Microfabrication

Abstract
Microfabrication processes and apparatuses for fabricating microstructures on a substrate are disclosed. The substrate has a current diffraction grating pattern formed by current surface modulations over at least a portion of the substrate's surface that exhibit a substantially uniform grating linewidth over the surface portion. An immersion depth of the substrate in a fluid for patterning the substrate is gradually changed so that different points on the surface portion are immersed for different immersion times. The fluid changes the linewidth of the surface modulations at each immersed point on the surface portion by an amount determined by the immersion time of that point, thereby changing the current diffraction grating pattern to a new diffraction grating pattern formed by new surface modulations over the surface portion that exhibit a spatially varying grating linewidth that varies over the surface portion.
Description
BACKGROUND

Microfabrication refers to the fabrication of desired structures of micrometer scales and smaller. Microfabrication may involve etching of and/or deposition on a substrate (and possibly etching of and/or deposition on a film deposited on the substrate) to create the desired microstructure on the substrate (or film on the substrate). As used herein, the term “patterning a substrate” or similar encompasses all such etching of/deposition on a substrate or substrate film.


Wet etching involves using a liquid etchant to selectively dislodge parts of a film deposited on a surface of a substrate and/or parts of the surface of substrate itself. The etchant reacts chemically with the substrate/film to remove parts of the substrate/film that are exposed to the etchant. The selective etching may be achieved by depositing a suitable protective layer on the substrate/film that exposes only parts of the substrate/film to the chemical effects of etchant and protects the remaining parts from the chemical effects of the etchant. The protective layer may be formed of a photoresist or other protective mask layer. The photoresist or other mask may be deposited over the whole of an etching surface area then exposed and developed to create a desired “image”, which is then engraved in the substrate/film by the etchant to form a three dimensional structure.


Dry etching involves selectively exposing a substrate/film (e.g. using a similar photoresist mask) to a bombardment of energetic particles to dislodge parts of the substrate/film that are exposed to the particles (sometimes referred to as “sputtering”). An example is ion beam etching in which parts are exposed to a beam of ions. Those exposed parts may be dislodged as a result of the ions chemically reacting with those parts to dislodge them (sometimes referred to as “chemical sputtering”) and/or physically dislodging those parts due to their kinetic energy (sometimes referred to as “physical sputtering”).


In contrast to etching, deposition—such as ion-beam deposition or immersion-based deposition—involves applying material to rather than removing material from a substrate/film.


SUMMARY

This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Nor is the claimed subject matter limited to implementations that solve any or all of the disadvantages noted in the Background section.


According to a first aspect, a microfabrication process for fabricating microstructures on a substrate is provided. The substrate has a current diffraction grating pattern formed by current surface modulations over at least a portion of the substrate's surface that exhibit a substantially uniform grating linewidth over the surface portion. The process comprises gradually changing an immersion depth of the substrate in a fluid, the fluid for patterning the substrate, so that different points on the surface portion are immersed in the fluid for different immersion times. The fluid changes the linewidth of the surface modulations at each immersed point on the surface portion by an amount determined by the immersion time of that point, thereby changing the current diffraction grating pattern to a new diffraction grating pattern formed by new surface modulations over the surface portion that exhibit a spatially varying grating linewidth that varies over the surface portion.


According to a second aspect, a microfabrication apparatus for fabricating microstructures on a substrate is provided. The substrate has a current diffraction grating pattern formed by current surface modulations over at least a portion of the substrate's surface that exhibit a substantially uniform grating linewidth over the surface portion. The apparatus comprises a substrate holder for supporting the substrate, a fluid container, a drive mechanism, and a controller. The fluid container configured to hold a fluid which is for patterning the substrate. The drive mechanism is coupled to the substrate holder. The controller is configured to control the drive mechanism to gradually change an immersion depth of the substrate in the fluid so that different points on the surface portion are immersed in the fluid for different immersion times. The fluid changes the linewidth of the surface modulations at each immersed point on the surface portion by an amount determined by the immersion time of that point, thereby changing the current diffraction grating pattern to a new diffraction grating pattern formed by new surface modulations over the surface portion that exhibit a spatially varying grating linewidth that varies over the surface portion.


According to a third aspect, products obtained by any of the manufacturing processes and/or using any of the manufacturing apparatuses disclosed herein are provided.





BRIEF DESCRIPTION OF FIGURES

To aid understanding of the subject matter, reference will now be made by way of example only to the following drawings in which:



FIG. 1A is a schematic plan view of an optical component;



FIG. 1B is a schematic illustration of an optical component, shown interacting with incident light and viewed from the side;



FIG. 2A is a schematic illustration of a straight binary grating, shown interacting with incident light and viewed from the side;



FIG. 2B is a schematic illustration of a slanted binary grating, shown interacting with incident light and viewed from the side;



FIG. 2C is a schematic illustration of an overhanging triangular grating, shown interacting with incident light and viewed from the side;



FIG. 3 schematically illustrates a microfabrication system;



FIG. 4A is a schematic illustration of a microfabrication system during an immersions step of a first microfabrication process;



FIGS. 4B and 4C schematically illustrate a cross section of a substrate before and after the immersion step of FIG. 4A respectively;



FIG. 5A is a schematic illustration of a microfabrication system during an immersion step of a second microfabrication process;



FIGS. 5B and 5C schematically illustrate a cross section of a substrate before and after the immersion step of FIG. 5A respectively;



FIG. 5D schematically illustrates a cross section of the substrate of FIG. 5C after further etching;



FIG. 6A is a schematic illustration of a microfabrication system during an immersion step of a third microfabrication process;



FIGS. 6B and 6C schematically illustrate a cross section of a substrate at different stages before the immersion step of FIG. 6A, and FIG. 6D schematically illustrates a cross section of that substrate after that immersion step;



FIG. 7 is a schematic block diagram of a microfabrication apparatus.





It should be noted that the drawings are not necessarily to scale unless otherwise indicated. Emphasis is instead placed on explaining the principles of particular embodiments.


DETAILED DESCRIPTION

Microfabrication processes may be used in the manufacturing of optical components. One example is the fabrication of optically diffractive structures (transmissive and/or reflective) that cause diffraction of visible light. Diffraction occurs when a propagating wave interacts with a structure, such as an obstacle or slit. Diffraction can be described as the interference of waves and is most pronounced when that structure is comparable in size to the wavelength of the wave. Optical diffraction of visible light is due to the wave nature of light and can be described as the interference of light waves. Visible light has wavelengths between approximately 390 and 700 nanometers (nm) and diffraction of visible light is most pronounced when propagating light encounters structures similar scale e.g. of order 100 or 1000 nm in scale.


One example of a diffractive structure is a periodic structure. Periodic structures can cause diffraction of light which is typically most pronounced when the periodic structure has a spatial period of similar size to the wavelength of the light. Types of periodic structures include, for instance, surface modulations on a surface of an optical component, refractive index modulations, holograms etc. When propagating light encounters the periodic structure, diffraction causes the light to be split into multiple beams in different directions. These directions depend on the wavelength of the light thus diffractions gratings cause dispersion of polychromatic (e.g. white) light, whereby the polychromatic light is split into different coloured beams travelling in different directions.


When the period structure is on a surface of an optical component, it is referred to a surface grating. When the periodic structure is due to modulation of the surface itself, it is referred to as a surface relief grating (SRG). An example of a SRG is uniform straight grooves in a surface of an optical component that are separated by uniform straight groove spacing regions. Groove spacing regions are referred to herein as “lines”, “grating lines” and “filling regions”. The nature of the diffraction by a SRG depends both on the wavelength of light incident on the grating and various optical characteristics of the SRG, such as line spacing, groove depth and groove slant angle. An SRG can be fabricated by way of a suitable microfabrication process, which may involve etching of and/or deposition on a substrate to fabricate a desired periodic microstructure on the substrate. The substrate may be the optical component itself or a production master such as a mould for manufacturing optical components.


SRGs have many useful applications. One example is an SRG light guide application. A light guide is an optical component used to transport light by way of internal reflection (e.g. total internal reflection) within the light guide. A light guide may be used, for instance, in a light guide-based display system for transporting light of a desired image from a light engine to a human eye to make the image visible to the eye. Incoupling and outcoupling SRGs on surface(s) of the light guide can be used for inputting light to and outputting light from the waveguide respectively.


Embodiments will now be described in the context of the manufacturing of SRGs.



FIGS. 1A and 1B show from the top and the side respectively a substantially transparent optical component 2, such as a wave guide, having an outer surface S. At least a portion of the surface S exhibits surface modulations that constitute a SRG pattern 4, which is one example of a microstructure. Such a portion is referred to as a “grating area”. The surface S lies substantially in a plane defined by x and y axes as shown in FIG. 1A. The z-axis represents a direction perpendicular to that plane and thus a direction substantially perpendicular to the surface S (referred to as the “the normal” to the surface S).



FIG. 1B shows the optical component 2, and in particular the grating 4, interacting with an incoming illuminating light beam I that is inwardly incident on the SRG 4. The light I is white light in this example, and thus has multiple colour components. The light I interacts with the grating 4 which splits the light into several beams directed inwardly into the optical component 2. Some of the light I may also be reflected back from the surface S as a reflected beam R0. A zero-order mode inward beam T0 and any reflection R0 are created in accordance with the normal principles of diffraction as well as other non-zero-order (±n-order) modes (which can be explained as wave interference). FIG. 1B shows first-order inward beams T1, T-1; it will be appreciated that higher-order beams may or may not also be created depending on the configuration of the optical component 2. Because the nature of the diffraction is dependent on wavelength, for higher-order modes, different colour components (i.e. wavelength components) of the incident light I are, when present, split into beams of different colours at different angles of propagation relative to one another as illustrated in FIG. 1B.



FIGS. 2A-2C are close-up schematic cross sectional views of different exemplary SRG patterns 4a-4c (collectively referenced as 4 herein) that may formed by modulation of the surface S of the optical component 2 (which is viewed from the side in these figures). Light beams are denoted as arrows whose thicknesses denote approximate relative intensity (with higher intensity beams shown as thicker arrows).



FIG. 2A shows an example of a “straight binary grating” pattern 4a. The straight binary grating 4a is formed of a series of grooves 7a in the surface S separated by protruding groove spacing regions 9a which are also referred to herein as “filling regions”, “grating lines” or simply “lines”. The pattern 4a has a spatial period of d (referred to as the “grating period”), which is the distance over which the modulations' shape repeats. The grooves 7a have a depth h and have substantially straight walls and substantially flat bases. As such, the filling regions have a height h and a width that is substantially uniform over the height h of the filling regions, labelled “w” in FIG. 2A (with w being some fraction f of the period: w=f*d).


For a straight binary grating, the walls are substantially perpendicular to the surface S. For this reason, the grating 4a causes symmetric diffraction of incident light I that is entering perpendicularly to the surface, in that each +n-order mode beam (e.g. T1) created by the pattern 4a has substantially the same intensity as the corresponding −n-order mode beam (e.g. T-1), typically less than about one fifth (0.2) of the intensity of the incident beam I.



FIG. 2B shows an example of a “slanted binary grating” pattern 4b. The slanted pattern 4b is also formed of grooves, labelled 7b, in the surface S having substantially straight walls and substantially flat bases separated by lines 9b of width w. However, in contrast to the straight pattern 4a, the walls are slanted by an amount relative to the normal, denoted by the angle α in FIG. 2B. The grooves 7b have a depth h as measured along the normal. Due to the asymmetry introduced by the non-zero slant, ±n-order mode inward beams travelling away from the slant direction have greater intensity that their ∓n-order mode counterparts (e.g. in the example of FIG. 2B, the T1 beam is directed away from the direction of slant and has usually greater intensity than the T-1 beam, though this depends on e.g. the grating period d); by increasing the slant by a sufficient amount, those ∓n counterparts can be substantially eliminated (i.e. to have substantially zero intensity). The intensity of the T0 beam is typically also reduced very much by a slanted binary grating such that, in the example of FIG. 2B, the first-order beam T1 typically has an intensity of at most about four fifths (0.8) the intensity of the incident beam I.


