The present application relates generally to mechanical systems and more particularly to a micro-electromechanical device including moveable member.
Micro-electromechanical systems (MEMS) generally refer to mechanical components on the micrometer size and include three-dimensional lithographic features of various geometries. They may be manufactured using planar processing similar to semiconductor processes such as surface micromachining. MEMS devices typically range in size from a micrometer to a millimeter.
MEMS devices often include one or more components that move. These moveable components may include a hinge or other connection that is fragile and susceptible to damage. Electrostatic drive systems, which are frequently employed to move components of the MEMS devices, often rely on a voltage difference between closely spaced-apart components. For example, a comb drive is a linear motor that utilizes electrostatic forces. The comb drive takes its name from its resemblance to two hair combs lying in a plane and arranged so that their teeth are interleaved. The tooth spacing and size allows a potential difference (e.g., voltage) to be applied between the combs, and some relative motion between them. The electrostatic force between the combs cause them to move toward each other.
Large accelerations (i.e., shocks) of the MEMS device may cause components, particularly the moveable components, to collide with adjacent components, which may cause damage to the MEMS device. It is desirable to provide structure that can be used to protect moveable components from damage due to large accelerations, for example, during transport (e.g., shipping) of the MEMS device or even during use.
In an aspect, a micro-electromechanical device includes a frame, a moveable member movably connected to the frame such that the moveable member is capable of movement relative to the frame and drive system for use in moving the moveable member relative to the frame. A braking system is provided that inhibits movement of the moveable member relative to the frame.
In another aspect, a medical device configured to be inserted into a patient's body includes a micro-electromechanical scanning device for optical scanning of a field of view within the patient's body. The micro-electromechanical scanning device includes a frame and a scanning member movably connected to the frame such that the scanning member is capable of movement relative to the frame. The scanning member is configured to direct light across a field-of-view. A drive system is configured to move the scanning member relative to the frame and a braking system is provided that inhibits movement of the moveable scanner relative to the frame.
In another aspect, a method of controlling a micro-electromechanical device including a frame and a moveable member capable of movement relative to the frame is provided. The method include detecting an acceleration of the micro-electromechanical device. A signal is generated indicative of the acceleration. Movement of the moveable member is inhibited relative to the frame based on the signal.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and the drawings, and from the claims.
Referring to
As can be seen, a small gap 25 (see also
An accelerometer 32 (e.g., linear and/or rotational) is provided that is capable of generating a signal or signals responsive to acceleration. In some embodiments, the accelerometer 32 is mounted to the frame 12 or, alternatively, the frame and accelerometer may be mounted to a common support structure (not shown). Accelerometer 32 provides a signal to the controller 28 which, in turn, can control the braking system 24 in response to the signal from the accelerometer. Circuits to condition, amplify and/or quantify the signal may be located on the MEMS device 10 or elsewhere. As one illustrative example, if the signal provided from the accelerometer 32 to the controller 28 indicates an acceleration above a predetermined threshold value in any one or more of the x, y and/or z directions, the controller may engage the braking system 24 to inhibit movement of the moveable member 14 relative to the frame 12. Of course, other examples are possible, some of which are described below.
Referring now to
Referring particularly to
Referring again to
The actuators 26a-26h and associated pads 38 can be sized and located to intercept or otherwise contact the moveable member 14 at any point during its intended travel θ. The actuators 26a-26h can be mounted near to a point of minimum excursion, so that a size of the braking elements can be minimized while still intercepting the moveable element 14 at any position along its intended travel. In the illustrated embodiment, a point of minimum excursion is near the pivot axis 20. This can allow the controller 28 to actuate the braking system 24 without any need to synchronize the actuation of the braking system to location of the moveable member 14.
Referring now to
A signal responsive to linear acceleration of the MEMS device 10 may be obtained by the evaluator 41 using the pairwise value difference obtained from opposite accelerometers 32a1 and 32a3, 32a2 and 32a4. For example, obtaining the signal value from accelerometer 32a3 and subtracting it from the signal value obtained from accelerometer 32a1 will result in a positive signal value with the MEMS device 10 traveling to the right. Additionally, a signal may be derived which is responsive to rotation by adding all accelerometers 32a1-32a4 signal values with the same phase or polarity. An angular acceleration about the geometric center C of the MEMS device 10 in the direction of arrow 55 will result in all accelerometers 32a1-32a4 providing a positive signal value. The instantaneous center of angular rotation may be determined from the relative magnitudes of the signals.
MEMS device 10 may be more sensitive to shocks in one direction than in another or more sensitive to rotational shocks than linear shocks. This movement of most sensitivity may be predetermined and saved in memory to be accessible by the controller 28 and/or evaluator 41. The four signal values obtained using the layout of
Referring to
While piston-cylinder actuators 26 are described above, other braking systems may be used.
Referring to
Referring now to
Referring to
As can be seen, there may be two different web thicknesses. The thickness of the web 64 at the convolutions 70 and 72 is such that sufficient flexibility is provided in the substrate from which frame 12 is made to allow deformation the web 64 in its intended form. The thickness of the blocking portion 68 is such that structural rigidity and integrity is provided while the blocking portion is in contact with the moveable member 14 as part of the braking action.
