MICROHOMOLOGY MEDIATED REPAIR OF MICRODUPLICATION GENE MUTATIONS

Information

  • Patent Application
  • 20210230568
  • Publication Number
    20210230568
  • Date Filed
    May 03, 2019
    6 years ago
  • Date Published
    July 29, 2021
    3 years ago
Abstract
The present invention is directed to the filed of gene therapy. In particular, compositions and methods are disclosed that repair gene microduplication mutations by reversion to a wild type sequence. For example, the creation of a double stranded break by a programmable nuclease protein within a microduplication induces the microhomology mediated end joining DNA repair pathway that in the process of DNA repair removes the microduplication mutation and restores the wild type sequence.
Description
FIELD OF THE INVENTION

The present invention is directed to the field of gene therapy. In particular, compositions and methods are disclosed that repair gene microduplication mutations by reversion to a wild type sequence. For example, the creation of a double stranded break within a microduplication by a programmable nuclease protein induces the microhomology mediated end joining DNA repair pathway that in the process of DNA repair removes the microduplication mutation and restores the wild type sequence.


BACKGROUND

Genome editing by programmable nuclease systems has revolutionized biological research and is rapidly moving towards many clinical applications. In most instances, the successful repair of an aberrant gene to correct a disease entails precise correction of the genetic sequence typically via the Homology Directed Repair (HDR) pathway. This pathway requires not only the use of a programmable nuclease to generate a double-strand break (DSB) at the locus to initiate DNA repair, but also the delivery of exogenous donor DNA to precisely re-write the genomic sequence To date, HDR is inefficient in most cell types, particularly in post-mitotic differentiated cell types such as neurons and muscle [Suzuki, K. et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540, 144-149 (2016).], which are the affected tissues in many devastating genetic disorders. This barrier significantly limits the clinical efficacy of the current generation of nuclease-based gene repair tools.


What is needed in the art are compositions and methods that can safely and efficiently target disease-causing microduplication mutations within a genome and cure the disease by reverting the microduplication mutation to a wild type sequence.


SUMMARY

The present invention is directed to the filed of gene therapy. In particular, compositions and methods are disclosed that repair gene microduplication mutations by reversion to a wild type sequence. For example, the creation of a double stranded break within a microduplication by a programmable nuclease protein induces the microhomology mediated end joining DNA repair pathway that in the process of DNA repair removes the microduplication mutation and restores the wild type sequence.


In one embodiment, the present invention contemplates a programmable nuclease having sequence-specific DNA-binding affinity for a target gene or genomic locus, wherein said target gene or genomic locus comprises a microduplication mutation. In one embodiment, said nuclease further comprises a protospacer adjacent motif binding domain having said sequence-specific DNA-binding affinity for said target gene or genomic locus protospacer adjacent motif sequence. In one embodiment, the nuclease includes, but is not limited to, a Class II CRISPR single effector nuclease, a Cas9 nuclease, a Cas12 nuclease, a zinc finger nuclease and/or a transcription activator-like effector nuclease. In one embodiment, a duplicate sequence of the microduplication mutation has a length of between 1-40 nucleotides. In one embodiment, a duplicate sequence of the microduplication mutation has a length of greater than 40 nucleotides.


In one embodiment, the present invention contemplates a method, comprising; i) a subject comprising a target gene or genomic locus having a microduplication mutation; and ii) a pharmaceutical formulation comprising a programmable nuclease, the nuclease having sequence-specific DNA-binding affinity for a region that contains said microduplication mutation of the target gene or genomic locus; and b) administering said pharmaceutical formulation to the patient under conditions such that the microduplication mutation is replaced with a wild type sequence of the target gene or genomic locus. In one embodiment, said wild type sequence replacement comprises a correction through DNA repair. In one embodiment, the DNA repair correction is performed without assistance of an exogenously supplied donor DNA. In one embodiment, said nuclease further comprises a protospacer adjacent motif binding domain having said DNA-binding specificity for said target gene or genomic locus protospacer adjacent motif sequence. In one embodiment, the target gene includes, but is not limited to, TCAP, HPS1, HEXA, DOK7 and/or RAX2. In one embodiment, the subject further exhibits at least one symptom of a disease caused by the target gene microduplication mutation. In one embodiment, the disease includes, but is not limited to limb-girdle muscular dystrophy 2G, Hermanksy-Pudlak syndrome, Tay-Sachs Disease, familial limb-girdle myasthenia and/or cone-rod dystrophy 11. In one embodiment, administering further reduces the at least one symptom of the disease. In one embodiment, the nuclease includes, but is not limited to, a Class II CRISPR single effector nuclease, a Cas9 nuclease, a Cas12 nuclease, a zinc finger nuclease and/or a transcription activator-like effector nuclease. In one embodiment, the pharamaceutical formulation comprises an adeno-associated virus encoding said programmable nuclease.


Definitions

To facilitate the understanding of this invention, a number of terms are defined below. Terms defined herein have meanings as commonly understood by a person of ordinary skill in the areas relevant to the present invention. Terms such as “a”, “an” and “the” are not intended to refer to only a singular entity but also plural entities and also includes the general class of which a specific example may be used for illustration. The terminology herein may be used to describe specific embodiments of the invention, but their usage does not delimit the invention, except as outlined in the claims.


The term “about” as used herein, in the context of any of any assay measurements refers to +/−5% of a given measurement.


As used herein, the term “CRISPRs” or “Clustered Regularly Interspaced Short Palindromic Repeats” refers to an acronym for DNA loci that contain multiple, short, direct repetitions of base sequences. Each repetition contains a series of bases followed by the same series in reverse and then by 30 or so base pairs known as “spacer DNA”. The spacers are short segments of DNA from a virus and may serve as a ‘memory’ of past exposures to facilitate an adaptive defense against future invasions (PMID 25430774).


As used herein, the term “Cas” or “CRISPR-associated (cas)” refers to genes often associated with CRISPR repeat-spacer arrays (PMID 25430774).


As used herein, the term “Cas9” refers to a nuclease from Type II CRISPR systems, an enzyme specialized for generating double-strand breaks in DNA, with two active cutting sites (the HNH and RuvC domains), one for each strand of the double helix. Jinek combined tracrRNA and spacer RNA into a “single-guide RNA” (sgRNA) molecule that, mixed with Cas9, could find and cleave DNA targets through Watson-Crick pairing between the guide sequence within the sgRNA and the target DNA sequence (PMID 22745249).


As used herein, the term “catalytically active Cas9” refers to an unmodified Cas9 nuclease comprising full nuclease activity.


The term “nickase” as used herein, refers to a nuclease that cleaves only a single DNA strand, either due to its natural function or because it has been engineered to cleave only a single DNA strand. Cas9 nickase variants that have either the RuvC or the HNH domain mutated provide control over which DNA strand is cleaved and which remains intact (Jinek, et al. 2012 (PMID 22745249) and Cong, et al. 2013 (PMID 23287718)).


As used herein, the term “Cas12” (or Cpf1) refers to a nuclease from Type V CRISPR systems, an enzyme specialized for generating double-strand breaks in DNA, with one active cutting sites (the RuvC domain), that cuts both DNA strands. Zetsche demonstrated that when programmed with its crRNA Cas12 (Cpf1), could find and cleave DNA targets through Watson-Crick pairing between the guide sequence within the crRNA and the target DNA sequence (PMID 26422227).


The term, “trans-activating crRNA”, “tracrRNA” as used herein, refers to a small trans-encoded RNA. For example, CRISPR/Cas (clustered, regularly interspaced short palindromic repeats/CRISPR-associated proteins) constitutes an RNA-mediated defense system, which protects against viruses and plasmids. This defensive pathway has three steps. First a copy of the invading nucleic acid is integrated into the CRISPR locus. Next, CRISPR RNAs (crRNAs) are transcribed from this CRISPR locus. The crRNAs are then incorporated into effector complexes, where the crRNA guides the complex to the invading nucleic acid and the Cas proteins degrade this nucleic acid. There are several pathways of CRISPR activation, one of which requires a tracrRNA, which plays a role in the maturation of crRNA. TracrRNA is complementary to base pairs with a pre-crRNA forming an RNA duplex. This is cleaved by RNase III, an RNA-specific ribonuclease, to form a crRNA/tracrRNA hybrid. This hybrid acts as a guide for the endonuclease Cas9, which cleaves the invading nucleic acid.


The term “nuclease” as used herein, refers to any protein comprising a pre-determined sequence of amino acids that bind to a specific nucleotide sequence and create a double stranded break. Such nucleases can include, but are not limited to, a Class II CRISPR single effector nuclease, a Cas9 nuclease, a Cas12 nuclease (also known as Cpf1), a zinc finger nuclease (ZFN) protein and/or a transcription activator-like effector nuclease (TALEN). For example, a Class II CRISPR single effector nuclease and/or a Cas9 nuclease may be assembled into a CRISPR complex.


The term “protospacer adjacent motif” (or PAM) as used herein, refers to a DNA sequence that may be required for a Cas9/sgRNA to form an R-loop to interrogate a specific DNA sequence through Watson-Crick pairing of its guide RNA with the genome.


The term “protospacer adjacent motif recognition domain” as used herein, refers to a nuclease C-terminus amino acid sequence having specific DNA-binding specificity to a target gene PAM sequence.


The term “target gene” as used herein, refers to a specific genomic region, usually comprising at least one allele, whose dysfunction is associated with a disease. For example, a target gene may have a microduplication mutation that is a causative factor for a disease. A microduplication can be composed of a tandem repeat. Tandem repeats in DNA are a pattern of one or more nucleotides that are repeated and the repetitions are directly adjacent to each other.


As used herein, the term “sgRNA” refers to single guide RNA used in conjunction with CRISPR associated systems (Cas). sgRNAs are a fusion of crRNA and tracrRNA and contain nucleotides of sequence complementary to the desired target site (Jinek, et al. 2012 (PMID 22745249)). Watson-Crick pairing of the sgRNA with the target site permits R-loop formation, which in conjunction with a functional PAM permits DNA cleavage or in the case of nuclease-deficient Cas9 allows binds to the DNA at that locus.


The term “patient” or “subject”, as used herein, is a human or animal and need not be hospitalized. For example, out-patients, persons in nursing homes are “patients.” A patient may comprise any age of a human or non-human animal and therefore includes both adult and juveniles (i.e., children). It is not intended that the term “patient” connote a need for medical treatment, therefore, a patient may voluntarily or involuntarily be part of experimentation whether clinical or in support of basic science studies.


The term “affinity” as used herein, refers to any attractive force between substances or particles that causes them to enter into and remain in chemical combination. For example, an inhibitor compound that has a high affinity for a receptor will provide greater efficacy in preventing the receptor from interacting with its natural ligands, than an inhibitor with a low affinity.


As used herein, the term “orthogonal” refers to targets that are non-overlapping, uncorrelated, or independent. For example, if two orthogonal Cas9 isoforms were utilized, they would employ orthogonal sgRNAs that only program one of the Cas9 isoforms for DNA recognition and cleavage (Esvelt, et al. 2013 (PMID 24076762)). For example, this would allow one Cas9 isoform (e.g. S. pyogenes Cas9 or spCas9) to function as a nuclease programmed by a sgRNA that may be specific to it, and another Cas9 isoform (e.g. N. meningitidis Cas9 or nmCas9) to operate as a nuclease dead Cas9 that provides DNA targeting to a binding site through its PAM specificity and orthogonal sgRNA. Other Cas9s include S. aureus Cas9 or SaCas9 and A. naeslundii Cas9 or AnCas9.


The term “truncated” as used herein, when used in reference to either a polynucleotide sequence or an amino acid sequence means that at least a portion of the wild type sequence may be absent. In some cases truncated guide sequences within the sgRNA or crRNA may improve the editing precision of Cas9 (Fu, et al. 2014 (PMID 24463574)).


The term “base pairs” as used herein, refer to specific nucleobases (also termed nitrogenous bases), that are the building blocks of nucleotide sequences that form a primary structure of both DNA and RNA. Double stranded DNA may be characterized by specific hydrogen bonding patterns, base pairs may include, but are not limited to, guanine-cytosine and adenine-thymine) base pairs.


The term “genomic locus” or “target gene” as used herein, refers to any pre-determined nucleotide sequence capable of binding to a Cas9 protein contemplated herein. The target may include, but may be not limited to, a nucleotide sequence complementary to a programmable DNA binding domain or an orthogonal Cas9 protein programmed with its own guide RNA, a nucleotide sequence complementary to a single guide RNA, a protospacer adjacent motif recognition sequence, an on-target binding sequence and an off-target binding sequence.


The term “on-target binding sequence” as used herein, refers to a subsequence of a specific genomic target that may be completely complementary to a programmable DNA binding domain and/or a single guide RNA sequence.


The term “off-target binding sequence” as used herein, refers to a subsequence of a specific genomic target that may be partially complementary to a programmable DNA binding domain and/or a single guide RNA sequence.


The term “cleavage” or “break” as used herein, may be defined as the generation of a break in the DNA. This could be either a single-stranded break or a double-stranded break depending on the type of nuclease that may be employed.


As used herein, the term “edit”, “editing” or “edited” refers to a method of altering a nucleic acid sequence of a polynucleotide (e.g., for example, a wild type naturally occurring nucleic acid sequence or a mutated naturally occurring sequence) by selective deletion of a specific genomic target or the specific inclusion of new sequence through the use of an exogenously supplied DNA template. Such a specific genomic target includes, but may be not limited to, a chromosomal region, mitochondrial DNA, a gene, a promoter, an open reading frame or any nucleic acid sequence.


The term “delete”, “deleted”, “deleting” or “deletion” as used herein, may be defined as a change in either nucleotide or amino acid sequence in which one or more nucleotides or amino acid residues, respectively, are, or become, absent.


As used herein, the terms “complementary” or “complementarity” are used in reference to “polynucleotides” and “oligonucleotides” (which are interchangeable terms that refer to a sequence of nucleotides) related by the base-pairing rules. For example, the sequence “C-A-G-T,” may be complementary to the sequence “A-C-T-G.” Complementarity can be “partial” or “total.” “Partial” complementarity may be where one or more nucleic acid bases may be not matched according to the base pairing rules. “Total” or “complete” complementarity between nucleic acids may be where each and every nucleic acid base may be matched with another base under the base pairing rules. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of hybridization between nucleic acid strands. This may be of particular importance in amplification reactions, as well as detection methods which depend upon binding between nucleic acids.


The terms “homology” and “homologous” as used herein in reference to nucleotide sequences refer to a degree of complementarity with other nucleotide sequences. There may be partial homology or complete homology (i.e., identity). A nucleotide sequence which may be partially complementary, i.e., “substantially homologous,” to a nucleic acid sequence may be one that at least partially inhibits a completely complementary sequence from hybridizing to a target nucleic acid sequence. The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or Northern blot, solution hybridization and the like) under conditions of low stringency. A substantially homologous sequence or probe will compete for and inhibit the binding (i.e., the hybridization) of a completely homologous sequence to a target sequence under conditions of low stringency. This may be not to say that conditions of low stringency are such that non-specific binding may be permitted; low stringency conditions require that the binding of two sequences to one another be a specific (i.e., selective) interaction. The absence of non-specific binding may be tested by the use of a second target sequence which lacks even a partial degree of complementarity (e.g., less than about 30% identity); in the absence of non-specific binding the probe will not hybridize to the second non-complementary target.


The terms “homology” and “homologous” as used herein in reference to amino acid sequences refer to the degree of identity of the primary structure between two amino acid sequences. Such a degree of identity may be detected in a portion of each amino acid sequence, or along the entire length of the amino acid sequence. Two or more amino acid sequences that are “substantially homologous” may have at least 50% identity, preferably at least 75% identity, more preferably at least 85% identity, most preferably at least 95%, or 100% identity.


An oligonucleotide sequence which may be a “homolog” may be defined herein as an oligonucleotide sequence which exhibits greater than or equal to 50% identity to a sequence, when sequences having a length of 100 bp or larger are compared.


As used herein, the term “gene” means the deoxyribonucleotide sequences comprising the coding region of a structural gene and including sequences located adjacent to the coding region on both the 5′ and 3′ ends for a distance of about 1 kb on either end such that the gene corresponds to the length of the full-length mRNA. The sequences which are located 5′ of the coding region and which are present on the mRNA are referred to as 5′ non-translated sequences. The sequences which are located 3′ or downstream of the coding region and which are present on the rnRNA are referred to as 3′ non-translated sequences. The term “gene” encompasses both cDNA and genomic forms of a gene. A genomic form or clone of a gene contains the coding region interrupted with non-coding sequences termed “introns” or “intervening regions” or “intervening sequences.” Introns are segments of a gene which are transcribed into heterogeneous nuclear RNA (hnRNA); introns may contain regulatory elements such as enhancers. Introns are removed or “spliced out” from the nuclear or primary transcript; introns therefore are absent in the messenger RNA (mRNA) transcript. The mRNA functions during translation to specify the sequence or order of amino acids in a nascent polypeptide.


The term “gene of interest” as used herein, refers to any pre-determined gene for which deletion may be desired.


The term “allele” as used herein, refers to any one of a number of alternative forms of the same gene or same genetic locus.


The term “protein” as used herein, refers to any of numerous naturally occurring extremely complex substances (as an enzyme or antibody) that consist of amino acid residues joined by peptide bonds, contain the elements carbon, hydrogen, nitrogen, oxygen, usually sulfur. In general, a protein comprises amino acids having an order of magnitude within the hundreds.


The term “peptide” as used herein, refers to any of various amides that are derived from two or more amino acids by combination of the amino group of one acid with the carboxyl group of another and are usually obtained by partial hydrolysis of proteins. In general, a peptide comprises amino acids having an order of magnitude within the tens.


The term “polypeptide”, refers to any of various amides that are derived from two or more amino acids by combination of the amino group of one acid with the carboxyl group of another and are usually obtained by partial hydrolysis of proteins. In general, a polypeptide comprises amino acids having an order of magnitude within the tens or larger.


“Nucleic acid sequence” and “nucleotide sequence” as used herein refer to an oligonucleotide or polynucleotide, and fragments or portions thereof, and to DNA or RNA of genomic or synthetic origin which may be single- or double-stranded, and represent the sense or antisense strand.


The term “an isolated nucleic acid”, as used herein, refers to any nucleic acid molecule that has been removed from its natural state (e.g., removed from a cell and may be, in a preferred embodiment, free of other genomic nucleic acid).


The terms “amino acid sequence” and “polypeptide sequence” as used herein, are interchangeable and to refer to a sequence of amino acids.


As used herein the term “portion” when in reference to a protein (as in “a portion of a given protein”) refers to fragments of that protein. The fragments may range in size from four amino acid residues to the entire amino acid sequence minus one amino acid.


The term “portion” when used in reference to a nucleotide sequence refers to fragments of that nucleotide sequence. The fragments may range in size from 5 nucleotide residues to the entire nucleotide sequence minus one nucleic acid residue.


As used herein, the term “hybridization” may be used in reference to the pairing of complementary nucleic acids using any process by which a strand of nucleic acid joins with a complementary strand through base pairing to form a hybridization complex. Hybridization and the strength of hybridization (i.e., the strength of the association between the nucleic acids) may be impacted by such factors as the degree of complementarity between the nucleic acids, stringency of the conditions involved, the T. of the formed hybrid, and the G:C ratio within the nucleic acids.


As used herein the term “hybridization complex” refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bounds between complementary G and C bases and between complementary A and T bases; these hydrogen bonds may be further stabilized by base stacking interactions. The two complementary nucleic acid sequences hydrogen bond in an antiparallel configuration. A hybridization complex may be formed in solution (e.g., C0 t or R0 t analysis) or between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized to a solid support (e.g., a nylon membrane or a nitrocellulose filter as employed in Southern and Northern blotting, dot blotting or a glass slide as employed in in situ hybridization, including FISH (fluorescent in situ hybridization)).


As used herein, the term “Tm” may be used in reference to the “melting temperature.” The melting temperature may be the temperature at which a population of double-stranded nucleic acid molecules becomes half dissociated into single strands. As indicated by standard references, a simple estimate of the T. value may be calculated by the equation: Tm=81.5+0.41 (% G+C), when a nucleic acid may be in aqueous solution at 1M NaCl. Anderson et al., “Quantitative Filter Hybridization” In: Nucleic Acid Hybridization (1985). More sophisticated computations take structural, as well as sequence characteristics, into account for the calculation of Tm.


As used herein the term “stringency” may be used in reference to the conditions of temperature, ionic strength, and the presence of other compounds such as organic solvents, under which nucleic acid hybridizations are conducted. “Stringency” typically occurs in a range from about Tm to about 20° C. to 25° C. below Tm. A “stringent hybridization” can be used to identify or detect identical polynucleotide sequences or to identify or detect similar or related polynucleotide sequences. For example, when fragments are employed in hybridization reactions under stringent conditions the hybridization of fragments which contain unique sequences (i.e., regions which are either non-homologous to or which contain less than about 50% homology or complementarity) are favored. Alternatively, when conditions of “weak” or “low” stringency are used hybridization may occur with nucleic acids that are derived from organisms that are genetically diverse (i.e., for example, the frequency of complementary sequences may be usually low between such organisms).


As used herein, the terms “restriction endonucleases” and “restriction enzymes” refer to bacterial enzymes, each of which cut double-stranded DNA at or near a specific nucleotide sequence.


DNA molecules are said to have “5′ ends” and “3′ ends” because mononucleotides are reacted to make oligonucleotides in a manner such that the 5′ phosphate of one mononucleotide pentose ring may be attached to the 3′ oxygen of its neighbor in one direction via a phosphodiester linkage. Therefore, an end of an oligonucleotide may be referred to as the “5′ end” if its 5′ phosphate may be not linked to the 3′ oxygen of a mononucleotide pentose ring. An end of an oligonucleotide may be referred to as the “3′ end” if its 3′ oxygen may be not linked to a 5′ phosphate of another mononucleotide pentose ring. As used herein, a nucleic acid sequence, even if internal to a larger oligonucleotide, also may be said to have 5′ and 3′ ends. In either a linear or circular DNA molecule, discrete elements are referred to as being “upstream” or 5′ of the “downstream” or 3′ elements. This terminology reflects the fact that transcription proceeds in a 5′ to 3′ fashion along the DNA strand. The promoter and enhancer elements which direct transcription of a linked gene are generally located 5′ or upstream of the coding region. However, enhancer elements can exert their effect even when located 3′ of the promoter element and the coding region. Transcription termination and polyadenylation signals are located 3′ or downstream of the coding region.


As used herein, the term “an oligonucleotide having a nucleotide sequence encoding a gene” means a nucleic acid sequence comprising the coding region of a gene, i.e. the nucleic acid sequence which encodes a gene product. The coding region may be present in a cDNA, genomic DNA or RNA form. When present in a DNA form, the oligonucleotide may be single-stranded (i.e., the sense strand) or double-stranded. Suitable control elements such as enhancers/promoters, splice junctions, polyadenylation signals, etc. may be placed in close proximity to the coding region of the gene if needed to permit proper initiation of transcription and/or correct processing of the primary RNA transcript. Alternatively, the coding region utilized in the expression vectors of the present invention may contain endogenous enhancers/promoters, splice junctions, intervening sequences, polyadenylation signals, etc. or a combination of both endogenous and exogenous control elements.


As used herein, the terms “nucleic acid molecule encoding”, “DNA sequence encoding,” and “DNA encoding” refer to the order or sequence of deoxyribonucleotides along a strand of deoxyribonucleic acid. The order of these deoxyribonucleotides determines the order of amino acids along the polypeptide (protein) chain. The DNA sequence thus codes for the amino acid sequence.


The term “bind”, “binding”, or “bound” as used herein, includes any physical attachment or close association, which may be permanent or temporary. Generally, an interaction of hydrogen bonding, hydrophobic forces, van der Waals forces, covalent and ionic bonding etc., facilitates physical attachment between the molecule of interest and the analyte being measuring. The “binding” interaction may be brief as in the situation where binding causes a chemical reaction to occur. That may be typical when the binding component may be an enzyme and the analyte may be a substrate for the enzyme. Reactions resulting from contact between the binding agent and the analyte are also within the definition of binding for the purposes of the present invention.





BRIEF DESCRIPTION OF THE FIGURES

The file of this patent contains at least one drawing executed in color. Copies of this patent with color drawings will be provided by the Patent and Trademark Office upon request and payment of the necessary fee.



FIG. 1 shows an overview of several naturally occurring mutagenic DNA repair pathways. Microhomology Mediated End Joining (MMEJ) mediated repair is the center pathway involving a 5′ end resection and annealing of homologous sequences.



FIG. 2 presents exemplary sequences of microduplication targets within a TCAP gene and a HSP1 gene. The microduplicated sequences in each exon are highlighted in green and yellow. The target sites for SpCas9 are shown below each sequence with the GG PAM element in bold and the spacer (guide) sequence underlined. The position of the DSB in the sequence is indicated by a “⋅”.



FIG. 3 presents exemplary data of a TIDE analysis of sanger sequence chromatogram from SpCas9 treated LGMD2G iPSCs. The estimated mutagenesis rate is 87% with 53% of the alleles containing an 8 bp deletion (oval), which would be consistent with a reversion to the WT sequence.



FIG. 4 presents exemplary data of an ICE analysis of sanger sequence chromatogram from SpCas9 treated HPS1 B-EBV cells. The estimated mutagenesis rate is 41% with 30% of the alleles containing a 16 bp deletion (oval), which would be consistent with a reversion to the WT sequence.



FIG. 5 presents exemplary data of a deep sequencing analysis of the editing rates and outcomes at TCAP in iPSCs or iPSC derived myoblasts that have an 8 bp duplication in both alleles. More than 50% of the alleles are either the precise 8 bp deletion or are mutations that produce an in frame sequence.



FIG. 6 presents exemplary data of TIDE analyses of sanger sequencing of individual iPSC clones from the 8 bp duplication TCAP line following treatment with a TCAP targeting SpCas9 RNP. In these four instances at least one allele was converted to the wild-type sequence.



FIG. 7 presents exemplary data for a phenotype prediction iPSC clones based on the genotypes that were observed from the sequencing of the Cas9 modified alleles. 75% of the clones that could be conclusively characterized contained at least one wild-type TCAP sequence.



FIG. 8 presents an overview of duplicated repeat collapse by MMEJ-mediated DNA repair pathways. A nuclease targeted near the center of the duplicated segment can lead to the collapse of the duplication. As disclosed herein, the present method targets this collapse and restores the wild-type sequence.



FIG. 9 presents exemplary data showing that a mutant HPS1 allele contains a 16 bp duplication (annotation as in FIG. 2).



FIG. 10 shows that MMEJ-based repair efficiently and precisely corrects TCAP allele containing an 8-bp duplication.

    • FIG. 10A: Schematic of MMEJ-based pathway for repair of a microduplication. A DSB at the centre of a microduplication (in red and blue) is expected to initiate 5′ end resection to expose the microhomologies on each side. These repeats anneal with each other and are repaired via the MMEJ pathway to yield the wild-type (WT) sequence.
    • FIG. 10B: The pathogenic 8-bp microduplication within TCAP (bold red and blue text) with the SpyCas9 protospacer-adjacent motif (PAM) sequence in the magenta box and the protospacer sequence underlined. A SpyCas9-induced DSB (magenta carets) is expected to drive MMEJ repair to revert the mutant allele to the wild-type sequence (half red/half blue text).
    • FIG. 10C: Percentage of 8-bp deletion (green bars) and total indels (blue bars) resulting from SpyCas9 RNP treatment of LGMD2G iPSCs homozygous for the 8-bp microduplication or wild-type iPSCs. Bars denote mean and dots indicate individual data points. n=3 biological replicates.
    • FIG. 10D: Genotype analysis of 22 LGMD2G iPSC clones after treatment with SpyCas9 RNPs. Hypo, hypomorphic allele.
    • FIG. 10E: Percentage of 8-bp deletion (green bars) and total indels (blue bars) resulting from SpyCas9 treatment of myoblasts derived from patient-derived LGMD2G iPSCs. Bars denote mean and dots indicate individual data points. n=3 biological replicates.



FIG. 11 shows that MMEJ-based repair efficiently and precisely corrects HPS1 allele containing 16-bp microduplication.

    • FIG. 11A: The 16-bp microduplication repeats are shown in bold red and blue text. For six SpyCas9 guides targeting the microduplication, the PAM sequence is demarcated in the magenta box and the protospacer sequence is underlined. A DSB (magenta carets with distance from the repeat centre indicated) is expected to drive reversion to the wild-type sequence (half red/half blue text). Sequence underlined with red and blue bold lines in target site 6 indicates an alternate 16-bp microhomology within this repeat.
    • FIG. 11B: Percentage of 16-bp deletions (green) and total indels (blue) for guides shown in a based on UMI-based Illumina sequencing. Bars denote mean and dots indicate individual data points. n=3 biological replicates.
    • FIG. 11C: Percentage of wild-type reverted alleles (16-bp deletion) among all alleles with insertions or deletions (indels) from b. Mean±s.e.m., dots indicate individual data points. n=3 biological replicates.



FIG. 12 presents exemplary data showing that PARP-1 inhibition decreases efficiency of MMEJ-based repair.

    • FIG. 12A: Experimental design. HPS1 B-LCL cells were treated with rucaparib 24 h before and after electroporation with SpyCas9 RNPs targeting the HPS1 locus and collected for subsequent UMI-based Illumina sequencing15.
    • FIG. 12B: Percentage of microhomology (MH)-mediated deletion (green) and total indels (blue) in cells treated with SpyCas9 in the presence of 0, 10 or 20 μM rucaparib, measured by UMI-based Illumina deep sequencing. Bars denote mean and dots indicate individual data points. n=3 biological replicates.
    • FIG. 12C: Percentage of microhomology-mediated deletion alleles among all other alleles with indels from FIG. 12B. Mean±s.e.m., dots indicate individual data points. n=3 biological replicates. ****P=0.00003, unpaired two tailed t-test.
    • FIG. 12D: Left, alignment of resulting sequences observed by Illumina sequencing upon SpyCas9 RNP treatment of HPS1 B-LCL cells. Right, heatmap showing percentage of alleles generated by SpyCas9 for cells exposed to 0, 10 or 20 μM rucaparib. Gradient scale indicates the percentage occurrence of that sequence.



FIG. 13 presents exemplary data showing that MMEJ-based approach efficiently achieves precise collapse of endogenous microduplications across various repeat lengths.

    • FIG. 13A: Non-pathogenic endogenous microduplications ranging in size from 4 bp to 36 bp. Microduplication repeats are shown as bold red and blue text. The SpyCas9 PAM sequence is shown in the magenta box and the LbaCas12a PAM sequence is shown in the orange box. Anticipated DSBs produced by SpyCas9 and LbaCas12a are denoted by magenta and orange carets, respectively.
    • FIG. 13B: Percentage of microhomology-mediated deletion (green) and total indels (blue) produced at each endogenous site following SpyCas9 treatment, calculated using UMI-based Illumina sequencing. Bars denote mean and dots indicate individual data points. n=3 biological replicates.
    • FIG. 13C: Percentage of microhomology-mediated deletions (green) and total indels (blue) produced at three endogenous sites when treated with SpyCas9 or LbaCas12a. Bars denote mean and dots indicate individual data points. n=3 biological replicates.



FIG. 14 show the disease-causing GATA microduplication (red-blue tandem segment) in the Tay-Sachs HEXA gene.



FIG. 15 presents exemplary data showing indel/deletion ratios subsequent to HEXA gene editing with Cas12a RNPs in a Tay-Sachs patient-derived B-EBV cells with a Cas9:sgRNA concentration ratio of 60 pmol protein to 120 pmol guide RNA.



FIG. 16 presents exemplary data showing representative sequence chromatograms of the edited HEXA genes, where sequencing is on the complementary strand.



FIG. 17 presents exemplary data showing indel/deletion ratios subsequent to HEXA gene editing with Cas12a RNPs in a Tay-Sachs patient-derived B-EBV cells with a Cas9:sgRNA concentration ratio of 90 pmol protein to 180 pmol guide RNA.



FIG. 18 presentes exemplary data showing the effect of rucaparib on the profile of microhomology-mediated deletion products at AAVS1 locus in patient-derived HPS1 B-LCL cells.

    • FIG. 18A: Schematic of two prominent DNA double-strand break repair pathways. A DSB can be repaired through various pathways that produce different DNA sequence end-products. The NHEJ pathway is the dominant DSB repair pathway in most cells. The MMEJ pathway uses end-resection to discover small homologies on each side of the break that can be used to template the fusion of the broken ends. PARP-1 regulates DSB flux through the MMEJ pathway. Treatment of cells with rucaparib—an inhibitor of PARP-1—attenuates DSB flux down the MMEJ repair pathway.
    • FIG. 18B: Percentage of microhomology-mediated deletions (green) and total indels (blue) resulting from SpyCas9 treatment of cells in the presence of 0, 10 and 20 μM rucaparib. Bars show mean and dots show individual data points from three biological replicates based on UMI-based Illumina deep sequencing.
    • FIG. 18C: Percentage of 1-bp insertions (purple), microhomology mediated deletions (green) and other deletions (grey) produced by SpyCas9 RNP with a sgRNA targeting the AAVS1 locus with the addition of increasing amounts of rucaparib. Mean±s.e.m. from three biological replicates based on UMI-based Illumina deep sequencing.
    • FIG. 18D: Percentage of microhomology-mediated deletions out of total indels in cells treated with SpyCas9 in the presence of rucaparib. Mean±s.e.m., dots represent individual data points from three biological replicates. P values determined using two-tailed unpaired t-test. ***P=0.0004, ****P=6.5×10−7.
    • FIG. 18E: Left, alignment of allele sequences obtained from deep sequencing analysis from samples treated with SpyCas9 RNP in the presence of different rucaparib concentrations. Microhomologies present at the AAVS1 locus are shown in by red, green and blue. Microhomology-mediated deletion is indicated by two-toned text. Magenta carets indicate site of DSB created by SpyCas9. Inserted bases (ins) are shown in purple, deleted bases (del) are shown as black dashes. Right, heatmap depicting the percentage of alleles generated after SpyCas9 treatment of cells in the presence of different concentrations of rucaparib (0, 10 or 20 μM). The blue colour gradient scale indicates the percentage of occurrence of that sequence. Heatmap represents mean values from a total of three independent biological replicates.



FIG. 19 presents exemplary data showing gene editing with SpyCas9 and LbCas12a at endogenous microduplications.

    • FIG. 19A: Percentage of microhomology-mediated deletions out of total indels at endogenous sites in cells treated with SpyCas9 and LbaCas12a. Mean±s.e.m., dots represent individual data points from three biological replicates.
    • FIG. 19B: Schematic of endogenous site containing a 24-bp microduplication for SpyCas9 target sites 1-3. The 24-bp microduplication repeats are shown in bold red and blue. The PAM sequence is outlined in magenta and the protospacer sequence is underlined. Magenta carets indicate the site of DSB.
    • FIG. 19C: Percentage of alleles with 24-bp deletion (green) and total indels (blue) for all three guides from TIDE analysis. Guide 3 produces primarily 23-bp deletions, but not 24-bp deletions, probably because it recuts the collapsed DNA sequence. Bars shows the mean from n=3 biological repeats, individual data points are represented by dots.
    • FIG. 19D: Proportion of the 24-bp deletion out of total indels as individual data points (dots), with mean±s.e.m. n=3 biological repeats.
    • FIG. 19E: Schematic of endogenous site containing a 27-bp microduplication for SpyCas9 target sites 1 and 2.
    • FIG. 19F: Percentage of alleles with 27-bp deletion (green) and total indels (blue) for both guides from UMI-based Illumina deep sequencing. Bars show the mean from n=3 biological repeats, individual data points are represented by dots.
    • FIG. 19G: Proportion of the 27-bp deletion out of total indels as individual data points (dots) with mean±s.e.m. n=3 biological replicates.



FIG. 20 presents exemplary data showing indel populations resulting from SpyCas9 editing at the TCAP locus.

    • FIG. 20A: Indel percentages resulting from SpyCas9 RNP treatment in patient-derived iPSCs homozygous for the 8-bp microduplication or in wild-type iPSCs. Mean±s.e.m. from three biological replicates.
    • FIG. 20B: Breakdown of indel classes resulting from SpyCas9 treatment of myoblasts derived from patient-derived LGMD2G iPSCs. Mean±s.e.m. from three biological replicates.
    • FIG. 20C: Sequence alignment of the edited alleles resulting from SpyCas9 RNP treatment of LGMD2G iPSCs. Red and blue text indicates DNA repeats that constitute the microduplication, and collapse is indicated by half red and half blue text. Dashes indicate deleted bases and purple text indicates inserted bases. Data are from one biological replicate out of three independent biological replicates.
    • FIG. 20D: Sequence alignment of the edited alleles resulting from SpyCas9 RNP treatment of myoblasts derived from patient-derived LGMD2G iPSCs. Data are from one biological replicate out of three independent biological replicates.



FIG. 21 presents exemplary data showing PacBio long-read sequencing analysis for SpyCas9-edited LGMD2G iPSCs at the TCAP locus.

    • FIG. 21A: Percentage of gene modification observed from PacBio sequencing (one replicate from FIG. 10C out of three biological replicates). Green, alleles containing the 8-bp deletion; grey, other small indels (<100 bp); blue, large insertions (0.14%, not visible on the graph); maroon, large deletions (>100 bp).
    • FIG. 21B: IGV graphs depicting representative reads obtained for unedited (top) and edited (bottom) LGMD2G iPSCs, spanning a genomic region of about 2,035 bp surrounding the TCAP target site. Red carat indicates the 8-bp deletion site. Data represent one replicate out of three independent biological replicates.



FIG. 22 presents exemplary data showing PacBio long-read sequencing analysis of SpyCas9-edited LGMD2G iPSCs clones and a complex colony at the TCAP locus. IGV graphs depicting representative reads obtained for clonal isolates of edited LGMD2G iPSCs (FIG. 10D), spanning a genomic region of about 2,035 bp surrounding the TCAP target site. The genotype of the clones (deduced by Illumina deep sequencing) is indicated beside an enlargement of the TCAP target region within the PacBio data. The sequences of the two alleles (listed above the IGV plot) obtained from sequencing are shown with repeats in red and blue. Alleles that reverted to wild-type as a result of collapse of microduplication are half red/half blue. Bottom, IGV plot for one complex iPSC colony that appears to have been nucleated by more than one cell, with large deletions present in the genome (sizes indicated).



FIG. 23 presents exemplary data showing Detection of telethonin expression by flow cytometry in patient-derived cells treated with SpyCas9.

    • FIG. 23A: Contour plots from a representative flow cytometry assay to detect telethonin expression in healthy control cells (TCAP+/+), patient cells (TCAP−/−), and SpyCas9-treated homozygous and heterozygous iPS clone-derived myoblasts differentiated for 10 days in culture. Plots are representative of three independent replicates.
    • FIG. 23B: Histograms from a representative flow cytometry assay to detect telethonin expression. Left, overlay of anti-telethonin antibody staining for four representative samples for different TCAP genotypes. Right, comparison between patient cells and healthy control cells, and SpyCas9-treated homozygous and heterozygous iPS clone-derived myoblasts differentiated for 10 days in culture. Histograms are representative of three independent replicates.
    • FIG. 23C: Cells were selected by removing cell debris first as shown by gate P1, and then single cells were selected from P1 by removing clustered cells as shown by gate P2. The cells in gate P2 were used for flow analysis. Plots are representative of one biological replicate.
    • FIG. 23D: Average percentage of telethonin-expressing cells from two technical replicates of three biological replicates. Error bars indicate s.e.m (n=6) and circles represent individual data points. P values (0.33 for patient versus heterozygous and 0.04 for patient versus homozygous clones) were calculated by two-sided Student's t-test.
    • FIG. 23E: Western blot showing validation of anti-telethonin antibody (Santa Cruz Biotechnology). Human muscle lysate and lysate from HEK293T cells transfected with haemagglutinin-tagged-telethonin expression construct were separated on an SDS 4-12% acrylamide gradient gel and the resulting blot was probed with anti-telethonin antibody.



FIG. 24 presents exemplary data showing a standard curve generated with genomic DNA of wild-type and HPS1 mutant B-LCLs from UMI-based Illumina deep sequencing. Genomic DNA from wild-type cells and HPS1 cells homozygous for the 16-bp microduplication were mixed at different ratios (x-axis). These mixed DNAs were used for the construction of a UMI-based Illumina library to determine the ratio of the alleles through deep sequencing (y-axis). These data are fitted to a regression line with the R2 value reported. n=1 biological replicate.



FIG. 25 presents exemplary data showing an Indel spectrum generated by SpyCas9 editing at the HPS1 locus in HPS1 B-LCL cells. Indel spectra of SpyCas9 nuclease cells treated with different sgRNAs determined by UMI-based Illumina deep sequencing. Red bar indicates 16-bp deletion that corresponds to the deletion of one of the microduplication repeats. Data show indel spectra from one representative biological replicate out of three independent biological replicates.

    • FIG. 25A: Target site 1.
    • FIG. 25B: Target site 2.
    • FIG. 25C: Target site 3.
    • FIG. 25D: Target site 4.
    • FIG. 25E: Target site 5.
    • FIG. 25F: Target site 6.



FIG. 26 presents exemplary data showing pathogenic microduplications and their prevalence in human populations.

    • FIG. 26A: Number of insertion variants of length>1 bp that are annotated as Pathogenic or Pathogenic/likely pathogenic in ClinVar. Variants are binned by length, with all those of length 40 bp or greater combined. The insertions (grey) are stratified into progressively finer categories: duplications (red); ‘simple’ duplications (described in text, orange); and the subset of these observed at least once in gnomAD exome/genome databases (green).
    • FIG. 26B: Number of insertion variants of length >1 bp that are observed at least once in the ‘coding’ regions of the gnomAD exome/genome databases. As above, insertions (grey) are stratified into progressively finer categories: duplications (red); ‘simple’ duplications (orange); the subset of these listed in ClinVar (cyan); and the subset annotated as Pathogenic or Pathogenic/likely pathogenic in ClinVar (green). Cyan and green bars are not visible at this resolution.



FIG. 27 presents an exemplary bioinformatics pipeline for identification of disease alleles. Schematic shows the bioinformatics pipeline used to identify all microduplications amendable to efficient MMEJ-mediated collapse from the ‘coding’ regions (exome_calling_regions.v1; mainly exons plus 50 flanking bases) in the gnomAD genome and exome databases (version 2.0.2). Insertion variants observed in both databases were used for analysis (variants occurring in both databases were counted once). Insertions that do not add a repeat-unit to an existing tandem repeat and are not themselves a perfect repeat were filtered to constrain only duplications that spanned 2-40 bp in length and are amendable to CRISPR-Cas9 targeting. This data set was then cross-referenced against the ClinVar database (clinvar_20180225. vcf) to apply further filters for variants reported as pathogenic, which ultimately yielded 143 likely disease-causing microduplications.





DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to the field of gene therapy. In particular, compositions and methods are disclosed that repair gene microduplication mutations by reversion to a wild type sequence. For example, the creation of double stranded breaks by a nuclease protein induces the microhomology mediated end joining DNA repair pathway that corrects the microduplication back to the wild type sequence without the assistance of an exogenously supplied donor DNA.


In one embodiment, the present invention contempates a subset of disease-causing alleles within the human population that are the product of small duplications (microduplications of 1 to 40 base pairs) within a gene sequence. These alleles occur in human subpopulations with substantial frequencies and result in rare diseases such as Limb Girdle Muscular Dystrophy 2G (LGMD2G) [Nigro, V. & Savarese, M. Genetic basis of limb-girdle muscular dystrophies: the 2014 update. Acta Myol 33,1-12 (2014)], Tay-Sachs Disease[Fernandes Filho, J. A. & Shapiro, B. E. Tay-Sachs disease. Arch. Neurol. 61, 1466-1468 (2004).], and Hermansky-Pudlak syndrome (HPS)[El-Chemaly, S. & Young, L. R. Hermansky-Pudlak Syndrome. Clin. Chest Med. 37, 505-511 (2016).] among others (Table 1).


In one embodiment, the present invention contemplates a method demonstrating that disease-causing microduplications can be reverted to the wild-type sequence simply through the generation of a DSB near the center of the duplication, enabling development of simplified Cas9-based therapeutic interventions tailored to each disorder. Our discovery was based initially on the theoretical idea that a nuclease-generated DSB would harness a common cellular DNA repair pathway—microhomology mediated end joining (MMEJ). Sfeir et al., “Microhomology-Mediated End Joining: A Back-up Survival Mechanism or Dedicated Pathway?” Trends Biochem Sci 40:701-714 (2015). MMEJ utilizes small regions of sequence homology on each side of the break to collapse the DNA sequence. See, FIG. 8. The idea of microhomology collapse of sequences has been observed in programmable nuclease editing data for some time. Bae et al., “Microhomology-based choice of Cas9 nuclease target sites” Nature Methods 11:705-706 (2014). However, the realization that it could be applied to disease correction to achieve highly efficient reversion to the wild-type sequence has not been described.


The data presented herein demonstrates a successful, efficient correction of disease-causing alleles in patient-derived cell lines harboring microduplications including, but not limited to, TCAP (LGMD2G) and HPS1 (HPS). The data shows that this correction can be successfully performed in iPSC, stem cell progenitor cells and adult somatic cells, opening up multiple route for the delivery of a nuclease-based therapy. Based on a computational analysis of human allele variants described herein, more than 100 diseases have been identified that should be amenable to this type of genetic correction. As the introduced nuclease is programmed to target a mutant DNA sequence, the reverted wild-type sequence is not a substrate, and thus should be stable even in the presence of the nuclease. Furthermore, microhomolgy-mediated correction does not require a DNA cassette to regenerate the wild-type sequence, only the transient delivery of the nuclease (e.g. Cas9 and its sgRNA) to target the locus. The demonstrated high rate of correction for these two distinct genetic disorders suggests that our correction approach will have broad application to a wide variety of important genetic disorders associated with microduplications for which there are no therapeutics currently available, providing patients with a definitive cure.


Although it is not necessary to understand the mechanism of an invention, it is believed that targeting a double strand break to a microduplication can cause the collapse of the microduplication back to the wild-type sequence with high efficiency and that this might be used to correct disease alleles without the need for a DNA repair template.


