The present invention relates to a recombinant microorganism useful for the production of L-methionine and/or its derivatives and process for the preparation of L-methionine. The microorganism of the invention is modified in a way that the L-methionine production is improved by enhancing its cobalamin-dependant methionine synthase activity as well as its L-methionine export. In particular, the genes metH, fldA, fpr or their homologous genes and the genes ygaZ and ygaH or their homologous genes are overexpressed in the microorganism.
Sulphur-containing compounds such as cysteine, homocysteine, methionine or S-adenosylmethionine are critical to cellular metabolism. In particular L-methionine, an essential amino acid, which cannot be synthesized by animals, plays an important role in many body functions. Most of the methionine produced industrially is widely used as an animal feed and food additive.
With the decreased use of animal-derived proteins as a result of BSE and chicken flu, the demand for pure methionine has increased. Commonly, D,L-methionine is produced chemically from acrolein, methyl mercaptan and hydrogen cyanide. However, the racemic mixture does not perform as well as pure L-methionine (Saunderson, 1985). Additionally, although pure L-methionine can be produced from racemic methionine, for example, through the acylase treatment of N-acetyl-D,L-methionine, this dramatically increases production costs. Accordingly, the increasing demand for pure L-methionine coupled with environmental concerns render microbial production of methionine an attractive prospect.
Other important amino acids, such as lysine, threonine and tryptophan are produced via fermentation for use in animal feed. Therefore, these amino acids can be made using glucose and other renewable resources as starting materials. The production of L-methionine via fermentation has not been successful yet, but the development of the technology is on going.
Different approaches for the optimisation of L-methionine production in microorganisms have been described previously (see, for example, patents or patent applications U.S. Pat. No. 7,790,424, U.S. Pat. No. 7,611,873, WO2002/10209, WO2005/059093 and WO2006/008097); however, industrial production of L-methionine from microorganisms requires further improvements.
In Escherichia coli, two distinct enzymes catalyze the terminal step in de novo biosynthesis of methionine; the cobalamin-dependent methionine synthase (MetH, EC 2.1.1.13) which contains a prosthetic group that is required for activity and the cobalamin-independent methionine synthase (MetE, EC 2.1.1.14) (Foster et al., 1961; Gonzalez et al., 1992). The cobalamin-dependent methionine synthase, MetH, is a protein of ˜136 kDa containing four domains: a domain containing the cobalamin cofactor (Cob domain), a domain binding the methyl-THF substrate (CH3-THF domain), a domain binding the homocysteine substrate (Hcy domain), and a domain binding S-Adenosyl-Methionine (SAM) (Adomet domain) (Matthews, 2001). In the presence of oxygen, the enzyme is inactivated by oxidation (Banerjee et al., 1990). In order to reactivate the enzyme, a reductive methylation occurs. The reaction involves a methyl group provided by SAM bound to the AdoMet domain of the enzyme, and two electrons transferred via an external transport chain. The two electrons are provided by NADPH and transferred via a downhill potential driven redox chain composed of a FAD-containing flavodoxine reductase, FldA and a FMN-containing flavodoxine reductase, Fpr (Fujii & Huennekens, 1974; Wan & Jarrett, 2002) in Escherichia coli. As disclosed in patent application WO2009/144270, in Corynebacterium glutamicum, functional homologues of FldA and Fpr have been identified. They are respectively FdxC, FdxD or FdxA and FprA1, FprA2, FprA3 or FldR1.
The protein complex YgaZ and YgaH is a member of the branched chain amino acid exporter (LIV-E) family responsible for export of L-valine. In the same manner, YgaZH is also involved in the export of methionine as it was shown by Trotschel and colleagues for BrnFE, the homolog of YgaZH from Corynebacterium glutamicum (Trotschel et al., 2005).
Numerous patents applications were filed on the improvement of the methionine synthase activity by different means in order to produce L-methionine:
In the same manner few patents disclose the overexpression of genes encoding the methionine excretion system in different micro organisms:
Inventors have found surprisingly and unexpectedly that the increase of the L-methionine efflux together with the enhancement of the cobalamin-dependant L-methionine synthase activity in a recombinant L-methionine overproducer microorganism improve the methionine production.
The invention relates to recombinant microorganism and method for optimising the production of methionine and/or its derivatives, wherein the cobalamin-dependent methionine synthase activity and the methionine efflux are enhanced. In the recombinant microorganism, cobalamin-dependent methionine synthase activity is enhanced by overexpressing the expression of metH, and optionally the expression of the genes fldA and fpr from E. coli or their homologous genes from C. glutamicum whereas methionine efflux is enhanced by overexpressing the genes ygaZH from E. coli or brnFE from C. glutamicum or their homologous genes.
The recombinant microorganism may also comprise other genetic modifications such as:
In a particular embodiment, the present invention is related to a recombinant microorganism wherein: a) the genes metH, and optionally the genes fldA and fpr from E. coli or their homologous genes from C. glutamicum are overexpressed, b) the genes ygaZ and ygaH from E. coli or the genes brnF and brnE from C. glutamicum or their homologous genes originating from Citrobacter koseri, Shigella flexneri, Raoultella ornithinolytica, Enterobacter sp., Yersinia enterocolitica, Photorhabdus luminescens, Citrobacter youngae or Citrobacter freundii are overexpressed, and c) the expression of the genes metA*, cysPUWAM, cysJIH, gcvTHP, metF, serA, serB, serC, cysE, thrA*, ptsG and pyc are enhanced; and d) the expression of the genes metJ, pykA, pykF, purU, yncA, dgsA and metE are attenuated.
Preferably, the recombinant microorganism is Escherichia coli or Corynebacterium glutamicum.
Before describing the present invention in detail, it is to be understood that this invention is not limited to particularly exemplified methods and may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments of the invention only, and is not intended to be limiting, which will be limited only by the appended claims.
All publications, patents and patent applications cited herein, whether supra or infra, are hereby incorporated by reference in their entirety.
Furthermore, the practice of the present invention employs, unless otherwise indicated, conventional microbiological and molecular biological techniques within the skill of the art. Such techniques are well known to the skilled worker, and are explained fully in the literature.
It must be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to “a microorganism” includes a plurality of such microorganisms, and a reference to “an endogenous gene” is a reference to one or more endogenous genes, and so forth. Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any materials and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred materials and methods are now described.
In the claims that follow and in the consecutive description of the invention, except where the context requires otherwise due to express language or necessary implication, the word “comprise”, “contain”, “involve” or “include” or variations such as “comprises”, “comprising”, “containing”, “involved”, “includes”, “including” are used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention.
The term “methionine” and “L-methionine” designate the essential sulphur-containing amino-acid with chemical formula HO2CCH(NH2)CH2CH2SCH3 and CAS number 59-51-8 or 63-68-3 for the specific L-isomer.
“Derivatives of methionine” refers to molecules analogs to methionine which present the same chemical backbone but differ from methionine with at least one chemical group. In this invention, preferred methionine derivatives are N-acetyl methionine (NAM), S-adenosyl methionine (SAM) and hydroxy-methionine (or methionine hydroxy analogue or MHA).
The term “microorganism”, as used herein, refers to a bacterium, yeast or fungus which is not modified artificially. Preferentially, the microorganism is selected among Enterobacteriaceae, Bacillaceae, Streptomycetaceae and Corynebacteriaceae. More preferentially the microorganism is a species of Escherichia, Klebsiella, Pantoea, Salmonella, or Corynebacterium. Even more preferentially the microorganism of the invention is either the species Escherichia coli or Corynebacterium glutamicum.
The term “recombinant microorganism” or “genetically modified microorganism”, as used herein, refers to a bacterium, yeast or fungus that is not found in nature and is genetically different from its equivalent found in nature. It means, it is modified either by introduction or by deletion or by modification of genetic elements. It can also be transformed by forcing the development and evolution of new metabolic pathways by combining directed mutagenesis and evolution under specific selection pressure (see, for example, WO2004/076659 or WO2007/011939).
