Embodiments of the disclosure relate to the field of microelectronic device design and fabrication. More particularly, the disclosure relates to methods for forming microelectronic devices (e.g., memory devices, such as 3D NAND memory devices) having tiered stack structures that include vertically alternating conductive structures and insulative structures, to related systems, and to methods for forming such structures and devices.
Memory devices provide data storage for electronic systems. A Flash memory device is one of various memory device types and has numerous uses in modern computers and other electrical devices. A conventional Flash memory device may include a memory array that has a large number of charge storage devices (e.g., memory cells, such as non-volatile memory cells) arranged in rows and columns. In a NAND architecture type of Flash memory, memory cells arranged in a column are coupled in series, and a first memory cell of the column is coupled to a data line (e.g., a bit line). In a “three-dimensional NAND” memory device (which may also be referred to herein as a “3D NAND” memory device), a type of vertical memory device, not only are the memory cells arranged in row and column fashion in a horizontal array, but tiers of the horizontal arrays are stacked over one another (e.g., as vertical strings of memory cells) to provide a “three-dimensional array” of the memory cells. The stack of tiers vertically alternate conductive materials with insulating (e.g., dielectric) materials. The conductive materials function as control gates for, e.g., access lines (e.g., word lines) of the memory cells. Vertical structures (e.g., pillars comprising channel structures and tunneling structures) extend along the vertical string of memory cells. A drain end of a string is adjacent one of the top and bottom of the vertical structure (e.g., pillar), while a source end of the string is adjacent the other of the top and bottom of the pillar. The drain end is operably connected to a bit line, while the source end is operably connected to a source line. A 3D NAND memory device also includes electrical connections between, e.g., access lines (e.g., word lines) and other conductive structures of the device so that the memory cells of the vertical strings can be selected for writing, reading, and erasing operations.
The channel structures of the pillars of 3D NAND memory devices may be configured as “hollow” channel structures, with a channel material horizontally encircling a center or core of the pillar. Electrons travel through the channel structures during operations effecting writing, reading, and erasing of the memory cells provided by the pillar.
As the features of 3D NAND memory devices are scaled to smaller sizes to increase device density on a base structure, reduced feature sizes tend to present challenges in maintaining the performance parameters, such as electron mobility and electrical current (e.g., “string current”) through the channel material, and also such as data retention by the memory cells. Accordingly, designing and fabricating microelectronic devices, such as 3D NAND memory devices, continues to present challenges.
Structures (e.g., microelectronic device structures), apparatus (e.g., microelectronic devices), and systems (e.g., electronic systems), in accordance with embodiments of the disclosure, include a stack of vertically alternating conductive structures and insulative structures arranged in tiers through which pillars vertically extend. The pillars include channel structures, which may be structured as doped hollow channel (“DHC”) structures, with multiple semiconductor material sub-regions of different microstructures (e.g., different grain sizes, different crystallinity) from one another. An outer sub-region is formed of semiconductor material with relatively small grains or with an amorphous structure. An inner sub-region is formed of semiconductor material with relatively large grains.
In a semiconductor channel structure, grain boundaries—the borders between neighboring grains of material—tend to impact such performance characteristics as electron mobility and electrical current (e.g., “string current”). That is, as electrons travel through a semiconductor channel material, grain boundaries scatter electrons, impeding the electrons' ability to quickly move through the channel structure, between source and drain regions. Electron mobility (μeff)—and therefore string current—drops at each encountered grain boundary. The more grain boundaries in a given volume of channel material, the less the overall effective electron mobility—and string current—exhibited by the channel material during device operations (e.g., read, write, erase). Accordingly, it is contemplated that lessening the amount (e.g., volume, density, area) of grain boundaries in a channel material may increase the electron mobility and string current exhibited by the channel material.
One contemplated solution for decreasing the amount of grain boundaries in a channel material is to increase the size of the grains that compose the channel material. A material with a relatively larger-grain microstructure has a relatively greater volume occupied by the grains themselves, rather than by the grain boundaries. The lower grain boundary amount provides a lower amount of physical impediments (e.g., “traps”) to electron mobility and, therefore, a higher effective electric current (e.g., string current) through the channel material.
Forming a material with large grains may be achieved by forming (e.g., depositing) a relatively thick region of the material. That is, grains tend to grow to a relatively larger size in a relatively thicker deposited material region compared to the grains grown in a relatively thinner deposited material region. The larger grain size may be facilitated by the increased deposited material thickness providing more volume, and therefore more opportunities, for grain boundary mitigation. Furthermore, the larger grain growth reduces the overall system energy. Therefore, depositing a relatively thick region of material tends to form the material with relatively large grains; whereas, depositing a relatively thin region of material tends to form the material with relatively small grains. A relatively thick material region may also promote grain growth—and therefore increased grain size—after thermal treatment (e.g., “reflow” processes).
While large grains may be formed by a thick material deposition, a relatively thin (e.g., less than about 10 nm) wall may be desired for a so-called “doped hollow channel” (“DHC”) structure in a pillar for a memory device. Depositing a channel material this thinly may form small grains and, consequently, a relatively large amount of grain boundaries in the channel material. Contrarily, depositing the channel material to a greater initial thickness—so as to form the material with large grains—and then thinning to the final desired thickness, may form the channel structure (e.g., the DHC structure) with large grains in a relatively thin structure. Accordingly the deposit-thick-then-thin process may form a thin channel structure with a large-grain microstructure.
Though a larger-grain material has a relatively lower grain boundary amount compared to a smaller-grain material of the same material thickness, the grain boundaries in the larger-grain material tend to be relatively less complex than those in a smaller-grain material of the same thickness. A less complex grain boundary provides a more direct pathway for chemical species to traverse into or through the material. In fabricating pillars, processing acts subsequent to formation of the channel material—such as oxygen-based material-removal or oxidation acts—may expose the channel material (e.g., an inner surface of the channel material) to such chemical species (e.g., oxygen). The likelihood of such chemical species traversing wholly through the thickness of the channel material may be generally more likely in a large-grain channel material than in a small-grain or non-grain (e.g., amorphous) channel material. Should the chemical species successfully traverse through the channel structure—from an inner surface to an outer surface—the chemical species may cause chemical damage and/or roughness at the outer surface where the channel material interfaces with a neighboring material (e.g., a tunneling dielectric material). The chemical damage and/or surface roughness may increase local electric fields, which may cause data loss in nearby memory material of the pillar.
Accordingly, a channel material of a larger-grain semiconductor material may be associated with data retention problems in the memory device, compared to a channel material of a smaller-grain semiconductor material. However, as noted above, a channel material of a smaller-grain semiconductor material may be associated with a lower string current (e.g., due to the grain boundary traps impeding electron mobility) compared to a channel material of a larger-grain semiconductor material. Therefore, as semiconductor channel structures are designed to be thinner and thinner, to accommodate device scaling, the concern of designing and forming pillars with sufficient string current and data retention performance characteristics is likely to become even more challenging.