Current programmable nuclease-based methods (for example, CRISPR-Cas9) for precise correction of a disease-causing genetic mutation harness the homology-directed repair pathway. However, this repair process requires co-delivery of an exogenous DNA donor to recode the sequence and can be inefficient in many cell types. In some embodiments, the present invention contemplates disease-causing frameshift mutations resulting from microduplications which can be efficiently reverted to the wild-type sequence simply by generating a double-stranded break near the centre of the duplication. It has been demonstrated herein using patient-derived cell lines: for example, limb-girdle muscular dystrophy 2G (LGMD2G)1, Hermansky-Pudlak syndrome type 1 (HPS1)2 and Tay-Sachs Disease. Clonal analysis of inducible pluripotent stem cells (iPSCs) from the LGMD2G cell line, which contain a mutation in TCAP, treated with the Streptococcus pyogenes Cas9 (SpyCas9) nuclease revealed that about 80% contained at least one wild-type TCAP allele; this correction also restored TCAP expression in LGMD2G iPSC-derived myotubes. SpyCas9 also efficiently corrected the genotype of an HPS1 patient-derived B-lymphoblastoid cell line. Inhibition of polyADP-ribose polymerase 1 (PARP-1) suppressed the nuclease-mediated collapse of the microduplication to the wild-type sequence, confirming that precise correction is mediated by the microhomology-mediated end joining (MMEJ) pathway. Analysis of editing by SpyCas9 and Lachnospiraceae bacterium ND2006 Cas12a (LbaCas12a) at non-pathogenic 4-36-base pair microduplications within the genome indicates that the correction strategy is broadly applicable to a wide range of microduplication lengths and can be initiated by a variety of nucleases. Finally, LbaCas12a was employed to achieve precise correction of the four base pair duplication in HEXA Tay-Sachs patient-derived B-lymphoblastoid cell line. The simplicity, reliability and efficacy of this MMEJ-based therapeutic strategy should permit the development of nuclease-based gene correction therapies for a variety of diseases that are associated with microduplications.


I. Double Stranded Deoxyribonucleotide Break Repair Mechanisms

MMEJ is an error-prone double-stranded break (DSB) DNA repair pathway that uses regions of microhomology (2-25 bp) on each side of a DSB to define the boundaries at which DNA segments are rejoined3. This mutagenic process generates deletions that result in the loss of one of the repeat sequences and the intervening region. See FIGS. 10A and 18. Hallmarks of MMEJ repair on DNA products generated through editing of programmable nucleases have been observed in a variety of cell types and their effect on gene inactivation rates has been appreciated4,5. The MMEJ pathway has also been harnessed for the targeted insertion of exogenous donor DNAs in mammalian cells and zebrafish and frog embryos6,7. Herein, a nuclease-based therapeutic approach is described that harnesses the MMEJ pathway to precisely correct frameshift mutations resulting from microduplications (e.g., tandem duplications). It was reasoned that MMEJ-based repair of a programmable nuclease-induced DSB near the centre of a disease-causing microduplication would achieve precise reversion to the wild-type genomic sequence. This strategy might be an effective alternative to homology-directed repair-based gene correction approaches and would not require co-delivery of a donor DNA. Furthermore, the reverted wild-type sequence would no longer be complementary to the single-guide RNA (sgRNA) targeting the microduplication, leading to stable correction even in the presence of Cas9 nuclease.


To evaluate the efficacy of the presently contemplted MMEJ-based correction strategy, LGMD2G and HPS1 were selected as exemplary diseases that affect different human tissues and whose causes include pathogenic microduplications of different lengths. Both of these diseases are autosomal recessive disorders that are represented at modest frequencies in different human subpopulations and currently have no treatments. One of the disease alleles identified in LGMD2G patients features an 8-bp duplication in exon 1 of TCAP, a mutation that is found in the East Asian population at a frequency of approximately 1 in 1,000 alleles. TCAP encodes the telethonin protein, a 19-kDa cardiac and striated muscle-specific structural protein located in the Z-disc of sarcomeres that links titin proteins to stabilize the contractile apparatus for muscle contraction8. Homozygous or compound heterozygous inactivating mutations in TCAP manifest as severe muscle atrophy and cardiomyopathy that typically develop during late adolescence into early adulthood1,9.


The double strand breaks (DSBs) that are generated within the genomes of eukaryotic systems are potentially repaired by a number of different DNA-damage response pathways such as canonical non-homologous end joining (cNHEJ), homologous recombination (HR), and alternate non-homologous end joining (aNHEJ). McVey et al., “MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings” Trends in Genetics 24:529-538 (2008). cNHEJ is a precise repair pathway where ends are rejoined and typically reconstitute the original DNA sequence. HR uses a DNA template with homology to sequences flanking the DSB to copy a homologous sequence to repair the broken site. aNHEJ is a mutation prone process that utilizes resection of 5′ ends of the DSB to complete the repair. The Microhomology Mediated End Joining (MMEJ) pathway involves rejoining the DNA ends using short regions of homology on each side of the break (e.g., usually >2 bases) where the intervening sequence is deleted. See, FIG. 1.


When artificial nucleases are introduced into the cell to target the genome, the DSBs that are generated are likely to proceed down the cNHEJ pathway where they are precisely repaired, which restores the existing nuclease target sequence, whether wild type or mutated. Eventually, however, mutations are inevitably generated that disrupt the target site. Sequencing information on these deletions suggests that in many instances the resulting deletion mutations are generated by MMEJ, due to the sequence scars that contain microhomologies that are are both sides of the break. Analysis of Cas9 nuclease DNA target sequences suggests that there is a correlation between the efficiency of collapse and the length of the microhomology on each side of the break. Bae et al., “Microhomology-based choice of Cas9 nuclease target sites” Nature Methods 11:705-706 (2014).


DSBs at most genomic sites are repaired primarily through the NHEJ pathway, which can produce small insertions or deletions during imprecise repair (for example, AAVS1).28 See, FIG. 18. The data presented herein, which span DSBs in twelve sequences, indicate that microduplications are preferentially repaired via the MMEJ pathway, which yields predictable and efficient collapse. For this class of pathogenic mutations, precise repair via the MMEJ pathway provides a favourable alternative to homology-directed repair, which is inefficient in many cell types29. Consistent with the present findings, MMEJ-mediated repair was recently used to efficiently correct the pathogenic microduplication associated with HPS130. Although the use of allele frequencies from gnomAD can help to prioritize potential targets for MMEJ-based repair, this underestimates the extent of genetic diseases—particularly dominant ones—caused by microduplications.


II. Microhomology Mediated End Joining Disease Mutation Repair

To test the generality of the presently contemplated MMEJ-based repair approach and the range of sequence lengths over which duplication collapse is efficient, editing products generated by SpyCas9 targeting endogenous microduplications within the human genome were evaluated.


A bioinformatic analysis was peformed to identify non-pathogenic, unique endogenous microduplications ranging from 4 bp to 36 bp in length in the human genome. See, FIG. 13A. The efficiency of microduplication collapse resulting from a SpyCas9 produced DSB at the centre of the microduplications in HEK 293T cells at these sites was examined. Although the bulk editing rate varied across these target sites, it was consistently found that duplication collapse was the major end-product within the edited alleles (ranging from 45% to 93%), regardless of the microduplication length. See, FIG. 13B and FIG. 19A. Consistent with the analysis at an HPS1 locus, a decrease in the duplication collapse efficiency was observed for 24-and 27-bp-long microduplications as cut sites were moved away from the centre. See, FIGS. 19B-19G.


Whereas SpyCas9 generates blunt DSBs, the type V CRISPR-Cas nuclease Cas12a generates DSBs with 5′ overhangs19. It was then investigated whether LbaCas12a-generated breaks might be preferentially repaired by a resection-dependent pathway such as MMEJ by comparing the efficiency of microduplication collapse engendered by SpyCas9 and LbaCas12a nucleases at three endogenous sites. Efficient repeat collapse (50-90% of edited alleles) could be achieved with LbaCas12a at all three of these sites, with efficiencies similar to those of SpyCas9. See, FIG. 13C and FIG. 19A. In addition, LbaCas12a could drive repeat collapse for the four base pair duplication in HEXA that is associated with Tay-Sachs Disease. See, FIGS. 14-17. Overall, these data demonstrate that the MMEJ-based editing approach can be used to efficiently collapse microduplications up to lengths of at least 36 bp using either Cas9 or Cas12a programmable nucleases.


Recently, an algorithm has been developed to more reliably predict target loci that would be predisposed to generate a more homogeneous mutant allele population through MMEJ. Ata et al., “Toward Precision Molecular Surgery: Robust, Selective Induction of Microhomology-mediated End Joining in vivo” BioRxiv, (posted online Mar. 28, 2018). Thus, the goal of this algorithm was to identify sites in genes where the generation of a double strand break (DSB) will be repaired through the use of microhomologies on each side of the break to collapse the DNA sequence such that it is out-of-frame with regards to its translation and thus will not produce a functional protein. Termed the “MENTHU” algorithm, it appears primarily to be a way of post-processing predictions generated from an earlier reported algorithm (Bae et al., nature.com/articles/nmeth.3015 (2014)) to improve the prediction for when a DSB will be repaired by MMEJ in a fairly homogeneous way. This is useful if one wants to do precision genome editing, whereas Bae et al were considering the blunter application of making (any) out-of-frame deletions for gene knock-out.


The Ata et al. paper invites users to access this algorithm to facilitate the scanning of reference wild-type genes using Genbank IDs or RefSeq IDs to identify sites that will collapse primarily through a single MMEJ event down to a specific sequence. genesculpt. orghnenthu/. The Ata et al. algorithm is designed for the primary application of making knockouts in model organisms, e.g. the source-code repository for MENTHU has the subtitle “MENTHU knockout site recommender”. Consequently, Ata et al. discloses making mutants in zebrafish embryos through the injection of a programmable nuclease (TALENs or SpCas9), and then analyzing the resulting genetic products and phenotypes of these mutant animals.


Although the MENTHU algorithm appears to be set up to analyze genes, in principle any DNA sequence can be evaluated, e.g. with variant alleles and flanking sequence, but this is user dependent—not a function of the algorithm. In addition, most of the known pathogenic variant alleles that are duplications cause frame-shifts, and the algorithm is not set up to define going from an out-of-frame sequence to an in-frame sequence, let alone restoring the wild-type sequence.


In some embodiments, the present invention contemplates an alternative method that is focused on capturing abutting duplications within the ExAC database or gnomAD databases—a database of variants identified in whole-genome and whole-exome sequencing data aggregated from many large-scale projects (and subsuming the earlier ExAC exome-only database)—that may be suitable for MMEJ repair. Importantly, the basic representation of variants in gnomAD lists the genomic position, reference (REF) sequence starting at that position, and alternate (ALT) sequence starting at that position; it is not typically readily apparent if a variant is a duplication, as typically only the base immediately preceding an insertion is used as the reference allele, whereas to establish whether the inserted sequence is a duplication requires examining more of the flanking regions (e.g. the HEXA duplication has REF=G, ALT=GGATA, where only a single copy of the duplication is present). See, Tables 5 and 6 Furthermore, the gnomAD webpages and downloadable vcf files are not compatible with the MENTHU program in their raw form: the webpages for variants show surrounding genomic reference sequence only as a PNG graphic (not in text form) or via links to the UCSC genome browser for the reference genome; the vcf files sometime indicate when variants are duplications in the HGVSc fields added by Ensembl VEP, but again these files do not directly provide sequence of the duplication (both reference-copy and extra inserted copy) together with enough genomic flanking sequence to use for identifying cleavage sites that would be suitable for MMEJ. This alternative technology rebuilt the surrounding genomic sequence and identified common positions for nuclease cleavage around these duplications that could be tested to achieve collapse of the duplication and restore the wild-type sequence. Never is this concept mentioned in the MENTHU manuscript or algorithm.


In addition, the present invention—unlike the Ata et al. algorithm captures allele frequencies that allow the prioritization of potential targets based on the associated diseases, where the information on pathogenicity is extracted from the ClinVar database and combined with gnomAD and 1000 Genome Project phase 3 databases to determine how common the variants are overall and in specific human subpopulations.


Thus, the embodiments contemplated herein represent a completely novel analysis of a human genome variant database to extract information of disease alleles that may be amenable to gene correction by replacing microduplication mutations sequences with their requisite wild type sequences via an MMEJ strategy.


III. Gene Microduplication Diseases

There are a number of diseases that have causative alleles within the human population that are associated with microduplications within the genome. See, Table 1.









TABLE 1







Exemplary Disease alleles associated with microduplications

















gnomAD






clin Var
allele


Disease
locus
duplication
dbSNP ID
ID
frequency





LGMD2G
TCAP
CGAGGTGT
rs778568339
ND
8.126e-5





HPS
HPS1
CCAGCAGGGGAGGCCC
rs281865163
5277
2.845e-5





Tay-Sachs
HEXA
GATA
rs387906309
3889
0.0008041





familial
DOK7
GCCT
rs764365793
1273
0.0006367


limb-girdle







myasthenia










Cone-rod
RAX2
CCCGGG
rs549932754
1242
0.0007684


dystrophy







11










There are likely to be many more microduplications that are associated with diseases. But most disease phenotypes have not been linked to a specific microduplication. For example, ˜90% GWAS disease-associated SNPs are found in non-coding sequences, though which variants are themselves causal, as opposed to being in linkage disequilibrium with causal varaints, is in many cases not yet known. Hindorff et al., “Potential etiologic and functional implications of genome-wide association loci for human diseases and traits” Proceedings of the National Academy of Sciences 106:9362-9367 (2009). In addition, repeat expansion diseases (e.g., Huntington's disease, ALS [C9ORF72], etc.) could be thought of as extended microduplications as well.


In one embodiment, the present invention contemplates a method for reverting a gene comprising a nucleotide microduplication mutation to a wild-type sequence. In one embodiment, the method comprises generating a DSB near the center of the nucleotide microduplication. In one embodiment, the nucleotide microduplication causes a disease. In one embodiment, the DSB is created by targeting a nuclease to the nucleotide microduplication center. In one embodiment, the nuclease includes, but is not limited to Cas9, CRISPR, Cas12 (Cpf1), zinc finger nucleases and/or TALEN. Although it is not necessary to understand the mechanism of an invention, it is believed that since the nuclease is targeting a mutated sequence, once the mutation reversion to a wild type sequence has occurred, the repaired target sequence would no longer be recognized by the nuclease, and thus remains a wild type sequence in the presence of the repairing nuclease. It is further believed that a correction DNA cassette is not needed for an MMEJ repair back to the wild-type sequence, only the nuclease (e.g. Cas9) and a targeting moiety having affinity for the mutant locus (e.g. sgRNA).


The data presented herein describes successful correction of disease causing alleles in patient-derived cell lines harboring microduplications in TCAP and HPS1. A high rate of correction is achieved in patient cells lines through the delivery of a nuclease suggesting that nuclease-induced MMEJ repair of microduplications within a genome can be programmed for other gene microduplication targets causing other diseases (e.g. HEXA-Tay-Sachs syndrome, other diseases in Table 1) leading to cures for these diseases.


A. TCAP and HSP1 Microduplication Repair


The site-specific nuclease, S. pyogenes Cas9 (SpCas9) was used in the following therapeutic gene editing method. Jinek et al., “A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity” Science 337:816-821 (2012). Nonetheless, it is contemplated herein that similar results can be obtained using any Cas9 (or CRISPR), a Cpf1 nuclease or any other programmable nuclease system including, but not limited to, zinc finger nucleotide (ZFN), TALEN, mega-TAL or meganuclease all of which can be targeted to a gene microduplication sequence. The data presented herein show two different proof-of-principle targets (TCAP and HSP1) that may have therapeutic value. Both of these diseases are associated with substantial morbidity, and no curative therapies are currently available.


The mutant TCAP allele contains an 8 base duplication that leads to an out of frame coding sequence. UCSC: genome.ucsc.edu/cgi-bin/hgTracks?db=hg19&highlight=hg19. chr17%3A37821635-37821635&position=chr17%3A37821610-37821660. This TCAP allele has a frequency of ˜1 in 1000 in the east Asian population. gnomad.broadinstitute.org/variant/17-37821635-G-GCGAGGTGT. Individuals with homozygous inactivating mutations in TCAP have Limb Girdle Muscular Dystrophy 2G (LGMD2G).


The mutant HPS1 allele contains a 16 bp duplication that leads to an out of frame coding sequence. gnomad.broadinstitute.org/variant/10-100183554-T-TGGGCCTCCCCTGCTGG. This allele has a frequency of ˜0.1 in 21 in populations within Puerto Rico. MPH, S. E.-C. M. & MD, L. R. Y. Hermansky-Pudlak Syndrome 1-7 (2017). Individuals with homozygous inactivating mutations in HPS1 have Hermanksy-Pudlak syndrome (HPS1).


B-EBV cells were obtaned from a patient that contains a homozygous 16 bp microduplication in the HPS1 gene with SpCas9 by nucleofection. ICE (similar to TIDE16) analysis of sanger sequence chromatogram from SpCas9 treated HPS1 B-EBV cells. The estimated mutagenesis rate is 41% with 30% of the alleles containing a 16 bp deletion (red arrow), which is a reversion to the wild-type sequence. Zero (x-axis) is no change in the length or composition of the 16 bp microduplication. See, FIG. 9.


Patient-derived cells were obtained to test the potential for a nuclease targeting these deletions to revert the duplicated mutant allele. For TCAP, iPSCs were derived from fibroblasts from an individual that is a homozygous carrier of the 8 bp duplication. See, FIG. 3. For HPS1, B-EBV cells were purchased from Coriell generated from a patient that is homozygous for the 16 bp duplication in HPS1 [GM14606]. For the nuclease system, a 3xNLS-SpCas9 protein was used complemented with sgRNAs (Synthego) for the target sequences. See, Table 2.









TABLE 2







Guide Sequences in sgRNAs targeting duplications








Microduplication locus
SpCas9 Guide sequence





TCAP
AGCTGAGCTGCGAGGTGTCG





HPS1
CAGCAGGGGAGGCCCCCAGC










These Cas9-sgRNA complexes (e.g., Cas9 RNPs) were delivered by nucleofection to LGMD2G iPSCs, myoblast derived from LGMD2G iPSCs, or to the HPS1 B-EBV line. Following recovery and expansion of the nuclease-treated cells in culture the target genomic region was amplified by PCR from the population of treated cells and the mutagenic products were characterized by TIDE or ICE analysis of the sequence chromatograms. Brinkman et al., “Easy quantitative assessment of genome editing by sequence trace decomposition” Nucleic Acids Research (2014). TIDE analysis of Cas9 RNP treated LGMD2G iPSCs revealed that ˜53% of the alleles were converted back to a wild-type length. See, FIG. 3. ICE (Synthego) analysis of SpCas9 treated HPS1 B-EBV cells revealed that ˜30% of the alleles were converted back to a wild-type length in the context of a ˜41% total editing rate. See, FIG. 4. In summary, approximately 75% of the edited HPS1 alleles were converted to wild-type length.


To confirm the TIDE analysis of TCAP alleles a deep sequencing analysis was performed on SpCas9 RNP treated iPSCs and iPSC derived myoblasts. See, FIG. 5. The iPSC data is from two biological replicates and the myoblast data is from a single experiment. The data confirm that the majority of the editing products are micro-homology mediated deletion of one of the duplicate sequences. There are also a large number of additional sequence that have been shifted back in frame through mutagenesis—although they are not the wild-type coding sequence. These mutant in-frame sequences may also be functional.


Individual iPSC clones were taken from a SpCas9 RNP treated TCAP microduplication cell population and expanded to determine the genotype. A variety of different genotypes were observed within the clones that were analyzed. See, FIG. 6. Two of the 24 clones that were analyzed were homozygous for the wild type (WT) allele. Six “clones” could not be defined conclusively—likely because the colonies were initiated from 2 cells generating more than 2 allele sequences. Overall the analysis of 18 clones demonstrate that the majority of iPSC clones (˜75%) contain at least one corrected allele of wild type sequence. See, FIG. 7.


In one embodiment, the present invention contemplates a method of differentiating SpCas9 treated iPSC clones into myoblasts to determine the number that display expression of the TCAP encoded protein telethonin.


The methods disclosed herein show an ability to precisely revert a microduplication back to its parental (e.g., wild type) sequence that can correct genetic microduplication mutations underlying of a number of diseases. Aside from those listed in Table 1 (supra)—there may be a number of diseases that stem from microduplications given the limited depth of genomic data that is associated with rare diseases.


An sgRNA was designed and tested for SpyCas9 to generate a DSB one base pair away from the middle of the TCAP 8-bp microduplication. See, FIG. 10B. Purified SpyCas9 protein was complexed with a synthetic sgRNA (RNP) and electroporated into iPSCs homozygous for the TCAP microduplication that were derived from patients with LGMD2G. After four days, deep sequencing analysis was used to analyse the genomic region of interest for insertions and deletions (indels). Robust gene editing (about 80% indel rate) was observed, indicating that the SpyCas9 RNP can efficiently generate DSBs at this site. Closer examination of the sequence variants revealed that on average about 57% of the alleles contained a precise 8-bp deletion corresponding to the wild-type allele. See, FIG. 10C and FIG. 20A.


Notably, when introduced into wild-type cells containing functional TCAP, the SpyCas9 RNPs did not cause measurable editing at the TCAP allele, indicating that the corrected allele in the mutant cells is not subject to unintended damage following MMEJ-mediated reversion. See, FIG. 10C. In addition to the precise 8-bp deletion, it was also observed that an additional approximately 17% of the alleles contained in-frame mutations, and therefore may encode hypomorphic alleles with some restoration of function. See, FIGS. 20A and 20C. Genotyping of 22 clones generated from a nuclease-treated LGMD2G iPSC population revealed that 77% contained at least one wild-type allele, indicating that the majority of nuclease-treated cells would be phenotypically corrected. See, FIG. 10D. To independently verify the duplication collapse rates observed in edited iPSCs by Illumina short-read sequencing, a 2-kb amplicon was sequenced spanning the TCAP locus from a population of SpyCas9-edited iPSCs using the Pacific Biosciences long-read sequencing platform (PacBio). Analysis of these reads revealed that 67% of the edited alleles with insertions or deletions below 100 bp in length corresponded to the 8-bp collapse, which is similar to the 73% rate of 8-bp collapse determined by Illumina sequencing for this sample. See FIG. 21. Treatment of cells with Cas9 nuclease can produce large deletions (>100 bp) at the target locus at a modest frequency10. Consistent with these findings, the PacBio analysis revealed the presence of large deletions (100-1,000 bp) that would not have been detected by Illumina sequencing at a frequency of about 2% in bulk edited iPSCs. A genotypically complex iPS cell colony was also isolated that harboured two large deletions at the TCAP locus. See, FIG. 22.


To demonstrate the translatability of the present approach to muscle cell types, LGMD2G iPSCs were differentiated into proliferative skeletal myoblasts that can be induced to terminally differentiate into myotubes11. iPSC-derived myoblasts can repair damaged muscle in a similar way to myogenic satellite cells (one of the primary targets of gene therapy for myopathies). Myoblasts were electroporated with SpyCas9 RNPs programmed to target the 8-bp microduplication. Following editing, about 45% of the alleles were precisely repaired back to the wild-type sequence. See, FIG. 10E and FIGS. 20B & 20D. Immunostaining of myotubes derived from corrected LGMD2G iPSC clones with an anti-telethonin antibody showed that genetic correction restored telethonin expression. See, FIG. 23. Collectively, these data show that introducing a DSB close to the centre of microduplication can efficiently achieve precise in vitro correction of the 8-bp microduplication associated with LGMD2G in iPSCs and in myoblasts that mimic cell populations that would be therapeutically targeted in vivo.


The present approach was further tested on a 16-bp pathogenic microduplication in exon 15 of HPS1, which is associated with HPS1 and leads to the production of a truncated protein responsible for this autosomal recessive disease12. HPS1 has a high prevalence in the Puerto Rican population, with a carrier rate of approximately 1 in 21 in the northwest region2. HPS proteins are involved in the biogenesis of lysosome-related organelle complexes (BLOCs), which are necessary for the proper trafficking of cargo to melanosomes, dense granules and lysosomes13. HPS1 patients suffer from albinism, bleeding disorders, vision loss and progressive pulmonary fibrosis, which leads to premature death14.


Gene correction efficacy was determined in a patient-derived B lymphocyte cell line (B-LCL) homozygous for the 16-bp microduplication by electroporating these cells with SpyCas9 RNPs programmed to cleave two base pairs away from the centre of the microduplication. See, FIG. 11A (target site 1). To accurately assess the observed editing rates, unique molecular identifiers (UMIs) were added to the PCR amplicons during Illumina library construction to allow the removal of any amplification bias15. It was confirmed that this approach accurately captured the relative percentage of HPS1 microduplication and wild-type alleles present in a series of test populations. See, FIG. 24. At HPS1 target site 1, editing was observed at about 46% of the alleles with around 35% restored to the wild-type sequence. See, FIGS. 11B & 11C.


The effect of the position of the DSB within the microduplication was further examined on the efficiency of MMEJ-mediated repair by designing five additional sgRNAs that targeted the DSB to different positions relative to the centre of the microduplication See, FIG. 11A (target sites 2-6). As the break site was shifted away from the centre, there was a decrease in the efficiency of achieving the precise 16-bp deletion. See, FIGS. 11B & 11C. However, target sites 3 and 6 were notable exceptions to this trend. Target site 3 was observed to be quite efficient at generating indels to the exclusion of the 16-bp deletion, probably because the wild-type sequence, once regenerated, can also be targeted by this sgRNA for further mutagenesis. See, FIG. 25. On the other hand, target site 6 achieved efficient deletion of the 16-bp microduplication (more than 50% of the modified alleles), despite being the most distal of the cleavage sites (10 bp from the centre of the microduplication). Its efficiency may be due to the extended regions of homology that surround the cleavage site at this end of the microduplication. See, FIG. 11A (target site 6). Overall, these results demonstrate that the cleavage position within the microduplication and the presence of alternate regions of microhomology can influence the production of the desired wild-type end product. See, FIG. 11C.


To investigate whether nuclease-mediated collapse of a microduplication occurs via the MMEJ pathway, a DNA repair factor (PARP-1) that regulates DSB flux through this pathway was inhibited. PARP-1 influences the repair of a DSB through resection-dependent DNA repair pathways, such as MMEJ3,16, which are in competition with the non-homologous end joining pathway (NHEJ) for DSB repair17. See FIG. 18A. Inhibition of the catalytic activity of PARP-1 by rucaparib reduces DSB flux through the MMEJ pathway, resulting in a decrease in microhomology-based deletion products in the resulting repair events18. See, FIG. 18A. Patient-derived HPS1 B-LCL cells were treated with 10 μM or 20 μM rucaparib before and after treatment with SpyCas9 RNP to suppress MMEJ-mediated repair of DSBs. See, FIG. 12A. An overall reduction in editing rates was observed at the HPS1 locus upon rucaparib treatment. See, FIG. 12B. These lower editing rates were primarily the result of a reduction in the 16-bp deletion product, which decreased from about 50% in untreated cells to around 15% and 6% in cells treated with 10 μM and 20 μM rucaparib, respectively. See, FIGS. 12B-12D. A similar reduction in microhomology-based deletions was observed with SpyCas9 RNP targeting the AAVS1 locus in patient-derived HPS1 B-LCL cells. See, FIG. 18. Thus, the MMEJ pathway underlies the robust correction of the microduplications for LGMD2G and HPS1 in the presence of a targeted DSB.


B. Tay-Sachs Disease (HEXA Gene)


In one embodiment, the present invention contemplates a method for HEXA editing by Cas12a to correct a mutated sequence of the Tay-Sachs locus.


Two different Cas12a (also known as Cpf1) orthologs (LbCas12a and FnCas12a) were tested for their ability to drive microhomology-mediated end joining (MMEJ) to collapse the common GATA microduplication in HEXA that is associated with Tay-Sachs disease. The GATA⋅GATA duplication (red and blue segments) results in a frameshift within the gene that inactivates it and leads to Tay-Sachs if both HEXA alleles are disrupted). See, FIG. 14. This allele occurs with a frequency of ˜1 in 100 individuals in some Jewish populations.


crRNAs were designed to target Cas12a cleavage to the region spanning the microduplication to revert it to the wild-type sequence through MMEJ repair. One crRNA was designed for FnCas12a to utilize a TTC PAM (FnCas12a Guide). See, FIG. 14. Two crRNAs were designed for LbCas12a to utilize either a CTTC PAM (LbCas12a Guide 1) or a TTCC PAM (LbCas12a Guide 2). See, FIG. 14. For LbCas12a, these PAMs are not the optimal TTTV sequence, which may result in lower activity.


crRNAs (120 pmol) were complexed with 60 pmol of purified FnCas12a-2xNLS or LbCas12a-2xNLS protein and then electroporated into a B-EBV cell line that is homozygous for the GATA microduplication in HEXA (Coriell GM11852). See, Table 3.









TABLE 3







crRNA Sequences for crRNAs targeting HEXA duplication








crRNA/Cas12a
Cas12a crRNA sequence





LbCas12a Hexa guide 1

UAAU

UUCUAC

UAAGU

GUAGAU

CAGUCAGGGCCAUAGGAUAGAUA






LbCas12a Hexa guide 2

UAAU

UUCUAC

UAAGU

GUAGAU

AGUCAGGGCCAUAGGAUAGAUAU






FnCas12a Hexa guide

UAAU

UUCUAC

UGLTU

GUAGAU

CAGUCAGGGCCAUAGGAUAGAUA






In the crRNA sequences the constant region is in bold. Double underline indicates the base pairing regions of the hairpin stem. Single underlined sequence is the guide sequence (23 nt)







After 72 hours the genomic DNA from treated cells were harvested and the genomic region of interest within HEXA was PCR amplified and submitted for Sanger sequencing. Mutation rates were determined by TIDE analysis (tide.deskgen.com) in comparison to an unedited sequence chromatogram from the same genomic region. Total indels were modest (˜5 to 10%). See, FIG. 15 (blue bars). A reversion to the wild-type sequence was observed in all of the samples (brown bars), where for LbCas12a guide 2 the majority of the alleles that were edited restored the desired wild-type sequence. The experiment was performed in biological triplicate, where the error bars represent the standard error of the mean.


Representative sequence chromatograms show sequencing on the complementary strand. See, FIG. 16. The TATC duplication (complement of GATA) is boxed in magenta and the respective guide target sequences for each nuclease are underlined in green.


The concentration of the delivered Cas12a:crRNA was then increased for each nuclease:guide combination from 90pmol to 180pmol. The editing rates after electroporation of the HEXA GATA duplication in the B-EBV line in a single experiment were improved (cyan bars) and the rate of wild-type sequence reversion was also increased, reaching nearly 10% for the LbCas12a guide 2 treated cells (orange bars). See, FIG. 17. These data demonstrate the feasibility of reverting the mutant allele to the wild-type DNA sequence through the introduction of a targeted double-strand break without the need of a donor DNA sequence (or homology directed repair) for this restoration.


Those in the art would appreciate that the current data showing the correction disease-causing alleles for two different diseases provides an expectation that the technology has widespread applicability. Furthermore, as more diverse programmable nuclease systems are defined (e.g., CRISPR systems) that have broader targeting range and better delivery properties, this type of approach will become easier to perform in vivo. Although it is not necessary to understand the mechanism of an invention, it is believed that this approach may also work efficiently for genetic diseases based upon repeat expansion mutations if DSBs can be targeted just inside the edges of the repeat elements to allow the induction of long-range microhomology mediated repair.


IV. Genomic Microduplication Variants

To investigate whether this MMEJ-based therapeutic strategy can be applied more broadly for correcting human genetic disorders, a bioinformatic analysis was performed to gauge the prevalence of disease-causing microduplications in human populations. The ClinVar database20 includes about 4,700 duplications that are annotated as ‘pathogenic’ or ‘pathogenic/likely pathogenic’. See, FIG. 26A. Duplications of lengths ranging from 2 to 40 bp were of particular interest because the data presented herein indicate that microhomologies within this range can be precisely repaired via the MMEJ pathway. See, FIG. 13. ‘Simple’ duplications—those for which the duplicated sequence is not part of a more complex repeat structure—were also evaluated as to whether they improve the odds that the primary homology-based collapse would result in the desired wild-type sequence. Finally, all duplications in ‘coding’ regions (mainly exons plus 50 flanking bases) were examined from the gnomAD exome and genome sequencing databases21 to prioritize pathogenic duplications according to their frequencies in human populations. See, FIGS. 26A and 27. The present analysis yielded 143 likely disease-causing microduplications of lengths 2-40 bp that were observed at least once in gnomAD, some of which occur in specific subpopulations at substantial frequencies (for example, Tay-Sachs disease), See, FIG. 26B.


To facilitate the utilization of a bioinformatics analysis, the present invention was accompanied by the creation of an interactive, searchable webtool (rambutan.umassmed.edu/duplications/). This bioinformatices analysis also included the identification of potential Cas9 and Cas12a cleavage sites within these microduplications22. As shown within the tool, ‘tiling’ data across HPS1 microduplications and endogenous microduplication sites, the position of the DSB break within the duplication, and the use of a guide design that avoids cleavage of the wild-type allele, facilitate an efficient, stable collapse of microduplications. Rapid advances are being made in characterizing nucleases with alternate specificities23,24 and in engineering nucleases with alternate or expanded recognition preferences25-27, which will make correction of disease-causing microduplications using the MMEJ-based approach even more effective.


The results below for the most part are based on the files of “coding” variants from gnomAD genomes and exomes, version 2.0.2. gnomad.broadinstitute.org/downloads. This database comprises variants in the intervals used for the ExAC database. Most of these intervals correspond to exons plus 50 flanking bases on each side, and they collectively cover 60 million bases, about 2% of the genome. Note that there are no variant calls for the Y chromosome, and these are not strictly all coding variants, as some are in introns, UTRs, miRNA, ncRNA.


The 1000 Genome Project data was taken from ftp. 1000 genomes.ebi.ac.uk /vol1/ftp/release/20130502/. The vcf files there include precomputed allele-frequencies for five broad super-populations and allele-frequencies for 26 more-specific populations computed from the per-individual genotypes in the vcf files aggregated using the population assignments from the file integrated_call_samples_v30.20130502.ALL.panel.


The ClinVar annotations were taken from the file ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/clinvar_20180225. vcf.gz. Here, the variants have been normalized (trimmed and left-aligned) for the purpose of matching them up, but the HGNC notation used at ClinVar may follow the right-aligned (3′-most position) convention, in which duplications are taken to occur immediately after the repeated sequence rather than immediately before the repeated sequence.


The gnomAD genome files contain a total of 4851138 distinct variant alleles, of which 145892 (˜3%) are insertions. The gnomAD exome files above contain a total of 17009588 distinct variant alleles, of which 414576 (˜2.4%) are insertions. Note that many of these variants are common to both the exomes and genomes, but in the tables below variants that occur in both are counted only once.


Table 4 below focuses on the insertions, and in particular the duplications. The second column (insertions) gives the counts of all the distinct insertion variant alleles, binned by the length of the insertion (length), with all variants of length at least 40 combined into one bin. Subsequent columns give the number of variants that satisfy additional criteria, as follows:

    • dup: the insertion is an exact duplication of the immediately adjacent sequence in the GRCh37 reference genome (immediately 3′ with this normalization). Note that there may be polymorphism in this adjacent sequence that affect whether an insertion is indeed a perfect duplication for any given individual.
    • dup2: the insertion does not add a repeat-unit to what is already a (two-or-more unit) tandem repeat in the reference genome. This eliminates e.g. the duplication of CCCGGG in RAX2, as the reference genome already has two immediately adjacent (3′) tandem copies of this: https://www.ncbi.nlm.nih.gov/projects/SNP/snp_refcgi?rs.rs549932754
    • dup2i: the insertion satisfies the previous constraints and is not itself a perfect tandem repeat (e.g., for a duplicated six-mer, it is not of the form XXXXXX, XYXYXY or XYZXYZ). Note that even if a duplicated sequence is not in itself a perfect tandem repeat it may contain internal tandem repeats—e.g. the AGGAGG in the duplicated AAGGAGGATC in NCF4—so depending on where the Cas9 cleavage site is this may need to be considered, to prevent a shorter internal microduplication from being collapsed instead of the full duplication.
    • dup2iC: the variant satisfies the previous constraints and is also listed in ClinVar.
    • dup2iL: the variant satisfies the previous constraints and is reported in Clinvar as “Pathogenic”, “Pathogenic/Likely_pathogenic”, “Likely_pathogenic” or “Conflicting_interpretations_of pathogenicity”
    • dup2iP: the variant satisfies the previous constraints and is reported in Clinvar as “Pathogenic” or “Pathogenic/Likely_pathogenic”









TABLE 4







Microduplication Variant Characteristics In ClinVar And gnomAD


Databases














length
insertions
dup
dup2
dup2i
dup2iC
dup2iL
dup2iP

















1
210230
179654
59169
59169
399
242
182


2
51418
29880
11919
7562
53
25
19


3
39579
23795
12892
11141
77
11
4


4
30704
18835
14615
13010
112
70
52


5
15142
6890
4754
4189
28
16
10


6
18971
11102
6125
5251
46
7
3


7
9634
3793
2976
2623
10
5
4


8
9123
3819
3038
2739
12
9
7


9
9818
5155
3979
3686
17
3
2


10
5756
1997
1683
1502
12
9
8


11
4326
1311
1236
1195
10
6
4


12
6249
3384
2957
2649
18
3
0


13
3207
1099
1068
1042
7
4
2


14
3068
1031
993
942
5
2
1


15
4307
2311
2190
2110
19
7
3


16
2813
1173
1128
1086
8
4
4


17
2438
1099
1069
1067
9
7
6


18
4316
2646
2552
2459
14
4
4


19
2065
1012
997
997
5
3
1


20
2148
1082
1045
1001
6
5
3


21
3463
2218
2141
2127
11
2
1


22
1687
818
806
799
1
0
0


23
1395
690
670
670
3
3
3


24
2272
1283
1244
1221
7
2
1


25
1149
485
477
471
1
1
1


26
1006
356
353
350
3
0
0


27
1373
653
635
631
6
1
0


28
878
314
308
304
3
1
1


29
751
239
233
233
1
1
0


30
1321
579
549
536
1
0
0


31
693
194
189
189
1
1
1


32
695
193
187
182
0
0
0


33
772
272
263
262
3
0
0


34
590
169
164
157
0
0
0


35
528
121
117
116
0
0
0


36
743
244
236
225
1
0
0


37
457
106
102
102
1
0
0


38
474
122
115
113
0
0
0


39
524
149
140
140
2
0
0


40+
12413
1818
1800
1756
7
1
1







Totals:














1-40+
468496
312091
147114
136004
919
455
328









Note that the filters used in columns dup2 and dup2i are included to increase the chances of MMEJ restoring the duplication to exactly its wild-type form, via removal of exactly one complete copy of the duplicated sequence, but these filters may not be strictly necessary when suitable positions in the duplication can be specifically targeted for cleavage.


A lot of duplications, do not appear annotated as “Pathogenic” in ClinVar. Certainly there are many variants listed in ClinVar that are not observed in either the gnomAD genomes or exomes, so are not accounted for in the table above, and this includes 2189 duplications that satisfy all the additional conditions for being in column dup2iP above. But 2183 of these are in these “coding” intervals, so if the variants had been observed at all in gnomAD they would have been reported in these vcfs. It also wouldn't be surprising to miss variants that are extremely rare in general, or even not-terribly-rare variants that are concentrated in populations without many samples: with only ˜100 subjects per population in the TGP data one would expect to miss out on ˜13% of alleles with frequency 0.01 in these populations. And a few other possibilities:

    • Subjects known to have severe pediatric disease were not included in the gnomAD dataset, so variants that cause these diseases may be under-represented, in particular those with dominant inheritance.
    • About 8% of the genome was masked during the gnomAD variant calling (e.g. some repetitive sequence), so any ClinVar variants the fall in these regions will not be reported in gnomAD. But it appears that only one of the ˜13000 insertions from ClinVar falls in one of these masked region—a benign variant in SHOX1 which is masked since it's in a PAR on the Y chromosome.
    • gnomAD doesn't report variants on the Y chromosome at all, whether in masked regions or not. But the only “Pathogenic” duplication on the Y chromosome in ClinVar is a single-base insertion, Y:2655380:C/CT in the gene SRY: ncbi.nlm.nih.gov/clinvar/variation/470195/
    • The longest insertion reported in the gnomAD coding regions has length 621, and there are 1431 insertions of length at least 100, but it's possible that the detection sensitivity may decline for longer insertions.


      The above described variants are listed below; they are mainly variants in UTRs or in intronic regions >50 bases from the nearest exons (and hence not in the “coding” intervals list). gnomAD and TGP vcfs are mainly variants in UTRs or in intronic regions >50 bases from the nearest exons. These sequences are expected to represent “Pathogenic” duplications with a length of at least 100 from ClinVar that satisfy the conditions of the column dup2iP above, none of which are observed in gnomAD. See, Table 5. The First base in the reference allele, the subequent bases are the inserted sequence









TABLE 5





Duplications Not Contained In ″Coding″ Inverval List Or Having Length At


Least 100 That Are In ClinVar But Not Present In Either ClinVar Or


gnomAD Databases















GTGAGCCACTGCGCCCAGCAGATTCAAGCTTTTTAAATGGAATTTTGAGCTGATTTAGTTGA


GACTTACGTGCTTAGTTGATAAATTTTAATTTTATACTAAAATATTTTACATTAATTCAAGTT


AATTTATTTCAGATTGAATTTAGTGGAAGCTTTTGTAGAAGATGCAGAATTGAGGCAGACTT


TACAAGAAGATTTACTTCGTCGATTCCCAGATCTTAACCGACTTGCCAAGAAGTTTCAAAGA


CAAGCAGCAAACTTACAAGATTGTTACCGACTCTATCAGGGTATAAATCAACTACCTAATGT


TATACAGGCTCTGGAAAAACATGAAGGTAACAAGTGATTTTGTTTTTTTGTTTTCCTTCAACT


CATACAATATATACTTGGCAATGTGCTGTCCTCATAAAGTTGGTGGTGGTGACTCACTCTTAG


GACACATTCAGATTTCTT





AG





GT





GAGCTTATCAGGTTCTCCATTGGCAGGCAGGGCTCTAAGTGCAGTAACTTGATTTGCTGTTGT


ATTTGCTTAGGAAGAGCAGCACTTCAGAAAAGAGTGATGGCACTGCTGAGGCGCATTGAGC


ATCCCACTGCAGGAAACACTGAGGTATGCCCTTAGCAACAGAAACACCCCTCCCAGGCGCC


CACCCTCAATTTGGAAGCCTCTTGTTACATATGTGTGATCAGGAATAGCTTTTGAAGTAAATC


CAAGATACGTGCATATTACAAGTATAATATCTGAGTATTTAATATACATCAAGTTTGAAACT


TGGCTGTAGCTGATTGATGTTTAGCTCT





TGGGTACGAGTGTCTGCGTATATCTGTATGCTTATTTGGCTCTATGCCTGTGGGTGCACTTAC


TCTGTGTGTTTAGATCAGTCAGTTTCATCTCTCTAGGGGGTCTGTCTTCTGGGCATTGATGGC


AAATCATTAATGTATTTGTTCTTTCTTTAGGTTTTATTGACTGATACCAATACTCAATTTGTAG


AACAAACCATAGCTATAATGAAGAACTTGCTAGATAATCATACTGAAGGCAGCTCTGAACA


TCTAGGGCAAGCTAGCATTGAAACAATGATGTTAAATCTGGTCAGGTAAGCATTCTACTGAA


ATGTAGCAGAAACATTTTAAGAGATAAGAAAAACCTCTTACACACTGATACTGGTAGTAATT


GATAAAATAACTGGCCATTCTTTACTGCACACAAACTA


ACCGGTTCCGGCGGCCGGGGCTG





GTGAGCCACTGCGCCCAGCAGATTCAAGCTTTTTAAATGGAATTTTGAGCTGATTTA


GTTGAGACTTACGTGCTTAGTTGATAAATTTTAATTTTATACTAAAATATTTFACATT


AATTCAAGTTAATTTATTTCAGATTGAATTTAGTGGAAGCTTTTGTAGAAGATGCAG


AATTGAGGCAGACTTTACAAGAAGATTTACTTCGTCGATTCCCAGATCTTAACCGAC


TTGCCAAGAAGTTTCAAAGACAAGCAGCAAACTTACAAGATTGTTACCGACTCTATC


AGGGTATAAATCAACTACCTAATGTTATACAGGCTCTGGAAAAACATGAAGGTAAC


AAGTGATTTTGTTTTTTTGTTTTCCTTCAACTCATACAATATATACTTGGCAATGTGCT


GTCCTCATAAAGTTGGTGGTGGTGACTCACTCTTAGGACACATTCAGATTTCTT





TTGGGAGCTAACGGCTTGGAGCTTCTTTCCAGGGATGGGGACCTGGAATTTGAGTAC


TGGTAGACTTTTCGTTGTTCAAACCATTCCTTCACAAATTCCTGAGGAAGGCCCACA


GC





TACCTTGGGCCTGGGCCGCAGAGCTGTGAGAATACCCCAGGGCCAGGAGCGCAGTC


TCCACCAGCTGGCTAAAAAGCACATCTTTCCGCACCAGGACAAACTCGGCGTGTTCT


TCTCTGTTGTCATATTCAAGAGAGCCGTCCAACTGCTCCACGACACAAAAGACAGGA


ATCATCAA





GTGCGCGGGCGGCGGCCGGAAGGGCCTCTTCATGCGGCGGCGGCGCCGGTAGTTGC


CCTTCTCGAACATGTCTTCGCAGGCCGGGTCCAGCGTCCAGTAGTTGCCCTTGCGCT


CGCCGCCGCCCT





CCGGGCTGGAGAGGGGGATGTTGAGGAGGCTGGGGGTGGGGGCGGGGCATCGAGG


GAGCTCCTGGTACTGGCGGCCCCGACTGTCCCCCCAGAAGCTGAAAATGTTGGACA


CTCCTGAGAAGGCGCCTGCAGCCAGAGAGCAGAGCTGGGTGAGCGGGGTAGACGC


ACCACCGCTGCCACGCCCGGTCCTCCCTCGCCCGCCCGTCGCCCGGGATACCTGACA


GGGGGTTGCAAGTGTCGCTGCTCTTCTCGCAGTCCTCCATCAGGGGCTCCCCA





GAGCTTATCAGGTTCTCCATTGGCAGGCAGGGCTCTAAGTGCAGTAACTTGATTTGC


TGTTGTATTTGCTTAGGAAGAGCAGCACTTCAGAAAAGAGTGATGGCACTGCTGAG


GCGCATTGAGCATCCCACTGCAGGAAACACTGAGGTATGCCCTTAGCAACAGAAAC


ACCCCTCCCAGGCGCCCACCCTCAATTTGGAAGCCTCTTGTTACATATGTGTGATCA


GGAATAGCTTFTGAAGTAAATCCAAGATACGTGCATATTACAAGTATAATATCTGAG


TATTTAATATACATCAAGTTTGAAACTTGGCTGTAGCTGATTGATGTTTAGCTCT





TGGGTACGAGTGTCTGCGTATATCTGTATGCTTATTTGGCTCTATGCCTGTGGGTGCA


CTTACTCTGTGTGTTTAGATCAGTCAGTTTCATCTCTCTAGGGGGTCTGTCTTCTGGG


CATTGATGGCAAATCATTAATGTATTTGTTCTTTCTTTAGGTTTTATTGACTGATACC


AATACTCAATTTGTAGAACAAACCATAGCTATAATGAAGAACTTGCTAGATAATCAT


ACTGAAGGCAGCTCTGAACATCTAGGGCAAGCTAGCATTGAAACAATGATGTTAAA


TCTGGTCAGGTAAGCATTCTACTGAAATGTAGCAGAAACATTTTAAGAGATAAGAA


AAACCTCTTACACACTGATACTGGTAGTAATTGATAAAATAACTGGCCATTCTTTAC


TGCACACAAACTA





CCCAATTCAATGTAGACAGACGTCTTTTGAGGTTGTATCCGCTGCTTTGTCCTCAGAG


TTCTCACAGTTCCAAGGTTAGAGAGTTGGACACTGAGACTGGTTTCCTGCTAAACAG


TATGGTAAAGAACAGTCAAGCAATTGTTGGCCAGTTCTGTGCTTTTCCTCCTGAAGA


GAAACTTGACACCATGGACAAAATAAATTGACCATCATCAGTCAGCTAACATGTAT


GATGCCTGGAAAAAATGCCCAGGAATTTACACACTAAAATGTCTGGGGCTGGGAGC


GGTAGCTCATGCCTATAATCCCAGCACTTTGGGAGGCTGGAGCAGGACTGCTTGAGG


CCAGGAGTTCAAGACCAGCATAAGCAACAGAGTGAGACCCAGTCTCTACAAAATAA


TAGTAGTAGTAATAATAAAATGTGTGGGATATGTGTGATTTGAATTTTTTTTTCTGTT


GTCTTAAATTTTTCAAACCTGATTATGTATTATTTGTGTAATTTTTGAAGTATTAATA


TAGCATATTTTGAAGCTGATACTTGATATACATTCCAATCACATCTGATAACTTTTTT


TTTTGTTTTGGGGGGTGTACAGAGTCCTGCTCTGTCACCCAGGCTGGAGTGCAGTGG


CGCAATCTCAGCTCACTGCAACCTCCGCCTCCTAAGTTCAAGAGATTCTCCTGCCTC


AGCCTCCTGAGTAGCTGGGTCTACAAGCGTGTGCAACTATGCCTGGCTAATTTGTGT


GTGTGTGTGTATATATATATACATATATATGTGTGTGTGTGTGTATATATATATATAA


CATATATATAACATATATATATTATATATATATAACATATATATAACATATATATATG


TTATATATATATAACATATATATAACATATATATATATATATATATAATATATATATA


TATATATATATATGTAATCCCAGCACTTTGGGATATATGTGTATATATGTTTTTTTTTT


TTGAGACAGAATCTTGCTCTGTTGCCAGGCTAGAGTGCAGTGGCGTGATCTCGGCAC


ACTGCAACCTCCACCTCCCTGGYTCAG





GGGGGCCATTGTGGAAAAGAGCCTGCAGGGAGAGCAAACAGCGCGGTCATGGCCTC


GGGAGCTGTGCGCGGCGCCTCGGGCAGCGTCTCCCGCCGCTTGTCGCC









Duplication variants were identified as annotated as “Pathogenic” or “Pathogenic/Likely_pathogenic” in the ClinVar database (Table 4, dup2iP column), and observed in the gnomAD exome database. See, Table 6.