A microorganism may be modified to express exogenous genes if these genes are introduced into the microorganism with all the elements allowing their expression in the host microorganism. The modification or “transformation” of microorganisms with exogenous DNA is a routine task for those skilled in the art.
A microorganism may be modified to modulate the expression level of an endogenous gene.
The term “endogenous gene” means that the gene was present in the microorganism before any genetic modification. Endogenous genes may be overexpressed by introducing heterologous sequences in addition to, or to replace endogenous regulatory elements, or by introducing one or more supplementary copies of the gene into the chromosome or a plasmid. Endogenous genes may also be modified to modulate their expression and/or activity. For example, mutations may be introduced into the coding sequence to modify the gene product or heterologous sequences may be introduced in addition to or to replace endogenous regulatory elements. Modulation of an endogenous gene may result in the up-regulation and/or enhancement of the activity of the gene product, or alternatively, down regulate and/or lower the activity of the endogenous gene product.
Another way to modulate their expression is to exchange the endogenous promoter of a gene (e.g., wild type promoter) with a stronger or weaker promoter to up or down regulate expression of the endogenous gene. These promoters may be homologous or heterologous. It is well within the ability of the person skilled in the art to select appropriate promoters.
Contrariwise, “exogenous gene” means that the gene was introduced into a microorganism, by means well known by the man skilled in the art whereas this gene is not naturally occurring in the microorganism. Exogenous genes may be integrated into the host chromosome, or be expressed extra-chromosomally by plasmids or vectors. A variety of plasmids, which differ with respect to their origin of replication and their copy number in the cell, are well known in the art. These genes may be homologous.
In the context of the invention, the term “homologous gene” is not limited to designate genes having a theoretical common genetic ancestor, but includes genes which may be genetically unrelated that have, none the less, evolved to encode protein which perform similar functions and/or have similar structure. Therefore the term ‘functional homolog” for the purpose of the present invention relates to the fact that a certain enzymatic activity may not only be provided by a specific protein of defined amino acid sequence, but also by proteins of similar sequence from other (un)related microorganisms.
Using the references given in Genbank for known genes, those skilled in the art are able to determine the equivalent genes in other organisms, bacterial strains, yeast, fungi, mammals, plants, etc. This routine work is advantageously done using consensus sequences that can be determined by carrying out sequence alignments with genes derived from other microorganisms and designing degenerate probes to clone the corresponding gene in another organism. These routine methods of molecular biology are well known to those skilled in the art.
The terms “improved methionine production”, “improve methionine production” and grammatical equivalents thereof, as used herein, refer to an increased methionine/carbon source yield (ratio of gram/mol methionine produced per gram/mol carbon source consumed that it can be expressed in percent) and/or an improved purity of produced methionine. In this invention, the purity of the produced methionine may be increased by decreasing the production of ketomethylvalerate and/or homolanthionine. Methods for determining the amount of carbon source consumed and of methionine produced are well known to those in the art. The yield and/or the purity of produced methionine are higher in the recombinant microorganism compared to the corresponding unmodified microorganism.
The terms “microorganism optimised for the fermentative production of methionine” refers to microorganisms evolved and/or genetically modified to present an improved methionine production in comparison with the endogenous production of the corresponding wild-type microorganisms. Such microorganisms “optimised” for methionine production are well known in the art, and have been disclosed in particular in patent applications WO2005/111202, WO2007/077041, WO2009/043803 and WO2012/098042.
According to the invention the terms “fermentative production”, “culture” or “fermentation” are used to denote the growth of bacteria. This growth is generally conducted in fermenters with an appropriate culture medium adapted to the microorganism being used and containing at least one simple carbon source, and if necessary co-substrates.
An “appropriate culture medium” designates a medium (e.g., a sterile, liquid media) comprising nutrients essential or beneficial to the maintenance and/or growth of the cell such as carbon sources or carbon substrates, nitrogen sources, for example, peptone, yeast extracts, meat extracts, malt extracts, urea, ammonium sulfate, ammonium chloride, ammonium nitrate and ammonium phosphate; phosphorus sources, for example, monopotassium phosphate or dipotassium phosphate; trace elements (e.g., metal salts), for example magnesium salts, cobalt salts and/or manganese salts; as well as growth factors such as amino acids and vitamins.
The term “carbon source” or “carbon substrate” or “source of carbon” according to the present invention denotes any source of carbon that can be used by those skilled in the art to support the normal growth of a microorganism, including monosaccharides (such as glucose, galactose, xylose, fructose or lactose), oligosaccharides, disaccharides (such as sucrose, cellobiose or maltose), molasses, starch or its derivatives, hemicelluloses and combinations thereof. An especially preferred simple carbon source is glucose. Another preferred simple carbon source is sucrose. The carbon source can be derived from renewable feed-stock. Renewable feed-stock is defined as raw material required for certain industrial processes that can be regenerated within a brief delay and in sufficient amount to permit its transformation into the desired product. Vegetal biomass treated or not, is an interesting renewable carbon source.
The term “source of sulphur” according to the invention refers to sulphate, thiosulfate, hydrogen sulphide, dithionate, dithionite, sulphite, methylmercaptan, dimethylsulfide and other methyl capped sulphides or a combination of the different sources. More preferentially, the sulphur source in the culture medium is sulphate or thiosulfate or a mixture thereof.
The terms “source of nitrogen” corresponds to either an ammonium salt or ammoniac gas. The nitrogen source is supplied in the form of ammonium or ammoniac.
The terms “attenuation” or “expression attenuated” mean in this context that the expression of a gene or the production of an enzyme is decreased or suppressed compared to the non modified microorganism leading to a decrease in the intracellular concentration of a ribonucleic acid, a protein or an enzyme compared to the non modified microorganism. The man skilled in the art knows different means and methods to measure ribonucleic acid concentration or protein concentration in the cell including for instance use of Reverse Transcription Polymerase Chain Reaction (RT-PCR) and Real-time Polymerase Chain Reaction (qPCR) to determine ribonucleic acid concentration and use of specific antibody to determine concentration of specific protein.
Decrease or suppression of the production of an enzyme is obtained by the attenuation of the expression of gene encoding said enzyme.
Attenuation of genes may be achieved by means and methods known to the man skilled in the art. Generally, attenuation of gene expression may be achieved by:
The man skilled in the art knows a variety of promoters which exhibit different strength and which promoter to use for a weak or an inducible genetic expression.
The term “activity” of an enzyme is used interchangeably with the term “function” and designates, in the context of the invention, the reaction that is catalyzed by the enzyme. The man skilled in the art knows how to measure the enzymatic activity of said enzyme.
The terms “attenuated activity” or “reduced activity” of an enzyme mean either a reduced specific catalytic activity of the protein obtained by mutation in the aminoacids sequence and/or decreased concentrations of the protein in the cell obtained by mutation of the nucleotidic sequence or by deletion of the coding region of the gene.
The terms “enhanced activity” or “increased activity” of an enzyme designate either an increased specific catalytic activity of the enzyme, and/or an increased quantity/availability of the enzyme in the cell, obtained for example by overexpressing the gene encoding the enzyme.
The terms “increased expression”, “enhanced expression” or “overexpression” and grammatical equivalents thereof, are used interchangeably in the text and have a similar meaning. These terms mean that the expression of a gene or the production of an enzyme is increased compared to the non modified microorganism leading to an increase in the intracellular concentration of a ribonucleic acid, a protein or an enzyme compared to the non modified microorganism. The man skilled in the art knows different means and methods to measure ribonucleic acid concentration or protein concentration in the cell including for instance use of Reverse Transcription Polymerase Chain Reaction (RT-PCR) and Real-time Polymerase Chain Reaction (qPCR) to determine ribonucleic acid concentration and use of specific antibody to determine concentration of specific protein.
