The present invention relates to a mining machine. In particular, the invention relates to a method of mining and to a mining machine.
It has been recognized for many years that mining machines greatly improve productivity in underground mines. For this purpose, continuous mining machines were developed fin particular for usage in coal mines. These mining machines utilize rotating teeth-faced drums or rotating borer heads that scrape coal from the seam.
The inventors are aware of mining machines which date back to the early years of 1940. In U.S. Pat. No. 2,565,528 one particular example of such an early prior art mining machine is described.
Another mining machine is shown in U.S. Pat. No. 4,669,560. A continuous mining machine is described having an elongated conveyor assembly for continuously conveying coal cut from a coal seam rearwardly away from the face of the coal seam being cut having a frame structure associated therewith. A power driven cutting assembly is disposed forwardly with respect to the frame structure for cutting coal from the coal seam for conveyance rearwardly by the conveyor assembly.
A problem associated with this known prior art machine is that often the walls of the seam are not evenly scraped, as for example illustrated in
Another mining machine is shown in U.S. Pat. No. 3,197,256. There, a borer type cutting head is used in order to cut the coal from the seam. A problem associated with this known prior art machine is that the machine experience large forces on the drum which have to be counter balanced by suitable anchoring of the machine to the ground.
A further example of mining machines is described in U.S. Pat. No. 5,871,260. A continuous mining machine is provided for mining ultra thin coal seams, e.g. seams having a thickness of about 24 inches or less. A chassis supported by crawler tracks has a substantially horizontal axis powered cutter head mounted to its front and a conveyor extending from a gathering head toward the rear of the chassis. The conveyor includes a conveyor chain driven by at least one motor near the rear of the chassis for driving a sprocket.
Other mining machines are described in U.S. Pat. No. 4,341,424 and U.S. Pat. No. 4,037,875.
What is ideally required is a mining machine and/or a method of mining which is not only easier to operate but offers more even scrapping of the mine's seam.
It is an object of the present invention to provide a mining machine and a method of mining which overcomes, at least partly, the disadvantages associated with the state of the art mining machines.
It is also an object of the present invention to provide a new mining machine and a method of mining involving an inventive step.
According to a first aspect of the invention, there is provided a method of mining, the method including:
The arm may be mounted on the body for generally horizontal angular displacement relative to the body, driving the arm to displace angularly relative to the body to sweep the mining head across the mining face then including driving the arm to displace angularly relative to the body to sweep the mining head generally horizontally across the mining face.
The mining machine may define anchor means for anchoring the arm relative to the mining face as the arm is driven to displace angularly relative to the body to sweep the mining head across the mining face, the method then including anchoring the arm relative to the mining face, by means of the anchor means, as the arm is driven to displace angularly relative to the body to sweep the mining head across the mining face.
The arm may be mounted on the body for angular displacement relative to the body about a pivot, anchoring the arm relative to the mining face, by means of the anchor means, as the arm is driven to displace angularly relative to the body to sweep the mining head across the mining face then including anchoring the pivot relative to the mining face.
The anchor means may include a prop formation, anchoring the pivot relative to the mining face then including actuating the prop formation to cause the prop formation to prop the pivot between a roof of the mine and a floor of the mine thereby to anchor the arm relative to the mining face.
The prop formation may define a prop axis, driving the arm to displace angularly relative to the body then including driving the arm to displace angularly relative to the body about the prop axis.
The arm may define a wrist portion positioned between the mining head and the rest of the arm, the wrist portion being angularly displaceably mounted on the arm, the method including driving the arm to displace angularly relative to the body to sweep the mining head across the mining face to perform successive sweeping strokes across the mining face and driving the wrist portion to displace angularly relative to the rest of the arm between successive sweeping strokes.
The wrist portion may be mounted on the rest of the arm for generally horizontal angular displacement relative to the rest of the arm, driving the wrist portion to displace angularly relative to the rest of the arm between successive sweeping strokes then including driving the arm to displace angularly relative to the rest of the arm in a generally horizontal direction between successive sweeping strokes.
The arm may be mounted on the body for angular displacement relative to the body in a generally vertically extending direction, the method including driving the arm to displace angularly in the generally vertically extending direction between successive sweeping strokes.
The wrist portion may be mounted on the rest of the arm for angular displacement relative to the rest of the arm in a generally vertically extending direction, the method including driving the wrist portion to displace angularly in the generally vertically extending direction relative to the rest of the arm between successive sweeping strokes.
