This Non-provisional application claims priority under 35 U.S.C. § 119(a) on Patent Application No(s). 111133033 filed in Taiwan, Republic of China on Aug. 31, 2022, the entire contents of which are hereby incorporated by reference.
The present disclosure relates to a display device and a driving method thereof. In particular, the present disclosure relates to a micro light-emitting diode (LED) display device and a driving method thereof.
The conventional micro LED display device includes a plurality of pixels, and the circuits of these pixels are all the same. In general, the micro LEDs of all pixels are controlled to emit light by pulse-width modulation (PWM) technology. However, the PWM control technology has the problems of short charging time due to high current characteristics of the line when the panel is powered on, and IR drop in high-resolution display. Alternatively, the micro LEDs of all pixels can be controlled to emit light by Pulse-Amplitude Modulation (PAM) technology. However, the wavelengths of the micro LEDs will shift under different current densities, which may cause serious color shift of the display screen.
An objective of this disclosure is to provide a micro LED display device having independently configured subpixel circuits and a driving method thereof.
To achieve the above, a micro LED display device includes a display substrate and a data driving circuit. The display substrate includes a plurality of pixels, and each of the pixels includes a first subpixel and a second subpixel. The first subpixel has a first subpixel circuit and a first light-emitting element electrically connected to the first subpixel circuit. The second subpixel has a second subpixel circuit and a second light-emitting element electrically connected to the second subpixel circuit. The first subpixel circuit and the second subpixel circuit are configured independently with each other. The data driving circuit is electrically connected to the first subpixel circuits and the second subpixel circuits via a plurality of data lines. The data driving circuit transmits a first data signal to each of the first subpixel circuits to drive each of the first light-emitting elements, and transmits a second data signal to each of the second subpixel circuits to drive each of the second light-emitting elements. The first data signal is a pulse-width modulation (PWM) signal, and the second data signal is a pulse-amplitude modulation (PAM) signal.
To achieve the above, this disclosure also provides a driving method of a micro LED display device. The display device includes a display substrate and a data driving circuit. The display substrate includes a plurality of pixels, and each of the pixels includes a first subpixel and a second subpixel. The first subpixel has a first subpixel circuit and a first light-emitting element electrically connected to the first subpixel circuit. The second subpixel has a second subpixel circuit and a second light-emitting element electrically connected to the second subpixel circuit. The first subpixel circuit and the second subpixel circuit are configured independently with each other, and the data driving circuit is electrically connected to the first subpixel circuits and the second subpixel circuits via a plurality of data lines. The driving method includes the following steps of: the data driving circuit transmitting a first data signal to each of the first subpixel circuits to drive each of the first light-emitting elements; and the data driving circuit transmitting a second data signal to each of the second subpixel circuits to drive each of the second light-emitting elements. The first data signal is a PWM signal, and the second data signal is a PAM signal.
As mentioned above, in the micro LED display device and driving method thereof, each pixel includes a first subpixel circuit and a second subpixel circuit, which are independently configured, and the data driving circuit transmits the first data signal (PWM signal) to each first subpixel circuit to drive each first light-emitting element to emit light and transmits the second data signal (PAM signal) to each second subpixel circuit to drive each second light-emitting element to emit light. Compared with the conventional micro LED display device, which has the pixels (subpixels) all configured with the same circuits and utilizes either the PWM technology or the PAM technology to control the light-emitting elements of all pixels to emit light, the micro LED display device of this disclosure has a novel circuitry configuration with two independent subpixel circuits in one pixel and utilizes a novel driving method for controlling the two kinds of subpixel circuits, thereby solving the color shift problem of the PAM technology and being suitable for high-resolution display.
The disclosure will become more fully understood from the detailed description and accompanying drawings, which are given for illustration only, and thus are not limitative of the present disclosure, and wherein:
The present disclosure will be apparent from the following detailed description, which proceeds with reference to the accompanying drawings, wherein the same references relate to the same elements.