Increase production of an enzyme is obtained by increasing expression of the gene encoding said enzyme.
To increase the expression of a gene, the man skilled in the art knows different techniques such as:
The terms “encoding” or “coding” refer to the process by which a polynucleotide, through the mechanisms of transcription and translation, produces an amino-acid sequence. The gene(s) encoding the enzyme(s) can be exogenous or endogenous.
The terms “feed-back sensitivity” or “feed-back inhibition” refer to a cellular mechanism control in which an or several enzymes that catalyse the production of a particular substance in the cell are inhibited or less active when that substance has accumulated to a certain level. So the terms “reduced feed-back sensitivity” or “reduced feed-back inhibition” mean that the activity of such a mechanism is decreased or suppressed compared to a non modified microorganism. The man skilled in the art knows how to modify the enzyme to obtain this result. Such modifications have been described in the patent application WO2005/111202 or in the U.S. Pat. No. 7,611,873.
In a first aspect of the invention, a recombinant microorganism is optimised for the fermentative production of methionine and/or its derivatives by enhancing the cobalamin-dependent methionine synthase activity and by enhancing the methionine efflux in said microorganism. Preferably, the recombinant microorganism is chosen among Enterobacteriaceae or Corynebacteriaceae. More preferably, the recombinant microorganism of the invention is chosen among Escherichia coli or Corynebacterium glutamicum.
As described above, cobalamin-dependent methionine synthase activity is mediated by MetH enzyme. This enzyme needs a reactivation system for having a sustained activity. This system is encoded by two genes, fldA and fpr in E. coli and by respectively gene chosen among fdxC, fdxD or fdxA and among fprA1, fprA2, fprA3 or fldR1 in C. glutamicum. In this application, the terms “MetH and its reactivation system” or “metH, fldA, fpr” relate to the cobalamin-dependent methionine synthase and its reactivation system both in E. coli and in C. glutamicum or their encoding genes both from E. coli and from C. glutamicum. Thus, enhancement of cobalamin-dependent methionine synthase activity is preferably carried out by overexpression of metH gene and also of its reactivation system encoded by fldA and fpr genes.
In one embodiment of the invention, the cobalamin-dependent methionine synthase activity is enhanced by overexpressing (enhancing their expression) genes metH, fldA, fpr from E. coli or their homologous genes from C. glutamicum. Preferably, these genes are overexpressed under a promoter different from their wild-type promoter.
More preferably, the genes metH, fldA or fpr or their homologous genes from C. glutamicum are overexpressed chromosomally, i.e. these genes are overexpressed from the chromosome. One or several supplementary copies of each gene are introduced on the chromosome of the microorganism. They are integrated at different loci selected from the list disclosed in the patent application WO2011/073122, and whose deletions do not have impact on methionine production. The wild-type copy of the coding sequence of each gene is conserved, but their promoter region may be replaced by artificial promoter and/or Ribosome Binding Site (RBS).
In a specific embodiment of the invention:
Additional copies of the introduced genes are expressed under control of artificial promoter and RBS.
In amino-acid producer microorganisms, methionine is excreted by a specific efflux transporter. Notably, in E. coli, this transporter is called YgaZH and is encoded by the ygaZ and ygaH genes whereas in C. glutamicum, it is named BrnFE and is encoded by the brnF and brnE genes. Functional homologues of this methionine efflux system have been identified in several other microorganisms. In the invention, recombinant microorganism overexpresses ygaZH genes from E. coli or brnFE genes from C. glutamicum. Alternatively, the recombinant microorganism of the invention may overexpress functional homologues of YgaZH or of BrnFE transporters. YgaZ and YgaH homologous protein are presented respectively in Table 1 and Table 2.
Citrobacter koseri
Shigella flexneri
Raoultella ornithinolytica
ornithinolytica B6]
Enterobacter sp.
Serratia odorifera
Dickeya dadantii
Erwinia chrysanthemi (strain 3937)
Pectobacterium
carotovorum subsp.
Carotovorum
Yersinia enterocolitica
Photorhabdus luminescens
Hafnia alvei
Citrobacter sp. KTE32
Citrobacter youngae
Rahnella aquatilis
Brenneria sp.
Xenorhabdus bovienii
Shigella flexneri
Shigella dysenteriae
Shigella flexneri
Shigella dysenteriae
Shigella flexneri
Shigella dysenteriae
Shigella dysenteriae
Shigella boydii
Shigella flexneri
Shigella flexneri
Shigella boydii
Shigella flexneri
flexneri]
Citrobacter sp.
Citrobacter sp.
Citrobacter freundii
Citrobacter sp.
Citrobacter freundii
Citrobacter sp.
Klebsiella sp.
Klebsiella oxytoca
Klebsiella oxytoca
Klebsiella oxytoca
Enterobacter cloacae
Klebsiella pneumoniae
Klebsiella variicola
Klebsiella oxytoca
Klebsiella oxytoca
Klebsiella pneumoniae
Klebsiella pneumoniae
Klebsiella pneumoniae
Klebsiella pneumoniae
Klebsiella pneumoniae
Klebsiella pneumoniae
pneumoniae KCTC 2242]
Klebsiella pneumoniae
pneumoniae]
Klebsiella sp.
Klebsiella pneumoniae
Klebsiella oxytoca
Klebsiella pneumoniae
Klebsiella oxytoca
Kosakonia radicincitans
Kosakonia radicincitans
Yersinia pestis
Shigella flexneri
flexneri]
Yersinia
pseudotuberculosis
Serratia sp.
Serratia proteamaculans
Yersinia intermedia
Yersinia enterocolitica
Yersinia enterocolitica
Yersinia kristensenii
Serratia marcescens
Dickeya zeae
Dickeya dadantii
Photorhabdus asymbiotica
asymbiotica]
Dickeya zeae
Yersinia bercovieri
Erwinia chrysanthemi
Yersinia aldovae
Dickeya zeae
Yersinia frederiksenii
Enterobacteriaceae
bacterium
Serratia liquefaciens
Pectobacterium
atrosepticum SCRI1043]
atrosepticum
Serratia marcescens
Serratia marcescens
marcescens WW4]
Yersinia rohdei
Pectobacterium
carotovorum subsp.
Carotovorum
Yersinia mollaretii
Pectobacterium wasabiae
Pectobacterium wasabiae
Dickeya dadantii
Serratia marcescens
Rahnella sp.
Rahnella aquatilis
Pectobacterium
carotovorum
Xenorhabdus nematophila
nematophila]
Xenorhabdus nematophila
nematophila ATCC 19061]
Klebsiella oxytoca
Klebsiella oxytoca
Klebsiella oxytoca
Klebsiella pneumoniae
Klebsiella oxytoca
Klebsiella pneumoniae
Klebsiella variicola
Pectobacterium wasabiae
Pectobacterium
carotovorum
Shigella dysenteriae
dysenteriae Sd197]
Shigella sonnei
Citrobacter koseri
Shigella flexneri
Raoultella ornithinolytica
Enterobacter sp.
Serratia odorifera
Dickeya dadantii
dadantii 3937]
Pectobacterium
carotovorum subsp.
carotovorum
Yersinia enterocolitica
Photorhabdus luminescens
luminescens subsp. laumondii TTO1]
Hafnia alvei
Citrobacter sp.
Citrobacter youngae
Rahnella aquatilis
Brenneria sp. EniD312
Xenorhabdus bovienii
Shigella flexneri
Shigella boydii
Shigella flexneri
Citrobacter sp.
Citrobacter freundii
Citrobacter freundii
Citrobacter sp.
Klebsiella sp.