In accordance with embodiments of the disclosure, a hollow channel structure is formed to include multiple sub-regions having different microstructures. An inner sub-region is formed of and includes a relatively large-grain microstructure, and an outer sub-region is formed of and includes a relatively small-grain or non-grain (e.g., amorphous) microstructure. The larger grains of the inner sub-region—and the lower density of grain boundaries—facilitate electron mobility (and string current) in the channel structure. The smaller grains or amorphous microstructure of the outer sub-region inhibits the travel of chemical species (e.g., oxygen). That is, the smaller-grain or amorphous microstructure material has either more complex grain boundary pathways—relative to the larger-grain microstructure material—or substantially no defined grain boundary pathways. This impedes the chemical species' ability to traverse across the smaller-grain or amorphous material. Less chemical species may, therefore, reach an outer surface of the channel structure and interface with a neighboring material (e.g., a tunneling dielectric material). By inhibiting the chemical species from reaching the outer surface and interface, chemical damage and surface roughening at the outer surface or interface may be avoided or lessened. Avoiding or lessening this damage and/or roughening may avoid or lessen local electric fields and, therefore, facilitate data retention in nearby memory material of the pillar. Accordingly, the multiple sub-regions with different microstructures (e.g., large-grain/small-grain or grain/non-grain microstructures) provides a hollow channel structure that may be formed to have a thin (e.g., less than about 10 nm transverse thickness), hollow structure.
As used herein, the terms “inner” and “outer,” and the like, are spatially-relative terms that may be used for ease of description to describe one element's or feature's relationship to another element(s) or feature(s) as illustrated in the figures. An element or feature described as “inner” is relatively nearer a center of a reference structure than an element or feature described as “outer.” Accordingly, an “inner sub-region,” of a structure having multiple sub-regions, may be disposed nearer an axial centerline of the structure than an “outer sub-region” of the structure.
As used herein, the term “trace species” means and includes an element or elements, such as atoms or molecules, present—on or within a volume of another material(s) —in a trace amount, e.g., an atomic fraction (atoms of the trace species relative to atoms of other species within the other material(s)) of from about 1×10−8 to about 1×10−1, e.g., from about (0.001 to about 0.01). The trace amount may be determined based on a concentration within a total volume of material(s) of an identified characteristic (e.g., semiconductor material(s)) of a structure (e.g., a channel structure) or region of a structure (e.g., a sub-region of a channel structure), though the trace species may be, e.g., dispersed throughout the volume (e.g., of the structure or of the region of the structure) or concentrated in a portion thereof or at or near one or more surfaces thereof. In some embodiments, a “trace species” may be present in a concentration of less than about 1022 atoms (of the trace species) per cm3 of material (e.g., semiconductor material) that comprises the trace species.
As used herein, the terms “opening,” “trench,” “slit,” “recess,” and “void” mean and include a volume extending through or into at least one structure or at least one material, leaving a gap in that at least one structure or at least one material, or a volume extending between structures or materials, leaving a gap between the structures or materials. Unless otherwise described, an “opening,” “trench,” “slit,” and/or “recess” is not necessarily empty of material. That is, an “opening,” “trench,” “slit,” or “recess” is not necessarily void space. An “opening,” “trench,” “slit,” or “recess” formed in or between structures or materials may comprise structure(s) or material(s) other than that in or between which the opening is formed. And, structure(s) or material(s) “exposed” within an opening, trench, slit, or recess is/are not necessarily in contact with an atmosphere or non-solid environment. Structure(s) or material(s) “exposed” within an opening, trench, slit, or recess may be adjacent or in contact with other structure(s) or material(s) that is/are disposed within the opening, trench, slit, or recess. In contrast, unless otherwise described, a “void” may be substantially or wholly empty of material. A “void” formed in or between structures or materials may not comprise structure(s) or material(s) other than that in or between which the “void” is formed. And, structure(s) or material(s) “exposed” within a “void” may be in contact with an atmosphere or non-solid environment.
As used herein, the terms “trench” and “slit” mean and include an elongate opening, while the terms “opening,” “recess,” and “void” may include one or more of an elongate opening, an elongate recess, an elongate void, a non-elongate opening, a non-elongate recess, or a non-elongate void.
As used herein, the term “elongate” means and includes a geometric shape including a dimension (e.g., a length, as defined below) in a first horizontal direction (e.g., a longitudinal direction, as defined below) that is greater than an additional dimension (e.g., a width, as defined below) in a second horizontal direction (e.g., a lateral direction, as defined below) orthogonal to the first horizontal direction.
As used herein, the terms “substrate” and “base structure” mean and include a base material or other construction upon which components, such as those within memory cells, are formed. The substrate or base structure may be a semiconductor substrate, a base semiconductor material on a supporting structure, a metal electrode, or a semiconductor substrate having one or more materials, structures, or regions formed thereon. The substrate may be a conventional silicon substrate or other bulk substrate including a semiconductive material. As used herein, the term “bulk substrate” means and includes not only silicon wafers, but also silicon-on-insulator (“SOT”) substrates, such as silicon-on-sapphire (“SOS”) substrates or silicon-on-glass (“SOG”) substrates, epitaxial layers of silicon on a base semiconductor foundation, or other semiconductor or optoelectronic materials, such as silicon-germanium (Si1-xGex, where x is, for example, a mole fraction between 0.2 and 0.8), germanium (Ge), gallium arsenide (GaAs), gallium nitride (GaN), or indium phosphide (InP), among others. Furthermore, when reference is made to a “substrate” or “base structure” in the following description, previous process stages may have been utilized to form materials, structures, or junctions in the base semiconductor structure, base structure, or other foundation.
As used herein, the term “insulative,” when used in reference to a material or structure, means and includes a material or structure that is electrically insulating. An “insulative” material or structure may be formed of and include one or more of at least one dielectric oxide material (e.g., one or more of a silicon oxide (SiOx), phosphosilicate glass, borosilicate glass, borophosphosilicate glass, fluorosilicate glass, an aluminum oxide (AlOx), a hafnium oxide (HfOx), a niobium oxide (NbOx), a titanium oxide (TiOx), a zirconium oxide (ZrOx), a tantalum oxide (TaOx), and a magnesium oxide (MgOx)), at least one dielectric nitride material (e.g., a silicon nitride (SixNy)), at least one dielectric oxynitride material (e.g., a silicon oxynitride (SiOxNy)), at least one dielectric carboxynitride material (e.g., a silicon carboxynitride (SiOxCzNy)), and/or air. Formulae including one or more of “x,” “y,” and/or “z” herein (e.g., SiOx, AlOx, HfOx, NbOx, TiOx, SixNy, SiOxNy, SiOxCzNy) represent a material that contains an average ratio of “x” atoms of one element, “y” atoms of another element, and/or “z” atoms of an additional element (if any), respectively, for every one atom of another element (e.g., Si, Al, Hf, Nb, Ti). As the formulae are representative of relative atomic ratios and not strict chemical structure, an insulative material or insulative structure may comprise one or more stoichiometric compounds and/or one or more non-stoichiometric compounds, and values of “x,” “y,” and “z” (if any) may be integers or may be non-integers. As used herein, the term “non-stoichiometric compound” means and includes a chemical compound with an elemental composition that cannot be represented by a ratio of well-defined natural numbers and is in violation of the law of definite proportions. In addition, an “insulative structure” means and includes a structure formed of and including insulative material.
As used herein, the term “sacrificial,” when used in reference to a material or structure, means and includes a material or structure that is formed during a fabrication process but which is removed (e.g., substantially removed) prior to completion of the fabrication process.
As used herein, the term “horizontal” means and includes a direction that is parallel to a primary surface of the substrate on which the referenced material or structure is located. The “width” and “length” of a respective material or structure may be defined as dimensions in a horizontal plane. With reference to the figures, the “horizontal” direction may be perpendicular to an indicated “Z” axis, may be parallel to an indicated “X” axis, and may be parallel to an indicated “Y” axis.