Table 6 has the following headings:

    • SEQ_DUP shows the duplicated sequence in upper-case (including the extra copy on the variant allele), and flanking sequence in lower case.
    • DUP_NUM labels the copies of the duplicated segment (1 for first copy, 2 for second). these positions are also color-coded yellow and cyan in the html table, but the colors are lost when exporting the table as a CSV or Excel file.
    • Cas9_Wa shows cleavage sites for Cas9 and xCas9 enzymes on the Watson strand, 3 bases left of PAM starts from PAM_FW_* columns.
    • Cas9_Cr shows cleavage sites for Cas9 enzymes and xCas9 on the Crick strand, 4 bases right of PAM starts from PAM_RC_* columns.
    • Cpf1_Wa shows approximate cleavage sites for Cpf1 enzymes on the Watson strand, 19 bases right of PAM ends (from the PAM starts in PAM_FW_* columns and adjusted for motif widths).
    • Cpf1_Cr shows approximate cleavage site for Cpf1 enzymes on the Crick strand, 18 bases left of PAM ends (from the PAM starts in PAM_FW_* and adjusted for motif widths).









TABLE 6







Selected Genes Having Microduplication Variants








SYMBOL
MICRODUPLICATION INFORMATION





PEX10
ctgccgctgcctgaaaccgtacagcTTgcagccccatggacagcaccaggtg SEQ_DUP;



.........................12......................... DUP_NUM;



.A..A...aB.J..A....A...A..A......aaJ..A.....aa.A..A. Cas9_Wa;



.A.a.a..Aa.a..Aa.....Aa...A..a...A..Aaaa.....A..A.aa Cas9_Cr;



.....L......NL..................................N... Cpf1_Wa;



................L................................... Cpf1_Cr;





CLCNKB
cgtggctggagggatcaccaatcccAAtcatgccaggggggtatgctctggc SEQ_DUP;



.........................12......................... DUP_NUM;



A..aa.aaac.................A...aaaaaA...A....aA..aaH Cas9_Wa;



..A.Ca....A........Ca.aa..CaaaI.Ca..IAa...........AJ Cas9_Cr;



....k.M..NLL..................................L..... Cpf1_Wa;



....n............................................... Cpf1_Cr;





ZMPSTE24
tgtgggagatgccggccgagaagcgTTatcttcggggccgtgctgctctttt SEQ_DUP;



.........................12......................... DUP_NUM;



aa.aC.A..aA..a.aB.a.A........aaaA..a.A.A...........a Cas9_Wa;



A.a.............Aa..Aa......A....Ca.Ba....Aa...A..a. Cas9_Cr;



......................k.........................N.M. Cpf1_Wa;



..................................L...............L. Cpf1_Cr;





MMACHC
tgtggcctaccatctgggccgtgttAAgagaggtgaggaaggctcagttttc SEQ_DUP;



.........................12......................... DUP_NUM;



A..........aaA..a.A....a.a.aa.a.aaB.aA....A......... Cas9_Wa;



a.......J.aa..Aa.Ca....Aa......J...............A.a.. Cas9_Cr;



...............................................N.... Cpf1_Wa;



....N...........LN........................k......... Cpf1_Cr;





ACADM
tccagtccccctaattagaagagccTTgggaacttggtttaatgaacacaca SEQ_DUP;



.........................12......................... DUP_NUM;



A............aB.a.A....aaaB....aA.....Jab.J......... Cas9_Wa;



.....Caah..aaaaa............Aa.......A.............A Cas9_Cr;



......N.....k..N......M.L....L.......N..........N... Cpf1_Wa;



.......LLN.........N..LN.................N........N. Cpf1_Cr;





ACADM
aaaactaatgagggatgccaaaatcTTatcaggtaaggttaaagatgatttt SEQ_DUP;



.........................12......................... DUP_NUM;



.....a.aaaC.A..............aA...aA.....aC.aC.......a Cas9_Wa;



.........A............Aa....Ca..ICa................. Cas9_Cr;



.k...........M..................................N.M. Cpf1_Wa;



.............N.....k.....................N.........N Cpf1_Cr;





ABCA4
ttacgatgtcccagaggaagttggtCCacccagtaggtggtggggctcactc SEQ_DUP;



.........................12......................... DUP_NUM;



aC.A.....a.aaB.A..aA........A..aa.aa.aaaA........... Cas9_Wa;



..A.a...A.....aaa.............aa.aaaH.............A. Cas9_Cr;



.......................N........L..........N....L... Cpf1_Wa;



....................................M.k....L........ Cpf1_Cr;





AGL
gaactgaccaatgagaatgcccagtAActgtcctttcagctgtgaaacacaa SEQ_DUP;



.........................12......................... DUP_NUM;



.a......aHaB..A....A.....A........A..a.aB.......A... Cas9_Wa;



.Baa....A...Aa..........Aaa.....A...aa..Ba..A....... Cas9_Cr;



...L...N..........NLL............................... Cpf1_Wa;



....N.................Lk.....N.........N............ Cpf1_Cr;





FLG
tgataatgataagaactagaactgtGGaggactgccacgtgactgtattcct SEQ_DUP;



.........................12......................... DUP_NUM;



...aC...aB....aB...a.aa.aa...A....a.a...a......Ha.a. Cas9_Wa;



a...................A.....A.........A..Aa.a....A.... Cas9_Cr;



.k.....kL.............N............................. Cpf1_Wa;



....L...............................M.......N....... Cpf1_Cr;





GBA
cccacgacactgcctgaagtagaagCCaatcctgtgaggctgccagccatga SEQ_DUP;



.........................12......................... DUP_NUM;



.a.....A...aB.A..aB.A........a.a.aA..A...A....aC.A.. Cas9_Wa;



.....Aaa.a..A.a..Aa...........Aa..CaaHI.....A..Aa..A Cas9_Cr;



....N............................................... Cpf1_Wa;



.N....N......................................k...... Cpf1_Cr;





ASPM
ggtgcatattttgaatatcctttcgTTactttaaagcctctgtaataagact SEQ_DUP;



.......HaB..........A..........A.....A......a..JA... Cas9_Wa;



..Aaa....A..J.........CaaH.Ba....A.......Aa.a....... Cas9_Cr;



........N........................k.....M....kL..N... Cpf1_Wa;



...........k..........N..N.......M...k...N.......... Cpf1_Cr;





ADCK3
gatgagccttttgattttggcactcAAgagcaccaccgagaagatccacaac SEQ_DUP;



.A...I..aC..J.aA......Ja.A.......a.aB.aC.......I..aC Cas9_Wa;



aa.a.......Aa............A.a.aH....A.aa.aa.......Caa Cas9_Cr;



..............NL.................k.....k............ Cpf1_Wa;



....N..............N........N....................... Cpf1_Cr;





HAAO
aagggcagttcccagcggcctcaccAAgggatgggctttcctgttctgtact SEQ_DUP;



.........................12......................... DUP_NUM;



.aA..........A..I..aC...Ha.a.aB.aB.aC....aB....aHa.a Cas9_Wa;



a...A.......A.a..A...A....A......................... Cas9_Cr;



..........kL..N.....................N...........N... Cpf1_Wa;



......N.....LN..N..M.N..Lk..........LN....LN........ Cpf1_Cr;





MSH6
tgaaaaggctcgaaagactggacttAAttactcccaaagcaggctttgactc SEQ_DUP;



.........................12......................... DUP_NUM;



..aA...aB..a...aa.................A..aA....a..I..aC. Cas9_Wa;



..Aa.........A.a......A....A.......A.aaa....A...A... Cas9_Cr;



................k.............................N...N. Cpf1_Wa;



....N.........k...........................N......... Cpf1_Cr;





MSH6
agtgtgcaggctcacaccaattgatAAgagtgtttactagacttggtgcctc SEQ_DUP;



.........................12......................... DUP_NUM;



.A..aAJ...........aC..Ha.a.A.......a....aa.A.....a.. Cas9_Wa;



.A.........AJ.JA.a.a.aa.................JA....A..... Cas9_Cr;



.....N..N.....L............................N........ Cpf1_Wa;



..M.N................................N..N........... Cpf1_Cr;





DYSF
gcgaaaaaatgaggattcgtatcatAAgactggtgagttctgagtcttggag SEQ_DUP;



.........................12......................... DUP_NUM;



......aHaaC...A........a...aaHa.A...Ha.A....aa.A.... Cas9_Wa;



a.....A..J...........BaH..Ca.J....A........Ba.....a. Cas9_Cr;



..NL.......kLL...L....................NL...M........ Cpf1_Wa;



..M.N......................L........................ Cpf1_Cr;





DYSF
ctcccagaagacccagccatccccaTTgcccccaagacagttccaccagctg SEQ_DUP;



.........................12......................... DUP_NUM;



..aB.a.....A...........A.......a...A........A..aA..A Cas9_Wa;



.Caaaa.aaa......AaaH.Aa.Caaaa....Aaaaa....A...Baa.aa Cas9_Cr;



........NL......k.M.L....L.................L....N... Cpf1_Wa;



............N...........................L........... Cpf1_Cr;





DYSF
tggaaatgaccttggagattgtagcAAgagagtgagcatgaggagcggcctg SEQ_DUP;



.........................12......................... DUP_NUM;



...a.....aa.aC..A..A...aHa.a.a.A...a.aa.a.aA...A..aA Cas9_Wa;



A...A.........Aa.............A...........A........A. Cas9_Cr;



........L.........................N......N.......... Cpf1_Wa;



....N.......................................L....... Cpf1_Cr;





ALMS1
agtaccttcaggttccttctcacatAAgagagaagcccagtattttctatca SEQ_DUP;



.........................12......................... DUP_NUM;



......aA...............a.a.aB.A....A...............a Cas9_Wa;



aa..A....Aa.ba....Baa.Ba.a.a............Aaa.......ba Cas9_Cr;



...........L.................NL....NL..N............ Cpf1_Wa;



..M.N......N..................N..............M...... Cpf1_Cr;





ALMS1
aacctctacttcttactcacaacatAAcagagaagccgagtattttctacca SEQ_DUP;



.........................12......................... DUP_NUM;



.........................a.aB.A.Ha.A...............A Cas9_Wa;



.A.....Aa.a..A.Ba...A.aHa..A....A.......Aa........ba Cas9_Cr;



................................N..N................ Cpf1_Wa;



..M.N......N..................N..................... Cpf1_Cr;





ERCC3
aaaatttaaatccacaattttgtcaTTcttcgcggacgagggtcgcagtcaa SEQ_DUP;



.........................12......................... DUP_NUM;



.................A.........a.aa..aHaaA..A..A........ Cas9_Wa;



.Ca..I.........CaaHa........a..BaHBa.a...A......a.a. Cas9_Cr;



L........N..................k.....L.......k.....N..N Cpf1_Wa;



............L................k...................... Cpf1_Cr;





MMADHC
acactctactctggcactttcaaagTTaagtttctgcactgttaatttcttg SEQ_DUP;



.........................12......................... DUP_NUM;



......J.aA..........A....A..J..A....A..........A.... Cas9_Wa;



....a.a.a.aH.A.aH..A.a..Ba...........Ba..A.a........ Cas9_Cr;



..N................N.....................kL.....N... Cpf1_Wa;



k.....N...............N...........N................. Cpf1_Cr;





NEB
ctgcatctcaggagtgacaggggttGGcggtggctttccccacattttcttt SEQ_DUP;



.........................12......................... DUP_NUM;



......aa.a.a...aaaA..aa.aa.aA................J..A... Cas9_Wa;



.A.aHa..A.Ca.a........A.........A.....A..Baaaa.a.... Cas9_Cr;



..k..N...N.....k..............................N..... Cpf1_Wa;



...................................k.........LLN.... Cpf1_Cr;





GALNT3
taaaaatgtgagcgtttcagctgttGGcgactgttgctcctagcaaccgagc SEQ_DUP;



...a.a.a.A.....A..A..aa.a...A..A......A.....a.A..a.a Cas9_Wa;



.A.Ca............A...Ba..A......A..A.....A.aa...A..A Cas9_Cr;



...M.M...N............................kL......N..... Cpf1_Wa;



.......................N............................ Cpf1_Cr;





TTN
ccatgacagacacggccttggtcccGGctggcatttttcactgttaaagtgt SEQ_DUP;



.........................12......................... DUP_NUM;



a.J.a....aA....aA....aA..aA...........A.....a.A..... Cas9_Wa;



.....Aa....A...A.a..Aa.....aaa..A...A.....Ba.a...... Cas9_Cr;



.......N...........k....................N....L...... Cpf1_Wa;



........................k........................... Cpf1_Cr;





TTN
gatcagtgactgtatatcttgttttCCacacatgcctctgcattcaccttgt SEQ_DUP;



.........................12......................... DUP_NUM;



.a.a...A........A...J........A.....A..........a.A... Cas9_Wa;



.......Ca.....A......Ca......Baa.a.a...Aa.a..A..BaHa Cas9_Cr;



.k....N..NL.......N.................M.M..N....kLL... Cpf1_Wa;



 .........................................N......... Cpf1_Cr;





OSBL1
ccacgggccagctgacctttgactgTTgacgttggccacggtgcgcacccgg SEQ_DUP;



.........................12......................... DUP_NUM;



aaA...A..a......a...A..a..A..aA....aaJa.A.....aA.... Cas9_Wa;



a.Baaaa.a...Aa..A...Aa.....A......A.....Aa.a....A.aJ Cas9_Cr;



......L............NLL...................k......N... Cpf1_Wa;



.................................................... Cpf1_Cr;





CHRNG
tcttccgttccgcctgctctatctcAAgtcacctacttccccttcgactggc SEQ_DUP;



.........................12......................... DUP_NUM;



..A....A...A...........A.................a...aA..aB. Cas9_Wa;



..Aa.Ca.Baa..Baa.aa..A.a..Ca.a....a.aa..A.Baaaa.Ba.. Cas9_Cr;



.M.......................NLL..NLL..........M........ Cpf1_Wa;



....N............................N.................. Cpf1_Cr;





GLB1
ccccgtacccgggtcccgcagacttAAcgcgcaagccgcgcgtagggcccag SEQ_DUP;



.........................12......................... DUP_NUM;



A....HaaA....A..a.......a.A...A..a.a.A..aaA....aB.A. Cas9_Wa;



..Aa.aaaa...Aaah...aaa.a...A....A.a.a...Aa.a.a...... Cas9_Cr;



........L..............L.............L........N..... Cpf1_Wa;



....N......N...................N........N......N.... Cpf1_Cr;





COL7A1
tcccacagctccagtaggtccagtcAAggccctggaggaagagaaagttcag SEQ_DUP;



.........................12......................... DUP_NUM;



...A.....A..aA....A....aA....aa.aaB.a.aB..A....aaA.. Cas9_Wa;



......aaa.a..A..aa.......aa...a....Aaa.............. Cas9_Cr;



................L........L........L........L........ Cpf1_Wa;



....N.......L...LN....k.................N........... Cpf1_Cr;





COL7A1
acccacagcaaatagcttgacccccTTgccccttcagcctttgggcagctgt SEQ_DUP;



.........................12......................... DUP_NUM;



...A.....A...a.........A........A.....aaA..A..a.A... Cas9_Wa;



.aa...AaaHa..A......A....Aaaaa...Aaaa.Ba..Aa......A. Cas9_Cr;



.....................N.................N........N... Cpf1_Wa;



..............................................L..... Cpf1_Cr;





DNAH1
ggaacaccgtcaccccgcggctgatGGcgtcacttcaactacctgtctttcg SEQ_DUP;



.........................12......................... DUP_NUM;



....A.......a.aA..aC.aa.A...............A......A..a. Cas9_Wa;



...A.....A.aa..a.aaaa.a..A......A..a.a.Ba..A..Aa...a Cas9_Cr;



.................................................... Cpf1_Wa;



...............N......................L............N Cpf1_Cr;





AGTR1
gtcatgattcctactttatacagtaTTcatctttgtggtgggaatatttgga SEQ_DUP;



.........................12......................... DUP_NUM;



.aC.......J.......A...........a.aa.aaaB......aaB.... Cas9_Wa;



.......a.....Baa..A......A.....BahCa................ Cas9_Cr;



.............N.......k........NL......k.M.......NL.. Cpf1_Wa;



...................LLN......LLK...............M..... Cpf1_Cr;





PCYT1A
ggagggggagcgctcgcgagtagggCCtgctgctggggctctgcttcgggct SEQ_DUP;



aaaa.a.A...aHa.A..aaA...A..A..aaaA....A....aaA..aC.a Cas9_Wa;



...............A.a.a.a........Aa..A..A.....A.a..A.Ba Cas9_Cr;



.................................................... Cpf1_Wa;



.................................................... Cpf1_Cr;





WDR19
acattttgtggtcatttctactcatAActggagagcttggtcaagagatatt SEQ_DUP;



.........................12......................... DUP_NUM;



...a.aA..................aa.a.A...aA....a.aC.......a Cas9_Wa;



......A..........a...Ba..A.aH...A.......A.....a..... Cas9_Cr;



.......N......kL............k.........k............. Cpf1_Wa;



..M.N...L............N....M..............N...M.k...M Cpf1_Cr;





SCARB2
ccctccatagaaagaagcaaaacttAAcacaaagtcatctaattttttgaca SEQ_DUP;



.........................12......................... DUP_NUM;



.....aB..aB.A......J.........A..............a....... Cas9_Wa;



A...aaaa.aa...........A....A....A.a.....a.Ca........ Cas9_Cr;



......................L....L..................N..... Cpf1_Wa;



....N....k.........N..........M.k...........LLN..... Cpf1_Cr;





FAM175A
actactaccagtatctgctttagatCCgtttgtcttgtgtatctaacaaccg SEQ_DUP;



.........................12......................... DUP_NUM;



......A.....A.....aC...A...A....a.A............a.aC. Cas9_Wa;



......A..A..Aa....Ca.JA......CaaH.....a.......Ca.J.A Cas9_Cr;



...k........k.M..N...N.............M......k.....L... Cpf1_Wa;



.......................N..N.............LN.......... Cpf1_Cr;





MFSD8
gcaataacccagcccaaaaaacttgTTatcagctgtcggatcaatctgcaga SEQ_DUP;



.........................12......................... DUP_NUM;



.......A............A......A..A.HaaC.......A..aB..J. Cas9_Wa;



......A.....AaaH.Aaa......A......Ca..A...a...Ca..Ca. Cas9_Cr;



....k...........M.M..........................N..N.M. Cpf1_Wa;



................L....N........k.................N..N Cpf1_Cr;





ETFDH
tttgtgcagcatatcagtgctttcaTTgccttaaaaattaagaaaaattatc SEQ_DUP;



.........................12......................... DUP_NUM;



.A..A.......a.A........A.............B.............. Cas9_Wa;



...........A..a...Ca....A..ba....Aa................. Cas9_Cr;



..............kL........k..........M........kL..N... Cpf1_Wa;



...........k....../n..k........................N.... Cpf1_Cr;





AGA
acaaactaagaagtcataccttggcAAggaagcgcatcaatatatcaccatt SEQ_DUP;



.........................12......................... DUP_NUM;



.....aB.a.........aA...aaB.B.a.A.................... Cas9_Wa;



...BaHa...A........a...Aa....A.......A.a.Ca......Ca. Cas9_Cr;



N...L...............NL.....................N........ Cpf1_Wa;



....N..LN........N..M............................... Cpf1_Cr;





DNAH5
agttcttggtttgcacgggaatgggTTaaatttacagatgctatctccaagg SEQ_DUP;



.........................12......................... DUP_NUM;



...aAJ..A...aaaB.HaaA...........aC.A..........aA.... Cas9_Wa;



........Ba........A.a..................A.....A..Ca.a Cas9_Cr;



...kL........N..N.M......N..N....k..............N... Cpf1_Wa;



......k....................N........k.....k.......N. Cpf1_Cr;





SLC25A46
agatatccccggcagccgcaacctgCCactggggcgagaagagcccgcccta SEQ_DUP;



.........................12......................... DUP_NUM;



......aA..A..A......A.....aaaa.a.aB.a.A...A......aa. Cas9_Wa;



aaaaa.....Caaaa..A..Aa.a..Aa..Aa.a.....A........Aaa. Cas9_Cr;



..................L........M.L...................... Cpf1_Wa;



.................N.................................. Cpf1_Cr;





SLC22A5
ctgctgcaatatttgccccggcgctAAttccatggccactgccctcttcctg SEQ_DUP;



.........................12......................... DUP_NUM;



.S........A....aa.A..........aA.....A.........Haaa.a Cas9_Wa;



..A..A..A..A........Aaaa..A.a....Baa....Aa.a..Aaa.a. Cas9_Cr;



......M....N.......................k..............NL Cpf1_Wa;



....N............................................... Cpf1_Cr;





RAD50
aattatcactttcttcagcccccttAAcaattttggttggacccaatggggc SEQ_DUP;



.........................12......................... DUP_NUM;



.............A................aA..aa.......aaaa.aaaB Cas9_Wa;



...A......Ca.a..Ba.Ba..Aaaaa....A.............AaaH.. Cas9_Cr;



.........................N.M.....k..NL........N..... Cpf1_Wa;



....N..N.........L.....N........LLk........N........ Cpf1_Cr;





RAD50
agaaacaagagaaacagcacaagttAAgacacaggtaatacagtctgtgtcc SEQ_DUP;



.........................12......................... DUP_NUM;



....a.aB.J..A.....A..J.a.....aa.......A...a.A....J.. Cas9_Wa;



Aa........A........A..A.a.........A.a........A...a.. Cas9_Cr;



......L.......................................N..... Cpf1_Wa;



....N..........N.........................M.......... Cpf1_Cr;





RAD50
gagactcatgagacaagatattgatAAcacagaaggtaggtctgttttgctt SEQ_DUP;



.........................12......................... DUP_NUM;



.....a.a....aC....ac.......aB.aA..aA...A....A.....aC Cas9_Wa;



.........A.aH.....A.............A.a...........a..... Cas9_Cr;



.....................M.....................N........ Cpf1_Wa;



..M.N......N......................M................. Cpf1_Cr;





GRXCR2
tgcaaatctggcaaggctgtaggccAAttctcattgcaggcagggcacctca SEQ_DUP;



.........................12......................... DUP_NUM;



.....aA...aA..A..aA............A..aA.JaaA.......aaA. Cas9_Wa;



.......A...Ca..IA....A......Aa...BaHa....A...A....A. Cas9_Cr;



..................N...N...........................N. Cpf1_Wa;



....N.................................M...........k. Cpf1_Cr;





DSP
agagaattgaagagaggtgcaggcgTTaagctggaggattctaccagggaga SEQ_DUP;



.........................12......................... DUP_NUM;



B...aB.a.a.aa.A..aa.A....A..aaHaaC........aaa.a..... Cas9_Wa;



..Ca....................A..JA......A........BaH.Aa.. Cas9_Cr;



.........L...................N..................N... Cpf1_Wa;



......N....L..............L...................k..... Cpf1_Cr;





GCM2
cacaaattgtgttctcacctgacctAAcctgaaaaaagatcgcgttgccatc SEQ_DUP;



.........................12......................... DUP_NUM;



aaaa.aA.........a.........aB.....aC..a.A..A.......A. Cas9_Wa;



CaahCa.a.........BaJa.aa...Aa...Aa..........Ca.a.... Cas9_Cr;



.................M.L.........N....N................. Cpf1_Wa;



....N....Lk....................N.......k............ Cpf1_Cr;





AARS2
ctgacatcccagggaagatgccatcAAgagatgcagacactgagtgtgcgga SEQ_DUP;



.........................12......................... DUP_NUM;



.......aaaB.aC.A.......a.aC.AJ.a....Ha.a.a.aHaaC.a.a Cas9_Wa;



....Aa...A.Caaa..........Aa.Ca........A...A.a....... Cas9_Cr;



....NLL.......................L..................... Cpf1_Wa;



....N.......................L....................... Cpf1_Cr;





MUT
catggatggttctggaggaaaaatgTTatgtatttcgaaccataaattcctt SEQ_DUP;



.........................12......................... DUP_NUM;



aC.aA....aa.aaB.....A....A......aB................A. Cas9_Wa;



....Ba.........Ba......................Ba...Aa...... Cas9_Cr;



L.....M..............kL.........N...............N.M. Cpf1_Wa;



...............LN...M.k............M.........L...... Cpf1_Cr;





PKHD1
aacttcacacacctttaatgtgcagTTaagttgaggatgcttgtgttagtgt SEQ_DUP;



.........................12......................... DUP_NUM;



.J.............a.A..A....A..aHaaC.A...a.A...a.A....A Cas9_Wa;



a..A...A.Ba.a.a.aa.........A..J.............A....... Cas9_Cr;



..........N...............NL.........k..........N... Cpf1_Wa;



......N...............................N...N......... Cpf1_Cr;





PKHD1
agtgaatgctgaccccattgatagaGGacggaaattctgtggagaccagctg SEQ_DUP;



.........................12......................... DUP_NUM;



B..A..a........aC..a.aa..aaB......a.aa.a....A..aA..a Cas9_Wa;



H............A...Aaaa............A......BaH.......Aa Cas9_Cr;



..................N.....................N........... Cpf1_Wa;



........LLk........L................................ Cpf1_Cr;





WISP3
cttctgcttgctggcctggcacaggTTaagtcctctcccccgactctttccc SEQ_DUP;



.........................12......................... DUP_NUM;



.A...A..aA.J.aA....aA....A...........a.............. Cas9_Wa;



aa.a.aHBa..A...A...Aa...A.a.........aa.a.aaaaa..A.aH Cas9_Cr;



..............N...L.....N.....N.................N... Cpf1_Wa;



......N............................L................ Cpf1_Cr;





BRAT1
ctggctccccaaagagccctggtagTTaactccccctgctgggaagcaaaaa SEQ_DUP;



.........a.A....aA..A............A..aaaB.A........aB Cas9_Wa;



....aa...A.aaaa......Aaa..........A.aaaaa..A.......A Cas9_Cr;



.....N.......................L..................N... Cpf1_Wa;



......N.............LLN...k.......N................. Cpf1_Cr;





ISPD
gtggtccgcgccgcgctgaccactcAAggcaaggacccggctccgccggcct SEQ_DUP;



.........................12......................... DUP_NUM;



...a.A..a.A..a.........aA...aa....aA....A..aA...aa.A Cas9_Wa;



.Aa......Jaa.a.aa.a.a...Aa.a.aH...A.....AaaH.A.aa.aa Cas9_Cr;



............................L....................... Cpf1_Wa;



....N....N.......................................... Cpf1_Cr;





FAM126A
actttgtggctcctggataactttaTTagagagatgaaactaaagaactctt SEQ_DUP;



.........................12......................... DUP_NUM;



.a.aA....HaaC...........a.a.aC.aB.......aB......A... Cas9_Wa;



JAa.a.a.......A.aa.......A..................A....... Cas9_Cr;



................N.........k..................k..N... Cpf1_Wa;



 Cpf1_Cr;





SLC25A13
gtagaaccatcgctgtagcaattcgTTaagtcagcaaagttacaccaaactg SEQ_DUP;



.........................12......................... DUP_NUM;



B......A..A..A......A....A...A....a............aaaa. Cas9_Wa;



Ca..I......Aa.Ca.a.....A...BaH......a..A.......A.aa. Cas9_Cr;



..N.........L...............................NL..N... Cpf1_Wa;



......N.......k..........k................Lk........ Cpf1_Cr;





PEX2
attcctgatttcagtggctgcagacTTgtgtacttctgtgccacacttagga SEQ_DUP;



.........................12......................... DUP_NUM;



..aC.....a.aA..A..a...Ja.A.......a.a.........aa....A Cas9_Wa;



Ca.a...Baa.....Ba.....A..A...A.......AJBa....Aa.a.a. Cas9_Cr;



......k...N.............NL......kL..............N... Cpf1_Wa;



................................N...k...........k... Cpf1_Cr;





NBN
gaactttcacatcaatttctaactcTTggttttgtgtccttgaataactgtt SEQ_DUP;



.........................12......................... DUP_NUM;



.......................aA....a.A....HaB......A..J... Cas9_Wa;



........A..Ba.a.Ca....Ba...A.aH...........aaJ....... Cas9_Cr;



.n.......NL..........k......kL.........k........N... Cpf1_Wa;



....................LN..N........N.................. Cpf1_Cr;





NDUFAF6
cctgtggccattgaactatggaaggTTaaaaaaaaaaaaataccacttttaa SEQ_DUP;



.........................12......................... DUP_NUM;



.aA.....aB.....aaB.aA...........J..................A Cas9_Wa;



.Ca..Aa.....Aa......A..........................Aa.a. Cas9_Cr;



...........L.....................N......M.......N... Cpf1_Wa;



N.....k......................N........LN............ Cpf1_Cr;





VPS13B
ctctagagcgccagagaagattgttAAcatttaaaatgttcatcactcagtt SEQ_DUP;



.........................12......................... DUP_NUM;



.a.a.A...a.aB.aC..A..............A...........A....A. Cas9_Wa;



.Ba.aa.a.....A.aa...............A...........Ba.Ca.a. Cas9_Cr;



.......N..A...L...k........................N..N..... Cpf1_Wa;



....N......k...................N.................... Cpf1_Cr;





SPAG1
aaaagaaggaaactgcagtggctgcAAttcaagattgtaacaggtaaactgc SEQ_DUP;



.........................12......................... DUP_NUM;



aB.aaB....A..a.aA..A.....I..aC..A.....aA...J..A...A. Cas9_Wa;



..Aa.............A..A.....A..A...BaH.........A...... Cas9_Cr;



L................N................................NL Cpf1_Wa;



....N....N.......N......k.......................N... Cpf1_Cr;





SLC52A2
cctgcaggttggagcctcccctcttAAcgtctctgtgcttgtggctctgggg SEQ_DUP;



.........................12......................... DUP_NUM;



..aA..aa.A..............A.....a.A...a.aA....aaaaB... Cas9_Wa;



aa.Baaa..A.........Aa.aaaa.a....A..a.a....A..J...A.a Cas9_Cr;



.................L..NLL........N........L.....N..... Cpf1_Wa;



....N.......................LLN..................... Cpf1_Cr;





CDKN2A
acccacctggatcggcctccgaccgTTaactattcggtgcgttgggcagcgc SEQ_DUP;



.........................12......................... DUP_NUM;



...HaaC..aA.....a...A..........aa.a.A..aaA..a.A..... Cas9_Wa;



aaHa..AaaHaa....Ca..Aa.aa..Aa.....A...BaH...A..J...A Cas9_Cr;



......L..................................L......N... Cpf1_Wa;



......n............................................. Cpf1_Cr;





APTX
aaaatctacaatcaccttttcccccAAcagtgtgcatatgcttaaggagttc SEQ_DUP;



.........................12......................... DUP_NUM;



.........................a.a.A.....A.....aa.A.....aa Cas9_Wa;



aaH.A....Ca..a..Ca.aa...Baaaaa..A......AJ.J..A...... Cas9_Cr;



.........k...............................kLL........ Cpf1_Wa;



....N.........M.......N........N.................... Cpf1_Cr;





DNAI1
ccccataaacagcctcataagcaggTTaacgtacgcacaccttccttctgat SEQ_DUP;



.........................12......................... DUP_NUM;



.......A........A..aA..J..AJ.JA..............aC.a... Cas9_Wa;



...A.aaaa.....A..Aa.a.....A.......A...A.aJa.aa.Baa.B Cas9_Cr;



...NL.....N.....................L...............N... Cpf1_Wa;



......N............................................. Cpf1_Cr;





FANCC
tagtctgtgctctctgctgcctcccAAtcacgggggccgtagtagaaggcca SEQ_DUP;



.........................12......................... DUP_NUM;



..a.A......A..A............aaaaA..A..A..aB.aA....a.A Cas9_Wa;



aHaa.....a....A.aJa..A..Aa.aaa..Ca.aI....Aa......... Cas9_Cr;



.............................................L...... Cpf1_Wa;



....N...................N.....N..................... Cpf1_Cr;





MUSK
caacattccactggtacatattcttAActctggttgccttcagcggaactga SEQ_DUP;



.........................12......................... DUP_NUM;



......J.aA.................aG..A......a.aaB...a.aB.. Cas9_Wa;



A.a..a..A..Baa.a.....A..J.BaH...A.aH.....Aa.Ba..A... Cas9_Cr;



...N........................NLL............N..N..... Cpf1_Wa;



....N..................LLN......k.......k........... Cpf1_Cr;





TSC1
tgctgtgcgcgtctgctccctgctgTTatcagtctgtccagcacttccattg SEQ_DUP;



.........................12......................... DUP_NUM;



a.a.a.A...A......A..A......A...A.J..A..........aaaa. Cas9_Wa;



A.aa...A....A.aJ.a..A.aaa..A.....Ca...a...aa..A.a.Ba Cas9_Cr;



...L..N...N..NL.......N.................L.......N.M. Cpf1_Wa;



................................L................... Cpf1_Cr;





ADAMTS13
ggcagcaggtgctctactgggagtcAAgagagcagccaggctgagatggagt SEQ_DUP;



.........................12......................... DUP_NUM;



A..aa.A.......aaa.A....a.a.A..A...aA..a.aC.aa.A....a Cas9_Wa;



aa.....A..A.....A.aJ.A.......a.......A..Aa...A...... Cas9_Cr;



.N..............NLL................................. Cpf1_Wa;



....N.....................L....................LN... Cpf1_Cr;





AGPAT2
gtacatgatgaggccccacgggccccAAggaagagcagctcccgcttgcgat SEQ_DUP;



.........................12......................... DUP_NUM;



..aC.a.aA.....aaA......aaB.a.A..A.....A...aa.aCJ..A. Cas9_Wa;



aa......A..J......Aaa.a...Aaaa.........A..A.aaa.a... Cas9_Cr;



N................................................... Cpf1_Wa;



....N..LN......................................LLN.. Cpf1_Cr;





C10orf11
attgcaggtcactggaaggactgagCCgcattcaggagcctggaggaactca SEQ_DUP;



.........................12......................... DUP_NUM;



..aA.....aaB..aa...a.A..A......aa.A...aa.aaB........ Cas9_Wa;



....a....A....a.a........A....Aa.a..BaH....Aa....... Cas9_Cr;



......kL....N.....k.....N........................... Cpf1_Wa;



....................L...LN.........L...N..N......... Cpf1_Cr;





PTEN
gaaagggacgaactggtgtaatgatAAtgtgcatatttattacatcggggca SEQ_DUP;



.........................12......................... DUP_NUM;



aaa..aB...aa.A....aC....a.A...............aaaA...... Cas9_Wa;



..A..........A...A........J.........A..J.......A.Ca. Cas9_Cr;



........NL.......................................... Cpf1_Wa;



..M.N......M..................k.......k.......N..... Cpf1_Cr;





PTEN
tgtactttgagttccctcagccgttAAcctgtgtgtggtgatatcaaagtag SEQ_DUP;



.........................12......................... DUP_NUM;



...Ha.A........A..A.......a.a.a.aa.aC.......A.Ha.A.. Cas9_Wa;



..Ba.....A..J....Baaa.a..Aa.....Aa.......J.J....Ca.. Cas9_Cr;



...................NL........k....NLL.........N..... Cpf1_Wa;



....N..............M....k.................k.....N..N Cpf1_Cr;





PNPLA2
ggacagctccaccaacatccacgagCCtgcgggtcaccaacaccagcatcca SEQ_DUP;



.........................12......................... DUP_NUM;



.A................a.A...aHaaA...J........A......A... Cas9_Wa;



aa.a....A..A.aa.aa..A.CaaHa...Aa..A....a.aa..A.aa..A Cas9_Cr;



..................L............L.........L.......... Cpf1_Wa;



.................N.................N........N....... Cpf1_Cr;





KCNQ1
cctcgagcgtcccaccggctggaaaTTgcttcgtttaccacttcgccgtgtg SEQ_DUP;



.........................12......................... DUP_NUM;



a.a.A.......aA..aaB....A....A...........A..a.aHa.A.. Cas9_Wa;



..A.Baa.a...A..aaa.aa..A.........A.Ba.....Aa.a.Ba.aa Cas9_Cr;



..L..................NL..........L..............N... Cpf1_Wa;



Lk.................................................. Cpf1_Cr;





HBB
ttgtccaggtgagccaggccatcacTTaaaggcaccgagcactttcttgcca SEQ_DUP;



.........................12......................... DUP_NUM;



...aa.a.A...aA..........J.aA...Ja.A.........A....a.A Cas9_Wa;



.........aa.......Aa...Aa.Ca.a.......A.aa...A.a..Ba. Cas9_Cr;



.................N.....N...L....................N... Cpf1_Wa;



......k............................................. Cpf1_Cr;





HBB
cttcatccacgttcaccttgccccaCCagggcagtaacggcagacttctcct SEQ_DUP;



.........................12......................... DUP_NUM;



......A........A........aaA..A....aA..a...........aa Cas9_Wa;



.aa..A.Ba.CaaHa..Ba.aa...Aaaa.aa....A.....A..A...A.B Cas9_Cr;



........................NL...L....NL....N........... Cpf1_Wa;



..............N..................................... Cpf1_Cr;





HBB
tgccccacagggcagtaacggcagaCCttctcctcaggagtcagatgcacca SEQ_DUP;



.........................12......................... DUP_NUM;



.....aaA..A....aA..a............aa.A...aC.A......aa. Cas9_Wa;



a.aa...Aaaa.a....A.....A..A...Aa.Ba.aa.a......a..... Cas9_Cr;



......NL...L....NL....N...........................N. Cpf1_Wa;



.................................................... Cpf1_Cr;





ANO5
gagaactgtagcttctaaagctcatAAgcataggtgtttggcaagacattct SEQ_DUP;



.........................12......................... DUP_NUM;



...A..A........A.......A....aa.A...aA...a........... Cas9_Wa;



..A.......A.....A.Ba.....A.a.....A..........J.A....A Cas9_Cr;



..M.N...M............N..............LLN............. Cpf1_Cr;





MYBPC3
cctcgatcatgcgccgcgcttcatgAActcagctcctgaatcaggtcgaagt SEQ_DUP;



.........................12......................... DUP_NUM;



aC....a.A..a.A......aB.....A....HaB....aA..aB.A....A Cas9_Wa;



a.a.aaa.a..Ca...A.aa.a.a.Ba.....A.aH.A.aa....Ca..I.a Cas9_Cr;



..........................................NL........ Cpf1_Wa;



...LN...........LN........LN........................ Cpf1_Cr;





MYBPC3
cgccatcgtaggcaggcggctcccaCCtgtactgtgcaggagtcctctccca SEQ_DUP;



.........................12......................... DUP_NUM;



...A..aA..aa.aA......J..A....a.A..aa.A...........A.. Cas9_Wa;



A..Aaa.aa.Ca.....A...A..A.aaa.aa....A..J.A..J...aa.a Cas9_Cr;



............................................L....... Cpf1_Wa;



.................................................... Cpf1_Cr;





MYBPC3
aacacccactcatcgctgtcacctgTTgtcctctggggcatctggggctggc SEQ_DUP;



.........................12......................... DUP_NUM;



..........A..A......A..A......aaaA.....aaaA..aA...aA Cas9_Wa;



...a...A.aaaHa.aHCa.a...a.aa......aa.a.....A.Ca..... Cas9_Cr;



..............N..N..............................N... Cpf1_Wa;



.................................................... Cpf1_Cr;





MYBPC3
atggggtcatcgggggctccaggggTTaggaccattgagagctgctgagctt SEQ_DUP;



.........................12......................... DUP_NUM;



aA.....aaaaA.....aaaA...aa......a.a.A..A..a.A...a... Cas9_Wa;



..Aa........a.Ca.....A.aa...........Aa........A..A.. Cas9_Cr;



.........................................L......N... Cpf1_Wa;



...........................................k........ Cpf1_Cr;





BSCL2
gactctggcagctcaagctctaaggTTaacacgatacggctgtccatacatc SEQ_DUP;



.........................12......................... DUP_NUM;



..aA..A.....A......aAJ....J.aC...aA..AJ.......J..A.. Cas9_Wa;



a......A.aH..A..A.a...A.a.........A.a....A..A...aa.. Cas9_Cr;



..........N...NL................................N... Cpf1_Wa;



N.....N.....M...........M................k.......... Cpf1_Cr;





BBS1
cctgcgaagatggccgctgcgtcctCCatcggattccgacgcctgcggagct SEQ_DUP;



.........................12......................... DUP_NUM;



.aB.aC.aA..A..a.A.......IHaaC....a..A...a.aa.A..a.a. Cas9_Wa;



A..A.aa..A........Aa.a..A..aa.aa.Ca....Baa..A.aa..A. Cas9_Cr;



.........N......................................L... Cpf1_Wa;



.........L...............L............LN............ Cpf1_Cr;





LRP5
tgactgtatgcacaacaacgggcagTTgtgggcagctgtgccttgccatccc SEQ_DUP;



.........................12......................... DUP_NUM;



.AJ..A.........aaA..A..a.aaA..A..a.A....A........aa. Cas9_Wa;



a.a.....A......AJa..A..A...A.........A..A....Aa.J.Aa Cas9_Cr;



....L.........................M.................N... Cpf1_Wa;



.................................................... Cpf1_Cr;





TYR
cggcgatggtaggggccgtcctcacTTgccctgctggcagggcttgtgagct SEQ_DUP;



.........................12......................... DUP_NUM;



aC.aA..aaaA..A.........A....A..aA..aaA...a.a.A...A.. Cas9_Wa;



.....A..A...........Aa..aa.a.a...Aaa..A...A....A.... Cas9_Cr;



.................N..............................N... Cpf1_Wa;



..............................................N....k. Cpf1_Cr;





TYR
ggcagggcttgtgagcttgctgtgtCCgtcacaagagaaagcagcttcctga SEQ_DUP;



