLN






HITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002664
hSMN2_ISS-N1A-R1
NG-NI-HD-NI-
(SEQ ID NO: 100)
(SEQ ID NO: 42)




NI-NI-NI-NN-
TACAAAAGTAAGAT
MGDPKKKRKVIDKETAAAKFERQHMDSIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQ




NG-NI-NI-NN-
TT#
DMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASN




NI-NG-NG-NG#

GGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAH






GLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALE






TVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVV






AIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPV






LCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGG






KQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAAL






TNDHLVALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGK






HLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKA






QLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002665
hIDOL_Ex2A-L1
NG-NG-NI-NG-
(SEQ ID NO: 101)
(SEQ ID NO: 43)




NN-NN-HD-NG-
TTATGGCTAAACCT
MGDPKKKRKVIDYPYDVPDYAIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAAL




NI-NI-NI-HD-
GT#
PEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASNGGGKQA




HD-NG-NN-NG#

LETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQ






VVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLL






PVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNI






GGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHG






LTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALET






VQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLV






ALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSR






KPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLN






HITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002665
hIDOL_Ex2A-R1
NI-NN-HD-HD-
(SEQ ID NO: 102)
(SEQ ID NO: 44)




HD-NI-NG-HD-
AGCCCATCCATCTG
MGDPKKKRKVIDKETAAAKFERQHMDSIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQ




HD-NI-NG-HD-
CT#
DMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPEQVVAIASN




NG-NN-HD-NG#

IGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAH






GLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALE






TVQALLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVV






AIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPV






LCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGG






KQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAAL






TNDHLVALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGK






HLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKA






QLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002666
hIDOL_Ex3A-L1
NN-HD-HD-NI-
(SEQ ID NO: 103)
(SEQ ID NO: 45)




NI-NN-NN-NI-
GCCAAGGAGCTCTC
MGDPKKKRKVIDYPYDVPDYAIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAAL




NN-HD-NG-HD-
CT#
PEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASNNGGKQA




NG-HD-HD-NG#

LETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQ






VVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLL






PVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNN






GGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHG






LTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALET






VQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLV






ALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSR






KPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLN






HITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002666
hIDOL_Ex3A-R1
NI-NG-NG-HD-
(SEQ ID NO: 104)
(SEQ ID NO: 46)




NI-NI-HD-NI-
ATTCAACAGCCTCA
MGDPKKKRKVIDKETAAAKFERQHMDSIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQ




NN-HD-HD-NG-
CT#
DMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPEQVVAIASN




HD-NI-HD-NG#

IGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAH






GLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALE






TVQALLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVV






AIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPV






LCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGG






KQALETVQALLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAAL






TNDHLVALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGK






HLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKA






QLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002667
hANGPTL3_Ex1A-L1
NI-NG-NG-NN-
(SEQ ID NO: 105)
(SEQ ID NO: 47)




NG-NG-HD-HD-
ATTGTTCCTCTAGT
MGDPKKKRKVIDYPYDVPDYAIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAAL




NG-HD-NG-NI-
TT#
PEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPEQVVAIASNIGGKQA




NN-NG-NG-NG#

LETVQALLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQ






VVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLL






PVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNG






GGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHG






LTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALET






VQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLV






ALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSR






KPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLN






HITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002667
hANGPTL3_Ex1A-R1
NN-NI-NG-NN-
(SEQ ID NO: 106)
(SEQ ID NO: 48)




NI-NI-NG-NG-
GATGAATTGTCTTG
MGDPKKKRKVIDKETAAAKFERQHMDSIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQ




NN-NG-HD-NG-
AT#
DMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASN




NG-NN-NI-NG#

NGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAH






GLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALE






TVQALLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVV






AIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPV






LCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGG






KQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAAL






TNDHLVALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGK






HLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKA






QLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002668
hANGPTL3_Ex2A-L1
HD-HD-NI-NN-
(SEQ ID NO: 107)
(SEQ ID NO: 49)




NI-HD-NG-NG-
CCAGACTTTTGTAG
MGDPKKKRKVIDYPYDVPDYAIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAAL




NG-NG-NN-NG-
AT#
PEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPEQVVAIASHDGGKQA




NI-NN-NI-NG#

LETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQ






VVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLL






PVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNG






GGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHG






LTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALET






VQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLV






ALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSR






KPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLN






HITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002668
hANGPTL3_Ex2A-R1
NN-NN-NI-NN-
(SEQ ID NO: 108)
(SEQ ID NO: 50)




NI-NI-NN-NN-
GGAGAAGGTCTTTG
MGDPKKKRKVIDKETAAAKFERQHMDSIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQ




NG-HD-NG-NG-
AT#
DMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASN




NG-NN-NI-NG#

NGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAH






GLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALE






TVQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVV






AIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPV






LCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGG






KQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAAL






TNDHLVALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGK






HLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKA






QLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002669
hPCSK9_Ex3A-L1
NG-NN-HD-HD-
(SEQ ID NO: 109)
(SEQ ID NO: 51)




HD-HD-NI-NG-
TGCCCCATGTCGAC
MGDPKKKRKVIDYPYDVPDYAIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAAL




NN-NG-HD-NN-
TT#
PEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASNGGGKQA




NI-HD-NG-NG#

LETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQ






VVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLL






PVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNN






GGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHG






LTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASHDGGKQALET






VQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLV






ALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSR






KPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLN






HITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002669
hPCSK9_Ex3A-R1
HD-NG-NN-NN-
(SEQ ID NO: 110)
(SEQ ID NO: 52)




NN-HD-NI-NI-
CTGGGCAAAGACAG
MGDPKKKRKVIDKETAAAKFERQHMDSIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQ




NI-NN-NI-HD-
AT#
DMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPEQVVAIASH




NI-NN-NI-NG#

DGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAH






GLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALE






TVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVV






AIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPV






LCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGG






KQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAAL






TNDHLVALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGK






HLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKA






QLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002670
hPCSK9_Ex12A-L1
NN-NN-HD-NI-
(SEQ ID NO: 111)
(SEQ ID NO: 53)




NN-NN-NG-NN-
GGCAGGTGACCGTG
MGDPKKKRKVIDYPYDVPDYAIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAAL




NI-HD-HD-NN-
GT#
PEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASNNGGKQA




NG-NN-NN-NG#

LETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQ






VVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLL






PVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNI






GGKQALETVQALLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHG






LTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALET






VQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLV






ALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSR






KPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLN






HITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002670
hPCSK9_Ex12A-R1
NN-HD-NI-NN-
(SEQ ID NO: 112)
(SEQ ID NO: 54)




HD-HD-NI-NN-
GCAGCCAGTCAGGG
MGDPKKKRKVIDKETAAAKFERQHMDSIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQ




NG-HD-NI-NN-
TT#
DMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASN




NN-NN-NG-NG#

NGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAH






GLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALE






TVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVV






AIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPV






LCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGG






KQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAAL






TNDHLVALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGK






HLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKA






QLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002672
hPCSK9_Ex3_AN-L1
NG-NN-HD-HD-
(SEQ ID NO: 113)
(SEQ ID NO: 55)




HD-HD-NI-NG-
TGCCCCATGT5GAC
MGDPKKKRKVIDYPYDVPDYAIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAAL




NN-NG-N-NN-
TT#
PEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASNGGGKQA




NI-HD-NG-NG#

LETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQ






VVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLL






PVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNN






GGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGKQALETVQRLLPVLCQAHGL






TPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASHDGGKQALETV






QRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLVA






LACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSRK






PDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLNH






ITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002672
hPCSK9_Ex3A-R1
HD-NG-NN-NN-
(SEQ ID NO: 114)
(SEQ ID NO: 56)




NN-HD-NI-NI-
CTGGGCAAAGACAG
MGDPKKKRKVIDKETAAAKFERQHMDSIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQ




NI-NN-NI-HD-
AT#
DMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPEQVVAIASH




NI-NN-NI-NG#

DGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAH






GLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALE






TVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVV






AIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPV






LCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGG






KQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAAL






TNDHLVALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGK






HLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKA






QLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002673
hPCSK9_Ex12A-R1
NN-HD-NI-NN-
(SEQ ID NO: 115)
(SEQ ID NO: 57)




HD-HD-NI-NN-
GCAGCCAGTCAGGG
MGDPKKKRKVIDKETAAAKFERQHMDSIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQ




NG-HD-NI-NN-
TT#
DMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASN




NN-NN-NG-NG#

NGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAH






GLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALE






TVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVV






AIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPV






LCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGG






KQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAAL






TNDHLVALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGK






HLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKA






QLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD





T002673
hPCSK9Ex12_AN-L1
NN-NN-HD-NI-
(SEQ ID NO: 116)
(SEQ ID NO: 58)




NN-NN-NG-NN-
GGCAGGTGAC5GTG
MGDPKKKRKVIDYPYDVPDYAIDIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAAL




NI-HD-N-NN-
GT#
PEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASNNGGKQA




NG-NN-NN-NG#

LETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQ






VVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLL






PVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNI






GGKQALETVQALLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGKQALETVQRLLPVLCQAHGL






TPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETV






QRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLVA






LACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSRK






PDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLNH






ITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD








Claims
  • 1) A method for encapsulating an endonuclease reagent, comprising the steps of: a) Engineering a endonuclease reagent under RNA form;b) Complexing said endonuclease reagent with at least one biodegradable matrix comprising at least a core hydrophobic domain and a proximal polar domain to favor interactions with water molecules;c) Forming particles encapsulating said endonuclease reagent of 50 to 100 nm diameter range.
  • 2) A method according to claim 1, wherein said endonuclease reagent is a sequence-specific endonuclease reagent.
  • 3) A method according to claim 1, wherein said endonuclease reagent is a rare-cutting endonuclease, such as a homing endonuclease, a zing finger nuclease, a TALE-Nuclease or a MegaTAL-endonuclease.
  • 4) A method according to claim 3, wherein said rare-cutting endonuclease is a TALE-nuclease.
  • 5) A method according to claim 1, wherein said RNA encodes an endonuclease reagent, which is a RNA-guided endonuclease.
  • 6) A method according to claim 5, wherein said RNA-guided endonuclease is cas9 or Cpf1.
  • 7) A method according to claim 1, wherein said RNA is a RNA-guide.
  • 8) A method according to claim 7, wherein said RNA guide is complexed with a RNA-guided endonuclease protein.
  • 9) A method according to any one of claims 1 to 8, wherein at least two different endonuclease reagents are encapsulated under RNA form into the particles.
  • 10) A method according to claim 9, wherein said different endonuclease reagents are at least a RNA encoding a RNA-guided endonuclease and a guide RNA.
  • 11) A method according to claim 1, wherein said core hydrophobic domain is a biodegradable conjugate of hydrophobic monomers.
  • 12) A method according to claim 1, wherein said core hydrophobic and proximal polar domains are covalently linked.
  • 13) A method according to claim 1, wherein said core hydrophobic and proximal polar domains are linked by peptide linkers.
  • 14) A method according to claim 11, wherein said hydrophobic monomers conjugate are of aminolipids, such as ionized cationic lipid 1,2-dilinoleyloxy-3-dimethylaminopropane (DLinDMA).
  • 15) A method according to claim 14, wherein said aminolipids are mixed with PEG-lipids to form said polar domain.
  • 16) A method according to any one of claims 14 and 15, wherein said aminolipids allows binding of ApoE in-vivo, said ApoE facilitating Apo E mediated endocytosis.
