1. Field of the Invention
The invention relates to a laser-scanning microscope, as described, for example, in DE 19702753 A1 (U.S. Pat. No. 6,631,226).
2. Description of Related Art
Including Information Disclosed Under 37 CFR §§1.97 and 37 CFR 1.98
So-called laser modules are now used in most confocal systems. Laser modules are understood to mean functional units that co-linearly combine several lasers of different wavelengths into one beam and transport the combined radiation to a scan head via a fiber-optic light guide.
There is also the possibility of individually modulating the radiation or attenuating it and selecting individual laser lines from the mixture. Beam combining is then accomplished via mirrors and dichroic splitters in the open beam. For this purpose, all components are mounted on a common base plate and with a fixed position as stable as possible relative to each other.
Other solutions propose individual fiber coupling of the laser and beam combining via a tubular combining unit, at whose output there is a fiber coupling for guiding the light to the scan head as shown in U.S. Pat. No. 6,222,961. The '961 patent relates to a point light source for a laser-scanning microscope. At least two lasers with different wavelengths may be coupled in the microscope. To combine the advantages of a multiline laser with those of the use of several independent single-line lasers, the point light source is characterized by at least two laser light sources the beam of which are fed into a beam combiner, and by an optical fiber which leads directly or indirectly from the beam combiner to the microscope.
However, solutions are also known that provide for individual fiber coupling of the laser to a scan head as shown in JP 2003270543. JP 2003270543 relates to a confocal optical scanner capable of emitting excitation light of multiple linear laser beams by synthesizing a plurality of the laser beams varying in wavelengths with simple, low-cost construction and low cost without using a spot light source. The confocal optical scanner has a confocal scanning mechanism for optically scanning a sample of an optical microscope by making the laser beam mounted on the optical microscope incident on the optical microscope. The scanner has means for guiding a plurality of the laser beams varying in wavelengths and is provided with a laser beam synthesizing mechanism for synthesizing a plurality of the laser beams and making the laser beam incident as the excitation light on the confocal scanning mechanism and the confocal scanning mechanism within the same container.
Errors caused by misalignments of laser beams caused by shock during transportation and temperature changes, as well as cyclical temperature changes during the use of a system by a customer, are ordinarily seen for the open beam solution. Such errors require readjustment by a service technician, both during setup of the instrument and over the duration of its use.
The laser modules are generally large and heavy because it is necessary that the components be assembled with a fixed reference to each other and be mounted on a stable granite slab or steel frame. The costs for reliable transport of a system are correspondingly high. The limited flexibility with reference to setup at the customer's location, because of large space requirements, is also significant. Another drawback is the limited flexibility with reference to the integration of new light sources and the great amount of time needed for adding predefined light sources in an existing layout (for example, by retrofitting).
The invention therefore concerns a fiber-coupled, open beam assembly for implementation of illumination of laser-scanning microscopes with individual fiber coupling of the laser to a scan head, beam combining, beam modulation, and beam attenuation. A significant advantage is achieved with reference to freedom from adjustment, both in system integration and setup of the instrument by the customer and over the operating life of the system. Because of this, the subsequent costs are kept low and startup of the instrument can be reduced to a simple “plug and play.” Freedom from adjustment means that overlapping of individual fiber inputs with reference to location and angle is adjusted only once, i.e., during assembly of the beam combining group, and otherwise remains free from requiring adjustment, both after transport and under the operating conditions at the customer's location.
a is a schematic diagram of a beam combiner with direct coupling into a microscope.
b is a schematic diagram of a beam combiner showing laser coupling from several sides.
In describing preferred embodiments of the present invention illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the invention is not intended to be limited to the specific terminology so selected, and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner to accomplish a similar purpose.
With reference to
With reference to
The beam combining unit SV, as stated, has a housing and can therefore be designed to be very compact and stable, which saves adjustment costs. An AOTF for wavelength selection and individual control of intensity could also advantageously be integrated in the beam combining unit SV.
A tolerable angle error of 100 μrad in an open beam design is converted by the correction fiber (that is, the output optical fiber) into an intensity error of about 5%. Moreover, the deviations of individual coupling ports are not added to each other, as in the open beam solution, but all coupling ports exhibit an individual interaction upon coupling with the correction fiber. The same applies for lateral misalignments. A parallel misalignment of about 50 μm can be accepted in the open beam solution, based on the following telescope (beam expander) (as described below in connection with
If a correction fiber is used, it can be characterized by a circular or kidney shape, in order to achieve better mode filtration and therefore further increase the quality of the output signal.
The use of a correction fiber also opens up instrument capabilities that permit complete decoupling of the illumination unit integrated in the scan head from the rest of the beam path (flexible instrument design, compact design)—in connection with which,
An important aspect is that the beam combining unit represents a preadjusted assembly, which need not be further adjusted during later steps of system integration and during instrument installation at the customer's location or, if lasers are added/retrofitted in the field, at the customer's location. With appropriate precise layout of the fiber plug-in connectors, the beam overlap is retained during loosening and connection of plug-in connectors.
A beam combiner is shown in
The lasers are coupled from several sides (of the beam combiner housing) in
With reference to
In contrast to the most of the previously used constructions, both the output fiber and the AOTF can be constructed in the range from 400 nm to 640 nm and therefore cover the entire visible spectral range. Spectral coverage beyond this range is also possible with appropriate components.
Alternatively, the separation ports can be laid out adjustment-free using precise/high-precision plugs, which are releasable.
With reference to
This can be provided both as an open beam coupling (i.e., without collimator lens) and as a fiber coupling. Beam combining of the lasers coupled via the unoccupied coupling port can then be implemented conventionally using a beam splitter with dichroic layers or a polarizing beam splitter, and therefore independently of wavelength.
At the output of the mirror cascade in this case, a switchable lambda/2 plate is provided, in order to obtain the same polarization direction for reflected and transmitted beams at the output of the mirror cascade (essential for subsequent coupling into the AOTF). Via integration of such an unoccupied coupling port, the flexibility of laser coupling is significantly increased; for example, a combination of laser sources of equal wavelength with different power (bleaching laser, manipulation laser) from different modules via this unit is conceivable, or also broadband-emitting laser light sources or broadband tunable laser light sources can additionally be coupled.
A filter wheel can optionally be incorporated between the beam combiner and AOTF and correction fiber and in beam combining, in order to deliberately select only one emission line in multicolor lasers (for example, Ar lasers) (not shown). Shutters to suppress unused lasers can also be mounted individually for each port (at the input) and/or for all ports together at the output. These can be both safety shutters (laser safety) and functional shutters. The purpose of these shutters is complete masking of residual light in appropriate critical applications, in which suppression with an AOTF is not sufficient (for example, in fluorescence correlation spectroscopy (FCS)). An essential element of this solution, among other things, is the highly accurate and reproducible plug-in of individual fiber-coupled lasers to the beam combiner unit.
The required precision plug-in can be achieved in three possible ways:
Modifications and variations of the above-described embodiments of the present invention are possible, as appreciated by those skilled in the art in light of the above teachings. It is therefore to be understood that, within the scope of the appended claims and their equivalents, the invention may be practiced otherwise than as specifically disclosed.
Number | Date | Country | Kind |
---|---|---|---|
10 2007 047 183.3 | Oct 2007 | DE | national |
The present patent application is a continuation of International application No. PCT/EP2008/007687, filed Sep. 16, 2008, published in German, which is based on, and claims priority from, German Application No. 10 2007 047 183.3, filed Oct. 2, 2007, both of which are incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2008/007687 | Sep 2000 | US |
Child | 12752362 | US |