.........................12......................... DUP_NUM;



aaA...a.a.A...A..a.A...A......a.aB..A..A......aB.aB. Cas9_Wa;



a..A...A....A.......A...A.....aaJ.a.a.........A..A.B Cas9_Cr;



...............................N.......N........L... Cpf1_Wa;



...........N....k............LN..k.................. Cpf1_Cr;





MRE11A
tccacaaatttctggctaaagcgaaGGaacactgaaaggttcaaaacctcca SEQ_DUP;



.........................12......................... DUP_NUM;



.........aA.....a.aB.aaB.....aB..aA................. Cas9_Wa;



AaaH.CaaHa.....Ba...A.....A.......A.a........Ba....A Cas9_Cr;



......k....N............L.......k................... Cpf1_Wa;



.LN..LN.....Lk.......k...........M..........Lk...... Cpf1_Cr;





ATM
acagaacaatcccagcctaaaacttAAcatacacagaatgtctgagggtttg SEQ_DUP;



.........................12......................... DUP_NUM;



B.........A..........J.J......HaB..A...aHaaA...a.aA. Cas9_Wa;



a.....A....A..CaaaI.Aa.....A....A...A.a.......a..... Cas9_Cr;



..k.......k.....k..N.M...........L............N..... Cpf1_Wa;



....N..M.......N...................N............k... Cpf1_Cr;





ATM
aggagtggaagaaggcactgtgctcAAgtgttggtggacaagtgaatttgct SEQ_DUP;



.........................12......................... DUP_NUM;



a.aaB.ab.aA....a.A.....a.A..aa.aa....aHaB....AJ..... Cas9_Wa;



A...................A.a....A.aJ.......J....A........ Cas9_Cr;



.................................................... Cpf1_Wa;



....N.........L...N...LN........M...........M....... Cpf1_Cr;





DPAGT1
tgtggtagagcaatcccaaagtggtGGaaaaaaaagggtatcatgaagtaga SEQ_DUP;



.........................12......................... DUP_NUM;



A..a.A..........a.aa.aaB......HaaA......aB.A..a.aaaB Cas9_Wa;



Aa.............A..CaaaI......................Ca.J... Cas9_Cr;



.M.L...........N......N..............L.............. Cpf1_Wa;



....LLK................LN.......LLk................. Cpf1_Cr;





PKP2
aggagaggttatgaagaatgcacacAAcaattctccgtggcctgagaaaaca SEQ_DUP;



.........................12......................... DUP_NUM;



a.aA....aBHab.JA................a.aA...a.aB.....aa.. Cas9_Wa;



A........................A.a.a..A...BaHaa....Aa..... Cas9_Cr;



..............L................N.M.................. Cpf1_Wa;



....N..N.................k.........N..N...........M. Cpf1_Cr;





PKP2
ggcccgcctgctttcttggtggtgcAAgggtgtgcccagcctggcttctctg SEQ_DUP;



.........................12......................... DUP_NUM;



.A...A.......aa.aa.A..Haaa.a.A....A...aA.......aa..A Cas9_Wa;



....A..Aaa.aa..A..Ba.........A..J......AaaJ.Aa...A.B Cas9_Cr;



.M.................................k..N............. Cpf1_Wa;



....N.....................................N......... Cpf1_Cr;





AAAS
ggtcccagaccatggagtgagcctcTTcccccaagcctgtgggtaaggacag SEQ_DUP;



.........................12......................... DUP_NUM;



...a.....aa.a.a.A.............A...aHaaA...aa...aA... Cas9_Wa;



.a......aaa...Aa..........Aa.a.Baaaaa...Aa.......... Cas9_Cr;



............NLL...........L.....................NLL. Cpf1_Wa;



...........N...........N............................ Cpf1_Cr;





MVK
ttcatggagaacatgccgtggtacaTTggcaaggtacaaagccgttagagcc SEQ_DUP;



.........................12......................... DUP_NUM;



.aa.aB....A..a.aA......aA.J.aA......A..A...a.A.....I Cas9_Wa;



a.CaaHBa........A...Aa......A..J..A......A..J.Aa.... Cas9_Cr;



.......L...............NL.......................N... Cpf1_Wa;



.........N......k.................N................. Cpf1_Cr;





TCTN2
tccggccctgcggtcagcgcgtcccTTggtcggagacaccgagggtgtgacc SEQ_DUP;



.........................12......................... DUP_NUM;



A....a.aA...a.a.A......aA..aa.a.....aHaaa.a.a...a.A. Cas9_Wa;



H.....aa..Aaa..A...a..A.a..aaa.....a.....A.aa....... Cas9_Cr;



L...L.......k.M.L.......L....................L..N... Cpf1_Wa;



..........L......................................... Cpf1_Cr;





ATP6V0A2
agtcgggcacggcctacgagtgcctCCagcgccctgggcgagaaaggcctgg SEQ_DUP;



.........................12......................... DUP_NUM;



aaA...aA....Ha.a.A......a.A....aaa.a.aB..aA...aA.... Cas9_Wa;



aa..A...a...A.a..Aa..A.....Aa.aa..A.aaa....A........ Cas9_Cr;



................NL..............................L... Cpf1_Wa;



.....................k.............................. Cpf1_Cr;





GJB2
cttcctcttcttctcatgtctccggTTaggccacgtgcatggccactaggag SEQ_DUP;



.........................12......................... DUP_NUM;



.............A.....aA...aA....a.A...aA......aa.a.A.. Cas9_Wa;



.....A.Baa.a.Ba.Ba.a....a.aa.......Aa.a...A..J.Aa.a. Cas9_Cr;



....k.M...L....N........NL....N..N..........L...N... Cpf1_Wa;



........................................L.....LN.... Cpf1_Cr;





GJB2
ccggtaggccacgtgcatggccactAAggagcgctggcgtggacacgaagat SEQ_DUP;



.........................12......................... DUP_NUM;



..aA....a.A...aA.......aa.a.A..aa.aJaa....aB.aC...A. Cas9_Wa;



...a.aa......Aa.a...A..J.Aa.a.......A.a...A.....A.a. Cas9_Cr;



...NL....N..N..........L............................ Cpf1_Wa;



....N..............L.....LN..................M.....L Cpf1_Cr;





CENPJ
ccctttttaatgcaaggaaaggctgTTatgggtttcagatttatctgactgt SEQ_DUP;



.........................12......................... DUP_NUM;



.......A...aaB..aA..A...HaaA..I..aC.......a...a.aA.. Cas9_Wa;



.....aaa.........A.........A...........Ba.......Ca.. Cas9_Cr;



.......................L.....k..................N.M. Cpf1_Wa;



......................................N............. Cpf1_Cr;





BRCA2
cttattttaactcctacttccaaggAAtgttctgtcaaacctagtcatgatt SEQ_DUP;



.........................12......................... DUP_NUM;



...................aaB..A....A.........A.I..aC...... Cas9_Wa;



.A.a.aH........A.aa..A.Baa.........Ba...a...Aa....a. Cas9_Cr;



M.......................N....k..........NLL......... Cpf1_Wa;



N..LN..........k........................k...N...M... Cpf1_Cr;





BRCA2
attgtaaaaatagtcatataaccccTTcagatgttattttccaagcaggatt SEQ_DUP;



.........................12......................... DUP_NUM;



........A................aC.A...........AIHaaC...... Cas9_Wa;



.Ba................a......Aaaa.Ba...........Baa...A. Cas9_Cr;



..............N...k.....N...............M.......NL.. Cpf1_Wa;



.....................N...........N....k....M.N....N. Cpf1_Cr;





BRCA2
atcaccagttttagccatcaatgggCCaaagaccctaaagtacagagaggcc SEQ_DUP;



.........................12......................... DUP_NUM;



...A.....A........aaA.....a.....J..A....a.a.aA...A.. Cas9_Wa;



J.....Ca.aa........Aa.Ca......Aa.....AaaH......A..J. Cas9_Cr;



.................................k.................. Cpf1_Wa;



......k........k..................k........LN....... Cpf1_Cr;





BRCA2
caaacgaaaattatggcaggttgttAAcgaggcattggatgattcagaggat SEQ_DUP;



.........................12......................... DUP_NUM;



.aB.......aA..aA..A.....a.aA...HaaC.aC....aHaaC..... Cas9_Wa;



....Aa...A...........A..........A....A..........BaH. Cas9_Cr;



...................k.............N.M.......N..N..... Cpf1_Wa;



....N..........L.............M........M.N.........M. Cpf1_Cr;





BRCA2
tttctgaaatagaagatagtaccaaGGcaagtcttttccaaagtattgttta SEQ_DUP;



.........................12......................... DUP_NUM;



.aB....aB.ac..A......aA...A...........A....A.......A Cas9_Wa;



.......ba.................Aa.J..A....a...Baa........ Cas9_Cr;



.N......................k........................... Cpf1_Wa;



..N....N..........k...........k.....N..LN........... Cpf1_Cr;





BRCA2
gtttctttagagccgattacctgtgTTaccctttcggtaagacatgtttaaa SEQ_DUP;



.........................12......................... DUP_NUM;



.....a.a..aC......a.A..........aA...a....A.......... Cas9_Wa;



.Ca.....Ba.......Aa.....Aa.......aaaH.Ba.......A.... Cas9_Cr;



........N...k.M..........k...k.........N........N... Cpf1_Wa;



.................N..........k.........k......N...... Cpf1_Cr;





BRCA2
tgcccctttcgtctatttgtcagacGGaatgttacaatttactggcaataaa SEQ_DUP;



.........................12......................... DUP_NUM;



......A.......A...a..aaB..A............aA.......A... Cas9_Wa;



...A...Aaaa..Ba..a.......a...A.........A......A...A. Cas9_Cr;



........kLL..N........N.......kL.......k............ Cpf1_Wa;



....LLN..................N..k.......L.M........N.... Cpf1_Cr;





BRCA2
agatgtcttctcctaattgtgagatAAtattatcaaagtcctttatcacttt SEQ_DUP;



.........................12......................... DUP_NUM;



A.............a.a.aC.............A..............A... Cas9_Wa;



...Ca......a.Ba.aa...................Ca.....aa....Ca Cas9_Cr;



.........kL.......k.M.........N........N............ Cpf1_Wa;



..M.N........k.........................k....LN...... Cpf1_Cr;





ATP7B
caggagcacccgcatgaccctggggAAcgccatgggtaatggtgccagtctt SEQ_DUP;



.........................12......................... DUP_NUM;



.A.....A...a.....aaaaB..A...HaaA....aa.A...A....A... Cas9_Wa;



aaa..A.....A.aaaHa....AaaH......A.aa.............Aa. Cas9_Cr;



................L................................... Cpf1_Wa;



..LLN...........N.................k................. Cpf1_Cr;





ATP7B
gtccatgttggctgacctgtgtctcAAgagatttgtaggcctgaacgtagaa SEQ_DUP;



.........................12......................... DUP_NUM;



..A..aA..a....a.A.....Ia.aC...A..aA...aB..A..aB.A... Cas9_Wa;



..A.a..aa.......A...Aa.....a.a..............Aa....A. Cas9_Cr;



.N.......................L....N..................... Cpf1_Wa;



....N................LN......N.....................L Cpf1_Cr;





NRL
cccagctgctgctgcagggtagccaGGccagtacagctcctccaggcctggc SEQ_DUP;



.........................12......................... DUP_NUM;



A..A..A..A.HaaA..A...aAJ..A....A........aA...aA.Haaa Cas9_Wa;



a..Aaaaa..A..A..A..A.......Aa...Aa....A..a.aa.aa...A Cas9_Cr;



...............L.................................... Cpf1_Wa;



.................................................... Cpf1_Cr;





RDH12
caggagcccgagtctatattgcctgCCagagatgtactgaagggggagtctg SEQ_DUP;



.........................12......................... DUP_NUM;



.A..Ha.A........A...A...a.aC.A....aB.aaaaa.A...A..A. Cas9_Wa;



...AaaH....Aaa....a.......Aa..Aa.........A..J....... Cas9_Cr;



...........k....N.....................M..N.......... Cpf1_Wa;



.................LN....L...............LK.........L. Cpf1_Cr;





SPATA7
atgccaaagaaaaaatagctcctttAAcctttagaagggcatgactcaacat SEQ_DUP;



.........................12......................... DUP_NUM;



....aB.......A...............aB.aaA...a.........aaaC Cas9_Wa;



........Aa.............A.aa.....Aa..........A....A.a Cas9_Cr;



.........N..........M.........................k..... Cpf1_Wa;



....N........N............N.....L.........N......... Cpf1_Cr;





OCA2
cttctcggaggaggcagatgcagacAAgaccagacacctccctgcttagcag SEQ_DUP;



.........................12......................... DUP_NUM;



..aa.aa.aA..aC.A..a....a..J.a..........A....A..aA... Cas9_Wa;



.a.aaa.Ba.a........A.....A...A....Aa...A.aa.aaa..A.. Cas9_Cr;



..........L..........L..N........................... Cpf1_Wa;



....N............................................... Cpf1_Cr;





EIF2AK4
ataagctcttgtgacctcctggttgTTaagtgttggccagatgtctatgtcc SEQ_DUP;



.........................12......................... DUP_NUM;



A.....a.a.......aA..A....a.A..aA...aC.A.....A....aaA Cas9_Wa;



...A......A.a......Aa.aa................JAa......a.. Cas9_Cr;



......k......L....N............N.............N..N... Cpf1_Wa;



......N.................................N....N...... Cpf1_Cr;





CAPN3
ctgagttcccaccggatgagacctcTTctcttttatagccagaagttcccca SEQ_DUP;



.........................12......................... DUP_NUM;



A.......HaaC.a.a.................A...aB.A........... Cas9_Wa;



...AaaH....Baaa.aa........Aa.a.Ba.a........Aa......B Cas9_Cr;



........N...k.M.............NLL.................N... Cpf1_Wa;



.............M.......N.....................LLN...... Cpf1_Cr;





TUBGCP4
aacagctctcagcctggatgctccaTTggactcctcttggaccagcatgaag SEQ_DUP;



.........................12......................... DUP_NUM;



A......A..HaaC.A.......aa.........aa....A...aBHaB... Cas9_Wa;



......JA..A.a.a..Aa......A.aa......A.aa.a.....Aa..A. Cas9_Cr;



...k................M........................L..N... Cpf1_Wa;



......L...........L........LN..N..........k......... Cpf1_Cr;





SPG11
cataccttggcaagatcatacagacAAgaggacctgtcgacagtagttcttc SEQ_DUP;



.........................12......................... DUP_NUM;



....aA...ac.......a....a.aa....A..a...A..A.......... Cas9_Wa;



...A.a...Aa....A....Ca...A...A.......Aa...a..A...... Cas9_Cr;



.................N...........N...................... Cpf1_Wa;



....N..............................L................ Cpf1_Cr;





SPG11
tgggtctccaaatcccagagggtaaTTggtatagcccatcctttccacttcc SEQ_DUP;



.........................12......................... DUP_NUM;



.............aHaaA.....aA....A.....................A Cas9_Wa;



..Aaa.....a.aa...CaaaI.................aaa.CaaH.Baa. Cas9_Cr;



..............................L.....L...........N... Cpf1_Wa;



..N......M......................N...k...........LN.. Cpf1_Cr;





DUOXA2
ttcacctggcgtctgaaagagaattAAcgccgcggagtacgcgaacgcactg SEQ_DUP;



.........................12......................... DUP_NUM;



...aa.A...aB..aHaB......A..a.aa.A...a.ab..A....aa.aB Cas9_Wa;



..A...Ba.aa...A..a..............A.aa.a......A.aJ..A. Cas9_Cr;



......N................NL.....................N..... Cpf1_Wa;



N...N.......L........LN.......L...N..........L...... Cpf1_Cr;





FBN1
aagcccaaagccttcaaagacacttAAccttggcaccttcttccactggagg SEQ_DUP;



.........................12......................... DUP_NUM;



.....A......J.a..........J.aA..............aa.aa.... Cas9_Wa;



........Aaa....Aa.Ba.....A.a....Aa....A.aa.Ba.Baa.a. Cas9_Cr;



...................N...............NL.........N..... Cpf1_Wa;



....N.....................L......N..Lk..........L... Cpf1_Cr;





KIF7
gtgccgcgccgcgttgcccatctccAAggaggctcagcacctcatccaggcc SEQ_DUP;



.........................12......................... DUP_NUM;



.a.A..a.A..A...........aa.aA.J..A...........aA...... Cas9_Wa;



aaa.....Aa.a.aa.a....Aaa.Ca.aa.......A.a..A.aa.a.Caa Cas9_Cr;



...N..............L.................N.........L..... Cpf1_Wa;



....N............................................... Cpf1_Cr;





BLM
aagcagtatttttttttccaactagTTggggacatgattttcgtcaagatta SEQ_DUP;



.........................12......................... DUP_NUM;



.A..................A..aaaa.I..aC.....A.I..aC....... Cas9_Wa;



a.......A.......J....Baa..A..........A.......Ba..a.. Cas9_Cr;



.........L............................kLL.......N... Cpf1_Wa;



........L...............N.......k....N..LN.......... Cpf1_Cr;





BLM
tccttctgttccggtgatggctcttAAcggccacagctaatcccagggtaca SEQ_DUP;



.........................12......................... DUP_NUM;



...A....aa.aC.aA........aA.....A........haaA....aB.a Cas9_Wa;



.....Baa.Ba...Baa........A.a....A..Aa.a..A...CaaaI.. Cas9_Cr;



......M...NL..........kL..N....NLL............N..... Cpf1_Wa;



....N............N..............N................... Cpf1_Cr;





BLM
tgtccattacttcaatatttttaatAAccgtcactctcaagaagcttgcagg SEQ_DUP;



.........................12......................... DUP_NUM;



.........................A..........aB.A...A..aahaaA Cas9_Wa;



........aaJ...A.Ba..............aa..a.a.aHa......A.. Cas9_Cr;



...................k......L..N...NL........k........ Cpf1_Wa;



.N..n............N..N............................... Cpf1_Cr;





ERCC4
gtactacatgaagtggagccaagatAAcgtggttctttatgacgcagagcta SEQ_DUP;



.........................12......................... DUP_NUM;



.....aB.a.aa.A....aC....a.aA........a..A..a.A....... Cas9_Wa;



A.......A..a...........Aa.......A.....Ba.......A.a.. Cas9_Cr;



.........M.......................................... Cpf1_Wa;



..M.N.........................N..................Lk. Cpf1_Cr;





PALB2
cagaaagggtcccactgctactaacTTagcctcctctttgtcaggccaagca SEQ_DUP;



.........................12......................... DUP_NUM;



.HaaA.......A...........A..........A...aA.J..A....A. Cas9_Wa;



....Ca.........aaa.a..A..A...A....Aa.aa.a.....a...Aa Cas9_Cr;



.........N.....N..N..............L..............N... Cpf1_Wa;



.n........................N............M............ Cpf1_Cr;





PALB2
gtgctgactactaccgctatctgatAAgagtctgtaaaggaactgtagtcgc SEQ_DUP;



.........................12......................... DUP_NUM;



.a.........A......aC..Ha.A...A....aaB...A..A..A....a Cas9_Wa;



BaJ.....A..JA..A..Aa.a..Ca..........a..........A.... Cas9_Cr;



...k.............NL......................M.......... Cpf1_Wa;



..M.N.........k...LN.................Lk............. Cpf1_Cr;





CLN3
ctcttaccagcggtattgctgagcgTTgactcagggaagtgttccagaaaaa SEQ_DUP;



.........................12......................... DUP_NUM;



.....a.aA....A..a.a.A..a.....aaaB.a.A.....aB....a.aa Cas9_Wa;



a.a.aa.a...Aa..A.......a....A.....A.aH.........Baa.. Cas9_Cr;



..L.......................N...........N.........N... Cpf1_Wa;



.............LLN..........k.............k......N..k. Cpf1_Cr;





CLN3
atggacagcagggtctgctgaggggAAgaggccggcctgggtgaggcccagg SEQ_DUP;



.........................12......................... DUP_NUM;



...A.HaaA...A..a.aaaaB.a.aA..aA..Haaa.a.aA....aA..aa Cas9_Wa;



aaH.A.....A..A.....a..A.............Aa..Aa.........A Cas9_Cr;



.................................................... Cpf1_Wa;



..LLN............................................... Cpf1_Cr;





TK2
ggcggcccagccccgcagcggccacAAgcagcatagccgggcgagcggatcc SEQ_DUP;



.........................12......................... DUP_NUM;



A....A....A..a.aA......A..A....A..aaa.a.aHaac....a.a Cas9_Wa;



.aaa...A..Aaa..Aaaa.a..A..Aa.a...A..A....Aa...A...A. Cas9_Cr;



.................................................... Cpf1_Wa;



....N......M.............L.......................... Cpf1_Cr;





APRT
agcagttggctgcggggagacccttAAccaccagtggccagcagatcatcca SEQ_DUP;



.........................12......................... DUP_NUM;



A..aA..a.aaaa.a..............a.aA...A..aC........a.. Cas9_Wa;



.Aa.a..A......A..A.......AaaH...Aa.aa.....Aa..A...Ca Cas9_Cr;



.L...........N..............N.................N..... Cpf1_Wa;



....N............................................... Cpf1_Cr;





SPG7
ttcagccaaggcctgcagcagatgaTTggaccatgtgagtcggctctggcca SEQ_DUP;



.........................12......................... DUP_NUM;



A....aA...A..A..aC.aC..aa.....aHa.A..aA....aa....... Cas9_Wa;



.aaaa.Ba..Aa....Aa..A..A...........Aa........a..A.a. Cas9_Cr;



.......................NL.......................N... Cpf1_Wa;



......L............................................. Cpf1_Cr;





CTNS
cttcagcctgcacgcggttgtcctcAAcgctgatcatcatcgtgcagtgctg SEQ_DUP;



.........................12......................... DUP_NUM;



.AJ..A...a.aA..A........A..aC........a.A..a.A..A...A Cas9_Wa;



..a.Ba.Ba..Aa..A.a.a......aa.a..A.a...Ca.Ca.Ca...A.. Cas9_Cr;



.....................N..NL..............N........... Cpf1_Wa;



....N............................................... Cpf1_Cr;





CTNS
ctcgcccccagcgcggtggccagcgCCgtgtcctggcctgccatcggcttcc SEQ_DUP;



.........................12......................... DUP_NUM;



......a.a.aa.aA...a.A..a.A....aA...A.....aA......aa. Cas9_Wa;



a.aa.a.a.aaaaa..A.a.....Aa..A..aa....aaJ..Aa..Aa.Ca. Cas9_Cr;



.....L.............................................. Cpf1_Wa;



.................................................... Cpf1_Cr;





FLCN
cgtactggctgctgtatgggatgatGGcggacgcagcccacgggaagcatgg SEQ_DUP;



.........................12......................... DUP_NUM;



..aA..A..A...aaaC.aC.aa.aa..A..A.....aaaB.A...aA...a Cas9_Wa;



a.aa.a...A..JA..A.......J.......A...A.a..Aaa.a...... Cas9_Cr;



....N.................................M............. Cpf1_Wa;



.......L.............LLN............................ Cpf1_Cr;





FLCN
ggcctggcggacaatgctgaagagcTTgggggtggctggggtgctggtggct SEQ_DUP;



.........................12......................... DUP_NUM;



.aa.aa.....A..aB.a.A...aaaaa.aA..aaaa.A..aa.aA..a..A Cas9_Wa;



.A.a...Aa...A...A....A.......A..........A.......A..J Cas9_Cr;



..............L.................................N... Cpf1_Wa;



........................................N..L........ Cpf1_Cr;





RAD51D
gcacagtccgaccctgagcacgcccAAtgttccccgcaggccggaacagccc SEQ_DUP;



.........................12......................... DUP_NUM;



.A...a....Ja.A...A......A......A..aA..aaB...A.....aa Cas9_Wa;



Aa....A.a...aa..AaaH...A.a.aaa.....Baaaa.a...Aa....A Cas9_Cr;



..............................L..................... Cpf1_Wa;



....N................LLN............L............... Cpf1_Cr;





BRCA1
cactctcgggtcaccacaggtgcctCCacacatctgcccaattgctggagac SEQ_DUP;



.........................12......................... DUP_NUM;



..HaaA........aa.A..J..........A.......A..aa.a...aJa Cas9_Wa;



.A.aaaHa.aHa....a.aa.a.....Aa.aa.a.a.Ca..Aaa.....A.. Cas9_Cr;



...............L................................L... Cpf1_Wa;



..................N......L.........N....N........... Cpf1_Cr;





BRAC1
agggaagctcttcatcctcactagaTTaagttctcttctgaggactctaatt SEQ_DUP;



.........................12......................... DUP_NUM;



B.A.............I..aC....A.........a.aa............. Cas9_Wa;



J...A.......A.a.Ba.CaaHa.a..........Ba.a.Ba......A.a Cas9_Cr;



...............N.................NL.............N... Cpf1_Wa;



......N....................N.....................N.. Cpf1_Cr;





BRAC1
tagataagttctcttctgaggactcTTaatttcttggcccctcttcggtaac SEQ_DUP;



.........................12......................... DUP_NUM;



...A.........a.aa..............aA.........aA.......a Cas9_Wa;



aHa.a.........Ba.a.Ba......A.aH.....Ba....Aaaa.a.Ba. Cas9_Cr;



............NL.................N....N...........N... Cpf1_Wa;



......N.....................N..........k............ Cpf1_Cr;





BRAC1
cttttgttttattctcatgaccactAAttagtaatattcatcacttgaccat SEQ_DUP;



.........................12......................... DUP_NUM;



.A............a...........A...............a........A Cas9_Wa;



.Ca.aa...........BaHa....Aa.a.............BaHCa.a... Cas9_Cr;



.k.....N..................k....k..N...............N. Cpf1_Wa;



....N......N........................................ Cpf1_Cr;





RAD51C
gaatgtctcacaaataaaccaagatAAtgctggtacatctgagtcacacaag SEQ_DUP;



.........................12......................... DUP_NUM;



A.................aC....AJ.aA......Ha.a........aBJa. Cas9_Wa;



...........a.a.a.......Aa.........A.....A.Ca.....a.a Cas9_Cr;



............N.M..................................... Cpf1_Wa;



..M.N.......................N..N.............LLN.... Cpf1_Cr;





BRIp1
tgaggtactgtactttaaagaggtcAActtcaagtgtagactcattgtcctg SEQ_DUP;



.........................12......................... DUP_NUM;



A.J..A.........a.aA..........a.A..a.......A....A.... Cas9_Wa;



............A..J.A..J........a..A.Ba........JA.aH... Cas9_Cr;



.N......NLL..........................k.............N Cpf1_Wa;



....N.....N.....................M................... Cpf1_Cr;





BRIP1
actcactttaccacgacaaactgctAAccaggagagctccatcttaaacaac SEQ_DUP;



.........................12......................... DUP_NUM;



..........a.......A.......aa.a.A.................aB. Cas9_Wa;



AaaHa.a.aHa....Aa.a..A...A..A...Aa.......A.aa.Ca.... Cas9_Cr;



.............L................k..................... Cpf1_Wa;



....N...................k...N....k.......M.....k.... Cpf1_Cr;





BRIP1
ttagcctccagctggatagtaaatgTTaacaccaagttctgacgaaaaggat SEQ_DUP;



.........................12......................... DUP_NUM;



......A.HaaC..A.....AJ.........A....a..aB.IHaaC..... Cas9_Wa;



.........Aa.aa..A.................A.aa....Ba...A.... Cas9_Cr;



...........k.......M...N......L.................N... Cpf1_Wa;



......N.....N.........Lk.................M.N........ Cpf1_Cr;





CANT1
tggcgggcgcctggccgagcctccaGGttgtgtgcattgtgggtggggggcc SEQ_DUP;



.........................12......................... DUP_NUM;



aaa.A...aA..a.A......aA..a.a.A....aHaaa.aaaaaA...A.. Cas9_Wa;



Aa.J....A...A.aa...Aa...Aa.aa..........AJ.J......... Cas9_Cr;



.............N........N......................L....N. Cpf1_Wa;



..................................................L. Cpf1_Cr;





PYCR1
cccacctgggggcctacctgctgctGGtgaagcccttggccagggcaaaagc SEQ_DUP;



.........................12......................... DUP_NUM;



...aaaaA.......A..A..aa.aB.A.....aA...aaA.....A...A. Cas9_Wa;



a..aaaaa.aa......Aa..Aa..A..A........Aaa....Aa....A. Cas9_Cr;



...L.................L.............................. Cpf1_Wa;



.......LN................k.......................LN. Cpf1_Cr;





NPC1
aaaaggatgacaggaacatactgggAAgccacttctcctaggaccctgccca SEQ_DUP;



.........................12......................... DUP_NUM;



aaC.a...aab.......aaaB.A............aa.....A....A..A Cas9_Wa;



a.a............A.....A...A.......Aa.a.Ba.aa.....AaaH Cas9_Cr;



.................................................... Cpf1_Wa;



..LLN............................................... Cpf1_Cr;





LAMA3
tcaaagtcaactgcaagcgagttatGGtggagtttagacccagccaggtaac SEQ_DUP;



.........................12......................... DUP_NUM;



.A......A...aHa.A....aa.aa.A....a.....A...aA....A... Cas9_Wa;



aaa...a.....a..A..A...A....................AaaH.Aa.. Cas9_Cr;



.......k..NL......L.........................N.M..... Cpf1_Wa;



.......L....................N..........N............ Cpf1_Cr;





SERPINB7
ctgctgtaatggtgctggtgaatgcTTgtgtacttcaaaggcaagtggcaat SEQ_DUP;



.........................12......................... DUP_NUM;



.A....aa.A..aaHaB..A..Ja.A.........aA...a.aA......A. Cas9_Wa;



A.a.Ca..A..........A..J......A.......AJBa.....A..... Cas9_Cr;



................................................N... Cpf1_Wa;



...............k.....N......N.............N.....Lk.. Cpf1_Cr;





LDLR
acggctcagacgagcaaggctgtcgTTaagtgtggccctgcctttgctattg SEQ_DUP;



.........................12......................... DUP_NUM;



....a..a.A...aA..A..A....a.a.aA....A.....A.....a.A.. Cas9_Wa;



A..A..A..A.a...A...A....A...a...........aaa..Aa....A Cas9_Cr;



................................................N... Cpf1_Wa;



......N..........................................L.. Cpf1_Cr;





LDLR
agcccccaagacgtgctcccaggacGGagtttcgctgccacgatgggaagtg SEQ_DUP;



.........................12......................... DUP_NUM;



.....a..a.A......aa..aa.A....A..A....aC.aaaB.a.A.... Cas9_Wa;



aa..A..Aaaaa....A...A.aaa....A......Ba.a..Aa.a...... Cas9_Cr;



.............L...L......................L........... Cpf1_Wa;



....L...................LLN......................... Cpf1_Cr;





LDLR
gagtgcctgtgccccgacggcttccAAgctggtggcccagcgaagatgcgaa SEQ_DUP;



.........................12......................... DUP_NUM;



A...a.A....a..aA.......A..aa.aA....a.aB.aC.a.aB.aa.a Cas9_Wa;



.A..A.....Aa.J..Aaaa..A..A.Baa...A......Aaa..A...... Cas9_Cr;



.........N..................................NLL..... Cpf1_Wa;



....N...............LN......LN................L..... Cpf1_Cr;





LDLR
atctgtgcctccctgccccgcagatCCaacccccactcgcccaagtttacct SEQ_DUP;



.........................12......................... DUP_NUM;



a.A.......A....A..aC..............A.....A.......a.A. Cas9_Wa;



Aa....Ca.J..Aa.aaa..Aaaa.a...CaaH.Aaaaa.a.aHaaa..... Cas9_Cr;



.......................M.........L..............L... Cpf1_Wa;



......N..............N...................L.......... Cpf1_Cr;





LDLR
aggctaaaggtcagctccacagccgTTaaggacacagcacacaaccacccga SEQ_DUP;



.........................12......................... DUP_NUM;



....aA...A.......A..A...Jaa..J.JA.............a....A Cas9_Wa;



aa..a...A.......a..A.aa.a..Aa........A.a..A.a.a..Aa. Cas9_Cr;



...............L.......................L........N... Cpf1_Wa;



......N..............N.............................. Cpf1_Cr;





ACP5
agcgcagatagccgttggggaccttGGcgctggtgccgctttgaggggtcca SEQ_DUP;



.........................12......................... DUP_NUM;



..aC..A..A..aaaa.....aa.A..aa.A..A....a.aaaA.....aB. Cas9_Wa;



.......A.a......Aa........Aa....A.a.....Aa.a........ Cas9_Cr;



......NL....L........................N........N..... Cpf1_Wa;



................................Lk.................. Cpf1_Cr;





CYP4F22
ctggggctggagaagacggcgttccGGcatatacgcggtgtccacccttctc SEQ_DUP;



.........................12......................... DUP_NUM;



aA..aa.aB.a..A....aAJ......a.aa.A................... Cas9_Wa;



.aa.aa.....A.........A..A..Baa..A.....A.a.....aaJaaa Cas9_Cr;



............................................NLL..... Cpf1_Wa;



.......M.M.......................................... Cpf1_Cr;





JAK3
ggaggaaggggctcacctttgggtcTTggggatacagcaggaagtgagggtc SEQ_DUP;



.........................12......................... DUP_NUM;



 Cas9_Wa;



aB.aaaA........HaaA....aaaaC....A..aaB.a.aHaaA.....A Cas9_Cr;



aa..............A.a.aa.......a.........A..A......... Cpf1_Wa;



................NLL......................k......N... Cpf1_Cr;





ADCK4
ctgggggagactcacctcgatgtaaTTggtctgtgaactctgtcccaaactc SEQ_DUP;



.........................12......................... DUP_NUM;



aaa.a.........aC.A.....aA...a.aB.....A............aA Cas9_Wa;



.....a.........A.aHaa.a............a......A.aH..aaa. Cas9_Cr;



......kL........................................N... Cpf1_Wa;



..N..........LN..........k.................k........ Cpf1_Cr;





ZNF575
agtttggtccccggactgaccagcaTTagagcagccgcagccccagctcctt SEQ_DUP;



.........................12......................... DUP_NUM;



.aA.....aa...a....A.....a.A..A..A..A.....A......aC.. Cas9_Wa;



aaH..........aaaa...A...Aa..A.......A..Aa.a..Aaaa..A Cas9_Cr;



..................L.......k....L................N... Cpf1_Wa;



.................................................... Cpf1_Cr;





PNKP
cctcggcttccagctctcggagcttAAcggggaatctctgggtacaagatcc SEQ_DUP;



.........................12......................... DUP_NUM;



aA......A.....aa.A......aaaaB.....haaA.....aC......a Cas9_Wa;



....Aaa.a..A.Baa..A.a.a....A....A......Ca.aI.....A.. Cas9_Cr;



................N.............NLL.............N..... Cpf1_Wa;



....N....LLN............N..................LN....... Cpf1_Cr;





NLRP12
cccaggggataccccagggatacttAAcagctgcaccaacagcgtgtgcgct SEQ_DUP;



.........................12......................... DUP_NUM;



aaaaC.......aaaC.........a..A........a.a.a.a.A.....a Cas9_Wa;



.A..Aaaa........Aaaa.......A....A..A..A.aa..A..A.... Cas9_Cr;



..............................................N..... Cpf1_Wa;



....N...........N...................L............... Cpf1_Cr;





DNAAF3
tcatgcgcaggtcccagtcgctgacAAccgcgccgggcgtcgtagcgggagc SEQ_DUP;



.........................12......................... DUP_NUM;



a.A..aA.....A..A..a......a.A..aaa.A..A..a.aaa.A....a Cas9_Wa;



A..A.Ba...A.a....aaa...a.a...A..Aa.a.aa...A..a....A. Cas9_Cr;



......................NL...........L................ Cpf1_Wa;



....N.....................L......................... Cpf1_Cr;





DNAAF3
caggtgccgtccatccacagagcccAAgaagcagcacatctagctcggggtt SEQ_DUP;



.........................12......................... DUP_NUM;



.A..A..........a.A.....aB.a..A........A...aaaA..A.Ja Cas9_Wa;



a.a..A.....Aa.Jaa.CaaHa....Aaa......A..A.a.Ca...A.a. Cas9_Cr;



NL...............L...............L...L.............. Cpf1_Wa;



....N..N............................................ Cpf1_Cr;





KCNE1
gaaagggcgtcaccgctgtggtgttAAgacaggatcatcctgggcattaagg SEQ_DUP;



.........................12......................... DUP_NUM;



aaa.A.....A..a.aa.A....a..HaaC.......aaA......aA.... Cas9_Wa;



...a........A..a.aa.a..........J..A....Ca.CaaH...A.. Cas9_Cr;



................N.............................N..... Cpf1_Wa;



....N......................N....................k... Cpf1_Cr;





HLCS
tcgggaatggactccctggtagcaaTTgaccaacagcagacagttgtccgtc SEQ_DUP;



.........................12......................... DUP_NUM;



aB..aa.......aA..A.....a.......A..a...A..A...A....Ha Cas9_Wa;



.J.a.Ba.........A.aaa......A......Aa..A..A...A...... Cas9_Cr;



........N.............NL............L...........N... Cpf1_Wa;



..N.......N......................................... Cpf1_Cr;





TMPRSS3
aggtaaccacgtggccagaggcacaTTccctccctaaagcggagaaaaagta SEQ_DUP;



.........................12......................... DUP_NUM;



......a.aA...a.aA.................a.aa.aB....A..aA.. Cas9_Wa;



aJ.A.......Aa.a....Aa.....A.a..Baaa.aaa.....A....... Cas9_Cr;



.......N........................................NLL. Cpf1_Wa;



..............k....L...k...............Lk........... Cpf1_Cr;





PCNT
ctggcagccgcctccacctaggttcTTgcccgcagggctgccggctcggatg SEQ_DUP;



.........................12......................... DUP_NUM;



..A..A..........aA.....A...A..aaA..A..aA..HaaC.a.aa. Cas9_Wa;



....Aa.J.A..Aa.aa.aa.aa.....Ba...Aaa.a....A..Aa..A.a Cas9_Cr;



....................................L........N..N... Cpf1_Wa;



..........................L.....L...........LLN..... Cpf1_Cr;





PEX26
agctcattggaggtgaagtgctcccTTgtgtgttgtggggatccaggccctg SEQ_DUP;



.........................12......................... DUP_NUM;



....aa.aa.aB.a.A.......a.a.A..a.aaaaC....aA....aA..a Cas9_Wa;



A...A..A.a...............A.aaa........J.J.....CaaH.. Cas9_Cr;



......N......k...............N...............L..N... Cpf1_Wa;



.................L.................k...L..........N. Cpf1_Cr;





SNAP29
agaacaggaagcaaagtaccaggccAAgccacccaaaccttagaaagctgga SEQ_DUP;



.........................12......................... DUP_NUM;



..aaB.A.J..A.....aA....A..............aB..A.Haac.aC. Cas9_Wa;



.J.......A......A......Aa.J.Aa...Aa.aaaH..Aa........ Cas9_Cr;



.........M.......................................... Cpf1_Wa;



....N........k........k.....L....M.......N...L.M.... Cpf1_Cr;





CHEK2
accctttcatattcatacctttctcTTgagacttctgcccagacttcaggaa SEQ_DUP;



.........................12......................... DUP_NUM;



.......J...............a.a......A....a......aaB..aB. Cas9_Wa;



BaH...AaaH.Ba....BaH..Aa..Ba.a......A.Ba..Aaa...A.Ba Cas9_Cr;



..k..............N..N.......kL....NL.......k....N... Cpf1_Wa;



............................LN..LN.................. Cpf1_Cr;





CHEK2
gaacaggcactgctgccatgagactGGctgagcctcaacatccgactcccga SEQ_DUP;



.........................12......................... DUP_NUM;



.aA....A..A....a.a...aA..a.A...........a......a.a... Cas9_Wa;



.A......A...A.a..A..Aa......A...A....Aa.a..A.CaaH.A. Cas9_Cr;



.................................................... Cpf1_Wa;



...............N.............................k.....k Cpf1_Cr;





CYBB
tgagtaaacaaagcatctccaactcTTgagtctggccctcggggagtgcatt SEQ_DUP;



.........................12......................... DUP_NUM;



........A.............Ha.A...aA.....aaaa.a.A........ Cas9_Wa;



..AaaH.......A....A.Ca.aa..A.aH.....a...Aaa.a....... Cas9_Cr;



..........N..............................L......N... Cpf1_Wa;



.....................L.................N..N..Lk..... Cpf1_Cr;





CHM
tcatgagttatcaattatttttcttAAcctatctccatttcagtatatggaa SEQ_DUP;



.........................12......................... DUP_NUM;



a.A...................................A.....aaB..... Cas9_Wa;



.Baa.Ca........Ca.........Ba....Aa..Ca.aa...Ba...... Cas9_Cr;



M......N....N.....kLL.........N.M....N.....k..N..... Cpf1_Wa;



....N..................M...LLN..k...N..........N.... Cpf1_Cr;





CHM
gaacagcaaaagttcctggttcctcTTgctggcactgtcaaaatggaaatct SEQ_DUP;



.........................12......................... DUP_NUM;



.A.....A.....aA........AJ.aA....A.......aaB......... Cas9_Wa;



..AaaH..A..A......Baa....Baa.a..A...A.a...a......... Cas9_Cr;



...................................NL.....NL....N... Cpf1_Wa;



..................k....LLK.....k......k.....k....... Cpf1_Cr;





ABCA4
tctcccacaaaggcaatggcaaccgACACagctttctctgcatgccacctggag SEQ_DUP;



.........................1122......................... DUP_NUM;



.......aA....aA...J.a.....A........A...A......aa.aA... Cas9_Wa;



...A.Ca.aaa.a.....A.....A..Aa..A.a..A..Ba.a..A...Aa.aa Cas9_Cr;



...L.............N........L........................... Cpf1_Wa;



.............................L.......N..N......L...... Cpf1_Cr;





FLAD1
cactcatgatgatgtgacctttgagGCGCagtggcacaggcctttggagatgag SEQ_DUP;



.........................1122......................... DUP_NUM;



...aC.aC.a.a......a.aa.A..a.aA....aA.....aa.aC.a.A..aB Cas9_Wa;



..Aaaa.a.aH...........Aa.......A.a.....A.a...Aa....... Cas9_Cr;



...........................................k.......... Cpf1_Wa;



........................L..........LN...........N....L Cpf1_Cr;





MSH6
atttggccgttattcagattccctgGTGTgcagaagggctataaagtagcacga SEQ_DUP;



.........................1122......................... DUP_NUM;



aA..A....I..aC......aa.a.A..aB.aaA.......a..A..Ha.a.aa Cas9_Wa;



....A......Aa.....BaH...Baaa.......AJ.J....A.......... Cas9_Cr;



..N.......kL.......N.....k......N..NL....NLL.......... Cpf1_Wa;



............N......M.k.............LLN................ Cpf1_Cr;





SLC19A3
ataaggaatggttctgagggtctcaTCTCatggagaaaaaaccaaataagcaga SEQ_DUP;



.........................1122......................... DUP_NUM;



aaB..aA....aHaaA...........aa.aB.............A..aHaaC. Cas9_Wa;



.................Ba.......a.a.Ca.a............Aa...... Cas9_Cr;



.M......L.........M...............N................... Cpf1_Wa;



..........L...k.......k...N.....................k..... Cpf1_Cr;





AGXT
tccaacctgcctcctcgcatcatggCACAgccggggggctgcagatgatcgggt SEQ_DUP;



.........................1122......................... DUP_NUM;



....A.......A....J.aA....A..aaaaaA..A..aC.aC.HaaA..... Cas9_Wa;



..aa.Baa..Aa..Aa.aa.a.a.Ca....A.a..Aa......A..A......C Cas9_Cr;



......................NLL............................. Cpf1_Wa;



.........................................N...M........ Cpf1_Cr;





DNAH5
cattttgttccatcagctgtcgcacTATAtctcattcgtaacctacaaaagaca SEQ_DUP;



.........................1122......................... DUP_NUM;



..A........A..a..A...............A............a....... Cas9_Wa;



...CaaHI.....Baa.Ca..A...a.a.a....Ca.a..BaH...Aa..A... Cas9_Cr;



....N........N.M......L....k..NLL................M.M.. Cpf1_Wa;



.....M............N......k......N........N...k........ Cpf1_Cr;





DNAH8
acaatattagaacaaattttttgatAGAGacaccattgcaaaacaacataaagt SEQ_DUP;



.........................1122......................... DUP_NUM;



.....aB...........aC..a.a........A..............A...A. Cas9_Wa;



......A..........A.................A.aa....A....A..A.. Cas9_Cr;



.......k...NLL......N........N.............k.......... Cpf1_Wa;



..M...............k....N..M.k....N.....N....M......... Cpf1_Cr;





WISP3
atttgtcttttctggatgctcaagtACACtcagagttacaaacccactttttgt SEQ_DUP;



.........................1122......................... DUP_NUM;



A.......HaaC.A..J.JA.......Ha.A.................a.aaB. Cas9_Wa;



...........a...Ba......A.a.....A.aJaH......A...AaaHa.. Cas9_Cr;



kLL.......L..............k......k..................... Cpf1_Wa;



N.................k..............LLN........L.M.N..... Cpf1_Cr;





AHI1
agctggatggaatttagccgtgtaaACACaaaagaaggatgaggtaaaactctg SEQ_DUP;



.........................1122......................... DUP_NUM;



aaC.aaB.....A..a.AJ..........aBHaaC.a.aA.........aB..A Cas9_Wa;



a...A..A..............Aa......JA.a.................... Cas9_Cr;



...................N................k................. Cpf1_Wa;



..k.....k....N..........k.......lK.................... Cpf1_Cr;





CFTR
tattatgtgttttacatttacgtggGAGAgtagccgacactttgcttgctatgg SEQ_DUP;



.........................1122......................... DUP_NUM;



..a.A............a.aaaHa.A..AJ.a.......A...A...IaaaC.. Cas9_Wa;



..Ba......J......J.A.....A............Aa..A.a....A...A Cas9_Cr;



...N.M.............NL....N.M......k.....k............. Cpf1_Wa;



...L............................L..................... Cpf1_Cr;





TMEM70
gtccccgggcctctgtctcccgggcGTGTcctccagcagcgggccttcggggcc SEQ_DUP;