Referring also to
Another exemplary braking system 80 illustrated schematically by
Referring to
While numerous mechanically actuated braking systems are described above,
In one embodiment, the magnetized components 130 and 132 may be formed by a single magnet (e.g., a horseshoe magnet) with, for example, one north pole located at component 130 and one south pole located at component 132. The coils 138 and 140 are patterns of metal that form a series of concentric loops on the surface of the moveable member 14. The coils 138 and 140 may be operated in two modes: passive and active. In the active mode, the coils 138 and 140 may be energized to create a small electromagnet whose poles may be aligned to attract or repel the apposing permanent magnet pole. If both poles attract or repel, the moveable member 14 will hover about some position governed by the inequality of the actual applied magnetic fields between pole pair 130, 138 and pole pair 132, 140. If one pole attracts and the other pole repels, the moveable member 14 will move to a stable position where the attracting poles will have minimal separation and the repelling poles will have maximum separation.
Referring still to
In another embodiment shown by
In
If the magnetic components described above have sufficient magnetic energy, then electro-permanent magnets may be used (e.g., a coil wrapped around a permanent magnet). During operation, current may be delivered through the coil to cancel the magnetic field provided by the permanent magnet and the moveable member 14 may move freely. Interruption of the current (e.g., during non-use) reconstitutes the braking forces.
The magnetic forces and fields required for braking depend on the particulars of the embodiment. For example, the magnetic forces and fields may depend on size and extent of the moveable member 14, acceleration to be resisted, etc.
MEMS device 10 may be formed by any suitable method such as deposition of thin films of material, photolithography and etching. Surface micromachining may be based on conventional integrated circuit (IC) processing steps including material deposition, photolithography, masking, etching, mask stripping and cleaning. A large number of processing steps may be used to form the completed MEMS device 10 based on repeated deposition and patterning of alternating layers of polycrystalline silicon and a sacrificial material (e.g., silicon dioxide or a silicate glass), with the MEMS device being built layer by layer. Suitable processing examples include utilization of SUMMiT™ and SUMMiT V™ technologies available from Sandia National Laboratories, Albuquerque, N. Mex. Various microfabrication techniques are described in Microsystem Design, by Stephen D. Senturia, (Kluwer Academic Publishers, 2001), the content of which is hereby incorporated by reference.
Referring now to
MEMS scanners are described in, for example, U.S. Pat. No. 6,140,979, entitled SCANNED DISPLAY WITH PINCH, TIMING, AND DISTORTION CORRECTION; U.S. Pat. No. 6,245,590, entitled FREQUENCY TUNABLE RESONANT SCANNER AND METHOD OF MAKING; U.S. Pat. No. 6,285,489, entitled FREQUENCY TUNABLE RESONANT SCANNER WITH AUXILIARY ARMS; U.S. Pat. No. 6,331,909, entitled FREQUENCY TUNABLE RESONANT SCANNER; U.S. Pat. No. 6,362,912, entitled SCANNED IMAGING APPARATUS WITH SWITCHED FEEDS; U.S. Pat. No. 6,384,406, entitled ACTIVE TUNING OF A TORSIONAL RESONANT STRUCTURE; U.S. Pat. No. 6,433,907, entitled SCANNED DISPLAY WITH PLURALITY OF SCANNING ASSEMBLIES; U.S. Pat. No. 6,512,622, entitled ACTIVE TUNING OF A TORSIONAL RESONANT STRUCTURE; U.S. Pat. No. 6,515,278, entitled FREQUENCY TUNABLE RESONANT SCANNER AND METHOD OF MAKING; U.S. Pat. No. 6,515,781, entitled SCANNED IMAGING APPARATUS WITH SWITCHED FEEDS; and U.S. Pat. No. 6,525,310, entitled FREQUENCY TUNABLE RESONANT SCANNER; all of which are hereby incorporated by reference as if fully set forth herein.
Referring to
Scanning module 180 may be used for imaging during a medical procedure. In some implementations, scanning module 180 may be used with a scanning endoscope. Scanning modules and various medical devices such as a scanning endoscope employing a scanned beam imager are disclosed in U.S. patent application Ser. No. 10/873,540, entitled SCANNING ENDOSCOPE, filed Jun. 21, 2004, the contents of which are hereby incorporated by reference as if fully set forth herein.
The above-described braking systems can be used to capture and brace the relatively delicate moveable members during episodes of high acceleration. In some embodiments, the braking system is normally ON, so that unintended movement of the moveable member can be prevented or inhibited even when the MEMS device is not in use.
The controller 28 may determine which of the braking system components to actuate, for example, based on input from the sensors or accelerometers and/or evaluator 41. For example, only certain ones of the actuators may be actuated where a large acceleration is sensed in a particular direction. Alternatively, the controller 28 may actuate all of the actuators where a large acceleration is sensed in a particular direction.