The binary patterns 4a and 4b can be viewed as spatial waveforms embedded in the surface S that have a substantially square wave shape (with period d). In the case of the pattern 4b, the shape is a skewed square wave shape skewed by a.



FIG. 2C shows an example of an “overhanging triangular grating” pattern 4c which is a special case of an overhanging “trapezoidal grating” pattern. The triangular pattern 4c is formed of grooves 7c in the surface S that are triangular in shape (and which thus have discernible tips) and which have a depth h as measured along the normal. Filling regions 9c take the form of triangular, tooth-like protrusions (teeth), having medians that make an angle α with the normal (a being the slant angle of the pattern 4c). The teeth have tips that are separated by d (which is the grating period of the pattern 4c), a width that is w at the base of the teeth and which narrows to substantially zero at the tips of the teeth. For the pattern of FIG. 4c, w≈d, but generally can be w<d. The pattern is overhanging in that the tips of the teeth extend over the tips of the grooves. It is possible to construct overhanging triangular grating patterns that substantially eliminate both the transmission-mode T0 beam and the ∓n-mode beams, leaving only ±n-order mode beams (e.g. only T1). The grooves have walls which are at an angle γ to the median (wall angle).


The pattern 4c can be viewed as a spatial waveform embedded in S that has a substantially triangular wave shape, which is skewed by α.


The grooves and spacing regions that form the patterns 4a-4c constitute surface modulations over the surface S.


In general, surface modulations over a surface result in surface protrusions and exhibit what is referred to herein as a “modulation width”, which is a characteristic scale along the surface of those surface modulations and which can be generally be defined in relation to a characteristic width of those protrusions that arise from the modulation over that surface. Generally, modulations over a surface can arise at least from extraneous material deposited on that surface, from modulations of that surface itself, or a combination of both. “Modulation width” is equivalently referred to as “grating linewidth” herein when the modulations form a diffraction grating pattern (with the grating linewidth being the width of the grating lines).


In the case of patterns 4a-4c, the grooves 7a-7c (collectively referenced as 7) and spacing regions 9a-9c (collectively referenced as 9) that form the patterns 4a-4c constitute modulations of the surface S itself, which exhibit a modulation width that can be defined as a characteristic width of the protruding filling regions 9. In the case of patterns 4a and 4b, protruding filling regions have a width that is substantially uniform over their height h and equal to w, and the modulation width can be defined as w. In the case of the pattern 4c, protruding filling regions have a width w at the base of the protrusions, and the modulation width can be usefully defined, for instance, as the base width w (although it can also be defined in terms of a filling region width at some other elevation). Other gratings are also possible, for example other types of trapezoidal grating patterns (which may not narrow in width all the way to zero), sinusoidal grating patterns etc. and have a modulation width that can be readily defined in a suitable manner.


In light guide-based display applications (e.g. where SRGs are used for coupling of light into and out of a light guide of the display system), d is typically between about 250 and 500 nm, and h between about 30 and 400 nm. The slant angle α is typically between about 0 and 45 degrees (such that slant direction is typically elevated above the surface S by an amount between about 45 and 90 degrees).


An SRG has a diffraction efficiency defined in terms of the intensity of desired diffracted beam(s) (e.g. T1) relative to the intensity of the illuminating beam I, and can be expressed as a ratio η of those intensities. As will be apparent from the above, slanted binary gratings (e.g. 4b—up to η≈0.8 if T1 is the desired beam) can achieve higher efficiency than non-slanted grating (e.g. 4a—only up to about η≈0.2 if T1 is the desired beam). With overhanging triangular gratings, it is possible to achieve near-optimal efficiencies of η1.


The performance of a SRG light guide-based display is strongly dependent on the efficiency of the gratings and their dependence on the incidence angle of the incoming light.


The techniques described below enable gratings (including, for example, binary, trapezoidal (e.g. triangular) and sinusoidal gratings) to be manufactured with variable w. That is, with modulation widths which vary as a function w(x,y) of position on the surface S.


In the following examples, a substrate (5FIG. 3) has an outer surface S′ that patterned on by way of microfabrication. The final patterned substrate may itself be for use as optical components (e.g. wave guides) in an optical system (e.g. display system) or it may for use as a production master for manufacturing such components e.g. moulds for moulding such components from polymer. Where the substrate 5 is an optical component, the substrate's surface S′ is the same as the surface S shown FIGS. 2A-2C. When the substrate 5 is a master (e.g. a mould) S′ still corresponds to S in that the structure of S′ is transferred (that is, copied) to S as part the manufacturing (e.g. moulding) process. The surface S′ lies substantially in a plane referred to herein as the xy-plane having x and y coordinates equivalent to those shown in FIG. 1A in relation to the surface S, with points in the xy-plane (and thus on the surface S′) being denoted (x,y).


The substrate is patterned over at least a portion of its surface (grating area) to form a grating, which may then be transferred to other components where applicable. The dimensional size of the grating area (e.g. being of order mm, cm or higher) is significantly larger than the grating period—there typical being e.g. thousands of lines/grooves per mm of grating. As such, even though there are a discrete number of lines/grooves in the grating area, this number is sufficiently large that grating characteristics can be viewed as mathematical functions over a substantially continuous domain of geometric points r=(x,y) (bold typeface denoting xy-vectors). For this reason, the general notation c(x,y) (or similar) is adopted for grating characteristics hereinbelow. Where applicable, references to “points” on surface portion (or similar) are to be construed accordingly, including in the claims below.


The linewitdh w(x,y), grating depth h(x,y) and slant a(x,y) are examples of such grating characteristics. The techniques below enable grating patterns to be manufactured on a surface portion with linewidth w(x,y), depth h(x,y) and slant a(x,y) that vary over that surface portion and, moreover, which do so gradually i.e. as substantially continuous mathematical functions over said substantially continuous domain of points.


A grating characteristic c(r)=c(x,y) is considered to spatially vary over a surface portion in the present context provided that grating characteristic c(r) changes by an overall amount ΔC=max c(r)−min c(r) that is significant as compared with a characteristic scale C of the grating characteristic c(r) itself, such as C=max |c(r)|. Examples of significant changes include when ΔC is the same order of magnitude, or one order of magnitude lower than, C. For example, for the grating patterns mentioned above with reference to FIGS. 2A-2C, the linewidth would be considered to be spatially varying in the present context at least when the linewidth changes by an overall amount ΔW of order of 5% of the period d or more. Where a grating characteristic exhibits only small, unintended variations, such as small, unintended variations arising from undesired manufacturing inaccuracies or imprecisions and/or other variations restricted to a similar scale, that characteristic is not considered to be spatially varying in the context of the present disclosure.


Spatial variations are considered gradual (substantially continuous) providing that grating characteristic's spatial gradient ∇c(x,y)—where ∇=(∂x, ∂y) is the gradient function for the xy-plane, is sufficiently small at all points r=(x,y) on the surface portion so that changes in the grating characteristic c(r) over small distances of order d are always at least 3 orders of magnitude smaller than ΔC at all points r i.e. so that |∇c(r)|*d˜10−3*ΔC or less for all r on the surface portion.


For instance, the disclosed techniques enable gratings to be manufactured with gradually varying linewidth w(x,y) which does not change by more than the order of 10−2 nm over a single grating period d, itself of order 102 or 103 nm, so that the linewidth gradient ∇w(x,y) does not exceed an amount of order of 10−4 or 10−5—at any point on the surface portion. FIG. 3 is a schematic illustration showing components of a microfabrication system 3. The microfabrication system 3 can be used in microfabrication process for fabricating microstructures on a substrate 5. The system 3 comprises a substrate holder 42 and a liquid container 44 that contains a fluid (liquid) 46. The substrate holder supports the substrate 5. The fluid 46 is for patterning the substrate 5, and in the following examples is a liquid etchant for selectively removing material from at least a portion of the surface S′ which can be substrate material of the substrate itself or some other material that is deposited on the surface S′ which is not shown in FIG. 3 but which is shown in later figures where applicable. Other material of this nature is referred to herein as “extraneous deposits” on S′.


The substrate 5 is supported by the holder 42, and the holder 42 and the container 44 are arranged, in a manner that enables the substrate 5 when supported to be lowered into and/or raised out of the fluid 44 at a vertical velocity v, thereby immersing the substrate 5 in and/or removing the substrate 5 from the fluid 44 in an immersion step of a microfabrication process. In either case, an immersion depth D(t) of the substrate 5 in the fluid 46 is changed over time t as {dot over (D)}(t)=v where {dot over (D)}(t) is the rate of chance of D(t). The immersion depth D(t) is shown in FIG. 3 as a distance between the far end of the substrate 5 from the holder 42 and the surface of the fluid 46, but can be defined as any distance measure that conveys a current extent to which the substrate 5 is currently immersed in the patterning liquid 42. The liquid 5 patterns the substrate when immersed in the liquid by reacting with the substrate or with extraneous deposits on the substrate to either remove material from or deposit material on the surface S′, depending on the nature of the fluid 46. Removed material may be substrate material of the substrate itself or extraneous material deposited on the substrate.


Prior to the immersion step, the substrate 5 has initial (current) surface modulations over at least a portion of the substrate's surface S′. These surface modulations exhibit a substantially uniform modulation width over the surface portion i.e. which is substantially the same at all points (x,y) on that surface portion. This modulation width is a characteristic width (e.g. base width) of surface protrusions resulting from these current modulations, which can be formed by protruding extraneous material deposited on S′ and/or by protruding substrate material of the substrate itself. These surface modulations constitute a current diffraction grating pattern that exhibits a substantially uniform linewidth of grating lines over the surface portion (i.e. which is substantially the same at all xy-locations on the surface portion).


The total amount of time for which a point (x,y) on the surface S′ remains immersed in the liquid 46 is referred to at the immersion time of that point. Whilst that point is immersed, the patterning fluid acts to remove material from or deposit material on any surface protuberances at that point and thus changes the modulation width at that point. The amount of material that is removed/deposited at that point depends on the immersion time of that point. Changing the immersion depth D(t) of the substrate in the patterning fluid 46 results in different points on the surface S′ being immersed in the fluid 46 for different amounts of time so that the modulation width is changed by different amounts at different points on S′. In other words, the initial surface modulations are changed to new surface modulations exhibiting a spatially varying modulation width w(x,y) that varies over S′ i.e. that varies as a function of xy-position. This causes the current diffraction pattern to be correspondingly changed to a new diffraction grating pattern that exhibits a spatially varying linewidths of grating lines over S′ i.e. that also varies over the surface S′ as a function of xy-position.


The immersion/removal of the substrate is gradual in that the immersion depth D(t) of the substrate 5 in the fluid 46 is gradually changed over time (i.e. {dot over (D)}(t)=v is slow). Herein a “gradual change in an immersion depth” or similar refers to the immersing of a substrate in and/or the raising of a substrate out of a patterning liquid (e.g. etchant) sufficiently slowly for the effects of the liquid (e.g. etching effect) on the modulation width at points on the substrate's surface which remain immersed in the liquid for more time to be measurably greater than the effects of the liquid on the modulation width at points on that surface which remain immersed in the liquid for less time. Whether or not particular motion is considered gradual in context will depend on factors such as a characteristic patterning (e.g. etching) speed of the liquid.


In the configuration of FIG. 3, the motion v of substrate is substantially linear i.e. the substrate holder 42 is moved upwards or downwards in substantially the direction of gravity.


Exemplary microfabrication processes which use the microfabrication system 3 in various configurations will now be described with reference to FIGS. 4A-6D. Substrates having a fused silica composition are used in these examples, however this is just an exemplary substrate material and the techniques may be applied to substrates made of different materials. It should be noted that these figures are not to scale and in particular that the distance scales of the various surface modulations are greatly enlarged to aid illustration. In practice, the changes in the linewidths are gradual such that the difference in linewidths between neighboring lines is hardly visible (though the effects can be observed from the manner in which light is diffracted). For example, an exemplary pattern may have a period of 500 nm and have a change of linewidth of 50 nm in 1 mm distance along the surface. There are 2000 lines in one mm and thus the difference in linewidths between neighboring lines in this case is only 0.025 nm.