Klebsiella oxytoca
Klebsiella oxytoca
Enterobacter cloacae
Klebsiella pneumoniae
Klebsiella oxytoca
Klebsiella oxytoca
Klebsiella pneumoniae
pneumoniae 342]
Klebsiella pneumoniae
pneumoniae subsp. pneumoniae HS11286]
Klebsiella pneumoniae
pneumoniae subsp. pneumoniae MGH 78578]
Klebsiella pneumoniae
Klebsiella pneumoniae
Klebsiella oxytoca
Klebsiella oxytoca
Kosakonia radicincitans
Enterobacter radicincitans
Yersinia pestis
Yersinia
pseudotuberculosis IP 32953]
pseudotuberculosis
Serratia proteamaculans
proteamaculans 568]
Yersinia intermedia
Yersinia enterocolitica
enterocolitica subsp. palearctica 105.5R(r)]
Yersinia enterocolitica
Yersinia kristensenii
Serratia marcescens
Dickeya zeae
Dickeya dadantii
Photorhabdus asymbiotica
asymbiotica]
Dickeya zeae
Yersinia bercovieri
Erwinia chrysanthemi
Yersinia aldovae
Dickeya zeae Ech1591
Yersinia frederiksenii
Enterobacteriaceae
bacterium
Serratia liquefaciens
Pectobacterium
atrosepticum SCRI1043]
atrosepticum
Serratia marcescens
Serratia marcescens
marcescens WW4]
Yersinia rohdei
Pectobacterium
carotovorum subsp. carotovorum PC1]
carotovorum subsp.
Carotovorum
Yersinia mollaretii
Pectobacterium wasabiae
Pectobacterium wasabiae
wasabiae WPP163]
Dickeya dadantii
Serratia marcescens
Rahnella sp.
Rahnella aquatilis
Pectobacterium
carotovorum
Xenorhabdus nematophila
nematophila ATCC 19061]
Klebsiella oxytoca
oxytoca E718]
Klebsiella oxytoca
Klebsiella oxytoca
Klebsiella pneumoniae
Klebsiella oxytoca
oxytoca E718]
Klebsiella pneumoniae
pneumoniae subsp. pneumoniae NTUH-K2044]-
Klebsiella variicola
Pectobacterium wasabiae
wasabiae WPP163]
Pectobacterium
carotovorum
Shigella dysenteriae
dysenteriae Sd197]
Shigella dysenteriae
Shigella sonnei
Shigella sonnei
Shigella boydii
Yersinia pestis
Yersinia pestis
With accession number disclosed in the tables for each homolog the man skilled in the art is able to obtain the amino acid sequence and its nuceotidic coding sequence on NCBI databases for instance.
From the amino acid sequence or nucleotidic sequence, it is a routine task for the man skilled in the art to obtain genes encoding these homologues. It can be done either by artificial synthesis of the gene coding the protein of interest from its amino acid sequence or by PCR amplification of the coding region of interest from the corresponding genomic DNA. In the context of the invention, these genes are called “ygaZ or ygaH homologous genes”. The sequences of these ygaZH homologous genes may be adjusted to the codon bias of the host microorganism.
In a specific embodiment of the invention, the recombinant microorganism overexpresses the genes ygaZ and ygaH from E. coli coding the proteins whose sequences are respectively disclosed in SEQ ID NO: 1 and SEQ ID NO: 2 or brnF and brnE from C. glutamicum or their homologous genes. Preferably, ygaZ and ygaH homologous genes are composed by the gene pair originating from the same organism and composed by the homologous gene of ygaZ and the homologous gene of ygaH. However mismatch pair of an ygaZ homologous gene from a first organism and an ygaH homologous gene from a second organism could be used. Preferably, the genes ygaZH, brnFE or their homologous genes are overexpressed.
YgaZH homologous genes are chosen among genes encoding the YgaZ and YgaH homologues disclosed respectively in table 1 and in table 2. Preferably, ygaZH homologous genes are chosen among genes encoding YgaZH homologues from Citrobacter species, Shigella species, Raoultella species, Enterobacter species, Yersinia species and Photorhabdus species. More preferably ygaZH homologous genes originate from Citrobacter koseri, Shigella flexneri, Raoultella ornithinolytica, Enterobacter sp., Yersinia enterocolitica, Photorhabdus luminescens, Citrobacter youngae or Citrobacter freundii. Most preferably, ygaZH homologous genes originate from Citrobacter koseri, Citrobacter youngae, Citrobacter freundii or Enterobacter sp.
Therefore, ygaZH homologous genes are preferably chosen among genes coding the pair of YgaZ homolog and YgaH homolog defined respectively by: SEQ ID NO: 3 and SEQ ID NO: 4 from Citrobacter koseri, SEQ ID NO: 5 and SEQ ID NO: 6 from Shigella flexneri, SEQ ID NO: 7 and SEQ ID NO: 8 from Raoultella ornithinolytica, SEQ ID NO: 9 and SEQ ID NO: 10 from Enterobacter sp. (R4-368), SEQ ID NO: 11 or 12 and SEQ ID NO: 13 or 14 from Yersinia enterocolitica subsp. enterocolitica, SEQ ID NO: 15 and SEQ ID NO: 16 from Photorhabdus luminescens subsp. laumondii, SEQ ID NO: 17 and SEQ ID NO: 18 from Citrobacter youngae, SEQ ID NO: 19 and SEQ ID NO: 20 from Citrobacter freundii.
In a preferred embodiment of the invention, these genes ygaZH or brnFE or homologous genes originating from Citrobacter koseri, Shigella flexneri, Raoultella ornithinolytica, Enterobacter sp., Yersinia enterocolitica, Photorhabdus luminescens, Citrobacter youngae or Citrobacter freundii are overexpressed under the control of an inducible promoter. The man skilled in the art knows such inducible promoters. For instance, promoters like λPR or λPL may be used to overexpress ygaZH genes or brnFE genes or ygaZH homologous genes originating from Citrobacter koseri, Shigella flexneri, Raoultella ornithinolytica, Enterobacter sp., Yersinia enterocolitica, Photorhabdus luminescens, Citrobacter youngae or Citrobacter freundii in the recombinant microorganism of the invention.
It is another object of the invention to identify ygaZH homologous genes and to overexpress said genes in amino-acid producer microorganism, alone or in combination with other genetic modifications as disclosed below.
Optimisation of Methionine Biosynthesis Pathway
The recombinant microorganism according to the invention is modified for improving the production of methionine. Genes involved in methionine production are well known in the art, and comprise genes involved in the methionine specific biosynthesis pathway as well as genes involved in precursor-providing pathways and genes involved in methionine consuming pathways.
Efficient production of methionine requires the optimisation of the methionine specific pathway and several precursor—providing pathways. Methionine producing strains have already been described, in particular in patent applications WO2005/111202, WO2007/077041 and WO2009/043803. These applications are incorporated as reference into this application.
Except otherwise stated, all the genes mentioned below concerning optimisation of methionine biosynthesis pathway are referring to those from E. coli.
In a specific embodiment of the invention, the recombinant microorganism is modified as described below: the expression of at least one gene chosen among ptsG, pyc, pntAB, cysP, cysU, cysW, cysA, cysM, cysJ, cysI, cysH, gcvT, gcvH, gcvP, lpd, serA, serB, serC, cysE, metF, metA, metA* allele encoding for an enzyme with reduced feed-back sensitivity to S-adenosylmethionine and/or methionine, thrA, and thrA* allele encoding for an enzyme with reduced feed-back inhibition to threonine is increased.
Increasing C1 metabolism is also a modification that leads to improved methionine production. It relates to the increase of the activity of at least one enzyme involved in the C1 metabolism chosen among GcvTHP, Lpd, MetF or MetH. In a preferred embodiment of the invention, the one carbon metabolism is increased by enhancing the expression and/or the activity of at least one of the following:
The overexpression of at least one of the following genes involved in serine biosynthesis also reduces the production of the by-product isoleucine:
The overexpression of the following genes has already been shown to improve the production of methionine:
In a most preferred embodiment, the temperature inducible promoter belongs to the family of PR promoters. A methionine producing strain having genes under control of inducible promoters is described in patent application WO2011/073122.
