Mobile device sighting location analytics and profiling system

Information

  • Patent Grant
  • 11257117
  • Patent Number
    11,257,117
  • Date Filed
    Wednesday, November 27, 2019
    5 years ago
  • Date Issued
    Tuesday, February 22, 2022
    2 years ago
Abstract
The present disclosure describes systems and methods for providing enhanced location analysis and consumer insights using mobile sightings data. An approximate geographic location is useful to mobile service providers and advertisers who wish to provide targeted content to consumers based on their location. The location analysis described herein provides more depth and detail about the detected geographic location of the consumer and also insights into business locations visited by the user of the device, consumer/market segments and patterns of behavior (for an individual consumer and/or for aggregated group of consumers), retail trends and patterns, and other profile information. For example, a location profile analytics system as described herein can determine a probability that an approximate geographic location actually corresponds to a specific geographic location, such as a business location. The analysis performed by the location profile analytics system may be further refined based on a number of additional input parameters.
Description
BACKGROUND

Consumers carry and use mobile or portable computing devices nearly everywhere. These mobile computing devices increasingly are connected to wireless networks, such as cellular service networks and the Internet. Connectivity is often provided by mobile service providers which offer vast network capability, typically implemented by a complex network of cellular towers installed in a large number of physical locations, in addition to local Wi-Fi networks connected to the Internet. When consumers use their mobile computing devices to access a network, such as to place a phone call, send a text message, use an application on their mobile device, or access the Internet, mobile service providers can often receive or detect an approximate geographic location of the mobile computing device. This geographic location data which may be of value to mobile service providers as well as businesses and advertisers, who may generate and provide targeted advertising to consumers based on the geographic location data.


SUMMARY

The present disclosure describes systems and methods for providing enhanced location analysis and consumer insights using mobile sightings data. An approximate geographic location is useful to mobile service providers and advertisers who wish to provide targeted content to consumers based on their location. However, the location analysis provided by the systems and methods described herein provide more depth and detail not just about the detected geographic location of the consumer, but also insights into business locations visited by the user of the device, consumer/market segments and patterns of behavior (for an individual consumer and/or for aggregated group of consumers), retail trends and patterns, and other profile information.


In many instances a mobile service provider can only detect an approximate geographic location associated with a mobile sighting generated by a mobile computing device used by a consumer. A location profile analytics system, such as the one described herein, can analyze data associated with the mobile sighting to determine a probability that the approximate geographic location actually corresponds to a specific geographic location, such as a business location. Thus, the location profile analytics system may determine that a mobile sighting within a certain range of a plurality of business locations is most likely to have originated from a particular business location.


The analysis performed by the location profile analytics system may be further refined and concentrated to a particular business location based on a number of input parameters in addition to the approximate geographic location. For example, a mobile sighting might include additional data regarding the time and date of the sighting, which the location profile analytics system can comparatively analyze along with other sightings (both concurrent and prior sightings) and sightings trends, in order to assess a general likelihood that the mobile sighting originated from one business location over another. For example, one business location may receive higher retail traffic than another at certain times or days of the week, and such profile information can be used to analyze a mobile sighting to determine a business location from which the mobile sighting likely occurred.


In another example, the location profile analytics system may comparatively analyze patterns of mobile sightings associated with a device or with a user of a device in order to derive a behavior profile as an input to assess a general likelihood that the mobile sighting originated from one business location over another based on, for example, the user's observed tendencies to visit different types of business location by category, time of day, etc. Further, a mobile sighting might include additional data indicating a unique identifier associated with an anonymous consumer profile, which the location profile analytics system can use to develop, access, or link to consumer attributes such as consumer behavior/trends, market segments, demographics, and so on. These “expanded” consumer attributes, linked to the mobile computing device of the consumer, may be also analyzed to assess a general likelihood that the mobile sighting originated from one business location over another. For example, a consumer profile may including sightings trend data that suggests that the consumer using the mobile computing device prefers stopping for coffee on the way to work. The location profile analytics system may in turn use this consumer profile data to analyze a new sighting which occurred nearby to several businesses, including a coffee shop, and determine that the sighting most likely occurred at the coffee shop. Additional consumer insights may also be determined based on the consumer's profile or associated attributes—for example, that the coffee-on-the-way-to-work-consumer is associated with a group of consumers who have above average incomes and generally buy a lot of books.


The location profile analytics system can provide the detailed location information, consumer profile/attributes, and/or other business location data back to the mobile service provider or other third party entity (such as business locations themselves), which can in turn use the analysis to improve marketing efforts and/or provide more targeted content to consumers associated with the mobile sightings. For example, a mobile service provider may find data indicating that a mobile sighting most likely occurred at a certain retail establishment useful in providing targeted content (such as a coupon or a special offer) related to that retail establishment for the consumer to use. Or, a business location may desire to have information regarding retail traffic trends, based on associated mobile sightings, to improve business operations and customer service or assess the attractiveness of a potential new location.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram which illustrates an exemplary data flow between a consumer device, mobile service provider, a location profile analytics system, and one or more business locations according to one embodiment.



FIG. 2 is an example of sighting data and business data that may be analyzed and profiled according to the processes described herein, using the location profile analytics system of FIG. 6.



FIG. 3 is a flowchart of a process for analyzing sightings data and developing related location profiles and/or consumer profiles, using the location profile analytics system of FIG. 6.



FIG. 4 is a flowchart of a process for processing and/or filtering sightings data, using the location profile analytics system of FIG. 6.



FIG. 5 is a flowchart of a process for determining probable locations associated with sightings data, using the location profile analytics system of FIG. 6.



FIG. 6 is a block diagram of an implementation of an illustrative location profile analytics system.





DETAILED DESCRIPTION

High Level Data Flow



FIG. 1 is a block diagram which illustrates an exemplary data flow between a consumer's mobile computing device(s) (e.g., a smart phone, a tablet, or other portable electronic computing device) 162, a mobile service provider(s) 164, a location profile analytics system 100, and business location(s) 168, according to one embodiment. The data flow of FIG. 1 illustrates at a high level how a mobile sighting may be analyzed to determine a probable business location from which the mobile sighting originated or occurred, and to determine consumer insights regarding the consumer associated with the mobile sighting to improve targeted content (e.g., marketing, advertising, or similar) provided to the consumer.


Beginning at action (1), a consumer's mobile computing device 162 registers its location (a “sighting”) at or near locations of one or more businesses 168. For example, the mobile computing device 162 may register its location actively (e.g., when the user of the device places a call, sends a text message, uses an application, etc.), or the mobile computing device 162 may register its location passively such as when an application that is running in the background periodically sends location information to a remote system, such as the mobile service provider 164. The use may be any type of device usage that involves or may be detected by a mobile service provider 164 which provides mobile service for the consumer. For example, the consumer may place a call or send a text or SMS message over a network 170 in communication with the mobile service provider 164. Or, the consumer may access an application (“app”) installed on her mobile computing device 162 in order to access, request, send, and/or receive data over the network 170, such as may occur when the consumer uses the app to access services such as maps, social media, etc.


The mobile service provider may receive data (e.g., a mobile sighting) associated with the usage, such as a device identifier associated with the mobile computing device 162, a consumer identifier associated with the mobile computing device 162 and/or with the consumer (e.g., an identifier associated with the consumer regardless of the specific mobile computing device used), data about the type of use (e.g., a voice call, a text message, an app use, etc.), location data indicating approximately where the use occurred (e.g., latitude and longitude coordinates, Global Positioning System (“GPS”) coordinates, street addresses, or other location-identifying data of any level of granularity and/or ranges), and/or a date/time at which the use occurred.


In the particular example described here with respect to FIG. 1, a single usage event may be involved. However, as will be described in more detail throughout this disclosure, in some embodiments any number of usage events may be involved, such that the mobile service provider 164 may receive many hundreds, thousands, millions, or more of such usage events across many hundreds, thousands, millions, or more mobile computing devices associated with consumers who subscribe to the mobile service provider 164.


To provide an ongoing illustrative, non-limiting example to which will be referred throughout the description of FIG. 1, consider a hypothetical consumer Angie using her smart phone on a typical weekday. At action (1), Angie may use her smart phone to access and check her e-mail while waiting for coffee at her favorite coffee shop on the way to work in the morning at 7:30 am. The coffee shop may be located in a retail shopping area nearby to other business and/or retail locations, such as restaurants, markets, shopping, and various other retail services. Angie's mobile service provider 164 may receive usage data associated with this event, for example, data indicating that the smart phone (which may be uniquely identified via an identifier as discussed above) was used at a location near the coffee shop (the location may be exact or an approximate range or radius in proximity to the coffee shop), at the particular time of day (e.g., 7:30 am), to access data over the network 170 (e.g., Angie's e-mail). The mobile service provider 164 may receive and collect mobile sighting data associated with multiple usage events for Angie throughout the day as she uses her smart phone.


At action (2), the mobile service provider 164 may provide mobile sighting data to a location profile analytics system 100 for analysis. The mobile sighting data may include data for one or more mobile sightings, for one consumer (e.g., Angie in the ongoing example) or for any number of consumers. For example, Angie's coffee stop may be provided to the location profile analytics system 100 in real-time for analysis so that the mobile service provider 164 may immediately use any generated location data, such as to provide a coupon, advertisement, or other information to Angie that may be of use while she is at the coffee shop. In other embodiments, mobile sightings data may be collected and sent to the location profile analytics system 100 in batches on a periodic basis (e.g., hourly, daily, weekly, monthly, etc.) for more comprehensive analysis and processing across multiple sightings and/or multiple consumers.


At action (3), the location profile analytics system 100 analyzes the sightings data received from the mobile service provider 164. The analysis may be performed by the location/profile sightings analysis engine 121 and/or the consumer profile engine 122, for example as discussed in more detail as illustrated and described with reference to processes 300, 400, and 500 of FIGS. 3, 4, and 5 respectively. The location profile analytics system 100 may access one or more data sources, including a business and/or geo-location data source 166A, and/or a consumer profile and/or segmentation data source 166B as part of the location analysis processes described herein. In some embodiments, such as the embodiment illustrated in FIG. 6, the mobile sightings data may be accessed directly from a mobile sightings data source 166C, either in conjunction with or instead of being received from the mobile service provider 164. For example, mobile sightings data source 166C may be maintained by the mobile service provider 164 or by a third party entity, and the location profile analytics system 100 may be granted permission to access the mobile sightings data source 166C directly.


In one embodiment, the location profile analytics system 100 may, as a result of the analysis performed on the mobile sighting data, determine a business location associated with one or more mobile sightings. The business location may be determined based on a variety of factors, including the date and time of the mobile sighting, the proximity of the geo-location data associated with the mobile sighting to one or more business locations, data associated with the one or more business locations, and/or consumer profile data which may be associated with a particular consumer mobile sighting or with multiple consumer mobile sightings, and other criteria discussed herein.