The mining head may be generally elongate drum shaped defining a longitudinally extending axis of rotation, driving the mining head to rotate relative to the end region of the arm while the mining head is in abutment with the mining face then including driving the generally elongate drum shaped mining head to rotate about the longitudinally extending axis of rotation.
The generally elongate drum shaped mining head may be mounted on the end region of the arm such that the longitudinally extending axis of rotation extends generally horizontally, driving the mining head to rotate relative to the end region of the arm while the mining head is in abutment with the mining face then including driving the mining head to rotate about the generally horizontal longitudinally extending axis of rotation.
The generally elongate drum shaped mining head may define opposed generally truncated cone shaped portions, driving the arm to displace angularly relative to the body to sweep the mining head across the mining face to perform successive sweeping strokes across the mining face and driving the wrist portion to displace angularly relative to the rest of the arm between successive sweeping strokes then including causing the opposed generally truncated cone shaped portions alternately to abut against the mining face between successive sweeping strokes.
According to another aspect of the invention, there is provided a mining machine including:
The arm may be mounted on the body for generally horizontal angular displacement relative to the body.
The mining machine may define anchor means for anchoring the arm relative to a mining face when the arm is driven to displace angularly relative to the body to sweep the mining head across a mining face.
The anchor means may include a prop formation arranged to prop the mining machine between a roof of a mine and a floor of a mine thereby to anchor the arm relative to a mining face.
The prop formation may be displaceably mounted to the rest of the mining machine to be displaceable between a deployed condition, in which the prop formation is extended, and a collapsed condition, in which the prop formation is retracted.
The mining machine may include drive means for selectively driving the prop formation to displace between the deployed condition and the retracted condition.
The prop formation may define a prop axis.
The arm may be mounted on the body to be angularly displaceable relative to the body about the prop axis.
The arm may define a wrist portion positioned between the mining head and the rest of the arm, the wrist portion being angularly displaceably mounted on the rest of the arm.
The wrist portion may be mounted on the rest of the arm for generally horizontal angular displacement relative to the rest of the arm.
The mining machine may define drive means for driving the wrist portion to displace angularly relative to the rest of the arm.
The arm may be mounted on the body for angular displacement relative to the body in a generally vertically extending direction.
The mining machine may define drive means for driving the arm to displace angularly in the generally vertically extending direction.
The wrist portion may be mounted on the rest of the arm for angular displacement relative to the rest of the arm in a generally vertically extending direction.
The mining machine may define drive means for driving the wrist portion to displace angularly in the generally vertically extending direction relative to the rest of the arm.
The mining head may be generally elongate drum shaped.
The mining head may define a longitudinally extending axis of rotation.
The drive means for driving the mining head to rotate relative to the end region of the arm may be arranged to drive the mining head to rotate about the longitudinally extending axis of rotation.
The generally elongate drum shaped mining head may be mounted on the end region of the arm such that the longitudinally extending axis of rotation extends generally horizontally.
The generally elongate drum shaped mining head may define opposed generally truncated cone shaped portions.
Mining elements may be provided to extend across an outer surface of the elongate drum shaped mining head.
The mining elements may be in the form of mining picks.
The mining machine may further include mined material removal means for removing mined material from a mining face.
The mined material removal means may include an auger.
The mining material removal means may further include an arm on which the mined material removal means is mounted.
The arm may be angularly displaceably mounted on the body to be displaceable between a mined material removal position, in which the arm is extended relative to the body and the mined material removal means is in a position for removing mined material from a mining face, and a retracted position, in which the arm is retracted toward the body.
The mining machine may include two opposed arms on each of which mining material removal means is mounted, the arms being displaceably mounted on the body to be displaceable between mined material removal positions, in which the arms are extended relative to the body and the mined material removal means are in positions for removing mined material from a mining face, and retracted positions, in which the arms are retracted toward the body.
The mining machine may include a cartridge for carrying operating means or moving means of the mining machine, the cartridge being retractably mounted at an end opposite to the mining means.
The cartridge may include fastening means for retracting the cartridge.
According to another aspect of the invention, there is provided a mining vehicle being capable of carrying the mining machine according to the invention.
The mining vehicle may comprise a cartridge for carrying the operating means or moving means of the mining machine, the cartridge being retractably mounted at an end opposite to the mining means.
The cartridge may include fastening means for retracting the cartridge.
The invention will now be described, by way of non-limiting example and drawings. The different embodiments of the invention are now further illustrated with reference to the following drawings.
In the accompanying diagrammatic drawings:
In all drawings, like reference numerals refer to like parts, unless otherwise indicated.
