Embodiments disclosed herein relate to an optical lens system and lens assembly, and more particularly, to a miniature telephoto lens assembly included in such a system and used in a portable electronic product such as a cellphone.
Digital camera modules are currently being incorporated into a variety of host devices. Such host devices include cellular telephones, personal data assistants (PDAs), computers, and so forth. Consumer demand for digital camera modules in host devices continues to grow. Cameras in cellphone devices in particular require a compact imaging lens system for good quality imaging and with a small total track length (TTL). Conventional lens assemblies comprising four lens elements are no longer sufficient for good quality imaging in such devices. The latest lens assembly designs, e.g. as in U.S. Pat. No. 8,395,851, use five lens elements. However, the design in U.S. Pat. No. 8,395,851 suffers from at least the fact that the TTL/EFL (effective focal length) ratio is too large.
Therefore, a need exists in the art for a five lens element optical lens assembly that can provide a small TTL/EFL ratio and better image quality than existing lens assemblies.
Embodiments disclosed herein refer to an optical lens assembly comprising, in order from an object side to an image side: a first lens element with positive refractive power having a convex object-side surface, a second lens element with negative refractive power having a thickness d2 on an optical axis and separated from the first lens element by a first air gap, a third lens element with negative refractive power and separated from the second lens element by a second air gap, a fourth lens element having a positive refractive power and separated from the third lens element by a third air gap, and a fifth lens element having a negative refractive power, separated from the fourth lens element by a fourth air gap, the fifth lens element having a thickness d5 on the optical axis.
An optical lens system incorporating the lens assembly may further include a stop positioned before the first lens element, a glass window disposed between the image-side surface of the fifth lens element and an image sensor with an image plane on which an image of the object is formed.
The effective focal length of the lens assembly is marked “EFL” and the total track length on an optical axis between the object-side surface of the first lens element and the electronic sensor is marked “TTL”. In all embodiments, TTL is smaller than the EFL, i.e. the TTL/EFL ratio is smaller than 1.0. In some embodiments, the TTL/EFL ratio is smaller than 0.9. In an embodiment, the TTL/EFL ratio is about 0.85. In all embodiments, the lens assembly has an F number F #<3.2. In an embodiment, the focal length of the first lens element f1 is smaller than TTL/2, the first, third and fifth lens elements have each an Abbe number (“Vd”) greater than 50, the second and fourth lens elements have each an Abbe number smaller than the first air gap is smaller than d2/2, the third air gap is greater than TTL/5 and the fourth air gap is smaller than 1.5d5. In some embodiments, the surfaces of the lens elements may be aspheric.
In an optical lens assembly disclosed herein, the first lens element with positive refractive power allows the TTL of the lens system to be favorably reduced. The combined design of the first, second and third lens elements plus the relative short distances between them enable a long EFL and a short TTL. The same combination, together with the high dispersion (low Vd) for the second lens element and low dispersion (high Vd) for the first and third lens elements, also helps to reduce chromatic aberration. In particular, the ratio TTL/EFL<1.0 and minimal chromatic aberration are obtained by fulfilling the relationship 1.2×|f3|>|f2|>1.5×f1, where “f” indicates the lens element effective focal length and the numerals 1, 2, 3, 4, 5 indicate the lens element number.
The conditions TTL/EFL<1.0 and F #<3.2 can lead to a large ratio L11/L1e (e.g. larger than 4) between the largest width (thickness) L11 and the smallest width (thickness) of the first lens element (facing the object) L1e. The largest width is along the optical axis and the smallest width is of a flat circumferential edge of the lens element. L11 and L1e are shown in each of elements 102, 202 and 302. A large L11/L1e ratio (e.g. >4) impacts negatively the manufacturability of the lens and its quality. Advantageously, the present inventors have succeeded in designing the first lens element to have a L11/L1e ratio smaller than 4, smaller than 3.5, smaller than 3.2, smaller than 3.1 (respectively 3.01 for element 102 and 3.08 for element 302) and even smaller than 3.0 (2.916 for element 202). The significant reduction in the L11/L1e ratio improves the manufacturability and increases the quality of lens assemblies disclosed herein.