As used herein, the term “lateral” means and includes a direction in a horizontal plane parallel to a primary surface of the substrate on which a referenced material or structure is located and substantially perpendicular to a “longitudinal” direction. The “width” of a respective material or structure may be defined as a dimension in the lateral direction of the horizontal plane. With reference to the figures, the “lateral” direction may be parallel to an indicated “X” axis, may be perpendicular to an indicated “Y” axis, and may be perpendicular to an indicated “Z” axis.
As used herein, the term “longitudinal” means and includes a direction in a horizontal plane parallel to a primary surface of the substrate on which a referenced material or structure is located, and substantially perpendicular to a “lateral” direction. The “length” of a respective material or structure may be defined as a dimension in the longitudinal direction of the horizontal plane. With reference to the figures, the “longitudinal” direction may be parallel to an indicated “Y” axis, may be perpendicular to an indicated “X” axis, and may be perpendicular to an indicated “Z” axis.
As used herein, the term “vertical” means and includes a direction that is perpendicular to a primary surface of the substrate on which a referenced material or structure is located. The “height” of a respective material or structure may be defined as a dimension in a vertical plane. With reference to the figures, the “vertical” direction may be parallel to an indicated “Z” axis, may be perpendicular to an indicated “X” axis, and may be perpendicular to an indicated “Y” axis.
As used herein, the term “width” means and includes a dimension, along an indicated “X” axis in a horizontal plane (e.g., at a certain elevation, if identified), defining a maximum distance, along such “X” axis in the horizontal plane, of the material or structure in question. For example, a “width” of a structure that is at least partially hollow, or that is at least partially filled with one or more other material(s), is the horizontal dimension between outermost edges or sidewalls of the structure, such as an outer “X”-axis diameter for a hollow or filled, cylindrical structure.
As used herein, the term “length” means and includes a dimension, along an indicated “Y” axis in a horizontal plane (e.g., at a certain elevation, if identified), defining a maximum distance, along such “Y” axis in the horizontal plane, of the material or structure in question. For example, a “length” of a structure that is at least partially hollow, or that is at least partially filled with one or more other material(s), is the horizontal dimension between outermost edges or sidewalls of the structure, such as an outer “Y”-axis diameter for a hollow or filled, cylindrical structure.
As used herein, the terms “thickness” or “thinness” are spatially relative terms that mean and include a dimension in a straight-line direction that is normal to the closest surface of an immediately adjacent material or structure that is of a different composition or that is otherwise distinguishable from the material or structure whose thickness, thinness, or height is discussed.
As used herein, the term “between” is a spatially relative term used to describe the relative disposition of one material, structure, or sub-structure relative to at least two other materials, structures, or sub-structures. The term “between” may encompass both a disposition of one material, structure, or sub-structure directly adjacent the other materials, structures, or sub-structures and a disposition of one material, structure, or sub-structure indirectly adjacent to the other materials, structures, or sub-structures.
As used herein, the term “proximate” is a spatially relative term used to describe disposition of one material, structure, or sub-structure near to another material, structure, or sub-structure. The term “proximate” includes dispositions of indirectly adjacent to, directly adjacent to, and internal to.
As used herein, the term “neighboring,” when referring to a material or structure, is a spatially relative term that means and refers to a next, most proximate material or structure of an identified composition or characteristic. Materials or structures of other compositions or characteristics than the identified composition or characteristic may be disposed between one material or structure and its “neighboring” material or structure of the identified composition or characteristic. For example, a structure of material X “neighboring” a structure of material Y is the first material X structure, e.g., of multiple material X structures, that is most proximate to the particular structure of material Y. The “neighboring” material or structure may be directly adjacent or indirectly adjacent the structure or material of the identified composition or characteristic.
As used herein, the term “consistent”—when referring to a parameter, property, or condition of one structure, material, feature, or portion thereof in comparison to the parameter, property, or condition of another such structure, material, feature, or portion of such same aforementioned structure, material, or feature—is a relative term that means and includes the parameter, property, or condition of the two such structures, materials, features, or portions being equal, substantially equal, or about equal, at least in terms of respective dispositions of such structures, materials, features, or portions. For example, two structures having “consistent” thickness as one another may each define a same, substantially same, or about the same thickness at X lateral distance from a feature, despite the two structures being at different elevations along the feature. As another example, one structure having a “consistent” width, length, and/or diameter may have two portions that each define a same, substantially same, or about the same width, length, and/or diameter, respectively, at elevation Y1 of such structure as at elevation Y2 of such structure.
As used herein, the terms “about” and “approximately,” when either is used in reference to a numerical value for a particular parameter, are inclusive of the numerical value and a degree of variance from the numerical value that one of ordinary skill in the art would understand is within acceptable tolerances for the particular parameter. For example, “about” or “approximately,” in reference to a numerical value, may include additional numerical values within a range of from 90.0 percent to 110.0 percent of the numerical value, such as within a range of from 95.0 percent to 105.0 percent of the numerical value, within a range of from 97.5 percent to 102.5 percent of the numerical value, within a range of from 99.0 percent to 101.0 percent of the numerical value, within a range of from 99.5 percent to 100.5 percent of the numerical value, or within a range of from 99.9 percent to 100.1 percent of the numerical value.
As used herein, the term “substantially,” when referring to a parameter, property, or condition, means and includes the parameter, property, or condition being equal to or within a degree of variance from a given value such that one of ordinary skill in the art would understand such given value to be acceptably met, such as within acceptable manufacturing tolerances. By way of example, depending on the particular parameter, property, or condition that is substantially met, the parameter, property, or condition may be “substantially” a given value when the value is at least 90.0 percent met, at least 95.0 percent met, at least 99.0 percent met, or even at least 99.9 percent met.
As used herein, the terms “on” or “over,” when referring to an element as being “on” or “over” another element, are spatially relative terms that mean and include the element being directly on top of, adjacent to (e.g., laterally adjacent to, horizontally adjacent to, longitudinally adjacent to, vertically adjacent to), underneath, or in direct contact with the other element. It also includes the element being indirectly on top of, adjacent to (e.g., laterally adjacent to, horizontally adjacent to, longitudinally adjacent to, vertically adjacent to), underneath, or near the other element, with other elements present therebetween. In contrast, when an element is referred to as being “directly on” or “directly adjacent to” another element, there are no intervening elements present.
As used herein, other spatially relative terms, such as “below,” “lower,” “bottom,” “above,” “upper,” “top,” and the like, may be used for ease of description to describe one element's or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Unless otherwise specified, any spatially relative terms used in this disclosure are intended to encompass different orientations of the materials in addition to the orientation as depicted in the figures. For example, if materials in the figures are inverted, elements described as “below” or “under” or “on bottom of” other elements or features would then be oriented “above” or “on top of” the other elements or features. Thus, the term “below” may encompass both an orientation of above and below, depending on the context in which the term is used, which will be evident to one of ordinary skill in the art. The materials may be otherwise oriented (rotated ninety degrees, inverted, etc.) and the spatially relative descriptors used herein interpreted accordingly.
As used herein, the terms “level” and “elevation” are spatially relative terms used to describe one material's or feature's relationship to another material(s) or feature(s) as illustrated in the figures, using—as a reference point—the lowest illustrated surface of the structure that includes the materials or features. As used herein, a “level” and an “elevation” are each defined by a horizontal plane parallel to a primary surface of the substrate or base structure on or in which the structure (that includes the materials or features) is formed. “Lower levels” and “lower elevations” are relatively nearer to the bottom-most illustrated surface of the respective structure, while “higher levels” and “higher elevations” are relatively further from the bottom-most illustrated surface of the respective structure. Unless otherwise specified, any spatially relative terms used in this disclosure are intended to encompass different orientations of the materials in addition to the orientation as depicted in the figures. For example, the materials in the figures may be inverted, rotated, etc., with the “upper” levels and elevations then illustrated proximate the bottom of the page and the “lower” levels and elevations then illustrated proximate the top of the page.