A number of detailed embodiments have been described. Nevertheless, it will be understood that various modifications may be made. For example, referring to
Number | Name | Date | Kind |
---|---|---|---|
3758199 | Thaxter | Sep 1973 | A |
3959582 | Law et al. | May 1976 | A |
4082635 | Fritz et al. | Apr 1978 | A |
4141362 | Wurster | Feb 1979 | A |
4313431 | Frank | Feb 1982 | A |
4324761 | Harris ET AL | Apr 1982 | A |
4379039 | Fujimoto et al. | Apr 1983 | A |
4403273 | Nishioka | Sep 1983 | A |
4409477 | Carl | Oct 1983 | A |
4421382 | Doi et al. | Dec 1983 | A |
4527552 | Hattori | Jul 1985 | A |
4573465 | Sugiyama et al. | Mar 1986 | A |
4576999 | Eckberg | Mar 1986 | A |
4597380 | Raif et al. | Jul 1986 | A |
4643967 | Bryant | Feb 1987 | A |
4676231 | Hisazumi et al. | Jun 1987 | A |
4760840 | Fournier, Jr. et al. | Aug 1988 | A |
4803550 | Yabe et al. | Feb 1989 | A |
4872458 | Kanehira et al. | Oct 1989 | A |
4902083 | Wells | Feb 1990 | A |
4902115 | Takahashi | Feb 1990 | A |
4934773 | Becker | Jun 1990 | A |
4938205 | Nudelman | Jul 1990 | A |
5003300 | Wells | Mar 1991 | A |
5023905 | Wells et al. | Jun 1991 | A |
5048077 | Wells et al. | Sep 1991 | A |
5074860 | Gregory et al. | Dec 1991 | A |
5078150 | Hara et al. | Jan 1992 | A |
5163936 | Black et al. | Nov 1992 | A |
5163945 | Ortiz et al. | Nov 1992 | A |
5172685 | Nudelman | Dec 1992 | A |
5192288 | Thompson et al. | Mar 1993 | A |
5200819 | Nudelman et al. | Apr 1993 | A |
5200838 | Nudelman et al. | Apr 1993 | A |
5207670 | Sinofsky | May 1993 | A |
5218195 | Hakamata | Jun 1993 | A |
5251025 | Cooper et al. | Oct 1993 | A |
5251613 | Adair | Oct 1993 | A |
5269289 | Takehana et al. | Dec 1993 | A |
5318024 | Kittrell et al. | Jun 1994 | A |
5334991 | Wells et al. | Aug 1994 | A |
5368015 | Wilk | Nov 1994 | A |
5370643 | Krivoshlykov et al. | Dec 1994 | A |
5387197 | Smith et al. | Feb 1995 | A |
5393647 | Neukermans et al. | Feb 1995 | A |
5436655 | Hiyama et al. | Jul 1995 | A |
5467104 | Furness, III et al. | Nov 1995 | A |
5488862 | Neukermans et al. | Feb 1996 | A |
5531740 | Black | Jul 1996 | A |
5545211 | An et al. | Aug 1996 | A |
5552452 | Khadem et al. | Sep 1996 | A |
5557444 | Melville et al. | Sep 1996 | A |
5590660 | MacAulay et al. | Jan 1997 | A |
5596339 | Furness, III et al. | Jan 1997 | A |
5608451 | Konno et al. | Mar 1997 | A |
5629790 | Neukermans et al. | May 1997 | A |
5648618 | Neukermans et al. | Jul 1997 | A |
5649952 | Lam | Jul 1997 | A |
5657165 | Karpman et al. | Aug 1997 | A |
5658710 | Neukermans | Aug 1997 | A |
5659327 | Furness, III et al. | Aug 1997 | A |
5694237 | Melville | Dec 1997 | A |
5701132 | Kollin et al. | Dec 1997 | A |
5713891 | Poppas | Feb 1998 | A |
5728121 | Bimbo et al. | Mar 1998 | A |
5735792 | Vanden Hoek et al. | Apr 1998 | A |
5742419 | Dickensheets et al. | Apr 1998 | A |
5742421 | Wells et al. | Apr 1998 | A |
5751465 | Melville et al. | May 1998 | A |
5768461 | Svetkoff et al. | Jun 1998 | A |
5797944 | Nobles et al. | Aug 1998 | A |
5817061 | Goodwin et al. | Oct 1998 | A |
5823943 | Tomioka et al. | Oct 1998 | A |
5827176 | Tanaka et al. | Oct 1998 | A |
5827190 | Palcic et al. | Oct 1998 | A |
5841553 | Neukermans | Nov 1998 | A |
5861549 | Neukermans et al. | Jan 1999 | A |
5867297 | Kiang et al. | Feb 1999 | A |
5895866 | Neukermans et al. | Apr 1999 | A |
5903397 | Melville et al. | May 1999 | A |
5907425 | Dickensheets et al. | May 1999 | A |
5913591 | Melville | Jun 1999 | A |
5947930 | Schwemberger et al. | Sep 1999 | A |
5955817 | Dhuler et al. | Sep 1999 | A |
5969465 | Neukermans et al. | Oct 1999 | A |