FIG. 4A is a schematic illustration of the system 3 during an immersion step of a first microfabrication process, which is a first dip etching process in which a first substrate 5a is itself etched. That is, a first process in which a first type of patterning liquid is used, which is a first etchant 46a that reacts with the substrate 5a itself to remove substrate material of the substrate 5a itself. In this example, the etchant 4a reacts with the fused silica from which the substrate 5a is composed, although this is only an example and the same type of process may be applied to substrates made from different materials.


The substrate 5a has surface modulations over a portion 11 of the substrate's surface S′, which are surface modulations of the surface portion 11 itself formed by grooves and spacing regions in the surface portion 11. These surface modulations constitute a first grating pattern 4a, which is shown as a binary grating pattern but which could be a different grating pattern (e.g. triangular).


The substrate 5a is supported by the holder 42 and is gradually lowered into the etchant 46a during the dip etching. A protective mask 20a is selectively deposited on the substrate's surface S′ to expose only the surface portion 11, and which protects the remaining portion of the surface S′ (which are not intended for dip etching) from the effects of the etchant 46a so that only the surface portion 11a is etched. The other surfaces of the substrate 5a may also be similarly protected (not shown in FIG. 4A).



FIG. 4B shows a cross section of the substrate 5a before the immersion step of FIG. 4A. At this point, the grooves and filling regions constitute initial surface modulations of the surface portion S′, which are substantially uniform in that the lines in the surface portion 11 have substantially the same width as one another wcurrent, which is the linewidth before the immersion of the substrate 5a. The uniform filling regions constitute an initial grating pattern 4a(i). The initial surface modulations can be formed, for instance, using known etching techniques e.g. ion beam etching of the substrate 5a.



FIG. 4C shows a cross section of the substrate 5a after the immersion step of FIG. 4A has been completed. In FIG. 4C, the left hand side of the substrate 5a corresponds to the far end of the substrate 5a from the holder 42 as shown in FIG. 4A i.e. the left end of the substrate is the end that was first immersed in the etchant 46a and which was thus subject to the longest immersion time.


The etchant 46a attacks all fused silica surfaces exposed to the etchant. The etching by the etchant 46a is substantially isotropic (i.e. the etching speed is the same in all directions), which affects the filling regions as shown in FIG. 4C (note the dotted lines in FIG. 4C serve to illustrate the original extent of the filling regions before etching). For each filling region, a width of substrate material w2, w4 is removed from the left hand and right hand side of that filling region respectively; an amount of substrate material denoted by w3 is removed from the top of that region and an amount of material w1 is removed from the groove left-adjacent to that region. The amounts w1-w4 depend on the total time for which that region is immersed in the etchant 46a, which varies as a function of xy-position. Thus, it will be appreciated that w1-w4 vary as a function of xy-position although not explicitly denoted as such. For any given filling region at a point (x,y), an approximation w1≈w2≈w3≈w4≈Δw(x,y) can be made, wherein Δw(x,y) is determined by the speed of the etching and the immersion time at that point (x,y). Thus the width of that filling region is reduced to about wcurrent−2*Δw(x,y). Thus, it can be seen that an effect of the immersion step is to change the initial surface modulations to new surface modulations that exhibit a spatially varying modulation width w(x,y)≈wcurrent−2*Δw(x,y) that varies over the surface portion 11 i.e. as a function of xy-position. Because the width of each filling region is changed by a slightly different amount, this changes the initial grating pattern 4a(i) to a new grating pattern 4a(ii) that exhibits a spatially varying grating linewidth w(x,y) that varies over the surface portion 11 i.e. as a function of xy-position, as illustrated in FIG. 4C.



FIG. 5A is a schematic illustration of the system 3 during an immersion step of a second microfabrication process, which is a second dip etching process in which extraneous material 20b deposited on a second substrate 5b is etched (rather than the substrate 5b itself). That is, a second process in which a second type of patterning liquid is used, which is a second etchant 46b that reacts with this extraneous material to remove some of that material. In this example, the extraneous material is chromium (Cr), although this is only an example and the same type of process may be applied to substrates with different extraneous deposits, such as different metals.


The substrate 5b has surface modulations which are formed by intermittent chromium deposits in the form of chromium lines 20b deposited on the substrate's surface S′. The chromium lines 20b are themselves covered by photoresist 21. The chromium lines form a partial film that leaves regions of the substrate's surface S′ exposed but other regions covered. These surface modulations constitute a second grating pattern 4b.


The substrate 5b is supported by the holder 42 and is gradually lowered into the etchant 46b during the dip etching.



FIG. 5B shows a cross section of the substrate 5b before the immersion step of FIG. 5A. At this point, the chromium deposits 20b constitute initial, substantially uniform surface modulations over the surface S′ in that the individual chromium lines have substantially the same width wcurrent as one another—which is the modulation width before the immersion of the substrate 5b.


The initial surface modulations can be formed using known etching techniques. For example, one manner of achieving this involves first coating the whole (or most) of the surface S′ in a mask layer, which would be a chromium layer in this example. The mask layer is then covered with a photoresist. A two-dimensional image of a desired grating pattern is then projected onto the photoresist using conventional techniques. The photoresist is then developed to remove either the exposed parts or the non-exposed parts (depending on the composition of the photoresist), leaving selective parts of the mask layer visible (i.e. revealing only selective parts) and the remaining parts covered by the remaining photoresist. The uncovered parts of the mask layer can then be removed using conventional etching techniques e.g. a Reactive Ion Etching (RIE) process which removes the uncovered parts of the mask but not the parts covered by the photoresist, and which does not substantially affect the substrate itself.


The chromium lines constitute an initial diffraction grating pattern 4b(i) exhibiting a substantially uniform grating linewidth wcurrent over the surface S′ i.e. which is substantially the same at all points (x,y) on the surface S′.


The etchant 46b attacks all non-protected chromium surfaces (not protected by the photoresist 21). The photoresist 21 protects the top parts of the chromium lines and the fused silica (i.e. the substrate 5b itself) protects the bottom part of the chromium lines. Thus, only the sides of the chromium lines are exposed to the etchant 4b during the immersion step of FIG. 5A.



FIG. 5C shows a cross section of the substrate 5b after the immersion step of FIG. 5A has been completed. In FIG. 5C, the left hand side of the substrate 5b corresponds to the far end of the substrate 5b from the holder 42 as shown in FIG. 5A i.e. the left end of the substrate is the end that was first immersed in the etchant 46b and which was thus subject to the longest immersion time.


A respective amount of chromium is removed from the sides of each chromium line. That amount depends on the total time for which that line is immersed in the etchant 46b, which varies as a function of xy-position. Thus, it will be appreciated that said amount varies as a function of xy-position. Thus, it can be seen that an effect of the immersion step is to change the initial surface modulations to new surface modulations that exhibit a spatially varying modulation width w(x,y) that varies over the surface S′ i.e. as a function of xy-position. Because the width of each chromium line is changed by a slightly different amount, this changes the initial grating pattern 4b(i) to a new grating pattern 4b(ii) that exhibits a spatially varying grating linewidth w(x,y) that varies over the surface S′ i.e. as a function of xy-position, as illustrated in FIG. 5C.


After completions of the immersion step of FIG. 5A, the substrate can then be subjected to a further etching process in which the remaining chromium serves as an etching mask. This could for example be ion beam etching of the substrate 5b, in which the remaining chromium protects the covered regions of the substrate (and only those regions) from the effects of an ion beam, or further dip etching but of the substrate 5b itself, in which the chromium protects the covered regions (and only those regions) from the effect of a liquid etchant that reacts with the substrate itself (which could have the same composition as the etchant 4a of FIG. 4A). In this manner, the diffraction pattern 4b(ii) can be transferred to the substrate 5b as illustrated in FIG. 5D, which is a cross section of the substrate 5b following such a further etching process.



FIG. 6A is a schematic illustration of the system 3 during an immersion step of a third microfabrication process, which is a third dip etching process in which other extraneous material deposited on a third substrate 5c is etched (rather than the substrate 5c itself). That is, a third process in which a third type of patterning liquid is used, which is a third etchant 46c that reacts with this extraneous material to remove some of that material. In this example, the extraneous material is silicon dioxide (SiO2), which reacts with the etchant 4c although this is only an example and the same type of process may be applied to substrates with different extraneous deposits.


The substrate 5c has surface modulations which are formed by a combination of modulations of the substrate's surface S′ itself and a layer 23 of silicon dioxide deposited on the modulated surface S′. These surface modulations constitute a third diffraction pattern 4c.


The substrate 5c is supported by the holder 42 and is gradually lowered into the etchant 46c during the dip etching.



FIGS. 6B and 6C shows cross sections of the substrate 5c at different stages before the immersion step of FIG. 6A.



FIG. 6B shows the substrate 5c before the silicon dioxide layer 23 has been applied. A preliminary grating pattern 4c(0) is formed by only the modulations of the surface S′ itself, specifically by substantially uniform grooves and filling regions which can be created e.g. using known etching techniques.



FIG. 6C shows the substrate 5c after the silicone dioxide layer 23 has been applied to the modulated surface S′. The silicon dioxide layer is a substantially even layer that is applied using atomic layer deposition (ALD). This effectively increases a fill factor of the modulations in the surface S′ by enlarging the filling regions. This effectively creates surface modulations, formed by the combination of the modulations in the surface S′ and the deposited silicon dioxide, that have a modulation width wcurrent that is wider than that of the modulations in the surface S′ alone, as illustrated in FIG. 6C. The combined modulations are substantially uniform modulations in that the width wcurrent is substantially constant over the surface S′ and constitute an initial (i.e. pre-etching) diffraction grating pattern 4c(i).


The etchant 46c attacks the silicon dioxide 23 deposits but not the fused silica of the substrate 5c itself. FIG. 6D shows a cross section of the substrate 5c after the immersion step of FIG. 6A has been completed. In FIG. 6C, the left hand side of the substrate 5c corresponds to the far end of the substrate 5c from the holder 42 as shown in FIG. 6A i.e. the left end of the substrate is the end that was first immersed in the etchant 46c and which was thus subject to the longest immersion time.


A respective amount of silicon dioxide 23 is removed at each immersed point (x,y). That amount depends on the total time for which that point is immersed in the etchant 46c, which varies as a function of xy-position. Thus, it will be appreciated that the width of each enlarged filling region is reduced by an amount that depends on the xy-position of that filling region, which amounts to a reduction of the fill factor at that point. Thus, it can be seen that an effect of the immersion step is to change the initial surface modulations to new surface modulations that exhibit a spatially varying modulation width w(x,y) (or equivalently a spatially varying, modulated fill factor) that varies over the surface S′ i.e. as a function of xy-position. Because the width of each enlarged filling region is changed by a slightly different amount, this changes the initial grating pattern 4c(i) to a new grating pattern 4c(ii) that exhibits a spatially varying grating linewidth w(x,y) that varies over the surface S′ i.e. as a function of xy-position, as illustrated in FIG. 6C.


The gradual changing of the immersion depth of the substrate results in a linewidth profile that changes correspondingly gradually (i.e. substantially continuously over a significantly larger distance scale than the grating period d—see above). The scale over which the linewidth w(x,y) changes is sufficiently large compared to the grating period d (that is, the spatial variations in linewidth w(x,y) are sufficiently gradual over the substrate's surface) that the linewidth w(x,y) can be effectively considered as a substantially continuous mathematical function of xy-position that is defined at every point (x,y) in the relevant portion of the xy-place.