In another specific embodiment of the invention, the microorganism has been further modified, and the expression of at least one of the following genes is attenuated: metJ, pykA, pykF, purU, ybdL, yncA, metE, dgsA, metN, metI, metQ or udhA.
In a more preferred embodiment of the invention, the fermentative production of methionine and/or its derivatives by a recombinant microorganism, wherein the methionine import is attenuated and the methionine efflux is enhanced, from glucose as a main carbon source, may be achieved through a combination of the above discussed modifications in said microorganism, for example:
In a second aspect of the invention, a method is optimised for the fermentative production of methionine and/or its derivatives. It comprises the followings steps:
Those skilled in the art are able to define the culture conditions for the microorganisms according to the invention. In particular the bacteria are fermented at a temperature between 20° C. and 55° C., preferentially between 25° C. and 40° C., and more specifically about 30° C. for C. glutamicum and about 37° C. for E. coli.
For E. coli, the culture medium can be of identical or similar composition to an M9 medium (Anderson, 1946), an M63 medium (Miller, 1992); or a medium such as defined by Schaefer et al., (1999).
For C. glutamicum, the culture medium can be of identical or similar composition to BMCG medium (Liebl et al., 1989) or to a medium such as described by Riedel et al., (2001).
In the method of the invention, the ygaZH homologous genes which are overexpressed in the recombinant microorganism are preferably chosen among the group consisting in homologous genes from Citrobacter species, Shigella species, Raoultella species, Enterobacter species, Yersinia species and Photorhabdus species, and more preferably originate from Citrobacter koseri, Shigella flexneri, Raoultella ornithinolytica, Enterobacter sp., Yersinia enterocolitica, Photorhabdus luminescens, Citrobacter youngae or Citrobacter freundii.
In a specific embodiment of the method, the recombinant microorganism comprises the following genetic modifications:
In this specific embodiment of the invention, said ygaZH homologous genes are preferably chosen among the group consisting in homologous genes from Citrobacter species, Shigella species, Raoultella species, Enterobacter species, Yersinia species and Photorhabdus species, and more preferably chosen among the groups consisting in homologous genes from Citrobacter koseri, Shigella flexneri, Raoultella ornithinolytica, Enterobacter sp., Yersinia enterocolitica, Photorhabdus luminescens, Citrobacter youngae or Citrobacter freundii.
In the method of the invention, the ygaZH homologous genes which are overexpressed in the recombinant microorganism are most preferably originating from Citrobacter koseri, Citrobacter youngae, Citrobacter freundii or Enterobacter sp.
In some embodiment of the invention, the growth of the recombinant microorganism is subjected to a limitation or starvation/deficiency for one or several inorganic substrate, in particular phosphate and/or potassium, in the culture medium. It refers to condition under which growth of the microorganisms is governed by the quantity of an inorganic chemical supplied that still permits weak growth. Such limitation in microorganism growth has been described in the patent application WO2009/043372. In a preferred embodiment of the invention, the culture is subjected to phosphate limitation.
The action of “recovering methionine and/or its derivatives from the culture medium” designates the action of recovering L-methionine and/or one of its derivatives, in particular N-acetyl methionine (NAM) and S-adenosyl methionine (SAM) and all other derivatives that may be useful such as hydroxy-methionine (or methionine hydroxy analogue or MHA). The methods for the recovery and purification of the produced compounds are well known to those skilled in the art (see in particular WO2005/007862, WO2005/059155). Preferably, the step of recovering methionine and/or its derivatives comprises a step of concentration of methionine and/or its derivatives in the fermentation broth.
The amount of product in the fermentation medium can be determined using a number of methods known in the art, for example, high performance liquid chromatography (HPLC) or gas chromatography (GC). For example the quantity of methionine obtained in the medium is measured by HPLC after OPA/Fmoc derivatization using L-methionine (Fluka, Ref 64319) as a standard. The amount of NAM is determinated using refractometric HPLC using NAM (Sigma, Ref 01310) as a standard.
The following experiments demonstrate how overexpression of genes encoding for the L-methionine excretion system together with the overexpression of genes encoding for the B12-dependent methionine synthase and its reactivation system in microorganisms such as E. coli and C. glutamicum improved methionine production.
In the examples given below, methods well known in the art were used to construct E. coli and C. glutamicum strains containing replicating vectors and/or various chromosomal insertions, deletions, and substitutions using homologous recombination well described by Datsenko & Wanner, (2000) for E. coli and in patent WO2007012078 for C. glutamicum.
In the same manner, the use of plasmids or vectors to express or overexpress one or several genes in a recombinant microorganisms are well known by the man skilled in the art.
Examples of suitable E. coli expression vectors include pTrc, pACYC184n pBR322, pUC18, pUC19, pKC30, pRep4, pHS1, pHS2, pPLc236 etc. . . . .
Examples of suitable C. glutamicum and E. coli shuttle vectors are e. g. pClik5aMCS (WO2005059093) or can be found in Eikmanns et al., (1991).
Examples for suitable vectors to manipulate Corynebacteria can be found in the handbook of Corynebacteria edited by Eggeling and Bott in 2005.
Protocols
Several protocols have been used to construct methionine producing strains described in the following examples.
Protocol 1 (Chromosomal modifications by homologous recombination, selection of recombinants and antibiotic cassette excision) and protocol 2 (Transduction of phage P1) used in this invention have been fully described in patent application WO2013/001055.
Protocol 3: Construction of Recombinant Plasmids
Recombinant DNA technology is well described and known by the man skilled in the art.
Briefly, the DNA fragments are PCR amplified using oligonucleotides (the person skilled in the art will is able to design) and MG1655 genomic DNA as matrix. The DNA fragments and selected plasmid are digested with compatible restriction enzymes, ligated and then transformed in competent cells. Transformants are analysed and recombinant plasmids of interest are verified by DNA sequencing.
Strain 1—Reference Strain
Methionine producing strain 17 described in patent application WO2013/001055 (which is incorporated as reference into this application) was renamed strain 1 in this present application. For reminder this strain overexpressed metH owing artificial promoter and ribosome binding site integrated in front of metH gene at its endogenous locus (for details see as patent application WO2007/077041). This strain contains also the mutation in metE gene disclosed in patent application WO2013/190343.
Construction of Strain 5—Overproduction of the Cobalamin-Dependent Methionine Synthase, Overexpression of metH, fldA and Fpr
The E. coli gene encoding the cobalamin-dependent methionine synthase, metH and genes fldA and fpr encoding for the reactivation system of MetH, were all overexpressed in genetic background of strain 1.
Before using strain 1, the antibiotic cassette was removed from ΔdgsA modification using the Flp recombinase as described by Datsenko & Wanner, 2000 (according to Protocol 1).
The kanamycin sensible transformants were selected and the absence of antibiotic cassette at ΔdgsA locus was verified by a PCR analysis with appropriate oligonucleotides. The strain retained was designated strain 2.
To overexpress metH, this gene, operatively linked to the same promoter and ribosome binding site as described in patent application WO2007/077041 was integrated on the chromosome at two different loci ybeM and ypjC (selected from the list disclosed in the patent application WO2011/073122 and whose deletion do not have impact on methionine production).