.........................1122......................... DUP_NUM;



..aaA.....A......aaa.a.A.......A..a.aaA.....aaaA..aA.. Cas9_Wa;



aa.....aaaa...Aa.a...a.aaa...A....aaJaa..A..A...Aa.Ba. Cas9_Cr;



..................L......L...............L............ Cpf1_Wa;



............................................L......... Cpf1_Cr;





BRCA2
actctgaagaacttttctcagacaaTGTGagaataattttgtcttccaagtagc SEQ_DUP;



.........................1122......................... DUP_NUM;



.aB.aB..........a.....a.aHaB........A........A..A..... Cas9_Wa;



CaaHI.A.aH......A...Ba.a...A...................a.Baa.. Cas9_Cr;



kL.................L.................k................ Cpf1_Wa;



..N.......N..N............N.......N..Lk...LN..N....... Cpf1_Cr;





POMT2
gttgttgtagtccttgtgcaaatagGTGTggtgacctgggtggggggtgggggc SEQ_DUP;



.........................1122......................... DUP_NUM;



..A..A.....a.A......aa.a.aa.a...Haaa.aaaaaa.aaaaa.aa.a Cas9_Wa;



aHa.............aa.....A..J.........J..Aa............. Cas9_Cr;



N.M...k..N.......L......N..N........N................. Cpf1_Wa;



.................................L...LLN....LN........ Cpf1_Cr;





PALB2
atagagtctgtaaaggaactgtagtCGCGccctggtgaaattaggtcttcttag SEQ_DUP;



.........................1122......................... DUP_NUM;



.A...A....aaB...A..A..a.A....aa.aB.....aA........aaB.. Cas9_Wa;



.Ca.........a..........A......a.a.aaa..............a.B Cas9_Cr;



..................M................................... Cpf1_Wa;



...............Lk................LN.......N........... Cpf1_Cr;





RAD51D
gtatagagaccagcatcaagcagttTATAtcaagactgatggcagaagagaaga SEQ_DUP;



.........................1122......................... DUP_NUM;



.a.a....A......A..A..........a...aC.aA..aB.a.aB.aB...J Cas9_Wa;



a.aa.......J..Aa..A.Ca...A........Ca....A......A...... Cas9_Cr;



.......kL.......N...L....M.....................k.M.M.. Cpf1_Wa;



.....M....N.............N....N..k.....N....N.......... Cpf1_Cr;





BRCA1
gcacacacacacacgctttttacctGAGAgtggttaaaatgtcactctgagagg SEQ_DUP;



.........................1122......................... DUP_NUM;



.J.J......A..........aHa.a.aA.......A.......a.aHaaC..A Cas9_Wa;



a.....A.aJa.a.a.a.a.a......Aa..................a.a.aH. Cas9_Cr;



..........................................k........... Cpf1_Wa;



..............k..................M.................... Cpf1_Cr;





BRCA1
ccttgattttcttccttttgttcacATATtcaaaagtgacttttggactttgtt SEQ_DUP;



.........................1122......................... DUP_NUM;



aC.............A...............a.a......aa.....A...... Cas9_Wa;



BaH.Baa.......Ba.Baa......Ba.a....BaH.......A.......A. Cas9_Cr;



..N.....N........N...kL..N.....k..NL....k..NL......NL. Cpf1_Wa;



....M.....k.............L.............N............... Cpf1_Cr;





BRCA1
agcgcatgaatatgcctggtagaagACACttcctcctcagcctattctttttag SEQ_DUP;



.........................1122......................... DUP_NUM;



..HaB....A...aA..ab.a..............A.............aa.A. Cas9_Wa;



..Ba...A.a.........Aa..........A.a.Baa.aa.a..Aa...BaH. Cas9_Cr;



...k...............NL.............M.................NL Cpf1_Wa;



.N.......................................LN.....L.M... Cpf1_Cr;





KPTN
ggcctctttcggggcctctcctaccTATActggtcaggttcgtcagctctggga SEQ_DUP;



.........................1122......................... DUP_NUM;



......aaaA.........J.......aA...aA...A...A....aaaB.a.a Cas9_Wa;



aa.....Aa.a..Ba....Aa.a.aa..Aa....A....a....Ba..a..A.a Cas9_Cr;



................L.............kL.................M.... Cpf1_Wa;



.....M........................LLN..................... Cpf1_Cr;





SPTA1
actgctggaacttcagggcccgcagCAACAActggtcacccttctccagggtcagc SEQ_DUP;



.........................111222......................... DUP_NUM;



..aaB......aaA...A..A........aA............HaaA...A..... Cas9_Wa;



..A..JA..A.....A.Ba....Aaa.a..A..A..A....a.aaaHBa.aa.... Cas9_Cr;



..................................NL.................... Cpf1_Wa;



.....N..N.............................N................. Cpf1_Cr;





TREX1
ctccagactcgcacacggctgagggTGATGAtgtcctggccctgctcagcatctgt SEQ_DUP;



.........................111222......................... DUP_NUM;



.a.J.JA.....aA..aHaaa.aC.aC.A....aA....A....A.....A...a. Cas9_Wa;



..aaaa.aa...A.aHa.a.a..A...............aa...Aaa..A.a..A. Cas9_Cr;



...........M........L....L.............................. Cpf1_Wa;



.......................................L................ Cpf1_Cr;





SLC26A3
acgatatacacatctaccttgatccTGATGAtaaattcttgcaaaatctgttaaaa SEQ_DUP;



.........................111222......................... DUP_NUM;



J...............aC....aC.aC.........A........A.......aB. Cas9_Wa;



.Baa..A......A.a.Ca..Aa....CaaH..........BaH..A....Ca..I Cas9_Cr;



........N.........NLL.......M............N.............. Cpf1_Wa;



.........M.k.........k.........k.....k.....M............ Cpf1_Cr;





CDKN2A
agctcctcagccaggtccacgggcaGACGACggccccaggcatcgcgcacgtccag SEQ_DUP;



.........................111222......................... DUP_NUM;



.....A...aA.....aaA..a..a..aA.....aA...Ja.A...A....A..a. Cas9_Wa;



..Aaa..A.aa.a..Aa....aa.a...A...A..A..Aaaa...A.Ca.a.a.a. Cas9_Cr;



.......................................L................ Cpf1_Wa;



........................................................ Cpf1_Cr;





USH2A
ctgtgccaaagggtggacccgcgggTGGCTGGCtgccagggcaacggcaatgtgattg SEQ_DUP;



.........................11112222......................... DUP_NUM;



A....Haaa.aa....aHaaa.aA..aA..A...aaA....aA...Ia.aC..aaA.. Cas9_Wa;



..Aa.a....Aa.J........AaaHa......A...A..Aa....A..A..A..... Cas9_Cr;



......N................................................... Cpf1_Wa;



.....................N.....N................N.......N..... Cpf1_Cr;





TPO
gcgggccctgcttcctggccggagaCGGCCGGCcgcgccagcgaggtcccctccctga SEQ_DUP;



.........................11112222......................... DUP_NUM;



A....A......aA..aa.a..aA..aA..a.A...a.a.aA..........aJ.aA. Cas9_Wa;



..AaaHa...Aaa..A.Baa...Aa.....A..Aa..Aa.a.aa..A.....aaaa.a Cas9_Cr;



.........L........................NL...................... Cpf1_Wa;



.......................................................... Cpf1_Cr;





HADHA
caaatccttcctcttcacaccctccTGATTGATagatgtaaaagcccttcccagattt SEQ_DUP;



.........................11112222......................... DUP_NUM;



.........J.........I..aC..aC..aC.A.....A......I..aC.....a. Cas9_Wa;



....BaH..CaaHbaa.a.Ba.a.aaaHaa...................Aaa.Baaa. Cas9_Cr;



........M.L..........NL.......NL....NL.............N...... Cpf1_Wa;



..........M.......k.........................k........N..k. Cpf1_Cr;





HADHB
tgggccactctgcagaccgactggcCGCTCGCTgcctttgctgtttctcggctggaac SEQ_DUP;



.........................11112222......................... DUP_NUM;



.......A..a...a...aA..A...A..A.....A..A......aA..aaB..HaaC Cas9_Wa;



..Aa.....Aa.a.aH.A...Aa..A...Aa.a.a.a..Aa....A....Ba.a..A. Cas9_Cr;



....N...L................................................. Cpf1_Wa;



................................LLN.......LN.............. Cpf1_Cr;





MSH6
tttttttggagatgattttattcctAATGAATGacattctaataggctgtgaggaaga SEQ_DUP;



.........................11112222......................... DUP_NUM;



...aa.aC.aC............HaB..a...........aA..a.a.aaB.a.aa.A Cas9_Wa;



....A.....................Baa..........A..BaH......A...... Cas9_Cr;



........N....N..............k...........k..NL............. Cpf1_Wa;



....N..LN..........N............LN..........Lk.......k.... Cpf1_Cr;





MSH6
tttaaggtgaaagtacattttttgtTGAATGAAttaagtgaaactgccagcatactca SEQ_DUP;



.........................11112222......................... DUP_NUM;



.aa.ab..A..........A.HaB.HaB.....a.aB....A..JA.........A.. Cas9_Wa;



....................A..J........................A..Aa..A.. Cas9_Cr;



..NL...k................k...................k..N........N. Cpf1_Wa;



.....LN..LN...N...Lk..........M.............N............. Cpf1_Cr;





MSH6
ttactttaacaggaagaggtactgcAACAAACAtttgatgggacggcaatagcaaatg SEQ_DUP;



.........................11112222......................... DUP_NUM;



.......aaB.a.aA....A............aC.aaa..aA.....A.....A..A. Cas9_Wa;



........A.....A...........A..a..A...A...........A..A.....A Cas9_Cr;



....N...NL..N.M........k....k............................k Cpf1_Wa;



....N..k...........L......N.....k............k...N........ Cpf1_Cr;





MSH6
cattattttcaactcactaccattcATTAATTAgtagaagattattctcaaaatgttg SEQ_DUP;



.........................11112222......................... DUP_NUM;



.............................A..aB.aC.............A..A..a. Cas9_Wa;



.a...A..J....Ba..A.aHa..Aa..BaH...................BaHa.... Cas9_Cr;



..........M..............N....kL.............NL..N...N.... Cpf1_Wa;



.......N........N...........k.......................M..... Cpf1_Cr;





MSH6
aaaagcaagagaatttgagaagatgAATCAATCagtcactacgattatttcggtaact SEQ_DUP;



.........................11112222......................... DUP_NUM;



A...aHaB....a.aB.aCHaB........A....I..aC.......aA......... Cas9_Wa;



A.........A.....................Ca..ca..Ia.a..A.......Ba.. Cas9_Cr;



....N..NL............................k.................... Cpf1_Wa;



...LN...N........................N...N...N...M.N..LLN...M. Cpf1_Cr;





MSH6
aagcaagagaatttgagaagatgaaTCAGTCAGtcactacgattatttcggtaactaa SEQ_DUP;



.........................11112222......................... DUP_NUM;



..aHaB....a.aB.aCHaB....A...A....I..aC.......aA........... Cas9_Wa;



........A.....................Ca..Ia...a.a..A.......Ba.... Cas9_Cr;



..N..NL............................k...................... Cpf1_Wa;



.LN............................N...N...N...M.N..LLN...M.N. Cpf1_Cr;





ALMS1
tgacctgtcatgtatggcaacagatAGTAAGTAtatcaaggcaatagtagaacacaaa SEQ_DUP;



.........................11112222......................... DUP_NUM;



..A....A...aA.....aC..A...A........aA.....A.JaB..........J Cas9_Wa;



Baa.....Aa...a........a..A..............Ca....A..........A Cas9_Cr;



..k.....kL....N..NLL..N.............M..................M.M Cpf1_Wa;



..M....N...M....N....N.......N....k........M....N......... Cpf1_Cr;





DGUOK
cagtgctggtgttggatgtcaatgaTGATTGATttttctgaggaagtaaccaaacaag SEQ_DUP;



.........................11112222......................... DUP_NUM;



A..aa.A.HaaC.A.....aC.ac..aC.......a.aaB.A...........AB.a. Cas9_Wa;



A..Baa....A..J.....J....a................Ba...........Aa.. Cas9_Cr;



..k.................NLL...........N................N...... Cpf1_Wa;



.....................LN...N...k...N..N...................L Cpf1_Cr;





ORC4
cggcagtcataaatgggtgcgatgcTGTTTGTTactcgatttaaagcaagcatctagg SEQ_DUP;



.........................11112222......................... DUP_NUM;



.A.......Haaa.a.aC.A..A...A...I..aC......A...A......aaaB.. Cas9_Wa;



.Ca..A..A...a...........A..J.A.........A.aH........A...A.C Cas9_Cr;



N....N...NLL..N....................................k..N... Cpf1_Wa;



.....................k....N.........LLk............k.....N Cpf1_Cr;





NEB
tcccttgcccatgttttctttgtatAACAAACAcctgtgcgataagaaagcatccaga SEQ_DUP;



.........................11112222......................... DUP_NUM;



..A.....A........A.....J........a.a.aC...aB..A......aB.... Cas9_Wa;



.....Baaa...Aaa......Ba.........a...A.aa....A..J.......A.C Cas9_Cr;



......................NLL..N..........k...k...M........... Cpf1_Wa;



..M.N..k............M.N..k..........k.....N.........N..... Cpf1_Cr;





NEB
actctctgtatctctggggtgtccaAAACAAACagtctcataatacgacatggacttc SEQ_DUP;



.........................11112222......................... DUP_NUM;



...A.......aaaa.A.............A....J......a....aa........A Cas9_Wa;



aaa...A.aHa....Ca.a........aaJ...A...A...a.a......A..A.... Cas9_Cr;



.....N....k...N...L.............M............L............ Cpf1_Wa;



...k....k.........M.N.........L........................... Cpf1_Cr;





TTN
aatgctaatggcattcaaaacaatgGTATGTATcccctgctttaattgttagcccatc SEQ_DUP;



.........................11112222......................... DUP_NUM;



.....aA.............aA...A........A........A...A.......... Cas9_Wa;



Aa.......A......A..BaH...A..........JCaaaa..A............A Cas9_Cr;



....k..........k....................NL............M...M.L. Cpf1_Wa;



N.....................N........................L....N..... Cpf1_Cr;





BARD1
gaagctttactcacaacatatctgaCTTTCTTTcttacttcgagggctaaaccacatt SEQ_DUP;



.........................11112222......................... DUP_NUM;



...................a.................a.aaA................ Cas9_Wa;



.A.a.....A....A.aHa..A...Ca...A..Ba..Ba...A.Ba.....A....Aa Cas9_Cr;



k..N............k............k............M.......k...k..N Cpf1_Wa;



...........................k...........N...LN............. Cpf1_Cr;





UGT1A8
tcattcagatcacatgaccttcctgCAGCCAGCgggtgaagaacatgctcattgcctt SEQ_DUP;



.........................11112222......................... DUP_NUM;



...aC......a........A..A...aHaaa.aB.aB....A......A........ Cas9_Wa;



.aa.a.a..BaH..Ca.a....Aa.Baa..A..Aa..A..........A...A.a... Cas9_Cr;



..........................NL..............NL.............. Cpf1_Wa;



................LN..N.......................N............. Cpf1_Cr;





TEX1
gatgtcctggccctgctcagcatctGTCAGTCAgtggagaccacaggccctgctgcgg SEQ_DUP;



.........................11112222......................... DUP_NUM;



....aA....A....A.....A...A...a.aa.a......aA....A..a.aaHaaa Cas9_Wa;



..........aa...Aaa..A.a..A.Ca...a...a........Aa.a...Aaa..A Cas9_Cr;



.......................................................... Cpf1_Wa;



..............L...........................L............... Cpf1_Cr;





COL7A1
cagcctccgacacacgacccacaggcTCAGTCAGgggctggggacagaggcaaggtaag SEQ_DUP;



.........................11112222......................... DUP_NUM;



.J.a......a.......aA....A...aaaA..aaaa...a.aA...aA...aaaA. Cas9_Wa;



.Ca..A..Aa.a..A.a.a..AaaHa...A.a...a.....A......A.....A... Cas9_Cr;



............N............................................. Cpf1_Wa;



...................L.........N....N................N...... Cpf1_Cr;





IQCB1
gaaaacccttccaataggcttgaatCAAGCAAGcatgctgcttgatgtagtttctgaa SEQ_DUP;



.........................11112222......................... DUP_NUM;



............aA..HaB.....A...A...A..A...aC.A..A.....aB...A. Cas9_Wa;



...a......AaaHBaa......A.....Ca..IA...A...A..A...........B Cas9_Cr;



.N...k........k..N.............NLL........N............... Cpf1_Wa;



LN...N...N........................Lk......Lk....N........M Cpf1_Cr;





DOK7
acagatgaactgggctcactgctcaGCCTGCCTgccagcagcgggggcccccgagccc SEQ_DUP;



.........................11112222......................... DUP_NUM;



C.aB...aaa......A....A...A...A...A..a.aaaaA.....a.A....A.. Cas9_Wa;



...Aa.a.......A....A.a.a..A.a..Aa..Aa..Aa..A..A.....Aaaaa. Cas9_Cr;



.......................................................... Cpf1_Wa;



.......................................................... Cpf1_Cr;





WFS1
gccatcatggagatcaaggagtaccTGATTGATtgacatggcctccagggcaggcatg SEQ_DUP;



.........................11112222......................... DUP_NUM;



....aa.aC....aa.A..I..ac..aC..a....aA......aaA..aAJ..A.... Cas9_Wa;



..A.a.aa.Ca.......Ca........Aa.J.........A....Aa.aa....A.. Cas9_Cr;



...................................................N...N.. Cpf1_Wa;



.......................................................... Cpf1_Cr;





CC2D2A
ctctttattaccattgagccccagcTGGTTGGTtcctggagagtccattcgagaaaag SEQ_DUP;



.........................11112222......................... DUP_NUM;



...........a.A.....A..aA..aA.....aaHa.A.......a.aB...aa... Cas9_Wa;



...AaaHa.......Aa......aaaa..A........Baa........aa..BaH.. Cas9_Cr;



..................N........k..N.....N..............N...NL. Cpf1_Wa;



................L...............k......N.......M......LLk. Cpf1_Cr;





SPINK5
gatgggaaaacatatgacaacagatGTGCGTGCactgtgtgctgagaatgcgtgagta SEQ_DUP;



.........................11112222......................... DUP_NUM;



aaB........a......aC.a.aJa.A....a.a.A..aHaN..a.aHa.A...... Cas9_Wa;



.A.a...........A......A..A.......A..JA.aJ.....AJ.J.....A.. Cas9_Cr;



.N.M.........k......................M..................... Cpf1_Wa;



.........................N.................LN............. Cpf1_Cr;





SH3TC2
cactagactcacggtcaggcaggcaGGCCGGCCagcagggcacctgccttttccaaca SEQ_DUP;



.........................11112222......................... DUP_NUM;



.a......aA...aA..aA..aA..aA...A.JaaA.....A............aaa. Cas9_Wa;



A....A.a....A.aHa...a...A...A...Aa..Aa..A....A.aa..Aa...Ba Cas9_Cr;



............NL.....N...................................... Cpf1_Wa;



.................................N.......L................ Cpf1_Cr;





DDX41
cagacatacctggttttgatggggtCATCCATCatacgtaatgcccttagccatctcc SEQ_DUP;



.........................11112222......................... DUP_NUM;



.......aA....aC.aaaA......J......A....A......A............ Cas9_Wa;



A....A..JA...Aa...............a.CaaHCa...A......Aaa....aa. Cas9_Cr;



......................................k............L...... Cpf1_Wa;



............M.....N..............................N.....LN. Cpf1_Cr;





CDSN
accgctggagtcacccttcccagtgAGGCAGGCaggggtcgttaggggaggtgatacg SEQ_DUP;



.........................11112222......................... DUP_NUM;



..aa.A............a.a.aA..aA..aaaA..A...aaaa.aa.aC...a.a.a Cas9_Wa;



A.....Aa.a......a.aaaHBaaa.......A...A......a............. Cas9_Cr;



.......................................NLL............... Cpf1_Wa;



.........................L......M..................N...... Cpf1_Cr;





LAMA2
ggcataaagtcactgccaacaagatCAAACAAAcaccgcattgagctcacagtcgatg SEQ_DUP;



.........................11112222......................... DUP_NUM;



....A.....A.......aC.....J.......A....a.A......A..aC.aaaB. Cas9_Wa;



.A.....A.......a.a..Aa..A....Ca...A...A.aa.a......A.a.a... Cas9_Cr;



.......k.................................................. Cpf1_Wa;



.....k...k...........................LLN.......LLN.....k.. Cpf1_Cr;





SERAC1
tttgacttccaacgaggggaagagaAGATAGATagcgaatattaacagagtattcagc SEQ_DUP;



.........................11112222......................... DUP_NUM;



.........a.aaaaB.a.aB.aC..aC..aHaB........Ha.A......A..... Cas9_Wa;



...Ba.....A.Baa..A......................A.........A....... Cas9_Cr;



......N.....N.......N...k....NLL.......................... Cpf1_Wa;



...N..M...M....LN.....N...............k..................L Cpf1_Cr;





SERAC1
cgctgaggctggtgtcatactccacAGATAGATataattcggagagcaggacagtctt SEQ_DUP;



.........................11112222......................... DUP_NUM;



a.aA..aa.a............aC..aC........aa.a.A..aa...A......A. Cas9_Wa;



aa...a.a.....A......a.J.A.aa.a.............BaH.....A....A. Cas9_Cr;



...........N......L.........................L...........M. Cpf1_Wa;



......M...M.M.N....L......................N.........N...k. Cpf1_Cr;





SLC26A4
acacagccttctctgtctctcttggCAGTCAGTcggtcttggcagctgttgtaattgc SEQ_DUP;



.........................11112222......................... DUP_NUM;



.A........A........aA..A...A..aA....aA..A..A..A.....A..... Cas9_Wa;



......A.a..Aa.Ba.a...a.a.a....A...a...a...a....A..A....... Cas9_Cr;



............NLL................N............N............. Cpf1_Wa;



...............................N......N....Lk...L......... Cpf1_Cr;





CFTR
cacttcttggtactcctgtcctgaaAGATAGATattaatttcaagatagaaagaggac SEQ_DUP;



.........................11112222......................... DUP_NUM;



..J.aA.......A....aB..aC..aC............aC..aB..a.aa...A.. Cas9_Wa;



..Ba.a.a.Ba......A.aa...aa...................Ba........... Cas9_Cr;



.......N..NL.......k......N..N...........................N Cpf1_Wa;



.Lk...M...M....N.....N..M...k.........................L... Cpf1_Cr;





RP1
aaatgattggacagttttcatatagTGAATGAAgaaagggaaagtggggaaaacaagt SEQ_DUP;



.........................11112222......................... DUP_NUM;



aC..aa...a..........aHaB..aB.aB..aaaB..a.aaaaB......A..Ha. Cas9_Wa;



................a.....Ba.................................. Cas9_Cr;



M.............NL.............N.........kL...M............. Cpf1_Wa;



M....LN..LN..k...LLk......LLK....n........................ Cpf1_Cr;





GLDC
ataagcccaggaaatgggcaagatgGAACGAACtggagccccatggggccgcactgac SEQ_DUP;



.........................11112222......................... DUP_NUM;



A....aaB...aaA...aC.aaB..aB...aa.A......aaaa..A....a..aA.. Cas9_Wa;



..........Aaa..........A.........A...A.....Aaaa......Aa.a. Cas9_Cr;



.....L............N....M.................................. Cpf1_Wa;



...LLN..LN...L............................................ Cpf1_Cr;





GNE
ctgagatacgtacctagccacatgcGAATGAATgatgctcatgtagtctttgttcttg SEQ_DUP;



.........................11112222......................... DUP_NUM;



aCJ..A......A......aHaB.HaB..aC.A.....A..A.....A.....aA..a Cas9_Wa;



.....a.......A...Aa.J.Aa.a...A............A.a.......a..... Cas9_Cr;



.......N.................................................. Cpf1_Wa;



....LN..LN...................................N........M... Cpf1_Cr;





CYP17A1
gagtcgatcagaaagaccaccttggGGATGGATgccttccagggagggcagctgccca SEQ_DUP;



.........................11112222......................... DUP_NUM;



.aC...aB..a........aaaaCHaaC.A.......aaa.aaA..A..A........ Cas9_Wa;



.........a..Ca.......Aa.aa.............Aa.Baa........A..A. Cas9_Cr;



.....N.....NL....k..........................N............. Cpf1_Wa;



....L...L............L...................................L Cpf1_Cr;





ATM
actacacaaagagaatctagtgattACAGACAGtgtcccttgcaaaaggaagaaaata SEQ_DUP;



.........................11112222......................... DUP_NUM;



......aHaB....Ia.aC.....a...a.A......A.....aaB.aB.....aB.. Cas9_Wa;



IA.a..A..A.a........Ca..I......A...A.....aaa...A.......... Cas9_Cr;



.......k........N.............................N........... Cpf1_Wa;



......................k....LN..k......N.........LLN...N..k Cpf1_Cr;





FOXRED1
aagtttccctggataaacacagaggGAGTGAGTggctttggcgtcttatggtgaggct SEQ_DUP;



.........................11112222......................... DUP_NUM;



.....HaaCJ.......a.aaa.aHa.a.aA....aa.A......aa.a.aA...A.. Cas9_Wa;



....A.....Baaa........A.a...............A.....A..a........ Cas9_Cr;



...............NL..........kLL............................ Cpf1_Wa;



...L.............................................L........ Cpf1_Cr;





C12orf65
ggctttgggagaagctgacgttgttATCCATCCccaggaatagctgtcactccggtcc SEQ_DUP;



.........................11112222......................... DUP_NUM;



..aaa.aB.A..a..A..A.............aaB...A..A.......aA....aC. Cas9_Wa;



.a.aa..A...........A...A.......CaaHCaaaa........A...a.a.aa Cas9_Cr;



M....................L.....k...............N..N.M.L...L... Cpf1_Wa;



................LN..............................N..N...... Cpf1_Cr;





GJB2
tccacagtgttgggacaaggccaggCGTTCGTTgcacttcaccagccgctgcatggag SEQ_DUP;



.........................11112222......................... DUP_NUM;



..a.A..aaa....aA...aa.A...a..A..........A..A..A...aa.aB.A. Cas9_Wa;



..A...aa.a.......J..A....Aa...A..Ba....A.a.Ba.aa..Aa.a..A. Cas9_Cr;



L.......................L.......N.................NL..N... Cpf1_Wa;



.................................L...N................M... Cpf1_Cr;





BRCA2
ctgaaaatgaagataacaaatatacTGCTTGCTgccagtagaaattctcataacttag SEQ_DUP;



.........................11112222......................... DUP_NUM;



....aB.aC.....J.......A...A..A...A..aB..............HaB... Cas9_Wa;



.....A...............A.......A..a...A..Aa.........BaHa.... Cas9_Cr;



.........N..................................M......N...... Cpf1_Wa;



M...................k.......M.N......N..................N. Cpf1_Cr;





BRCA2
ttgtttctccggctgcacagaaggcATTTATTTcagccaccaaggagttgtggcacca SEQ_DUP;



.........................11112222......................... DUP_NUM;



......aa..A....aB.aa...........A.......aa.A..a.aA...J..... Cas9_Wa;



..A..J....Ba.aa..A..A.a......A.......Ba..Aa.aa............ Cas9_Cr;



.....N....L....k.......k...k...L..................k...kL.. Cpf1_Wa;



....................N...............k.....Lk.......M.k...k Cpf1_Cr;





EIF2AK4
tcctcagcagctcggtggagtggagCACTCACTtcgggcgagcgctcggccagtgccc SEQ_DUP;



.........................11112222......................... DUP_NUM;



..a..A...aa.aa.a.aa.A..........aaa.a.a.A...aA...a.A...A... Cas9_Wa;



.aaaHCaaHa..A..A.a............A.a.aHa.Ba...A...A.a.a..Aa.. Cas9_Cr;



.......................................................NL. Cpf1_Wa;



L......................................................... Cpf1_Cr;





HEXA
gaaatccttccagtcagggccatagGATAGATAtacggttcaggtaccagggggcaga SEQ_DUP;



.........................11112222......................... DUP_NUM;



........A...aaA....GaaC..aC.....aA..J.aA.....aaaaA..a.a.aB Cas9_Wa;



.........CaaHbaa...a....Aa..............A...Ba.....Aa.J... Cas9_Cr;



...........NLL....M...........NLL......................M.. Cpf1_Wa;



M....M...M.M............................N.......LLN....... Cpf1_Cr;





PEX12
acagaaaggccagtagacagggataAGGCAGGCaacacccccaacagctttcttcaga SEQ_DUP;



.........................11112222......................... DUP_NUM;



B..aa...a..a...aaaC...aA..aa..............a.........a.A.Ha Cas9_Wa;



A.aaaHa.......Aa......A..........A...A..A.aaaaa..A..A..Ba. Cas9_Cr;



.......................................................... Cpf1_Wa;



.M.N........N........N...................................N Cpf1_Cr;





MKS1
agacagtgcaagcggaaggtgacagTGCCTGCCtgtggtctctgtgcggagtccaaag SEQ_DUP;



.........................11112222......................... DUP_NUM;



.a.A...a.aaB.aa.a...a.A...A...a.aA.....a.a.aa.A......a.aA. Cas9_Wa;



.A..A...A....A..JA.........A....Aa.JAa......a.a....A..J..a Cas9_Cr;



.......................................................... Cpf1_Wa;



..........................L......k........................ Cpf1_Cr;





NPC1
tactcacggagctgcccatgtgggcAAGTAAGTgcctcttccgcgcgctccacgcggc SEQ_DUP;



.........................11112222......................... DUP_NUM;



...aa.A..A.....a.aaA...A...a.A........a.a.A......a.aA..A.. Cas9_Wa;



a......A.aha....A..Aaa.......A.........Aa.a.Baa.a.a.a.aa.a Cas9_Cr;



.......................................................... Cpf1_Wa;



....N..N................................................LN Cpf1_Cr;





PNPLA6
agcgttgtacgcggaggagcgcagcGCCAGCCAgccgcacgaagcagcgggcccggga SEQ_DUP;



.........................11112222......................... DUP_NUM;



..A...a.aa.aa.a.A..a.A...A...a..A...aB.A..a.aaA...aaa.a.aa Cas9_Wa;



.Ca....A......A.aJ......A.a..A.aa..Aa..Aa.a.a....A..A...Aa Cas9_Cr;



....L..N.......kL..........N.............................. Cpf1_Wa;



...................LN.............L.........N............. Cpf1_Cr;





LDLR
gcagccagctctgcgtgaacctggaGGGTGGGTggctacaagtgccagtgtgaggaag SEQ_DUP;



.........................11112222......................... DUP_NUM;



...A....a.a.aB....aaHaaaHaaa.aA......a.A...a.a.a.aaB.aA... Cas9_Wa;



A.aa..A..aa..A.a..A.....Aa..............A..A.....Aa.J..... Cas9_Cr;



.............L............................................ Cpf1_Wa;



.L................N..............LN............L.......... Cpf1_Cr;





FKFP
ggcccccgtgtcaccgtcctggtgcGGGAGGGAgttcgaggcatttgacaacgcggtg SEQ_DUP;



.........................11112222......................... DUP_NUM;



...a.A.....A....aa.a.aaa.aaa.A...a.aA.....a.....a.aa.A...a Cas9_Wa;



A..Aa..Aaaaa....a.aa..aa.....A..J.......Ba....A......A..a. Cas9_Cr;



.........................................................N Cpf1_Wa;



.....L...L..................N............................. Cpf1_Cr;





CHEK2
atttaccttccaagagtttttgacaTGATTGATgtattcatctcttaatgccttagga SEQ_DUP;



.........................11112222......................... DUP_NUM;



........Ha.A.....a.I..aC..aC.A...............A....HaaC.... Cas9_Wa;



..........Aa.Baa............A.............BahCa.a......Aa. Cas9_Cr;



........k.M.M............k....NLL.........k........N...... Cpf1_Wa;



.........................N..........M.k................... Cpf1_Cr;





NPHP4
aactcggcgacccccagcgtggcgtGGAGCGGAGCgtgtgctccgtggtgatggccaggc SEQ_DUP;



.........................1111122222......................... DUP_NUM;



.aa.a.......a.a.aa.a.aa.a.aa.a.a.a.A....a.aa.aC.aA...aA....A Cas9_Wa;



aH.....A.aH.A..Aaaaa..A....A......A....A.....AJaa..........A Cas9_Cr;



..N..N...................................................... Cpf1_Wa;



....L....L.................................................. Cpf1_Cr;





IDUA
caggcttcctgaactactacgatgcCTGCTCTGCTcggagggtctgcgcgccgccagccc SEQ_DUP;



.........................1111122222......................... DUP_NUM;



......aB........aC.A...A....A...aaHaaA...a.a.A..A...A....A.. Cas9_Wa;



a..Aaa...A.Baa....A..A..A....Aa..A.a..a.a.......a..A.a.aa.aa Cas9_Cr;



..............L.............NL.............................. Cpf1_Wa;



...............L....................................L....... Cpf1_Cr;





CCNO
aggtctgtagatctagctgcgccacGGGCTGGGCTgggccgggccgggcagggggctacc SEQ_DUP;



.........................1111122222......................... DUP_NUM;



..A..aC....A..a.A....aaA..aaA..aaA..aaA..aaA..aaaaA......... Cas9_Wa;



.a.......a......Ca...A..A.aa.a...A....A....Aa...Aa...A...... Cas9_Cr;



............................................................ Cpf1_Wa;



............................................................ Cpf1_Cr;





CCNO
gctgcgccacgggctgggccgggccGGGCAGGGCAgggggctaccaccccgcgccgcaga SEQ_DUP;



.........................1111122222......................... DUP_NUM;



.A....aaA..aaA..aaA..aaA..aaA..aaaaA..........a.A..A..a.aaaA Cas9_Wa;



.Ca...a..A.aa.a...A....Aa...Aa...A....A......A..Aa.aaaa.a.aa Cas9_Cr;



............................................................ Cpf1_Wa;



............................................................ Cpf1_Cr;





MYBPC3
ctcatgcccttgagcctctttagcaTGCCGTGCCGcgcaggtcagtgacgccgtactgga SEQ_DUP;



.........................1111122222......................... DUP_NUM;



.A.....a.A........A...A..a.A..a.A..aA...a.a..a..A....aaB.aa. Cas9_Wa;



a.a.aa.a...Aaa.....Aa.a.....A...Aa...Aa.a.a....a.....A.aa... Cas9_Cr;



........N..N....................N.........k................. Cpf1_Wa;



....................................LLN..................... Cpf1_Cr;





CHRNE
agatgagggtgggggtagcttaccaGTGAGGTGAGatgagattcgtcagggtgaccttga SEQ_DUP;



.........................1111122222......................... DUP_NUM;



aHaaa.aaaaA..A.......a.a.aa.a.aCIa.aC...A..Haaa.a.....a.aA.. Cas9_Wa;



.A.....................A...Aa..................BaH.a.......A Cas9_Cr;



...............k....N.....................N................. Cpf1_Wa;



............................................................ Cpf1_Cr;





BRCA1
attgtgctcactgtacttggaatgtTCTCATCTCAtttcccatttctctttcaggtgaca SEQ_DUP;



.........................1111122222......................... DUP_NUM;



.A...J..A.....aaB..A.............................aa.a....HaB Cas9_Wa;



..A........A.aJa....A..J......Ba.a.Ca.a...Baaa...Ba.a..Ba... Cas9_Cr;



.k.........N..N.........N..............N.......N...........k Cpf1_Wa;



.........................................LN.........k....... Cpf1_Cr;





SGCA
tacaatcgggacagctttgataccaCTCGGCTCGGcagaggctggtgctggagattgggg SEQ_DUP;



.........................1111122222......................... DUP_NUM;



...aaa...A..J.aC........aA...aA..a.aA..aa.A..aa.aC..aaaa.... Cas9_Wa;



a..Aa..A..Ca..I.A..A.......Aa.a.aH.A.a..A.....A.....A..J.... Cas9_Cr;



kLL....L...............................k.................... Cpf1_Wa;



............................L........L......N............... Cpf1_Cr;





PKNP
aggaagcagcggcaggggacgcccgCGGCTCGGCTcgggcacactggacgtacctgtggg SEQ_DUP;



.........................1111122222......................... DUP_NUM;



.A..a.aA..aaaa..A...a.aA...aA..JaaA......aa..A.....a.aaaaaB. Cas9_Wa;



...........A..A..a......A.aaa.a..A.a..A.a...A.a.a....A...Aa. Cas9_Cr;



......L..................................................... Cpf1_Wa;



........................L..............LLN.......L.......... Cpf1_Cr;





DNAAF3
gtcccagtcgctgacaccgcgccggGCGTCGCGTCgtagcgggagcccaggtagtggcgc SEQ_DUP;



.........................1111122222......................... DUP_NUM;



..A..AJ.a.....a.A..aaa.A..a.A..A..a.aaa.A....aA..a.aa.A..aa. Cas9_Wa;



A.a....aaa...a.a...A.aa.a.aa...A..a.a..a....A.....Aaa....... Cas9_Cr;



............NL...........L.................................. Cpf1_Wa;



....................L....................................... Cpf1_Cr;





MUTYH
cccttcctcccctggagtcacctgcATCCATATCCATccggtatagtagttgatcacagtgg SEQ_DUP;



.........................111111222222......................... DUP_NUM;



.........aa.A......A...............aA....A..A..aC.....a.aA.... Cas9_Wa;



AaaHBaaa.Baa.aaaa......a.aa..A.CaaH..CaaHCaaH......J......Ca.a Cas9_Cr;



.....................NLL..NL...L..................L...M.L...L. Cpf1_Wa;



........M............M....................N................... Cpf1_Cr;





SLC22A5
aggatgaccatatcagtgggctattTTGGGCTTGGGCtttcgcttgatactcctaacttgca SEQ_DUP;



.........................111111222222......................... DUP_NUM;



.a.........a.aaA.......aaA...aaA.....A.J.aC............A...aaa Cas9_Wa;



...Ba.......Aa...Ca......A.........A.....A..Ba.a......A.aa...A Cas9_Cr;



....k..N............kL............M.............k.....N......k Cpf1_Wa;



.........................M.......N..........L...........LN.... Cpf1_Cr;





FOXC1
agcagcagctcgtcgtccctgagtcACGGCGACGGCGgcggcggcggcggcggcgggggagg SEQ_DUP;



.........................111111222222......................... DUP_NUM;



A..A...A..A....Ha.A....aa.a..aa.aa.aa.aa.aa.aa.aa.aaaaa.aA...a Cas9_Wa;



.a.aa..A..A..A.a..a..aaa.....a.a..A..A..A..A..A..A..A..A..A... Cas9_Cr;



..............L........................L...................... Cpf1_Wa;



....................................L......................... Cpf1_Cr;





RMRP
ttcagcacgaaccacgtcctcagctTCACAGATCACAGAgtagtattttatagccctaaagaaa SEQ_DUP;



.........................11111112222222......................... DUP_NUM;



A...aB.....A......A.......aC....Ha.A..A.........A.......aB....a. Cas9_Wa;



...Aa.Ba..A.a...Aa.a..aa.a..A.Ba.a...Ca.a............J....Aaa... Cas9_Cr;



.......................NL......................NL............... Cpf1_Wa;



............................M.......k...k....................... Cpf1_Cr;





CHRNR
ggtcccctgccggtgcctctgccccTCAAACATCAAACAcgagctcgctccgtggctttttcag SEQ_DUP;



.........................11111112222222......................... DUP_NUM;



....A..aa.A.....A............J......a.A...A....a.aA........A.... Cas9_Wa;



H.aa....aaaa..Aa....Aa.a..Aaaa.a...A.Ca...A.a...A.a.a.aa....A... Cas9_Cr;



....................L.....L..................................... Cpf1_Wa;



......k......k..............................................L... Cpf1_Cr;





RBCK1
ccaggtccccgcctcataccagcccGACGAGGGACGAGGaggagcgagcgcgcctggcgggcga SEQ_DUP;



.........................11111112222222......................... DUP_NUM;



A.....a.J........A...a..a.aaa..a.aa.aa.a.a.a.a.A...aa.aaa.a.aa.a Cas9_Wa;



.Aa..Aa....aaaa.aa.a...Aa..Aaa..A......A.........A...A.a.aa...a. Cas9_Cr;



.............................L.................................. Cpf1_Wa;



..........L..................................................... Cpf1_Cr;





ABHD12
ctgtacttgccactgaaaatggatgGCTCTTAGCTCTTAgcttcttcgcggatattagtgaatg SEQ_DUP;



.........................11111112222222......................... DUP_NUM;



....A.....aB...HaaC.aA......A......A.......aHaaC.....aHaB..aa.aC Cas9_Wa;



....Ca..I.A..JHa.a.............A.a....A.a....a.ba.Ba.a.......... Cas9_Cr;



......n......k...............N......................N......N.... Cpf1_Wa;



............................L.M.......LN..L........N..M.N....... Cpf1_Cr;





MSH6
tggctttaatgcagcaaggcttgctAATCTCCCAATCTCCCagaggaagttattcaaaagggacat SEQ_DUP;



.........................1111111122222222......................... DUP_NUM;



......A..A...aA...A...................a.aaB.A..........aaa.....aB. Cas9_Wa;



..A.....A.......A..A....A...A...Ca.aaa..Ca.aaa............BaH..... Cas9_Cr;



........N.............M.....k..............N.........L.......L.... Cpf1_Wa;



....N.......N...........LN........k....L...M...k.....N....N....... Cpf1_Cr;





LAMA2
ttgaagaagaggaagaagatacagaACGTGTTCACGTGTTCtccagcttatgattatcttagaggt SEQ_DUP;



.........................1111111122222222......................... DUP_NUM;



.aB.a.aaB.ab.aC....aB..a.A.....a.A.......A..I..aC........a.aA.ha.A Cas9_Wa;



...Aa.....................A....A....BaJa....BaJaa..A.........Ca... Cas9_Cr;



.....k......M....M.....N.............................NL......N...L Cpf1_Wa;



...N.............................................................. Cpf1_Cr;





TCTN2
agacgtcaatcctccttttgatcagCTCtGCTCCTCTGCTCtgctgggacgacgacacgtggtgtc SEQ_DUP;



.........................1111111122222222......................... DUP_NUM;



A..............aC...A....A.......A....a..aaa..aJ.a....a.aa.A..I..a Cas9_Wa;



J.......A..a..CaaHaa......Ca..A.a..A.aa.a..A.a..A.....A..A..A.a... Cas9_Cr;



...NL...........k.......................k......................... Cpf1_Wa;



.........................L........................................ Cpf1_Cr;





BRCA2
gaatttgacaggataatagaaaatcAAGAAAAAAAGAAAAAtccttaaaggcttcaaaaagcactc SEQ_DUP;



.........................1111111122222222......................... DUP_NUM;



..a..HaaC.....aB.......aB......aB............aA......J..A.......aC Cas9_Wa;



.............A..............Ca..I.............CaaHI.....A.Ba...... Cas9_Cr;



..............N..N.........k...................................... Cpf1_Wa;



....N..k.......k.........k........k..................k............ Cpf1_Cr;





TCAP
tcatggctacctcagagctgagctgCGAGGTGTCGAGGTGTcggaggagaactgtgagcgccggga SEQ_DUP;



.........................1111111122222222......................... DUP_NUM;



aA........a.A..a.A..a.a.aa.A..a.aa.A..aa.aa.aB...a.a.a.A..aaa.aA.. Cas9_Wa;



.....Ca....A..Aa.a....A....A..A.......a.J.....a.J.......A......a.a Cas9_Cr;



.................................................................. Cpf1_Wa;



.....................L......N.............L................N..LLN. Cpf1_Cr;





LDLR
gatggtggccccgactgcaaggacaAATCTGACAATCTGACgaggaaaactgcggtatgggcgggg SEQ_DUP;



.........................1111111122222222......................... DUP_NUM;



a.aA....a...A...aa........a.......a..a.aaB.....a.aA...aaa.aaaA..Ha Cas9_Wa;



.a...........Aaaa..A..A.....A...Ca..IA..Ca..IA........A..A.......J Cas9_Cr;



....L....L........................................................ Cpf1_Wa;



...k........N..........Lk......................................... Cpf1_Cr;





ITPA
agcctatgcgctctgcacgtttgcaCTCAGCACCTCAGCACcggggacccaagccagcccgtgcgc SEQ_DUP;



.........................1111111122222222......................... DUP_NUM;



...a.A.J..A...AJ..A...J..A....J..A....aaaa......A...A...a.a.A...A. Cas9_Wa;



....a..Aa....A.a.a..A.a.....A.a.aH.A.aa.a..A.aa.....AaaH..Aa..Aaa. Cas9_Cr;



........NL..................M..............k...................... Cpf1_Wa;



.......................L.....N............................L....... Cpf1_Cr;





PEX1
tccagcaggacaacagatggctgcaTCCACACTGTCCACACTGcctctgagaaagccacctctagggt SEQ_DUP;



.........................111111111222222222......................... DUP_NUM;



A..aa......aC.aA..A..J.......AJ.......A.....a.aB..A........HaaA..... Cas9_Wa;



...a.CaaH.A....A..A......A..A.CaaHa.a...aa.a.a..Aa.a........Aa.aa.a. Cas9_Cr;



..L.....................L........................L........L......... Cpf1_Wa;



..............................k...............................N..... Cpf1_Cr;





IGFALS
gcctgttgcccgccagcaccagctcGCGCAGGCTGCGCAGGCTgcccaggccgcggaacgccgcatcg SEQ_DUP;



.........................111111111222222222......................... DUP_NUM;



A..A...AJ..A.....A...a.A..aA..a.A..aA..A....aA..a.aaB..A..A....aaaa. Cas9_Wa;



..Aa..Aa.....Aaa.aa..A.aa..A.a.a.a...A..A.a...A..Aaa...Aa.a....A.aa. Cas9_Cr;



............................N....................................... Cpf1_Wa;



.................................LLN............L................... Cpf1_Cr;





SEPN1
gcagccgccgccagccgcagccatgGGCCGGGCCCGGCCGGGCCCggccgggccaacgcgggccgcccag SEQ_DUP;