As will be apparent, the above described processes result in the creation of new grating patterns that have grating linewidths w(x,y) that vary as a function of xy-position and which thus have gradients ∇w(x,y) (where ∇=(∂x,∂y) is the gradient function for the xy-plane) that are non-zero at at least some xy-locations.


In the above, substantially linear substrate motion is considered that charges an immersion depth D(t). As will be appreciated, this results in grating linewidth profiles w(x,y) that have gradients ∇w(x,y) substantially aligned with the direction of the linear motion relative to the surface S′. In alternative microfabrication apparatus configurations more complex grating profiles can be created by introducing rotational motion of the substrate 5 in addition to the linear motion that have grating linewidth gradients ∇w(x,y) whose direction can vary at different points in the xy-plane.


It should be noted that the immersion methods described above do not change the grating period d of patterns to which they are applied. For some grating patterns, the period is substantially constant everywhere on the surface (in which case it remains constant following the immersion); in other cases, the period is not constant to begin with (and is again unchanged by the immersion).


In the above examples of FIGS. 4A-6D, a substrate is gradually immersed in a patterning liquid though it will be appreciated that similar effects can be achieved by alternatively or additionally gradually raising a substrate out of a patterning liquid in which it has already been immersed.


Moreover, whilst in the above a patterning liquid in the form of an etchant is used to remove material to change a modulation width of a grating pattern, alternatively a patterning liquid in the form of a depositant may be used instead, which depositant changes the modulation width by depositing material on the surface portion, in particular by depositing material on surface protrusions resulting from modulations over that surface to increase the width of those protrusions.



FIG. 5 is block diagram of a microfabrication apparatus 50 incorporating the microfabrication system 3. The system comprises a controller 52 having an input configured to receive desired grating profile information 54 that defines a desired grating profile i.e. that defines the manner in which the grating linewidth w(x,y) is to (continuously) vary as a function of position (x,y) on the surface. The controller is connected to a drive mechanism 56. The drive mechanism 56 is mechanically coupled to the holder 42 in a manner that enables it to effect controlled movement of the substrate holder to control the immersion level of the supported substrate 5, in particular vertical, linear movement and possibly rotational movement where applicable. As such, the drive mechanism 38 can be controlled to effect the desired gradual immersion of the substrate in and/or removal of the substrate form the patterning liquid 46, detailed above.


The controller 52 converts the desired grating profile information 54 into control signals that are outputted to the drive mechanism during microfabrication procedures, causing the drive mechanism 36 to move the holder to effect the desired profile in the manner described above. The drive mechanism 56 comprises one or more motors that are mechanically coupled to the holder to effect the desired motion.


The controller 52 can be implemented as code executed on a suitable computer system, and the desired profile information 54 can be held in computer storage as data that is accessible to that code when executed.


Whilst the above considers a substantially software-implemented controller 32, the functionality of the controller can be implemented using software, firmware, hardware (e.g., fixed logic circuitry), or a combination of these implementations. The terms “module,” “functionality,” “component” and “logic” as used herein generally represent, where applicable, software, firmware, hardware, or a combination thereof. In the case of a software implementation, the module, functionality, or logic represents program code that performs specified tasks when executed on a processor (e.g. CPU or CPUs). The program code can be stored in one or more computer readable memory devices. The features of the techniques described below are platform-independent, meaning that the techniques may be implemented on a variety of commercial computing platforms having a variety of processors.


For example, the apparatus may also include an entity (e.g. software) that causes hardware of a computer of the apparatus to perform operations, e.g., processors functional blocks, and so on. For example, the computer may include a computer-readable medium that may be configured to maintain instructions that cause the computer, and more particularly the operating system and associated hardware of the computer to perform operations. Thus, the instructions function to configure the operating system and associated hardware to perform the operations and in this way result in transformation of the operating system and associated hardware to perform functions. The instructions may be provided by the computer-readable medium to the computer through a variety of different configurations.


One such configuration of a computer-readable medium is signal bearing medium and thus is configured to transmit the instructions (e.g. as a carrier wave) to the computing device, such as via a network. The computer-readable medium may also be configured as a computer-readable storage medium and thus is not a signal bearing medium. Examples of a computer-readable storage medium include a random-access memory (RAM), read-only memory (ROM), an optical disc, flash memory, hard disk memory, and other memory devices that may us magnetic, optical, and other techniques to store instructions and other data.


Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims
  • 1. A microfabrication process for fabricating microstructures on a substrate, the substrate having a current diffraction grating pattern formed by current surface modulations over at least a portion of the substrate's surface that exhibit a substantially uniform grating linewidth over the surface portion, the process comprising: gradually changing an immersion depth of the substrate in a fluid, the fluid for patterning the substrate, so that different points on the surface portion are immersed in the fluid for different immersion times;wherein the fluid changes the linewidth of the surface modulations at each immersed point on the surface portion by an amount determined by the immersion time of that point, thereby changing the current diffraction grating pattern to a new diffraction grating pattern formed by new surface modulations over the surface portion that exhibit a spatially varying grating linewidth that varies over the surface portion.
  • 2. A microfabrication process according to claim 1 wherein the current surface modulations are formed by modulations of the surface portion itself.
  • 3. A microfabrication process according to claim 2 wherein the current modulations of the surface portion constitute a binary, trapezoidal or sinusoidal grating pattern.
  • 4. A microfabrication process according to claim 1 wherein the current surface modulations are formed by extraneous deposits on the surface portion.
  • 5. A microfabrication process according to claim 4 wherein the extraneous deposits form a partial film on the surface portion that leaves regions of the surface portion exposed.
  • 6. A microfabrication process according to claim 1 wherein the current surface modulations are formed by a combination of modulations of the surface portion itself and extraneous deposits on the modulated surface portion.
  • 7. A microfabrication process according to claim 6 wherein the extraneous deposits cover the entirety of the modulated surface portion.
  • 8. A microfabrication process according to claim 7 wherein the extraneous deposits are applied using atomic layer deposition.
  • 9. A microfabrication process according to claim 1 wherein the fluid is an etchant that changes the modulation width by removing material from the surface portion.
  • 10. A microfabrication process according to claim 9 wherein the removed material is substrate material of the substrate itself.
  • 11. A microfabrication process according to claim 9 wherein the removed material is of extraneous deposits on the surface portion, and wherein the new diffraction pattern results from the extraneous deposits remaining on the substrate after the step of changing the immersion depth has been completed.
  • 12. A microfabrication process according to claim 11 wherein the remaining deposits leave regions of the surface portion exposed and the process further comprises performing further etching of the substrate after the step of changing the immersion depth has been completed, wherein the remaining extraneous deposits on the surface portion serve as an etching mask in the further etching of the substrate so that the new diffraction pattern is transferred to the substrate.
  • 13. A microfabrication process according to claim 12 wherein the further etching comprises dip etching and/or ion beam etching of the substrate.
  • 14. A microfabrication process according to claim 1 wherein the fluid is a depositant that changes the modulation width by depositing material on the surface portion.
  • 15. A microfabrication process according to claim 1 wherein the substrate with the new diffraction pattern is for use as an optical component in an optical system.
  • 16. A microfabrication process according to claim 8 wherein the substrate with the new diffraction pattern is for use as a waveguide in a display system.
  • 17. A microfabrication process according to claim 1 wherein the substrate with the new diffraction pattern is for use as a production master for manufacturing optical components and wherein the process further comprises using the production master to manufacture optical components.
  • 18. A microfabrication apparatus for fabricating microstructures on a substrate, the substrate having current a diffraction grating pattern formed by current surface modulations over at least a portion of the substrate's surface that exhibit a substantially uniform grating linewidth over the surface portion, the apparatus comprising: a substrate holder configured to support the substrate;a fluid container configured to hold a fluid, the fluid for patterning the substrate;a drive mechanism coupled to the substrate holder; anda controller configured to control the drive mechanism to gradually change an immersion depth of the substrate in the fluid so that different points on the surface portion are immersed in the fluid for different immersion times;wherein the fluid changes the linewidth width of the surface modulations at each immersed point on the surface portion by an amount determined by the immersion time of that point, thereby changing the current diffraction grating pattern to a new diffraction grating pattern formed by new surface modulations that exhibit a spatially varying grating linewidth that varies over the surface portion.
  • 19. A microfabrication process for fabricating microstructures on a substrate, the substrate having a current diffraction grating pattern formed by current surface modulations over at least a portion of the substrate's surface that exhibit a substantially uniform grating linewidth over the surface portion, the process comprising: gradually changing an immersion depth of the substrate in an etchant so that different points on the surface portion are immersed in the etchant for different immersion times;wherein the etchant changes, by removing material from the surface portion, the linewidth of the surface modulations at each immersed point on the surface portion by an amount determined by the immersion time of that point, thereby changing the current diffraction grating pattern to a new diffraction grating pattern formed by new surface modulations over the surface portion that exhibit a spatially varying grating linewidth that varies over the surface portion.
  • 20. The microfabrication apparatus according to claim 18 wherein the current surface modulations are formed by modulations of the surface portion itself.
US Referenced Citations (463)
Number Name Date Kind
3542453 Kantor Nov 1970 A
3836258 Courten et al. Sep 1974 A
3906528 Johnson Sep 1975 A
3971065 Bayer Jul 1976 A
4294507 Johnson Oct 1981 A
4711512 Upatnieks Dec 1987 A
4758087 Hicks, Jr. Jul 1988 A
4799752 Carome Jan 1989 A
4822145 Staelin Apr 1989 A
4860361 Sato et al. Aug 1989 A
4957351 Shioji Sep 1990 A
5004673 Vlannes Apr 1991 A
5019808 Prince et al. May 1991 A
5019898 Chao et al. May 1991 A
5106181 Rockwell, III Apr 1992 A
5146355 Prince et al. Sep 1992 A
5309169 Lippert May 1994 A
5313535 Williams May 1994 A
5359444 Piosenka et al. Oct 1994 A
5413884 Koch et al. May 1995 A
5455458 Quon et al. Oct 1995 A
5459611 Bohn et al. Oct 1995 A
5483307 Anderson Jan 1996 A
5543588 Bisset et al. Aug 1996 A
5549212 Kanoh Aug 1996 A
5574473 Sekiguchi Nov 1996 A
5579830 Giammaruti Dec 1996 A
5583609 Mizutani et al. Dec 1996 A
5606455 Eichenlaub Feb 1997 A
5614941 Hines Mar 1997 A
5648643 Knowles et al. Jul 1997 A
5651414 Suzuki et al. Jul 1997 A
5673146 Kelly Sep 1997 A
5708449 Heacock et al. Jan 1998 A
5714967 Okamura et al. Feb 1998 A
5737171 Buller et al. Apr 1998 A
5751476 Matsui et al. May 1998 A
5771042 Santos-Gomez Jun 1998 A
5771320 Stone Jun 1998 A
5772903 Hirsch Jun 1998 A
5856842 Tedesco Jan 1999 A
5861931 Gillian et al. Jan 1999 A
5886822 Spitzer Mar 1999 A
5940149 Vanderwerf Aug 1999 A
5959664 Woodgate Sep 1999 A
5982553 Bloom et al. Nov 1999 A
5991087 Rallison Nov 1999 A
6101008 Popovich Aug 2000 A
6144439 Carollo Nov 2000 A
6160667 Smoot Dec 2000 A
6169829 Laming Jan 2001 B1
6181852 Adams Jan 2001 B1
6226178 Broder et al. May 2001 B1
6239502 Grewe et al. May 2001 B1
6271808 Corbin Aug 2001 B1
6307142 Allen et al. Oct 2001 B1
6323949 Lading et al. Nov 2001 B1
6323970 Popovich Nov 2001 B1
6377401 Bartlett Apr 2002 B1
6411512 Mankaruse et al. Jun 2002 B1
6417892 Sharp et al. Jul 2002 B1
6446442 Batchelor et al. Sep 2002 B1
6466198 Feinstein Oct 2002 B1
6470289 Peters et al. Oct 2002 B1
6481851 McNelley et al. Nov 2002 B1
6483580 Xu et al. Nov 2002 B1
6496218 Takigawa et al. Dec 2002 B2
6529331 Massof et al. Mar 2003 B2
6542307 Gleckman et al. Apr 2003 B2
6545650 Yamada et al. Apr 2003 B1
6553165 Temkin et al. Apr 2003 B1
6554428 Fergason et al. Apr 2003 B2
6577411 David Jun 2003 B1
6580529 Amitai et al. Jun 2003 B1
6606152 Littau Aug 2003 B2
6621702 Elias et al. Sep 2003 B2
6631755 Kung et al. Oct 2003 B1
6635999 Belliveau Oct 2003 B2
6639201 Almogy et al. Oct 2003 B2
6735499 Ohki et al. May 2004 B2
6753828 Tuceryan et al. Jun 2004 B2
6775460 Steiner et al. Aug 2004 B2
6792328 Laughery et al. Sep 2004 B2
6804115 Lai Oct 2004 B2
6809925 Belady et al. Oct 2004 B2
6825987 Repetto et al. Nov 2004 B2
6829095 Amitai Dec 2004 B2
6867753 Chinthammit et al. Mar 2005 B2
6888613 Robins et al. May 2005 B2
6889755 Zuo et al. May 2005 B2
6906901 Liu Jun 2005 B1
6916584 Sreenivasan et al. Jul 2005 B2
6919867 Sauer Jul 2005 B2
6947020 Kiser et al. Sep 2005 B2
6964731 Krisko et al. Nov 2005 B1
6971443 Kung et al. Dec 2005 B2
6992738 Ishihara et al. Jan 2006 B2
6997241 Chou et al. Feb 2006 B2
7006215 Hoff et al. Feb 2006 B2
7015876 Miller Mar 2006 B1
7031894 Niu et al. Apr 2006 B2
7048385 Beeson et al. May 2006 B2
7069975 Haws et al. Jul 2006 B1
7099005 Fabrikant et al. Aug 2006 B1
7113605 Rui et al. Sep 2006 B2
7116555 Kamath et al. Oct 2006 B2
7151635 Bidnyk et al. Dec 2006 B2
7184615 Levola Feb 2007 B2
7189362 Nordin et al. Mar 2007 B2
7191820 Chou et al. Mar 2007 B2
7193584 Lee et al. Mar 2007 B2
7196758 Crawford et al. Mar 2007 B2
7212709 Hosoi May 2007 B2
7212723 McLeod et al. May 2007 B2
7250930 Hoffman et al. Jul 2007 B2
7261453 Morejon et al. Aug 2007 B2
7261827 Ootsu Aug 2007 B2
7271795 Bradski Sep 2007 B2
7277282 Tate Oct 2007 B2
7301587 Uehara et al. Nov 2007 B2
7333690 Peale et al. Feb 2008 B1
7337018 Espinoza-Ibarra et al. Feb 2008 B2
7359420 Shchegrov et al. Apr 2008 B2
7365734 Fateh et al. Apr 2008 B2
7369101 Sauer et al. May 2008 B2
7372565 Holden et al. May 2008 B1
7376852 Edwards May 2008 B2
7396133 Burnett et al. Jul 2008 B2
7412306 Katoh et al. Aug 2008 B2
7416017 Haws et al. Aug 2008 B2
7417617 Eichenlaub Aug 2008 B2
7428001 Schowengerdt et al. Sep 2008 B2
7430349 Jones Sep 2008 B2
7430355 Heikenfeld et al. Sep 2008 B2
7455102 Cheng Nov 2008 B2
7505269 Cosley et al. Mar 2009 B1
7513627 Larson et al. Apr 2009 B2
7515143 Keam et al. Apr 2009 B2
7532227 Nakajima et al. May 2009 B2
7542665 Lei Jun 2009 B2
7551814 Smits Jun 2009 B1
7576916 Amitai Aug 2009 B2
7583327 Takatani Sep 2009 B2
7607111 Vaananen et al. Oct 2009 B2
7612882 Wu et al. Nov 2009 B2
7619895 Wertz et al. Nov 2009 B1
7631687 Yang Dec 2009 B2
7646606 Rytka et al. Jan 2010 B2
7649594 Kim et al. Jan 2010 B2
7656912 Brueck et al. Feb 2010 B2
7660500 Konttinen et al. Feb 2010 B2
7679641 Lipton et al. Mar 2010 B2
7693292 Gross et al. Apr 2010 B1
7701716 Blanco, Jr. et al. Apr 2010 B2
7716003 Wack et al. May 2010 B1
7719769 Sugihara et al. May 2010 B2
7728933 Kim et al. Jun 2010 B2
7768534 Pentenrieder et al. Aug 2010 B2
7777944 Ho et al. Aug 2010 B2
7817104 Ryu et al. Oct 2010 B2
7826508 Reid Nov 2010 B2
7832885 Hsiao et al. Nov 2010 B2
7843691 Reichert et al. Nov 2010 B2
7871811 Fang et al. Jan 2011 B2
7894613 Ong et al. Feb 2011 B1
7903409 Patel et al. Mar 2011 B2
7909958 Washburn et al. Mar 2011 B2