As used herein, the terms “comprising,” “including,” “having,” and grammatical equivalents thereof are inclusive, open-ended terms that do not exclude additional, unrecited elements or method steps. These terms also include more restrictive terms “consisting of” and “consisting essentially of” and grammatical equivalents thereof. Therefore, a structure described as “comprising,” “including,” and/or “having” a material may be a structure that, in some embodiments, includes additional material(s) as well and/or a structure that, in some embodiments, does not include any other material(s). Likewise, a composition (e.g., gas) described as “comprising,” “including,” and/or “having” a species may be a composition that, in some embodiments, includes additional species as well and/or a composition that, in some embodiments, does not include any other species.
As used herein, the term “may” with respect to a material, structure, feature, or method act indicates that such is contemplated for use in implementation of an embodiment of the disclosure and such term is used in preference to the more restrictive term “is” so as to avoid any implication that other, compatible materials, structures, features, and methods usable in combination therewith should or must be excluded.
As used herein, “and/or” means and includes any and all combinations of one or more of the associated listed items.
As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
As used herein, a “(s)” at the end of a term means and includes the singular form of the term and/or the plural form of the term, unless the context clearly indicates otherwise.
As used herein, the terms “configured” and “configuration” mean and refer to a size, shape, material composition, orientation, and arrangement of a referenced material, structure, assembly, or apparatus so as to facilitate a referenced operation or property of the referenced material, structure, assembly, or apparatus in a predetermined way.
The illustrations presented herein are not meant to be actual views of any particular material, structure, sub-structure, region, sub-region, device, system, or stage of fabrication, but are merely idealized representations that are employed to describe embodiments of the disclosure.
Embodiments are described herein with reference to cross-sectional illustrations that are schematic illustrations. Accordingly, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments described herein are not to be construed as limited to the particular shapes or structures as illustrated but may include deviations in shapes that result, for example, from manufacturing techniques. For example, a structure illustrated or described as box-shaped may have rough and/or nonlinear features. Moreover, sharp angles that are illustrated may be rounded. Thus, the materials, features, and structures illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the precise shape of a material, feature, or structure and do not limit the scope of the present claims. A figure representing an enlarged view of a portion of another figure is not necessarily to scale. For example, one or more features of an enlarged view may be illustrated relatively smaller than a to-scale enlargement would provide, for ease of illustration and view.
The following description provides specific details, such as material types and processing conditions, to provide a thorough description of embodiments of the disclosed apparatus (e.g., devices, systems) and methods. However, a person of ordinary skill in the art will understand that the embodiments of the apparatus and methods may be practiced without employing these specific details. Indeed, the embodiments of the apparatus and methods may be practiced in conjunction with conventional semiconductor fabrication techniques employed in the industry.
The fabrication processes described herein do not form a complete process flow for processing apparatus (e.g., devices, systems) or the structures thereof. The remainder of the process flow is known to those of ordinary skill in the art. Accordingly, only the methods and structures necessary to understand embodiments of the present apparatus (e.g., devices, systems) and methods are described herein.
Unless the context indicates otherwise, the materials described herein may be formed by any suitable technique including, but not limited to, spin coating, blanket coating, chemical vapor deposition (“CVD”), atomic layer deposition (“ALD”), plasma enhanced ALD, physical vapor deposition (“PVD”) (e.g., sputtering), or epitaxial growth. Depending on the specific material to be formed, the technique for depositing or growing the material may be selected by a person of ordinary skill in the art.
Unless the context indicates otherwise, the removal of materials described herein may be accomplished by any suitable technique including, but not limited to, etching (e.g., dry etching, wet etching, vapor etching), ion milling, abrasive planarization, or other known methods.
In referring to the drawings, like numerals refer to like components throughout. The drawings are not necessarily drawn to scale.
With reference to
The base structure 122 may be formed of and include, for example, one or more semiconductor materials (e.g., polycrystalline silicon (polysilicon)). Adjacent the stack structure 108, the semiconductor material may be doped (e.g., the doped material 118) to provide a source region 120 adjacent a lower end of the pillars 124. The doped material 118 may be formed of and include, for example, a semiconductor material (e.g., polysilicon) doped with one or more P-type conductivity chemical species (e.g., one or more of boron, aluminum, and gallium) or one or more N-type conductivity chemical species (e.g., one or more of arsenic, phosphorous, and antimony).
The slit structure 116 may include an insulative liner 128 (e.g., formed of and including one or more insulative material(s)) and a nonconductive fill material 130 (e.g., any one or more of the aforementioned insulative material(s) and/or a semiconductive material, such as polysilicon). In some embodiments, sidewalls of the conductive structures 112 are laterally recessed, relative to the insulative structures 110, along the slit structure 116. In such embodiments, the insulative liner 128 may laterally extend in correspondence with the lateral recesses of the conductive structures 112.
In the stack structure 108, the insulative structures 110 may be formed of and include at least one insulative material 132, such as a dielectric oxide material (e.g., silicon dioxide). In this and other embodiments described herein, the insulative material 132 of the insulative structures 110 may be substantially the same as or different than other insulative material(s) of the microelectronic device structure 100.
The conductive structures 112 of the stack structure 108 may be formed of and include one or more conductive materials 134, such as one or more of: at least one metal (e.g., one or more of tungsten, titanium, nickel, platinum, rhodium, ruthenium, iridium, aluminum, copper, molybdenum, silver, gold), at least one alloy (e.g., an alloy of one or more of the aforementioned metals), at least one metal-containing material that includes one or more of the aforementioned metals (e.g., metal nitrides, metal silicides, metal carbides, metal oxides, such as a material including one or more of titanium nitride (TiN), tantalum nitride (TaN), tungsten nitride (WN), titanium aluminum nitride (TiAlN), iridium oxide (IrOx), ruthenium oxide (RuOx), alloys thereof), at least one conductively-doped semiconductor material (e.g., conductively-doped silicon, conductively-doped germanium, conductively-doped silicon germanium), polysilicon, and at least one other material exhibiting electrical conductivity. In some embodiments, the conductive structures 112 include at least one of the aforementioned conductive materials, along with at least one additional conductive material formed as a liner.
In some embodiments, one or more of the conductive structures 112 neighboring the source region 120 of the doped material 118 may be configured as gate-induced drain leakage (“GIDL”) region(s), such as a source-gate select device (e.g., a SGS device). In some such embodiments, one or more conductive structures 112 atop the stack structure 108 may also be configured as GIDL region(s), such as a drain-gate select device (e.g., a SGD device).
In the elevations of the stack structure 108 (e.g., elevations above the source region 120), the pillars 124 are horizontally surrounded by the materials of the tiers 114 of the insulative structures 110 and the conductive structures 112. The channel structure 126 may be interposed horizontally between an insulative material 136—forming a core of the pillar 124—and the tiers 114 of the stack structure 108. Portions of the channel structure 126 may also be disposed vertically beneath the insulative material 136.