The relatively large distance between the third and the fourth lens elements plus the combined design of the fourth and fifth lens elements assist in bringing all fields' focal points to the image plane. Also, because the fourth and fifth lens elements have different dispersions and have respectively positive and negative power, they help in minimizing chromatic aberration.
In the following description, the shape (convex or concave) of a lens element surface is defined as viewed from the respective side (i.e. from an object side or from an image side).
In embodiment 100, all lens element surfaces are aspheric. Detailed optical data is given in Table 1, and the aspheric surface data is given in Table 2, wherein the units of the radius of curvature (R), lens element thickness and/or distances between elements along the optical axis and diameter are expressed in mm. “Nd” is the refraction index. The equation of the aspheric surface profiles is expressed by:
where r is distance from (and perpendicular to) the optical axis, k is the conic coefficient, c=1/R where R is the radius of curvature, and a are coefficients given in Table 2. In the equation above as applied to embodiments of a lens assembly disclosed herein, coefficients α1 and α7 are zero. Note that the maximum value of r “max r”=Diameter/2 Also note that Table 1 (and in Tables 3 and 5 below), the distances between various elements (and/or surfaces) are marked “Lmn” (where m refers to the lens element number, n=1 refers to the element thickness and n=2 refers to the air gap to the next element) and are measured on the optical axis z, wherein the stop is at z=0. Each number is measured from the previous surface. Thus, the first distance −0.466 mm is measured from the stop to surface 102a, the distance L11 from surface 102a to surface 102b (i.e. the thickness of first lens element 102) is 0.894 mm, the gap L12 between surfaces 102b and 104a is 0.020 mm, the distance L21 between surfaces 104a and 104b (i.e. thickness d2 of second lens element 104) is 0.246 mm, etc. Also, L21=d2 and L51=d5. L11 for lens element 102 is indicated in
Embodiment 100 provides a field of view (FOV) of 44 degrees, with EFL=6.90 mm, F #=2.80 and TTL of 5.904 mm. Thus and advantageously, the ratio TTL/EFL=0.855. Advantageously, the Abbe number of the first, third and fifth lens element is 57.095. Advantageously, the first air gap between lens elements 102 and 104 (the gap between surfaces 102b and 104a) has a thickness (0.020 mm) which is less than a tenth of thickness d2 (0.246 mm). Advantageously, the Abbe number of the second and fourth lens elements is 23.91. Advantageously, the third air gap between lens elements 106 and 108 has a thickness (2.020 mm) greater than TTL/5 (5.904/5 mm). Advantageously, the fourth air gap between lens elements 108 and 110 has a thickness (0.068 mm) which is smaller than 1.5d5 (0.4395 mm).
The focal length (in mm) of each lens element in embodiment 100 is as follows: f1=2.645, f2=−5.578, f3=−8.784, f4=9.550 and f5=−5.290. The condition 1.2×|f3|>|f2|<1.5×f1 is clearly satisfied, as 1.2×8.787>5.578>1.5×2.645. f1 also fulfills the condition f1<TTL/2, as 2.645<2.952.
Using the data from row #2 in Tables 1 and 2, L1e in lens element 102 equals 0.297 mm, yielding a center-to-edge thickness ratio L11/L1e of 3.01.
In embodiment 200, all lens element surfaces are aspheric. Detailed optical data is given in Table 3, and the aspheric surface data is given in Table 4, wherein the markings and units are the same as in, respectively, Tables 1 and 2. The equation of the aspheric surface profiles is the same as for embodiment 100.
Embodiment 200 provides a FOV of 43.48 degrees, with EFL=7 mm, F #=2.86 and TTL=Thus and advantageously, the ratio TTL/EFL=0.843. Advantageously, the Abbe number of the first, third and fifth lens elements is 56.18. The first air gap between lens elements 202 and 204 has a thickness (0.129 mm) which is about half the thickness d2 (0.251 mm). Advantageously, the Abbe number of the second lens element is 20.65 and of the fourth lens element is 23.35. Advantageously, the third air gap between lens elements 206 and 208 has a thickness (1.766 mm) greater than TTL/5 (5.904/5 mm). Advantageously, the fourth air gap between lens elements 208 and 210 has a thickness (0.106 mm) which is less than 1.5×d5 (0.495 mm).
