The present invention relates to a micro-chamber for the culture of cells, more particularly, it relates to a cell culture micro-chamber by which cells can be cultured in one cell unit while observing the state of a cell with a microscope.
Up to date, for the observation of a change in state of cells and a response to chemical agents, etc. of cells, it is common to observe the average value of some values of a cell population on the assumption that it is a property of one cell. However, actually, it is seldom that cells synchronize in their cell cycles in a group of them. Thus, each cell develops a protein in a different cycle.
In order to solve these problems, a technique such as a synchronous culture process, etc. has been developed. However, because the cultured cell is not derived from one completely identical cell, there was a possibility that a difference in development of a protein is caused by a difference in gene of each cell derived before culture. Actually, when analyzing the results of responses to irritation, it was difficult to clarify whether its fluctuation derives from that of general responses possessed by a cell reaction mechanism itself or whether it is derived from a difference in cell (that is, a difference in gene information).
For the same reasons, with respect to cell lines it was difficult to clarify whether the reproducibility of responses to irritation fluctuates due to a difference in gene of each cell because it is generally not cultured from one completely identical cell.
Further, from the fact that there are two types of irritation (signal) to cells, i.e., one being given by the amounts of signal substance, nutriment and dissolved gas contained in a solution in the circumference of a cell, and the other being provided by the physical contact between cells, it was the circumstance that it is difficult to judge its fluctuation.
On the other hand, heretofore, when cells are to be observed in a study field of biotechnology, it is common either to observe them by removing a portion of a cell group cultured in a large culture vessel and setting it on a microscope, or to conduct the observation with a microscope by enclosing the entire microscope with a plastic container to control the temperature and then placing another small container within the enclosure under the control of carbon dioxide concentration and humidity. Then, it is designed to exchange the used culture solution with a new culture solution while culturing cells whereby the solution conditions are maintained constant.
For example, there is a process of maintaining nutrient conditions constant by means of a mechanism wherein a circulating pump operates upward and downward the level of a culture medium relative to the surface of a base material between a level higher than the upper end edge of the base material and a level lower than the lower end edge thereof in such a manner that when it decreases to the lower level, a culture medium is fed, while when it increases to the higher level, a culture medium is discharged (Japanese Patent Application Public Disclosure (Kokai) Hei 10-191961).
Further, there is a process of maintaining the nutrient conditions of a culture vessel constant by inserting in a culture vessel one end of each of an inlet tube for introducing a new culture medium into the culture vessel, an outlet tube for discharging a culture medium from the culture vessel and a gas tube for communicating a gas portion of the culture vessel with a pump, wherein the inlet tube, the outlet tube and the gas tube are provided on their respective conduit line with a filter for preventing the intrusion of bacilli into the culture vessel (Japanese Patent Application Public Disclosure (Kokai) Hei 8-172956).
However, in either of these inventions, it was impossible to culture cells are cultured while controlling the solution environment of a cell to be cultured and the physical contact between cells.
Accordingly, the inventors solved these problems, and invented a technique of selecting a specific new one cell only and culturing the one cell as a cell line, a technique wherein, when observing cells, the solution environment conditions of the cells are controlled and the cell concentration in the vessel is maintained constant, and a technique of observing the culture while specifying interacting cells (Japanese Patent Application Public Disclosure (Kokai) 2002-153260).
However, referring to the photo pincette technique used in the above Patent Application (Japanese Patent Application Public Disclosure (Kokai) 2002- 153260), the latitude of its capturing power is on the extent of a piconewton, which was sufficient to capture a floating cell but insufficient to capture a cell migrating for itself. Further, it was difficult to recover selectively a migrating cell during culture from a culture section.
Accordingly, the inventors have made various studies on the above micro-chambers, and found a new micro-chamber wherein a channel capable of selectively recovering a migrating cell in the micro-chamber can be opened or closed by reversibly changing the shape of the micro-chamber during culture.