7941231 Dunn May 2011 B1
7986462 Kobayashi et al. Jul 2011 B2
8004621 Woodgate et al. Aug 2011 B2
8014644 Morimoto et al. Sep 2011 B2
8033709 Kao et al. Oct 2011 B2
8046616 Edwards Oct 2011 B2
8061411 Xu et al. Nov 2011 B2
8085948 Thomas et al. Dec 2011 B2
8092064 Erchak et al. Jan 2012 B2
8125579 Khan et al. Feb 2012 B2
8128800 Seo et al. Mar 2012 B2
8160411 Levola et al. Apr 2012 B2
8162524 Van Ostrand et al. Apr 2012 B2
8195220 Kim et al. Jun 2012 B2
8233204 Robbins et al. Jul 2012 B1
8233273 Chen et al. Jul 2012 B2
8246170 Yamamoto et al. Aug 2012 B2
8274614 Yokote et al. Sep 2012 B2
8358400 Escuti Jan 2013 B2
8384999 Crosby et al. Feb 2013 B1
8392035 Patel et al. Mar 2013 B2
8395898 Chamseddine et al. Mar 2013 B1
8418083 Lundy et al. Apr 2013 B1
8446340 Aharoni May 2013 B2
8472119 Kelly Jun 2013 B1
8482920 Tissot et al. Jul 2013 B2
8576143 Kelly Nov 2013 B1
8611014 Valera et al. Dec 2013 B2
8629815 Brin et al. Jan 2014 B2
8638498 Bohn et al. Jan 2014 B2
8645871 Fong et al. Feb 2014 B2
8666212 Amirparviz Mar 2014 B1
8712598 Dighde et al. Apr 2014 B2
8754831 Kollin et al. Jun 2014 B2
8810600 Bohn et al. Aug 2014 B2
8817350 Robbins et al. Aug 2014 B1
8823531 McCleary et al. Sep 2014 B1
8909384 Beitelmal et al. Dec 2014 B1
8917453 Bohn Dec 2014 B2
8934235 Rubenstein et al. Jan 2015 B2
8941683 Son et al. Jan 2015 B2
8989535 Robbins Mar 2015 B2
20010043208 Furness, III et al. Nov 2001 A1
20020035455 Niu et al. Mar 2002 A1
20020038196 Johnson et al. Mar 2002 A1
20020041735 Cai et al. Apr 2002 A1
20020044152 Abbott et al. Apr 2002 A1
20020044162 Sawatari Apr 2002 A1
20020063820 Broer et al. May 2002 A1
20020097558 Stone et al. Jul 2002 A1
20020171939 Song Nov 2002 A1
20020180659 Takahashi Dec 2002 A1
20030006364 Katzir et al. Jan 2003 A1
20030023889 Hofstee et al. Jan 2003 A1
20030179453 Mori et al. Sep 2003 A1
20040011503 Kung et al. Jan 2004 A1
20040042724 Gombert et al. Mar 2004 A1
20040085649 Repetto et al. May 2004 A1
20040108971 Waldern et al. Jun 2004 A1
20040109234 Levola Jun 2004 A1
20040135209 Hsieh et al. Jul 2004 A1
20040151466 Crossman-Bosworth Aug 2004 A1
20040267990 Lin Dec 2004 A1
20050100272 Gilman May 2005 A1
20050174737 Meir Aug 2005 A1
20050207120 Tseng et al. Sep 2005 A1
20050243107 Haim et al. Nov 2005 A1
20050248705 Smith et al. Nov 2005 A1
20050285878 Singh et al. Dec 2005 A1
20060018025 Sharon et al. Jan 2006 A1
20060032616 Yang Feb 2006 A1
20060038881 Starkweather et al. Feb 2006 A1
20060054787 Olsen et al. Mar 2006 A1
20060072206 Tsuyuki et al. Apr 2006 A1
20060118280 Liu Jun 2006 A1
20060129951 Vaananen et al. Jun 2006 A1
20060132806 Shchegrov et al. Jun 2006 A1
20060132914 Weiss et al. Jun 2006 A1
20060139447 Unkrich Jun 2006 A1
20060152646 Schrader Jul 2006 A1
20060164382 Kulas et al. Jul 2006 A1
20060183331 Hofmann Aug 2006 A1
20060196643 Hata et al. Sep 2006 A1
20060221448 Nivon et al. Oct 2006 A1
20060228073 Mukawa et al. Oct 2006 A1
20060249765 Hsieh Nov 2006 A1
20070002412 Aihara Jan 2007 A1
20070008456 Lesage et al. Jan 2007 A1
20070023703 Sunaoshi et al. Feb 2007 A1
20070027591 Goldenberg et al. Feb 2007 A1
20070041684 Popovich et al. Feb 2007 A1
20070097019 Wynne-Powell et al. May 2007 A1
20070147673 Crandall Jun 2007 A1
20070153395 Repetto et al. Jul 2007 A1
20070177260 Kuppenheimer et al. Aug 2007 A1
20070214180 Crawford Sep 2007 A1
20070236959 Tolbert Oct 2007 A1
20070284093 Bhatti et al. Dec 2007 A1
20080014534 Barwicz et al. Jan 2008 A1
20080025350 Arbore et al. Jan 2008 A1
20080043100 Sobel et al. Feb 2008 A1
20080043425 Hebert et al. Feb 2008 A1
20080088603 Eliasson et al. Apr 2008 A1
20080088624 Long et al. Apr 2008 A1
20080106677 Kuan et al. May 2008 A1
20080117341 McGrew May 2008 A1
20080141681 Arnold Jun 2008 A1
20080150913 Bell et al. Jun 2008 A1
20080174735 Quach et al. Jul 2008 A1
20080232680 Berestov et al. Sep 2008 A1
20080248852 Rasmussen Oct 2008 A1
20080285140 Amitai Nov 2008 A1
20080297535 Reinig Dec 2008 A1
20080303918 Keithley Dec 2008 A1
20080311386 Wendt Dec 2008 A1
20090002939 Baugh et al. Jan 2009 A1
20090015742 Liao et al. Jan 2009 A1
20090021908 Patel et al. Jan 2009 A1
20090051283 Cok et al. Feb 2009 A1
20090084525 Satou et al. Apr 2009 A1
20090092261 Bard Apr 2009 A1
20090097127 Amitai Apr 2009 A1
20090128449 Brown et al. May 2009 A1
20090128901 Tilleman et al. May 2009 A1
20090180250 Holling et al. Jul 2009 A1
20090189974 Deering Jul 2009 A1
20090190003 Park et al. Jul 2009 A1
20090195756 Li et al. Aug 2009 A1
20090199128 Matthews et al. Aug 2009 A1
20090222147 Nakashima et al. Sep 2009 A1
20090224416 Laakkonen Sep 2009 A1
20090235203 Iizuka Sep 2009 A1
20090244413 Ishikawa et al. Oct 2009 A1
20090246707 Li et al. Oct 2009 A1
20090256837 Deb et al. Oct 2009 A1
20090262419 Robinson et al. Oct 2009 A1
20100002989 Tokushima Jan 2010 A1
20100021108 Kang et al. Jan 2010 A1
20100053151 Marti et al. Mar 2010 A1
20100060551 Sugiyama et al. Mar 2010 A1
20100061078 Kim Mar 2010 A1
20100074291 Nakamura Mar 2010 A1
20100084674 Paetzold et al. Apr 2010 A1
20100096617 Shanks Apr 2010 A1
20100103078 Mukawa et al. Apr 2010 A1
20100134534 Seesselberg et al. Jun 2010 A1
20100141905 Burke Jun 2010 A1
20100149073 Chaum et al. Jun 2010 A1
20100188353 Yoon et al. Jul 2010 A1
20100200736 Laycock et al. Aug 2010 A1
20100201953 Freeman et al. Aug 2010 A1
20100211575 Collins et al. Aug 2010 A1
20100213467 Lee et al. Aug 2010 A1
20100220439 Qin Sep 2010 A1
20100229853 Vandal et al. Sep 2010 A1
20100238270 Bjelkhagen et al. Sep 2010 A1
20100245387 Bachelder et al. Sep 2010 A1
20100259889 Chen et al. Oct 2010 A1
20100271467 Akeley Oct 2010 A1
20100277421 Charlier et al. Nov 2010 A1
20100277439 Charlier et al. Nov 2010 A1
20100277779 Futterer et al. Nov 2010 A1
20100300654 Edwards Dec 2010 A1
20100309687 Sampsell et al. Dec 2010 A1
20100315781 Agostini Dec 2010 A1
20100317132 Rogers et al. Dec 2010 A1
20100321609 Qi et al. Dec 2010 A1
20100328351 Tan Dec 2010 A1
20110012814 Tanaka Jan 2011 A1
20110021251 Lindén Jan 2011 A1
20110025605 Kwitek Feb 2011 A1
20110032482 Agurok Feb 2011 A1
20110050547 Mukawa Mar 2011 A1
20110050655 Mukawa Mar 2011 A1
20110063795 Yeh et al. Mar 2011 A1
20110075442 Chiang Mar 2011 A1
20110084893 Lee et al. Apr 2011 A1
20110090343 Alt et al. Apr 2011 A1
20110091156 Laughlin Apr 2011 A1
20110099512 Jeong Apr 2011 A1
20110114823 Katzir et al. May 2011 A1
20110127024 Patel et al. Jun 2011 A1
20110134017 Burke Jun 2011 A1
20110134645 Hitchcock et al. Jun 2011 A1
20110141388 Park et al. Jun 2011 A1
20110148931 Kim Jun 2011 A1
20110163986 Lee et al. Jul 2011 A1
20110175930 Hwang et al. Jul 2011 A1
20110194029 Herrmann et al. Aug 2011 A1
20110205251 Auld Aug 2011 A1
20110210946 Goertz et al. Sep 2011 A1
20110214082 Osterhout et al. Sep 2011 A1
20110215349 An et al. Sep 2011 A1
20110221658 Haddick et al. Sep 2011 A1
20110221659 King et al. Sep 2011 A1
20110222236 Luo et al. Sep 2011 A1
20110227820 Haddick et al. Sep 2011 A1
20110227913 Hyndman Sep 2011 A1
20110235179 Simmonds Sep 2011 A1
20110242145 Nishimura et al. Oct 2011 A1
20110242392 Chiang Oct 2011 A1
20110242757 Tracy et al. Oct 2011 A1
20110248904 Miyawaki et al. Oct 2011 A1
20110248958 Gruhlke et al. Oct 2011 A1
20110267799 Epstein et al. Nov 2011 A1
20110283223 Vaittinen et al. Nov 2011 A1
20110299044 Yeh et al. Dec 2011 A1
20110304640 Noge Dec 2011 A1
20110309378 Lau et al. Dec 2011 A1
20110310232 Wilson et al. Dec 2011 A1
20110310312 Yokote et al. Dec 2011 A1
20120013651 Trayner et al. Jan 2012 A1
20120019434 Kuhlman et al. Jan 2012 A1
20120026161 Chen et al. Feb 2012 A1
20120033306 Valera et al. Feb 2012 A1
20120038629 Brown et al. Feb 2012 A1
20120041721 Chen Feb 2012 A1
20120050144 Morlock et al. Mar 2012 A1
20120052934 Maharbiz et al. Mar 2012 A1
20120062998 Schultz et al. Mar 2012 A1
20120069413 Schultz Mar 2012 A1
20120106170 Matthews et al. May 2012 A1
20120111544 Senatori May 2012 A1
20120113092 Bar-Zeev et al. May 2012 A1
20120120493 Simmonds et al. May 2012 A1
20120134623 Boudreau et al. May 2012 A1
20120144331 Tolonen et al. Jun 2012 A1
20120157114 Alameh et al. Jun 2012 A1
20120162764 Shimizu Jun 2012 A1
20120176474 Border Jul 2012 A1
20120182687 Dighde et al. Jul 2012 A1
20120188205 Jansson et al. Jul 2012 A1
20120195553 Hasegawa et al. Aug 2012 A1
20120200495 Johansson Aug 2012 A1
20120206589 Crandall Aug 2012 A1
20120206880 Andres et al. Aug 2012 A1
20120218301 Miller Aug 2012 A1
20120227006 Amm Sep 2012 A1
20120235885 Miller et al. Sep 2012 A1
20120242561 Sugihara Sep 2012 A1
20120256856 Suzuki et al. Oct 2012 A1
20120256963 Suzuki et al. Oct 2012 A1
20120262657 Nakanishi et al. Oct 2012 A1
20120287381 Li et al. Nov 2012 A1
20120292535 Choi et al. Nov 2012 A1
20130000871 Olson et al. Jan 2013 A1
20130033485 Kollin et al. Feb 2013 A1
20130081779 Liao et al. Apr 2013 A1
20130093741 Akimoto et al. Apr 2013 A1
20130106674 Wheeler et al. May 2013 A1
20130162673 Bohn Jun 2013 A1
20130163089 Bohn Jun 2013 A1
20130170031 Bohn Jul 2013 A1
20130170802 Pitwon Jul 2013 A1
20130186596 Rubenstein Jul 2013 A1
20130186598 Rubenstein Jul 2013 A1
20130187943 Bohn et al. Jul 2013 A1
20130198176 Kim Aug 2013 A1
20130207964 Fleck Aug 2013 A1
20130208003 Bohn Aug 2013 A1
20130208362 Bohn Aug 2013 A1
20130208482 Fleck Aug 2013 A1
20130215081 Levin et al. Aug 2013 A1
20130226931 Hazel et al. Aug 2013 A1
20130242056 Fleck Sep 2013 A1
20130252628 Kuehnel Sep 2013 A1
20130257848 Westerinen et al. Oct 2013 A1
20130258701 Westerinen et al. Oct 2013 A1
20130267309 Robbins Oct 2013 A1
20130294030 Wang et al. Nov 2013 A1
20130307875 Anderson Nov 2013 A1
20130314793 Robbins Nov 2013 A1
20130322810 Robbins Dec 2013 A1
20130332159 Federighi et al. Dec 2013 A1
20130335671 Fleck Dec 2013 A1
20130339446 Balassanian et al. Dec 2013 A1
20130342674 Dixon Dec 2013 A1
20130346725 Lomet et al. Dec 2013 A1
20140010265 Peng Jan 2014 A1
20140041827 Giaimo Feb 2014 A1
20140063367 Yang et al. Mar 2014 A1
20140078130 Uchino et al. Mar 2014 A1
20140094973 Giaimo et al. Apr 2014 A1
20140104665 Popovich et al. Apr 2014 A1
20140104685 Bohn Apr 2014 A1
20140111865 Kobayashi Apr 2014 A1
20140116982 Schellenberg et al. May 2014 A1
20140140653 Brown et al. May 2014 A1
20140140654 Brown et al. May 2014 A1
20140143351 Deng May 2014 A1
20140176528 Robbins Jun 2014 A1
20140184699 Ito et al. Jul 2014 A1
20140204455 Popovich Jul 2014 A1
20140240842 Nguyen et al. Aug 2014 A1
20140314374 Fattal Oct 2014 A1
20150168731 Robbins Jun 2015 A1
Foreign Referenced Citations (44)
Number Date Country
1440513 Sep 2003 CN
101029968 Sep 2007 CN
101105512 Jan 2008 CN
102004315 Apr 2011 CN
0977022 Feb 2000 EP
1494109 Jan 2005 EP
1847924 Oct 2007 EP
2083310 Jul 2009 EP
2112547 Oct 2009 EP
2144177 Jan 2010 EP
2216678 Jan 2010 EP
2662761 Nov 2013 EP
2752691 Jul 2014 EP
2942811 Sep 2010 FR
H0422358 Jan 1992 JP
7311303 Nov 1995 JP
2000347037 Dec 2000 JP
2001078234 Mar 2001 JP
2008017135 Jan 2008 JP
20070001771 Jan 2007 KR
20090076539 Jul 2009 KR
20090084316 Aug 2009 KR
20110070087 Jun 2011 KR
20120023458 Mar 2012 KR
201407202 Feb 2014 TW
WO-9418595 Aug 1994 WO
WO-0133282 May 2001 WO
WO-0195027 Dec 2001 WO
WO-03090611 Nov 2003 WO
WO-2006054056 May 2006 WO
2007057500 May 2007 WO
WO-2008021504 Feb 2008 WO
WO-2009077601 Jun 2009 WO
WO-2010125337 Nov 2010 WO
WO-2011003381 Jan 2011 WO
WO-2011051660 May 2011 WO
WO-2011090455 Jul 2011 WO
WO-2011110728 Sep 2011 WO
WO-2011131978 Oct 2011 WO
2012177811 Dec 2012 WO
WO-2012172295 Dec 2012 WO
WO-2013058769 Apr 2013 WO
2014088343 Jun 2014 WO
WO-2014130383 Aug 2014 WO
Non-Patent Literature Citations (182)
Entry
“Advisory Action”, U.S. Appl. No. 13/428,879, Sep. 19, 2014, 3 pages.
“Augmented Reality and Physical Games”, U.S. Appl. No. 13/440,165, Apr. 5, 2012, 49 pages.
“BragGrate Mirror”, Retrieved from <http://web.archive.org/web/20090814104232/http://www.optigrate.com/BragGrate—Mirror.html> on Jul. 8, 2014, Aug. 14, 2009, 2 pages.