The focal length (in mm) of each lens element in embodiment 200 is as follows: f1=2.851, f2=−5.468, f3=−10.279, f4=7.368 and f5=−4.536. The condition 1.2×|f3|>|f2|<1.5×f1 is clearly satisfied, as 1.2×10.279>5.468>1.5×2.851. f1 also fulfills the condition f1<TTL/2, as 2.851<2.950.
Using the data from row #2 in Tables 3 and 4, L1e in lens element 202 equals 0.308 mm, yielding a center-to-edge thickness ratio L11/L1e of 2.916.
In embodiment 300, all lens element surfaces are aspheric. Detailed optical data is given in Table 5, and the aspheric surface data is given in Table 6, wherein the markings and units are the same as in, respectively, Tables 1 and 2. The equation of the aspheric surface profiles is the same as for embodiments 100 and 200.
Embodiment 300 provides a FOV of 44 degrees, EFL=6.84 mm, F #=2.80 and TTL=5.904 mm. Thus and advantageously, the ratio TTL/EFL=0.863. Advantageously, the Abbe number of the first lens element is 63.1, and of the third and fifth lens elements is 57.09. The first air gap between lens elements 302 and 304 has a thickness (0.029 mm) which is about 1/10 the thickness d2 (0.254 mm). Advantageously, the Abbe number of the second and fourth lens elements is 23.91. Advantageously, the third air gap between lens elements 306 and 308 has a thickness (1.998 mm) greater than TTL/5 (5.904/5 mm). Advantageously, the fourth air gap between lens elements 208 and 210 has a thickness (0.121 mm) which is less than 1.5d5 (0.6465 mm).
The focal length (in mm) of each lens element in embodiment 300 is as follows: f1=2.687, f2=−6.016, f3=−6.777, f4=8.026 and f5=−5.090. The condition 1.2×|f3|>|f2|<1.5×f1 is clearly satisfied, as 1.2×6.777>6.016>1.5×2.687. f1 also fulfills the condition f1<TTL/2, as 2.687<2.952.
Using the data from row #2 in Tables 5 and 6, L1e in lens element 302 equals 0.298 mm, yielding a center-to-edge thickness ratio L11/L1e of 3.08.
While this disclosure has been described in terms of certain embodiments and generally associated methods, alterations and permutations of the embodiments and methods will be apparent to those skilled in the art. The disclosure is to be understood as not limited by the specific embodiments described herein, but only by the scope of the appended claims.
This application is a continuation of U.S. patent application Ser. No. 18/054,905 filed Nov. 13, 2022 (now allowed), which was a continuation of U.S. patent application Ser. No. 17/499,878 filed Oct. 13, 2021 (now allowed), which was a continuation of U.S. patent application Ser. No. 16/872,934 filed May 12, 2020, now abandoned, which was a continuation of U.S. patent application Ser. No. 16/829,804 filed Mar. 25, 2020, now U.S. Pat. No. 11,125,980, which was a continuation of U.S. patent application Ser. No. 16/665,977 filed Oct. 28, 2019, now U.S. Pat. No. 10,795,134, which was a continuation