For example, the location profile analytics system 100 may receive a mobile sighting for the smart phone associated with Angie corresponding to her coffee shop usage described in the ongoing example. The mobile sighting may only include a general geo-location or approximate range, such that the mobile sighting could have occurred at another business or retail location within the area (e.g., one of the nearby restaurants, shops, or other retail services). In one embodiment, the location profile analytics system 100 may determine that the mobile sighting was most likely or probable to have occurred at the coffee shop based on a number of factors considered alone or in combination. For example, the location profile analytics system 100 may access data from the business and/or geo-location data source 166A to identify one or more business locations which may be candidates based on their known location and general proximity to the geo-location data of the mobile sighting. The location profile analytics system 100 may determine, based on this data, that the only candidate business location open for business at 7:30 am is Angie's coffee shop, and determine that the mobile sighting most likely occurred at the coffee shop.


In another instance, the location profile analytics system 100 may access consumer profile data associated with Angie's smart phone (e.g., linked to an identifier associated with Angie's smart phone) which indicates that historically Angie visits coffee shops more frequently than the average consumer, or typically visits the particular coffee shop at around the same time of day (or within a range, such as between 7 am-8 am), from which the location profile analytics system 100 may determine that the mobile sighting most likely occurred at the coffee shop.


In yet another instance, the location profile analytics system 100 may access consumer profile or segment data associated with multiple consumers and business locations which may indicate that the relative frequency of sightings within a certain geographic and/or time of day range of the mobile sighting by business category or specific business location. (e.g., perhaps sightings at or near coffee shops are 5 times as likely between 6 am and 9 am). Thus, the location profile analytics system 100 may determine that another sighting within range of the coffee shop in the morning most likely did occur at the coffee shop.


Continuing to action (4), the location profile analytics system 100 provides consumer attributes and/or business location data back to the mobile service provider. The mobile service provider 164 may then provide targeted content to the device and/or user such as marketing offers, personalized news feeds, personalized traffic alerts, etc.


At action (5), the mobile service provider 164 provides targeted content to the consumer's mobile computing device 162, based on the received consumer attributes and/or business location data. Targeted content may be generated and provided in a number of ways based on the business location profiles and/or consumer profiles. For example, a business location profile provided by the location profile analytics system 100 may indicate that a mobile sighting for hypothetical Angie most likely originated from a coffee shop, and in response the mobile service provider may provide a coupon or special offer for Angie to use at the coffee shop. Or, a consumer profile provided by the location profile analytics system 100 may indicate that hypothetical Angie is associated with a certain consumer profile or segment of consumers which typically go to the supermarket after the coffee shop, and in response the mobile service provider may provide a coupon or special offer for Angie to use at the supermarket after her coffee shop stop.


At action (6), in some embodiments, the location profile analytics system 100 may provide consumer attributes and/or business location data (including business profiles) to the business(es) 168. Such data may be of use or value to a business 168 for use in customer service, marketing efforts, supply chain management, and other business management decisions. For example, targeted content for a customer of a business may be generated in a number of ways based on the business location data. For example, a business location profile provided by the location profile analytics system 100 may indicate for a hypothetical coffee shop (e.g., based on aggregated mobile sightings) what proportion of its 6 am to 9 am customer volume is from mobile device users who work nearby, which might then inform whether or not to run a promotion for a mid-afternoon break. The business 168 may also use business location profiles and/or consumer profiles in other ways, such as to measure overall retail traffic in its area and the proportion of that traffic visiting that business, inform employee staffing decisions (e.g., the coffee shop might need more employees working during peak hours in order to provide better customer service), inventory and demand forecasting (e.g., the coffee shop might be able to forecast when it will run out of coffee based on trends indicated by the business location profiles and/or consumer profiles, and preemptively order more to avoid out-of-stock situations), and so on.


Examples of Data Utilized by a Location Profile Analytics System



FIG. 2 is an example of a mobile sighting, sighting data, and business data that may be analyzed and profiled according to the processes described herein, using the location profile analytics system 100 of FIG. 1 or FIG. 6. In the example, a mobile sighting is shown which includes at least a deviceID and geo-location data which may comprise latitude-longitude coordinates, as well as an associated accuracy range (e.g., a 300 meter radius, as shown in FIG. 2, or any other radius or range of accuracy). The mobile sighting may also include other data as described elsewhere in the present disclosure. The mobile sighting of a consumer's mobile computing device 162 may be registered by mobile service provider 164, which in turn may be sent or provided to (or otherwise accessed by) the location profile analytics system 100.


The location profile analytics system 100 may use the geo-location data associated with the mobile sighting in order to access, from a business location data source 166A, data regarding one or more candidate business locations which may be at or near the geo-location of the mobile sighting. For example, one or more businesses at or near the latitude-longitude coordinates, or within the associated distance range, may be considered as candidate business locations. As FIG. 2 illustrates, for the particular mobile sighting shown, the location profile analytics system 100 may identify an Italian food restaurant, a sandwich shop, a coffee shop, and a supermarket within range of the sighting. Other business and/or retail locations may also be identified.


As will be further described with reference to FIGS. 3, 4, and 5 herein, the location profile analytics system 100 may analyze the sighting data and/or the business data to determine, among other things, the most probable location of the mobile device sighting. For example, if the sighting data further indicates that the sighting occurred at 7:30 am, and the business data indicates that the Italian food restaurant does not open until 11:00 am, the location profile analytics system 100 may determine that the Italian food restaurant is probably not the actual location of the mobile device sighting. Other data and criteria may similarly be analyzed, including consumer profile and/or segmentation data which may indicate consumer visitation patterns and trends for various business locations within a given area or radius. Thus for example, for business locations within a given distance range, consumer patterns may indicate that the coffee shop receives the most traffic between 6 am to 8 am and 2 pm to 5 pm, the sandwich shop receives the most traffic between 11 am and 2 pm, the Italian food restaurant receives the most traffic after 6 pm, and the supermarket receives a steady flow of traffic throughout the day (or more traffic on a weekend day relative to a weekday). These patterns may be generated by the location profile analytics system 100 over time and stored for later access in analyzing subsequent mobile sightings in proximity to those business locations having associated consumer traffic patterns.


The probability of one location being the true location of a mobile sighting may depend on many factors which can vary depending on the particular embodiment. For example, proximity to the location may be given a greater weighting in all instances regardless of other factors, or the proximity may be given a lower weighting depending upon the time of day. Thus, in some instances a sighting that appears directly adjacent to the coffee shop may give a greater weighting to the coffee shop as being the true location, no matter what time of day the sighting occurred. Or, in some instances, the time of day may be given a greater weighting, such that a sighting that appears directly adjacent to the coffee shop may give a lower weighting to the coffee shop as being the true location if it occurred at 11 pm—in such a case it may be determined that the true location is much more likely to be the Italian restaurant, even though both business locations may be open for business at 11 pm and the sighting may appear farther from the Italian restaurant than the coffee shop, based on other factors (e.g., the Italian restaurant may be much more popular at 11 pm than the coffee shop, or a consumer identifier associated with the mobile sighting may indicate that the consumer rarely goes to a coffee shop, and so on).


Examples of Methods Performed by a Location Profile Analytics System



FIGS. 3, 4, and 5 are flowcharts for various embodiments of location profile analytics system processes. In some implementations, the processes are performed by embodiments of the location profile analytics system 100 described with reference to FIG. 1 or FIG. 6, or by one or more of its components, such as the location profile/sightings analysis engine 121, consumer profile engine 122, and/or user interface module 123. The example scenarios are intended to illustrate, but not to limit, various aspects of these systems and/or services. In one embodiment, the processes can be dynamic, with some procedures omitted and others added. In one example, multiple instances of the processes may occur concurrently, for different location profile analytics systems. Depending on the embodiment, the methods may include fewer or additional blocks and/or the blocks may be performed in an order different than illustrated.



FIG. 3 is a flowchart illustrating one embodiment of a high-level process 300 for analyzing sightings data and developing related location profiles and/or consumer profiles. The process 300 may be executed, for example, by the location profile/sightings analysis engine 121 and/or the consumer profile engine 122 of the location profile analytics system 100 of FIG. 1 or FIG. 6.


At block 305, the location profile analytics system 100 accesses or receives sighting data indicating one or more sightings for respective mobile devices. Sighting data may be accessed from, for example, the mobile sightings data sources 166C, and may include data for one or more sightings. Each sighting may include a unique identifier the sighting, a unique identifier for a mobile computing device which generated the sighting, a unique and anonymous identifier for a consumer associated with the mobile computing device which generated the sighting, geo-location data for the sighting (e.g., latitude and longitude coordinates, GPS coordinates, data from towers, antennae or other network infrastructure, etc.), a date and time for the sighting, and/or a range or other indication of the accuracy of the sighting.


At block 310, the location profile analytics system 100 accesses business location data for one or more businesses that may be near the sightings (e.g., based on the geo-location data associated with a respective sighting). Business location data may be accessed from, for example, the business location data sources 166A, and may include attributes, profiles, and other data descriptive of or related to the respective business locations. For example, attributes might include a name, a type of business (e.g., food, retail/shopping, service, etc.), hours of operation (e.g., hours during which the business location is open), geo-location information (including street addresses, latitude and longitude coordinates, GPS coordinates, etc.), phone number(s), and any other information available for the business location. Profiles might include, for example, data describing consumer traffic patterns/trends for the business (e.g., which time(s) the business location appears to have a high (or low) level of traffic, which may be based in part on aggregated sightings data) and/or other businesses in the same category (e.g. coffee shops, in general). Profiles might also include ratings and related consumer feedback data, which may be accessed or gathered from popular consumer ratings websites (such as Yelp.com or similar services). The business location data may be used by the location profile analytics system 100 in order to identify one or more businesses that may be associated with the sightings data accessed at block 305, and/or to generate, improve, or enhance profiles for the business locations based at least in part on any relevant new sightings.


At block 315, the location profile analytics system 100 accesses consumer data for consumers associated with the respective mobile devices which generated or provided the mobile sightings data (e.g., based on the unique identifiers associated with a respective sighting). Consumer data may be accessed from, for example, the consumer data sources 166B, and may include attributes, profiles, and other data descriptive of or related to the respective consumers. Consumer data may also include data such as socio-economic attributes, demographics, age, lifestyle segments, behavioral/attitudinal, financial attributes including income and credit data-related attributes, and so on. Consumer data may also include profiles, segmentation or other attributes derived from historical patterns in the mobile sightings data, as determined at block 330, below. The consumer data may be used by the location profile analytics system 100 in order to identify one or more businesses that may be associated with the sightings data accessed at block 305, and/or to generate, improve, or enhance profiles for the business locations based at least in part on any relevant new sightings.


At block 320, the location profile analytics system 100 may optionally apply location filters to remove and/or exclude sightings matching certain locations, types, or other criteria. For example, location filters may be applied in order to resolve or remove sightings which may be associated with a consumer's home and/or work. Location filters may also be applied in order to resolve or remove sightings which may correspond to “in transit” or “in between sightings” which may not correspond to any business locations, in order to reduce the sightings to key times and/or waypoints. This type of filtering may also be based on analyzing differentials in speed data (e.g., a miles-per-hour (“mph”) that may be associated with a sighting) between sightings. In some embodiments, sightings which are removed during the filtering process at block 320 may be saved or stored for later use. For example, “in transit” sightings might be provided for use in automotive insurance underwriting, such as to validate commute distances and approximated miles driven per year to assess proper or more accurate insurance premium calculations. One example of how the filtering at block 320 may be performed is illustrated and discussed in further detail herein with respect to process 400 of FIG. 4.