5969871 | Tidwell et al. | Oct 1999 | A |
5982528 | Melville | Nov 1999 | A |
5982555 | Melville et al. | Nov 1999 | A |
5993037 | Tomioka et al. | Nov 1999 | A |
5995264 | Melville | Nov 1999 | A |
5998906 | Jerman et al. | Dec 1999 | A |
6007208 | Dickensheets et al. | Dec 1999 | A |
6008781 | Furness, III et al. | Dec 1999 | A |
6013025 | Bonne et al. | Jan 2000 | A |
6016440 | Simon et al. | Jan 2000 | A |
6017356 | Frederick et al. | Jan 2000 | A |
6017603 | Tokuda et al. | Jan 2000 | A |
6024744 | Kese et al. | Feb 2000 | A |
6043799 | Tidwell | Mar 2000 | A |
6044705 | Neukermans et al. | Apr 2000 | A |
6046720 | Melville et al. | Apr 2000 | A |
6049407 | Melville | Apr 2000 | A |
6056721 | Shulze | May 2000 | A |
6057952 | Kubo et al. | May 2000 | A |
6059720 | Furusawa et al. | May 2000 | A |
6061163 | Melville | May 2000 | A |
6064779 | Neukermans et al. | May 2000 | A |
6069725 | Melville | May 2000 | A |
6086528 | Adair | Jul 2000 | A |
6086531 | Tomioka et al. | Jul 2000 | A |
6088145 | Dickensheets et al. | Jul 2000 | A |
6097353 | Melville et al. | Aug 2000 | A |
6122394 | Neukermans et al. | Sep 2000 | A |
6139175 | Tomioka et al. | Oct 2000 | A |
6140979 | Gerhard et al. | Oct 2000 | A |
6151167 | Melville | Nov 2000 | A |
6154305 | Dickensheets et al. | Nov 2000 | A |
6154321 | Melville et al. | Nov 2000 | A |
6157352 | Kollin et al. | Dec 2000 | A |
6166841 | Melville | Dec 2000 | A |
6172789 | Kino et al. | Jan 2001 | B1 |
6178346 | Amundson et al. | Jan 2001 | B1 |
6179776 | Adams et al. | Jan 2001 | B1 |
6191761 | Melville et al. | Feb 2001 | B1 |
6192267 | Scherninski et al. | Feb 2001 | B1 |
6200595 | Motoyashiki et al. | Mar 2001 | B1 |
6204829 | Tidwell | Mar 2001 | B1 |
6204832 | Melville et al. | Mar 2001 | B1 |
6207392 | Weiss et al. | Mar 2001 | B1 |
6210401 | Lai | Apr 2001 | B1 |
6220711 | Melville | Apr 2001 | B1 |
6221068 | Fried et al. | Apr 2001 | B1 |
6229139 | Neukermans et al. | May 2001 | B1 |
6235017 | Jegorov et al. | May 2001 | B1 |
6243186 | Melville | Jun 2001 | B1 |
6245590 | Wine et al. | Jun 2001 | B1 |
6256131 | Wine et al. | Jul 2001 | B1 |
6257727 | Melville | Jul 2001 | B1 |
6272907 | Neukermans et al. | Aug 2001 | B1 |
6276798 | Gil et al. | Aug 2001 | B1 |
6281862 | Tidwell et al. | Aug 2001 | B1 |
6284185 | Tokuda et al. | Sep 2001 | B1 |
6285489 | Helsel et al. | Sep 2001 | B1 |
6285505 | Melville et al. | Sep 2001 | B1 |
6288816 | Melville et al. | Sep 2001 | B1 |
6292287 | Fujinoki | Sep 2001 | B1 |
6293911 | Imaizumi et al. | Sep 2001 | B1 |
6294239 | Tokuda et al. | Sep 2001 | B1 |
6294775 | Seibel et al. | Sep 2001 | B1 |
6317103 | Furness, III et al. | Nov 2001 | B1 |
6323037 | Lauto et al. | Nov 2001 | B1 |
6324007 | Melville | Nov 2001 | B1 |
6327493 | Ozawa et al. | Dec 2001 | B1 |
6331909 | Dunfield | Dec 2001 | B1 |
6333110 | Barbera-Guillem | Dec 2001 | B1 |
6338641 | Nicholls | Jan 2002 | B2 |
6352344 | Tidwell | Mar 2002 | B2 |
6353183 | Ott et al. | Mar 2002 | B1 |
6362912 | Lewis et al. | Mar 2002 | B1 |
6364829 | Fulghum | Apr 2002 | B1 |
6369928 | Mandella et al. | Apr 2002 | B1 |
6369953 | Melville et al. | Apr 2002 | B2 |
6369954 | Berge et al. | Apr 2002 | B1 |
6370406 | Wach et al. | Apr 2002 | B1 |
6370422 | Richards-Kortum et al. | Apr 2002 | B1 |
6373995 | Moore | Apr 2002 | B1 |
6384406 | Wine et al. | May 2002 | B1 |
6388641 | Tidwell et al. | May 2002 | B2 |
6392220 | Slater et al. | May 2002 | B1 |
6396461 | Lewis et al. | May 2002 | B1 |
6414779 | Mandella et al. | Jul 2002 | B1 |
6417502 | Stoner et al. | Jul 2002 | B1 |
6423956 | Mandella et al. | Jul 2002 | B1 |