“Corrected Final Office Action”, U.S. Appl. No. 13/432,311, Dec. 24, 2014, 25 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/355,836, Sep. 11, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/355,836, Dec. 15, 2014, 2 pages.
“DigiLens”, SBG Labs—retrieved from <http://www.digilens.com/products.html> on Jun. 19, 2012, 1 page.
“Final Office Action”, U.S. Appl. No. 13/336,873, Jan. 5, 2015, 21 pages.
“Final Office Action”, U.S. Appl. No. 13/336,895, May 27, 2014, 11 pages.
“Final Office Action”, U.S. Appl. No. 13/355,836, Mar. 10, 2014, 18 pages.
“Final Office Action”, U.S. Appl. No. 13/355,914, Feb. 23, 2015, 21 pages.
“Final Office Action”, U.S. Appl. No. 13/355,914, Jun. 19, 2014, 11 pages.
“Final Office Action”, U.S. Appl. No. 13/397,495, May 29, 2014, 10 pages.
“Final Office Action”, U.S. Appl. No. 13/397,516, Jan. 29, 2015, 13 pages.
“Final Office Action”, U.S. Appl. No. 13/397,539, Jun. 29, 2015, 11 pages.
“Final Office Action”, U.S. Appl. No. 13/428,879, Jul. 14, 2014, 12 pages.
“Final Office Action”, U.S. Appl. No. 13/432,311, Dec. 15, 2014, 24 pages.
“Final Office Action”, U.S. Appl. No. 13/432,372, Jan. 29, 2015, 33 pages.
“Final Office Action”, U.S. Appl. No. 13/440,165, Jun. 6, 2014, 12 pages.
“Final Office Action”, U.S. Appl. No. 13/440,165, Jul. 21, 2015, 11 pages.
“Final Office Action”, U.S. Appl. No. 13/477,646, Feb. 23, 2015, 36 pages.
“Final Office Action”, U.S. Appl. No. 13/477,646, May 5, 2014, 26 pages.
“Final Office Action”, U.S. Appl. No. 13/525,649, Oct. 9, 2014, 8 pages.
“Final Office Action”, U.S. Appl. No. 13/774,875, Jun. 4, 2015, 10 pages.
“Final Office Action”, U.S. Appl. No. 14/134,993, Jul. 16, 2015, 19 pages.
“Final Office Action”, U.S. Appl. No. 14/134,993, Aug. 20, 2014, 15 pages.
“Foreign Notice of Allowance”, CN Application No. 201320034345.X, Aug. 14, 2013, 2 Pages.
“Foreign Office Action”, CN Application No. 201210563730.3, Jan. 7, 2015, 16 pages.
“Foreign Office Action”, CN Application No. 201210567932.5, Aug. 14, 2014, 12 pages.
“Foreign Office Action”, EP Application No. 13769961.7, Mar. 11, 2015, 8 pages.
“Foreign Office Action”, EP Application No. 13769961.7, Jun. 30, 2015, 6 pages.
“HDTV Helmet Mounted Display”, Available at <http://defense-update.com/products/h/HDTV-HMD.htm>, Jan. 26, 2005, 1 page.
“International Search Report and Written Opinion”, Application No. PCT/US2012/069331, Mar. 29, 2013, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2014/016658, Apr. 23, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/053676, Oct. 16, 2013, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/030632, Jun. 26, 2013, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028477, Jun. 21, 2013, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/031111, Jun. 26, 2013, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/076832, Mar. 17, 2014, 12 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/061225, Jun. 4, 2014, 12 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2012/071563, Apr. 25, 2013, 13 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/021784, Apr. 30, 2013, 9 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2012/069330, Mar. 28, 2013, 9 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/021783, May 15, 2013, 9 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/026200, Jun. 3, 2013, 9 pages.
“Light Guide Techniques using LED Lamps”, Application Brief I-003, retrieved from <http://www.ciri.org.nz/downloads/Lightpipe%20design.pdf> on Jan. 12, 2012, Oct. 14, 2008, 22 pages.
“New Technology from MIT may Enable Cheap, Color, Holographic Video Displays”, Retrieved from <http://www.gizmag.com/holograph-3d-color-video-display-inexpensive-mit/28029/> on Feb. 25, 2015, Jun. 24, 2013, 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/397,495, Nov. 13, 2013, 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/440,165, Feb. 6, 2014, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/336,873, Apr. 9, 2015, 18 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/336,873, Jul. 25, 2014, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/336,895, Oct. 24, 2013, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/343,675, Jul. 16, 2013, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/355,836, Nov. 4, 2013, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/355,914, Feb. 14, 2014, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/355,914, Oct. 28, 2014, 18 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/397,495, Apr. 3, 2015, 11 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/397,516, Jun. 12, 2014, 11 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/397,516, Nov. 25, 2013, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/397,539, Mar. 16, 2015, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/397,617, May 5, 2015, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/397,617, Oct. 9, 2014, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/428,879, Feb. 24, 2015, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/428,879, Mar. 17, 2014, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/428,879, Jun. 26, 2015, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/432,311, Jun. 2, 2015, 25 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/432,311, Jul. 8, 2014, 33 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/432,372, May 9, 2014, 26 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/432,372, Oct. 24, 2014, 27 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/440,165, Feb. 13, 2015, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/440,165, Oct. 16, 2014, 11 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/477,646, Jun. 18, 2015, 43 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/477,646, Oct. 6, 2014, 34 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/477,646, Nov. 22, 2013, 20 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/525,649, Jan. 29, 2014, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/525,649, Feb. 5, 2015, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/525,649, Jun. 5, 2014, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/570,073, Jan. 23, 2015, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/631,308, Feb. 23, 2015, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/722,917, May 21, 2015, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/774,875, Nov. 24, 2014, 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/134,993, Jan. 22, 2015, 17 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/134,993, Apr. 17, 2014, 34 pages.
“Notice of Allowance”, U.S. Appl. No. 13/336,895, Aug. 11, 2014, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 13/343,675, Sep. 16, 2013, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 13/355,836, Jun. 13, 2014, 11 pages.
“Notice of Allowance”, U.S. Appl. No. 13/355,836, Oct. 8, 2014, 11 pages.
“Notice of Allowance”, U.S. Appl. No. 13/356,545, Mar. 28, 2014, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 13/488,145, Nov. 19, 2014, 8 pages.
“Restriction Requirement”, U.S. Appl. No. 13/355,836, Sep. 27, 2013, 6 pages.
“Restriction Requirement”, U.S. Appl. No. 13/397,539, Dec. 1, 2014, 6 pages.
“Restriction Requirement”, U.S. Appl. No. 13/488,145, Sep. 8, 2014, 14 pages.
“Restriction Requirement”, U.S. Appl. No. 13/570,073, Nov. 18, 2014, 7 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/356,545, Jul. 22, 2014, 2 pages.
“Supplementary European Search Report”, EP Application No. 13769961.7, Mar. 3, 2015, 3 pages.
“Two-Faced: Transparent Phone with Dual Touch Screens”, Retrieved from <http://gajitz.com/two-faced-transparent-phone-with-dual-touch-screens/>, Jun. 7, 2012, 3 pages.
“Written Opinion”, Application No. PCT/US2013/061225, Oct. 10, 2014, 6 Pages.
Allen,“ELiXIR—Solid-State Luminaire with Enhanced Light Extraction by Internal Reflection”, Journal of Display Technology, vol. 3, No. 2, Available at <http://www.nanolab.uc.edu/Publications/PDFfiles/355.pdf>, Jun. 2007, pp. 155-159.
Aron,“‘Sprinting’ chips could push phones to the speed limit”, New Scientist, Feb. 20, 2012, Issue #2852, Feb. 20, 2012, 2 pages.
Baluja,“Non-Intrusive Gaze Tracking Using Artificial Neural Networks”, Technical Report CMU-CS-94-102, Available at <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.33.4027&rep=rep1&type=pdf> , Jan. 5, 1994, 14 pages.
Barger,“COTS Cooling”, Publication of the National Electronics Manufacturing Center of Excellence, Retrieved from: <http://www.empf.org/empfasis/2009/Oct09/cots.html> on Jul. 9, 2012, Oct. 2009, 4 pages.
Baudisch,“Back-of-Device Interaction Allows Creating Very Small Touch Devices”, In Proceedings of 27th International Conference on Human Factors in Computing Systems, Retrieved from <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.3337&rep=rep1&type=pdf>, Apr. 2005, 10 pages.
Baxtor,“TwinTech GeForce GTS 250 XT OC 1GB Graphics Card”, retrieved from <http://www.tweaktown.com/reviews/2733/twintech—geforce—gts—250—xt—oc—1gb—graphics—card/index3.html> on Dec. 30, 2011, Apr. 24, 2009, 4 pages.
Chang-Yen,“A Monolithic PDMS Waveguide System Fabricated Using Soft-Lithography Techniques”, In Journal of Lightwave Technology, vol. 23, No. 6, Jun. 2005, 6 pages.
Charles,“Design of Optically Path Length Matched, Three-Dimensional Photonic Circuits Comprising Uniquely Routed Waveguides”, In Proceedings of Applied Optics, vol. 51, Issue 27, Sep. 20, 2012, 11 pages.
Chen,“A Study of Fiber-to-Fiber Losses in Waveguide Grating Routers”, In Journal of Lightwave Technology, vol. 15, No. 10, Oct. 1997, 5 pages.
Chen,“Strategies for 3D Video with Wide Fields-of-View”, IEEE Proceeding Optoelectronics, vol. 148, Issue 2, Available at <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=926823>, Apr. 2001, pp. 85-90.
Cheng,“Waveguide Displays Based on Polymer-dispersed Liquid Crystals”, SPIE Newsroom, Available at <http://spie.org/documents/Newsroom/Imported/003805/003805—10.pdf>, Aug. 12, 2011, 2 pages.
Chirgwin,“Researchers propose ‘overclock’ scheme for mobiles—Processing at a sprint to overcome tech limitations”, The Register, Feb. 21, 2012, 2 pages.
Coldewey,“Researchers Propose “Computational Sprinting” To Speed Up Chips by 1000%—But Only for a Second”, TechCrunch, Feb. 28, 2012, Feb. 29, 2012, 2 pages.
Cottier,“Label-free Highly Sensitive Detection of (small) Molecules by Wavelength Interrogation of Integrated Optical Chips”, n Proceedings of Sensors and Actuators B: Chemical, vol. 91, Issue 1-3, Jun. 1, 2003, pp. 241-251.
DeAgazio,“Selecting Display Backlighting for Portable, Handheld Devices”, Hearst Electronics Products, retrieved from <http://www2.electronicproducts.com/Selecting—display—backlighting—for—portable—handheld—devices-article-farcglobal-feb2008-html.aspx> on Jan. 12, 2012, Jan. 2, 2008, 4 pages.
Dumon,“Compact Arrayed Waveguide Grating Devices in Silicon-on-Insulator”, In Proceedings of the IEEE/LEOS Symposium Benelux Chapter, May 27, 2014, 4 pages.
Eadicicco,“First Transparent Tablet Lets You Touch from Both Sides”, Retrieved from <http://blog.laptopmag.com/first-transparent-tablet>, Dec. 26, 2013, 4 pages.
Glendenning,“Polymer Micro-Optics via Micro Injection Moulding”, Available at: https://web.archive.org/web/20120310003606/http://www.microsystems.uk.com/english/polymer—optics—injection—moulding.html, Jan. 10, 2011, 6 pages.
Greenemeier,“Could “Computational Sprinting” Speed Up Smart Phones without Burning Them Out?”, Scientific American, Feb. 29, 2012, 2 pages.
Greiner,“Bandpass engineering of lithographically scribed channel-waveguide Bragg gratings”, In Proceedings of Optics Letters, vol. 29, No. 8, Apr. 15, 2004, pp. 806-808.
Han,“Accurate diffraction efficiency control for multiplexed volume holographic gratings”, Retrieved at: opticalengineering.spiedigitallibrary.org/data/Journals/. . ./2799—1, 2002, 4 pages.
