1. Field of the Invention
The present invention relates to a heat pipe, and more particularly, to a micro heat pipe for small, thin-film type electronic devices.
2. Description of the Related Art
With the advances of semiconductor manufacturing related technologies, chips packaged in electronic devices and systems have become smaller and have become more highly integrated. However, such chips and systems generate a larger amount of heat per unit area, so that effective cooling techniques are required. Specially, the latest small, thin-film type electronic devices require much smaller cooling devices.
Conventionally, heat sinks, fans, small circular heat pipes having a diameter of 3 mm or greater, and the like have been used to cool small electronic devices. So far, heat sinks have been widely used as basic cooling devices because their size and thickness can be easily varied in the manufacturing process. However, as the size of heat sinks is reduced more and more, the heat dissipating area becomes smaller and the heat dissipating rate becomes lower. Meanwhile, fans have a limitation in that their size cannot be reduced unlimitedly. In addition, the fans are less reliable than other cooling devices.
A small heat pipe with a circular cross-section having a diameter of 3 mm or greater can be compressed to be suitable for a thin-film type structure. However, when such a heat pipe is compressed, a wick thereof undergoes structural changes, and the heat transferring performance is greatly deteriorated. Therefore, there is a need to manufacture a micro heat pipe having a diameter of 3 mm or less for small, thin-film type electronic devices.
The present invention provides a micro heat pipe suitable for small, thin-film type electronic devices.
In accordance with an aspect of the present invention, there is provided a micro heat pipe with a polygonal cross-section that is manufactured via drawing and has flat or concave sides to allow working fluid to flow by capillary force generated at the edges of the micro heat pipe.
According to specific embodiments of the above micro heat pipe, the micro heat pipe may have at least one flat side. The polygonal cross-section of the micro heat pipe may be triangular or rectangular. Alternatively, a plurality of micro heat pipes with a polygonal cross-section are combined together in parallel to allow working fluid to flow by capillary force generated at the edges of each of the micro heat pipes.
Another micro heat pipe according to the present invention is manufactured by forming a plurality of through holes with a polygonal cross-section in a metal plate via extrusion, in which each of the through holes has flat or concave sides to allow working fluid to flow by capillary force generated at the edges of each of the through holes.
In this case, the through holes may have irregular sides. The through holes may be interconnected in groups. The polygonal cross-section of the through holes may be triangular or rectangular.
The present invention also provides a micro heat pipe comprising a plurality of micro heat pipes with a polygonal cross-section sealed with a metal plate manufactured via extrusion, in which the plurality of micro heat pipes have flat or concave sides to allow working fluid to flow by capillary force generated at the edges of each of the through holes. The plurality of micro heat pipes may have at least one flat side. The polygonal cross-section of the micro heat pipes may be triangular or rectangular.
As described above, a micro heat pipe according to the present invention can be manufactured easily via simple drawing or extrusion. The micro heat pipe according to the present invention can induce strong capillary force through simple structural modifications, without need to install a separate wick for flowing working fluid.
The above and other features and advantages of the present invention will become more apparent by describing in detail exemplary embodiments thereof with reference to the attached drawings in which:
The present invention will be described more fully with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein; rather, these embodiments are provide so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art.
Referring to
In particular, the micro heat pipe of
The micro heat pipes of
When each side of the micro heat pipe with a triangular cross-section is made concave, a capillary force that is strong enough to induce liquid flow can be generated due to the sharp edges 111. However, in order for the micro heat pipe to be easily and stably packed onto a surface of a target heat-generating source, it is preferable that the micro heat pipe is made to have at least one flat side, like the side 130 of the micro heat pipe in
Like the micro heat pipes of
In particular, the micro heat pipe of
Although the capillary radius of the micro heat pipes with a rectangular cross-section of
In general, one or two micro heat pipes are mounted on a central processing unit (CPU) of commercially available notebook computers. The number of micro heat pipes to be mounted is determined by the internal chip-mount structure of the notebook computer and the cooling capacity of each micro heat pipe. However, if more compact electronic devices producing a greater amount of heat and having a thin-film type chip-mount structure is developed in the future, a wick-embedded heat pipe having a diameter of 3 mm or larger cannot be applied any longer. Accordingly, it is anticipated that a micro heat pipe with a triangular or rectangular cross-section that does not require a wick will soon be in demand.
Although the above-embodiments have been described with reference to the micro heat pipes having a triangular or rectangular cross-section, a micro heat pipe according to the present invention may have any polygonal cross-section. It is also obvious that this concept of the present invention utilizing a polygonal cross-sectional structure can be applied to the micro heat pipes described bellows.
In particular, when there is a need to dissipate a larger amount of heat, the heat cannot be dissipated with only one of the micro heat pipes having a triangular or rectangular cross-section in
In
In particular, the micro heat pipes of
In particular, the micro heat pipe of
The micro heat pipe of
The micro heat pipe of
The micro heat pipe of
In particular, the sealed package of micro heat pipes of
Although the embodiment of
As described above, a micro heat pipe according to the present invention allows working fluid to flow by capillary force through structural modifications, without need to install a separate wick. The micro heat pipe according to the present invention can be manufactured easily via drawing or extrusion with higher productivity. The micro heat pipe according to the present invention has a diameter as small as 3 mm or less and effective heat dissipating and heat transfer performance, so that the micro heat pipe according to the present invention is quite suitable as a cooling device for small, thin-film type electronic devices.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2002-80869 | Dec 2002 | KR | national |
This application is a Divisional of U. S. patent application Ser. No. 11/352,006 filed on Feb. 10, 2006, which is a Continuation of U. S. patent application Ser. No. 10/654,686 filed on Sep. 3, 2003, which claims the priority of Korean Patent Application No. 2002-80869, filed on Dec. 17, 2002, in the Korean Intellectual Property Office.
Number | Date | Country | |
---|---|---|---|
Parent | 11701610 | Feb 2007 | US |
Child | 12414595 | US | |
Parent | 11352006 | Feb 2006 | US |
Child | 11701610 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10654686 | Sep 2002 | US |
Child | 11352006 | US |