.........................11111111112222222222......................... DUP_NUM;



..A..A...A..A..A....aaA..aaA...aA..aaA...aA..aaA.....a.aaA..A....A.... Cas9_Wa;



a.aa..A..Aa.aa.aa..Aa.a..Aa.....Aa...Aaa..Aa...Aaa..Aa...Aa..A.a...Aa. Cas9_Cr;



....kL...NLL.......................................................... Cpf1_Wa;



.................................N.................................... Cpf1_Cr;





CYP1B1
agcccaagacagaggtgttggcagtGGTGGCATGAGGTGGCATGAggaatagtgacaggcacaaagctgg SEQ_DUP;



.........................11111111112222222222......................... DUP_NUM;



...a...a.aa.A..aA..a.aa.aA...a.aa.aA...a.aaB...a.a.J.aA......A..aa.aB. Cas9_Wa;



.......Aaa....A..........JA........A.........A..............A...a.a... Cas9_Cr;



..........N.............................N............................. Cpf1_Wa;



.........................LN..............k.....L...N.............M.k.. Cpf1_Cr;





CCYP27A1
gtgcaggcgcgcgagcacaacccatGGCTGCGCTGGGCTGCGCTGggctgcgcgaggctgaggtgggcgc SEQ_DUP;



.........................11111111112222222222......................... DUP_NUM;



.aa.a.aJa.A..........aA..a.A..aaA..a.A..aaA..a.a.a.aA..a.aa.aaa.A..a.a Cas9_Wa;



aH......A..JA.a.a...A.a..AaaH...A..A.a....A..A.a....A..A.a....A....... Cas9_Cr;



...................................................................... Cpf1_Wa;



...................................................................... Cpf1_Cr;





RMRP
ttcagcacgaaccacgtcctcagctTCACAGAGTATCACAGAGTAgtattttatagccctaaagaaattg SEQ_DUP;



.........................11111111112222222222......................... DUP_NUM;



A...aB.....A......A......Ha.A......Ha.A..a.........A.......aB....a.A.. Cas9_Wa;



...Aa.Ba..A.a...Aa.a..aa.a..A.Ba.a......Ca.a............J....Aaa...... Cas9_Cr;



.......................NL......................NL........M............ Cpf1_Wa;



...............................M.......k...k.........................k Cpf1_Cr;





SPG11
catggaggcatttgcttgtcagcacTTCCAGGTTATTCCAGGTTAgttaccacttcattactggagggca SEQ_DUP;



.........................11111111112222222222......................... DUP_NUM;



a.aA.....A...AJ..A........aA........aA...A................aaJaaA....A. Cas9_Wa;



a.Baaa.......A.....A....a..A.a.Baa.......Baa..........Aa.a.Ba....a.... Cas9_Cr;



................N..NLL............k...N.........NLL....N..NLL....N...N Cpf1_Wa;



.........................................L..............k............. Cpf1_Cr;





SPG11
gtaggagagcatggatctctgggtgCAGATCCTCCCAGATCCTCCatactagcttcccctgaggccagtg SEQ_DUP;



.........................11111111112222222222......................... DUP_NUM;



a.a.A..HaaC....Haaa.A..aC........aC...J........A........a.aA...a.A.... Cas9_Wa;



.a............A.....Ca.a......A..JCaaHaaa...CaaHaa...A...A.Baaaa.....A Cas9_Cr;



NL...................k..................................L.........L... Cpf1_Wa;



........................M............................................. Cpf1_Cr;





BRCA1
taatgagctggcatgagtatttgtgCCACATGGCTCCACATGGCTccacatgcaagtttgaaacagaact SEQ_DUP;



.........................11111111112222222222......................... DUP_NUM;



a.A..aA..Ha.A.....a.A......aA........aa........A...a...aB....aB......J Cas9_Wa;



..A.........A...A..........J..Aa.a....A.aa.a....A.aa.a...A..........A. Cas9_Cr;



............N..............................k..............L.........L. Cpf1_Wa;



................................N.....Lk.....N.........M.........L.... Cpf1_Cr;





NCF4
gttttcgtcatcgaggtgaagacaaAAGGAGGATCAAGGAGGATCcaagtacctcatctaccgccgctac SEQ_DUP;



.........................11111111112222222222......................... DUP_NUM;



..A.....a.aa.aB.a......aaHaaC....aaHaaC..J..A.............A..A.....A.. Cas9_Wa;



a........Ba..a.Ca..........A..........Ca........CaaH....Aa.a.Ca..Aa.aa Cas9_Cr;



...................N......kL.......................................L.. Cpf1_Wa;



..k...........N..........N............................................ Cpf1_Cr;





SLC22A5
gaggtgccccacagctgccgccgctACCGGCTCGCCACCGGCTCGCCaccatcgccaacttctcggcgcttg SEQ_DUP;



.........................1111111111122222222222......................... DUP_NUM;



.A.......A..A..A..A.....aA...A.....aA...A........A..........aa.A...aaa.. Cas9_Wa;



.Aa.a......Aaaa.a..A..aa.aa.a..Aa..A.a.aa.aa..a.a.aa.aa.Ca.aa..A.Ba.a..a Cas9_Cr;



........................................................................ Cpf1_Wa;



...................................N...................L................ Cpf1_Cr;





KCNQ1
gtggtgttcttcgggacggagtacgTGGTCCGCCTCTGGTCCGCCTCtggtccgccggctgccgcagcaagt SEQ_DUP;



.........................1111111111122222222222......................... DUP_NUM;



.A......aaa..aa.A...a.aA...A.....aA...a.....aa...a..aa..A..A..AJ..A...a. Cas9_Wa;



..A..J......BaJBa....A......A..J..aa.aa.a....aa.aa.a....aa.aa..A..Aa.a.. Cas9_Cr;



...L.........................N..NL..................L..........L........ Cpf1_Wa;



...............................................N........................ Cpf1_Cr;





MYO7A
gctgtgaacccctaccagctgctctCCATCTACTCGCCATCTACTCGccagagcacatccgccagtatacca SEQ_DUP;



.........................1111111111122222222222......................... DUP_NUM;



.aB..........A..a..............A..........A..Ja.a.......a..JA........... Cas9_Wa;



H.....A......Aaaa..Aa..A..A.a.aa.Ca..A.aHaa.Ca..A.aHaa....A.a.CaaHaa.... Cas9_Cr;



...M........L...................................L....................... Cpf1_Wa;



.............................................M....N..N..N.......L....... Cpf1_Cr;





CEP57
ccacaagccctagccatgccgtggtAGCCAATGTTCAGCCAATGTTCagcttgtcttgcatctaatgaagca SEQ_DUP;



.........................1111111111122222222222......................... DUP_NUM;



..A.....A....A..a.aA..A.....A....A.....A....A...A....A........aB.a...... Cas9_Wa;



.....aa.a...Aaa...Aa...Aa.......Aa.....Ba..Aa.....Ba..A....a...A.Ca..... Cas9_Cr;



kL........k..NL...k....L................................NL.........NL... Cpf1_Wa;



........N..........N......................N..LN...N.......k...........N. Cpf1_Cr;





ACADM
gaaatggcaatgaaagttgaactagCTAGAATGAGTTACTAGAATGAGTTAccagagagcagcttgggaggttgat SEQ_DUP;



.........................11111111111112222222222222......................... DUP_NUM;



.aA....aB..A..aB....A..HaB.Ha.A.....HaB.Ha.A......a.a.A..A...aaa.aa..aC....a Cas9_Wa;



...A........A.............A...A............A............Aa......A..A........ Cas9_Cr;



.......M....k.M........................N..................N............N.... Cpf1_Wa;



........N............N.......................L...................Lk......... Cpf1_Cr;





GAMT
gaggggcaccttgtgtgtctgccgtGGGGCCCAGTCCCGGGGCCCAGTCCCggagccgctggaagacgccgtcatt SEQ_DUP;



.........................11111111111112222222222222......................... DUP_NUM;



aA......a.a.A...A..a.aaaA....A....aaaA....A....aa.A..A..aaB.a..A..A..J..A... Cas9_Wa;



...A.......A.aa........a.JAa......Aaa...aaa....Aaa...aaa....Aa.a.......A.aa. Cas9_Cr;



.................................N........................L............L.... Cpf1_Wa;



..............................L........LLN...........................N...... Cpf1_Cr;





CHRNE
ccacctcttcggcattgtacgtctgAGAGCTGCGGAGCCAGAGCTGCGGAGCCagggccgggagcccaccccagaagc SEQ_DUP;



.........................1111111111111122222222222222......................... DUP_NUM;



......aA.J..A...A...a.a.A..a.aa.A...a.A..a.aa.A...aaA..aaa.A.........aB.A....a Cas9_Wa;



...A..aa.aa.a.Ba..A.....A..a......A..A....Aa....A..A....Aa....Aa.....Aaa.aaaa. Cas9_Cr;



.N.....................L......NL.....N........................................ Cpf1_Wa;



............L.............L............L.............N........................ Cpf1_Cr;





RMPR
gccttcagcacgaaccacgtcctcaGCTTCACAGAGTAGTGCTTCACAGAGTAGTattttatagccctaaagaaattgtg SEQ_DUP;



.........................111111111111111222222222222222......................... DUP_NUM;



J..A...aB.....A......A......Ha.A..a.A......Ha.A..A.........A.......aB....a.A...I Cas9_Wa;



..A...Aa.Ba..A.a...Aa.a..aa.a..A.Ba.a.........A.Ba.a............J....Aaa........ Cas9_Cr;



..........................NL......................NL.............NL............. Cpf1_Wa;



.......................................M.......k...k.........................k.. Cpf1_Cr;





ABCC8
acagcggtgtgaccaagatatggaaGAGGGAGAGGGAGGCGAGGGAGAGGGAGGCaaaggccacggagggcgagaagtcg SEQ_DUP;



.........................111111111111111222222222222222......................... DUP_NUM;



.aa.a.a.....aC...aaB.a.aaa.a.aaa.aa.a.aaa.a.aaa.aA....aA....aa.aaa.a.aB.A..aA... Cas9_Wa;



A.....A..A.......aa.........................A..............A.....Aa.a......A.... Cas9_Cr;



..........................................M..................................... Cpf1_Wa;



LLN....L.....L........L.....L.....k........L.........N.............LN..N........ Cpf1_Cr;





MMAB
tctctccagccctcttaccgtctctCGGCCCGGCGGCACACGGCCCGGCGGCACAcggcccggcagaaatgcagcgccga SEQ_DUP;



.........................111111111111111222222222222222......................... DUP_NUM;



....A..........A......aA...aa.aA.....aA...aa.aA.....aA...aA..aB...A..a.A..a.A..a Cas9_Wa;



a.aaa.a.a.aa..Aaa.a...Aa..a.a.a..Aaa..A..A.a.a..Aaa..A..A.a.a..Aaa..A.......A..A Cas9_Cr;



L.....L..N..........L.......L........N.......................................... Cpf1_Wa;



.............................................k.................................L Cpf1_Cr;





WFS1
actggctggtcctcgccgcgaagcaGGGCCGTCGCGAGGCTGGGCCGTCGCGAGGCTgtgaagctgcttcgccggtgcttgg SEQ_DUP;



.........................11111111111111112222222222222222......................... DUP_NUM;



A..aA.....A..a.aB.A..aaA..A..a.a.aA..aaA..A..a.a.aA..a.aB.A..A....A..aa.A...aa.aa. Cas9_Wa;



......A...A....aa.a.aa.a....A....Aa..a.a....A....Aa..a.a....A.......A..A.Ba.aa.... Cas9_Cr;



.................................................................................. Cpf1_Wa;



......................................LN......................L.....N............. Cpf1_Cr;





CRB2
cgctgggcggcctgcccctgcccttGGCGCGGCCCCGGCCCGGCGCGGCCCCGGCCCggcgcggcccctggcgcccgagagc SEQ_DUP;



.........................11111111111111112222222222222222......................... DUP_NUM;



aaa.aA...A.....A.....aa.a.aA....aA...aa.a.aA....aA...aa.a.aA.....aa.A...aJa.A..... Cas9_Wa;



a....A.a....A..Aa..Aaaa..Aaa....A.a..Aaaa..Aaa..A.a..Aaaa..Aaa..A.a..Aaaa...A.aaa. Cas9_Cr;



..........N...................................N................................... Cpf1_Wa;



...............................................................................L.. Cpf1_Cr;





HPS1
gtcctgcaggtgctggggcaggtgtGGGCCTCCCCTGCTGGGGGCCTCCCCTGCTGGgggctgtggtcagaaagttcagccg SEQ_DUP;



.........................11111111111111112222222222222222......................... DUP_NUM;



.A..aa.A..aaaA..aa.a.aaA........A..aaaaA........A..aaaaA..a.aA...aB..A....A..aA..a Cas9_Wa;



.a.....aa..A.....A..J..A........JAa.aaaa..A......Aa.aaaa..A......A......a.......Ba Cas9_Cr;



....................N.................................L...............L........... Cpf1_Wa;



.................................................k................................ Cpf1_Cr;





DNAAF2
ggtgaccccggagcccgcagccccaGCCACGCAGGTATCGTGCCACGCAGGTATCGTggcctccgtcctccgcgcgactcct SEQ_DUP;



.........................11111111111111112222222222222222......................... DUP_NUM;



.....aa.A...A..A.....A....A..aA....a.A....A..aA....a.aA.....A......a.a.a.......aHa Cas9_Wa;



..........Aaaa....Aaa.a..Aaaa..Aa.a.a.....Ca.J.Aa.a.a.....Ca.J..Aa.aa..aa.aa.a.a.. Cas9_Cr;



.......L...................................................M...............M...... Cpf1_Wa;



.................................................................................. Cpf1_Cr;





RMRP
cctaggatacaggccttcagcacgaACCACGTCCTCAGCTTCACCACGTCCTCAGCTTCacagagtagtattttatagccctaa SEQ_DUP;



.........................1111111111111111122222222222222222......................... DUP_NUM;



aaC....aA...J..A...aB.....A......A.........A......A......Ha.A..A.........A.......aB. Cas9_Wa;



...J.aa.......A...Aa.Ba..A.a...Aa.a..aa.a..A.Ba.aa.a..aa.a..A.Ba.a............J....A Cas9_Cr;



......................................NL......................NL...............NL... Cpf1_Wa;



..LN.................................................M.......k...k.................. Cpf1_Cr;





RMRP
gatacaggccttcagcacgaaccacGTCCTCAGCTTCACAGAGTCCTCAGCTTCACAGAgtagtattttatagccctaaagaaa SEQ_DUP;



.........................1111111111111111122222222222222222......................... DUP_NUM;



..aA...J..A...aB.....A......A......Ga.A......A......Ga.A..A.........A.......aB....a. Cas9_Wa;



aa.......A...Aa.Ba..A.a...Aa.a..aa.a..A.Ba.a.....aa.a..A.Ba.a............J....Aaa... Cas9_Cr;



.................................NL......................NL...............NL........ Cpf1_Wa;



................................................M.......k...k....................... Cpf1_Cr;





PALB2
caagacagactgagtctttcaaatgAGCAAGTTGGGGTGTGCAGCAAGTTGGGGTGTGCagcaagttcgtccagcaacttctgt SEQ_DUP;



.........................1111111111111111122222222222222222......................... DUP_NUM;



...a..Ha.A..........a.A...A..aaaa.a.A..A...A..aaaa.a.A..A...A...A....A........A..aC. Cas9_Wa;



.a...A....A...A.....a..Ba.......A.............AJ.a.............AJ.a....Ba..aa..A..A. Cas9_Cr;



......N...k....M........................kL............N................N............ Cpf1_Wa;



.......N................N................N............N....................M........ Cpf1_Cr;





PNKP
cgcggctcgcggcgtctgggtttgtGTTGTCGATGGCGACCCGTTGTCGATGGCGACCCgtttcccttgcttcagggctgtctc SEQ_DUP;



.........................1111111111111111122222222222222222......................... DUP_NUM;



A...a.aa.A..HaaA...a.A..A..aC.aa.a....A..A..aC.aa.a....A........A.....aaA..A.J...... Cas9_Wa;



Aa...A.a..A.a.a..A..a.............Ja.....A..AaaH....a.....A..AaaH..Baaa...A.Ba....A. Cas9_Cr;



............................................k....N................N................. Cpf1_Wa;



.................................................................................... Cpf1_Cr;





F12
atgaagcctaggggacaccggggtcGGAGGCGCCGCCTGGGTTGGAGGCGCCGCCTGGGTTggggtctggcactgtgccaggtcgc SEQ_DUP;



.........................111111111111111111222222222222222222......................... DUP_NUM;



.A....aaaa.....aaaA..aa.aa.A..A..HaaA..aa.aa.A..A..HaaA..aaaA.J.aA....a.A...aA..a..A.. Cas9_Wa;



....A......Aa.......A.aa.....a.....A.aa.aa...........A.aa.aa...........a...A.a....Aa.J Cas9_Cr;



................................................................N.................N... Cpf1_Wa;



....L.................L............................................................... Cpf1_Cr;





YARS2
gagcttctttaaacaactcttttaaCTCCTGATCAGACATGACCTCCTGATCAGACATGACctccagtgcatctatgctactgtga SEQ_DUP;



.........................111111111111111111222222222222222222......................... DUP_NUM;



..........................aC...a....a.......aC...a....a.......a.A.......A.....a.aC.... Cas9_Wa;



........A.Ba......A..A.aH.....A.aa...Ca...A....Aa.aa...Ca...A....Aa.aa....A.Ca....A..A Cas9_Cr;



............NL.............N...k............k......................................... Cpf1_Wa;



..N.............................................................M.k..................L Cpf1_Cr;





LDLR
cagctggcgctgtgatggtggccccGACTGCAAGGACAAATCTGACTGCAAGGACAAATCTgacgaggaaaactgcggtatgggcg SEQ_DUP;



.........................111111111111111111222222222222222222......................... DUP_NUM;



.aa.A..a.aC.aa.aA....a...A...aa........a...A...aa........a..a.aaB.....a.aA...aaa.aaaA. Cas9_Wa;



aHa.aa..A...A.a...........Aaaa..A..A.....A...Ca..IA..A.....A...Ca..IA........A..A..... Cas9_Cr;



.................L....L............................................................... Cpf1_Wa;



..........N.....k...........N.....k...........Lk...................................... Cpf1_Cr;





KTTN
tcgggagatgggaccgtcctgcaggACCGACCACATCTGCAGAACCGACCACATCTGCAGAacctctgcgtggagagcgaggattc SEQ_DUP;



.........................111111111111111111222222222222222222......................... DUP_NUM;



a.aC.aaa...A....A..aa...a.........A..aB...a.........A..aB......a.a.aa.a.a.aHaaC....a.A Cas9_Wa;



.Ca.aIaH..........Aa..aa..A....Aa..Aa.a.Ca..A....Aa..Aa.a.Ca..A....Aa.a..A........A... Cas9_Cr;



...................................................................................... Cpf1_Wa;



.....................N.................N..........L......................N............ Cpf1_Cr;





MSH6
ttgctaatctcccagaggaagttatTCAAAAGGGACATAGAAAATCAAAAGGGACATAGAAAAgcaagagaatttgagaagatgaatc SEQ_DUP;



.........................11111111111111111112222222222222222222......................... DUP_NUM;



..........a.aaB.A..........aaa.....aB.........aaa.....aB...A...aHaB....a.aB.aCHaB....A.. Cas9_Wa;



....A...A...Ca.aaa............BaH.......A........Ca..I.....A.........A.................. Cas9_Cr;



..M.....k..............N.........L..........N..NL....................................... Cpf1_Wa;



......k....L...M...k.....k....L...M...k.....N....N.......N....LN........................ Cpf1_Cr;





BARD1
cttctgcgtggaccttcaggaatttCATACTTTTCTTCCTGTTCACATACTTTTCTTCCTGTTCAcatacttttcttcgtagacatgctt SEQ_DUP;



.........................1111111111111111111122222222222222222222......................... DUP_NUM;



.a.a.aa.......aaB..J................A..J................A..J..............A..a....A....... Cas9_Wa;



.Aa..A.Ba..A.....Aa.Ba.......Ba...A...Ba.Baa...Ba.a...A...Ba.Baa...Ba.a...A...Ba.Ba.....A. Cas9_Cr;



.......N......N.........N............NL.......kL.......k..NL....NL.........k..NL....NL.... Cpf1_Wa;



.....M...................M...................M..................................k.......N. Cpf1_Cr;





MRE11A
ctgcacctacctttgatctgtctttGAAGTGGTAGGAAAAATGTCGAAGTGGTAGGAAAAATGTCttcttccacatctgattcatctacc SEQ_DUP;



.........................1111111111111111111122222222222222222222......................... DUP_NUM;



..........aC...A.....aB.a.aA..aaB.....A..aB.a.aA..aaB.....A............I..aC.............. Cas9_Wa;



..Ca.aI.A.aa..Aa.....Ca...a......................a...................a.Ba.Baa.a.Ca....BaHC Cas9_Cr;



.....k....k........................k..........k.........................................N. Cpf1_Wa;



....LN........Lk........LN........Lk...................................N..........N..Lk... Cpf1_Cr;





PYGL
ctccacgcccacgatgccgcggatgCTGATCTGCCGCCGCTTCTCCTGATCTGCCGCCGCTTCTCctggtccgtcaggggcttcgccatg SEQ_DUP;



.........................1111111111111111111122222222222222222222......................... DUP_NUM;



..A.....aC.A..aHaaC.A..aC...A..A..A........aC...A..A..A........aA...A...aaaA....A....aA..a Cas9_Wa;



.a..Ba.aa.a.aaa.a....Aa.a.....A...Ca..Aa.aa.a.Ba.aa...Ca..Aa.aa.a.Ba.aa....aa..a.....A.Ba. Cas9_Cr;



...N..NL.............N...L.....................................N...................N...... Cpf1_Wa;



.......................................................................................... Cpf1_Cr;





SLC34A1
acccggtggccgggctggtggtgggGATCCTGGTGACCGTGCTGGTGATCCTGGTGACCGTGCTGGTgcagagctccagcacctccacatcc SEQ_DUP;



.........................111111111111111111111222222222222222222222......................... DUP_NUM;



aa.aA..aaA..aa.aa.aaaaC....aa.a...a.A..aa.aC.....aa.a...a.A..aa.A..a.A..J..A................ Cas9_Wa;



..aa..AaaH....Aa...A............CaaH.....Aa...A..J...CaaH.....Aa...A..J..A..J.A.aa..A.aa.aa. Cas9_Cr;



....................L....................................................................... Cpf1_Wa;



...L........................................................................................ Cpf1_Cr;





SLC25A13
actccgctgtaagtggtttggccagCCCGGGCAGCCACCTGTAATCTCCCCGGGCAGCCACCTGTAATCTCgtcttgataacatcagcaggggtca SEQ_DUP;



.........................1111111111111111111111122222222222222222222222......................... DUP_NUM;



.A..A...a.aA...aA...A...aaA..A......A..........aaA..A......A.......A....aC........A..aaaA....... Cas9_Wa;



a..Ca.a.aa.a..............Aa..Aaa...A..Aa.aa.....Ca.aaaa...A..Aa.aa.....Ca.aI.a.......A.Ca..A... Cas9_Cr;



..M...k.............M.....L.............k.............................L......................... Cpf1_Wa;



.....................N......................N...........M.N..................k..............M... Cpf1_Cr;





PKP2
cggccgcctggccgacagtcaagtgCGCTCTCCTCCCGCTGGAATCCACGCTCTCCTCCCGCTGGAATCCAcggcgacactgggcccagcttccct SEQ_DUP;



.........................1111111111111111111111122222222222222222222222......................... DUP_NUM;



.A...aA..a...A....a.a.A..........A..aaB......A..........A..aaB......aa.a.....aaA....A.........a. Cas9_Wa;



aaa..A..Aa.aa...Aa..A...a.....A.aJa.aa.aaa.a.....CaaHa.a.a.aa.aaa.a.....CaaHa..A..A.a....Aaa..A. Cas9_Cr;



.......NLL....NLL........................................L..........L...........L..........L.... Cpf1_Wa;



...................LLN....................LLN...............................................LLN. Cpf1_Cr;





AMH
gccgacgggccgtgcgcgctgcgcgAGCTCAGCGTAGACCTCCGCGCCAGCTCAGCGTAGACCTCCGCGCCgagcgctccgtactcatccccgaga SEQ_DUP;



.........................1111111111111111111111122222222222222222222222......................... DUP_NUM;



..aaA..a.a.a.A..a.a.a.A....a.A..a......a.A...A....a.A..a......a.A..a.a.A.J..A...........a.a..... Cas9_Wa;



aa.aa.aa..A...Aa...A.aJa..A.a...A.a..A.....Aa.aa.a.aa..A.a..A.....Aa.aa.a.aa...a.a.aa...a.ahCaaa Cas9_Cr;



................................................................L......................L........ Cpf1_Wa;



......................................................................................N..N...... Cpf1_Cr;





HPS4
gatcatggccagacaagcatccgttCTCCTTCCTGCCATCTGGACAAGCCTCCTTCCTGCCATCTGGACAAGCttcgtcaggggatgtgggatctggg SEQ_DUP;



.........................111111111111111111111111222222222222222222222222......................... DUP_NUM;



..aA...a....A.....A...........A......aa....A..........A......aa....A....A...aaaaC.a.aaaC...aaaa.aA Cas9_Wa;



a.aa...Ca....Aa...A...A.CaaH.Ba.aa.Baa..Aa.Ca....A...Aa.aa.Baa..Aa.Ca....A...A.Ba..a.............C Cas9_Cr;



....................L......................L..N.....NL......................NL..................NL Cpf1_Wa;



....................L...N...................L...N............L......L......................L...... Cpf1_Cr;





ASL
tgcccctggcttcccacagccacgcCGTGGCACTGACCCGAGACTCTGAGCGTGGCACTGACCCGAGACTCTGAGcggctgctggaggtgcggaagcgga SEQ_DUP;



.........................11111111111111111111111112222222222222222222222222......................... DUP_NUM;



...aA.........A....A..a.aA....a....a.a.....a.a.a.aA....a....a.a.....a.a.aA..A..aa.aa.a.aaB.aHaaC.... Cas9_Wa;



aaHaa..Aaaa...A.Baaa.a..Aa.a.aa....A.a...AaaH...A.aH...A....A.a...AaaH...A.aH...A..A..A........A..J. Cas9_Cr;



.................................NLL................................................................ Cpf1_Wa;



..............................................................L.......LLN...L....N...............L.. Cpf1_Cr;





EPG5
tcagagcttggtcaggggtgaaagcAGAGTTTATCACCAATTCCCCTTCAATAAGAGTTTATCACCAATTCCCCTTCAATAactctccggagctgggagtcctctt SEQ_DUP;



.........................11111111111111111111111111112222222222222222222222222222......................... DUP_NUM;



.A...aA...aaaa.aB..A.Ha.A........................Ha.A...............................aa.A..aaa.A........... Cas9_Wa;



..Aa.ba....A.....a...........A........Ca.aa...Baaaa.Ba............Ca.aa...Baaaa.Ba.....A.aHaa....A.......a Cas9_Cr;



...............k......NL......N......................k.M.......NLL...NL..........k.M.......NLL...NL....... Cpf1_Wa;



.................N..........N..N.............N..........N..N.......L......L...........k.....L............. Cpf1_Cr;





ABCC8
ttgggcacaagaagaaaaaccacatGAGCTGATTGGTGTCGATGGCAACCAGATTAGAGCTGATTGGTGTCGATGGCAACCAGATTAcagatctgtccagcagtcatttctc SEQ_DUP;



.........................11111111111111111111111111111112222222222222222222222222222222......................... DUP_NUM;



A.....aB.aB..........a.a..aC..aa.a..aC.aA...I..aC...a.a..aC..aa.A..aC.aA...I..aC.....aC...A....A..A............. Cas9_Wa;



..........A.a...........Aa.a.....A..........a.J...A..Aa.........A..........a.J...a..Aa......a...ca...aa..A...a.. Cas9_Cr;



.......................k...............................N....................N.........N....................N.... Cpf1_Wa;



.........................N..............................N......................................L........L.....L. Cpf1_Cr;





LAMB3
cttgccttcggtgtggtcccggcaaTTGTCACACACACCTCCATATGCCCCCTGGCTGGCGGCAAACACAGCGGGGTCAAAGTGACATGTCTCTGAGTGCCCTTGTCACACACACCTCCATATG



CCCCCTGGCTGGCGGCAAACACAGCGGGGTCAAAGTGACATGTCTCTGAGTGCCCattgcagtcgcaccctggaaaaaga SEQ_DUP;



.........................111111111111111111111111111111111111111111111111111111111111111111111111111112222222222222222222222



2222222222222222222222222222222222222222222222222222222......................... DUP_NUM;



.....aa.a.aA....aA.....a.J.J..............A......aA..aa.aAJ.......a.aaaA.....a.a....A....Ha.a.A.....a.J.J..............A....



..aA..aa.aAJ.......a.aaaA.....a.a....A....Ha.a.a......A..a..A......aaB....aHa.A. Cas9_Wa;



a...Ba...Aa.Ba.......Jaaa..A......a.a.a.a.aa.aa.....Aaaaa...A...A..A...A.a..A.....a.......A....a.a......AaaJ...a.a.a.a.aa.aa



.....Aaaaa...A...A..A...A.a..A.....a.......A....a.a......AaaJ...A...a.a.aaaH.... Cas9_Cr;



.....................N..N....NL.........L.......N..............L...M........................................................



.N..............L...M..........................................................N Cpf1_Wa;



..n..................M....................k..............k........................................M....................k....



..........K.......................................LLk........................... Cpf1_Cr;









The +/−1 base differences in shifts between Watson and Crick tracks is so that cleavage positions are to the immediate left of the indicated base in both cases (which wouldn't be an issue if we were labelling the spaces between bases rather than the bases themselves).


The Cpf1 cleavage sites are staggered on the two strands, leaving an overhang in the double-stranded break, not indicated in these schematics The cleavage sites are labeled according to the Legend column in the table of PAM sequences below, Table 9 with an upper-case letter is it's the only matching PAM sequence, and a lower-case letter if it's the first of more-then-one matching PAM sequence.


Motifs are scanned for in flanking regions of size 50 and the table includes flanking regions of size 25, so cleavage sites should be shown even if the PAM site itself does not fall within the displayed sequence (as the distance between the cleavage site and the furthest position in the PAM site is no more than 25 bases). The above tracks, from top to bottom are shown for specific genes: See, Table 6


The variants identified in Table 6 with insertion lengths between 2 and 40 were then prioritized for therapeutic applications where the following microduplications were identified. See, Table 7. The headings of Table 7 are as follows:


Sequence ID: Arbitrary number assigned to each sequence.

    • VARIANT: of the form CHR-POS-REF-ALT, where CHR is the chromosome and POS is the start position of the reference (REF) allele in GRCh37, and ALT is the alternate allele; variants have been left-normalized with vt. genome.sph.umich.edu/wiki/Vt.
    • INSERT_LENGTH: length in nucleotides of the inserted sequence in the variant. (This is one less than the number of characters in ALT, as the first character of ALT is the REF base within the genome.)
    • ALLELE_ID: allele ID from the ClinVar VCF (version clinvar_20180225. vcf.gz)
    • GENE_INFO: of the form SYMBOL:ENTREZID, from the ClinVar VCF. Note: some variants have more than one gene listed in GENEINFO, and this column just shows the first of them, in the interest of space.
    • CLNDN: the associated disease name from the ClinVar vcf; if there is more than one disease listed in the vcf just the first is shown here in the interest of space.
    • MAX_AF: allele frequency for the variant from the gnomAD genomes or exomes (version 2.0.2), whichever one is larger.
    • Microduplication Sequences: The information on potential CRISPR cut-sites that shows the duplicated sequence, the two copies are enclosed by square brackets and separated by a vertical bar, with 5 flanking bases on either side. A base is shown in lower case if there is a predicted CRISPR cleavage site immediately to the left of the base.









TABLE 7







Preferred Microduplication Sequences For Clinical Application















VARIANT





NNNNN[Duplication 1|Duplication 2]NNNNN


Seq ID
(CHR-POS-REF-ALT)
INSERT_LENGTH
ALLELE_ID
GENE_INFO
CLNDN
MAX_AF
lowercase = Cas9/Cpf1 cut site

















Seq.
4-3494833-A-
4
16312
DOK7:
Congenital
0.0011653
GcTcA[gcCt|gCct]gCcaG


ID.
AGCCT


285489
myasthenic




1




syndrome







Seq.
9-126135887-T-
16
178866
CRB2:
Focal
0.0009596
cccTt[ggcGCGGcccCGgccc|Ggcgcg


ID.
TGGCGCGGCCCC


286204
segmental

GcccCGgccc]Ggcgc


2
GGCCC



glomerulosclerosis 9







Seq.
15-72638920-0-
4
18928
HEXA:
Tay-
0.0008041
catAg[gaTA|Gata]tACgG


ID.
GGATA


3073
Sachs




3




disease







Seq.
2-1481219-A-
4
421275
TPO:
not
0.0006493
GGaga[CggC|CgGc]cgcgc


ID.
ACGGC


7173
provided




4












Seq.
19-47983175-G-
18
106552
KPTN:
Mental
0.0005026
gcagg[AcCGACcaCatctgcaga|AcCG


ID.
GACCGACCACAT


11133
retardation,

ACcaCatctgCagA]AccTc


5
CTGCAGA



autosomal









recessive









41







Seq.
19-50365057-T-
17
19886
PNKP:
Early
0.0002277
ttTGt[GTtgTcgAtggCGaCCc|GTtgtcg


ID.
TGTTGTCGATGG


11284
infantile

atGgCGaCCc]GTttc


6
CGACCC



epileptic









encephalopathy









10







Seq.
11-126144895-G-
4
101651
FOXREDI:
Mitochondrial
0.0002261
agagg[gAgt|gaGT]GGctT


ID.
GGAGT


55572
complex I




7




deficiency







Seq.
2-38298287-T-
10
79358
CYP1B1:
Glaucoma,
0.0002156
GcaGt[ggTGgCatGa|gGTGgcatgA]g


ID.
TGGTGGCATGA


1545
congenital

GaAt


8












Seq.
1-158651385-G-
3
27886
SPTA1:
Elliptocytosis
0.0001939
cGCag[cAa|Caa]CTggt


ID.
GCAA


6708
2




9












Seq.
6-158535858-A-
4
423256
SERAC1:
3-
0.0001666
aGaga[AgaT|agat]aGCGA


ID.
AAGAT


84947
methylglutaconic




10




aciduria









with









deafness,









encephalopathy,









and









Leigh-









like









syndrome







Seq.
9-35658024-A-
15
29250
RMRP:
Metaphyseal
0.0001567
cctCA[gcttcAcAgaGtAGt|GCTtcAca


ID.
AGCTTCACAGAG


6023
chondrodysplasia,

gagtAGT]ATTTt


11
TAGT



McKusick









type







Seq.
19-7620610-C-
4
21646
PNPLA6:
Laurence-
0.0001307
gcAGc[gccA|gCca]Gccgc


ID.
CGCCA


10908
Moon




12




syndrome







Seq.
1-26126724-G-
10
190596
SELENON:
Eichsfeld
0.0001207
ccaTG[ggcCGGgccC|ggccgGgccC]gg


ID.
GGGCCGGGCCC


57190
type

ccg


13




congenital









muscular









dystrophy







Seq.
19-47984017-C-
2
264742
KPTN:
not
0.0001056
cTaCc[tA|ta]ctggt


ID.
CTA


11133
provided




14












Seq.
6-1612016-C-
6
136584
FOXC1:
not
0.0001046
Gagtc[AcGGcg|acggcg]gcggc


ID.
CACGGCG


2296
provided




15












Seq.
7-107412534-C-
3
70627
SLC26A3:
Congenital
0.0000969
gatcC[tga|tga]tAAAT


ID.
CTGA


1811
secretory




16




diarrhea,









chloride









type







Seq.
5-176942945-T-
4
207209
DDX41:
Acute
0.0000853
GGGGT[CaTC|CaTc]atacg


ID.
TCATC


51428
myeloid




17




leukemia







Seq.
7-95751240-G-
23
21042
SLC25A13:
Citrullinemia
0.0000853
gcCAg[cccGggcaGCCaCCtgTaatCTc|


ID.
GCCCGGGCAGCC


10165
type II

cccGggcagCcaCCtgTaatCTc]GtcTt


18
ACCTGTAATCTC











Seq.
17-37821635-G-
8
441954
TCAP:
not
0.0000813
agcTg[cGagGtGt|cGaGGtgt]cgGag


ID.
GCGAGGTGT


8557
provided




19












Seq.
9-35658027-T-
10
29249
RMRP:
Metaphyseal
0.0000752
CAgct[tcAcAgaGtA|tcAcagaGtA]GT


ID.
TTCACAGAGTA


6023
chondrodysplasia,

atT


20




McKusick









type







Seq.
17-56283862-G-
4
71256
MKS1:
Joubert
0.0000732
gAcAG[TgcC|TgCc]tGtgg


ID.
GTGCC


54903
syndrome




21












Seq.
17-48245341-A-
5
467925
SGCA:
Limb-
0.000069
TACCa[cTegg|cTegG]cagAg


ID.
ACTCGG


6442
girdle




22




muscular









dystrophy,









type









2D







Seq.
14-50100653-A-
16
205407
DNAAF2:
Kartagener
0.000065
cccCA[gccacgcaGgtatCGT|GccAcgca


ID.
AGCCACGCAGGT


55172
syndrome

GgtatcGT]Ggcct


23
ATCGT











Seq.
3-121514389-T-
4
393234
IQCB1:
Nephron
0.0000648
TGAat[CAAg|caag]catGC


ID.
TCAAG


9657
ophthisis




24












Seq.
20-3199224-A-
8
214745
ITPA:
Epileptic
0.0000647
tTgcA[cTCageAc|cTcAgcac]cGgGg


ID.
ACTCAGCAC


3704
encephalopathy,




25




early









infantile,









35







Seq.
10-100183554-T-
16
20316
HPS1:
Hermansky-
0.0000647
ggtgT[GGGCCTCccctgctgG|GgGCC


ID.
TGGGCCTCCCCT


3257
Pudlak

TCccctgctgG]GgGct


26
GCTGG



syndrome 1







Seq.
6-135754331-A-
2
214240
AHI1:
Joubert
0.0000646
TGtaa[AC|AC]aaaag


ID.
AAC


54806
syndrome 3




27












Seq.
1-216498866-G-
4
57777
USH2A:
Retinitis
0.0000646
gcggg[tggC|TgGC]tgcca


ID.
GTGGC


7399
pigmentosa




28












Seq.
18-21114427-C-
4
410327
NPC1:
Niemann-
0.0000646
tgGgC[AAgT|aAGT]GCCTC


ID.
CAAGT


4864
Pick




29




disease









type C1







Seq.
9-35658027-T-
7
264540
RMRP:
not
0.0000646
CAgct[tcacAga|tcAcaga]GtAGT


ID.
TTCACAGA


6023
provided




30












Seq.
6-129571327-A-
8
46903
LAMA2:
Merosin
0.0000646
aCAgA[acGTGTtC|aCGtgttC]tCCag


ID.
AACGTGTTC


3908
deficient




31




congenital









muscular









dystrophy







Seq.
11-94169012-T-
20
150739
MRE11:
Hereditary
0.0000646
TctTt[gaaGTggtAggAAaAAtgTc|Gaa


ID.
TGAAGTGGTAGG


4361
cancer-

GtggtAGGAAaAATGTC]TTCTt


32
AAAAATGTC



predisposing









syndrome







Seq.
2-215595181-T-
20
133182
BARD1:
Hereditary
0.0000609
aaTTt[cATActTTTcTtcctGttcA|cataC


ID.
TCATACTTTTCTT


580
cancer-

tTTTcttCctGttca]cAtaC


33
CCTGITCA



predisposing









syndrome







Seq.
17-33434458-T-TTA
2
242729
RADS1D:
Hereditary
0.0000569
caGTt[tA|TA]tCAag


ID.



5892
cancer-




34




predisposing









syndrome







Seq.
19-1399807-T-
13
23341
GAMT:
Deficiency
0.0000557
Gccgt[gggGccCAgtccc|GgggcCCAGt


ID.
TGGGGCCCAGTC


2593
of

ccc]GGagc


35
CC



guanidinoacetate









methyltransferase







Seq.
11-95560975-T-
11
39648
CEP57:
Mosaic
0.0000528
GTggt[AGCcAATgtTC|AGCcaAtgttc]


ID.
TAGCCAATGTTC


9702
variegated

AgCtt


36




aneuploidy









syndrome 2







Seq.
6-112390619-T-
2
21424
WISP3:
Progressive
0.0000488
CAAgT[aC|ac]Tcaga


ID.
TAC


8838
pseudorheumatoid




37




dysplasia







Seq.
2-241808397-G-
2
200432
AGXT:
Primary
0.0000411
cAtgg[cA|Ca]gccgg


ID.
GCA


189
hyperoxaluria,




38




type I







Seq.
7-107335062-G-
4
52676
SLC26A4:
Pendred′s
0.0000407
ctTgG[cAgT|CagT]CgGtc


ID.
GCAGT


5172
syndrome




39












Seq.
5-131705914-1-
11
47395
SLC22A5:
Renal
0.0000385
CCgct[acCggCtcGCc|acCggCtcGCc]


ID.
TACCGGCTCGCC


6584
carnitine

Accat


40




transport









defect







Seq.
22-26860623-1-
24
19168
HPS4:
Hermansky-
0.0000366
cCgTt[ctcCttCctGccatCtgGacAaGc|c


ID.
TCTCCTTCCTGCC


89781
Pudlak

TCcttCctGccatCtgGacAAGc]tTCgt


41
ATCTGGACAAGC



syndrome 4







Seq.
5-54529099-C-
5
143224
CCNO:
Primary
0.0000351
Gggcc[Gggca|Gggca]gGGgG


ID.
CGGGCA


10309
ciliary




42




dyskinesia







Seq.
4-6290805-A-
16
19558
WFS1:
Diabetes
0.000035
aagcA[GgGccGtCgcGAggcT|GgGcc


ID.
AGGGCCGTCGCG


7466
mellitus

GtCgcGAgGct]GtGaa


43
AGGCT



AND









insipidus









with









optic









atrophy









AND









deafness







Seq.
9-35658017-C-
17
29253
RMRP:
Metaphyseal
0.0000327
accAC[GtcctCAgcttcAcAga|GtCcTC


ID.
CGTCCTCAGCTT


6023
chondrodysplasia,

agcTtcAcaga]GtAGT


44
CACAGA



McKusick









type







Seq.
1-76226858-G-
13
18626
ACADM:
Medium-
0.0000325
acTag[ctagAaTGAGTta|ctagAaTgAG


ID.
GCTAGAATGAGT


34
chain

TTa]CcAgA


45
TA



acylcoenzyme A









dehydrogenase









deficiency







Seq.
5-147466073-T-
4
406655
SPINK5:
not
0.0000324
Cagat[gTgC|GTGc]acTgt


ID.
TGTGC


11005
provided




46












Seq.
6-31085224-G-
4
167426
CDSN:
Peeling
0.0000324
cagtg[aggC|Aggc]aGGgg


ID.
GAGGC


1041
skin




47




syndrome







Seq.
5-54529084-C-
5
143228
CCNO:
Primary
0.0000324
Gccac[Gggct|GggcT]GggcC


ID.
CGGGCT


10309
ciliary




48




dyskinesia







Seq.
2-219646907-T-
10
264076
CYP27A1:
not
0.0000324
cccAT[ggctGcgcTG|gGcTGcgcTG]g


ID.
TGGCTGCGCTG


1593
provided

GcTg


49












Seq.
22-37260985-A-
10
224721
NCF4:
Chronic
0.0000324
GACaa[aaggAGGAtc|aaggaGgATc]


ID.
AAAGGAGGATC


4689
granulomatous

CAAgt


50




disease







Seq.
1-154960775-G-
2
226515
FLAD1:
Glutaric
0.0000323
ttgag[Gc|Gc]aGtGg


ID.
GGC


80308
aciduria,




51




type 2







Seq.
2-228566952-A-
2
353889
SLC19A3:
Basal
0.0000323
TCtCA[Tc|tc]AtgGa


ID.
ATC


80704
ganglia




52




disease,









biotin-









responsive







Seq.
8-74888632-C-CGT
2
200167
TMEM70:
not
0.0000323
CgGgc[gT|GT]cCtCC


ID.