At block 325, the location profile analytics system 100 analyzes the (filtered) sightings data to determine associated trends and/or probabilities that particular sightings correspond to particular business locations. For example, the analysis may be based on a weighted average based on multiple factors or inputs, such as: a distance from a center point of a sighting to a particular business location; prior sightings, trends, or patterns based on a particular business type or time of day; prior sightings, trends, or patterns based on consumer segments, profiles, or attributes; and so on. One example of how the sightings analysis at block 325 may be performed is illustrated and discussed in further detail herein with respect to process 500 of FIG. 5. In some embodiments, after analyzing the sightings data at block 325, the process 300 may return to block 310 and repeat the processes performed at blocks 310 through 325 in order to further refine the trends and probabilities associated with the respective sightings and business locations.


At block 330, the location profile analytics system 100 generates and/or updates business location profiles and/or the consumer profiles based on the results of the sightings analysis performed at block 325 and/or process 500 of FIG. 5. For example, business location profiles may be updated to reflect better or more accurate time of day and/or consumer segment profiles over time as more sightings data are aggregated and analyzed. Business location profiles may include location traffic counts and related data, including a number of sightings per unit time (e.g., by hour/time of day, by day, by week, by month, etc.); a number of sightings per consumer segment, profile, or attributes (e.g., an “X” number of sightings may be associated with consumers of a certain age group, income level, or other consumer data attribute variable); a number of sightings per type of trip (e.g., commuting, shopping, etc.); and so on. Business location profiles may also include approximated or exact lengths of stay at (or near) the business location, as well as information about previous and/or next destinations associated with sightings which occur before and/or after sightings at or near the business location. For example, a first business location may develop a profile over time that indicates a high number of consumers visit a second business location immediately following a visit to the first business location—e.g., some consumers may go to the coffee shop and then the supermarket.


Similarly, consumer profiles may be updated to reflect better or more accurate segment profiles or consumer-specific profiles over time as more sightings data are aggregated and analyzed. Consumer profiles may be generated based on or using various clustering techniques in order to determine certain segment characteristics, such as commute distance, frequencies of visiting various retail and other locations which may be organized by categories and subcategories, demographic and socioeconomic profiles, and so on. Consumer profiles may also include aggregated segment prevalence data such as micro-geographic aggregation based on home and/or work location sightings. For example, the percentage of consumers who work in a given area might be tabulated according to the area in which they live, the length of their commute, the proportion that routinely stop for coffee on the way to work, etc. One possible result of the consumer profile analysis would be to link or associate an anonymous consumer identifier with particular consumer segments and/or behaviors, such that sightings associated with the consumer identifier may be mapped to the particular consumer segments. In some embodiments, after generating the business location and/or consumer profiles at block 330, the process 300 may return to block 315 and repeat the processes performed at blocks 315 through 330 in order to further refine the profiles associated with the respective sightings and business locations.


At block 335, the location profile analytics system 100 provides the business location profiles and/or consumer profiles to a requesting entity. The business location profiles and/or consumer profiles may then be used by the requesting entity to provide targeted content to consumers, such as targeted advertising, coupons, special offers, customized news feeds, personalized traffic alerts, and the like.


For example, as discussed in more detail with respect to FIG. 1, in one embodiment the business location profiles and/or consumer profiles may be provided to a mobile service provider 164 (e.g., the mobile service provider which provided or otherwise made available to the location profile analytics system 100 the mobile sightings data analyzed during the process 300). The mobile service provider 164 may then provide targeted content such as marketing offers to its subscribers, such that the targeted content may be generated in a number of ways based on the business location profiles and/or consumer profiles. For example, a business location profile provided by the location profile analytics system 100 may indicate that a mobile sighting for hypothetical Angie most likely originated from a coffee shop, and in response the mobile service provider may provide a coupon or special offer for Angie to use at the coffee shop. Or, a consumer profile provided by the location profile analytics system 100 may indicate that hypothetical Angie is associated with a certain consumer profile or segment of consumers which typically go to the supermarket after the coffee shop, and in response the mobile service provider may provide a coupon or special offer for Angie to use at the supermarket after her coffee shop stop.


In another embodiment, the business location profiles and/or consumer profiles may be provided to a business 168. The business 168 may then provide targeted content such as marketing offers to its customers, such that the targeted content may be generated in a number of ways based on the business location profiles and/or consumer profiles. For example, a business location profile provided by the location profile analytics system 100 may indicate for a hypothetical coffee shop (e.g., based on aggregated mobile sightings) what proportion of its 6 am to 9 am customer volume is from mobile device users who work nearby, which might then inform whether or not to run a promotion for a mid-afternoon break. The business 168 may also use business location profiles and/or consumer profiles in other ways, such as to measure overall retail traffic in its area and the proportion of that traffic visiting that business, inform employee staffing decisions (e.g., the coffee shop might need more employees working during peak hours in order to provide better customer service), inventory and demand forecasting (e.g., the coffee shop might be able to forecast when it will run out of coffee based on trends indicated by the business location profiles and/or consumer profiles, and preemptively order more to avoid out-of-stock situations), and so.


In another embodiment, the business location profiles and/or consumer profiles may be provided to other types of third party entities. For example, lenders or lending institutions may be provided with business location profiles in order to determine or assess and associated level of credit risk or fraud which may be associated with a business location. For example, a lender may wish to compare financial or earnings reports from a business location to the business location profile in order to determine or assess whether the earnings reports appear to be accurate: reported high earnings coupled with relatively low traffic counts from the business location profile may signal to the lender that the business location may be fraudulently reporting its earnings. The lender may also wish to measure traffic counts at a business location in relation to those of other comparable businesses in order to gauge relative market share, or measure trends in traffic counts at a business location as part of an assessment of the business location's future prospects. Or, a lender may wish to view business location profiles for areas near a newly proposed business location in order to assess the credit risk of the new venture: high traffic counts for a given area (such as retail shopping mall), particularly among desired consumer segments, may signal a much lower credit risk for a proposed new business location in the given area that caters to those consumer segments.



FIG. 4 is a flowchart illustrating one embodiment of a high-level process 400 for processing and/or filtering sightings data. The process 400 may be executed, for example, by the consumer profile engine 122 of the location profile analytics system 100 of FIG. 1 or FIG. 6. For ease of illustration the example described throughout the description of the process 400 involves one or more sightings associated with one mobile device, but the process may be applied to multiple sightings associated with multiple mobile devices being analyzed in parallel.


At block 405, the location profile analytics system 100 accesses or receives initial sighting data for a mobile device. The initial sighting data may be accessed from, for example, the mobile sightings data sources 166C, and may include data for one or more sightings for the mobile device. In one embodiment the initial sighting data may be accessed as part of the process 300 (e.g., at block 305), or otherwise provided to the location profile analytics system 100 or one of its components in conjunction with the process 300.


At block 410, the location profile analytics system 100 identifies one or more locations which may correspond to a residence (e.g., home) or place of employment (e.g., work) for a consumer associated with the mobile device associated with a sighting. For example, the location profile analytics system 100 may access consumer profile data from the consumer data sources 166B, based at least in part on a unique identifier associated with the sighting for the mobile device. The consumer profile data may include residence location data and/or employment location data for the consumer, which the location profile analytics system 100 can analyze and compare to the geo-location data associated with the sighting (e.g., determine if either (1) the residence location data and/or (2) the employment location data matches, or is in close proximity to, the geo-location data associated with the sighting). Mobile sightings associated with estimated residence and/or employment locations may be excluded from further location analysis in order to improve the efficiency and accuracy of the overall sightings analysis process, for example when millions of sightings are being analyzed substantially in parallel and in real time.


At block 415, the location profile analytics system 100 may optionally identify one or more locations which may correspond to in-transit sightings (e.g., sightings which appear to not be associated with any particular location of interest, or that appear to correspond to locations in-between business locations). For example, one set of sightings data for a mobile device may include twenty hypothetical sightings: three sightings at or near a coffee shop, five sightings at or near a supermarket 2 miles away, and twelve sightings at or near a highway between the coffee shop and the supermarket. The twelve sightings at or near the highway may be identified as in-transit sightings that may be excluded from further analysis (unless, perhaps, those sightings might correspond to other business locations along the highway). Removing in-transit sightings can improve the efficiency and accuracy of the overall sightings analysis process, for example when millions of sightings are being analyzed substantially in parallel and in real time.


At block 420, the location profile analytics system 100 may optionally identify or access location filters indicating one or more locations and/or location types which may be excluded or removed from the sightings analysis. In some embodiments, location filters may be associated with a requesting entity (e.g., a mobile service provider, a business location, or other third party) that is interested in analysis related only to sightings for particular locations or types. For example, a coffee shop may only interested in retail sightings and thus desire to have non-retail business locations excluded from the sightings analysis. Other entities may have their own business-specific rules or reasons for excluding certain locations or location types, and the location profile analytics system 100 may store or otherwise have access to customized filters which reflect those business rules or reasons, and apply the filters to sightings data when a request is received from those particular entities which have customized filters.


At block 425, the location profile analytics system 100 removes one or more sightings from the initial sightings data which correspond to any of the identified locations at blocks 410, 415, and 420 in order to generate a set of filtered sightings data. In some instances, none of the identified locations may need to be excluded or removed from the sightings analysis (e.g., no locations are identified at blocks 410, 415, and 420), and thus the filtered sightings data may include all of the sightings in the initial sightings data (e.g. none of the sightings may be removed).


At block 430, the location profile analytics system 100 provides the filtered sightings data. The filtered sightings data may be provided to another process performed by the location profile analytics system 100, such as the process 300 of FIG. 3 (e.g., after block 320). In some embodiments the filtered sightings data may be provided to a requesting entity or a third party for further analysis and data processing similar to the process 300 of FIG. 3.



FIG. 5 is a flowchart illustrating one embodiment of a process 500 for determining probable locations associated with sightings data. The process 500 may be executed, for example, by the consumer profile engine 122 of the location profile analytics system 100 of FIG. 1 or FIG. 6. The process 500 may be for example a sub-routine which is invoked as part of the process 300 of FIG. 3, for example at block 320, to determine a probable location associated with a mobile sighting.


At block 505, the location profile analytics system 100 determines an initial list of candidate business locations potentially associated with a sighting. The initial list of candidate business locations may be determined based on proximity to the sighting. In one embodiment, the initial list of candidate business locations might include all business locations within a certain radial distance of the sighting or within a certain radial distance of the range of the sighting, based on the geo-location data associated with the sighting). For example, the initial list of candidate business locations might include all business locations within 1000 feet of the geo-location of the sighting.