That is, the present invention is a cell culture micro-chamber comprising a cell culture section, at least two channels for connecting the cell culture section to the outside, a means for opening or closing the channels, and a means for optically observing the cell culture section and the opening or closing of the channels, wherein one of the channels is a flow path through which a culture solution which may contain cells can be injected into the cell culture section, while another one of the channels is a flow path through which a culture solution which may contain cells can be discharged from the cell culture section, at least a portion of said channels is surrounded by an elastic material, and the means for opening and closing is for opening or closing the channels or altering the width of the channels by pressing or drawing the channels from outside in a direction substantially perpendicular to the observation direction of the means for optically observing.
Among optical observation means used herein includes optical microscopes, video recorder apparatus, cameras etc. They can be connected with a personal computer etc. to conduct a picture treatment. For easy observation, they can be also used with a light radiation apparatus.
It is preferable that the width of a channel when not operating the means for opening and closing is on the same extent as the size of a target cell. Accordingly, a suitable channel width may vary with the size of a target cell. In case that the width of a channel when not operating the means for opening and closing is somewhat narrower than the size of a target cell, the cell does not pass through the channel in a normal state, and passes through the channel only when it is opened. Therefore, this structure is suitable to separate cells.
The means for opening and closing can be one that opens or closes a channel or alters its width by applying an external force to the channel. They may be any of a means utilizing a mechanical force, a means provided with a space wherein the volume is changed, and the like.
It is preferable that the means for opening and closing has a space adjacent to the channels, the space being filled with a gas or liquid and the size of the space being altered by changing the pressure of the gas or liquid, whereby the channels are opened or closed, or their widths are altered. It is most convenient that this space is filled with air so that the resulting air-filled space is used as an air reservoir whereby the opening or closing of the channel is controlled by its air pressure.
The channels may be surrounded over its entire by an elastic material, or only its means for opening and closing side may be made of an elastic material. It is preferable that the surroundings of the space and the channels are formed from the same material, and they are disposed such that the change in size of the space has a direct effect on the width of the channel.
The elastic material may be any elastic material. It is convenient to use a synthetic polymer having no adverse effect on the culture of cells. Particularly, it is preferable that the elastic material is a silicone-type resin.
For optically observing the cell culture section and the opening or closing of a channel in a cell culture micro-chamber, it is preferred to fabricate only necessary portions thereof with a transparent material. The entire may be formed with a transparent elastic material.
In these drawings, reference numerals indicate those parts as follows;
101, 102 : a connecting joint to an air pressure control section
103, 104: a passage of air
105, 106, 202: an air reservoir
107: a flow of a solution (a culture solution containing a cell)
108, 109, 111, 201, 204: a channel
110: a cell culture section
112, 302, 304: a glass base plate
113, 303: a polymer (a silicone-type resin)
203: a cell
301: a mold
305: a connector to an air pressure control section
The following illustrates the details of the cell culture micro-chamber of the present invention. However, the present invention is not to be restricted in any way to this cell culture micro-chamber.
As shown in
Next, the opening or closing of a channel will be described with reference to
On the other hand,
The cell culture micro-chambers of the present invention have the following characteristic features:
The cell culture section is connected with the outside through a channel only. Therefore, cells are not in contact with an opening and closing apparatus etc. so that an extra load is not imposed on the cells.
Because the means for opening and closing is in a direction substantially vertical to the observation direction of opening or closing of a channel, the observation is not affected by the opening or closing of the channel. Further, simultaneously with the observation of a cell passing or not passing through a channel, the open or close state of the channel can be observed.
Due to these characteristic features, it is possible to separate a single cell from a cell culture solution.
Thus, it is possible to culture migrating cells etc. while controlling the number of the cells in a container, which was considered impossible up to date. Further, it is possible to recover selectively cells in the inside of a container.
Number | Date | Country | Kind |
---|---|---|---|
2003-139773 | May 2003 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP04/06283 | 4/30/2004 | WO | 10/7/2005 |