To strongly overexpress metH, the homologous recombination strategy described by Datsenko & Wanner, 2000 (according to Protocol 1) was used. For both chromosomal integrations, a fragment carrying metH gene linked to its artificial promoter and a resistance marker both flanked by DNA sequences homologous to the targeted integration locus ybeM or ypjC was PCR amplified by the overlapping PCR technique (overlapping oligonucleotides). The sequences for recombination into ybeM and ypjC are referred as SEQ ID NO 21 and 22, and SEQ ID NO 23 and 24 (listed in table 3), for ybeM and ypjC respectively. The PCR products “ΔybeM::metH::Km” and “ΔypjC::metH::Cm” obtained were then introduced by electroporation into the strain MG1655 metA*11 (pKD46), separately. The antibiotic resistant transformants were selected and the insertion of the metH gene with the resistance cassette at the targeted locus was verified by a PCR analysis with appropriate oligonucleotides. The strains retained were designated MG1655 metA*11 ΔybeM::metH::Km and MG1655 metA*11 ΔypjC::metH::Cm. Finally, the ΔybeM::metH::Km and ΔypjC::metH::Cm chromosomal integrations were transferred by P1 phage transduction successively (according to Protocol 2) from the MG1655 metA*11 ΔybeM::metH::Km and MG1655 metA*11 ΔypjC::metH to strain 2. Chloramphenicol or kanamycin resistant transductants were selected and the presence of ΔybeM::metH::Km and ΔypjC::metH::Cm chromosomal integrations were verified by a PCR analysis with appropriate oligonucleotides. The strain retained was called strain 3.
The antibiotic cassettes were removed from chromosomal integrations made at ybeM and ypjC loci into strain 3 using the Flp recombinase as described by Datsenko & Wanner, 2000 (according to Protocol 1). The kanamycin and chloramphenicol sensible transformants were selected and the absence of antibiotic cassette at both loci was verified by a PCR analysis with appropriate oligonucleotides. The strain retained was designated strain 4.
To overexpress fldA and fpr, these genes, were operatively linked to artificial promoters and to artificial ribosome binding site and were integrated onto the chromosome at the ytfA locus (same selection criteria as ybeM and ypjC loci, see above). The artificial promoters were constructed with SEQ ID NO 25 for fldA and as described for the overexpression of cysPUWAM operon in patent application WO2009/043803 for fpr. The artificial ribosome binding sites are the same as described to overexpress ptsG gene in strain 17 disclosed in patent application WO2013/001055.
To add copies of fldA and fpr overexpression onto the chromosome, the homologous recombination strategy described by Datsenko & Wanner, 2000 (according to Protocol 1) was used. A fragment carrying fldA and fpr genes, with their respective promoters, and a resistance marker, both flanked by DNA sequence homologous to the integration locus ytfA was PCR amplified by overlapping PCR technique (overlapping oligonucleotides). The sequences for recombination into the ytfA locus are referred as SEQ ID NO 26 and 27 (listed in table 3). The PCR product “ΔytfA::fldA-fPr::Km” obtained was then introduced by electroporation into the MG1655 metA*11 (pKD46) strain. The antibiotic resistant transformants were then selected and the insertion of the fldA-fpr genes with the resistance cassette at the ytfA locus was verified by a PCR analysis with appropriate oligonucleotides.
The strain retained was designated MG1655 metA*11 ΔytfA::fldA-fpr::Km. Finally, the ΔytfA::fldA-fpr::Km chromosomal integration was transferred by P1 phage transduction (according to Protocol 2) from the MG1655 metA*11 ΔytfA::fldA-fpr::Km to strain 4. Kanamycin resistant transductants were selected and the presence of ΔytfA::fldA-fpr::Km chromosomal integration was verified by a PCR analysis with appropriate oligonucleotides. The strain retained was called strain 5.
Construction of Strain 6—Overproduction of a L-Methionine Secretion System, Overexpression of ygaZH
The E. coli genes ygaZH encoding the exporter of methionine were overexpressed in strain 1. They were cloned on the moderate plasmid copy number pCL1920 (Lerner & Inouye, 1990) with the use of the natural promoter of ygaZ. This plasmid was named pME1247. Finally, the plasmid pME1247 was transformed into strain 1, giving the strain 6.
The E. coli genes ygaZH encoding the exporter of methionine, were overexpressed in strain 5. The plasmid pME1247 was transformed into strain 5, giving rise to strain 7.
The C. glutamicum strain ATCC 13032 hom* ask* metH (designated strain A in the following) is described in patent WO2007/012078.
In that strain A, hom* and ask* correspond to feedback resistant alleles of homoserine dehydrogenase encoding the protein Hsdh S393F and of aspartate kinase encoding the protein Ask T311I also called LysC T311I, respectively.
This strain A is subsequently mutagenized with N-Methyl-N′-nitroguanidine as described in patent WO2007/012078. Clones that show a methionine titer that is at least twice that in strain A are isolated. One such clone, used in further experiments, is named strain B. This strain B is a C. glutamicum L-methionine producer.
Then, the C. glutamicum strain B is modified as described in patents WO2007/012078 and WO2004/050694 to obtain the strain C including hsk* metY metA metF DmcbR.
The mutated allele hsk* encoding the homoserine kinase Hsk T190A is overexpressed as well as metY encoding the O-acetylhomoserine sulfhydrylase, metA encoding the homoserine acetyl-transferase, metF encoding the homocysteine methylase and mcbR gene is deleted.
In order to increase the cobalamin-dependent methionine synthase activity in C. glutamicum L-methionine producer strain C, metHcg (metH gene from C. glutamicum) is overexpressed together with fprA1 gene encoding a ferredoxin reductase working as MetH reoxidation protein. These modifications are performed according the description of patent WO2009/144270. The resulting strain is called strain D.
Another way to increase the cobalamin-dependent methionine synthase activity in C. glutamicum L-methionine producer strain C, is to overexpress metHEc (metH gene from E. coli) together with fldA and fpr genes from E. coli encoding the flavodoxins involved into the reactivation of MetH enzyme. This is achieved according to the description of patent WO2009/144270. The resulting strain is called strain E.
In order to increase the L-methionine excretion system specific of C. glutamicum in strain C, the brnFE operon is overexpressed from the E. coli-C. glutamicum shuttle expression vector pEC-XT99A (EP1085094). The plasmid was constructed in E. coli from PCR-generated fragments by using C. glutamicum ATCC 13032 DNA as a template. The plasmid was constructed as described by Trotschel et al., (2005) in pEC-XT99A, and the resulting plasmid pCB1 is subsequently transformed into strain C giving rise to strain F.
In order to combine the overproduction of MetHCG, FprA1 or MetHEC, FldA, Fpr in C. glutamicum with the overproduction of the specific L-methionine excretion system BrnFE, the plasmid pCB1 described above is introduced by electroporation into strains D and E giving rise to strains G and H respectively.
Strain G carries only genes belonging to C. glutamicum whereas strain H carries the cobalamin-dependent methionine synthase and its reactivation system from E. coli.
The exporter is in all cases BrnFE.
Strains described in previous examples were tested under production conditions in 2.5 L reactors (Pierre Guerin) using a fedbatch strategy.
Briefly, an 24 hours culture grown in 10 mL LB medium with 2.5 g·L−1 glucose was used to inoculate a 24 hours preculture in minimal medium (B1a). These incubations were carried out in 500 mL baffled flasks containing 50 mL of minimal medium (B1a) in a rotary shaker (200 RPM). The first preculture was realized at a temperature of 30° C., the second one at a temperature of 34° C.
A third preculture step was carried out in bio-reactors (Sixfors) filled with 200 mL of minimal medium (Bib) inoculated to a biomass concentration of 1.2 g·L−1 with 5 mL concentrated preculture. The preculture temperature was maintained constant at 34° C. and the pH was automatically adjusted to a value of 6.8 using a 10% NH4OH solution. The dissolved oxygen concentration was continuously adjusted to a value of 30% of the partial air pressure saturation with air supply and/or agitation. After glucose exhaustion from the batch medium, the fedbatch was started with an initial flow rate of 0.7 mL·h−1, before increasing exponentially for 26 hours with a growth rate of 0.13 If′ in order to obtain a final cellular concentration of about 20 g·L−.
Subsequently, 2.5 L fermentors (Pierre Guerin) were filled with 600 or 620 mL of minimal medium (B2) and were inoculated to a biomass concentration of 3.2 g·L−1 with a preculture volume ranging between 80 to 100 mL.
