Y. Komura et. al. “Micro Machined Relay for High Frequency Application”, pp. 12-1-12-5. (No date). |
K. Sano et. al. “Study on Characteristics of Micro Machined Relay With Atmosphere Control”, pp. 2-1-2-5. (No date). |
Jonathan Simon et. al. “A Liquid—Filled Microrelay with a Moving Mercury Microdrop”, Journal of Microelectromechanical Systems, vol. 6, No. 3, Sep. 1997, pp. 208-216. |
William P. Taylor et. al. “Fully Integrated Magnetically Actuated Micromachined Relays”, Journal of Microelectromechanical Systems, vol. 7, No. 2, Jun. 1998, pp. 181-191. |
T.S. Sudarshan et al.; “Wetting of metal surfaces with a liquid metal using a plasma interaction technique”; J. Vac. Sci. Technol. A2(4), Oct.-Dec. 1984; pp. 1503-1508. |
Stewart Low; “Modified Atmosphere to Extend Contact Rating”; Electronic Specialty Corp.; pp. 10-1-10-4. (No date). |
Alok Awasthi et al.; “Measurement of contact angle in systems involving liquid metals”; Mass. Sci. Technol. 7 (1996) 753-757. (No month). |
Friedrich Hensel et al.; “Critical behaviour in liquid mercury”; Section 3 Metal-non-metal transition: expanded metals and compressed non-metals; Journal of Non-Crystalline Solids (1996); pp. 231-238. (No month). |
Paul M. Zavracky et al.; “Micromechanical Switches Fabricated Using Nickel Surface Micromachining”; Journal of Microelectromechanical Systems, vol. 6, No. 1; Mar. 1997; IEEE; pp. 3-9. |
J. Y. Park et al.; “Development of magnetic materials and processing techniques applicable to integrated micromagnetic devices”; J. Micromech. Microeng. 8 (1998); pp. 307-316. |
Camille Vanlangendonck; “Kontakt In Allen Lagen”; pp. 37-38, 40, 43. (No Translation) (No date). |
Richard Remington et al.; “Reed switches-long life in harsh applications”; Controls/Switches/Drives; Sep. 17, 1973; Electronic Products Magazine; pp. 93-100, 103. |
Evaluation Of Amalgamated Metallic Surfaces For Reducing Friction, Contact Resistance, and Wear In Electrical Contact Applications; NTIS; Nov. 1974; U.S. Department of Commerce; pp. 1-31. |
Daniel Hyman et al.; “Contact Physics of Gold Microcontacts for MEMS Switches”. (No date). |
Robert W. Dobson; “A Military Contractor's Experience with RF Coaxial Relays”; 1999 EIA; pp. 1-11. (No month). |
Daniel J. Hyman et al.; “Power Handling of Ohmic-Contact Microfabricated RF Relays” HRL Laboratories; pp. 14-2-14-6. (No date). |
Werner Johler; “Electro Negative Gases—A Basic Technology for Enhanced Performance of Telecom Relays”; AXICOM Ltd.; pp. 1-1-1-14. (No date). |
Junghoon Lee et al.; “Surface-Tension-Driven Microactuation Based on Continuous Electrowetting”; Journal of Microelectromechanical Systems; vol. 9, No. 2; Jun. 2000; pp. 171-180. |
Lisen Tang et al.; “Study on the subminiaturized technique of mercury-wetted contact relay”; vol. 28, No. 9; Dec. 1994; pp. 83-88. (No Translation). |
D. Trowbridge; “Switching with the mercury-wetted contact relay”; Electronics & Power; Aug. 1976; pp. 523-525. |
T.S. Sudarshan et al.; “Wetting of aluminum electrodes with mercury”; J. Appl. Phys. 56(8); Oct. 15, 1984; pp. 2236-2240. |
“Liquid Metal Conductors”; Liquid Crystals; pp. 2548-2550. (No date). |
Chong H. Ahn et al.; “Micromachined Planar Inductors With Electroplated Nickel-Iron Permalloy Cores”; Electrochemical Society Proceedings; vol. 95-18; pp. 411-425. (No date). |
J. Simon et al., “Lateral Polysilicon Microrelays with a Mercury Microdrop Contact”, IEEE Transactions on Industrial Electronics, New York, vol. 45, No. 6, Dec. 1, 1998, pp. 854-860. |