In another embodiment, the initial list of candidate business locations might include all business locations within a geographic unit or area (e.g., one or more ZIP codes, ZIP+4 codes, or any size of geographic unit) that is at or near the sighting. For example, the location profile analytics system 100 might determine that the sighting occurred in a certain ZIP+4 code, and the initial list of candidate business locations may be determined to include any business locations sharing the same or nearby ZIP+4 codes.


In another embodiment, the initial list of candidate business locations might include all business locations sharing a common geographic attribute that is also shared or associated with the geo-location of the sighting. For example, the location profile analytics system 100 might determine that the sighting occurred in a retail shopping center, and the initial list of candidate business locations may be determined to include any business locations located within the retail shopping center.


At block 510, the location profile analytics system 100 determines, for each candidate business location, distances (either actual or approximated) from a center point associated with the sighting. As previously described, a sighting may correspond to a range or area of geographic coordinates (e.g., within U distance of a point {X, Y, Z}). Thus, the location profile analytics system 100 may initially calculate an associated center point to approximate the location of the sighting (in some instances the center point may be the geographic coordinates, if known). Using location data associated with each of the business locations on the initial candidate list, the location profile analytics system 100 can determine the distance between each business location and the sighting. One example of this is illustrated and described with reference to FIG. 2 herein. The determined distances may then be used, for example, as one factor in the probabilistic location determination performed at block 525, described below. For example, the location profile analytics system 100 may determine that a first business location within a closer distance of the sighting is more likely the business location of the sighting than a second business location farther from the sighting.


At block 515, the location profile analytics system 100 analyzes business location profiles for each candidate business location to identify related prior sightings (e.g., based on time, location, trends, etc.). Business location profiles might include information indicating, for example, a certain time or times at which sightings have previously occurred a given business location and/or other comparable business locations in the same category. Business location profiles may also include specific attributes of the business location such as hours of operation. Thus, the hypothetical coffee shop might have more sightings at 7 am than at 10 am, while a hypothetical night club or bar might have more sightings at 11 pm than at 11 am. However, the hypothetical coffee shop might also have more sightings at 11 am than the bar at 11 am. These profiles and trends can be analyzed and compared to the time of the sighting as one factor the probabilistic location determination performed at block 525, described below. For example, if the sighting occurred at 7 am or 11 am the location profile analytics system 100 may determine that the sighting more likely occurred at the coffee shop than the bar.


At block 520, the location profile analytics system 100 analyzes consumer profiles for each candidate business location to identify related prior sightings. For example, consumer data may indicate that consumers associated with a particular market segment, demographic, or other attribute tend to visit certain business locations more than others. The sighting might include an identifier for the consumer which the location profile analytics system 100 can use to look up or determine an associated consumer profile. Each candidate business location can then be compared to the associated consumer profile to determine a probability (or a factor weighing in a probability determination) that the consumer associated with the sighting would visit the candidate business location. For example, hypothetical Angie might be associated with a consumer profile or segment of commuters who tend to frequent coffee shops often, or relatively more often than other establishments such as bars. This profile data may then be compared with the candidate business locations to determine that a particular sighting for Angie (or for an anonymous individual with similar attributes to Angie's profile) is more likely to have occurred at a nearby coffee shop than a nearby bar.


At block 525, the location profile analytics system 100 determines, for each candidate business location, a probability that the sighting corresponds to the business location. The determination may be based at least in part on the distances determined at block 510, the business profiles (and related prior sightings) analyzed at block 515, and/or the consumer profiles (and related prior sightings) analyzed at block 520 as discussed above. The probability may be determined in any number of ways, with each of the three example variables described above receiving different weights depending upon the embodiment or based on the actual data involved. For example, distance may be given a higher relative weight if one candidate business location is in very close proximity (e.g., 50 feet) to a sighting and a second candidate business location is relatively farther away (e.g., 500 feet, relative to a sighting with a range of certainty of plus or minus 10 feet). Or, business profiles may be given a higher relative weight if a sighting occurred at a certain time (e.g., 7 am) at which only one or two candidate business locations are actually open for business (e.g., at 7 am the coffee shop is open, but the bar is closed). Or, consumer profiles may be given a higher relative weight if a sighting is associated with a segment of consumers who favor one business candidate location on the list (e.g. coffee shops, book stores), but few or none of the others (e.g., bars, night clubs).


At block 530, once a probability has been determined for each business location the location profile analytics system 100 selects a business location with the highest determined probability and/or assigns fractional shares of the sighting to the business locations in proportion to their calculated probabilities. The allocation of the sighting to business location(s) may then be provided or used by another process performed by the location profile analytics system 100, such as the process 300 of FIG. 3 (e.g., after block 325). In some embodiments the allocation of the sighting to business location(s) may be provided to a requesting entity or a third party for further analysis and data processing similar to the process 300 of FIG. 3.


System Implementation and Architecture



FIG. 6 is a block diagram of an example implementation of a location profile analytics system 100 in communication with a network 160 and various systems, such as mobile computing device(s) 162, mobile service provider systems(s) 164, business(es) 168, business location data source(s) 166A, consumer data source(s) 166B, and mobile sightings data source(s) 166C. The location profile analytics system 100 may be used to implement systems and methods described herein, including but not limited to the processes 300, 400, and 500 of FIGS. 3, 4, and 5, respectively.


The location profile analytics system 100 includes, for example, a personal computer that is IBM, Macintosh, or Linux/Unix compatible or a server or workstation. In one embodiment, the location profile analytics system 100 comprises a server, a laptop computer, a smart phone, a personal digital assistant, a kiosk, or an media player, for example. In one embodiment, the exemplary location profile analytics system 100 includes one or more central processing unit (“CPU”) 105, which may each include a conventional or proprietary microprocessor. The location profile analytics system 100 further includes one or more memory 130, such as random access memory (“RAM”) for temporary storage of information, one or more read only memory (“ROM”) for permanent storage of information, and one or more mass storage device 120, such as a hard drive, diskette, solid state drive, or optical media storage device. Typically, the modules of the location profile analytics system 100 are connected to the computer using a standard based bus system 180. In different embodiments, the standard based bus system could be implemented in Peripheral Component Interconnect (“PCI”), Microchannel, Small Computer System Interface (“SCSI”), Industrial Standard Architecture (“ISA”) and Extended ISA (“EISA”) architectures, for example. In addition, the functionality provided for in the components and modules of location profile analytics system 100 may be combined into fewer components and modules or further separated into additional components and modules.


The location profile analytics system 100 is generally controlled and coordinated by operating system software, such as Windows XP, Windows Vista, Windows 7, Windows 8, Windows Server, Unix, Linux, SunOS, Solaris, iOS, Blackberry OS, or other compatible operating systems. In Macintosh systems, the operating system may be any available operating system, such as MAC OS X. In other embodiments, the location profile analytics system 100 may be controlled by a proprietary operating system. Conventional operating systems control and schedule computer processes for execution, perform memory management, provide file system, networking, I/O services, and provide a user interface, such as a graphical user interface (“GUI”), among other things.


The exemplary location profile analytics system 100 may include one or more commonly available input/output (I/O) devices and interfaces 110, such as a keyboard, mouse, touchpad, and printer. In one embodiment, the I/O devices and interfaces 110 include one or more display devices, such as a monitor, that allows the visual presentation of data to a user. More particularly, a display device provides for the presentation of GUIs, application software data, and multimedia presentations, for example. The location profile analytics system 100 may also include one or more multimedia devices 140, such as speakers, video cards, graphics accelerators, and microphones, for example.


In the embodiment of FIG. 6, the I/O devices and interfaces 110 provide a communication interface to various external devices. In the embodiment of FIG. 6, the location profile analytics system 100 is electronically coupled to a network 160, which comprises one or more of a LAN, WAN, and/or the Internet, for example, via a wired, wireless, or combination of wired and wireless, communication link 115. The network 160 communicates with various computing devices and/or other electronic devices via wired or wireless communication links.


According to FIG. 6, in some embodiments information may be provided to the location profile analytics system 100 over the network 160 from one or more business location data sources 166A, consumer data source(s) 166B, and/or mobile sightings data source(s) 166C. The business location data source(s) 166A consumer data source(s) 166B, and/or mobile sightings data source(s) 166C may include one or more internal and/or external data sources. In some embodiments, one or more of the databases or data sources may be implemented using a relational database, such as Sybase, Oracle, CodeBase and Microsoft® SQL Server as well as other types of databases such as, for example, a flat file database, an entity-relationship database, and object-oriented database, and/or a record-based database.


The business location data source(s) 166A may store, for example, attributes, profiles, and other data descriptive of or related to respective business locations. For example, attributes might include a name, a type of business (e.g., food, retail/shopping, service, etc.), hours of operation (e.g., hours during which the business location is open), geo-location information (including street addresses, latitude longitude coordinates, GPS coordinates, etc.), phone number(s), and any other information available for the business location. Business location profiles might include, for example, data describing consumer traffic patterns/trends for the business (e.g., which time(s) the business location appears to have a high (or low) level of traffic, which may be based in part on aggregated sightings data). Business location profiles might also include ratings and related consumer feedback data, which may be accessed or gathered from popular consumer ratings websites (such as Yelp.com or similar services).


The consumer data source(s) 166B may store, for example, credit bureau data (for example, credit bureau data from File Ones℠) and/or other consumer data. Consumer data source(s) 166B may also store geographic level demographics that include one or more models, such as models that identify lifestyle and/or socio-economic attributes associated with a geographic location (e.g., MOSAIC® segmentation and/or codes) and/or behavioral/attitudinal/psychographic attributes associated with a geographic location (e.g., TrueTouch℠ Touch Points segmentation).


The mobile sightings data source(s) 166C may store, for example, data for one or more sightings for respective mobile devices. Each sighting may include a unique identifier the sighting, a unique identifier for a mobile computing device which generated the sighting, a unique and anonymous identifier for a consumer associated with the mobile computing device which generated the sighting, geo-location data for the sighting (e.g., latitude and longitude coordinates, GPS coordinates, etc.), a date and time for the sighting, and/or a range or other indication of the accuracy of the sighting.


In the embodiment of FIG. 6, the location profile analytics system 100 includes a location profile/sightings analysis engine 121, a consumer profile engine 122, and a user interface module 123 that may be stored in the mass storage device 120 as executable software codes that are executed by the CPU 105. These and other modules in the location profile analytics system 100 may include, by way of example, components, such as software components, object-oriented software components, class components and task components, processes, functions, attributes, procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables. In the embodiment shown in FIG. 6, the location profile analytics system 100 is configured to execute the location profile/sightings analysis engine 121, the consumer profile engine 122, and/or the user interface module 123 to perform the various methods and/or processes for mobile sightings data analysis as described herein (such as the processes described with respect to FIGS. 3, 4, and 5 herein).