54968
provided




53












Seq.
2-152364571-A-
4
29086
NEB:
Nemaline
0.0000323
gTCCA[AAac|aaAc]aGtCt


ID.
AAAAC


4703
myopathy 2




54












Seq.
4-15575920-C-
4
214183
CC2D2A:
Joubert
0.0000323
CCagc[tggT|tgGt]tcctG


ID.
CTGGT


57545
syndrome 9




55












Seq.
6-129835627-T-
4
98901
LAMA2:
Merosin
0.0000323
aaGAt[cAAA|caAA]caCCg


ID.
TCAAA


3908
deficient




56




congenital









muscular









dystrophy







Seq.
6-158538811-C-
4
211210
SERAC1:
not
0.0000323
tCcac[AgaT|aGAT]ATAat


ID.
CAGAT


84947
provided




57












Seq.
12-123738316-T-
4
211578
C12orf65:
not
0.0000323
TtGtT[ATcC|ATcc]ccagg


ID.
TATCC


91574
provided




58












Seq.
13-20763209-G-
4
186855
GJB2:
Deafness,
0.0000323
cCaGg[cgTT|cgTt]gcACt


ID.
GCGTT


2706
autosomal




59




recessive









1A







Seq.
13-32972540-C-
4
180697
BRCA2:
Hereditary
0.0000323
aAggC[ATtT|aTtT]CAGcc


ID.
CATTT


675
cancer-




60




predisposing









syndrome







Seq.
2-48033707-T-
8
94955
MSH6:
Lynch
0.0000323
TTgCt[aATcTCCc|aatctccc]agagg


ID.
TAATCTCCC


2956
syndrome




61












Seq.
12-124171469-G-
8
462224
TCTN2:
Meckel-
0.0000323
aTCAG[ctcTGcTc|cTcTgcTc]tgcTg


ID.
GCTCTGCTC


79867
Gruber




62




syndrome







Seq.
15-44867171-C-
10
465073
SPG11:
Spastic
0.0000323
agCAc[TtcCaGgtta|TtccAGgttA]GTT


ID.
CTTCCAGGTTA


80208
paraplegia 11,

ac


63




autosomal









recessive







Seq.
17-41246723-G-
10
70390
BRCA1:
Hereditary
0.0000323
tTGTG[CCacAtggcT|CCacatgGcT]c


ID.
GCCACATGGCT


672
cancer-

CacA


64




predisposing









syndrome







Seq.
11-76867001-T-
11
408477
MYO7A:
not
0.0000323
gCTcT[CcAtCtaCtcG|CcAtctaCtcg]C


ID.
TCCATCTACTCG


4647
provided

cAga


65












Seq.
17-4804916-G-
14
468369
CHRNE:
Myasthenic
0.0000323
gTctg[AgaGctgeGgAgcc|aGagctGcG


ID.
GAGAGCTGCGGA


1145
syndrome,

gAgcc]aGggc


66
GCC



congenital, 4a,









slow-









channel







Seq.
7-117188810-A-
4
186745
CFTR:
Cystic
0.0000294
ctgaa[agat|aGAT]ATTAA


ID.
AAGAT


1080
fibrosis




67












Seq.
5-148407494-A-
4
244469
SH3TC2:
not
0.0000244
aggCa[ggCc|GgCc]agcag


ID.
AGGCC


79628
provided




68












Seq.
10-104590547-G-
4
16816
CYP17A1:
Congenital
0.0000214
cttgg[ggaT|gGAT]GCCTt


ID.
GGGAT


1586
adrenal




69




hyperplasia







Seq.
20-400315-C-
7
150333
RBCK1:
Polyglucosan
0.0000213
AgCcc[GacgaGg|gacGagG]aGgAg


ID.
CGACGAGG


10616
body




70




myopathy 1









with or









without









immunodeficiency







Seq.
1-94508433-G-GAC
2
359278
ABCA4:
Stargardt
0.0000203
aACCg[Ac|ac]aGcTt


ID.



24
disease 1




71












Seq.
2-73635784-T-
4
393242
ALMS1:
Alstrom
0.0000203
CagAT[agTA|aGTA]TatcA


ID.
TAGTA


7840
syndrome




72












Seq.
2-74185326-A-
4
23194
DGUOK:
Mitochondrial
0.0000203
aatga[TgaT|TgAT]TttTc


ID.
ATGAT


1716
DNA-




73




depletion









syndrome 3,









hepatocerebral







Seq.
17-4805917-A-
5
422179
CHRNE:
not
0.0000203
taCcA[gtgaG|gtgaG]atGAG


ID.
AGTGAG


1145
provided




74












Seq.
5-176813493-G-
21
27972
SLC34A1:
Fanconi
0.0000203
gtgGG[GAtcCtGgtgacCGtgctgGT|gA


ID.
GGATCCTGGTGA


6569
renotubular

tcCtGgtgacCGtgctGGt]gcAga


75
CCGTGCTGGT



syndrome 2







Seq.
22-29115401-A-
4
185622
CHEK2:
Hereditary
0.000018
TGacA[tgat|tgat]GTAtT


ID.
ATGAT


11200
cancer-




76




predisposing









syndrome







Seq.
2-48033769-A-
4
94970
MSH6:
Hereditary
0.0000166
ATGAa[TCAg|TcaG]tcact


ID.
ATCAG


2956
nonpolyposis




77




colon









cancer







Seq.
17-33903147-A-
4
358425
PEX12:
Infantile
0.0000163
GgatA[AggC|AGGC]aACAc


ID.
AAGGC


5193
Refsum's




78




disease







Seq.
17-41244495-T-
5
69430
BRCA1:
Hereditary
0.0000163
aATgt[TCTCA|tcTcA]ttTcc


ID.
TTCTCA


672
cancer-




79




predisposing









syndrome







Seq.
9-35658012-A-
17
29260
RMRP:
Metaphyseal
0.0000162
cacGA[accACGtcctCAgcttC|AcCacG


ID.
AACCACGTCCTC


6023
chondrodysplasia,

tcctCagcTtc]Acaga


80
AGCTTC



McKusick









type







Seq.
12-32902980-A-
18
414707
YARS2:
Mitochondrial
0.0000162
TtTaa[CtcCTgatcAGacaTGAc|CtcCt


ID.
ACTCCTGATCAG


51067
diseases

gatcAGacaTGAc]CtCca


81
ACATGAC











Seq.
11-17470110-T-
31
429214
ABCC8:
Persistent
0.0000162
CaCat[gagCTgaTtGGtgTcgATGgCaa


ID.
TGAGCTGATTGG


6833
hyperinsulinemic

cCaGatta|gagCTgaTtGGtgTcgATGgc


82
TGTCGATGGCAA



hypoglycemia of

aacCaGAtta]CAGaT



CCAGA



infancy







Seq.
16-1841827-C-
9
23168
IGFALS:
Acid-
0.0000142
AgCtc[Gcgcaggct|gcgcAggCt]GcccA


ID.
CGCGCAGGCT


3483
labile




83




subunit









deficiency







Seq.
15-40268931-G-
4
414416
EIF2AK4:
Familial
0.0000134
tGGAG[CACT|Cact]tcggg


ID.
GCACT


440275
pulmonary




84




capillary









hemangiomatosis







Seq.
6-38850803-T-TAG
2
456184
DNAH8:
Primary
0.0000128
tTgat[Ag|Ag]aCACc


ID



1769
ciliary




85




dyskinesia







Seq.
9-21971020-A-
3
182930
CDKN2A:
Hereditary
0.0000128
GggCa[GAc|gAC]GgCcc


ID.
AGAC


1029
cancer-




86




predisposing









syndrome







Seq.
2-234669554-G-
4
428001
UGT1A:
Crigler-
0.0000122
tCctG[cagc|cagC]ggGtg


ID.
GCAGC


7361
Najjar




87




syndrome







Seq.
1-5935033-T-
5
101577
NPHP4:
not
0.0000122
GgcGt[GgaGc|GgAgc]gTGTg


ID.
TGGAGC


261734
provided




88












Seq.
7-92134156-A-
9
99009
PEX1:
not
0.0000122
CtGCa[tCCacactg|tCcAcActG]cctct


ID.
ATCCACACTG


5189
provided




89












Seq.
11-17452431-A-
15
214503
ABCC8:
not
0.0000122
Tggaa[gAgggagAggGaGgc|gAgggag


ID.
AGAGGGAGAGG


6833
provided

AggGAGgc]aAAGg


90
GAGGC











Seq.
2-152354227-T-
4
448783
NEB:
Nemaline
0.0000106
tgtat[aAcA|AACa]CcTgt


ID.
TAACA


4703
myopathy 2




91












Seq.
19-47258867-C-
4
267103
FKRP:
Congenital
0.0000088
GgtgC[ggga|gGGa]gTtcG


ID.
CGGGA


79147
muscular




92




dystrophy-









dystroglycanopathy









(with or without









mental









retardation)









type B5







Seq.
4-995488-C-
5
26960
IDUA:
Mucopolysaccharidosis
0.0000088
GaTgc[CTGct|cTgct]cggaG


ID.
CCTGCT


3425
type I




93












Seq.
5-17683I303-C-
18
390679
F12:
Hereditary
0.0000087
gggtc[gGaGgcGCcgcctgggtt|gGaGGc


ID.
CGGAGGCGCCGC


2161
angioneurotic

GCcgcctgggtt]GgGgt


94
CTGGGTT



edema









with









normal









C1









esterase









inhibitor









activity







Seq.
2-179442173-G-
4
391746
TTN:
Limb-
0.0000082
caaTG[gTAT|GTAT]CcCct


ID.
GGTAT


7273
girdle




95




muscular









dystrophy,









type 2J







Seq.
12-109998851-T-
15
200227
MMAB:
not
0.0000082
tCtcT[CggcCcgGcggCacA|CggcCcg


ID.
TCGGCCCGGCGG


326625
provided

GcggCacA]CggcC


96
CACA











Seq.
17-41244840-C-
2
46039
BRCA1:
Hereditary
0.0000081
TtcaC[at|aT]tCaAa


ID.
CAT


672
cancer-




97




predisposing









syndrome







Seq.
3-48508650-G-
3
19220
TREX1:
Aicardi
0.0000081
gAggG[tgA|tGA]TGtcC


ID.
GTGA


11277
Goutieres




98




syndrome 1







Seq.
2-26415259-C-
4
199995
HADHA:
not
0.0000081
cctcc[tgat|tgaT]aGAtg


ID.
CTGAT


3030
provided




99












Seq.
2-148696793-C-
4
39252
ORC4:
Meier-
0.0000081
GatGc[TgtT|tgTT]acTcg


ID.
CTGTT


5000
Gorlin




100




syndrome 2







Seq.
3-48508676-1-
4
131925
TREX1:
Aicardi
0.0000081
catCT[gTca|gTca]GtGgA


ID.
TGTCA


11277
Goutieres




101




syndrome 1







Seq.
8-55537899-G-
4
21010
RP1:
Retinitis
0.0000081
tataG[Tgaa|tgAA]gaaaG


ID.
GTGAA


6101
pigmentosa 1




102












Seq.
11-108119732-T-
4
264571
ATM:
Ataxia-
0.0000081
tgaTt[ACag|AcaG]TGtCc


ID.
TACAG


472
telangiectasia




103




syndrome







Seq.
15-44876096-U-
10
409235
SPG11:
Spastic
0.0000081
ggGtg[CAGATcCTcc|cagatcCTCc]at


ID.
GCAGATCCTCC


80208
paraplegia 11,

act


104




autosomal









recessive







Seq.
19-55673062-U-
5
404089
DNAAF3:
Primary
0.0000076
gccgg[gcgtC|GcGTc]Gtagc


ID.
GGCGTC


352909
ciliary




105




dyskinesia




Seq.
19-50364929-G-
5
203579
PNKP:
Early
0.0000071
gCccg[CggcT|cggct]cGGgc


ID.
GCGGCT


11284
infantile




106




epileptic









encephalopathy









10







Seq.
13-32911149-A-
2
248942
BRCA2:
Breast-
0.0000044
gacaa[tg|tG]AGAAT


ID.
ATG


675
ovarian




107




cancer,









familial









2







Seq.
13-32912466-C-
4
66246
BRCA2:
Hereditary
0.0000044
tatAC[TgCt|tgCt]gCCag


ID.
CTGCT


675
cancer-




108




predisposing









syndrome







Seq.
7-65551736-C-
25
200151
ASL:
not
0.0000044
CacGc[cGtGgcACtgaCcCGAgactcTg


ID.
CCGTGGCACTGA


435
provided

ag|cgTGGcACTGaCcCGAgactctgaG]


109
CCCGAGACTCTG





cgGCt



AG











Seq.
17-4802524-C-
7
467870
CHRNE:
Myasthenic
0.0000043
gcCcC[TcaaaCa|TCAaaca]CGAgC


ID.
CTCAAACA


1145
syndrome,




110




congenital, 4a,









slow-









channel







Seq.
19-2251669-G-
23
23664
AMH:
Persistent
0.0000043
gcgcG[AgctcAGcGtAGaCcTcCgcgcc|


ID.
GAGCTCAGCGTA


268
mullerian

AgctcAGcGtAGaCcTcCgcGcc]gagc


111
GACCTCCGCGCC



duct

g







syndrome,









type I







Seq.
14-77757715-G-
2
266684
POMT2:
Congenital
0.0000042
aaTag[gt|gt]GGTga


ID.
GGT


29954
muscular




112




dystrophy-









dystroglycanopathy









with brain









and eye









anomalies,









type A2







Seq.
17-41242962-T-
2
69791
BRCA1:
Hereditary
0.0000042
taccT[gA|ga]GTGGt


ID.
TGA


672
cancer- 




113




predisposing









syndrome







Seq.
2-48026541-G-GGT
2
94667
MSH6:
Hereditary
0.0000041
ccCtg[gt|gt]gCaga


ID.



2956
nonpolyposis




114




colon









cancer







Seq.
5-13793822-C-CTA
2
395008
DNAH5:
Primary
0.0000041
CgcAC[tA|tA]tctca


ID.



1767
ciliary




115




dyskinesia







Seq.
7-117243689-G-
2
68231
CFTR:
Cystic
0.0000041
cgtgG[gA|ga]gTagC


ID.
GGA


1080
fibrosis




116












Seq.
16-23647131-T-
2
478268
PALB2:
Hereditary
0.0000041
GTagt[CG|CG]ccCtg


ID.
TCG


79728
cancer-




117




predisposing









syndrome







Seq.
17-41245704-G-
2
249143
BRCA1:
Breast-
0.0000041
aGAAG[AC|AC]TTcCt


ID.
GAC


672
ovarian




118




cancer,









familial 1







Seq.
2-26502064-C-
4
425487
HADHB:
not
0.0000041
CtgGC[cgCT|cgCt]gcctT


ID.
CCGCT


3032
provided




119












Seq.
2-48030716-T-
4
214607
MSH6:
Hereditary
0.0000041
TTCct[aatg|AATg]aCATT


ID.
TAATG


2956
nonpolyposis




120




colon









cancer







Seq.
2-48032775-T-
4
451638
MSH6:
Hereditary
0.0000041
tttgt[tgaA|TgAA]tTaaG


ID.
TTGAA


2956
nonpolyposis




121




colon









cancer







Seq.
2-48033355-C-
4
419562
MSH6:
Hereditary
0.0000041
ACTgC[AaCa|aACa]tTtga


ID.
CAACA


2956
cancer-




122




predisposing









syndrome







Seq.
2-48033448-C-
4
231582
MSH6:
Hereditary
0.0000041
caTTc[aTTa|atta]gTagA


ID.
CATTA


2956
cancer-




123




predisposing









syndrome







Seq.
2-48033767-G-
4
182191
MSH6:
Hereditary
0.0000041
agATG[AATC|AaTc]aGtca


ID.
GAATC


2956
nonpolyposis




124




colon









cancer







Seq.
2-215646137-A-
4
232427
BARD1:
Hereditary
0.0000041
TcTGA[cttT|ctTT]ctTAc


ID.
ACTTT


580
cancer-




125




predisposing









syndrome







Seq.
3-48626421-C-
4
411522
COL7A1:
Recessive
0.0000041
Caggc[tCAg|tcaG]Gggct


ID.
CTCAG


1294
dystrophic




126




epidermolysis









bullosa







Seq.
4-6302429-C-
4
211040
WFS1:
not
0.0000041
GTacC[Tgat|tgaT]TGacA


ID.
CTGAT


7466
provided




127












Seq.
9-6553398-G-
4
266395
GLDC:
Non-
0.0000041
agatG[gaAC|GaaC]tGGAg


ID.
GGAAC


2731
ketotic




128




hyperglycinemia







Seq.
9-36246039-C-
4
265527
GNE:
Inclusion
0.0000041
catgc[gaAT|gaAt]GATGC


ID.
CGAAT


10020
body




129




myopathy 2







Seq.
19-11222244-A-
4
228160
LDLR:
Familial
0.0000041
ctgga[gggT|ggGT]ggCTa


ID.
AGGGT


3949
hypercholesterolemia




130












Seq.
11-47367805-A-
5
178182
MYBPC3:
Cardiomyopathy
0.0000041
tAgCA[tGccG|tGccG]cgcaG


ID.
ATGCCG


4607





131












Seq.
1-45798772-C-
6
232268
MUTYH:
Hereditary
0.0000041
CctgC[atcCaT|atccat]ccggt


ID.
CATCCAT


4595
cancer-




132




predisposing









syndrome







Seq.
5-131726404-1-
6
359651
SLC22A5:
not
0.0000041
ctAtt[tTGGgc|tTgggC]tTtCg


ID.
TTTGGGC


6584
provided




133












Seq.
20-25288616-G-
7
15065
ABHD12:
Polyneuropathy,
0.0000041
ggATG[GCTctta|GcTcTTa]gcTtc


ID.
GGCTCTTA


26090
hearing




134




loss,









ataxia,









retinitis









pigmentosa, and









cataract







Seq.
13-32918751-C-
8
262824
BRCA2:
Breast-
0.0000041
AAAtc[aAgaaAaa|AaGAAAAA]TC


ID.
CAAGAAAAA


675
ovarian

CTt


135




cancer,









familial 2







Seq.
19-11216255-A-
8
245718
LDLR:
Familial
0.0000041
GGaca[AaTcTGAc|aaTctGac]gAGga


ID.
AAATCTGAC


3949
hypercholesterolemia




136












Seq.
11-2591894-G-
11
247639
KCNQ1:
Long QT
0.0000041
gtacG[TGgtcCgcctc|TggTcCGCctc]tg


ID.
GTGGTCCGCCTC


3784
syndrome 1

gTc


137












Seq.
16-23641191-G-
17
244957
PALB2:
Hereditary
0.0000041
aAatg[AgCAagttGgGgTGtgc|AgCAa


ID.
GAGCAAGTTGGG


79728
cancer-

gttGgGgtGtGC]AgCAa


138
GTGTGC



predisposing









syndrome







Seq.
19-11216242-C-
18
18772
LDLR:
Familial
0.0000041
GccCC[gactgcAaGgaCAAaTcT|gAct


ID.
CGACTGCAAGGA


3949
hypercholesterolemia

gcaaGGaCAAaTct]GacgA


139
CAAATCT











Seq.
2-48033727-T-
19
94960
MSH6:
Hereditary
0.0000041
GTTaT[tCaaaagggacaTaGaAAA|tCaa


ID.
TTCAAAAGGGAC


2956
nonpolyposis

aagGGacaTaGaAAa]gcaaG


140
ATAGAAAA



colon









cancer







Seq.
14-51411077-G-
20
1871
PYGL:31
Glycogen
0.0000041
ggatg[cTGaTctGCcgCCgcTtctc|Ctgat


ID.
GCTGATCTGCCG


5836
storage

ctGCcgCCgcTtctc]Ctggt


141
CCGCTTCTC



disease,









type VI







Seq.
12-33030862-G-
23
398966
PKP2:
Arrhythmogenic
0.0000041
aagTg[CGCTCtCctcCcgctggaatcCA|


ID.
GCGCTCTCCTCC


5318
right

CgctctCctcCcgctggAaTccA]cggcg


142
CGCTGGAATCCA



ventricular









cardiomyopathy,









type 9







Seq.
18-43493697-C-
28
469361
EPG5:
Absent
0.0000041
Aaagc[AGAgtttATCACCaaTtcCCctt


ID.
CAGAGTTTATCA


57724
corpus

caaTa|aGagTTtATCaccaaTtcCCCttca


143
CCAATTCCCCTTC



callosum

aTa]aCtct



AATA



cataract









immunodeficiency










As noted earlier there are over 2000 duplications annotated as pathogenic in ClinVar that do not appear in gnomAD at all, and hence are not listed in table 6 above, but may nonetheless be promising candidates for MMEJ. In particular the developers of gnomAD have “made every effort to exclude individuals with severe pediatric diseases from the gnomAD data set” (gnomad.broadinstitute.org/faq), and because of this, allele frequencies for dominant diseases in particular may be underestimated in gnomAD, or the variants may be entirely absent. To illustrate some of the potential MMEJ candidates of this sort, in Table 8 below we list those duplications of length 4-20 that satify all of the conditions from column dup2iP from Table 4 except they are absent from gnomAD, and for which the OMIM ID associated with the ClinVar entry in listed as having an autosomal dominant mode of inheritance. The columns are the same as for Table 7, although the MAX_AF column is excluded, as these variants do not appear in gnomAD.









TABLE 8







Additonal Microduplication Sequences


Associated with Autosomal Dominant Diseases



















NNNNN[Duplication 1|








[Duplication 2]NNNNN


Sequence

INS_
ALLELE
GENE

lowercase = Cas9/Cpf1


ID
VARIANT
LEN
ID
INFO
CLNDN
cut site
















B1
1-149898309-T-
4
205400
SF3B4:
Nager syndrome
Aggat[Tggg|TgGG]agcag



TTGGG


10262







B2
2-16082251-A-
4
426707
MYCN:4613
Feingold
TtTGa[CTCg|CtCg]ctAca



ACTCG



syndrome 1






B3
2-48033635-T-
4
94949
MSH6:2956
Hereditary
agAcT[ATTa|AtTa]CGtTC



TATTA



nonpolyposis








colon cancer






B4
2-145156539-T-
4
442547
ZEB2:9839
Mowat-Wilson
GttAt[ggAg|GGaG]TCcaT



TGGAG



syndrome






B5
2-145156576-A-
4
101526
ZEB2:9839
Mowat-Wilson
atAaa[gAgT|GAGT]Ctttt



AGAGT



syndrome






B6
2-166848432-T-
4
187710
SCN1A:6323
Severe
agGat[gACC|gAcc]gcGat



TGACC



myoclonic








epilepsy in








infancy






B7
2-166848788-G-
4
187727
SCN1A:6323
Severe
aaGGG[ACAT|aCaT]CAtca



GACAT



myoclonic








epilepsy in








infancy






B8
2-166897853-G-
4
187812
SCN1A:6323
Severe
aaaTg[ggTC|GgTC]cATCa



GGGTC



myoclonic








epilepsy in








infancy






B9
3-128200679-A-
4
213545
GATA2:2624
Lymphedema,
TaGta[gAgg|GAgG]CcaCa



AGAGG



primary, with








myelodysplasia






B10
3-128200780-G-
4
227183
GATA2:2624
Dendritic cell,
tctgG[cggC|CgGC]cgact



GCGGC



monocyte, B








lymphocyte,








and natural








killer








lymphocyte








deficiency






B11
5-36985675-C-
4
207223
NIPBL:
Cornelia de
cgagC[tgaA|tGaA]GCCTt



CTGAA


25836
Lange








syndrome 1






B12
5-37019478-C-
4
207238
NIPBL:
Cornelia de
AAAAc[ACTg|actg]AgacT



CACTG


25836
Lange








syndrome 1






B13
5-37045600-T-
4
428429
NIPBL:
Cornelia de
cAcTt[cTaA|ctAA]CaAAc



TCTAA


25836
Lange








syndrome 1






B14
5-112173974-T-
4
453932
APC:324
Familial
AGTgt[CAgc|cagc]caTtc



TCAGC



adenomatous








polyposis 1






B15
5-176696704-A-
4
207196
NSD1:64324
Sotos
TCtaa[tgAC|TGAC]taTtt



ATGAC



syndrome 1






B16
6-7578754-A-
4
456063
DSP:1832
Arrhythmogenic
TtaCa[ggtt|GGTT]CtTaa



AGGTT



right








ventricular








cardiomyopathy,








type 8






B17
6-42689651-T-
4
28213
PRPH2:5961
Patterned
cCggt[agTA|AGTA]CTtCA



TAGTA



dystrophy








of retinal








pigment








epithelium






B18
7-155604807-G-
4
76761
SHH:6469
Holo-
gccag[Cagc|CaGC]agCAt



GCAGC



prosencephaly 3






B19
9-135779065-T-
4
459513
TSC1:7248
Tuberous
gagct[gCtg|Gctg]ctttG



TGCTG



sclerosis 1






B20
10-76789950-G-
4
39483
KAT6B:23522
Young Simpson
caACG[cCAa|ccaA]catTG



GCCAA



syndrome






B21
10-88678975-C-
4
397998
BMPRIA:657
Juvenile
AGcTc[tAtT|tatt]tgaTt



CTATT



polyposis








syndrome






B22
11-31823171-C-
4
424532
PAX6:5080
Aniridia 1
CAagc[aAAg|aAag]Atgga



CAAAG










B23
11-31823224-G-
4
485944
PAX6:5080
Aniridia 1
ttCtg[gagT|GaGt|CGCtA



GGAGT










B24
11-44129659-C-
4
264541
EXT2:
Multiple
TGaAC[tgCT|tgCt]cATgG



CTGCT


2132
exostoses








type 2






B25
11-47372123-C-
4
248635
MYBPC3:
Familial
TggCc[TcAg|tcag]cagGg



CTCAG


4607
hypertrophic








cardio-








myopathy 4






B26
12-32977056-T-
4
399705
PKP2:5318
Arrhythmogenic
cTtCt[cAtc|caTc]gcttt



TCATC



right








ventricular








cardiomyopathy,








type 9






B27
12-114832576-
4
462429
TBX5:6910
Aortic valve
ctaTa[aACg|AAcg]CAGtc



A-AAACG



disease 2






B28
13-32900728-C-
4
66682
BRCA2:675
Breast-ovarian
CcaCc[ctta|ctta]GttCt



CCTTA



cancer,








familial 2






B29
13-32903617-T-
4
180558
BRCA2:675
Familial
Ctcat[gatA|GATA]CtACt



TGATA



cancer of








breast






B30
13-32906470-G-
4
234629
BRCA2:675
Hereditary
gAAAG(TCaA|Tcaa)tgcCa



GTCAA



cancer-








predisposing








syndrome






B31
13-32906777-G-
4
183659
BRCA2:675
Hereditary
aGTTG[taCC|tACc]gTctt



GTACC



cancer-








predisposing








syndrome






B32
13-32907062-G-
4
261077
BRCA2:675
Hereditary
tcttG[cagt|caGt]AaagC



GCAGT



breast and








ovarian








cancer








syndrome






B33
13-32910470-A-
4
261113
BRCA2:675
Breast-
cTtAa(cTAg|CtAG]ctCtt



ACTAG



ovarian








cancer,








familial 2






B34
13-32913932-G-
4
261296
BRCA2:675
Breast-
aCtTG[TgAc|TGaC]taGct



GTGAC



ovarian








cancer,








familial 2






B35
13-32914339-T-
4
66619
BRCA2:675
Hereditary
GtgAT[gttA|gTTA]gttTG



TGTTA



cancer-predisposing








syndrome






B36
13-32914758-A-
4
180628
BRCA2:675
Familial
acTGa[gcAT|gcaT]AgtCT



AGCAT



cancer of








breast






B37
13-32914858-G-
4
183912
BRCA2:675
Hereditary
aaatG[gaaA|GAAa]AAaCC



GGAAA



cancer-








predisposing








syndrome






B38
13-32929209-G-
4
261402
BRCA2:675
Breast-
cTTTGttTCC|TTcc]aCctt



GTTCC



ovarian








cancer,








familial 2






B39
13-32936669-T-
4
131698
BRCA2:675
Hereditary
Tgtgt[gaCa|GaCa]ctcca



TGACA



breast








and ovarian








cancer








syndrome






B40
13-32936731-G-
4
261438
BRCA2:675
Breast-
agaTg[gaTC|GaTc]atatg



GGATC



ovarian








cancer,








familial 2






B41
13-32937507-A-
4
67186
BRCA2:675
Breast-
acaga[tggg|Tggg]TGgTA



ATGGG



ovarian








cancer,








familial 2






B42
13-32944599-C-
4
261474
BRCA2:675
Breast-
tgacc[CTAg|ctaG]AccTT



CCTAG



ovarian








cancer,








familial 2






B43
13-32950917-G-
4
131727
BRCA2:675
Hereditary
ccCAG[ctta|ctTA]ccttg



GCTTA



cancer-








predisposing








syndrome






B44
14-95577661-G-
4
463789
DICER1:
DICER1-
ttttg[ggTA|ggta]GcACT



GGGTA


23405
related








pleuropulmonary








blastoma








cancer








predisposition








syndrome






B45
16-2121893-C-
4
27434
TSC2:7249
Tuberous
TGccC[TAct|taCt]cCCtG



CTACT



sclerosis








syndrome






B46
16-23637659-A-
4
180720
PALB2:
Hereditary
CTTta[cAAc|CaaC]cgGCt



ACAAC


79728
cancer-








predisposing








syndrome






B47
17-29559831-A-
4
425126
NF1:4763
Neuro-
aGgca[CTgt|ctgt]AcGGT



ACTGT



fibromatosis,








type 1






B48
17-29657434-T-
4
401825
NF1:4763
Neuro-
TCTCT(AtTa|aTtA]gTAAg



TATTA



fibromatosis,








type 1






B49
17-42426621-G-
4
31049
GRN:2896
Frontotemporal
gcCtG[CtgC|Ctgc]ctGGa



GCTGC



dementia,








ubiquitin-








positive






B50
17-59763312-T-
4
402202
BRIP1:
Familial
Ctggt(gaTA|gata1GATga



TGATA


83990
cancer of








breast






B51
18-48586254-T-
4
361
SMA
Juvenile
GagCT[tgCa|TgCa]TtccA



TTGCA

59
D4:4089
polyposis








syndrome






B52
19-11200255-A-
4
245343
LDLR:3949
Familial
CTGgA[cCgT|CcgT]CgcCT



ACCGT



hyper








cholesterolemia






B53
19-11216012-C-
4
245559
LDLR:3949
Familial
ctgcc[cggt|cgGT]GcTCa



CCGGT



hyper-








cholesterolemia






B54
19-11218164-G-
4
245855
LDLR:3949
Familial
gacTg[gTcA|gtCa]gATgA



GGTCA



hyper-








cholesterolemia






B55
19-11222196-A-
4
245974
LDLR:3949
Familial
atcGa[tgag[TgAG]tgtca



ATGAG



hyper-








cholesterolemia






B56
19-11222247-G-
4
245999
LDLR:3949
Familial
gaggG[TggC(TggC]taCaa



GTGGC



hyper-








cholesterolemia






B57
19-11224220-T-
4
228168
LDLR:3949
Familial
agctt[gAcA|gAca]GAGcc



TGACA



hyper-








cholesterolemia






B58
19-11224266-G-
4
246144
LDLR:3949
Familial
cagaG[aCaT|ACat]cCagg



GACAT



hyper-








cholesterolemia






B59
19-11226884-C-
4
246281
LDLR:3949
Familial
TCAcc[ctAg|ctaG]gtATg



CCTAG



hyper-








cholesterolemia






B60
19-11231165-C-
4
246517
LDLR:3949
Familial
CatGC[tgCT|tgCt]GgccA



CTGCT



hyper-








cholesterolemia






B61
19-11233960-C-
4
390629
LDLR:3949
Familial
CtcCc[ggct|gGCt]gcctG



CGGCT



hyper-








cholesterolemia






B62
19-11240244-T-
4
18744
LDLR:3949
Familial
ggctt[aaga|aAGA]ACaTC



TAAGA



hyper-








cholesterolemia






B63
22-24133984-G-
4
469954
SMARCB1:
Rhabdoid
acaag[Agat|aGAT]ACcCC



GAGAT


6598
tumor








predisposition








syndrome 1






B64
22-29121073-C-
4
222871
CHEK2:
Familial
tGaTC[tTCt|ttct]AtgtA



CTTCT


11200
cancer of








breast






B65
22-29130554-G-
4
471012
CHEK2:
Familial
gaGAG[gACT|gaCt]ggCtG



GGACT


11200
cancer of








breast






B66
22-29886645-A-
4
227465
NEFH:4744
Charcot-Marie-
CAgCa(agCc|aGCc]tccag



AAGCC



Tooth disease,








axonal,








type 2CC






B67
22-41572424-C-
4
247756
EP300:2033
Rubinstein-
ccacC[atgt|aTGT]gCAtg



CATGT



Tayb1








syndrome 2






B68
1-153800743-G-
5
423707
GATAD2B:
Mental
cCAGG[acATC|acAtc]AtCtc



GACATC


57459
retardation,








autosomal








dominant 18






B69
1-155317481-T-
5
440033
ASH1L:
MENTAL
tTCat[cctTg|ccttg]tagAG



TCCTTG


55870
RETARDATION,








AUTOSOMAL








DOMINANT 52






B70
2-166848901-A-
5
187732
SCN1A:6323
Severe
CGAaA[tACTl|TAcTT]TtcTa



ATACTT



myoclonic








epilepsy








in infancy






B71
3-39453229-G-
5
75607
RPSA:3921
Asplenia,
gggaG[GtcaT|GtcAT|gccTG



GGTCAT



isolated








congenital






B72
3-136162210-A-
5
431522
STAG1:
STAG 1-
TCcca[TaaaC|tAaac]TGTCc



ATAAAC


10274
related








disorder






B73
3-181430665-A-
5
272798
SOX2:6657
Microphthalmia
CAgcA[tGatG|tGAtg]CAGGa



ATGATG



syndromic 3






B74
5-86682703-T-
5
239865
RASA1:5921
Capillary
CATGt[tTTTA|TttTa]gATgA



TTTTTA



malformation-








arteriovenous








malformation






B75
8-116617181-A-
5
432085
TRPS1:7227
Trichorhino-
tggcA[atctG|atctG|gtgtt



AATCTG



phalangcal








dysplasia








type I






B76
11-2797207-C-
5
442554
KCNQ1:3784
Long QT
Cttac[gatGt|GaTgt]gCGgG



CGATGT



syndrome 1






B77
11-31811508-A-
5
191325
PAX6:5080
Aniridia 1
TgAGA[CAtat|cAtat]caGGt



ACATAT










B78
11-31812376-G-
5
461519
PAX6:5080
Aniridia 1
tgCaG[gagtA|GagTa]tGagG



GGAGTA










B79
11-64577297-G-
5
398421
MEN1:4221
Multiple
tcTgg[gcGgt|GcgGt]Gaagc



GGCGGT



endocrine








neoplasia,








type 1






B80
13-32900712-T-
5
261019
BRCA2:675
Breast-
tCtTT[agctA|AGctA]CAcCA



TAGCTA



ovarian








cancer,








familial 2






B81
13-32932021-T-
5
261432
BRCA2:675
Breast-
TGGCt|cataC|cATAc]cc



TCATAC



ovarian
TCc







cancer,








familial 2






B82
15-48718033-A-
5
400146
FBN1:2200
Marfan
aaAca[tCGtg|tcGtG]AataA



ATCGTG



syndrome






B83
17-29653013-T-
5
467484
NF1:4763
Neuro-
Tgctt[ACgaC|acGac]AaCgt



TACGAC



fibromatosis,








type 1






B84
17-48264062-G-
5
413977
COL1A1:
Osteogenesis
tGcgG[cTgcC|cTGcc]ctctg



GCTGCC


1277
imperfecta








type I






B85
19-11216237-G-
5
245693
LDLR:3949
Familial
tggTG|GccCC|Gcccc]gactg



GGCCCC



hyper-








cholesterolemia






B86
19-11224008-T-
5
246065
LDLR:3949
Familial
AcgCTIGgacC|Ggacc]ggagc



TGGACC



hyper-








cholesterolemia






B87
19-11230868-C-
5
246422
LDLR:3949
Familial
TCcCc[agagg|agAGG]atATG



CAGAGG



hyper








cholesterolemia






B88
19-11230879-G-
5
246429
LDLR:3949
Familial
tATGG(TTCTC|Ttctc]TtcCa



GTTCTC



hyper








cholesterolemia






B89
19-11233887-C-
5
390628
LDLR:3949
Familial
CcaCc[gtcag|gtcAG]GCtaA



CGTCAG



hyper








cholesterolemia






B90
19-13136144-A-
5
205791
NFIX:4784
Sotos
gGgcA[AGatC|AGatc]cggcg



AAGATC



syndrome 2






B91
20-62044881-T-
5
361908
KCNQ2:3785
Benign
Gtcgt[AGggc|AGgGc]cgCAg



TAGGGC



familial








neonatal








seizures 1






B92
2-239757079-G-
6
204358
TWIST2:
Barber-Say
gCgCg[AgCgcc|Agcgcc]AgCgc



GAGCGCC


117581
syndrome






B93
9-140056954-C-
6
384406
GRIN1:2902
Mental
aactc[Cggcat|CGgcat]cgggg



CCGGCAT



retardation,








autosomal








dominant 8






B94
10-102510456-
6
28839
PAX2:5076
Renal coloboma
TacTa[CgagAc|cgAgac]CgGCa



A-ACGAGAC



syndrome






B95
3-123383092-T-
7
259621
MYLK:4638
Visceral myopathy
gtgCT[CGCtttc|cgCtttc]cTGga



TCGCTTTC










B96
6-7580155-G-
7
197069
DSP:1832
Arrhythmogenic
caaGglgaAaaTc|gaAaatc]gAgat



GGAAAATC



right








ventricular








cardiomyopathy,








type 8






B97
13-32937340-C-
7
67137
BRCA2:675
Breast-
GAagC[agAAgaT|agaAgat]cGGCt



CAGAAGAT



ovarian








cancer,








familial 2






B98
13-32968822-
7
262861
BRCA2:675
Breast-ovarian
CATtc[taGgact|TAGgaCT]Tgccc



C-CTAGGACT



cancer,








familial 2






B99
16-2142114-T-
7
442559
PKD1:5310
Polycystic
aAcgt[CGtaatC|CGTaatc]gCtgg



TCGTAATC



kidney disease,








adult type






B100
17-7578448-G-
7
27419
TP53:7157
Osteosarcoma
gATGG[ccATGgc|ccAtggc]GCgga



GCCATGGC










B101
17-48273539-C-
7
414018
COL1A1:
Osteogenesis
gTagC[ACCAtCa|aCcaTCa]tTtcC



CACCATCA


1277
imperfecta








type I






B102
18-48575180-G-
7
36142
SMAD4:4089
Juvenile polyposis
gataG[TgTCtGT|Tgtctgt]GtGAA



GTGTCTGT



syndrome






B103
19-11213391-G-
7
362671
LDLR:3949
Familial
aAccg[CtgcAtT|CtG



GCTGCATT



hyper-
Catt]CcTCa







cholesterolemia






B104
19-11216256-
7
245719
LDLR:3949
Familial
GacAA|aTcTGAc|aTCtgac]gAGGa



A-AATCTGAC



hyper-








cholesterolemia






B105
19-11231163-T-
7
246518
LDLR:3949
Familial
ggCat[GCtgCTg|GCtg



TGCTGCTG



hyper-
CTg]gccAG







cholesterolemia






B106
22-32200157-T-
7
259349
DEPDC5:
Epilepsy,
ggtgT[GgatttG|gGatTtG)gTgTg



TGGATTTG


9681
familial








focal,








with variable








foci 1






B107
2-166848493-G-
8
187713
SCN1A:6323
Severe
aaaAg[AAAATTCC|AAa



GAAAATTCC



myoclonic
atTCC]aacag







epilepsy in








infancy






B108
6-33405537-C-
8
456125
SYNGAP1:
Mental
TCtgc[ctgGatga|cTg



CCTGGATGA


8831
retardation,
GAtGa]CAtgc







autosomal








dominant 5






B109
8-61728946-C-
8
207553
CHD7:55636
CHARGE
tcaGC[tcTTatcT|TCt



CTCTTATCT



association
tAtcT]TcatT





B110
8-116427276-
8
432065
TRPS1:7227
Trichorhino-
tcAcc[GtTgtTTt|Gt



C-CGTTGTTTT



phalangeal
TGtTTT]GTtta







dysplasia








type I






B111
11-64572225-C-
8
419786
MEN1:4221
Multiple
tCgcc[ccAcggct|cc



CCCACGGCT



endocrine
AcGgct]ccTcG







neoplasia,








type 1






B112
13-32914325-A-
8
261315
BRCA2:675
Breast-
tAAaa(TATCaCCt|ta



ATATCACCT



ovarian
tcAcCt]tGtga







cancer,








familial 2






B113
13-32915019-A-
8
261369
BRCA2:675
Hereditary
GAGAA[cattCaTg|ca



ACATTCATG



breast and
ttCaTG]ttttG







ovarian








cancer








syndrome






B114
16-23619228-C-
8
465434
PALB2:
Familial cancer
ccCac[gctgaGag|gc



CGCTGAGAG


79728
of breast
TgAGaG]TCGtc





B115
16-23634319-T-
8
465443
PALB2:
Familial cancer
ctTCT[acttGTtG|aC



TACTTGTTG


79728
of breast
TtgTtG]atCag





B116
17-17118378-C-
8
467434
FLCN:
Multiple
GCTtc[aaTctTat|



CAATCTTAT


201163
fibro-
aATcTTat]tcAgg







folliculomas






B117
19-1220430-A-
8
469353
STK11:6794
Peutz-Jeghers
gCacA[AggacatC|Ag



AAGGACATC



syndrome
GacAtC]Aagcc





B118
19-11216107-T-
8
245617
LDLR:3949
Familial
aagaT[GgcTcgGa|



TGGCTCGGA



hyper-
ggctcgGa]TgaGT







cholesterolemia






B119
19-11221433-A-
8
245939
LDLR:3949
Familial
Gccca[GcgaaGat|gc



AGCGAAGAT



hyper-
gAaGat]GcgAa







cholesterolemia






B120
19-11226844-C-
8
246266
LDLR:3949
Familial
tactc[gCtGgtga|gC



CGCTGGTGA



hyper-
tGGTga]CTGAA







cholesterolemia






B121
19-42794719-G-
8
424692
CIC:23152
MENTAL
cggcg[caAgAgAc|CaAG



GCAAGAGAC



RETARDATION,
agac]ccgAa







AUTOSOMAL








DOMINANT 45






B122
7-142458427-A-
9
46926
PRSS1:5644
Hereditary
gAtGa[TgacAAgAt[Tga



ATGACAAGAT



pancreatitis
caAgAt]cgttg





B123
10-43607601-T-
9
28980
RET:5979
Familial
CggCt[ggAgTgtGa|



TGGAGTGTGA



medullary
GgAgTgtGatGgAgt







thyroid








carcinoma






B124
10-43609946-T-
9
36267
RET:5979
Multiple
GaGct[GtGcCgcac|



TGTGCCGCAC



endocrine
gtgCcgcAc]gGtga







neoplasia,








type 2a






B125
17-42992481-A-
9
188181
GFAP:2670
Alexander’s
ccGca|gccgCagct|g



AGCCGCAGCT



disease
CcgCAgct]cTcgC





B126
5-176673777-A-
10
207192
NSD1:64324
Sotos
GTcaa[aagAGATtcC|



AAAGAGATTCC



syndrome 1
aagagATtcC]AGgct





B127
10-76789773-A-
10
47605
KAT6B:
Young Simpson
CggGa[gCtGCAgcat|



AGCTGCAGCAT


23522
syndrome
GCtGCAgCAt]GCtGC





B128
13-48835344-C-
10
21019
ITM2B:9445
Dementia,
gaAaC[TTTaaTTTGT|



CTTTAATTTGT



familial
ttTAaTTTGT]tcTTg







Danish






B129
17-42328803-A-
10
32797
SLC4A1:6521
Spherocytosis
GgGCa[catcTgGgtG|



ACATCTGGGTG



type 4
catctgggtG]atact





B130
19-11218087-C-
10
434258
LDLR:3949
Familial
gACcC[AacaagTtCA|



CAACAAGTTCA



hyper-
AacaaGTtCa]AGtgT







cholesterolemia






B131
3-138664603-T-
11
354105
FOXL2:668
Blepharo-
GagcT[GgcccgGcggC|



TGGCCCGGCGGC



phimosis,
GgcCcgGcggc]GgcGc







ptosis, and








epicanthus








inversus






B132
8-61742962-G-
11
481218
CHD7:55636
CHARGE
caaag[aAGAaaCTAtt|



GAAGAAACTATT



association
aAGAaACtATt]aTtGA





B133
8-61777949-T-
11
194201
CHD7:55636
CHARGE
TgAAT[aACCctCtgtc|



TAACCCTCTGTC



association
aacCcTctgtc]aGCTg





B134
19-11216021-A-
11
434823
LDLR:3949
Familial
gcTCa[CctgtggTCCc|



ACCTGTGGTCCC



hyper-
CctgtggtCCC]gCcag







cholesterolemia






B135
19-11216250-A-
11
245708
LDLR:3949
Familial
tgcAa[GGaCAAatcTG|



AGGACAAATCTG



hyper-
GgaCAaaTctG]acgAG







cholesterolemia






B136
10-43609939-G-
12
36265
RET:5979
Multiple
gtgcG[aCGaGctGTGcC|



GACGAGCTGTGCC



endocrine
acGagctGtGcC]gcAcg







neoplasia,








type 2a






B137
19-11227654-T-
12
424332
LDLR:3949
Familial
CcccT[tctccttggcCG|



TTCTCCTTGGCCG



hyper-
TCtccTtggccG]Tcttt







cholesterolemia






B138
15-73617341-T-
13
361763
HCN4:10021
Sick sinus
Ccctt[ggtgAgCacgctg|



TGGTGAGCA



syndrome 2,
ggtGAgCAcgctG]accAC



CGCTG



autosomal








dominant






B139
19-11216242-C-
13
245695
LDLR:3949
Familial
GcccC[gactgcAaGgaCA|



CGACTGCAA



hyper-
gACtgcAaGGaCA]AaTct



GGACA



cholesterolemia






B140
19-11233897-A-
13
246545
LDLR:3949
Familial
GCtaA[AggTCAGCtccac|



AAGGTCAG



hyper-
AggTcAGCTccAc]agccg



CTCCAC



cholesterolemia






B141
5-176637714-G-
14
394847
NSD1:64324
Beckwith-
tGggG[CAgCAaAtcAAGct|



GCAGCAAAT



Wiedemann
CAgcaaAtcAAgct]CTatT



CAAGCT



syndrome






B142
6-117996952-G-
14
480769
NUS1:
MENTAL
cGctG[ctgcCgcGccGcct|



GCTGCCGCG


116150
RETARDATION,
ctgcCgcGccGcct]ctgcc



CCGCCT



AUTOSOMAL








DOMINANT 55.