of U.S. patent application Ser. No. 16/296,272 filed Mar. 8, 2019, now U.S. Pat. No. 10,488,630, which was a continuation of U.S. patent application Ser. No. 15/976,391, now U.S. Pat. No. 10,330,897, and Ser. No. 15/976,422, now U.S. Pat. No. 10,317,647 filed May 2018, which were a continuation of U.S. patent application Ser. No. 15/817,235 filed Nov. 19, 2017, now U.S. Pat. No. 10,324,277, which was a continuation of U.S. patent application Ser. No. 15/418,925 filed Jan. 30, 2017, now U.S. Pat. No. 9,857,568, which was a continuation in part of U.S. patent application Ser. No. 15/170,472 filed Jun. 1, 2016, now U.S. Pat. No. 9,568,712, which was a continuation of U.S. patent application Ser. No. 14/932,319 filed Nov. 4, 2015, now U.S. Pat. No. 9,402,032, which was a continuation of U.S. patent application Ser. No. 14/367,924 filed Sep. 19, 2014, now abandoned, which was a 371 of international application PCT/IB2014/062465 filed Jun. 20, 2014, and is related to and claims priority from U.S. Provisional Patent Application No. 61/842,987 filed Jul. 4, 2013, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2106752 | Land | Feb 1938 | A |
2354503 | Arthur | Jul 1944 | A |
2378170 | Aklin | Jun 1945 | A |
2441093 | Aklin | May 1948 | A |
3388956 | Eggert et al. | Jun 1968 | A |
3524700 | Eggert et al. | Aug 1970 | A |
3558218 | Grey | Jan 1971 | A |
3864027 | Harada | Feb 1975 | A |
3942876 | Betensky | Mar 1976 | A |
4134645 | Sugiyama et al. | Jan 1979 | A |
4338001 | Matsui | Jul 1982 | A |
4465345 | Yazawa | Aug 1984 | A |
4792822 | Akiyama et al. | Dec 1988 | A |
5000551 | Shibayama | Mar 1991 | A |
5327291 | Baker et al. | Jul 1994 | A |
5331465 | Miyano | Jul 1994 | A |
5969869 | Hirai et al. | Oct 1999 | A |
6014266 | Obama et al. | Jan 2000 | A |
6035136 | Hayashi et al. | Mar 2000 | A |
6147702 | Smith | Nov 2000 | A |
6169636 | Kreitzer | Jan 2001 | B1 |
6654180 | Ori | Nov 2003 | B2 |
7187504 | Horiuchi | Mar 2007 | B2 |
7206136 | Labaziewicz et al. | Apr 2007 | B2 |
7515351 | Chen et al. | Apr 2009 | B2 |
7564635 | Tang | Jul 2009 | B1 |
7643225 | Tsai | Jan 2010 | B1 |
7660049 | Tang | Feb 2010 | B2 |
7684128 | Tang | Mar 2010 | B2 |
7688523 | Sano | Mar 2010 | B2 |
7692877 | Tang et al. | Apr 2010 | B2 |
7697220 | Iyama | Apr 2010 | B2 |
7738186 | Chen et al. | Jun 2010 | B2 |
7777972 | Chen et al. | Aug 2010 | B1 |
7813057 | Lin | Oct 2010 | B2 |
7821724 | Tang et al. | Oct 2010 | B2 |
7826149 | Tang et al. | Nov 2010 | B2 |
7826151 | Tsai | Nov 2010 | B2 |
7869142 | Chen et al. | Jan 2011 | B2 |
7898747 | Tang | Mar 2011 | B2 |
7916401 | Chen et al. | Mar 2011 | B2 |
7918398 | Li et al. | Apr 2011 | B2 |
7957075 | Tang | Jun 2011 | B2 |
7957076 | Tang | Jun 2011 | B2 |
7957079 | Tang | Jun 2011 | B2 |
7961406 | Tang et al. | Jun 2011 | B2 |
8000031 | Tsai | Aug 2011 | B1 |