In general, the word “module,” as used herein, refers to logic embodied in hardware or firmware, or to a collection of software instructions, possibly having entry and exit points, written in a programming language, such as, for example, Java, Lua, C or C++. A software module may be compiled and linked into an executable program, installed in a dynamic link library, or may be written in an interpreted programming language such as, for example, BASIC, Perl, or Python. It will be appreciated that software modules may be callable from other modules or from themselves, and/or may be invoked in response to detected events or interrupts. Software modules configured for execution on computing devices may be provided on a computer readable medium, such as a compact disc, digital video disc, flash drive, or any other tangible medium. Such software code may be stored, partially or fully, on a memory device of the executing computing device, such as the location profile analytics system 100, for execution by the computing device. Software instructions may be embedded in firmware, such as an EPROM. It will be further appreciated that hardware modules may be comprised of connected logic units, such as gates and flip-flops, and/or may be comprised of programmable units, such as programmable gate arrays or processors. The modules described herein are preferably implemented as software modules, but may be represented in hardware or firmware. Generally, the modules described herein refer to logical modules that may be combined with other modules or divided into sub-modules despite their physical organization or storage.


Other Embodiments

Each of the processes, methods, and algorithms described in the preceding sections may be embodied in, and fully or partially automated by, code modules executed by one or more computer systems or computer processors comprising computer hardware. The code modules may be stored on any type of non-transitory computer-readable medium or computer storage device, such as hard drives, solid state memory, optical disc, and/or the like. The systems and modules may also be transmitted as generated data signals (e.g., as part of a carrier wave or other analog or digital propagated signal) on a variety of computer-readable transmission mediums, including wireless-based and wired/cable-based mediums, and may take a variety of forms (e.g., as part of a single or multiplexed analog signal, or as multiple discrete digital packets or frames). The processes and algorithms may be implemented partially or wholly in application-specific circuitry. The results of the disclosed processes and process steps may be stored, persistently or otherwise, in any type of non-transitory computer storage such as, e.g., volatile or non-volatile storage.


The various features and processes described above may be used independently of one another, or may be combined in various ways. All possible combinations and subcombinations are intended to fall within the scope of this disclosure. In addition, certain method or process blocks may be omitted in some implementations. The methods and processes described herein are also not limited to any particular sequence, and the blocks or states relating thereto can be performed in other sequences that are appropriate. For example, described blocks or states may be performed in an order other than that specifically disclosed, or multiple blocks or states may be combined in a single block or state. The example blocks or states may be performed in serial, in parallel, or in some other manner. Blocks or states may be added to or removed from the disclosed example embodiments. The example systems and components described herein may be configured differently than described. For example, elements may be added to, removed from, or rearranged compared to the disclosed example embodiments.


Conditional language used herein, such as, among others, “can,” “could,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment. The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list. Conjunctive language such as the phrase “at least one of X, Y and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require at least one of X, at least one of Y and at least one of Z to each be present.


While certain example embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the disclosure. Thus, nothing in the foregoing description is intended to imply that any particular element, feature, characteristic, step, module, or block is necessary or indispensable. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the inventions disclosed herein. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of certain of the inventions disclosed herein.


It should be emphasized that many variations and modifications may be made to the above-described embodiments, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure.

Claims
  • 1. A system for determining a location of a computing device, comprising: a non-transitory data store configured to store executable instructions; andone or more computer processors configured to execute the executable instructions to: receive an electronic message via a communication network, the electronic message comprising: electronic location data for a location of a computing device of a user from a service provider that provides a service to the user, wherein the location data identifies geographic coordinates and a range of accuracy for the geographic coordinates as determined by the computing device of the user, wherein the range of accuracy is represented by a radius identified in the location data, andan electronic identifier for the user;determine timing data indicating when the computing device was determined to be at the location, the timing data including at least one of a date or a time;obtain entity information for a plurality of entities from an entity information data store based on the received electronic location data, the entity information including, for each of the plurality of entities, an entity name, an entity location, times of operation for the entity indicating hours during which the entity is open for business at the entity location, an entity type, and at least one of a traffic pattern or a traffic trend based on the entity type;filter the plurality of entities based on the entity location for each of the plurality of entities and the radius identified in the location data representing the range of accuracy of the location data to generate a subset of entities located within the radius of the geographic coordinates, wherein the filtering is further based on the at least one of the traffic pattern or the traffic trend associated with the plurality of entities;obtain a user profile based on the received electronic identifier from a user profile data store;determine, from the subset of entities and based on at least the timing data, the obtained user profile, the entity name for each entity of the subset of entities, and the times of operation for each entity of the subset of entities, which entity of the subset of entities the user likely visited at the at least one of the date or the time;generate an electronic response to the electronic message based on the determined entity and one or more of the user profile, a profile for the determined entity, or the timing data;generate a report of user attributes based on one or more of the user profile, the profile for the determined entity, or the timing data;transmit the electronic response to the user via the communication network, wherein the response causes presentation to the user, on a display screen of the computing device of the user, of an offer redeemable by the user for a purchase at the determined entity; andelectronically provide the report to the determined entity.
  • 2. The system of claim 1, wherein the profile for the determined entity indicates one or more a volume or a relative likelihood of user visits by time of day and day of week and a relative likelihood of users having a specified user profile attribute.
  • 3. The system of claim 1, wherein the user profile comprises at least attributes or categories that are indicative of a relative likelihood that the computing device of the user visits entities of a particular type at one or more of a particular time of day or day of week.
  • 4. The system of claim 1, wherein the one or more computer processors are further configured to execute the executable instructions to generate a probability that the user likely visited the determined entity.
  • 5. The system of claim 4, wherein the probability that the user did visit the determined entity is generated based at least in part on the at least one of the date or the time.
  • 6. The system of claim 1, wherein the one or more computer processors are further configured to execute the executable instructions to update one or more of the profile for the determined entity or the user profile.
  • 7. A system for determining a location of a computing device, comprising: a non-transitory data store configured to store executable instructions; andone or more computer processors configured to execute the executable instructions to: receive an electronic message via a communication network, the electronic message comprising:electronic location data for a location of a computing device of a user, wherein the location data identifies geographic coordinates and a range of accuracy for the geographic coordinates as determined by the computing device of the user, wherein the range of accuracy is represented by a radius identified in the location data, andan electronic identifier for the user;determine timing data indicating when the computing device was determined to be at the location, the timing data including at least one of a date or a time;obtain entity information for a plurality of entities from an entity information data store based on the received electronic location data, wherein the plurality of entities are associated with entity locations that are within the radius of the geographic coordinates, the entity information including, for each of the plurality of entities, an entity name, an entity location, times of operation for the entity indicating hours during which the entity is open for business at the entity location, an entity type, and at least one of a traffic pattern or a traffic trend based on the entity type;filter the plurality of entities based on the entity location for each of the plurality of entities and the radius identified in the location data representing the range of accuracy of the location data to generate a subset of entities located within the radius of the geographic coordinates, wherein the filtering is further based on the at least one of the traffic pattern or the traffic trend associated with the plurality of entities;obtain a user profile based on the received electronic identifier from a user profile data store;determine, from the subset of entities and based on at least the timing data, the obtained user profile, the entity name for each entity of the subset of entities, and the times of operation for each entity of the plurality of entities, which entity of the subset of entities the user likely visited at the at least one of the date or time;generate an electronic response to the electronic message based on the determined entity and one or more of the user profile, a profile for the determined entity, or the timing data; andtransmit the electronic response to the user via the communication network, wherein the electronic response causes presentation to the user, on a display screen of the computing device of the user, of an offer redeemable by the user for a purchase at the determined entity.
  • 8. The system of claim 7, wherein the profile for the determined entity indicates one or more a volume or a relative likelihood of user visits by time of day and day of week and a relative likelihood of users having a specified user profile attribute.
  • 9. The system of claim 7, wherein the user profile comprises at least attributes or categories that are indicative of a relative likelihood that the computing device of the user visits entities of a particular type at one or more of a particular time of day or day of week.
  • 10. The system of claim 7, wherein the one or more computer processors are further configured to execute the executable instructions to generate a probability that the user likely visited the determined entity.
  • 11. The system of claim 10, wherein the probability that the user did visit the determined entity is generated based at least in part on the at least one of the date or the time.
  • 12. The system of claim 10, wherein the one or more computer processors are further configured to execute the executable instructions to update one or more of the profile for the determined entity or the user profile.
  • 13. A computerized method for determining a location of a computing device, the method comprising: receiving, by a computing system having one or more hardware processors, an electronic message via a communication network, the electronic message comprising: electronic location data for a location of a computing device of a user, wherein the location data identifies geographic coordinates and a range of accuracy for the geographic coordinates as determined by the computing device of the user, wherein the range of accuracy is represented by a radius identified in the location data, andan electronic identifier for the user;determining, by the computing system, timing data indicating when the computing device was determined to be at the location, the timing data including at least one of a date or a time;obtaining, by the computing system, entity information for a plurality of entities from an entity information data store based on the received electronic location data, wherein the plurality of entities are associated with entity locations that are within the radius of the geographic coordinates, the entity information including, for each of the plurality of entities, an entity name, an entity location, times of operation for the entity indicating hours during which the entity is open at the entity location, an entity type, and at least one of a traffic pattern or a traffic trend based on the entity type;filtering, by the computing system, the plurality of entities based on the entity location for each of the plurality of entities and the radius identified in the location data representing the range of accuracy of the location data to generate a subset of entities located within the radius of the geographic coordinates, wherein the filtering is further based on the at least one of the traffic pattern or the traffic trend associated with the plurality of entities;obtaining, by the computing system, a user profile based on the received electronic identifier from a user profile data store;determining, by the computing system, from the subset of entities, and based on the timing data, the obtained user profile, the entity name for each entity of the subset of entities, and the times of operation for each entity of the subset of entities, which entity of the subset of entities the user likely visited at the at least one of the date or the time;transmitting, by the computing system, an electronic communication to the computing device of the user via the communication network, wherein the communication causes presentation to the user, on a display screen of the computing device of the user, of an offer redeemable by the user for a purchase at the determined entity;generating a report of user attributes based on one or more of the user profile, the profile for the determined entity, and the timing data; andtransmitting the report to the determined entity.
  • 14. The method of claim 13, wherein the profile for the determined entity indicates one or more a volume or a relative likelihood of user visits by time of day and day of week and a relative likelihood of users having a specified user profile attribute.
  • 15. The method of claim 13, wherein the user profile comprises at least attributes or categories that are indicative of a relative likelihood that the computing device of the user visits entities of a particular type at one or more of a particular time of day or day of week.
  • 16. The method of claim 13, further comprising generating a probability that the user likely visited the determined entity.
  • 17. The method of claim 16, wherein the probability that the user did visit the determined entity is generated based at least in part on the at least one of the date or the time.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/748,675, filed on Jun. 24, 2015, which claims priority from provisional U.S. Pat. Appl. No. 62/016,989, filed on Jun. 25, 2014, each of which is hereby incorporated by reference in its entirety for all purposes.