The insulative material 136 (e.g., at the core of the pillar 124) may be formed of and include an insulative material such as, for example, phosphosilicate glass (PSG), borosilicate glass (BSG), fluorosilicate glass (FSG), borophosphosilicate glass (BPSG), silicon dioxide, titanium dioxide, zirconium dioxide, hafnium dioxide, tantalum oxide, magnesium oxide, aluminum oxide, niobium oxide, molybdenum oxide, strontium oxide, barium oxide, yttrium oxide, a nitride material, (e.g., silicon nitride (Si3N4)), an oxynitride (e.g., silicon oxynitride), a dielectric carbon nitride material (e.g., silicon carbon nitride (SiCN)), a dielectric carboxynitride material (e.g., silicon carboxynitride (SiOCN)), an insulative gas (e.g., air), or combinations thereof. In some embodiments, the insulative material 136 comprises silicon dioxide.
In addition to the insulative material 136 and the channel structure 126, the pillars 124 also include cell materials interposed horizontally between the channel structure 126 and the tiers 114 of the stack structure 108. The cell materials may include a tunnel dielectric material 138 (also referred to as a “tunneling dielectric material”), which may be horizontally adjacent the channel structure 126; a memory material 140, which may be horizontally adjacent the tunnel dielectric material 138; and a dielectric blocking material 142 (also referred to as a “charge blocking material”), which may be horizontally adjacent the memory material 140. In some embodiments, a dielectric barrier material is also horizontally interposed (e.g., directly horizontally interposed) between the dielectric blocking material 142 and the tiers 114 of the stack structure 108. The cell materials—including the tunnel dielectric material 138, the memory material 140, the dielectric blocking material 142, and, if present, the dielectric blocking material 142—may also extend to and/or into the doped material 118 of the base structure 122. The tunnel dielectric material 138, the memory material 140, the dielectric blocking material 142, and, if present, the dielectric blocking material 142 may not extend across a base of the pillars 124 such that these materials may not vertically underlay the insulative material 136.
The tunnel dielectric material 138 may be formed of and include a dielectric material through which charge tunneling can be performed under suitable electrical bias conditions, such as through hot-carrier injection or by Fowler-Nordheim tunneling induced charge transfer. The tunnel dielectric material 138 may be formed of and include one or more of silicon oxide, silicon nitride, silicon oxynitride, dielectric metal oxides (e.g., aluminum oxide and hafnium oxide), dielectric metal oxynitride, dielectric metal silicates, alloys thereof, and/or combinations thereof. In some embodiments, the tunnel dielectric material 138 comprises silicon dioxide or silicon oxynitride.
The memory material 140 may comprise a charge trapping material or a conductive material. The memory material 140 may be formed of and include one or more of silicon nitride, silicon oxynitride, polysilicon (e.g., doped polysilicon), a conductive material (e.g., tungsten, molybdenum, tantalum, titanium, platinum, ruthenium, and alloys thereof, or a metal silicide such as tungsten silicide, molybdenum silicide, tantalum silicide, titanium silicide, nickel silicide, cobalt silicide, or a combination thereof), a semiconductive material polycrystalline or amorphous semiconductor material including at least one elemental semiconductor element or at least one compound semiconductor material, conductive nanoparticles (e.g., ruthenium nanoparticles), metal dots. In some embodiments, the memory material 140 comprises silicon nitride.
The dielectric blocking material 142 may be formed of and include one or more dielectric materials, such as, for example, one or more of an oxide (e.g., silicon dioxide), a nitride (e.g., silicon nitride), an oxynitride (e.g., silicon oxynitride), or another material. The material(s) of the dielectric blocking material 142 may be formed as one or more distinctive material regions (e.g., sub-regions, layers). In some embodiments, the dielectric blocking material 142 comprises a single material region, which may be formed of and include silicon oxynitride. In other embodiments, the dielectric blocking material 142 comprises a structure configured as an oxide-nitride-oxide (ONO) structure, with a series of material regions (e.g., sub-regions, layers) formed of and including, respectively, an oxide (e.g., silicon dioxide), a nitride (e.g., silicon nitride), and an oxide again (e.g., silicon dioxide).
In some embodiments, the tunnel dielectric material 138, the memory material 140, and the dielectric blocking material 142 together may form a structure configured to trap a charge, such as, for example, an oxide-nitride-oxide (ONO) structure. In some such embodiments, the tunnel dielectric material 138 comprises silicon dioxide, the memory material 140 comprises silicon nitride, and the dielectric blocking material 142 comprises silicon dioxide.
In embodiments including a dielectric barrier material, it may be formed of and include one or more of a metal oxide (e.g., one or more of aluminum oxide, hafnium oxide, zirconium oxide, lanthanum oxide, yttrium oxide, tantalum oxide, gadolinium oxide, niobium oxide, titanium oxide), a dielectric silicide (e.g., aluminum silicide, hafnium silicate, zirconium silicate, lanthanum silicide, yttrium silicide, tantalum silicide), and a dielectric nitride (e.g., aluminum nitride, hafnium nitride, lanthanum nitride, yttrium nitride, tantalum nitride).
The channel structure 126 includes multiple sub-regions of channel material 144, with at least one such sub-region of channel material 144 having a different microstructure than at least one other sub-region of channel material 144. In some embodiments, the channel structure 126 includes only two sub-regions with an outer sub-region 146 directly adjacent an inner sub-region 148. In other embodiments, at least one additional sub-region is interposed between the outer sub-region 146 and the inner sub-region 148.
In combination, the sub-regions (e.g., the outer sub-region 146 and the inner sub-region 148) of the channel structure 126 form the channel structure 126, which may be formed as a relatively-thin hollow structure horizontally surrounding the insulative material 136 of the pillar 124. The wall of the channel structure 126 may have a total thickness (e.g., between an interface with the insulative material 136 and an interface with the tunnel dielectric material 138) of less than about 10 nm (e.g., about 6 nm to about 10 nm).
An outer sub-region 146 of the channel structure 126 may be configured to be as thin as possible while still inhibiting chemical species (e.g., oxygen) from traversing through the outer sub-region 146 to the outer surface of the channel structure 126 (e.g., the surface of the channel structure 126 that interfaces with the tunnel dielectric material 138). The outer sub-region 146 may be no thicker than the inner sub-region 148, such that the outer sub-region 146 may compose up to about half the thickness (e.g., less than about 50% of the total thickness, less than about 40% of the total thickness, less than about 30% of the total thickness, less than about 20% of the total thickness) of the channel structure 126. In some embodiments, the thickness of the outer sub-region 146 (e.g., the average horizontal dimension, in elevations of the stack structure 108 that include conductive structures 112 configured as word lines, between an interface with the tunnel dielectric material 138 and an interface with the inner sub-region 148) may be in a range from about 10% to about 40% of the total thickness of the wall of the channel structure 126. In some embodiments, the thickness of the outer sub-region 146 may be about 5 nm or less (e.g., about 4 nm or less, about 3 nm or less).
The inner sub-region 148 may compose at least about half the thickness (e.g., greater than about 50% of the total thickness, greater than about 60% of the total thickness, greater than about 70% of the total thickness, greater than about 80% of the total thickness) of the channel structure 126. In some embodiments, the thickness of the inner sub-region 148 (e.g., the average horizontal dimension, in elevations of the stack structure 108 that include conductive structures 112 configured as word lines, between an interface with the outer sub-region 146 and the insulative material 136) may be in a range from about 60% to about 90% of the total thickness of the wall of the channel structure 126. In some embodiments, the thickness of the inner sub-region 148 may be about 3 nm or greater (e.g., about 4 nm or greater, about 5 nm or greater).