  • 17) A method according to any one of claims 1 to 16, wherein said endonuclease reagent endocytosis is mediated via a receptor of the LDL or VLDL receptor family.
  • 18) A method according to any one of claims 1 to 17, wherein said at least one polar domain is poly-N,N-di(C1-C6)alkyl-amino(C1-C6)alkyl-ethacrylate, poly-N,N-di(C1-C6)alkyl-amino(C1-C6)alkyl-methacrylate, or poly-N,N-di(C1-C6)alkyl-amino(C1-C6)alkyl-acrylate, or a combination thereof.
  • 19) A method according to claim 18, wherein said hydrophobic monomers include at least (C2-C8)alkyl-ethacrylate, a (C2-C8)alkyl-methacrylate, or a (C2-C8)alkyl-acrylate.
  • 20) A method according to any one of claims 1 to 19, wherein said hydrophobic monomers conjugate are mixed with carboxylic acid monomers and tertiary amino monomers.
  • 21) A method according to any one of claims 1 to 20, wherein said at least one polar domain is linked to a targeting domain.
  • 22) A method according to claim 21, wherein said targeting domain comprises ScFv of an antibody targeting a cell surface antigen.
  • 23) A method according to claim 22, wherein said cell surface antigen is a protein is selected from a LDL, VLDL receptors or cell surface heparin sulfate proteoglycans.
  • 24) A method according to any one of claims 1 to 23, wherein said at least one polar domain is linked to a N-acetylgalactosamine ligand.
  • 25) A method according to any one of claims 21, 22 and 24, wherein said targeting domain is a ligand of asiaglycoprotein.
  • 26) A method according to claim 1, wherein said particles encapsulating said endonuclease reagent are of 50 to 90 nm diameter range.
  • 27) A biodegradable delivery capsule obtainable by the method according to any one of claims 1 to 26.
  • 28) A biodegradable delivery capsule for gene targeting of a cell in-vivo, characterized in that a RNA endonuclease reagent is complexed with at least one polar domain, which is linked to biodegradable conjugate(s) of hydrophobic monomers to form spherical particles of 50 to 100 nm diameter range.
  • 29) A biodegradable delivery capsule according to claim 27 or 28, wherein at least two RNA endonuclease reagents are included into said spherical particles.
  • 30) A biodegradable delivery capsule according to any one of claims 27 to 29, wherein said biodegradable matrix comprises at least two polar domains, such that the inner core particle is hydrophilic.
  • 31) A biodegradable delivery capsule according to claim 30, wherein said hydrophilic inner core particle encapsulates a further endonuclease reagent.
  • 32) A biodegradable delivery capsule according to claim 31, wherein said further endonuclease reagent comprises a polypeptide.
  • 33) A biodegradable delivery capsule according to claim 32, wherein said polypeptide encodes a RNA or DNA guided endonuclease.
  • 34) A pharmaceutical composition comprising a biodegradable delivery system according to any one of claims 27 to 33 with a pharmaceutically injectable medium.
  • 35) A pharmaceutical composition according to 34, for use in the treatment of a liver disease.
  • 36) A pharmaceutical composition according to claim 34 or 35, for use in the treatment of an infectious disease.
  • 37) A pharmaceutical composition according to any one of claims 34 to 36, wherein said disease is a viral disease such as hepatitis.
  • 38) A pharmaceutical composition according to claim 36 or 37, wherein said infectious disease is due to an infectious agent that presents a DNA intermediate into the liver.
  • 39) A pharmaceutical composition according to claim 38, wherein said infectious agent is a Hepadnavirus, such as HBV.
  • 40) A pharmaceutical composition according to 34, for use in the treatment of malignant cells.
  • 41) A method for delivering an endonuclease reagent to a cell in vivo, comprising the step of: Producing a biodegradable delivery capsule by a method according to any one of claims 1 to 26 ;Injecting intravenously said capsule into the blood circulation of a patient;
  • 42) A method for gene editing a target gene into a cell in-vivo, comprising the steps of introducing a biodegradable delivery capsule according to any one of claims 27 to 33 into the blood stream of an animal.
  • 43) A method for gene editing according to claim 42, wherein the target gene is one from the cccDNA of HBV.
  • 44) A TALE-nuclease monomer engineered to target the cccDNA of HBV in-vivo which binds one target sequence selected from SEQ ID NO: 1 to 20.
  • 45) A TALE-nuclease monomer engineered to target the cccDNA of HBV in-vivo according to claim 44, which polypeptide sequence has at least 80% identity with SEQ ID NO.1 to 20.
Priority Claims (1)
Number Date Country Kind
PA 2016 70111 Feb 2016 DK national
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2017/054264 2/24/2017 WO 00