US Referenced Citations (719)
Number Name Date Kind
4775935 Yourick Oct 1988 A
4982346 Girouard et al. Jan 1991 A
5201010 Deaton et al. Apr 1993 A
5274547 Zoffel et al. Dec 1993 A
5283731 Lalonde et al. Feb 1994 A
5305195 Murphy Apr 1994 A
5325509 Lautzenheiser Jun 1994 A
5347632 Filepp et al. Sep 1994 A
5454030 de Oliveira et al. Sep 1995 A
5459306 Stein et al. Oct 1995 A
5504675 Cragun et al. Apr 1996 A
5515098 Carles May 1996 A
5560008 Johnson et al. Sep 1996 A
5563783 Stolfo et al. Oct 1996 A
5583380 Larsen et al. Dec 1996 A
5592560 Deaton et al. Jan 1997 A
5627973 Armstrong et al. May 1997 A
5629982 Micali May 1997 A
5630127 Moore et al. May 1997 A
5649114 Deaton et al. Jul 1997 A
5661516 Carles Aug 1997 A
5689565 Spies et al. Nov 1997 A
5696898 Baker et al. Dec 1997 A
5696907 Tom Dec 1997 A
5717923 Dedrick Feb 1998 A
5724521 Dedrick Mar 1998 A
5740549 Reilly et al. Apr 1998 A
5745654 Titan Apr 1998 A
5745694 Egawa et al. Apr 1998 A
5774357 Hoffberg et al. Jun 1998 A
5774868 Cragun et al. Jun 1998 A
5774870 Storey Jun 1998 A
5809481 Baton et al. Sep 1998 A
5819092 Ferguson et al. Oct 1998 A
5819226 Gopinathan et al. Oct 1998 A
5823879 Goldberg et al. Oct 1998 A
5825884 Zdepski et al. Oct 1998 A
5828837 Elkland Oct 1998 A
5848396 Gerace Dec 1998 A
5857175 Day et al. Jan 1999 A
5864822 Baker, III Jan 1999 A
5870721 Norris Feb 1999 A
5873068 Beaumont et al. Feb 1999 A
5889799 Grossman et al. Mar 1999 A
5889958 Willens Mar 1999 A
5890140 Clark et al. Mar 1999 A
5907608 Shaffer et al. May 1999 A
5907830 Engel et al. May 1999 A
5912839 Ovshinsky et al. Jun 1999 A
5915243 Smolen Jun 1999 A
5918014 Robinson et al. Jun 1999 A
5924082 Silverman et al. Jul 1999 A
5930764 Melchione et al. Jul 1999 A
5930776 Dykstra et al. Jul 1999 A
5933811 Angles et al. Aug 1999 A
5933813 Teicher et al. Aug 1999 A
5944790 Levy Aug 1999 A
5948061 Merriman et al. Sep 1999 A
5953707 Huang et al. Sep 1999 A
5961593 Gabber et al. Oct 1999 A
5966695 Melchione et al. Oct 1999 A
5974396 Anderson et al. Oct 1999 A
5991735 Gerace Nov 1999 A
6014688 Venkatraman et al. Jan 2000 A
6026368 Brown et al. Feb 2000 A
6029139 Cunningham et al. Feb 2000 A
6044357 Garg Mar 2000 A
6055573 Gardenswartz et al. Apr 2000 A
6061658 Chou et al. May 2000 A
6061691 Fox May 2000 A
6064973 Smith et al. May 2000 A
6070142 McDonough et al. May 2000 A
6070147 Harms et al. May 2000 A
6073241 Rosenberg et al. Jun 2000 A
6078892 Anderson et al. Jun 2000 A
6085169 Walker et al. Jul 2000 A
6101486 Roberts et al. Aug 2000 A
6115693 McDonough et al. Sep 2000 A
6144948 Walker et al. Nov 2000 A
6178442 Yamazaki Jan 2001 B1
6202053 Christiansen et al. Mar 2001 B1
6205432 Gabbard et al. Mar 2001 B1
6208979 Sinclair Mar 2001 B1
6209033 Datta et al. Mar 2001 B1
6233566 Levine et al. May 2001 B1
6236977 Verba et al. May 2001 B1
6269343 Pallakoff Jul 2001 B1
6289318 Barber Sep 2001 B1
6298330 Gardenswartz et al. Oct 2001 B1
6308210 Fields et al. Oct 2001 B1
6317752 Lee et al. Nov 2001 B1
6324566 Himmel et al. Nov 2001 B1
6330546 Gopinathan et al. Dec 2001 B1
6334110 Walter et al. Dec 2001 B1
6385592 Angles et al. May 2002 B1
6385594 Lebda et al. May 2002 B1
6412012 Bieganski et al. Jun 2002 B1
6424956 Werbos Jul 2002 B1
6442529 Krishan et al. Aug 2002 B1
6442577 Britton et al. Aug 2002 B1
6445975 Ramsey Sep 2002 B1
6460036 Herz Oct 2002 B1
6477509 Hammons et al. Nov 2002 B1
6487538 Gupta et al. Nov 2002 B1
5870721 Norris Jan 2003 C1
6505168 Rothman et al. Jan 2003 B1
6513018 Culhane Jan 2003 B1
6546257 Stewart Apr 2003 B1
6549944 Weinberg et al. Apr 2003 B1
6604089 Van Horn et al. Aug 2003 B1
6606744 Mikurak Aug 2003 B1
6611816 Lebda et al. Aug 2003 B2
6615247 Murphy Sep 2003 B1
6623529 Lakritz Sep 2003 B1
6631356 Van Horn et al. Oct 2003 B1
6633850 Gabbard et al. Oct 2003 B1
6640215 Galperin et al. Oct 2003 B1
6665715 Houri Dec 2003 B1
6671818 Mikurak Dec 2003 B1
6698020 Zigmond et al. Feb 2004 B1
6748426 Shaffer et al. Jun 2004 B1
6757740 Parekh et al. Jun 2004 B1
6801909 Delgado et al. Oct 2004 B2
6810356 Garcia-Franco et al. Oct 2004 B1
6839682 Blume et al. Jan 2005 B1
6847934 Lin et al. Jan 2005 B1
6873979 Fishman et al. Mar 2005 B2
6901406 Nabe et al. May 2005 B2
6915269 Shapiro et al. Jul 2005 B1
6925441 Jones, III et al. Aug 2005 B1
6959281 Freeling et al. Oct 2005 B1
6970830 Samra et al. Nov 2005 B1
6983478 Grauch et al. Jan 2006 B1
6993493 Galperin et al. Jan 2006 B1
7003792 Yuen Feb 2006 B1
7013285 Rebane Mar 2006 B1
7023980 Lenard Apr 2006 B2
7031945 Donner Apr 2006 B1
7033792 Zhong et al. Apr 2006 B2
7039607 Watarai et al. May 2006 B2
7047251 Reed et al. May 2006 B2
7050989 Hurt et al. May 2006 B1
7054828 Heching et al. May 2006 B2
7072853 Shkedi Jul 2006 B2
7072963 Anderson et al. Jul 2006 B2
7076442 Lin et al. Jul 2006 B2
7080027 Luby et al. Jul 2006 B2
7085734 Grant et al. Aug 2006 B2
7117172 Black Oct 2006 B1
7136448 Venkataperumal et al. Nov 2006 B1
7150030 Eldering et al. Dec 2006 B1
7152018 Wicks Dec 2006 B2
7152237 Flickinger et al. Dec 2006 B2
7155508 Sankuratripati et al. Dec 2006 B2
7165037 Lazarus et al. Jan 2007 B2
7185353 Schlack Feb 2007 B2
7191144 White Mar 2007 B2
7194420 Ikezawa et al. Mar 2007 B2
7212979 Matz et al. May 2007 B1
7240059 Bayliss et al. Jul 2007 B2
7249048 O'Flaherty Jul 2007 B1
7275083 Seibel et al. Sep 2007 B1
7296734 Pliha Nov 2007 B2
7305364 Nabe et al. Dec 2007 B2
7308418 Malek et al. Dec 2007 B2
7310617 Cunningham Dec 2007 B1
7313538 Wilmes et al. Dec 2007 B2
7313622 Lee et al. Dec 2007 B2
7314166 Anderson et al. Jan 2008 B2
7328169 Temares et al. Feb 2008 B2
7343294 Sandholm et al. Mar 2008 B1
7346540 Lin et al. Mar 2008 B2
7363308 Dillon et al. Apr 2008 B2
7366694 Lazerson Apr 2008 B2
7370057 Burdick et al. May 2008 B2
7376603 Mayr et al. May 2008 B1
7376714 Gerken May 2008 B1
7386786 Davis et al. Jun 2008 B2
7392203 Edison et al. Jun 2008 B2
7424439 Fayyad et al. Sep 2008 B1
7428526 Miller et al. Sep 2008 B2
7444302 Hu et al. Oct 2008 B2
7451095 Bradley et al. Nov 2008 B1
7458508 Shao et al. Dec 2008 B1
7467106 Levine et al. Dec 2008 B1
7472088 Taylor et al. Dec 2008 B2
7499868 Galperin et al. Mar 2009 B2
7529689 Rowan May 2009 B2
7546266 Beirne et al. Jun 2009 B2
7546619 Anderson et al. Jun 2009 B2
7556192 Wokaty, Jr. Jul 2009 B2
7562184 Henmi et al. Jul 2009 B2
7565153 Alcock et al. Jul 2009 B2
7571139 Giordano et al. Aug 2009 B1
7580856 Pliha Aug 2009 B1
7584126 White Sep 2009 B1
7590589 Hoffberg Sep 2009 B2
7593893 Ladd et al. Sep 2009 B1
7606778 Dewar Oct 2009 B2
7610257 Abrahams Oct 2009 B1
7617136 Lessing et al. Nov 2009 B1
7617160 Grove et al. Nov 2009 B1
7636941 Blinn et al. Dec 2009 B2
7653592 Flaxman et al. Jan 2010 B1
7668840 Bayliss et al. Feb 2010 B2
7672865 Kumar et al. Mar 2010 B2
7672897 Chung et al. Mar 2010 B2
7685021 Kumar et al. Mar 2010 B2
7686214 Shao et al. Mar 2010 B1
7689528 Zheng Mar 2010 B2
7698236 Cox et al. Apr 2010 B2
7707059 Reed et al. Apr 2010 B2
7711635 Steele et al. May 2010 B2
7715546 Pagel et al. May 2010 B2
7720750 Brody May 2010 B2
7725300 Pinto et al. May 2010 B2
7730509 Boulet et al. Jun 2010 B2
7734570 Bachman et al. Jun 2010 B2
7739142 Chand et al. Jun 2010 B2
7742982 Chaudhuri et al. Jun 2010 B2
7752236 Williams et al. Jul 2010 B2
7783515 Kumar et al. Aug 2010 B1
7783534 Armstrong et al. Aug 2010 B2
7788147 Haggerty et al. Aug 2010 B2
7792702 Katz et al. Sep 2010 B1
7793835 Coggeshall et al. Sep 2010 B1
7801843 Kumar et al. Sep 2010 B2
7814004 Haggerty et al. Oct 2010 B2
7835940 Kowalchuk Nov 2010 B2
7853700 Lee et al. Dec 2010 B2
7877320 Downey Jan 2011 B1
7925549 Looney et al. Apr 2011 B2