8004777 | Sano et al. | Aug 2011 | B2 |
8077400 | Tang | Dec 2011 | B2 |
8149523 | Ozaki | Apr 2012 | B2 |
8218253 | Tang | Jul 2012 | B2 |
8228622 | Tang | Jul 2012 | B2 |
8233224 | Chen | Jul 2012 | B2 |
8253843 | Lin | Aug 2012 | B2 |
8279537 | Sato | Oct 2012 | B2 |
8363337 | Tang et al. | Jan 2013 | B2 |
8395851 | Tang et al. | Mar 2013 | B2 |
8400717 | Chen et al. | Mar 2013 | B2 |
8451549 | Yamanaka et al. | May 2013 | B2 |
8503107 | Chen et al. | Aug 2013 | B2 |
8514502 | Chen | Aug 2013 | B2 |
8570668 | Takakubo et al. | Oct 2013 | B2 |
8718458 | Okuda | May 2014 | B2 |
8780465 | Chae | Jul 2014 | B2 |
8810923 | Shinohara | Aug 2014 | B2 |
8854745 | Chen | Oct 2014 | B1 |
8958164 | Kwon et al. | Feb 2015 | B2 |
9185291 | Shabtay | Nov 2015 | B1 |
9229194 | Yoneyama et al. | Jan 2016 | B2 |
9235036 | Kato et al. | Jan 2016 | B2 |
9279957 | Kanda et al. | Mar 2016 | B2 |
9438792 | Nakada et al. | Sep 2016 | B2 |
9488802 | Chen et al. | Nov 2016 | B2 |
9568712 | Dror et al. | Feb 2017 | B2 |
9678310 | Iwasaki et al. | Jun 2017 | B2 |
9817213 | Mercado | Nov 2017 | B2 |
20020118471 | Imoto | Aug 2002 | A1 |
20030048542 | Enomoto | Mar 2003 | A1 |
20050041300 | Oshima et al. | Feb 2005 | A1 |
20050062346 | Sasaki | Mar 2005 | A1 |
20050128604 | Kuba | Jun 2005 | A1 |
20050141103 | Nishina | Jun 2005 | A1 |
20050168840 | Kobayashi et al. | Aug 2005 | A1 |
20050270667 | Gurevich et al. | Dec 2005 | A1 |
20060092524 | Konno | May 2006 | A1 |
20060238902 | Nakashima et al. | Oct 2006 | A1 |
20060275025 | Labaziewicz et al. | Dec 2006 | A1 |
20070114990 | Godkin | May 2007 | A1 |
20070229983 | Saori | Oct 2007 | A1 |
20070247726 | Sudoh | Oct 2007 | A1 |
20070253689 | Nagai et al. | Nov 2007 | A1 |
20080056698 | Lee et al. | Mar 2008 | A1 |
20080094730 | Toma et al. | Apr 2008 | A1 |
20080094738 | Lee | Apr 2008 | A1 |
20080291531 | Heimer | Nov 2008 | A1 |
20080304161 | Souma | Dec 2008 | A1 |
20090002839 | Sato | Jan 2009 | A1 |
20090067063 | Asami et al. | Mar 2009 | A1 |
20090122423 | Park et al. | May 2009 | A1 |
20090135245 | Luo et al. | May 2009 | A1 |
20090141365 | Jannard et al. | Jun 2009 | A1 |
20090147368 | Oh et al. | Jun 2009 | A1 |
20090225438 | Kubota | Sep 2009 | A1 |
20090279191 | Yu | Nov 2009 | A1 |
20090303620 | Abe et al. | Dec 2009 | A1 |
20100026878 | Seo | Feb 2010 | A1 |
20100033844 | Katano | Feb 2010 | A1 |
20100060995 | Yumiki et al. | Mar 2010 | A1 |
20100165476 | Eguchi | Jul 2010 | A1 |
20100214664 | Chia | Aug 2010 | A1 |
20100277813 | Ito | Nov 2010 | A1 |
20110001838 | Lee | Jan 2011 | A1 |
20110032409 | Rossi et al. | Feb 2011 | A1 |
20110080655 | Mori | Apr 2011 | A1 |
20110102667 | Chua et al. | May 2011 | A1 |
20110102911 | Iwasaki | May 2011 | A1 |
20110115965 | Engelhardt et al. | May 2011 | A1 |
20110149119 | Matsui | Jun 2011 | A1 |
20110157430 | Hosoya et al. | Jun 2011 | A1 |