6425900 | Knodel et al. | Jul 2002 | B1 |
6426013 | Neukermans et al. | Jul 2002 | B1 |
6433907 | Lippert et al. | Aug 2002 | B1 |
6435637 | Lyman | Aug 2002 | B1 |
6441356 | Mandella et al. | Aug 2002 | B1 |
6445362 | Tegreene | Sep 2002 | B1 |
6447524 | Knodel et al. | Sep 2002 | B1 |
6462770 | Cline et al. | Oct 2002 | B1 |
6464363 | Nishioka et al. | Oct 2002 | B1 |
6467345 | Neukermans et al. | Oct 2002 | B1 |
6470124 | Le Gargasson et al. | Oct 2002 | B1 |
6477403 | Eguchi et al. | Nov 2002 | B1 |
6478809 | Brotz | Nov 2002 | B1 |
6485413 | Boppart et al. | Nov 2002 | B1 |
6492962 | Melville et al. | Dec 2002 | B2 |
6494578 | Plummer et al. | Dec 2002 | B1 |
6503196 | Kehr et al. | Jan 2003 | B1 |
6510338 | Irion et al. | Jan 2003 | B1 |
6512622 | Wine et al. | Jan 2003 | B2 |
6513939 | Fettig et al. | Feb 2003 | B1 |
6515278 | Wine et al. | Feb 2003 | B2 |
6515781 | Lewis et al. | Feb 2003 | B2 |
6520972 | Peters | Feb 2003 | B2 |
6522444 | Mandella et al. | Feb 2003 | B2 |
6525310 | Dunfield | Feb 2003 | B2 |
6527708 | Nakamura et al. | Mar 2003 | B1 |
6529770 | Grimblatov | Mar 2003 | B1 |
6530698 | Kuhara et al. | Mar 2003 | B1 |
6535183 | Melville et al. | Mar 2003 | B2 |
6535325 | Helsel et al. | Mar 2003 | B2 |
6537211 | Wang et al. | Mar 2003 | B1 |
6538625 | Tidwell et al. | Mar 2003 | B2 |
6545260 | Ono ET AL | Apr 2003 | B1 |
6560028 | Melville et al. | May 2003 | B2 |
6563105 | Seibel et al. | May 2003 | B2 |
6563106 | Bowers et al. | May 2003 | B1 |
6572606 | Kliewer et al. | Jun 2003 | B2 |
6583117 | Owen et al. | Jun 2003 | B2 |
6583772 | Lewis et al. | Jun 2003 | B1 |
6585642 | Christopher | Jul 2003 | B2 |
6603552 | Cline et al. | Aug 2003 | B1 |
6608297 | Neukermans et al. | Aug 2003 | B2 |
6639570 | Furness, III et al. | Oct 2003 | B2 |
6639719 | Tegreene et al. | Oct 2003 | B2 |
6650877 | Tarbouriech et al. | Nov 2003 | B1 |
6653621 | Wine et al. | Nov 2003 | B2 |
6654158 | Helsel et al. | Nov 2003 | B2 |
6661393 | Tegreene et al. | Dec 2003 | B2 |
6674993 | Tarbouriech | Jan 2004 | B1 |
6685804 | Ikeda et al. | Feb 2004 | B1 |
6687034 | Wine et al. | Feb 2004 | B2 |
6689056 | Kilcoyne et al. | Feb 2004 | B1 |
6699170 | Crocker et al. | Mar 2004 | B1 |
6700552 | Kollin et al. | Mar 2004 | B2 |
6714331 | Lewis et al. | Mar 2004 | B2 |
6734835 | Tidwell et al. | May 2004 | B2 |
6736511 | Plummer et al. | May 2004 | B2 |
6741884 | Freeman et al. | May 2004 | B1 |
6744173 | Behin et al. | Jun 2004 | B2 |
6749346 | Dickensheets et al. | Jun 2004 | B1 |
6755536 | Tegreene et al. | Jun 2004 | B2 |
6762867 | Lippert et al. | Jul 2004 | B2 |
6768588 | Urey | Jul 2004 | B2 |
6771001 | Mao et al. | Aug 2004 | B2 |
6782748 | Weber et al. | Aug 2004 | B2 |
6786382 | Hoffman | Sep 2004 | B1 |
6788840 | Stewart et al. | Sep 2004 | B2 |
6795221 | Urey | Sep 2004 | B1 |
6802809 | Okada | Oct 2004 | B2 |
6803561 | Dunfield | Oct 2004 | B2 |
6807334 | Schroeder et al. | Oct 2004 | B2 |
6821245 | Cline et al. | Nov 2004 | B2 |
6845190 | Smithwick et al. | Jan 2005 | B1 |
6847661 | Jerman et al. | Jan 2005 | B2 |
6856436 | Brukilacchio et al. | Feb 2005 | B2 |
6856712 | Fauver et al. | Feb 2005 | B2 |
6879428 | Massieu | Apr 2005 | B2 |
6888552 | Debevec et al. | May 2005 | B2 |
6894823 | Taylor et al. | May 2005 | B2 |
6899675 | Cline et al. | May 2005 | B2 |
6902527 | Doguchi et al. | Jun 2005 | B1 |
6903486 | Jerman et al. | Jun 2005 | B2 |
6905057 | Swayze et al. | Jun 2005 | B2 |
6909221 | Ayazi et al. | Jun 2005 | B2 |
6925710 | Scalf et al. | Aug 2005 | B1 |
6939364 | Soltz et al. | Sep 2005 | B1 |
6947189 | Hagelin et al. | Sep 2005 | B2 |
