The present Invention relates to a miniature connector with on-board electronics for a thermocouple.
Thermocouple systems are known such as, for example, the U.S. Pat. No. 4,448,824 patent, that incorporate a thermocouple system whose signals are sent via an amplifier. These signals are combined with an ambient temperature indication signal provided by a Zener diode; the resulting signal is then sent to a display. However, these models do not make it possible to recognize the distribution of the different elements and require the assembly of a semi-conductor couple to a thermionic inertia element comprised of two bodies of the same metal conductor disposed opposingly and separated by a thin layer of electrically insulating but thermally conducting material Such a cold junction compensation system is complex to manufacture and can be difficult to integrate into a miniature conductor. In general, amplification and measurement processing circuits are remote from the thermocouple itself.
A connector module for a thermocouple comprising two connection means. (10) for one such thermocouple with protection against stray electromagnetic signals and two means for output connection is also known from French patent application 2 762 908. The module incorporates a battery power supply and an output amplifier carrying out the summation of the signal provided by the thermocouple amplifier, the local temperature sensor and a correction voltage, as it is represented in
Such a device is consequently larger, more complex to manufacture and more difficult to control.
Another device is taught by the U.S. Pat. No. 4,133,700 patent and comprises a connector having smaller dimensions than the aforementioned one; this connector for a thermocouple being self-powered and functioning on the principle of a Wheatstone bridge incorporating thermistors in its arms for locally measuring temperature and performing cold-junction compensation relative to the signal provided by the thermocouple. However, such a device does not comprise the means for assuring the processing and amplification of the signal prior to its being sent to the measurement means, which could generate erroneous results due to detection error as a consequence of insufficient amplification. In addition, the device, as in the case of the aforementioned one, being self-powered, the absence of measurement could also result from depletion of the power source.
The object of the invention is thus to provide an amplification connection device for a thermocouple having very small dimensions and integrating a plurality of electronic functions, making possible its power supply by the cable receiving the measurements from the thermocouple, in order to arrange the measurement processing system at an adequate distance therefrom.
This object is achieved by the fact that the miniature connector with on-board electronics for a thermocouple is characterized in that it is comprised of a module containing:
According to another feature, the configuration means are comprised of a very low offset-value and very low drift differential amplifier means, each of whose inputs is connected to the first and second connection means and whose output is connected via the printed circuit to an input of a summation circuit receiving at its other input the output of a circuit for scaling of the signal delivered by the output of the ambient temperature sensor, the output of said summation circuit being connected to the input of a linearization circuit whose output is connected to one of the cable connection means.
According to another feature, a second cable connection means is connected to a voltage regulator that supplies power via its printed circuit board tracks to the on-board circuits in the connector.
According to another feature, the length of the module is less than 30 mm, its breadth less than 20 mm and its thickness less than 10 mm.
According to another feather, the K-type thermocouple is comprised of a chromel alloy wire connected to an alumel alloy wire to comprise a hot junction, the connection of these two wires, respectively, to the first and second connection means with the copper of the printed circuit comprises a cold junction.
Other features and advantages of the present invention will become more apparent when reading the following description with reference to the appended drawings, wherein:
a represents a top view of the miniature connector according to the invention, the cover removed:
b represents a side view of the miniature connector with its cover.
The present invention will be described with reference to
As the so-called hot junction of the thermocouple is for measuring the temperature by generating an electromotive force (EMF) at the Junction of the different conductor materials and that this voltage is very low, it is important to be able to amplify it from the start. In addition, the amplifier being placed in proximity to the measurement position, it is important to know, by a measurement of the ambient temperature, the temperature of the cold junction (13) of the thermocouple, because the measured temperature is the difference between the temperature at the end of the probe (14) and the ambient temperature at the cold junction (13). By including the temperature sensor (24) as close as possible to the cold junction, it is possible, by adding the ambient temperature to the measured temperature, to have a more precise compensation of the temperature of the cold junction. The connector developed in this fashion also makes it possible to create the junction with a measurement apparatus by ordinary three-strand cable, without requiring a special connection. The temperature sensor (24) can be of adequate precision and measure the ambient temperature at the level of the screws (20, 21) that connect the tabs of the thermocouple connector to the copper of the printed circuit (4). The scaling circuit (26) makes it possible to adapt the measurement done to the signal provided by the thermocouple without have to resort to the use of potentiometry. Finally, the voltage regulator circuit (28) provides a voltage supply of the different connector circuits in a voltage range of from 5 V and 16 V.
The components necessary to the protection against stray electromagnetic forces are also incorporated into the connector and are comprised of ferrites placed on the wires (231 and 230) and ceramic capacitors between these same wires and the earthing (232). The circuit realized in this manner is housed in a miniature connector module whose maximum length is less than 30 mm, the breadth is less than 20 mm and the thickness is less than 10 mm.
The components used are the “LINEAR TECHOLOGY” LTC 2050 amplifier and the resistors having a 0.1% precision and 10 ppm conductance of the “MEGGIT” RN73F1J series RN73F1J.
It should be obvious to the person skilled in the art, that the present invention makes possible embodiments in many other specific forms without departing from the field of application of the invention as claimed. Consequently, these present embodiments must be considered to be illustrative but capable of modification within the field defined by the scope of the annexed claims and the invention is not limited to the specifics recited hereinbefore.
Number | Name | Date | Kind |
---|---|---|---|
3650154 | Arnett et al. | Mar 1972 | A |
4133700 | Hollander et al. | Jan 1979 | A |
RE30735 | Ihlenfeldt et al. | Sep 1981 | E |
4488824 | Salem | Dec 1984 | A |
4588308 | Saito | May 1986 | A |
4669049 | Kosednar et al. | May 1987 | A |
4718777 | Mydynski et al. | Jan 1988 | A |
4776706 | Loiterman et al. | Oct 1988 | A |
4863283 | Falk | Sep 1989 | A |
5070732 | Duncan et al. | Dec 1991 | A |
5088835 | Shigezawa et al. | Feb 1992 | A |
5351551 | Drubetsky et al. | Oct 1994 | A |
5735605 | Blalock | Apr 1998 | A |
6068400 | Nelson et al. | May 2000 | A |
6074089 | Hollander et al. | Jun 2000 | A |
6183131 | Holloway et al. | Feb 2001 | B1 |
6210036 | Eberle et al. | Apr 2001 | B1 |
Number | Date | Country |
---|---|---|
2762908 | Nov 1998 | FR |
Number | Date | Country | |
---|---|---|---|
20040058588 A1 | Mar 2004 | US |