Referring to
The display substrate 11 includes a plurality of pixels P, which are arranged in an array with multiple columns and multiple rows. Each pixel P at least includes a first subpixel P1 and a second subpixel P2. The first subpixel P1 has a first subpixel circuit PC1 and a first light-emitting element L1 electrically connected to the first subpixel circuit PC1 (see
The data driving circuit is electrically connected to the first subpixel circuits and the second subpixel circuits via a plurality of data lines. The data driving circuit transmits a first data signal to each of the first subpixel circuits to drive each of the first light-emitting elements, and transmits a second data signal to each of the second subpixel circuits to drive each of the second light-emitting elements. The first data signal is a pulse-width modulation (PWM) signal, and the second data signal is a pulse-amplitude modulation (PAM) signal. In this embodiment, the data lines includes a plurality of first data lines DL1 and a plurality of second data lines DL2, the first data driving circuit 12a is electrically connected to the first subpixel circuits PC1 via the first data lines DL1, and the second data driving circuit 12b is electrically connected to the second subpixel circuits PC2 via the second data lines DL2. Accordingly, the first data driving circuit 12a can transmit a first data signal DP1 to each of the first subpixel circuit PC1 via the corresponding first data line DL1 to drive the corresponding first light-emitting element L1 to emit light, and the second data driving circuit 12b can transmit a second data signal DP2 to each of the second subpixel circuit PC2 via the corresponding second data line DL2 to drive the corresponding second light-emitting element L2 to emit light. In this case, the first data signal DP1 is a PWM signal, and the second data signal DP2 is a PAM signal. Therefore, the first data driving circuit 12a can be a data driver for outputting PWM signals, and the second data driving circuit 12b can be a data driver for outputting PAM signals. This configuration can provide a better driving performance.
In another embodiment, as shown in
In addition, referring to
In the micro LED display device 1 of this embodiment, when the scan driving circuit 13 outputs the scan signal via the scan lines S1˜Sm in sequence to sequentially turn on the pixels P of each row, the first data driving circuit 12a can transmit the first data signal DP1 (PWM signal) for the pixels P of each row to the first subpixel circuits PC1 of the pixels P via the first data lines DL1, and the second data driving circuit 12b can transmit the second data signal DP2 (PAM signal) for the pixels P of each row to the second subpixel circuits PC2 of the pixels P via the second data lines DL2, thereby driving or turning on the first light-emitting elements L1 and the second light-emitting elements L2 of the pixels P. Then, the display device can display the images. In this case, the first subpixel circuit PC1 can control the driving period for providing the driving current to the first light-emitting element L1 based on the PWM data voltage (the first data signal DP1), and the second subpixel circuit PC2 can control the amplitude of the driving current provided to the second light-emitting element L2 based on the PAM data voltage (the second data signal DP2). The first light-emitting element L1 is a red-light micro LED, and the PWM data voltage (the first data signal DP1) allows the red-light micro LED, which is less performance at low current density, to have better performance under the PWM control. The second light-emitting element L2 is a green-light or blue-light LED, and the PAM data voltage (the second data signal DP2) makes the micro LED, which is less affected by wavelength shift under different current densities, reach high-resolution display under the PAM control.
As mentioned above, in the micro LED display device 1 of
The configurations of driving methods of the first subpixel circuit PC1 and the second subpixel circuit PC2 of each pixel P of the above embodiment will be described in detail with reference to
In the embodiment of
As shown in
As shown in
As shown in
In addition, since the second subpixel circuit PC2 includes the capacitor C for remaining the driving current of the second light-emitting element L2, the second data driving circuit 12b only provides one time of the second data signal DP2 (PAM signal) during one frame time FT to each second subpixel circuit PC2 to turn on the corresponding second light-emitting element L2 (the green-light or blue-light micro LED). In this embodiment, before the scan driving circuit 13 transmits the second time of the scan signal to drive the first subpixel circuits PC1 (i.e., the first data driving circuit 12a transmits the second time of the first data signal DP1 to each first subpixel circuit PC1), the second data driving circuit 12b has transmitted the second data signal DP2 to each of the second subpixel circuits PC2. Therefore, after the scan driving circuit 13 transmits the first time of the scan signal to drive the first subpixel circuits PC1, the second data lines DL2 connected to the second subpixel circuits PC2 are in idle contact. This configuration can achieve the power saving purpose.
In addition, as shown in
In different embodiments, each pixel P may include two first subpixel circuits PC1 and one second subpixel circuit PC2. One of the first subpixel circuits PC1 can drive the corresponding first light-emitting element L1 to emit red light (i.e., one of the first light-emitting elements L1 is a red-light micro LED), the other one of the first subpixel circuits PC1 can drive the corresponding first light-emitting element L1 to emit green light (i.e., the other one of the first light-emitting elements L1 is a green-light micro LED), and the second subpixel circuit PC2 can drive the corresponding second light-emitting element L2 to emit blue light (i.e., the second light-emitting elements L2 is a blue-light micro LED). In this case, the first data driving circuit 12a provides two times of the first data signals DP1 to two first subpixel circuits PC1, respectively, so that the red-light micro LED (one of the first light-emitting elements L1) can have a higher current density, thereby achieving the power saving purpose and simultaneously improving the color shift issue of the green-light micro LED (the other one of the first light-emitting elements L1).