6957898 | Yu | Oct 2005 | B2 |
6967757 | Allen et al. | Nov 2005 | B1 |
6974472 | Hong et al. | Dec 2005 | B2 |
6975898 | Seibel | Dec 2005 | B2 |
6976994 | Ballou et al. | Dec 2005 | B2 |
6978921 | Shelton, IV et al. | Dec 2005 | B2 |
6982515 | Howell et al. | Jan 2006 | B2 |
6985271 | Yazdi et al. | Jan 2006 | B2 |
6991602 | Nakazawa et al. | Jan 2006 | B2 |
6993218 | Kanie et al. | Jan 2006 | B2 |
7005195 | Cheng et al. | Feb 2006 | B2 |
7009634 | Iddan et al. | Mar 2006 | B2 |
7013730 | Malametz | Mar 2006 | B2 |
7015956 | Luo et al. | Mar 2006 | B2 |
7018401 | Hyodoh et al. | Mar 2006 | B1 |
7019887 | Guo et al. | Mar 2006 | B1 |
7023402 | Lewis et al. | Apr 2006 | B2 |
7025777 | Moore | Apr 2006 | B2 |
7033348 | Alfano et al. | Apr 2006 | B2 |
7035777 | Araki et al. | Apr 2006 | B2 |
7046410 | Deutsch et al. | May 2006 | B2 |
7050670 | Schroeder | May 2006 | B2 |
7061450 | Bright et al. | Jun 2006 | B2 |
7065301 | Shastri et al. | Jun 2006 | B2 |
7066879 | Fowler et al. | Jun 2006 | B2 |
7071594 | Yan et al. | Jul 2006 | B1 |
7071931 | Tegreene et al. | Jul 2006 | B2 |
7078378 | Owen et al. | Jul 2006 | B1 |
7079726 | Schroeder | Jul 2006 | B2 |
7091647 | Jerman | Aug 2006 | B2 |
7098571 | Adams et al. | Aug 2006 | B2 |
7108656 | Fujikawa et al. | Sep 2006 | B2 |
7112302 | Yoshimi et al. | Sep 2006 | B2 |
7125128 | Novak | Oct 2006 | B2 |
7126903 | Feenstra et al. | Oct 2006 | B2 |
7189961 | Johnston et al. | Mar 2007 | B2 |
7190329 | Lewis et al. | Mar 2007 | B2 |
7232071 | Lewis et al. | Jun 2007 | B2 |
7271383 | Chee | Sep 2007 | B2 |
7391013 | Johnston et al. | Jun 2008 | B2 |
20010055462 | Seibel | Dec 2001 | A1 |
20020015724 | Yang et al. | Feb 2002 | A1 |
20020024495 | Lippert et al. | Feb 2002 | A1 |
20020050956 | Gerhard et al. | May 2002 | A1 |
20020075284 | Rabb, III | Jun 2002 | A1 |
20020088925 | Nestorovic et al. | Jul 2002 | A1 |
20020115922 | Waner et al. | Aug 2002 | A1 |
20020141026 | Wiklof et al. | Oct 2002 | A1 |
20020158814 | Bright et al. | Oct 2002 | A1 |
20020163484 | Furness, III et al. | Nov 2002 | A1 |
20020167462 | Lewis et al. | Nov 2002 | A1 |
20020171776 | Tegreene et al. | Nov 2002 | A1 |
20020171937 | Tegreene et al. | Nov 2002 | A1 |
20030016187 | Melville et al. | Jan 2003 | A1 |
20030030753 | Kondo et al. | Feb 2003 | A1 |
20030032143 | Neff et al. | Feb 2003 | A1 |
20030034709 | Jerman | Feb 2003 | A1 |
20030058190 | Lewis et al. | Mar 2003 | A1 |
20030086172 | Urey | May 2003 | A1 |
20030092995 | Thompson | May 2003 | A1 |
20030130562 | Barbato et al. | Jul 2003 | A1 |
20030142934 | Pan et al. | Jul 2003 | A1 |
20030159447 | Sergio et al. | Aug 2003 | A1 |
20030214460 | Kovacs | Nov 2003 | A1 |
20030216729 | Marchitto et al. | Nov 2003 | A1 |
20040004585 | Brown et al. | Jan 2004 | A1 |
20040057103 | Bernstein | Mar 2004 | A1 |
20040075624 | Tegreene et al. | Apr 2004 | A1 |
20040076390 | Dong Yang et al. | Apr 2004 | A1 |
20040085261 | Lewis et al. | May 2004 | A1 |
20040085617 | Helsel et al. | May 2004 | A1 |
20040087844 | Yen | May 2004 | A1 |
20040101822 | Wiesner et al. | May 2004 | A1 |
20040113059 | Kawano et al. | Jun 2004 | A1 |
20040118821 | Han et al. | Jun 2004 | A1 |
20040119004 | Wine et al. | Jun 2004 | A1 |
20040122328 | Wang et al. | Jun 2004 | A1 |
20040133786 | Tarbouriech | Jul 2004 | A1 |
20040151466 | Crossman-Bosworth et al. | Aug 2004 | A1 |
20040155186 | Nestorovic et al. | Aug 2004 | A1 |
20040155834 | Wit et al. | Aug 2004 | A1 |
20040179254 | Lewis et al. | Sep 2004 | A1 |
20040196518 | Wine et al. | Oct 2004 | A1 |
20040223202 | Lippert et al. | Nov 2004 | A1 |