20110188121 | Goring et al. | Aug 2011 | A1 |
20110249347 | Kubota | Oct 2011 | A1 |
20120062783 | Tang et al. | Mar 2012 | A1 |
20120069455 | Lin et al. | Mar 2012 | A1 |
20120092777 | Tochigi et al. | Apr 2012 | A1 |
20120105708 | Hagiwara | May 2012 | A1 |
20120147489 | Matsuoka | Jun 2012 | A1 |
20120154929 | Tsai et al. | Jun 2012 | A1 |
20120194923 | Um | Aug 2012 | A1 |
20120229920 | Otsu et al. | Sep 2012 | A1 |
20120262806 | Lin et al. | Oct 2012 | A1 |
20130002933 | Topliss et al. | Jan 2013 | A1 |
20130057971 | Zhao et al. | Mar 2013 | A1 |
20130088788 | You | Apr 2013 | A1 |
20130176479 | Wada | Jul 2013 | A1 |
20130208178 | Park | Aug 2013 | A1 |
20130271852 | Schuster | Oct 2013 | A1 |
20130279032 | Suigetsu et al. | Oct 2013 | A1 |
20130286488 | Chae | Oct 2013 | A1 |
20140022436 | Kim et al. | Jan 2014 | A1 |
20140063616 | Okano et al. | Mar 2014 | A1 |
20140092487 | Chen et al. | Apr 2014 | A1 |
20140139719 | Fukaya | May 2014 | A1 |
20140146216 | Okumura | May 2014 | A1 |
20140160581 | Cho et al. | Jun 2014 | A1 |
20140204480 | Jo et al. | Jul 2014 | A1 |
20140240853 | Kubota et al. | Aug 2014 | A1 |
20140285907 | Tang et al. | Sep 2014 | A1 |
20140293453 | Ogino et al. | Oct 2014 | A1 |
20140362274 | Christie et al. | Dec 2014 | A1 |
20150022896 | Cho et al. | Jan 2015 | A1 |
20150029601 | Dror | Jan 2015 | A1 |
20150116569 | Mercado | Apr 2015 | A1 |
20150138431 | Shin et al. | May 2015 | A1 |
20150153548 | Kim et al. | Jun 2015 | A1 |
20150168667 | Kudoh | Jun 2015 | A1 |
20150177496 | Marks et al. | Jun 2015 | A1 |
20150205068 | Sasaki | Jul 2015 | A1 |
20150244942 | Shabtay et al. | Aug 2015 | A1 |
20150253532 | Lin | Sep 2015 | A1 |
20150253543 | Mercado | Sep 2015 | A1 |
20150253647 | Mercado | Sep 2015 | A1 |
20150323757 | Bone | Nov 2015 | A1 |
20150373252 | Georgiev | Dec 2015 | A1 |
20150373263 | Georgiev et al. | Dec 2015 | A1 |
20160007008 | Molgaard et al. | Jan 2016 | A1 |
20160033742 | Huang | Feb 2016 | A1 |
20160044250 | Shabtay et al. | Feb 2016 | A1 |
20160062084 | Chen et al. | Mar 2016 | A1 |
20160062136 | Nomura et al. | Mar 2016 | A1 |
20160070088 | Koguchi | Mar 2016 | A1 |
20160085089 | Mercado | Mar 2016 | A1 |
20160105616 | Shabtay et al. | Apr 2016 | A1 |
20160187631 | Choi et al. | Jun 2016 | A1 |
20160202455 | Aschwanden et al. | Jul 2016 | A1 |
20160212333 | Liege et al. | Jul 2016 | A1 |
20160241756 | Chen | Aug 2016 | A1 |
20160291295 | Shabtay | Oct 2016 | A1 |
20160306161 | Harada et al. | Oct 2016 | A1 |
20160313537 | Mercado | Oct 2016 | A1 |
20160341931 | Liu et al. | Nov 2016 | A1 |
20160349504 | Hun-Kim et al. | Dec 2016 | A1 |
20160353008 | Osborne | Dec 2016 | A1 |
20170023778 | Inoue | Jan 2017 | A1 |
20170094187 | Sharma et al. | Mar 2017 | A1 |
20170102522 | Jo | Apr 2017 | A1 |
20170115471 | Shinohara | Apr 2017 | A1 |
20170153422 | Tang et al. | Jun 2017 | A1 |