Cell growth is controlled by phosphate, that is why the final phosphate concentration in batch medium B2 was adjusted to a value comprised between 0 to 20 mM, by addition of different concentrations of KH2PO4, K2HPO4 and (NH4)2HPO4. In the same manner, the final phosphate concentration of F2 medium was adjusted to a value comprise between 5 to 30 mM, by addition of different concentrations of KH2PO4, K2HPO4 and (NH4)2HPO4. Thiosulfate concentration in fedbatch medium can be adjusted in order to prevent a starvation of this compound during the culture.
The culture temperature was maintained constant at 37° C. and pH was maintained to the working value (6.8) by automatic addition of NH4OH solutions (10% and 28%). The initial agitation rate was set at 200 RPM during the batch phase and was increased up to 1000 RPM during the fedbatch phase. The initial airflow rate was set at 40 NL·h1 during the batch phase and was augmented to 100 NL·h1 at the beginning of the fedbatch phase. The dissolved oxygen concentration was maintained at values between 20 and 40%, preferentially 30% saturation by increasing the agitation.
IPTG was added in batch and fedbatch media when it was necessary at a final concentration of 20 μM. When it was needed, antibiotics were added at a concentration of 50 mg·L−1 for spectinomycin, 30 mg·L−1 for chloramphenicol, 50 mg·mL−1 for kanamycin and 100 mg·L−1 for ampicillin.
When the cell mass reached a concentration close to 5 g·L−1, the fedbatch was started with an initial flow rate of 5 mL·h−1. Feeding solution was injected with a sigmoid profile with an increasing flow rate that reached 24 mL·h1 after 25 hours. The precise feeding conditions were calculated by the equation:
where Q(t) is the feeding flow rate in mL·h1 with p1=1.80, p2=22.4, p3=0.27, p4=6.50. This flow rate was increased from 10 to 50%, preferentially between 20 and 30% throughout the entire culture.
After 25 hours fedbatch, feeding solution pump was stopped and culture was finalized after glucose exhaustion.
Extracellular amino acids were quantified by HPLC after OPA/Fmoc derivatization and other relevant metabolites were analyzed using HPLC with refractometric detection (organic acids and glucose) and GC-MS after silylation.
Impact of the combination of metH, fldA, fpr overexpression and ygaZH overexpression in E. coli was tested. The results are presented in Table 8.
These results show that in E. coli, the overexpression of ygaZH genes only is of no benefit to the production of methionine (strain 6). The overexexpression of the cobalamin-dependent methionine synthase system in E. coli (strain 5) leads to an improved production of methionine. Surprisingly, we observe that the combination of overexpression of the genes ygaZH and the cobalamin-dependent methionine synthase system has a synergistic effect on the methionine production leading to an unexpected increased production of methionine. Moreover this combination has also a favourable impact on the homolanthionine production leading to a methionine with better purity.
Determination of Methionine/Glucose Yield (Ymet)
The reactor volume was calculated by adding to the initial volume the amount of solutions added to regulate the pH and to feed the culture and by subtracting the volume used for sampling and lost by evaporation.
The fedbatch volume was followed continuously by weighing the feeding stock. The amount of injected glucose was then calculated on the basis of the injected weight, the density of the solution and the glucose concentration determined by the method of Brix ([Glucose]). The methionine yield was expressed as followed:
With Methionine0 and Methioninet respectively the initial and final methionine concentrations and V0 and Vt the initial and the instant t volumes.
The consumed glucose was calculated as follows:
Injected Glucoset=fed volumet*[Glucose]
Consumed glucoset=[Glucose]0*V0+Injected Glucose−[Glucose]residual*Vt With [Glucose]0,[Glucose],[Glucose]residual respectively the initial, the fed and the residual glucose concentrations.
Cobalamin-Dependent Methionine Synthase Activity Assay
The cobalamin-dependent methionine activity assay is an adaptation of the assay described by Drummond et al., in 1995.
The Cobalamin-dependent methionine synthase activity was assayed by measuring the product tetrahydrofolate (H4folate) concentration with a spectrophotometer at a wavelength of 350 nm and at a constant temperature of 37° C.
The reaction mixture was carried out in 80 mM potassium phosphate pH7.2, 20 mM DTT, 15 μM S-adenosylmethionine (SAM), 0.6 mM (6R,S)-5-Methyl-5,6,7,8-tetrahydrofolic acid, 40 μM Hydroxocobalamin, 0.1 mM Zinc chloride and 8 μg of crude extract in a final volume of 800 μl. The reaction mixture was incubated for 10 min at 37° C. before to start the reaction by the addition of the substrate homocysteine at a final concentration of 0.8 mM. After 5 min at 37° C., 200 μl of acidic derivatization solution (4M HCl in 60% formic acid) was added to quench the turnover bringing the volume to 1 ml, and the tubes are heated at 80° C. for 10 min. This step is necessary to stabilize the enzymatic product of the reaction, the tetrahydrofolate which is not stable in acid. The heat leads to the formation of the methenyltetrahydrofolate which absorbs light at 350 nm, while residual substrate 5-methyltetrahydrofolate does not contribute to the absorbance at 350 nm. The reaction blank contained all components of the reaction mixture except the substrate homocysteine.
Quantification of the FldA and Fpr Proteins Levels
In order to quantify the two proteins, antibodies were generated against the flavodoxin-1 (fldA) and the flavodoxin reductase (fpr) (Antibodies from rabbit, Eurogentec) and used in Western blot experiments. Western blot detection was carried out using goat anti-rabbit AP. The proteins levels of FldA and Fpr on stained blots were quantified with a commercially available imaging system (Epson Expression 1680 professional) and compared in the different strains described in this patent.
Strains are cultivated in flask in the same conditions as described in patent application WO2009/144270.
Similarly to E. coli, in C. glutamicum, the combination of overexpression of the genes brnFE and the cobalamin-dependent methionine synthase system (from E. coli—strain H and from C. glutamicum—strain G) has a synergistic effect on the methionine production leading to an unexpected increased production of methionine.
The ygaZH homologous genes from Citrobacter species, Raoultella species, Shigella species, Enterobacter species, Yersinia species and Photorhabdus species were overexpressed in genetic background of strain 5.
Before using strain 5, the antibiotic cassette of the chromosomal integration made at ytfA locus was removed using the Flp recombinase as described by Datsenko & Wanner, 2000 (according to Protocol 1). The kanamycin sensible transformants were selected and the absence of antibiotic cassette at ytfA locus was verified by a PCR analysis with appropriate oligonucleotides. The resulting strain was named strain 8.
Construction of Strain 9—Overproduction of the Endogenous L-Methionine Secretion System, Overexpression of ygaZH from E. coli
To compare the effect of the overexpression of ygaZH from E. coli and overexpression of ygaZH homologues in the same genetic background, the plasmid pME1247 carrying ygaZH from E. coli was transformed into strain 8, giving rise to strain 9.
Construction of Strains 10 to 17—Overproduction of Homologous L-Methionine Secretion Systems, Overexpression of ygaZH from Genus and Species Listed in Table 10
To overexpress the ygaZH homologous genes listed in table 10, each couple of genes was cloned on the moderate copy number plasmid pCL1920 (Lerner & Inouye, 1990) with the use of the natural promoter and natural ribosome binding site of E. coli ygaZ gene as previously described for E. coli ygaZH genes, As specified in table 11, the ygaZH homologue genes were either amplified from genomic DNA of the corresponding strain or chemically synthesized, with or without optimizing the codon usage to E. coli (as proposed by GeneArt® Gene Synthesis service with GeneOptimizer® software—Lifetechnologies). The amplified DNA fragments comprising the ygaZH homologous genes are disclosed in SEQ ID indicated in the Table 11. The resulting plasmids were named as mentioned in table 11. Finally each plasmid was transformed into strain 8, giving the strains 10 to 17, as mentioned in table 11.