20040225222 | Zeng et al. | Nov 2004 | A1 |
20040236371 | McNally-Heintzelman et al. | Nov 2004 | A1 |
20040240866 | Ramsbottom | Dec 2004 | A1 |
20040252377 | Urey | Dec 2004 | A1 |
20040254474 | Seibel et al. | Dec 2004 | A1 |
20050010787 | Tarbouriech | Jan 2005 | A1 |
20050014995 | Amundson et al. | Jan 2005 | A1 |
20050020877 | Ishihara et al. | Jan 2005 | A1 |
20050020926 | Wiklof et al. | Jan 2005 | A1 |
20050023356 | Wiklof et al. | Feb 2005 | A1 |
20050030305 | Brown et al. | Feb 2005 | A1 |
20050038322 | Banik | Feb 2005 | A1 |
20050116038 | Lewis et al. | Jun 2005 | A1 |
20050143664 | Chen et al. | Jun 2005 | A1 |
20050162762 | Novak | Jul 2005 | A1 |
20050187441 | Kawasaki et al. | Aug 2005 | A1 |
20050203343 | Kang et al. | Sep 2005 | A1 |
20050240147 | Makower et al. | Oct 2005 | A1 |
20060010985 | Schneider | Jan 2006 | A1 |
20060084867 | Tremblay et al. | Apr 2006 | A1 |
20060164330 | Bright et al. | Jul 2006 | A1 |
20060173480 | Zhang | Aug 2006 | A1 |
20060183246 | Wiesner et al. | Aug 2006 | A1 |
20060195014 | Seibel et al. | Aug 2006 | A1 |
20060238774 | Lindner et al. | Oct 2006 | A1 |
20060245971 | Burns et al. | Nov 2006 | A1 |
20060284790 | Tegreene et al. | Dec 2006 | A1 |
20070038119 | Chen et al. | Feb 2007 | A1 |
20070046778 | Ishihara et al. | Mar 2007 | A1 |
20070135770 | Hunt et al. | Jun 2007 | A1 |
20070156021 | Morse et al. | Jul 2007 | A1 |
20070161876 | Bambot et al. | Jul 2007 | A1 |
20070162093 | Porter et al. | Jul 2007 | A1 |
20070167681 | Gill et al. | Jul 2007 | A1 |
20070173707 | Mitra | Jul 2007 | A1 |
20070179366 | Pewzner et al. | Aug 2007 | A1 |
20070197874 | Ishihara | Aug 2007 | A1 |
20070197875 | Osaka | Aug 2007 | A1 |
20070203413 | Frangioni | Aug 2007 | A1 |
20070213588 | Morishita et al. | Sep 2007 | A1 |
20070213618 | Li et al. | Sep 2007 | A1 |
20070225695 | Mayer et al. | Sep 2007 | A1 |
20070238930 | Wiklof et al. | Oct 2007 | A1 |
20070244365 | Wiklof | Oct 2007 | A1 |
20070260121 | Bakos et al. | Nov 2007 | A1 |
20070260273 | Cropper et al. | Nov 2007 | A1 |
20080058629 | Seibel et al. | Mar 2008 | A1 |
Number | Date | Country |
---|---|---|
3837248 | May 1990 | DE |
1139141 | Oct 2001 | EP |
1716802 | Nov 2006 | EP |
1747751 | Jan 2007 | EP |
1797813 | Jun 2007 | EP |
2007-244590 | Sep 2007 | JP |
2007-244680 | Sep 2007 | JP |
WO 9813720 | Apr 1998 | WO |
WO 9918456 | Apr 1999 | WO |
9958930 | Nov 1999 | WO |
0013210 | Mar 2000 | WO |
0110322 | Feb 2001 | WO |
0160274 | Aug 2001 | WO |
02062239 | Aug 2002 | WO |
WO 03069380 | Aug 2003 | WO |
03088643 | Oct 2003 | WO |
03098918 | Nov 2003 | WO |
03101287 | Nov 2003 | WO |
2006020605 | Feb 2006 | WO |
WO 2006049787 | May 2006 | WO |
WO 2006055733 | May 2006 | WO |
2007041542 | Apr 2007 | WO |
2007070831 | Jun 2007 | WO |
WO 2007067163 | Jun 2007 | WO |
WO 2007084915 | Jul 2007 | WO |
Entry |
---|
Invitation to Pay Additional Fees with Partial International Search Report, PCT/US2008/074275 (Jan. 16, 2009). |
Invitation to Pay Additional Fees with Partial International Search Report, PCT/US2008/074273 (Dec. 30, 2008). |
Kiang, M-H et al., “Surface-Micromachined Electrostatic-Comb Driven Scanning Micromirrors for Barcode Scanners” (date of first publication unknown). |
Lewis, J.R. et al., “Scanned beam medical imager,” MOEMS Display and Imaging Systems II, Proceedings of SPIE vol. 5348, pp. 40-51 (2004). |
James, R. et al., “Update on MEMS-based Scanned Beam Imager” (date of first publication unknown). |
Wiklof, C., “Display technology spawns laser camera,” Laser Focus World (Dec. 2004). |