20170160511 | Kim et al. | Jun 2017 | A1 |
20170199360 | Chang | Jul 2017 | A1 |
20170276911 | Huang | Sep 2017 | A1 |
20170310952 | Adomat et al. | Oct 2017 | A1 |
20170329108 | Hashimoto | Nov 2017 | A1 |
20170337703 | Wu et al. | Nov 2017 | A1 |
20180024319 | Lai et al. | Jan 2018 | A1 |
20180059365 | Bone et al. | Mar 2018 | A1 |
20180059376 | Lin et al. | Mar 2018 | A1 |
20180081149 | Bae et al. | Mar 2018 | A1 |
20180120674 | Avivi et al. | May 2018 | A1 |
20180149835 | Park | May 2018 | A1 |
20180196236 | Ohashi et al. | Jul 2018 | A1 |
20180196238 | Goldenberg et al. | Jul 2018 | A1 |
20180217475 | Goldenberg et al. | Aug 2018 | A1 |
20180218224 | Olmstead et al. | Aug 2018 | A1 |
20180224630 | Lee et al. | Aug 2018 | A1 |
20180268226 | Shashua et al. | Sep 2018 | A1 |
20190025549 | Hsueh et al. | Jan 2019 | A1 |
20190025554 | Son | Jan 2019 | A1 |
20190075284 | Ono | Mar 2019 | A1 |
20190086638 | Lee | Mar 2019 | A1 |
20190107651 | Sade | Apr 2019 | A1 |
20190121216 | Shabtay et al. | Apr 2019 | A1 |
20190155002 | Shabtay et al. | May 2019 | A1 |
20190170965 | Shabtay | Jun 2019 | A1 |
20190187443 | Jia et al. | Jun 2019 | A1 |
20190187486 | Goldenberg et al. | Jun 2019 | A1 |
20190196148 | Yao et al. | Jun 2019 | A1 |
20190215440 | Rivard et al. | Jul 2019 | A1 |
20190222758 | Goldenberg et al. | Jul 2019 | A1 |
20190235202 | Smyth et al. | Aug 2019 | A1 |
20190353874 | Yeh et al. | Nov 2019 | A1 |
20200084358 | Nadamoto | Mar 2020 | A1 |
20200192069 | Makeev et al. | Jun 2020 | A1 |
20200221026 | Fridman et al. | Jul 2020 | A1 |
20200241233 | Shabtay et al. | Jul 2020 | A1 |
20200333691 | Shabtay et al. | Oct 2020 | A1 |
20200400926 | Bachar | Dec 2020 | A1 |
20210048628 | Shabtay et al. | Feb 2021 | A1 |
20210263276 | Huang et al. | Aug 2021 | A1 |
20210364746 | Chen | Nov 2021 | A1 |
20210396974 | Kuo | Dec 2021 | A1 |
20220046151 | Shabtay et al. | Feb 2022 | A1 |
20220066168 | Shi | Mar 2022 | A1 |
20220113511 | Chen | Apr 2022 | A1 |
20220232167 | Shabtay et al. | Jul 2022 | A1 |
Number | Date | Country |
---|---|---|
101634738 | Jan 2010 | CN |
102147519 | Aug 2011 | CN |
102193162 | Sep 2011 | CN |
102466865 | May 2012 | CN |
102466867 | May 2012 | CN |
102147519 | Jan 2013 | CN |
103576290 | Feb 2014 | CN |
103698876 | Apr 2014 | CN |
104297906 | Jan 2015 | CN |
104407432 | Mar 2015 | CN |
105467563 | Apr 2016 | CN |
105657290 | Jun 2016 | CN |
106680974 | May 2017 | CN |
104570280 | Jun 2017 | CN |
S54157620 | Dec 1979 | JP |
S59121015 | Jul 1984 | JP |
6165212 | Apr 1986 | JP |
S6370211 | Mar 1988 | JP |
H0233117 | Feb 1990 | JP |
406059195 | Mar 1994 | JP |
H07325246 | Dec 1995 | JP |
H07333505 | Dec 1995 | JP |
H09211326 | Aug 1997 | JP |
H11223771 | Aug 1999 | JP |
2000292848 | Oct 2000 | JP |
3210242 | Sep 2001 | JP |
2004334185 | Nov 2004 | JP |
2006195139 | Jul 2006 | JP |