The channel material 144 of the sub-regions (e.g., the outer sub-region 146, the inner sub-region 148, and any intermediate sub-regions, if present) may be formed of and include one or more of at least one semiconductor material (at least one elemental semiconductor material, such as polycrystalline silicon; at least one III-V compound semiconductor material, at least one II-VI compound semiconductor material, at least one organic semiconductor material, GaAs, InP, GaP, GaN, other semiconductor materials); and at least one an oxide semiconductor material. The channel material 144 of each sub-region may be selected or otherwise formulated to have high mobility (e.g., a semiconductor material including one or more of doped polysilicon, germanium (Ge), silicon germanium (SiGe), and gallium arsenide (GaAs)). In some embodiments, the channel material 144 of each sub-region includes a doped semiconductor material. In some embodiments, all of the sub-regions of the channel structure 126 may comprise the channel material 144 with a substantially same chemical composition, but with a difference in microstructure. In other embodiments, one or more of the sub-regions of the channel structure 126 may comprise any one or more of the channel materials 144 of a different chemical composition than the channel material 144 (or channel materials 144) of one or more other sub-regions of the channel structure 126.
The channel material 144 of at least one of the sub-regions of the channel structure 126 exhibits a different microstructure than the channel material 144 of at least one other of the sub-regions. As used herein, a “different microstructure” means and includes a difference in average grain size, a difference in grain boundary amount (e.g., volume of grain boundary per volume of channel material 144), a difference in grain boundary complexity (e.g., considering the number, angle, and frequency of deviations of a grain boundary pathway from an otherwise straight-line pathway between interior and exterior surfaces of the sub-region), a difference in crystallographic orientation, or any combination thereof. The channel material 144 may be formed or otherwise structured so that the outer sub-region 146 has—in comparison to the inner sub-region 148—a relatively smaller grain size or a lack of exhibited grain structure, a relatively larger grain boundary amount, a relatively more complex grain boundary pathway, a less consistent (e.g., greater varying) crystallographic orientation, or any combination thereof.
With reference to
In some embodiments, the channel structure 126 of
In some embodiments, the channel structure 126 of
In some embodiments, the channel structure 126 of
In some embodiments, the channel structure 126 of
Regardless of the type of difference in microstructure between the inner sub-region 148 and the outer sub-region 146 of the channel structure 126 (
While
For example, the number (e.g., quantity) of tiers 114 (and conductive structures 112 and insulative structures 110) illustrated in the stack structure 108 of
The stack structure 108 may be formed in one or more decks, with each of the decks including a vertically alternating sequence of the insulative structures 110 and the conductive structures 112 arranged in the tiers 114. For example, the microelectronic device structure 100 of
The pillars 124 extend substantially vertically through each of the decks (e.g., the lower deck 302 and the upper deck 304) of the stack structure 108, as well as to or into the doped material 118 (e.g., the source region 120) of the base structure 122. In some embodiments, the materials of the pillars 124 (e.g., the insulative material 136 of the core, the channel material 144 of the multiple sub-regions of the channel structure 126, and the cell materials that include the tunnel dielectric material 138, the memory material 140, and the dielectric blocking material 142 (
In some embodiments, the vertically alternating sequence of the conductive structures 112 and the insulative structures 110 of the tiers 114 (
The slit structures 116 extending through the stack structure 108 (e.g., through all decks, including the upper deck 304 and the lower deck 302) divide the microelectronic device structure 300 into blocks 308. Each of the blocks 308 may include an array of the pillars 124, and the sequence of blocks 308 may form a pillar array portion 310 of the microelectronic device structure 300.
Longitudinally adjacent the pillar array portion 310, either with or without intervening features, may be one or more staircase portions that include staircase structure(s) having steps defined by ends (e.g., sidewalls) of at least some of the tiers 114 (
The microelectronic device structure 300 may further include additional features. For example, bit lines and bit contacts may be formed above the stack structure 108 (e.g., in the pillar array portion 310) to be in operable communication with the pillars 124 and other electrical features of the microelectronic device structure 300. Additional conductive lines (e.g., conductive routing lines) and contacts may be included above, below, and/or within the stack structure 108 to facilitate electrical communication between two or more features of the microelectronic device structure 300. In some embodiments, CMOS (complementary metal-oxide-semiconductor) circuitry is included in a CMOS region 312 below the source region 120 and the pillars 124 of the pillar array portion 310. In such embodiments, the microelectronic device structure 300 may be characterized as having a so-called “CMOS under Array” (“CuA”) region.
In the discussions herein, descriptions of one pillar 124 and one channel structure 126 may equally apply to any or all of the pillars 124 and the channel structures 126 of one or more blocks 308 of a microelectronic device structure of any embodiment of this disclosure (e.g., the microelectronic device structure 100 of
The pillars 124 may effectuate the formation of strings of memory cells of a memory device (e.g., a memory device including the microelectronic device structure 100 of
The memory cells 502 are in the vicinity of at least one of the tiers 114, with at least one of the insulative structures 110 vertically adjacent at least one of the conductive structures 112. In some embodiments, such as that illustrated in
In other embodiments, such as that illustrated in
Memory cells 502″ having the structure of
With continued reference to
In some embodiments of memory cells, such as with the memory cell 502′ of
To effectuate the memory cell 502 (e.g., the memory cell 502′ of
Accordingly, each of the pillars 124 (e.g.,
Accordingly, disclosed is a microelectronic device comprising a stack structure and at least one pillar extending through the stack structure. The stack structure comprises a vertically alternating sequence of insulative structures and conductive structures arranged in tiers. The at least one pillar comprises at least one insulative material and a channel structure horizontally surrounding the at least one insulative material. The channel structure comprises sub-regions of semiconductor material. At least one of the sub-regions exhibits a different microstructure than at least one other of the sub-regions.
With reference to
With reference to
The sacrificial material 608 of the sacrificial structures 604 may be selected or otherwise formulated to be selectively removable (e.g., selectively etchable) relative to the insulative material 132 of the insulative structures 110. In some embodiments, the insulative material 132 comprises silicon dioxide and the sacrificial material 608 comprises silicon nitride.
To form the stack structure 602, formation (e.g., deposition) of the insulative materials 132 of the insulative structures 110 may be alternated with formation (e.g., deposition) of the sacrificial material 608 of the sacrificial structures 604. In some embodiments, the stack structure 602 may be formed, at this stage, to include as many tiers 606 with sacrificial structures 604 as there will be tiers 114 (
With reference to
Within each of the pillar openings 702, the cell materials of the pillars 124 (
To expose the base structure 122 at the base of the pillar 124 (
The liner material 902 may be formed of and include, for example, a semiconductor material such as polysilicon. In some embodiments, the liner material 902 may be a sacrificial material to be substantially removed during subsequent processing. In other embodiments, the liner material 902 may not be a sacrificial material, as described further below.
With reference to
During either or both of the selective removal of a base portion of the liner material 902 and/or the removal of base portions of the cell materials, the liner material 902 may be thinned. Accordingly, the liner material 902 remaining in the stage of
After forming the opening 1002 exposing a portion of the base structure 122, the remaining portions of the liner material 902 may be removed, in embodiments in which the liner material 902 is a sacrificial material. Accordingly, as illustrated in
In some embodiments, the cell materials may somewhat horizontally extend adjacent the base of the opening 1102, where previously vertically covered by the liner material 902 (
The channel structure 126 (
The conditions of forming (e.g., depositing) the material of the outer sub-region 146 may be tailored to promote the formation of the small grains 204 (
With reference to
With reference to
Accordingly, the amorphous material 206 may include a semiconductor material (e.g., silicon) comprising a trace chemical species (e.g., hydrogen (H) atoms). The presence of the hydrogen may inhibit crystallization of the semiconductor material (e.g., the silicon) of the outer sub-region 146, even if or when the material of the outer sub-region 146 is exposed to high temperatures (e.g., annealed). Accordingly, the formed material of the outer sub-region 146 may remain as the amorphous material 206 up to higher temperatures than if formed from precursors not rich in hydrogen (e.g., monosilane precursors).