Referring to
The mining machine 10 includes a body 12. An arm 14 is mounted on the body 12 for angular displacement relative to the body 12, as indicated by arrows AA in
Drive means for driving the mining head 16 to rotate relative to the end region 14.1 of the arm 14, is generally indicated by reference numeral 18. The mining head 16 is driven to rotate while the mining head 16 is in abutment with a mining face, so as to perform a mining operation against the mining face. The drive means 18 can include, an electric motor, a hydraulic motor, or the like, for example. The drive means 18 can be positioned at any appropriate position, such as on the body 12, on the arm 14, or the like, for example.
The mining head 16 is generally elongate drum shaped. The mining head 16 defines a longitudinally extending axis of rotation 16.1. The drive means for driving the mining head 16 to rotate relative to the end region 14.1 of the arm 14 is arranged to drive the mining head 16 to rotate about the longitudinally extending axis of rotation 16.1.
The generally elongate drum shaped mining head 16 is mounted on the end region 14.1 of the arm 14 such that the longitudinally extending axis of rotation 16.1 extends generally horizontally.
The generally elongate drum shaped mining head 16 defines opposed generally truncated cone shaped head portions 16.2, 16.3. It will be appreciated that, instead of the opposed generally truncated cone shaped head portions 16.2, 16.3, opposed generally barrel shaped portions, or opposed generally cylindrically shaped portions, or the like, for example, can be used. Mining elements 16.4 are provided to extend across an outer surface of the elongate drum shaped mining head 16. Typically, the mining elements 16.4 are in the form of mining picks.
In use, the arm 14 is driven to displace angularly relative to the body 12, as indicated by arrows AA, to sweep the mining head 16 across a mining face while the mining head 16 is driven to rotate and in abutment with the mining face, thereby to mine the mining face.
Drive means for driving the arm 14 to displace angularly relative to the body 12, as indicated by arrows AA, is generally indicated by reference numeral 20. The drive means 20 can include, an electric motor, a hydraulic motor, or the like, for example. Typically, the drive means 20 is positioned on the body 12.
It will be appreciated that the drive means 18, 20 can include corresponding transmission components, such as, gears, chains, hydraulic conduits, hydraulic pumps, or the like, for example.
The mining machine 10 further includes anchor means, generally indicated by reference numeral 22, for anchoring the arm 14 relative to a mining face when the arm 14 is driven to displace angularly relative to the body 12 to sweep the mining head 16 across a mining face. The anchor means 22 includes a prop formation 24 arranged to prop, or wedge, the mining machine 10 between a roof of a mine and a floor of a mine thereby to anchor the arm 14 relative to a mining face. The prop formation 22 is displaceably mounted on the rest of the mining machine 10 to be displaceable between a deployed condition, in which the prop formation 22 is extended, as can best be seen with reference to
The arm 14 is mounted on the body 12 for angular displacement relative to the body 12 about a pivot 27. The anchor means 22 is arranged to anchor the arm 14 relative to the mining face 40 at the pivot 27, thereby to anchor the arm 14 relative to the mining face 40. Accordingly, when the prop formation 22 is actuated the prop formation 22 props the pivot 27 between a roof of the mine and a floor of the mine thereby to anchor the arm 12 relative to the mining face 40.
The prop formation 22 defines a prop axis 26. Advantageously, the arm 14 is mounted on the body 12 to be angularly displaceable relative to the body 12 about the prop axis 26. Accordingly, an axis 25 of angular displacement of the arm 14 is coaxial with the prop axis 26.
By mounting the arm 14 on the body 12 such that the arm 14 is anchored at the pivot 27, the rest of the mining machine 10 other than the arm 14, is relatively isolated from stresses and strains during a mining operation.
The arm 14 defines a wrist portion 14.2 positioned between the mining head 16 and the rest of the arm 14. The wrist portion 14.2 is angularly displaceably mounted on the rest of the arm 14, as indicated by arrows DD, as can best be seen with reference to
The arm 14 is mounted on the body 12 for angular displacement relative to the body 12 in a generally vertically extending direction, as indicated by arrows EE, as can best be seen with reference to
The wrist portion 14.2 is mounted on the rest of the arm 14 for angular displacement relative to the rest of the arm 14 in a generally vertically extending direction, as can best be seen with reference to
Instead of a parallelogram type linkage 32, a rigid arm can be used. In such a case, drive means can be provided for driving the wrist portion 14.2 to displace angularly in a generally vertically extending direction relative to the rest of the arm 14.