Citrobacter koseri
koseri ATCC
Shigella flexneri
flexneri]
Raoultella
ornithinolytica
ornithinolytica B6]
ornithinolytica
Enterobacter sp.
Yersinia
enterocolitica
Enterocolitica
enterocolitica
enterocolitica
enterocolitica
Enterocolitica WA-
Photorhabdus
luminescens
luminescens
luminescens
Citrobacter
youngae
youngae]
youngae]
youngae ATCC
Citrobacter
freundii
freundii]
freundii]
Citrobacter
koseri
Shigella
flexneri
Raoultella
ornithinolytica
Enterobacter
Yersinia
enterocolitica
Enterocolitica
Photorhabdus
luminescens
Laumondii
Citrobacter
youngae
Citrobacter
freundii
Recombinant L-methionine producers overeproducing the cobalamin dependant methionine synthase MetH as well as different L-methionine secretion systems from various microorganisms (homologous to YgaZH from E. coli) were evaluated in small Erlenmeyer flasks.
Production strains were evaluated in small Erlenmeyer flasks. A 5.5 mL preculture was grown at 30° C. for 21 hours in a mixed medium (10% LB medium (Sigma 25%) with 2.5 g·L−1 glucose and 90% minimal medium PC1). It was used to inoculate a 50 mL culture to an OD600 of 0.2 in medium PC1. Spectinomycin was added at a concentration of 50 mg·L−1 and gentamycin at 10 mg·L−1 when it was necessary. The temperature of the cultures was 37° C. When the culture had reached an OD600 of 5 to 7, extracellular amino acids were quantified by HPLC after OPA/Fmoc derivatization and other relevant metabolites were analyzed using HPLC with refractometric detection (organic acids and glucose) and GC-MS after silylation.
As can be seen in table 13, overexpression of ygaZH homologous genes from various microorganisms in the L-methionine producer overexpressing metH, fldA, fpr genes, leads to equivalent or better performances than those obtained with strain 9 which overexpresses ygaZH from E. coli. The homologous L-methionine secretion systems from other microorganisms than E. coli can replace the endogenous proteins of the bacterium.
The homologous proteins YgaZH from Citrobacter Koseri (strain 10, Ymet=19.6 g/g), Citrobacter youngae (strain 16, Ymet=19.6 g/g), Citrobacter freundii (strain 17, Ymet=19.6 g/g) and Enterobacter sp. (Strain 13, Ymet=19.4 g/g) showed the best L-methionine yields of production compared to strain 9 (Ymet=18.7 g/g).
The methionine yield was expressed as followed:
Number | Date | Country | Kind |
---|---|---|---|
13306185 | Aug 2013 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/068539 | 9/1/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/028674 | 3/5/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20120190084 | Schneider et al. | Jul 2012 | A1 |
Number | Date | Country |
---|---|---|
WO 2006138689 | Dec 2006 | WO |
WO 2008127240 | Oct 2008 | WO |
WO 2009144270 | Dec 2009 | WO |
Entry |
---|
Sousa et al., Microbiology 148(Pt5):1291-1303, 2002. |
Witkowski et al., Biochemistry 38:11643-11650, 1999. |
Seffernick et al., J. Bacteriol. 183(8):2405-2410, 2001. |
Branden et al., Introduction to Protein Structure, Garland Publishing Inc., New York, p. 247. |
Sadowski et al., Current Opinion in Structural Biology 19:357-362, 2009. |
Zhou et al., Cell Mol Life Sci 63(19-20):2260-2290, 2006. |
Kozak, M., Gene 234:187-208, 1999. |
Anderson, “Growth Requirements of Virus-Resistant Mutants of Escherichia coli Strain “B”,” 1946, Bacteriology, Proc. N. A. S., vol. 32, pp. 120-128. |
Banerjee et al., “Mechanism of Reductive Activation of Cobalamin-Dependent Methionine Synthase: An Electron Paramagnetic Resonance Spectroelectrochemical Study,” 1990, Biochemistry, vol. 29, No. 5, pp. 1129-1135. |
Carrier et al., “Library of Synthetic 5′ Secondary Structures to Manipulate mRNA Stability in Escherichia coli,” 1999 (Published on Web Jan. 9, 1999), Biotechnology Progress, vol. 15, No. 1, pp. 58-64 (8 pages). |
Datsenko et al., “One-step Inactivation of Chromosomal Genes in Escherichia coli K-12 Using PCR Products,” Jun. 6, 2000, PNAS, vol. 97, No. 12, pp. 6640-6645. |
Drummond et al., “Characterization of Nonradioactive Assays for Cobalamin-Dependent and Cobalamin-Independent Methionine Synthase Enzymes,” 1995, Analytical Biochemistry, vol. 228, No. 2, pp. 323-329. |
Eikmanns et al., “A family of Corynebacterium glutamicum/Escherichia coli Shuttle Vectors for Cloning, Controlled Gene Expression, and Promoter Probing,” 1991, Gene, vol. 102, pp. 93-98. |
European Search Report, dated Dec. 2, 2013, for corresponding European Application No. 13 30 6185. |
Foster et al., “The Purification and Properties of a Factor Containing Vitamin B12 Concerned in the Synthesis of Methionine by Escherichia coli,” 1961, Biochemical Journal, vol. 80, pp. 519-531. |
Fujii et al., “Activation of Methionine Synthetase by a Reduced Triphosphopyridine Nucleotide-dependent Flavoprotein System,” Nov. 10, 1974, Journal of Biological Chemistry, vol. 249, No. 21, pp. 6745-6753. |
González et al., “Comparison of Cobalamin-Independent and Cobalamin-Dependent Methionine Synthases from Escherichia coli: Two Solutions to the Same Chemical Problem,” 1992, Biochemistry, vol. 31, No. 26, pp. 6045-6056. |
International Search Report (Form PCT/ISA/210), dated Dec. 1, 2014, for corresponding International Application No. PCT/EP2014/068539. |
Lerner et al., “Low Copy Number Plasmids for Regulated Low-level Expression of Cloned Genes in Escherichia coli with Blue/White Insert Screening Capability,” 1990, Nucleic Acids Research, vol. 18, No. 15, pp. 4631. |
Liebl et al., “Requirement of Chelating Compounds for the Growth of Corynebacterium glutamicum in Synthetic Media,” 1989, Appl. Microbiol. Biotechnol., vol. 32, pp. 205-210. |
Matthews, “Cobalamin-Dependent Methyltransferases,” 2001 (published on Web May 24, 2001), Accounts of Chemical Research, vol. 34, No. 8, pp. 681-689. |
Riedel et al., “Characterization of the Phosphoenolpyruvate Carboxykinase Gene from Corynebacterium glutamicum and Significance of the Enzyme for Growth and Amino Acid Production,” 2001, J. Mol. Microbiol. Biotechnol., vol. 3, No. 4, pp. 573-583. |
Saunderson, “Comparative Metabolism of L-methionine, DL-methionine and DL-2-hydroxy 4-methylthiobutanoic Acid by Broiler Chicks.” 1985, British Journal of Nutrition, vol. 54, pp. 621-633. |
Schaefer et al., “Automated Sampling Device for Monitoring Intracellular Metabolite Dynamics,” 1999, Analytical Biochemistry, vol. 270, pp. 88-96. |
Trotschel et al., “Characterization of Methionine Export in Corynebacterium glutamicum,” Jun. 2005, Journal of Bacteriology, vol. 187, No. 11, pp. 3786-3794. |
Wan et al., “Electron Acceptor Specificity of Ferredoxin (Flavodoxin):NADP Oxidoreductase from Escherichia coli,” 2002, Archives of Biochemistry and Biophysics, vol. 406, pp. 116-126. |
Number | Date | Country | |
---|---|---|---|
20160177352 A1 | Jun 2016 | US |