7937286 Newman May 2011 B2
7957991 Mikurak Jun 2011 B2
7962368 Kumar et al. Jun 2011 B2
7962404 Metzger, II et al. Jun 2011 B1
7962501 Semprevivo et al. Jun 2011 B1
RE42663 Lazarus et al. Aug 2011 E
7996521 Chamberlain et al. Aug 2011 B2
8005712 von Davier et al. Aug 2011 B2
8005759 Hirtenstein et al. Aug 2011 B2
8006261 Haberman et al. Aug 2011 B1
8015045 Galperin et al. Sep 2011 B2
8015140 Kumar et al. Sep 2011 B2
8024264 Chaudhuri et al. Sep 2011 B2
8027871 Wiliams et al. Sep 2011 B2
8027888 Chandran et al. Sep 2011 B2
8032409 Mikurak Oct 2011 B1
8078453 Shaw Dec 2011 B2
8078524 Crawford et al. Dec 2011 B2
8086524 Craig et al. Dec 2011 B1
8104671 Besecker et al. Jan 2012 B2
8126805 Sulkowski et al. Feb 2012 B2
8127982 Casey et al. Mar 2012 B1
8135607 Wiliams et al. Mar 2012 B2
8145754 Chamberlain et al. Mar 2012 B2
8161104 Tomkow Apr 2012 B2
8190470 Srivastava et al. May 2012 B2
8234498 Britti et al. Jul 2012 B2
8255268 Rane et al. Aug 2012 B2
8271313 Williams et al. Sep 2012 B2
8271378 Chaudhuri et al. Sep 2012 B2
8280805 Abrahams et al. Oct 2012 B1
8285577 Galperin et al. Oct 2012 B1
8285656 Chang et al. Oct 2012 B1
8296229 Yellin et al. Oct 2012 B1
8301574 Kilger et al. Oct 2012 B2
8346593 Fanelli Jan 2013 B2
8364588 Celka et al. Jan 2013 B2
8386377 Xiong et al. Feb 2013 B1
8392334 Hirtenstein et al. Mar 2013 B2
8412593 Song et al. Apr 2013 B1
8417559 Joshi et al. Apr 2013 B2
8438170 Koran et al. May 2013 B2
8458062 Dutt et al. Jun 2013 B2
8468198 Tomkow Jun 2013 B2
8515828 Wolf et al. Aug 2013 B1
8515862 Zhang et al. Aug 2013 B2
8533038 Bergh et al. Sep 2013 B2
8533322 Chamberlain et al. Sep 2013 B2
8560434 Morris et al. Oct 2013 B2
8560666 Low Oct 2013 B2
8566167 Munjal Oct 2013 B2
8571919 Rane et al. Oct 2013 B2
8571929 Srivastava et al. Oct 2013 B2
8606626 DeSoto et al. Dec 2013 B1
8606695 Arora et al. Dec 2013 B1
8620740 Bergh et al. Dec 2013 B2
8626563 Williams et al. Jan 2014 B2
8630929 Haggerty et al. Jan 2014 B2
8639920 Stack et al. Jan 2014 B2
8694361 Durvasula et al. Apr 2014 B2
8732004 Ramos et al. May 2014 B1
8738515 Chaudhuri et al. May 2014 B2
8768743 Kumar et al. Jul 2014 B2
8943060 Krishnan et al. Jan 2015 B2
8966649 Stack et al. Feb 2015 B2
9058340 Chamberlain et al. Jun 2015 B1
9105048 Koran et al. Aug 2015 B2
9152727 Balducci et al. Oct 2015 B1
9213646 LaPanse et al. Dec 2015 B1
9329715 Schwarz et al. May 2016 B2
9471928 Fanelli et al. Oct 2016 B2
9501781 Singh et al. Nov 2016 B2
9547870 Bradford Jan 2017 B1
9595051 Stack et al. Mar 2017 B2
9704192 Ainsworth et al. Jul 2017 B2
9767309 Patel et al. Sep 2017 B1
9785890 Sowani et al. Oct 2017 B2
9846884 Milana et al. Dec 2017 B2
10019593 Patel et al. Jul 2018 B1
10089664 Hamdi et al. Oct 2018 B2
10169775 Koltnow et al. Jan 2019 B2
10292008 Nack et al. May 2019 B2
10304075 Walz et al. May 2019 B2
10354311 Ainsworth, III et al. Jul 2019 B2
10380619 Pontious Aug 2019 B2
10380654 Hirtenstein et al. Aug 2019 B2
10423976 Walz Sep 2019 B2
10460335 West Oct 2019 B2
10467672 Ainsworth, III et al. Nov 2019 B2
10657229 Zoldi et al. May 2020 B2
10664759 Naik May 2020 B2
10678894 Yin et al. Jun 2020 B2
10685133 Patel et al. Jun 2020 B1
10726425 Korra et al. Jul 2020 B2
10810605 Fanelli et al. Oct 2020 B2
20010014868 Herz et al. Aug 2001 A1
20010039523 Iwamoto Nov 2001 A1
20020004754 Gardenswartz et al. Jan 2002 A1
20020023051 Kunzle et al. Feb 2002 A1
20020029162 Mascarenhas Mar 2002 A1
20020046099 Frengut et al. Apr 2002 A1
20020046105 Gardenswartz et al. Apr 2002 A1
20020049968 Wilson et al. Apr 2002 A1
20020051020 Ferrari et al. May 2002 A1
20020055906 Katz et al. May 2002 A1
20020065716 Kuschill May 2002 A1
20020069203 Dar et al. Jun 2002 A1
20020077890 LaPointe et al. Jun 2002 A1
20020077964 Brody et al. Jun 2002 A1
20020082892 Raffel et al. Jun 2002 A1
20020083043 Hoshi et al. Jun 2002 A1
20020099641 Mills et al. Jul 2002 A1
20020099824 Bender et al. Jul 2002 A1
20020099936 Kou et al. Jul 2002 A1
20020116253 Coyne et al. Aug 2002 A1
20020120504 Gould et al. Aug 2002 A1
20020123904 Amengual et al. Sep 2002 A1
20020123928 Eldering et al. Sep 2002 A1
20020128960 Lambiotte et al. Sep 2002 A1
20020129368 Schlack et al. Sep 2002 A1
20020133404 Pedersen Sep 2002 A1
20020138331 Hosea et al. Sep 2002 A1
20020138333 DeCotiis et al. Sep 2002 A1
20020138334 DeCotiis et al. Sep 2002 A1
20020147669 Taylor et al. Oct 2002 A1
20020147695 Khedkar et al. Oct 2002 A1
20020161664 Shaya et al. Oct 2002 A1
20020169655 Beyer et al. Nov 2002 A1
20030018769 Foulger et al. Jan 2003 A1
20030023489 McGuire et al. Jan 2003 A1
20030033242 Lynch et al. Feb 2003 A1
20030041050 Smith et al. Feb 2003 A1
20030046222 Bard et al. Mar 2003 A1
20030060284 Hamalainen et al. Mar 2003 A1
20030061233 Manasse et al. Mar 2003 A1
20030065563 Elliott et al. Apr 2003 A1
20030093311 Knowlson May 2003 A1
20030110293 Friedman et al. Jun 2003 A1
20030120591 Birkhead et al. Jun 2003 A1
20030144950 O'Brien et al. Jul 2003 A1
20030158776 Landesmann Aug 2003 A1
20030163708 Tang Aug 2003 A1
20030167222 Mehrotra et al. Sep 2003 A1
20030200135 Wright Oct 2003 A1
20030216965 Libman Nov 2003 A1
20030229507 Perge Dec 2003 A1
20030229892 Sardera Dec 2003 A1
20030233278 Marshall Dec 2003 A1
20030233323 Bilski et al. Dec 2003 A1
20030233655 Gutta et al. Dec 2003 A1
20040024848 Smith Feb 2004 A1
20040039688 Sulkowski et al. Feb 2004 A1
20040049729 Penfield Mar 2004 A1
20040059626 Smallwood Mar 2004 A1
20040062213 Koss Apr 2004 A1
20040078809 Drazin Apr 2004 A1
20040083215 de Jong Apr 2004 A1
20040098625 Lagadec et al. May 2004 A1
20040102197 Dietz May 2004 A1
20040107125 Guheen et al. Jun 2004 A1
20040122730 Tucciarone et al. Jun 2004 A1
20040122735 Meshkin Jun 2004 A1
20040128193 Brice et al. Jul 2004 A1
20040128236 Brown et al. Jul 2004 A1
20040138932 Johnson et al. Jul 2004 A1
20040139025 Coleman Jul 2004 A1
20040153509 Alcorn et al. Aug 2004 A1
20040163101 Swix Aug 2004 A1
20040176995 Fusz Sep 2004 A1
20040193487 Purcell et al. Sep 2004 A1
20040199456 Flint et al. Oct 2004 A1
20040199584 Kirshenbaum et al. Oct 2004 A1
20040199789 Shaw et al. Oct 2004 A1
20040205157 Bibelnieks et al. Oct 2004 A1
20040230820 Hui Hsu et al. Nov 2004 A1
20040261116 Mckeown et al. Dec 2004 A1
20050010494 Mourad et al. Jan 2005 A1
20050021397 Cui et al. Jan 2005 A1
20050050027 Yeh et al. Mar 2005 A1
20050065809 Henze Mar 2005 A1
20050091077 Reynolds Apr 2005 A1
20050097039 Kulcsar et al. May 2005 A1
20050102375 Varghese May 2005 A1
20050120045 Klawon Jun 2005 A1
20050120249 Shuster Jun 2005 A1
20050144067 Farahat et al. Jun 2005 A1
20050144641 Lewis Jun 2005 A1
20050177442 Sullivan et al. Aug 2005 A1
20050177489 Neff et al. Aug 2005 A1
20050192008 Desai et al. Sep 2005 A1
20050201272 Wang et al. Sep 2005 A1
20050204381 Ludvig et al. Sep 2005 A1
20050209922 Hofmeister Sep 2005 A1
20050222900 Fuloria et al. Oct 2005 A1
20050222906 Chen Oct 2005 A1
20050233742 Karaoguz et al. Oct 2005 A1
20050234969 Mamou et al. Oct 2005 A1
20050251820 Stefanik et al. Nov 2005 A1
20050257250 Mitchell et al. Nov 2005 A1
20050261959 Moyer Nov 2005 A1
20050273849 Araujo et al. Dec 2005 A1
20050278246 Friedman et al. Dec 2005 A1
20050278743 Flickinger et al. Dec 2005 A1
20050288954 McCarthy et al. Dec 2005 A1
20060004626 Holmen et al. Jan 2006 A1
20060004731 Seibel et al. Jan 2006 A1
20060020611 Gilbert et al. Jan 2006 A1
20060041443 Horvath Feb 2006 A1
20060041500 Diana et al. Feb 2006 A1
20060053047 Garcia et al. Mar 2006 A1
20060059062 Wood et al. Mar 2006 A1
20060059073 Walzak Mar 2006 A1
20060080210 Mourad et al. Apr 2006 A1
20060080233 Mendelovich et al. Apr 2006 A1