2007133096 | May 2007 | JP |
2007164065 | Jun 2007 | JP |
2007219199 | Aug 2007 | JP |
2007306282 | Nov 2007 | JP |
2008111876 | May 2008 | JP |
2008191423 | Aug 2008 | JP |
2010032936 | Feb 2010 | JP |
2010164841 | Jul 2010 | JP |
2011145315 | Jul 2011 | JP |
2012203234 | Oct 2012 | JP |
2013003317 | Jan 2013 | JP |
2013003754 | Jan 2013 | JP |
2013101213 | May 2013 | JP |
2013105049 | May 2013 | JP |
2013106289 | May 2013 | JP |
2013148823 | Aug 2013 | JP |
2014142542 | Aug 2014 | JP |
2017116679 | Jun 2017 | JP |
2018059969 | Apr 2018 | JP |
2019113878 | Jul 2019 | JP |
20080088477 | Oct 2008 | KR |
20090019525 | Feb 2009 | KR |
20090131805 | Dec 2009 | KR |
20110058094 | Jun 2011 | KR |
20110115391 | Oct 2011 | KR |
20120068177 | Jun 2012 | KR |
20140135909 | May 2013 | KR |
20140023552 | Feb 2014 | KR |
20160000759 | Jan 2016 | KR |
101632168 | Jun 2016 | KR |
20160115359 | Oct 2016 | KR |
M602642 | Oct 2020 | TW |
2013058111 | Apr 2013 | WO |
2013063097 | May 2013 | WO |
2018130898 | Jul 2018 | WO |
Entry |
---|
A compact and cost effective design for cell phone zoom lens, Chang et al., Sep. 2007, 8 pages. |
Consumer Electronic Optics: How small a lens can be? The case of panomorph lenses, Thibault et al., Sep. 2014, 7 pages. |
Optical design of camera optics for mobile phones, Steinich et al., 2012, pp. 51-58 (8 pages). |
The Optics of Miniature Digital Camera Modules, Bareau et al., 2006, 11 pages. |
Modeling and measuring liquid crystal tunable lenses, Peter P. Clark, 2014, 7 pages. |
Mobile Platform Optical Design, Peter P. Clark, 2014, 7 pages. |
Boye et al., “Ultrathin Optics for Low-Profile Innocuous Imager”, Sandia Report, 2009, pp. 56-56. |
“Cheat sheet: how to understand f-stops”, Internet article, Digital Camera World, 2017. |
Number | Date | Country | |
---|---|---|---|
20240077703 A1 | Mar 2024 | US |
Number | Date | Country | |
---|---|---|---|
61842987 | Jul 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 18054905 | Nov 2022 | US |
Child | 18504395 | US | |
Parent | 17499878 | Oct 2021 | US |
Child | 18054905 | US | |
Parent | 16872934 | May 2020 | US |
Child | 17499878 | US | |
Parent | 16829804 | Mar 2020 | US |
Child | 16872934 | US | |
Parent | 16665977 | Oct 2019 | US |
Child | 16829804 | US | |
Parent | 16296272 | Mar 2019 | US |
Child | 16665977 | US | |
Parent | 15976422 | May 2018 | US |
Child | 16296272 | US | |
Parent | 15976391 | May 2018 | US |
Child | 15976422 | US | |
Parent | 15817235 | Nov 2017 | US |
Child | 15976391 | US | |
Parent | 15817235 | Nov 2017 | US |
Child | 15976422 | US | |
Parent | 15418925 | Jan 2017 | US |
Child | 15817235 | US | |
Parent | 14932319 | Nov 2015 | US |
Child | 15170472 | US | |
Parent | 14367924 | US | |
Child | 14932319 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15170472 | Jun 2016 | US |
Child | 15418925 | US |