“Press Information—Phillips' Fluid Lenses Bring Things into Focus,” http://www.newscenter.philips.com (Mar. 3, 2004). |
Lettice, J., “The $5 ‘no moving parts’ fluid zoom lens—twice,” The Register (Mar. 15, 2004). |
“Volcano Products—IVUS Imaging Visions® PV018,” http://www.volcanotherapeutics.com (date of first publication unknown). |
Barhoum, E.S. et al., “Optical modeling of an ultrathin scanning fiber endoscope, a preliminary study of confocal versus non-confocal detection,” Optics Express, vol. 13, No. 19, pp. 7548-7652 (Sep. 19, 2005). |
“Crystalplex Technology—PlxBead™ Superior Qualities,” http:www.crystalplex.com (date of first publication unknown). |
“Microvision [illuminating information] Products/Overview, Corporate Overview Presentation 2006” (2006). |
“Holographic Beam Combiner for Ladar, Printer, Fiber Optics, and Cancer Treatment,” by Digital Optics Technologies, Inc., http://www.mdatechnology.net (date of first publication unknown). |
Brown, D.M., Abstract from SPIE Digital Library for “High-power laser diode beam combiner,” Optical Engineering, vol. 42, Issue 11 (2003). |
Literature entitled “All fiber beam combiner from Point Source” (Oct. 13, 2006). |
“Custom Polarzing Cube Beamsplitters,” from GlobalSpec The Engineering Search Engine, http://www.globalspec.com (date of first publication unknown). |
Literature entitled “Dallas Semiconductor MAXIM—Visible-Laser Driver has Digitally Controlled Power Modulation,” by Maxim Integrated Products, http://www.maxim-ic.com (Jul. 1, 2001). |
“SCAN Mode Strategies for SCUBA-2” (May 25, 2005). |
Seifert, M. et al., “High Power Diode Laser Beam Scanning in Multi-Kilowatt Range,” Proceedings of the 23rd International Congress on Applications of Lasers and Electro-Optics (2004). |
Jutzi, B. et al., “Sub-Pixel Edge Localization Based on Laser Waveform Analysis,” ISPRS WG III/3, III/4, V/3 Workshop “Laser scanning 2005,” Enschede, the Netherlands (Sep. 12-14, 2005). |
“Bladeless Trocars,” by Johnson & Johnson, http://www.jnjgateway.com (date of first publication unknown). |
Yeh, R. et al., “Microelectromechanical Components for Articulated Microrobots” (date of first publication unknown). |
Xu, Q. et al., “Micrometre-scale silicon electro-optic modulator,” Nature, vol. 435, pp. 325-327 (May 19, 2005). |
Park, H. et al., “Development of Double-Sided Silicon Strip Position Sensor,” 2005 IEEE Nuclear Science Symposium Conference Record, pp. 781-785 (2005). |
Hammond, S.W., “Architecture and Operation of a Systolic Sparse Matrix Engine,” Proceedings of the 3rd SIAM Conference on Parallel Processing for Scientific Computing, pp. 419-423 (1987). |
PCT, International Search Report and Written Opinion, International Application No. PCT/US2007/078868 (Mar. 28, 2008). |
PCT, International Search Report, PCT/US20081056589 (Jul. 30, 2008). |
PCT, International Search Report, PCT/US2008/059231 (Jul. 4, 2008). |
PCT, International Search Report, PCT/US20071087923 (May 21, 2008). |
PCT, International Search Report, PCT/US2008/056596 (Jun. 23, 2008). |
PCT, International Search Report, PCT/US2008/059235 (Jul. 14, 2008). |
PCT, International Search Report, PCT/US2007/087930 (Jul. 3, 2008). |
PCT, International Search Report, PCT/US2008/051274 (Jul. 18, 2008). |
PCT, International Search Report, PCT/US2008/066552 (Oct. 23, 2008). |
Ra, H. et al., “Biomedical Optics & Medical Imaging—Microtechnology enables endoscopic confocal microscopy,” SPIE (http://spie.org) (2007). |
International Search Report issued regarding International Application No. PCT/US2007/078868 (Mar. 28, 2008). |
Number | Date | Country | |
---|---|---|---|
20080073163 A1 | Mar 2008 | US |