WITH SEIZURES






B143
13-32971081-T-
14
261554
BRCA2:675
Breast-
CATAttaCtgCAtGCaAAtg|



TACTGCATG



ovarian cancer,
AcTgCAtgCaaAtg]ATccC



CAAATG



familial 2






B144
19-11216249-A-
14
245706
LDLR:3949
Familial
ctgcA[aGGaCAAaTctgac|



AAGGACAAA



hyper-
aGGacAAaTctGac]gAGga



TCTGAC



cholesterolemia






B145
2-189853347-A-
15
107099
COL3A1:1281
Ehlers-Danlos
ggtgA[accTGGgcAagCtGG|



AACCTGGG



syndrome,
acctGGgcAagCtGg]TcCtT



CAAGCTGG



type 4






B146
18-59992633-G-
15
204405
TNFRSF11A:
Paget disease
tgCTg[cTcTgcGcgctGcTc|



GCTCTGCGCGC


8792
of bone 2,
cTcTgcGcgCtgcTc]gccCg



TGCTC



early-onset






B147
3-41280628-C-
16
227080
CTNNB1:
Exudative
gatcC[TAgctaTCgTTcttt



CTAGCTAT


1499
vitreo-
t|tAGCtAtCgTTctTTt]c



CGTTCTTTT



retinopathy 1
Actc





B148
3-71019923-G-
16
102121
FOXP1:
Mental
cgTgg[cTGcTcTgcAtGttt



GCTGCTCTG


27086
retardation
t|CTgctcTgcAtGTtTT]



CATGTTTT



with language
TAata







impairment








and with or








without








autistic








features






B149
11-31815221-T-
16
190738
PAX6:5080
Aniridia 1
GGaaT[TggtTgGTAGAcAct



TTGGTTGGTAG




G|tggtTggTAGacactG]g



ACACTG




tgCT





B150
16-23647409-C-
16
466297
PALB2:
Hereditary
TGTCC[TCttctgCtgCTtC



ctcttctgc


79728
cancer-
Tt|TctTCtgCtgCTtCTt]



tgCTTCTT



predisposing
TctTC







syndrome






B151
19-49469932-T-
16
31527
FTL:2512
Neuro-
tggGt[ggcCcgGaggcTggG



TGGCCCGGAG



ferritinopathy
c|GgcCcgGaggcTgggc]



GCTGGGC




tgGgc





B152
3-138664693-T-
17
19905
FOXL2:668
Blepharophimosis,
Cgggt[gGgGgtGcgGcgga



TGGGGGTGCGGCG



ptosis,
ggc|gGgGgtGcgGcggagg



GAGGC



and epicanthus
c]gGgGg







inversus






B153
3-138664705-G-
17
171758
FOXL2:668
Blepharophimosis,
cgGcg[gaggcgGgGgtGCgG



GGAGGCGGGGG



ptosis, and
cc|gaggcgGgGgtGCggCct



TGCGGCC



epicanthus
ggCgg







inversus






B154
3-138664707-A-
17
178773
FOXL2:668
Blepharophimosis,
Gcgga[ggcgGgGgtGCggccg



AGGCGGGGGTGC



ptosis, and
gtggcgGgGgtGCggCcgg]



GGCCGG



epicanthus
CggGC







inversus






B155
9-140674107-A-
17
431918
EHMT1:
Chromosome 9q
ttcCa[CccaAagcaGCTgtac



ACCCAAAGCAGC


79813
deletion
T|CccaAagcaGCTgTAcT]



TGTACT



syndrome
TcTcC





B156
10-103990523-
17
459553
PITX3:5309
Cataract,
cCCCg[cccaGgccCtgcag



G-GCCCAGGCCC



posterior
GGc|ccCAggccCtgcagGG



TGCAGGGC



polar, 4
c]ccCAg





B157
16-2134369-G-
17
75949
TSC2:7249
Tuberous
cccTg[agcaaGtcCAGCtcc



GAGCAAGTCCAGC



sclerosis
Tc|AgcAaGtcCAGCtcCTc]



TCCTC



syndrome
tccCg





B158
17-17118596-T-
17
247655
FLCN:201163
Hereditary
AaCgt[GCgGcTgcGtGGacC



TGCGGCTGCGTG



cancer-
tc|GcgGcTgcgtGGaCCTc]



GACCTC



predisposing
cacga







syndrome






B159
19-11216246-T-
17
362682
LDLR:3949
Familial
Cgact[gcAagGaCAAaTctG



TGCAAGGACAAA



hyper-
Ac|gcAagGaCAAaTctGac]



TCTGAC



cholesterolemia
gAGga





B160
11-47353677-T-
18
23642
MYBPC3:4607
Hypertrophic
GcCCt[GcagAcaTaGaTgCc



TGCAGACATAGAT



cardiomyopathy
CCc|gcagacaTaGaTGCcCC



GCCCCC




C]gtcaa





B161
18-59992620-T-
18
204404
TNFRSF11A:
Familial
Ctgtt[cGcGctGctgCTgcT



TCGCGCTGCTGCT


8792
expansile
cTg|cGcgctGctgCTgcTcT



GCTCTG



osteolysis
gtcGcgC





B162
18-59992630-G-
18
21338
TNFRSF11A:
Familial
tGctg[CTgcTcTgcGcgct



GCTGCTCTGCGCG


8792
expansile
Gctc|CTgctcTgcGcgCtg



CTGCTC



osteolysis
cTc]gccCg





B163
3-138664581-G-
19
171757
FOXL2:668
Blepharophimosis,
cggTg[gcTGggcTggcaGgG



GGCTGGGCTGGC



ptosis, and
cTGa|gcTGggcTggcaGgGc



AGGGCTGA



epicanthus
TGa]gcTGg







inversus






B164
12-12870830-G-
19
181495
CDKN1B:
Multiple
cCAgg[caggcgGAGcACCcc



GCAGGCGGAGCA


1027
endocrine
Aagc|cagGcgGAGcAccccA



CCCCAAGC



neoplasia,
agc]ccTCg







type 4






B165
19-11216046-G-
19
245580
LDLR:3949
Familial
caGtg[caACAgcTcCacCtgc



GCAACAGCTCCA



hyper-
atC|CaAcagcTcCacctgCat



CCTGCATC



cholesterolemia
C]ccCca





B166
19-11218155-G-
19
228148
LDLR:3949
Familial
gaCtg[ccgGgacTGgtcagatg



GCCGGGACTGGT



hyper-
aa|cCGGgacTGgtcagATgAA]



CAGATGAA



cholesterolemia
CCCAt





B167
19-11224421-G-
19
434302
LDLR:3949
Familial
tcgtg[gtGgAtCCTGttcaTg



GGTGGATCCTG



hyper-
ggt|gTGGAtCCTgttcatgg



TTCATGGGT



cholesterolemia
gT]GCGTA





B168
2-131355422-C-
20
20229
CFC1:55997
Heterotaxy,
acccc[GcgcaCcCcTgtgccc



CGCGCACCCCTGT



visceral, 2,
aCct|gcgcACcCcTgtgcCC



GCCCACCT



autosomal
aCct]gcgcc





B169
3-138664638-T-
20
354106
FOXL2:668
Blepharophimosis,
Gcggt[GgggcagGcgGcGgtG



TGGGGCAGGCGGC



ptosis, and
cggc|GgggcagGcgGcGgtGc



GGTGCGGC



epicanthus
gGC]ggcCg







inversus






B170
9-135778022-C-
20
397173
TSC1:7248
Tuberous
ATTcc[tctcgGtCatGctGC



CTCTCGGTCATGCT



sclerosis 1
agCTg|tctCGGtCatGCtgC



GCAGCTG




agCTg]tCtGa





B171
19-11216243-G-
20
434241
LDLR:3949
Familial
ccCCg[actgcAaGGacaAaT



GACTGCAAGGACAA



hyper-
cTGAc|aCtgcAaGGaCAAaT



ATCTGAC



cholesterolemia
ctGac]gAGga





B172
20-10632292-C-
20
270939
JAG1:182
Alagille
GTCTC[CTtAcaGCTgCctCtg



CCTTACAGCTGCCT



syndrome 1
tTgT|CTtAcaGCTgCctCtgt



CTGTTGT




Tgt]gacag










IV. Protospacer Adjacent Motif (PAM) sequences


Below are exemplary PAM sequences. addgene.org/crispr/guide/#pam-table. blog.addgene.org/xcas9-engineering-a-crispr-variant-with-pam-flexibility Table 9.









TABLE 9







Exemplary PAM Sequences














Species_








and_








Variant_



Cleav-



Leg-
of_

Pat-
Ex-
age



end
Cas9
Side
tern
panded
Site
Width
















A/a
xCas9_
3′
NG
[ACGT]G
−3 from
2



NG



start






B/b
xCas9_
3′
GAA
GAA
−3 from
3



GAA



start






C/c
xCas9_
3′
GAT
GAT
−3 from
3



GAT



start






D/d
SpCas9
3′
NGG
[ACGT]
−3 from
3






GG
start






E/e
SpCas9
3′
NGCG
[ACGT]
−3 from
4



VRER


GCG
start




variant










F/f
SpCas9
3′
NGAG
[ACGT]
−3 from
4



EQR


GAG
start




variant










G/g
SpCas9
3′
NGAN|
[ACGT]GA
−3 from
4



VQR

NGNG
[ACGT]|
start




variant


[ACGT]G








[ACGT|G







H/h
SaCas9
3′
NNG
[ACGT]
−3 from
6





RRT
[ACGT]G
start







[AG]








[AG]T







I/i
NMe1
3′
NNNN
[ACGT]
−3 from
8





GATT
[ACGT]
start







[ACGT]








[ACGT]








GATT







J/j
CjeCas9
3′
NNNN
[ACGT]
−3 from
8





RYAC
[ACGT]
start







[ACGT]








[ACGT]








[AG]








[CT]AC







K/k
AsCpf1
5′
TTTV
TTT
approx
4



and


[ACG]
+18




LbCpf1



from end






M/m
AsCpf1 
5′
TYCV
T[CT]
approx
4



and 


C[ACG]
+18




LbCpf1



from




RR



end




variant










N/n
AsCpf1
5′
TATV
TAT
approx
4



RVR 


[ACG]
+18 from




variant



end






O/o
FnCpf1
5′
TTV
TT
approx
3






[ACG]
+18








from end









V. Adeno-Associated Virus Nucleic Acid Delivery Platforms

Adeno-associated virus (AAV) is a small virus which infects humans and some other primate species. AAV is not currently known to cause disease. In many cases, AAV vectors integrate into the host cell genome, making it useful as gene therapy delivery platform. Gene therapy vectors using AAV can infect both dividing and quiescent cells and persist in an extrachromosomal state without integrating into the genome of the host cell, although in the native virus some integration of virally carried genes into the host genome does occur. Deyle et al., (August 2009). “Adeno-associated virus vector integration”. Current Opinion in Molecular Therapeutics 11(4):442-417. These features make AAV a very attractive candidate for creating viral vectors for gene therapy. Grieger et al., (2005). “Adeno-associated virus as a gene therapy vector: vector development, production and clinical applications” Advances in Biochemical Engineering/Biotechnology. Advances in Biochemical Engineering/Biotechnology 99:119-145 Recent human clinical trials using AAV for gene therapy in the retina have shown promise. Maguire et al., (May 2008) “Safety and efficacy of gene transfer for Leber's congenital amaurosis” The New England Journal of Medicine 358(21): 2240-2248. AAV belongs to the genus Dependoparvovirus, which in turn belongs to the family Parvoviridae. The virus is a small (20 nm) replication-defective, nonenveloped virus.


Wild-type AAV has attracted considerable interest from gene therapy researchers due to a number of features. Chief amongst these is the virus's apparent lack of pathogenicity. It can also infect non-dividing cells and has the ability to stably integrate into the host cell genome at a specific site (designated AAVS1) in the human chromosome 19. Kotin et al., (March 1990). “Site-specific integration by adeno-associated virus”. PNAS USA 87(6):2211-2215; and Surosky et al., (October 1997) “Adeno-associated virus Rep proteins target DNA sequences to a unique locus in the human genome” Journal of Virology 71(10):7951-7959. This feature makes it somewhat more predictable than retroviruses, which present the threat of a random insertion and of mutagenesis, which is sometimes followed by development of a cancer.


The AAV genome integrates most frequently into the site mentioned, while random incorporations into the genome take place with a negligible frequency. Development of AAVs as gene therapy vectors, however, has eliminated this integrative capacity by removal of the rep and cap from the DNA of the vector. The desired gene together with a promoter to drive transcription of the gene is inserted between the inverted terminal repeats (ITR) that aid in concatemer formation in the nucleus after the single-stranded vector DNA is converted by host cell DNA polymerase complexes into double-stranded DNA. AAV-based gene therapy vectors form episomal concatemers in the host cell nucleus. In non-dividing cells, these concatemers remain intact for the life of the host cell. In dividing cells, AAV DNA is lost through cell division, since the episomal DNA is not replicated along with the host cell DNA. Random integration of AAV DNA into the host genome is detectable but occurs at very low frequency. AAVs also present very low immunogenicity, seemingly restricted to generation of neutralizing antibodies, while they induce no clearly defined cytotoxic response. This feature, along with the ability to infect quiescent cells present their dominance over adenoviruses as vectors for human gene therapy. Daya et al., (October 2008). “Gene therapy using adeno-associated virus vectors” Clinical Microbiology Reviews 21(4):583-593; Chirmule et al., (September 1999) “Immune responses to adenovirus and adeno-associated virus in humans” Gene Therapy 6(9):1574-1583; Hernandez et al., (October 1999) “Latent adeno-associated virus infection elicits humoral but not cell-mediated immune responses in a nonhuman primate model”. Journal of Virology 73(10):8549-8558; and Ponnazhagan et al., (April 1997) “Adeno-associated virus 2-mediated gene transfer in vivo: organ-tropism and expression of transduced sequences in mice” Gene 190 (1):203-210.


VI. Pharmaceutical Formulations And Compositions

The present invention further provides pharmaceutical compositions (e.g., comprising the nucleases described above). The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic and to mucous membranes including vaginal and rectal delivery), pulmonary (e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal, intranasal, epidermal and transdermal), oral or parenteral. Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration.


Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable.


Compositions and formulations for oral administration include powders or granules, suspensions or solutions in water or non-aqueous media, capsules, sachets or tablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable.


Compositions and formulations for parenteral, intrathecal or intraventricular administration may include sterile aqueous solutions that may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.


Pharmaceutical compositions of the present invention include, but are not limited to, solutions, emulsions, and liposome-containing formulations. These compositions may be generated from a variety of components that include, but are not limited to, preformed liquids, self-emulsifying solids and self-emulsifying semisolids.


The pharmaceutical formulations of the present invention, which may conveniently be presented in unit dosage form, may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.


The compositions of the present invention may be formulated into any of many possible dosage forms such as, but not limited to, tablets, capsules, liquid syrups, soft gels, suppositories, and enemas. The compositions of the present invention may also be formulated as suspensions in aqueous, non-aqueous or mixed media. Aqueous suspensions may further contain substances that increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers.


In one embodiment of the present invention the pharmaceutical compositions may be formulated and used as foams. Pharmaceutical foams include formulations such as, but not limited to, emulsions, microemulsions, creams, jellies and liposomes. While basically similar in nature these formulations vary in the components and the consistency of the final product.


Agents that enhance uptake of oligonucleotides at the cellular level may also be added to the pharmaceutical and other compositions of the present invention. For example, cationic lipids, such as lipofectin (U.S. Pat. No. 5,705,188), cationic glycerol derivatives, and polycationic molecules, such as polylysine (WO 97/30731), also enhance the cellular uptake of oligonucleotides.


The compositions of the present invention may additionally contain other adjunct components conventionally found in pharmaceutical compositions. Thus, for example, the compositions may contain additional, compatible, pharmaceutically-active materials such as, for example, antipruritics, astringents, local anesthetics or anti-inflammatory agents, or may contain additional materials useful in physically formulating various dosage forms of the compositions of the present invention, such as dyes, flavoring agents, preservatives, antioxidants, opacifiers, thickening agents and stabilizers. However, such materials, when added, should not unduly interfere with the biological activities of the components of the compositions of the present invention. The formulations can be sterilized and, if desired, mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavorings and/or aromatic substances and the like which do not deleteriously interact with the nucleic acid(s) of the formulation.


Dosing is dependent on severity and responsiveness of the disease state to be treated, with the course of treatment lasting from several days to several months, or until a cure is effected or a diminution of the disease state is achieved. Optimal dosing schedules can be calculated from measurements of drug accumulation in the body of the patient. The administering physician can easily determine optimum dosages, dosing methodologies and repetition rates. Optimum dosages may vary depending on the relative potency of individual oligonucleotides, and can generally be estimated based on EC50s found to be effective in in vitro and in vivo animal models or based on the examples described herein. In general, dosage is from 0.01 μg to 100 g per kg of body weight, and may be given once or more daily, weekly, monthly or yearly. The treating physician can estimate repetition rates for dosing based on measured residence times and concentrations of the drug in bodily fluids or tissues. Following successful treatment, it may be desirable to have the subject undergo maintenance therapy to prevent the recurrence of the disease state, wherein the compound is administered in maintenance doses, ranging from 0.01 μg to 100 g per kg of body weight, once or more daily, to once every 20 years.


EXPERIMENTAL
Example I
Human Subjects

Cells for reprogramming TCAP iPSC lines were recovered, with consent, from a skin biopsy from a patient with LGMD2G under a UMMS-IRB-approved protocol and assigned a de-identified ID number unlinked to the patient's medical record. The consent process included conditions for sharing de-identified samples and information with other investigators. No PHI will be shared at any time per HIPAA guidelines.


Example II
Cell Culture

LGMD2G primary dermal fibroblasts were isolated from a skin biopsy from a patient with LGMD2G as described31. Fibroblasts were reprogrammed using the CytoTune 2.0 iPS Sendai Virus Reprogramming Kit (Thermo-Fisher) according to the manufacturer's directions. Clonal lines were expanded for 6-10 passages before banking. Immunostaining was performed to confirm the absence of Sendai virus and expression of OCT4. Human iPSCs were cultured in iPS-Brew XF medium (Miltenyi Biotec) and passaged every 3-5 days with Passaging Solution (Miltenyi Biotec) according to the manufacturer's directions.


Myoblasts were induced from iPSCs using a modification of the Genea Biocells protocol11. Following the generation of differentiated myotubes as described, cells were reseeded and cultured in human primary myoblast medium32. CD56+ cells were purified by FACS using an anti-CD56-APC antibody (BD Biosciences) or MACS (Miltenyi Biotec) according to the manufacturer's directions. Myogenicity was confirmed by immunostaining myoblast and myotube cultures using the mouse monoclonal antibodies MyoD clone 5.8 (Dako) and MF20 (DSHB) (data not shown).


A lymphoblastoid cell line from B lymphocytes (B-LCL) derived from a patient with HPS1 who was homozygous for the 16-bp microduplication was purchased from Coriell (Catalog GM14606). A lymphoblastoid cell line from B lymphocytes (B-LCL) derived from a patient with Tay-sachs who was homozygous for the GATA microduplication in HEXA was purchased from Coriell (Catalog GM11852) These cell lines was cultured following the recommended procedure using RPM1 1640 with 2 mM L-glutamine, 15% FBS and 1% penicillin/streptomycin.


HEK293T cells were cultured following the recommended procedure using Dulbecco's modified Eagle's medium (DMEM), 10% FBS and 1% penicillin/streptomycin. All cultures were maintained in a humidified incubator with 5% CO2 at 37° C.


Example III
Purification of SpyCas9 and LbaCas12a

Protein purification for 3xNLS-SpCas9 and LbaCas12a-2xNLS followed a common protocol. The generation and characterization of the 3xNLS-SpCas9 (Addgene #114365) and LbaCas12a-2xNLS (Addgene #114366) constructs have been described (Wu et al. Nature Medicine (in press) & Liu et al. Nucleic Acids Research (PMID 30892626). The pET21a plasmid backbone (Novagen) is used to drive the expression of a hexa-His-tagged version of each protein. The plasmid expressing 3xNLS-SpCas9 (or LbaCas12a-2xNLS) was transformed into Escherichia coli Rosetta (DE3)pLysS cells (EMD Millipore) for protein production. Cells were grown at 37° C. to an OD600 of ˜0.2, then shifted to 18° C. and induced at an OD600 of ˜0.4 for 16 h with isopropyl β-D-1-thiogalactopyranoside (IPTG, 1 mM final concentration).


Following induction, cells were pelleted by centrifugation and then resuspended with Ni-NTA buffer (20 mM TRIS pH 7.5, 1 M NaCl, 20 mM imidazole, 1 mM TCEP) supplemented with HALT Protease Inhibitor Cocktail, EDTA-Free (100×) (ThermoFisher) and lysed with M-110s Microfluidizer (Microfluidics) following the manufacturer's instructions. The protein was purified from the cell lysate using Ni-NTA resin, washed with five volumes of Ni-NTA buffer and then eluted with elution buffer (20 mM TRIS, 500 mM NaCl, 500 mM imidazole, 10% glycerol, pH 7.5). The 3xNLS-SpCas9 (or LbaCas12a protein) was dialysed overnight at 4° C. in 20 mM HEPES, 500 mM NaCl, 1 mM EDTA, 10% glycerol, pH 7.5.


Subsequently, the protein was step dialysed from 500 mM NaCl to 200 mM NaCl (final dialysis buffer: 20 mM HEPES, 200 mM NaCl, 1 mM EDTA, 10% glycerol, pH 7.5). Next, the protein was purified by cation exchange chromatography (5 ml HiTrap-S column, buffer A: 20 mM HEPES pH 7.5, 1 mM TCEP; buffer B: 20 mM HEPES pH 7.5, 1 M NaCl, 1 mM TCEP; flow rate 5 ml/min, column volume (CV) 5 ml) followed by size-exclusion chromatography (SEC) on a Superdex-200 (16/60) column (isocratic size-exclusion running buffer: 20 mM HEPES pH 7.5, 150 mM NaCl, 1 mM TCEP for 3xNLS-SpCas9 or 20 mM HEPES pH 7.5, 300 mM NaCl, 1 mM TCEP for LbCpf1-2xNLS).


The primary protein peak from the SEC was concentrated in an Ultra-15 Centrifugal Filters Ultracel-30K (Amicon) to a concentration around 100 μM based on absorbance at 280 nm. The purified protein quality was assessed by SDS-PAGE/Coomassie staining to be >95% pure and protein concentration was quantified with a Pierce BCA Protein Assay Kit (ThermoFisher Scientific). Protein was stored at −80° C. until further use.


Example IV
In Vitro Transcription of Guide RNAs

The DNA cassette containing the U6 promoter and the sgRNA framework for SpyCas9 \vas cloned from pLKO1-puro vector33 into pBluescript SK II+ backbone (Liu et al., Nucleic Acids Research, submitted). Plasmids expressing each guide RNA from the U6 promoter were constructed by annealing oligonuleotides encoding guide RNA and cloning it into BfuAI cleavage sites in this vector. Templates for in vitro transcription of SpyCas9 guides were amplified from the cognate plasmids using NEB Q5 High-Fidelity DNA Polymerase for 30 cycles (98° C., 15 s; 65° C. 25 s; 72° C. 20 s) using primer sets designed to include the T7 scaffold.


To generate CRISPR RNA (crRNA) for LbaCas12a, templates for in vitro transcription were generated by PCR amplification of oligonucleotides designed to include the T7 scaffold along with the guide RNA and a 15-mer overlap sequence to allow annealing between the oligos. The oligonucleotides encoded the full-length direct repeat crRNA sequence (Liu et al. Nucleic Acids Research, (PMID 30892626). Thirty cycles of amplification were conducted using NEB Q5 High-Fidelity DNA polymerase (98° C., 15 s; 60° C. 25 s; 72° C. 20 s). The PCR products were purified using Zymo DNA Clean & Concentrator Kit (Zymo Cat. #D4005).


In vitro transcription reactions were performed using the HiScribe T7 High Yield RNA Synthesis Kit using 300 ng of PCR product as template (NEB Cat. #E2040S). After incubation for 16 h at 37° C., samples were treated with DNase I for 40 min at 37° C. to remove any DNA contamination. Each guide RNA was purified using the Zymo RNA Clean and Concentrator Kit. Final RNA concentration was measured using Nanodrop and RNA was stored at −80° C. until further use.


Example V
Electroporation of Cell Lines

3xNLS-SpyCas9 protein was precomplexed with sgRNAs either purchased from Synthego or made in-house by T7 transcription and electroporated into cells using the Neon transfection system (Thermo Fisher).


Electroporation of IPSCs

After washing with PBS, iPSCs were dissociated into single cells with 3:1 TrypLE:0.5 mM EDTA and neutralized with Ham's F10+20% FBS. To form RNP complexes, 20 pmol 3xNLS-SpyCas9 protein and 25 pmol gRNA were combined in 10 μl Neon Buffer R and incubated for 10 min at room temperature. iPSCs (1×105) were resuspended in 10 μl RNP-Buffer R mix and then nucleofected as follows: pulse voltage 1,500 V, pulse width 20 ms, pulse number 1.


After transfection, the cells were plated onto Matrigel-coated 24-well plates with iPS Brew XF supplemented with 10 μM Y27632 for expansion and grown in a humidified incubator at 37° C., 5% CO2, for 4 days before harvesting them for analysis. iPSC-derived myoblasts were electroporated using two pulses of 1,400 V and 20 ms width and plated onto a 24-well dish containing pre-warmed antibiotic-free human primary myoblast growth medium and cultured for four to six days before analysis.


Electroporation of HPS1 Patient-Derived B-LCL Cells

Forty (40) pmol of 3xNLS-SpyCas9 protein was precomplexed with 50 pmol of sgRNA in buffer R for 10-20 min at room temperature in a final volume of 12 μl. Three hundred thousand cells per reaction were resuspended in 10 μl of RNP-buffer R mix and electroporated with 2 pulses at 1,700V for 20 ms using the 10-μl tip. Cells were then plated in 24-well plates with 500 μI of pre-equilibrated antibiotic-free culture medium and grown in a humidified incubator at 37° C. and 5% CO2 for 7 days before indel analysis.


For the PARP-1 inhibition experiments, 300,000 HPS1 patient-derived B-LCL cells were treated with 10 μM or 20 μM rucaparib camsylate (Sigma-Aldrich PZ0036) in standard growth medium for 24 h. Treated cells were electroporated with SpyCas9 RNPs following previously described protocol. Following another 24 h incubation in rucaparib-containing medium, cells were resuspended in PARP-1 inhibitor-free medium and harvested for analysis after 7 days.


Electroporation of HEK293T Cells

Twenty (20) pmol of 3xNLS-SpyCas9 protein and 25 pmol of in vitro transcribed sgRNA were pre-complexed in Neon Buffer R for 10-20 min at room temperature. One hundred thousand cells per reaction were resuspended in 10 μl of RNP-buffer R mix and nucleofected with SpyCas9 guide RNA complex using two pulses at 1,150 V for 20 ms using the 10-μl tip. Cells were then plated in 24-well plates with 500 μl of pre-equilibrated antibiotic-free culture medium and grown for 3 days before analysis. F or Cas12a editing experiments at endogenous microduplications, 80 pmol of LbaCas12a protein was pre-complexed with 100 pmol of in vitro transcribed crRNA and 100,000 cells per reaction were nucleofected as described above.


Example VI
Indel Analysis By TIDE

Genomic DNA was extracted from HEK293T cells using GenElute Mammalian Genomic DNA Miniprep Kit (Sigma Aldrich) according to the manufacturer's instructions. The DNA region containing the 24-bp microduplication was amplified using genomic DNA as template and primers using NEB Q5 High-Fidelity DNA Polymerase (98° C., 15 s; 67° C. 25 s; 72° C. 20 s)×30 cycles. See, Table 10.


Table 10: List of primers used to amplify genomic regions for TIDE analysis















Primer name
Primer Sequence








Endo_24bp_F
GAAGCGCTACCTGATTCCAATTC






Endo_24bp_R
TGGCAGTTAGGAAGGTTGTATCG










Subsequently, the PCR product was purified using the DNA Clean & Concentrator-5 kit (Zymo research) and sequenced. Sanger sequencing trace data were analysed using the TIDE webtool at tide.nki.nl/ to infer the compositions of indels created at the sites of DSBs34.


Example VII
Library Construction for Illumina Deep Sequencing

Library construction for deep sequencing was performed using a modified version of a previously described protocol26. In brief, iPSCs and myoblasts were harvested following nuclease treatment and genomic DNA was extracted using the GenElute Mammalian Genomic DNA Miniprep Kit (Sigma G1N350). Genomic loci spanning the target sites were PCR amplified with locus-specific primers carrying tails complementary to the TruSeq adapters (Deepseq_TCAP_primer_fwd and Deepseq_TCAP_primer_rev). Fifty (50) nanograms of input genomic DNA was PCR amplified with Q5 High-Fidelity DNA Polymerase (New England Biolabs): (98° C., 15 s; 67° C., 25 s; 72° C., 20 s)×30 cycles. Next, 0.1 μl of each PCR reaction was amplified with barcoded primers to reconstitute the TruSeq adaptors using Q5 High-Fidelity DNA Polymerase (New England Biolabs): (98° C., 15 s; 67° C., 25 s; 72° C., 20 s)×10 cycles. Products were qualitatively analysed by gel electrophoresis. Equal amounts of the products were pooled and gel-purified using QlAquick Gel Extraction Kit (Qiagen Cat. #28704). The purified library was deep sequenced using a paired-end 150-bp Illumina MiSeq run.


Example VIII
Illumina Deep Sequencing Analysis

MiSeq data analysis was performed using Unix-based software tools. First, d FastQC (version 0.11.3; bioinformatics.babraham.ac.uk/projects/fastqc/) was used to determine the quality of paired-end sequencing reads (R1 and R2 fastq files). Next, a paired-end read merger (PEAR; version 0.9.8)35 was used to pool raw paired-end reads and generate single merged high-quality full-length reads.


Reads were then filtered according to quality via FASTQ36 for a mean PHRED quality score above 30 and a minimum per base score above 24. After that, BWA (version 0.7.5) and SAMtools (version 0.1.19) were used to align each group of filtered reads to a corresponding reference sequence.


To determine lesion type, frequency, size and distribution, all edited reads from each experimental replicate were combined and aligned, as described above. Lesion types and frequencies were then catalogued in a text output format at each base using bam-readcount. For each treatment group, the average background lesion frequencies (based on lesion type, position and frequency) of the triplicate negative control group were subtracted to obtain the nuclease-dependent lesion frequencies.


Example IX
Library Construction for UMI-Based Illumina Deep Sequencing

The construction of the UMI-based library used a linear amplification step to incorporate UMIs within the amplicons from the target locus15. HPS1 B-LCL cells and HEK293 Ts were harvested following nuclease treatment for genomic DNA extraction using the GenElute Mammalian Genomic DNA Miniprep Kit (Sigma G1N350).


Randomized unique molecular identifiers (UMIs) were incorporated within the 5′ locus-specific primers carrying tails complementary to TruSeq adaptors. In brief, 50 ng of input genomic DNA was linear amplified with NEB Q5 High-Fidelity DNA Polymerase (98° C., 15 s; 67° C., 25 s; 72° C., 20 s) for 10 cycles using the 5′ locus-specific primer with TruSeq adaptor conjugated with a UMI sequence.


Next a 5′ constant primer along with the 3′ locus-specific primer with TruSeq adaptor were added and further amplified for 30 cycles. Indexes were then incorporated using barcoded primers to diluted PCR products using NEB Q5 High-Fidelity DNA Polymerase (98° C., 15 s; 67° C., 25 s; 72° C., 20 s) for 10 cycles. Products were qualitatively analysed by gel electrophoresis. Equal amounts of the products were pooled and gel-purified using QlAquick Gel Extraction Kit (Qiagen Cat. #28704) for DNA recovery. The purified library was deep sequenced using a paired-end 150-bp Illumina MiSeq run.


Example X
UMI-Based Deep Sequencing Analysis

The analysis of the UMI-tagged deep sequencing reads was adapted from a previous protocol15. Initially, BWA (version 0.7.5) and SAMtools (version 0.1.19) were used to align each group of filtered merged-read pairs to a corresponding reference sequence, ignoring the unique molecular barcodes. Next, a custom Python and PySAM script was used to process mapped reads into counts of UMI-labelled reads for each target. The mapped reads were filtered by requiring a mapping value (MAPQ) larger than 30. Alignments were categorized into different categories of indels using VarScan 237.


Next, UMI duplicates were identified to create a minimal set of amplicons that can account for the full set of reads with unique UMIs. For each unique UMI, a minimum of five observations of the same sequence was required to consider the sequence to have a low likelihood of being an artefact (sequencing error in the UMI element). For sequences that met this threshold, all common sequences associated with the UMI were consolidated to one read for analysis of the distribution of sequence modifications that were present at a locus. The resulting UMI number tables, which describe the type of each sequence modification and its length, were concatenated and loaded into GraphPad Prism 7 for data visualization. Microsoft Excel version 16.21.1 was used for statistical analysis.


Example XI
PacBio Library Preparation

Single molecule, real-time (SMRT) sequencing is modified from Pacific Biosciences (PacBio). Nuclease-treated patient-derived iPSCs were harvested for genomic DNA extraction with GenElute Mammalian Genomic DNA Miniprep Kit (Sigma G1N350). In brief, regions that flanked the TCAP target site were PCR amplified using locus-specific primers. See, Table 10. The forward primer was designed to have the barcode sequence followed by the UMI and locus-specific primer sequence. The reverse primer contains the barcode followed by the locus-specific primer sequence. Input DNA (25-50 ng) was PCR amplified with Phusion High Fidelity DNA Polymerase (New England Biolabs): (98° C., 15 s; 65° C., 25 s; 72° C., 18 s)×30 cycles. The products were qualitatively analysed by gel electrophoresis and subsequently gel purified with QIAquick Gel Extraction Kit (Qiagen Cat. #28704). The purified products sequenced at the UMASS Medical School Deep Sequencing Core for SMRTbell Library Preparation using a Pacific Biosciences Sequel Instrument.


Example XII
PacBio Sequencing Data Analysis

For PacBio sequencing data analysis, Minimap2 (version 2.1438) was used to align the raw Consensus_ROI (reads_of_insert.fastq) data to the 2-kb reference sequence. Alignment quality control and filtering were performed using custom Perl script to remove errors and filter out alignments with poor quality. For variation calling, a custom Python script was used to extract deletions or insertions larger than 5 bp for each read from the SAM files. Subsequently, deletions or insertions were classified into different groups on the basis of their length. IGV(version 2.4.16) was used for alignment visualization of the aligned reads using Quick consensus mode39.


Example XIII
Clonal Analysis of iPSCs

Following confirmation of MMEJ-mediated correction in the population of LGMD2G iPSCs, clonal analysis was performed. Cells from the corrected population were seeded into 96-1.0 well plates in the presence of Y27632 at a frequency of 0.8 cells per well. iPSC clones were cultured for several weeks in iPS Brew XF (Miltenyi Biotec) before being collected for sequence analysis by deep-sequencing.


Example IVX
Myoblast Differentiation and Detection of Telethonin Expression

iPSC-derived myoblasts were plated into 0.1% gelatin-coated 6-well plates at a density of 100,000 cells per well in myoblast expansion medium containing Ham's F-10 (Cellgro) supplemented with 20% fetal bovine serum (Hyclone, SH30071.03), 1.2 mM CaCl2 (EMD OmniPur 3000) and 1% chick embryo extract isolated from day 12 SPF Premium Fertilized White Leghorn Chicken Eggs (Charles River, North Franklin, Conn.). After 4 days of expansion, the cells were incubated with myotube differentiation medium including DMEM/F12 (Thermo-Fisher) supplemented with 1% N2 (Thermo-Fisher, 17502-048) and 1% insulin-transferrin-selenium (Thermo-Fisher, 41400045).


After 10 days of differentiation, the cells were dissociated into single cells using TrypLE. Subsequently the cells were fixed with 2% PFA for 15 min and blocked with PBS including 2% BSA, 2% horse serum, 2% goat serum and 2% Triton X-100 for 20 min. The cells were then incubated with anti-telethonin antibody (Santa Cruz, sc-25327, 1:50) at 4° C. for 2 days and IgG goat anti-mouse secondary antibody labelled with Alexa 488 fluorophore (Invitrogen, A11017, 1:800) at room temperature for 1 h. The cells were suspended in flow buffer (PBS including 0.2% FBS) and flow cytometry was performed using a BD FACSAria IIu (UMMS Flow Cytometry Core Laboratory). Roughly 20,000 cells were included for analysis. FlowJo software (version 7.6) was used for data analysis.


Example XV
Survey of Microduplications in ClinVar and in Human Reference Populations

Annotations of pathogenicity from ClinVar (ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/clinvar_20180225. vcf.gz)20 were combined with annotations of allele-frequencies from gnomAD console.cloud.google.com/storage/browser/gnomad-public/release/2.0.2/vcf)21 and from the 1000 Genome Project ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/f using the annotate function in bcf tools41 (1.9), after decomposition of multi-allelic sites and normalization of variants with vt42 (v0.5772) against a reference genome (broadinstitute.org/ftp/pub/seq/references/Homo_sapiens_assemblyl9.fasta). Most analyses were restricted to the intervals in ftp.broadinstitute.org/pub/ExAC_release/releasel/resources/exome_calling_regions. v1.interval_list.


Insertions were extracted using vt (view -h -f “VTYPE==INDEL&&DLEN>0”); then duplications were identified, repeat units counted, internal shift-symmetries determined, and flanking genomic regions extracted using a modified version of the vt function annotate_indels. Additional processing (filtering, finding maximal allele frequencies among different populations, scanning for PAM sites and so on) was performed using R (3.4.3), including the VariantAnnotation (1.24.5) package43.


Exact tandem repeats in the reference genome were identified using the Tandem Repeats Finder program (4.09)44 and checked for exact matches elsewhere in the genome with bwa fastmap (0.7.17)45. Examples of different lengths were manually selected to use for the tests of collapse of endogenous microduplications.


Example XVI
Code Availability Statement

Data analysis used a combination of publicly available software and custom code, as detailed in the Methods. Custom python (CRESA-lpp.py) and R (indel_background_filtering.R) scripts used in the Illumina data analysis and the shell script (Tcap_pacbio_analysis.sh) used for the analysis of the PacBio data are hosted on GitHub (github.com/locusliu/PCR_Amplicon_target_deep_seq). Scripts for the bioinformatic analysis of pathogenic microduplications are hosted at rambutan.umassmed.edu/duplications/.


REFERENCES



  • 1. Moreira, E. S. et al. Limb-girdle muscular dystrophy type 2G is caused by mutations in the gene encoding the sarcomeric protein telethonin. Nat. Genet. 24, 163-166 (2000).

  • 2. El-Chemaly, S. & Young, L. R. Hermansky-Pudlak syndrome. Clin. Chest Med. 37, 505-511 (2016).

  • 3. Sfeir, A. & Symington, L. S. Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway? Trends Biochem. Sci. 40, 701-714 (2015).

  • 4. Bae, S., Kweon, J., Kim, H. S. & Kim, J.-S. Microhomology-based choice of Cas9 nuclease target sites. Nat. Methods 11, 705-706 (2014).

  • 5. Kim, S.-I. et al. Microhomology-assisted scarless genome editing in human iPSCs. Nat. Commun. 9, 939 (2018).

  • 6. Hisano, Y. et al. Precise in-frame integration of exogenous DNA mediated by



CRISPR/Cas9 system in zebrafish. Sci. Rep. 5, 8841 (2015).

  • 7. Sakuma, T., Nakade, S., Sakane, Y., Suzuki, K. T. & Yamamoto, T. MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat. Protocols 11, 118-133 (2016).
  • 8. Bertz, M., Wilmanns, M. & Rief, M. The titin-telethonin complex is a directed, superstable molecular bond in the muscle Z-disk. Proc. Natl Acad. Sci. USA 106, 13307-13310 (2009).
  • 9. Nigro, V. & Savarese, M. Genetic basis of limb-girdle muscular dystrophies: the 2014 update. Acta Myol. 33, 1-12 (2014).
  • 10. Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765-771 (2018). 10.1038/nbt.4192
  • 11. Caron, L. et al. A human pluripotent stem cell model of facioscapulohumeral muscular dystrophy-affected skeletal muscles. Stem Cells Transl. Med. 5, 1145-1161 (2016).
  • 12. Oh, J. et al. Positional cloning of a gene for Hermansky-Pudlak syndrome, a disorder of cytoplasmic organelles. Nat. Genet. 14, 300-306 (1996).
  • 13. Richmond, B. et al. Melanocytes derived from patients with Hermansky-Pudlak syndrome types 1, 2, and 3 have distinct defects in cargo trafficking. J. Invest. Dermatol. 124, 420-427 (2005).
  • 14. Brantly, M. et al. Pulmonary function and high-resolution CT findings in patients with an inherited form of pulmonary fibrosis, Hermansky-Pudlak syndrome, due to mutations in HPS-1. Chest 117, 129-136 (2000).
  • 15. Bolukbasi, M. F. et al. Orthogonal Cas9-Cas9 chimeras provide a versatile platform for genome editing. Nat. Commun. 9, 4856 (2018).
  • 16. Sharma, S. et al. Homology and enzymatic requirements of microhomology-dependent alternative end joining. Cell Death Dis. 6, e1697 (2015).
  • 17. Wang, M. et al. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res. 34, 6170-6182 (2006).
  • 18. Dutta, A. et al. Microhomology-mediated end joining is activated in irradiated human cells due to phosphorylation-dependent formation of the XRCC1 repair complex. Nucleic Acids Res. 45, 2585-2599 (2017).
  • 19. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759-771 (2015).
  • 20. Landrum, M. J. et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 46, D1062-D1067 (2018).
  • 21. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285-291 (2016).
  • 22. Komor, A. C., Badran, A. H. & Liu, D. R. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168, 20-36 (2017).
  • 23. Kim, E. et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat. Commun. 8, 14500 (2017).
  • 24. Edraki, A. et al. A compact, high-accuracy Cas9 with a dinucleotide PAM for in vivo genome editing. Mol. Cell 73, 714-726.e4 (2019).
  • 25. Kleinstiver, B. P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481-485 (2015).
  • 26. Bolukbasi, M. F. et al. DNA-binding-domain fusions enhance the targeting range and precision of Cas9. Nat. Methods 12,1150-1156 (2015).
  • 27. Hu, J. H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556,57-63 (2018).
  • 28. van Overbeek, M. et al. DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks. Mol. Cell 63,633-646 (2016).
  • 29. Suzuki, K. et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540,144-149 (2016).
  • 30. Shen, M. W. et al. Predictable and precise template-free CRISPR editing of pathogenic variants. Nature 563,646-651 (2018).
  • 31. Rittié, L. & Fisher, G. J. Isolation and culture of skin fibroblasts. Methods Mol. Med. 117,83-98 (2005).
  • 32. Stadler, G. et al. Establishment of clonal myogenic cell lines from severely affected dystrophic muscles—CDK4 maintains the myogenic population. Skelet. Muscle 1,12 (2011).
  • 33. Kearns, N. A. et al. Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development 141,219-223 (2014).
  • 34. Brinkman, E. K., Chen, T., Amendola, M. & van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168 (2014).
  • 35. Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina


Paired-End reAd mergeR. Bioinformatics 30,614-620 (2014).

  • 36. Blankenberg, D. et al. Manipulation of FASTQ data with Galaxy. Bioinformatics 26, 1783-1785 (2010).
  • 37. Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22,568-576 (2012).
  • 38. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34,3094-3100 (2018).
  • 39. Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29,24-26 (2011).
  • 40. 1000 Genomes Project Consortium A global reference for human genetic variation. Nature 526,68-74 (2015).
  • 41. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078-2079 (2009).
  • 42. Tan, A., Abecasis, G. R. & Kang, H. M. Unified representation of genetic variants. Bioinformatics 31,2202-2204 (2015).
  • 43. Obenchain, V. et al. VariantAnnotation: a Bioconductor package for exploration and annotation of genetic variants. Bioinformatics 30,2076-2078 (2014).
  • 44. Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27,573-580 (1999).
  • 45. Li, H. Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly. Bioinformatics 28,1838-1844 (2012).

Claims
  • 1. A programmable nuclease with sequence-specific DNA-binding affinity for a genomic locus, wherein said genomic locus comprises a microduplication mutation.
  • 2. The programmable nuclease of claim 1, wherein said nuclease further comprises a protospacer adjacent motif binding domain having said sequence-specific DNA-binding affinity for said genomic locus protospacer adjacent motif sequence.
  • 3. The nuclease of claim 1, wherein said nuclease is selected from the group consisting of a Class II CRISPR single effector nuclease, a Cas9 nuclease, a Cas12 nuclease, a zinc finger nuclease and a transcription activator-like effector nuclease.
  • 4. The nuclease of claim 1, wherein a duplicate sequence of said microduplication mutation has a length of between 1-40 nucleotides.
  • 5. The nuclease of claim 1, wherein a duplicate sequence of the microduplication mutation has a length of greater than 40 nucleotides.
  • 6. A microduplication of claim 1, where the microduplication is in the form of a direct repeat.
  • 7. A method, comprising; a) providing; i) a subject comprising a genomic locus having a microduplication mutation; andii) a pharmaceutical formulation comprising a programmable nuclease, said nuclease having sequence-specific DNA-binding affinity for a region that contains said microduplication mutation within said genomic locus; andb) administering said pharmaceutical formulation to said subject under conditions such that said microduplication mutation is replaced with a wild type sequence of said genomic locus.
  • 8. The method of claim 6, wherein said wild type sequence replacement comprises a correction through DNA repair.
  • 9. The method of claim 7, wherein said DNA repair correction is performed without assistance of an exogenously supplied donor DNA.
  • 10. The method of claim 7, wherein said nuclease further comprises a protospacer adjacent motif binding domain having said sequence-specific DNA-binding affinity for said genomic locus protospacer adjacent motif sequence.
  • 11. The method of claim 7, wherein said genomic locus is selected from the group consisting of TCAP, HPS1, HEXA, DOK7 and RAX2.
  • 12. The method of claim 7, wherein said subject further exhibits at least one symptom of a disease caused by said target gene microduplication mutation.
  • 13. The method of claim 7, wherein said disease is selected from the group consisting of limb-girdle muscular dystrophy 2G, Hermanksy-Pudlak syndrome, Tay-Sachs disease, familial limb-girdle myasthenia and cone-rod dystrophy 11.
  • 14. The method of claim 7, wherein said administering further reduces said at least one symptom of said disease.
  • 15. The method of claim 7, wherein said nuclease is selected from the group consisting of a Class II CRISPR single effector nuclease, a Cas9 nuclease, a Cas12 nuclease, a zinc finger nuclease and a transcription activator-like effector nuclease.
  • 16. The method of claim 7, wherein said pharmaceutical formulation comprises an adeno-associated virus encoding said programmable nuclease.
PCT Information
Filing Document Filing Date Country Kind
PCT/US19/30576 5/3/2019 WO 00
Provisional Applications (2)
Number Date Country
62667201 May 2018 US
62823173 Mar 2019 US