With reference to
By this method, the outer sub-region 146 may be formed of and include amorphous semiconductor material (e.g., silicon) also comprising the dopant 208 (e.g., carbon). In some embodiments, the outer sub-region 146 also includes trace amounts of hydrogen, in accordance with the descriptions previously provided with reference to
In some embodiments, the dopant 208 is substantially evenly distributed throughout the amorphous material 206. In other embodiments, the dopant 208 is concentrated at or near an interior or exterior surface of the amorphous material 206 in the outer sub-region 146.
With reference to
By this method, the outer sub-region 146 may be formed of and include, e.g., polysilicon silicon also comprising the dopant 208 (e.g., carbon). In some such embodiments, the dopant 208 is substantially evenly distributed through the small grains 204. In other embodiments, the dopant 208 is concentrated at the surface(s) of the small grains 204.
Optionally, after thinly forming (e.g., conformally depositing) the material of the outer sub-region 146, in accordance with any of
After thinly depositing the semiconductor material of the outer sub-region 146 and, optionally, conducting the high-temperature process, a cleaning process (e.g., exposure of an interior surface of the outer sub-region 146 to hydrofluoric acid (HF)) may be conducted to remove native oxide.
As formed, the increased grain boundary density and grain boundary complexity of the outer sub-region 146 formed of small grains 204 (
With reference to
As described above, forming a semiconductor material to an initially greater thickness may facilitate the formation of the material with large grains 202 (
In some embodiments, the formation of the thickly-deposited channel material 1402 is a continuation of the formation of the outer sub-region 146, but with modified deposition conditions. Therefore, the same material-formation apparatus (e.g., deposition chamber) may be used for forming the outer sub-region 146 as for forming the thickly-deposited channel material 1402, e.g., without purging the chamber and/or without removing deposited structures from the chamber, between forming the outer sub-region 146 and forming the thickly-deposited channel material 1402. Accordingly, the sub-regions of the channel structure 126 may be formed in situ.
In some embodiments, the sub-regions of the channel structure 126 may be formed ex situ, e.g., using the same or different material-formation apparatuses (e.g., deposition chamber(s)). For example, between forming the outer sub-region 146 and forming the thickly-deposited channel material 1402 in a single deposition chamber, the chamber may be purged (or a vacuum condition otherwise broken). As another example, the outer sub-region 146 may be formed in one deposition chamber and then the intermediate structure(s) may be transported to another deposition chamber for formation of the thickly-deposited channel material 1402.
In some embodiments, the conditions for forming the small grains 204 or the amorphous material 206 are continued until the desired thickness of the outer sub-region 146 is reached, then the conditions are changed to facilitate formation of the large grains 202. For example, if the outer sub-region 146 was formed using hydrogen-rich precursors, the flow of the hydrogen-rich precursors may be halted—once the outer sub-region 146 deposition reaches its desired thickness—and changed to introduce a non-hydrogen-rich precursor (e.g., monosilane) while the thickly-deposited channel material 1402 is formed on the outer sub-region 146. The non-hydrogen-rich precursor (e.g., monosilane) may facilitate formation of the thickly-deposited channel material 1402 with the large grains 202. As another example, if the outer sub-region 146 was formed with the dopant 208, the flow of the dopant 208 source may be ceased after the outer sub-region 146 deposition is completed so that the remaining deposition of semiconductor material (e.g., polysilicon) is substantially free of the dopant 208. The absence of the hydrogen trace species and/or the dopant 208—which may otherwise have inhibited crystallization—may promote formation of the large grains 202.
The resulting thickly-deposited channel material 1402 may be substantially free of the dopant 208 and/or may be substantially free of the hydrogen trace species. Alternatively, the thickly-deposited channel material 1402 may have a significantly lower concentration of the dopant 208 and/or a significantly lower concentration of the hydrogen trace species, compared to concentration(s) in the outer sub-region 146.
After forming the thickly-deposited channel material 1402, the thickly-deposited channel material 1402 may be thinned to the final desired thickness of the inner sub-region 148, as illustrated in
To thin the thickly-deposited channel material 1402 (
In some embodiments, the thinning process may be free of use of non-oxidizing chemistries—such as mixtures of tetramethylammonium hydroxide (TMAH) and ammonium hydroxide (NH4OH)—which tend to remove material in a manner dependent on grain crystal orientation. That is, such non-oxidizing chemistries may exhibit high selectivity for one crystal plane over another and so may not be conducive for substantially evenly thinning the thickly-deposited channel material 1402 (
Though the aforementioned oxidizing etch chemistries may facilitate controlled etching of the thickly-deposited channel material 1402 (
With reference to
With reference to
A “replacement gate” process may be performed, via the slit 1902, to at least partially (e.g., substantially) exhume the sacrificial material 608—and therefore the sacrificial structures 604—leaving voids 2002 (e.g., void spaces, gaps) between the insulative structures 110, as illustrated in
In the voids 2002, the conductive material(s) 134 are formed, as illustrated in
In the slit 1902, the insulative liner 128 (
Accordingly, disclosed is a method of forming a microelectronic device. The method comprises forming a tiered stack structure on a base structure. The tiered stack structure comprises a vertically alternating sequence of insulative structures and other structures arranged in tiers. A pillar opening is formed through the tiered stack structure and at least to the base structure. Cell materials are formed in the pillar opening. On the cell materials, an outer sub-region of a channel structure is formed. The outer sub-region comprises at least one of amorphous silicon and small grains of polysilicon having an average grain size of less than about 0.01 μm (e.g., less than about 0.005 μm). On the outer sub-region, an inner sub-region of the channel structure is formed. The inner sub-region comprises large grains of polysilicon having an average grain size of greater than about 0.01 μm. At least one insulative material is formed on the inner sub-region of the channel structure to form a core of a pillar.
By the method(s) described with reference to
In other embodiments, such as that illustrated in
Next, as illustrated in
The thickly-deposited channel material 1402 may then be thinned in substantially the same manner as described above with regard to
After forming the channel structure 126, as illustrated in
The microelectronic device structure 2500, illustrated in the box 104 of
The method illustrated by the stages of
In some embodiments, the tiers 606 and pillars 124 of the lower deck 302 (
In other embodiments, as discussed above, the lower deck 302 and the upper deck 304 (
In some embodiments, the pillars 124 are formed—in one or both decks (e.g., the lower deck 302, the upper deck 304), after forming the conductive structures 112 of the stack structure 108. For example, the processing stage previously described with reference to
By any of the foregoing methods, a microelectronic device structure is formed that includes pillars with channel structures of multiple sub-regions of different microstructures configured to both facilitate electron mobility (for sufficient string current) and to inhibit chemical species (e.g., oxygen) traversal to an exterior surface of the channel material so as to avoid data leakage. Moreover, the channel structures may be formed with relatively thin walls, to facilitate device scaling.