The mining machine 10 further includes mined material removal means, generally indicated by reference numeral 50, for removing mined material from a face of a mine. The mined material removal means 50 includes an auger 52. The auger 52 is mounted for rotation on an arm 54. The arm 54 is angularly displaceably mounted on the body 12 to be displaceable between a mined material removal position, in which the auger 52 can be driven to rotate to remove mined material from the face of a mine, and a retracted position, as indicated in
It will be appreciated that a scraper, or scraper chain, or the like, for example, can be provided instead of, or in addition to, the augers 52.1, 52.2.
In use, the mining machine 10 can be used in a method of mining, in accordance with another aspect of the invention, as will now be described with reference to
In accordance with the method, the mining machine 10 is advanced such that the mining head 16 abuts against a mining face, as indicated by reference numeral 40, in
The anchor means is actuated to anchor the arm 14 relative to the mining face 40. In consequence, the prop formation 24 is displaced from the collapsed condition, as can best be seen with reference to
As can best be seen with reference to
After the arm 14 has been driven to displace angularly relative to the body 12 to sweep the mining head 16 across the mining face 40, as indicated by arrow A, so as to be positioned as indicated in dashed lines in
The wrist portion 14.2 is then displaced angularly in a generally horizontal plane relative to the rest of the arm 14, as indicated by the dashed arrow D in
As can best be seen with reference to
After the successive sweeping strokes have been performed, the prop formation 24 is displaced from the deployed condition, as can best be seen with reference to
The mining machine 10 can be mounted on a mining vehicle, part of which is schematically indicated in dashed lines at 51 in
As can best be seen with reference to
The arm 14 can be radially outwardly extendable relative to the pivot 27 so that a to and fro mining sweep operation can be performed as described above and the arm 14 can then be extended to repeat the process. Then, only after an end of a range of the arm 14 has been reached, is the prop formation displaced into the collapsed condition and the mining machine 10 is advanced closer to the mining face 40 to repeat the process.
During such a mining operation, the mined material removal means 50 can be actuated periodically to remove mined material from the mining face 40. This is achieved by displacing the arms 54.1, 54.2 from the retracted positions into the mined material removal positions and driving the augers 52.1, 52.2 to rotate. The arm 14 when performing a sweep while in a lower position serves to displace mined material toward the augers 52.1, 52.2, as indicated schematically at 53 in
Making now reference to
As shown in
The cartridge 68 is retractably mounted at an end opposite to the mining means. In order to enhance maintenance operations of the mining vehicle 60, the cartridge 68 includes fastening means 74 for retracting the cartridge. Fastening means 74 can be provided in the form of a hook, for example. Retracting the cartridge can also be helpful during a break-down of the mining vehicle 60 because most of the parts of the mining vehicle 60 become accessible for repair.
In another embodiment (not explicitly shown in
Making now reference to
Making now reference to
In one example, the width 90 of the mining face 40 can be 7 m. The height 92 of the mining face 40 can be 0.8 m in the lower sweep. The distance 94 of the arms 54 to the top of mining face 40 can be below 0.30 m while the end tips of the arms 54 are located at a distance 96 below 0.5 m from the mining face.
Making now reference to
In one example, the width 90 of the mining face 40 can be 7 m. The height 92 of the mining face 40 can be 1.2 m in the upper sweep. The distance 94 of the arms 54 to the top of mining face 40 can be below 0.70 m. When the prop formation 22 is actuated the prop formation 22 props the pivot 27 between the roof of the mine and the floor of the mine thereby to anchor the arm 12 relative to the mining face 40. The prop formation 22 is covering a distance 98 of approximately 0.4 m between the mining machine 10 and the roof of the mining face 40.
It should be noted that the above example is merely illustrative to indicate the dimensions of the mining machine 10. The mining machine 10 can be adapted for other dimensions, depending upon the specific requirements in an underground mine.
As can be seen from
Although certain embodiments only of the invention have been described herein, it will be understood by any person skilled in the art that other modifications, variations, and possibilities of the invention are possible. Such modifications, variations and possibilities are therefore to be considered as falling within the spirit and scope of the invention and hence forming part of the invention as herein described and/or exemplified.
This invention having been described in its preferred embodiment, it is clear that it is susceptible to numerous modifications and embodiments within the ability of those skilled in the art and without the exercise of the inventive faculty. Accordingly, the scope of the invention is defined by the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2008/4528 | May 2008 | ZA | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/ZA2009/000046 | 5/26/2009 | WO | 00 | 11/22/2010 |