Please refer to
Referring to
In another embodiment, as shown in
In addition,
As shown in
Specifically, the first data driving circuit can be divided, based on the positions of the first subpixel circuits PC1 on the display area A1, and fabricated into a plurality of corresponding first integrated circuits IC1 (e.g., micro integrated circuits), and the first integrated circuits IC1 are respectively disposed at the corresponding positions on the display area A1 by, for example, COB (Chip On Board) technology, so as to respectively provide the first data signals DP1 to the corresponding first subpixel circuits PC1. In addition, the second data driving circuit can be fabricated into a second integrated circuit IC2 and disposed on the non-display area A2 so as to respectively provide the second data signals DP2 to the second subpixel circuits PC2.
In this embodiment, each of the first integrated circuits IC1 is electrically connected to the four first subpixel circuits PC1 of adjacent four pixels P, so as to respectively provide the first data signals DP1 to the four corresponding first subpixel circuits PC1, and the second integrated circuit IC2 is electrically connected to the second subpixel circuits PC2 of the pixels P via the second data lines DL2, respectively, so as to respectively provide the second data signals DP2 to the corresponding second subpixel circuits PC2.
This disclosure also provides a driving method of the micro LED display device, which includes the following steps of: the data driving circuit transmitting a first data signal to each of the first subpixel circuits to drive each of the first light-emitting elements; and the data driving circuit transmitting a second data signal to each of the second subpixel circuits to drive each of the second light-emitting elements; wherein the first data signal is a pulse-width modulation (PWM) signal, and the second data signal is a pulse-amplitude modulation (PAM) signal. In some embodiments, the frequency of the first data signal is twice or more of the frequency of the second data signal. In some embodiments, the data driving circuit includes a first data driving circuit and a second data driving circuit, wherein the first data driving circuit transmits the first data signal to each of the first subpixel circuits to drive each of the first light-emitting elements, and the second data driving circuit transmits the second data signal to each of the second subpixel circuits to drive each of the second light-emitting elements.
In some embodiments, the driving method further includes a step of: in one frame time, the scan driving circuit transmitting at least two times of scan signals to drive the first subpixel circuits, so that the data driving circuit provides the corresponding first data signals to the first subpixel circuits so as to control the first light-emitting elements to emit light. In some embodiments, in the frame time, the data driving circuit provides one time of the second data signal to each of the second subpixel circuits. In some embodiments, before the scan driving circuit transmits the second time of the scan signal to drive the first subpixel circuits, the data driving circuit has transmitted the second data signal to each of the second subpixel circuits. In some embodiments, after the scan driving circuit transmits the first time of the scan signal to drive the first subpixel circuits, the data lines connected to the second subpixel circuits are in idle contact. In some embodiments, the driving method further includes a step of: the scan driving circuit simultaneously driving the first subpixel circuits of the same row and the second subpixel circuits of the same row via the first scan line and the second scan line that connect to the pixels of the same row.
To be noted, the other technical features of the driving method of the micro LED display device of this embodiment can refer to the description of the previous embodiments, so the detailed descriptions thereof will be omitted.
In summary, in the micro LED display device and driving method thereof, each pixel includes a first subpixel circuit and a second subpixel circuit, which are independently configured, and the data driving circuit transmits the first data signal (PWM signal) to each first subpixel circuit to drive each first light-emitting element to emit light and transmits the second data signal (PAM signal) to each second subpixel circuit to drive each second light-emitting element to emit light. Compared with the conventional micro LED display device, which has the pixels (subpixels) all configured with the same circuits and utilizes either the PWM technology or the PAM technology to control the light-emitting elements of all pixels to emit light, the micro LED display device of this disclosure has a novel circuitry configuration with two independent subpixel circuits in one pixel and utilizes a novel driving method for controlling the two kinds of subpixel circuits, thereby solving the color shift problem of the PAM technology and being suitable for high-resolution display. Moreover, in some embodiments, the disclosure can further achieve the high performance operation so as to achieve the power saving purpose.
Although the disclosure has been described with reference to specific embodiments, this description is not meant to be construed in a limiting sense. Various modifications of the disclosed embodiments, as well as alternative embodiments, will be apparent to persons skilled in the art. It is, therefore, contemplated that the appended claims will cover all modifications that fall within the true scope of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
111133033 | Aug 2022 | TW | national |