With reference to
As illustrated in
The microelectronic device structure 2702 may include pillars (e.g., the pillars 124 of
The first select gates 2718, the conductive tiers 2708, and the second select gates 2722 may be horizontally divided (e.g., in the X-axis direction) into multiple blocks 2724 (e.g., blocks 308 (
Vertical conductive contacts 2728 may electrically couple components to each other, as illustrated. For example, select lines 2720 may be electrically coupled to the first select gates 2718, and the access lines 2706 may be electrically coupled to the conductive tiers 2708.
The microelectronic device 2700 may also include a control unit 2730 positioned under the memory array (e.g., the pillar array portions 310 (
The first select gates 2718 may extend horizontally in a first direction (e.g., the Y-axis direction) and may be coupled to respective first groups of strings 2710 of memory cells 2712 at a first end (e.g., an upper end) of the strings 2710. The second select gates 2722 may be formed in a substantially planar configuration and may be coupled to the strings 2710 at a second, opposite end (e.g., a lower end) of the strings 2710 of memory cells 2712.
The data lines 2714 may extend horizontally in a second direction (e.g., in the X-axis direction) that is at an angle (e.g., perpendicular) to the first direction in which the first select gates 2718 extend. The data lines 2714 may be coupled to respective second groups of the strings 2710 at the first end (e.g., the upper end) of the strings 2710. A first group of strings 2710 coupled to a respective first select gate 2718 may share a particular string 2710 with a second group of strings 2710 coupled to a respective data line 2714. Thus, a particular string 2710 may be selected at an intersection of a particular first select gate 2718 and a particular data line 2714. Accordingly, the first select gates 2718 may be used for selecting memory cells 2712 of the strings 2710 of memory cells 2712.
The conductive tiers 2708 (e.g., word lines, word line plates) may extend in respective horizontal planes. The conductive tiers 2708 may be stacked vertically, such that each conductive tier 2708 is coupled to all of the strings 2710 of memory cells 2712 in a respective block 2724, and the strings 2710 of the memory cells 2712 extend vertically through the stack(s) (e.g., decks, such as the lower deck 302 and the upper deck 304 of
The first select gates 2718 and the second select gates 2722 may operate to select a particular string 2710 of the memory cells 2712 between a particular data line 2714 and the source tier 2716. Thus, a particular memory cell 2712 may be selected and electrically coupled to one of the data lines 2714 by operation of (e.g., by selecting) the appropriate first select gate 2718, second select gate 2722, and the conductive tier 2708 that are coupled to the particular memory cell 2712.
The staircase structure 2704 may be configured to provide electrical connection between the access lines 2706 and the conductive tiers 2708 through the vertical conductive contacts 2728. In other words, a particular level of the conductive tiers 2708 may be selected via one of the access lines 2706 that is in electrical communication with a respective one of the conductive contacts 2728 in electrical communication with the particular conductive tier 2708.
The data lines 2714 may be electrically coupled to the strings 2710 of memory cells 2712 through conductive structures 2732.
Microelectronic devices (e.g., the microelectronic device 2700) including microelectronic device structures (e.g., the microelectronic device structure 100 of
The electronic system 2800 includes at least one memory device 2802. The memory device 2802 may include, for example, one or more embodiment(s) of a microelectronic device and/or structure previously described herein (e.g., the microelectronic device 2700 of
The electronic system 2800 may further include at least one electronic signal processor device 2804 (often referred to as a “microprocessor”). The processor device 2804 may, optionally, include an embodiment of a microelectronic device and/or a microelectronic device structure previously described herein (e.g., the microelectronic device 2700 of
Accordingly, disclosed is an electronic system comprising an input device, an output device, a processor device, and a memory device. The processor device is operably coupled to the input device and to the output device. The memory device is operably coupled to the processor device. The memory device comprises at least one microelectronic device structure. The at least one microelectronic device structure comprises a stack structure and pillars extending through the stack structure. The stack structure comprises insulative structures vertically interleaved with conductive structures. The pillars comprise a hollow channel structure comprising sub-regions of semiconductor material. At least one of the sub-regions comprises a different microstructure than at least one other of the sub-regions.
With reference to
The processor-based system 2900 may include a power supply 2904 in operable communication with the processor 2902. For example, if the processor-based system 2900 is a portable system, the power supply 2904 may include one or more of a fuel cell, a power scavenging device, permanent batteries, replaceable batteries, and/or rechargeable batteries. The power supply 2904 may also include an AC adapter; therefore, the processor-based system 2900 may be plugged into a wall outlet, for example. The power supply 2904 may also include a DC adapter such that the processor-based system 2900 may be plugged into a vehicle cigarette lighter or a vehicle power port, for example.
Various other devices may be coupled to the processor 2902 depending on the functions that the processor-based system 2900 performs. For example, a user interface 2906 may be coupled to the processor 2902. The user interface 2906 may include one or more input devices, such as buttons, switches, a keyboard, a light pen, a mouse, a digitizer and stylus, a touch screen, a voice recognition system, a microphone, or a combination thereof. A display 2908 may also be coupled to the processor 2902. The display 2908 may include an LCD display, an SED display, a CRT display, a DLP display, a plasma display, an OLED display, an LED display, a three-dimensional projection, an audio display, or a combination thereof. Furthermore, an RF subsystem/baseband processor 2910 may also be coupled to the processor 2902. The RF subsystem/baseband processor 2910 may include an antenna that is coupled to an RF receiver and to an RF transmitter. A communication port 2912, or more than one communication port 2912, may also be coupled to the processor 2902. The communication port 2912 may be adapted to be coupled to one or more peripheral devices 2914 (e.g., a modem, a printer, a computer, a scanner, a camera) and/or to a network (e.g., a local area network (LAN), a remote area network, an intranet, or the Internet).
The processor 2902 may control the processor-based system 2900 by implementing software programs stored in the memory (e.g., system memory 2916). The software programs may include an operating system, database software, drafting software, word processing software, media editing software, and/or media-playing software, for example. The memory (e.g., the system memory 2916) is operably coupled to the processor 2902 to store and facilitate execution of various programs. For example, the processor 2902 may be coupled to system memory 2916, which may include one or more of spin torque transfer magnetic random access memory (STT-MRAM), magnetic random access memory (MRAM), dynamic random access memory (DRAM), static random access memory (SRAM), racetrack memory, and/or other known memory types. The system memory 2916 may include volatile memory, nonvolatile memory, or a combination thereof. The system memory 2916 is typically large so it can store dynamically loaded applications and data. In some embodiments, the system memory 2916 may include semiconductor devices (e.g., the microelectronic device 2700 of
The processor 2902 may also be coupled to nonvolatile memory 2918, which is not to suggest that system memory 2916 is necessarily volatile. The nonvolatile memory 2918 may include one or more of STT-MRAM, MRAM, read-only memory (ROM) (e.g., EPROM, resistive read-only memory (RROM)), and Flash memory to be used in conjunction with the system memory 2916. The size of the nonvolatile memory 2918 is typically selected to be just large enough to store any necessary operating system, application programs, and fixed data. Additionally, the nonvolatile memory 2918 may include a high-capacity memory (e.g., disk drive memory, such as a hybrid-drive including resistive memory or other types of nonvolatile solid-state memory, for example). The nonvolatile memory 2918 may include microelectronic devices (e.g., the microelectronic device 2700 of
While the disclosed structures, apparatus (e.g., devices), systems, and methods are susceptible to various modifications and alternative forms in implementation thereof, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, the disclosure is not intended to be limited to the particular forms disclosed. Rather, the disclosure encompasses all modifications, combinations, equivalents, variations, and alternatives falling within the scope of the disclosure as defined by the following appended claims and their legal equivalents.