Hua,“Engineering of Head-mounted Projective Displays”, In Proceedings of Applied Optics, vol. 39, No. 22, Aug. 1, 2000, 11 pages.
Ismail,“Improved Arrayed-Waveguide-Grating Layout Avoiding Systematic Phase Errors”, In Proceedings of Optics Express, vol. 19, No. 9, Apr. 25, 2011, pp. 8781-8794.
Jacques,“Polarized Light Imaging of Tissue”, Available at <http://www.lumamed.com/documents/5—polarized%20light%20imaging.pdf>, 2004, 17 pages.
Jarvenpaa,“Compact near-to-eye display with integrated gaze tracker”, Second International Conference on Computer Engineering and Applications, Mar. 19, 2010, 9 pages.
Jaworski,“A Novel Design of Heat Sink with PCM for Electronics Cooling”, 10th International Conference on Thermal Energy Storage, Stockton, May 31-Jun. 2, 2006, retrieved from <https://intraweb.stockton.edu/eyos/energy—studies/content/docs/FINAL—PRESENTATIONS/4b-6%20.pdf> on Jan. 5, 2012, May 31, 2006, 8 pages.
Karp,“Planar Micro-optic Solar Concentration using Multiple Imaging Lenses into a Common Slab Waveguide”, In Proceedings of SPIE vol. 7407, Available at <http://psilab.ucsd.edu/research/slab—concentration/files/SPIE—Slab—Published.pdf>, Jan. 2009, 11 pages.
Kress,“Exit Pupil for Wearable See-through displays”, Downloaded From: http://proceedings.spiedigitallibrary.org/ on Jan. 31, 2015 Terms of Use: http://spiedl.org/terms, 2012, 8 pages.
Krishnan,“A Novel Hybrid Heat Sink Using Phase Change Materials for Transient Thermal Management of Electronics”, IEEE transactions on components and packaging technologies, vol. 28, No. 2, retrieved from <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1432936> on Jan. 5, 2012, Jun. 2005, pp. 281-289.
L,“All-Nanoparticle Concave Diffraction Grating Fabricated by Self-Assembly onto Magnetically-Recorded Templates”, In Proceedings of Optical Express, vol. 21, Issue 1, Jan. 2013, 1 page.
Lanman,“Near-eye Light Field Displays”, In Journal of ACM Transactions on Graphics, vol. 32, No. 6, Nov. 2013, 10 pages.
Large,“Parallel Optics in Waveguide Displays: a Flat Panel Autostereoscopic”, Display Technology, Journal of, Retrieved from <http://download.microsoft.com/download/D/2/E/D2E425F8-CF3C-4C71-A4A2-70F9D4081007/ParallelOpticsinWaveguideDisplaysMS090925.Final.pdf>, Jun. 21, 2010, pp. 1-7.
Lerner,“Penn Helps Rethink Smartphone Design with ‘Computational Sprinting’”, Penn News Release, Feb. 28, 2012, 2 pages.
Li,“Design Optimization of Reflective Polarizers for LCD Backlight Recycling”, Journal of Display Technology, vol. 5, No. 8, Available at <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5196840>, Aug. 2009, pp. 335-340.
Li,“Switchable Electro-optic Diffractive Lens with High Efficiency for Ophthalmic Applications”, PNAS Apr. 18, 2006 vol. 103 No. 16 6100-6104, Retrieved from: <http://www.pnas.org/content/103/16/6100.long> Feb. 22, 2012, Feb. 2, 2006, 4 pages.
Man,“IT Equipment Noise Emission Standards: Overview of New Development in the Next Edition of ISO/ECMA Standards”, In Proceedings of 37th International Congress and Exposition on Noise Control Engineering, Available at <http://www.ecma-international.org/activities/Acoustics/Inter-noise%202008%20paper%20on%20ECMA-74%20updates.pdf >, Oct. 26, 2008, 8 pages.
Massenot,“Multiplexed holographic transmission gratings recorded in holographic polymer-dispersed liquid crystals: static and dynamic studies”, Retrieved at: http://oatao.univ-toulouse.fr/2874/, 2005, 8 pages.
McMillan,“Your Future iPhone May Be Stuffed with Wax”, Aug. 23, 2013, 3 pages.
Mei,“An all fiber interferometric gradient hydrophone with optical path length compensation”, In Proceedings of Summaries of Papers Presented at the Conference on Lasers and Electro-Optics, May 28, 1999, 2 pages.
Melcher,“LCoS for High Performance Displays”, In Proceedings of LEOS 2003, Available at <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1253048>, Oct. 27, 2003, pp. 812-813.
Minier,“Diffraction Characteristics of Superimposed Holographic gratings in Planar Optical waveguides”, IEEE Photonics Technology Letters, vol. 4, No. 10, Oct. 1992, 4 pages.
Moore,“Computational sprinting pushes smartphones till they're tired”, Michigan News Release, Feb. 28, 2012, 2 pages.
Morga,“History of SAW Devices”, In Proceedings of the IEEE International Frequency Control Symposium, May 27, 1998, 22 pages.
Nguyen,“Advanced Cooling System Using Miniature Heat Pipes in Mobile PC”, IEEE Transactions on Components and Packaging Technology, vol. 23, No. 1, Available at <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=833046&userType=inst>, Mar. 2000, pp. 86-90.
Owano,“Study explores computing bursts for smartphones”, PhysOrg.com, Feb. 21, 2012, 2 pages.
Papaefthymiou,“Computational Sprinting on a Hardware/Software Testbed”, In the Proceedings of the 18th Eighteenth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), Mar. 2013., 12 pages.
Patrizio,“Researchers Working on Ways to Put 16-Core Processors in Smartphones”, Brighthand, Mar. 18, 2012, 2 pages.
Pu,“Exposure schedule for multiplexing holograms in photopolymer films”, Retrieved at: lo.epfl.ch/webdav/site/lo/shared/1996/OE—35—2824—Oct1996.pdf, Oct. 1996, 6 pages.
Raghavan,“Computational Sprinting”, In the Proceedings of the 18th Symposium on High Performance Computer Architecture (HPCA), Feb. 2012, 12 pages.
Raghavan,“Designing for Responsiveness with Computational Sprinting”, IEEE Micro's “Top Picks of 2012” Issue, May 2013, 8 pages.
Scott,“RearType: Text Entry Using Keys on the Back of a Device”, In Proceedings of 12th Conference on Human-Computer Interaction with Mobile Devices and Services, Retrieved from <https://research.microsoft.com/pubs/135609/reartype%20mobilehci.pdf>, Sep. 7, 2010, 9 pages.
Singh“Laser-Based Head-Tracked 3D Display Research”, Journal of Display Technology, vol. 6, No. 10, Available at <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5462999>, Oct. 2010, pp. 531-543.
Smalley,“Anisotropic Leaky-Mode Modulator for Holographic Video Displays”, In Proceedings of Nature, vol. 498, Jun. 20, 2013, 6 pages.
Stupar,“Optimization of Phase Change Material Heat Sinks for Low Duty Cycle High Peak Load Power Supplies”, IEEE transactions on components, packaging and manufacturing technology, retrieved from <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6081913> on Jan. 5, 2012, Nov. 15, 2011, 14 pages.
Tari,“CFD Analyses of a Notebook Computer Thermal Management System and a Proposed Passive Cooling Alternative”, IEEE Transactions on Components and Packaging Technologies, vol. 33, No. 2, retrieved from <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5466211> on Dec. 30, 2011, Jun. 2010, pp. 443-452.
Teng,“Fabrication of nanoscale zero-mode waveguides using microlithography for single molecule sensing”, In Proceedings of Nanotechnology, vol. 23, No. 45, Jul. 7, 2012, 7 pages.
Tien,“Microcontact Printing of SAMs”, In Proceedings of Thin Films, vol. 24, May 28, 2014, 24 pages.
Travis,“Collimated Light from a Waveguide for a Display Backlight”, Optics Express—Retrieved from <http://download.microsoft.com/download/D/2/E/D2E425F8-CF3C-4C71-A4A2-70F9D4081007/OpticsExpressbacklightpaper.pdf>, Oct. 15, 2009, pp. 19714-19719.
Travis,“The Design of Backlights for View-Sequential 3D”, Microsoft Corporation, Available at <http://download.microsoft.com/download/D/2/E/D2E425F8-CF3C-4C71-A4A2-70F9D4081007/Backlightforviewsequentialautostereo.docx>, Jul. 3, 2010, 4 pages.
van“A Survey of Augmented Reality Technologies, Applications and Limitations”, The International Journal of Virtual Reality, 2010, 9(2), Available at <http://www.ijvr.org/issues/issue2-2010/paper1%20.pdf>, Jun. 2010, pp. 1-19.
Walker,“Thermalright Ultra-120 Extreme CPU Cooler”, retrieved from <http://www.pro-clockers.com/cooling/66-thermalright-ultra-120-extreme-cpu-cooler.html> on Dec. 30, 2011, Jul. 2, 2009, 7 pages.
Westerinen,“Light Guide Display and Field of View”, U.S. Appl. No. 13/428,879, filed Mar. 23, 2012, 46 pages.
Wigdor,“LucidTouch: A See-Through Mobile Device”, In Proceedings of 20th Annual ACM symposium on User Interface Software and Technology, Retrieved from <http://dl.acm.org/citation.cfm?id=1294259>, Oct. 7, 2007, 10 pages.
Yan,“Multiplexing holograms in the photopolymer with equal diffraction efficiency”, 2005, 9 pages.
Zharkova,“Study of the Dynamics of Transmission Gratings Growth on Holographic Polymer-Dispersed Liquid Crystals”, International Conference on Methods of Aerophysical Research, ICMAR 2008, 2008, 4 pages.
“Variable Groove Depth (VGD) Master Gratings”, Retrieved from: <http://www.horiba.com/scientific/products/diffraction-gratings/catalog/variable-groove-depth-vgd/> May 28, 2014, 2 pages.
Grabarnik, et al., “Concave Diffraction Gratings Fabricated with Planar Lithography”, In Proceedings of SPIE, vol. 6992, May 3, 2008, 8 pages.
Lindau “Controlling the Groove Depth of Holographic Gratings”, In Proceedings of Optical System Design, Analysis, and Production, vol. 0399, Oct. 26, 1983, 2 pages.
Xie, et al., “Fabrication of Varied-Line-Spacing Grating by Elastic Medium”, In Proceedings SPIE 5636, Holography, Diffractive Optics, and Applications II, Nov. 2004, 4 pages.
“Restriction Requirement”, U.S. Appl No. 14/447,419, Aug. 4, 2015, 6 pages.
Ando, Y. et al., “Development of Three-Dimensional Microstages Using Inclined Deep-Reactive Ion Etching”, Journal of Microelectromechanical Systems, vol. 16, Issue 3, IEEE, Jun. 2007, 9 pages.
Gila, B. et al., “First Results From a Multi-Ion Beam Lithography and Processing System At The University Of Florida”, Twenty-First International Conference, Application of Accelerators in Research and Industry, AIP Conference Proceedings, vol. 1336, Issue 1, Jun. 2011, 5 pages.
Garcia, G. et al., “COMET: Content Mediator Architecture for Content-aware Networks”, Conference Proceedings, Future Network and Mobile Summit, Jun. 2011, 8 pages.
Antonopoulos, P. et al., “Efficient Updates for Web-Scale Indexes over the Cloud”, IEEE 28th International conference on Data Engineering Workshops, Apr. 2012, 8 pages.
Levandoski, J., “Ranking and New Database Architectures”, in Proceedings of the 7th International Workshop on Ranking in Databases, Aug. 2013, 4 pages.
ISA European Patent Office, International Search Report and Written Opinion Issued in Application No. PCT/US2015/042371, Oct. 2, 2015, WIPO, 10 pages.
ISA European Patent Office, International Search Report and Written Opinion Issued in Application No. PCT/US2015/042259, Oct. 12, 2015, WIPO, 11 pages.
ISA European Patent Office, International Search Report and Written Opinion Issued in Application No. PCT/US2015/041909, Oct. 20, 2015, WIPO, 13 pages.
ISA European Patent Office, International Search Report and Written Opinion Issued in Application No. PCT/US2015/041930, Oct. 20, 2015, WIPO, 12 pages.
ISA European Patent Office, International Search Report and Written Opinion Issued in Application No. PCT/US2015/042187, Oct. 20, 2015, WIPO, 10 pages.
ISA European Patent Office, International Search Report and Written Opinion Issued in Application No. PCT/US2015/041900, Oct. 21, 2015, WIPO, 12 pages.
ISA European Patent Office, International Search Report and Written Opinion Issued in Application No. PCT/US2015/042226, Oct. 27, 2015, WIPO, 10 pages.
ISA European Patent Office, International Search Report and Written Opinion Issued in Application No. PCT/US2015/042205, Oct. 30, 2015, WIPO, 10 pages.
ISA European Patent Office, International Search Report and Written Opinion Issued in Application No. PCT/US2015/042218, Nov. 6, 2015, WIPO, 10 pages.
ISA European Patent Office, International Search Report and Written Opinion Issued in Application No. PCT/US2015/041046, Nov. 9, 2015, WIPO, 15 pages.
Related Publications (1)
Number Date Country
20160033697 A1 Feb 2016 US