20060080251 Fried et al. Apr 2006 A1
20060080274 Mourad Apr 2006 A1
20060089914 Shiel et al. Apr 2006 A1
20060095363 May May 2006 A1
20060100954 Schoen May 2006 A1
20060122921 Comerford et al. Jun 2006 A1
20060144927 Love et al. Jul 2006 A1
20060155639 Lynch et al. Jul 2006 A1
20060168068 Ziegert Jul 2006 A1
20060173772 Hayes et al. Aug 2006 A1
20060178189 Walker et al. Aug 2006 A1
20060178971 Owen et al. Aug 2006 A1
20060178983 Nice et al. Aug 2006 A1
20060195866 Thukral Aug 2006 A1
20060206379 Rosenberg Sep 2006 A1
20060206416 Farias Sep 2006 A1
20060212350 Ellis et al. Sep 2006 A1
20060212353 Roslov et al. Sep 2006 A1
20060218079 Goldblatt et al. Sep 2006 A1
20060224696 King et al. Oct 2006 A1
20060229943 Mathias et al. Oct 2006 A1
20060229996 Keithley et al. Oct 2006 A1
20060230415 Roeding Oct 2006 A1
20060241923 Xu et al. Oct 2006 A1
20060242046 Haggerty et al. Oct 2006 A1
20060242050 Haggerty et al. Oct 2006 A1
20060247991 Jin et al. Nov 2006 A1
20060253323 Phan et al. Nov 2006 A1
20060259364 Strock et al. Nov 2006 A1
20060276171 Pousti Dec 2006 A1
20060277102 Agliozzo Dec 2006 A1
20060282327 Neal et al. Dec 2006 A1
20060282328 Gerace et al. Dec 2006 A1
20060282856 Errico et al. Dec 2006 A1
20060287915 Boulet et al. Dec 2006 A1
20060287919 Rubens et al. Dec 2006 A1
20060293921 McCarthy et al. Dec 2006 A1
20060293954 Anderson et al. Dec 2006 A1
20060293955 Wilson et al. Dec 2006 A1
20060294199 Bertholf Dec 2006 A1
20070011020 Martin Jan 2007 A1
20070011039 Oddo Jan 2007 A1
20070011099 Sheehan Jan 2007 A1
20070016518 Atkinson et al. Jan 2007 A1
20070022032 Anderson et al. Jan 2007 A1
20070027791 Young et al. Feb 2007 A1
20070033227 Gaito et al. Feb 2007 A1
20070038516 Apple et al. Feb 2007 A1
20070061195 Liu et al. Mar 2007 A1
20070061243 Ramer et al. Mar 2007 A1
20070067297 Kublickis Mar 2007 A1
20070067437 Sindambiwe Mar 2007 A1
20070078835 Donnelli Apr 2007 A1
20070121843 Atazky et al. May 2007 A1
20070129993 Alvin Jun 2007 A1
20070156515 Hasselback et al. Jul 2007 A1
20070156589 Zimler et al. Jul 2007 A1
20070157110 Gandhi et al. Jul 2007 A1
20070169189 Crespo et al. Jul 2007 A1
20070174122 Howard et al. Jul 2007 A1
20070175986 Petrone et al. Aug 2007 A1
20070192165 Haggerty et al. Aug 2007 A1
20070192409 Kleinstern et al. Aug 2007 A1
20070208619 Branam et al. Sep 2007 A1
20070220553 Branam et al. Sep 2007 A1
20070220611 Socolow et al. Sep 2007 A1
20070233857 Cheng et al. Oct 2007 A1
20070244732 Chatterji et al. Oct 2007 A1
20070271178 Davis et al. Nov 2007 A1
20070271582 Ellis et al. Nov 2007 A1
20070282684 Prosser et al. Dec 2007 A1
20070288271 Klinkhammer Dec 2007 A1
20070288950 Downey et al. Dec 2007 A1
20070288953 Sheeman et al. Dec 2007 A1
20070294126 Maggio Dec 2007 A1
20070294163 Harmon et al. Dec 2007 A1
20070299771 Brody Dec 2007 A1
20080004957 Hildreth et al. Jan 2008 A1
20080005313 Flake et al. Jan 2008 A1
20080010206 Coleman Jan 2008 A1
20080021802 Pendleton Jan 2008 A1
20080028067 Berkhin et al. Jan 2008 A1
20080040216 Dellovo Feb 2008 A1
20080059317 Chandran et al. Mar 2008 A1
20080059352 Chandran Mar 2008 A1
20080065774 Keeler Mar 2008 A1
20080086368 Bauman et al. Apr 2008 A1
20080091535 Heiser et al. Apr 2008 A1
20080097928 Paulson Apr 2008 A1
20080120155 Pliha May 2008 A1
20080126476 Nicholas et al. May 2008 A1
20080133325 De et al. Jun 2008 A1
20080134042 Jankovich Jun 2008 A1
20080140476 Anand et al. Jun 2008 A1
20080147425 Durvasula Jun 2008 A1
20080167956 Keithley Jul 2008 A1
20080177836 Bennett Jul 2008 A1
20080183564 Tien et al. Jul 2008 A1
20080184289 Cristofalo et al. Jul 2008 A1
20080208548 Metzger et al. Aug 2008 A1
20080215470 Sengupta et al. Sep 2008 A1
20080222127 Bergin Sep 2008 A1
20080228578 Mashinsky Sep 2008 A1
20080228635 Megdal et al. Sep 2008 A1
20080255897 Megdal et al. Oct 2008 A1
20080294540 Celka et al. Nov 2008 A1
20080294546 Flannery Nov 2008 A1
20080301727 Cristofalo et al. Dec 2008 A1
20090006475 Udezue et al. Jan 2009 A1
20090018996 Hunt et al. Jan 2009 A1
20090019027 Ju et al. Jan 2009 A1
20090024462 Lin Jan 2009 A1
20090044246 Sheehan et al. Feb 2009 A1
20090064326 Goldstein Mar 2009 A1
20090076883 Kilger et al. Mar 2009 A1
20090089205 Bayne Apr 2009 A1
20090094640 Anderson et al. Apr 2009 A1
20090113532 Lapidous Apr 2009 A1
20090119169 Chandratillake et al. May 2009 A1
20090119199 Salahi May 2009 A1
20090132347 Anderson et al. May 2009 A1
20090132559 Chamberlain et al. May 2009 A1
20090132691 Daurensan et al. May 2009 A1
20090133058 Kouritzin et al. May 2009 A1
20090144102 Lopez Jun 2009 A1
20090144201 Gierkink et al. Jun 2009 A1
20090164293 Coley Jun 2009 A1
20090171755 Kane et al. Jul 2009 A1
20090172035 Lessing et al. Jul 2009 A1
20090177480 Chen et al. Jul 2009 A1
20090215479 Karmarkar Aug 2009 A1
20090222380 Choudhuri et al. Sep 2009 A1
20090228918 Rolff et al. Sep 2009 A1
20090234665 Conkel Sep 2009 A1
20090234708 Heiser, II et al. Sep 2009 A1
20090234715 Heiser, II et al. Sep 2009 A1
20090249440 Platt et al. Oct 2009 A1
20090265326 Lehrman et al. Oct 2009 A1
20090288109 Downey et al. Nov 2009 A1
20090313163 Wang et al. Dec 2009 A1
20090319648 Dutta et al. Dec 2009 A1
20100010935 Shelton Jan 2010 A1
20100017300 Bramlage et al. Jan 2010 A1
20100030649 Ubelhor Feb 2010 A1
20100037255 Sheehan et al. Feb 2010 A1
20100094704 Subramanian et al. Apr 2010 A1
20100094758 Chamberlain et al. Apr 2010 A1
20100106568 Grimes Apr 2010 A1
20100114663 Casas et al. May 2010 A1
20100138290 Zschocke et al. Jun 2010 A1
20100145791 Canning et al. Jun 2010 A1
20100161492 Harvey et al. Jun 2010 A1
20100169159 Rose et al. Jul 2010 A1
20100169264 O'Sullivan Jul 2010 A1
20100185453 Satyavolu et al. Jul 2010 A1
20100191598 Toennis et al. Jul 2010 A1
20100211445 Bodington Aug 2010 A1
20100268660 Ekdahl Oct 2010 A1
20110023115 Wright Jan 2011 A1
20110029388 Kendall et al. Feb 2011 A1
20110047072 Ciurea Feb 2011 A1
20110066495 Ayloo et al. Mar 2011 A1
20110071950 Ivanovic Mar 2011 A1
20110076663 Krallman et al. Mar 2011 A1
20110078018 Chunilal Mar 2011 A1
20110078073 Annappindi et al. Mar 2011 A1
20110093327 Fordyce, III et al. Apr 2011 A1
20110125595 Neal et al. May 2011 A1
20110137789 Kortina et al. Jun 2011 A1
20110164746 Nice et al. Jul 2011 A1
20110178843 Rane et al. Jul 2011 A1
20110178844 Rane et al. Jul 2011 A1
20110178845 Rane et al. Jul 2011 A1
20110178846 Rane et al. Jul 2011 A1
20110178847 Rane et al. Jul 2011 A1
20110178848 Rane et al. Jul 2011 A1
20110178855 Rane et al. Jul 2011 A1
20110178899 Huszar Jul 2011 A1
20110202407 Buhrmann et al. Aug 2011 A1
20110208578 Bergh et al. Aug 2011 A1
20110211445 Chen Sep 2011 A1
20110212717 Rhoads et al. Sep 2011 A1
20110213641 Metzger, II et al. Sep 2011 A1
20110219421 Ullman et al. Sep 2011 A1
20110258050 Chan et al. Oct 2011 A1
20110264581 Clyne Oct 2011 A1
20110270618 Banerjee et al. Nov 2011 A1
20110270661 Heiser, II et al. Nov 2011 A1
20110282739 Mashinsky et al. Nov 2011 A1
20110307397 Benmbarek Dec 2011 A1
20120011056 Ward et al. Jan 2012 A1
20120011068 Dearing et al. Jan 2012 A1
20120011158 Avner et al. Jan 2012 A1
20120016733 Belvin et al. Jan 2012 A1
20120016948 Sinha Jan 2012 A1
20120047219 Feng et al. Feb 2012 A1
20120054592 Jaffe et al. Mar 2012 A1
20120060207 Mardikar et al. Mar 2012 A1
20120066065 Switzer Mar 2012 A1
20120101892 LeFebvre Apr 2012 A1
20120110677 Abendroth et al. May 2012 A1
20120143921 Wilson Jun 2012 A1
20120179536 Kalb et al. Jul 2012 A1
20120203639 Webster et al. Aug 2012 A1
20120209586 Mieritz et al. Aug 2012 A1
20120239497 Nuzzi Sep 2012 A1
20120239515 Batra et al. Sep 2012 A1
20130080242 Alhadeff et al. Mar 2013 A1
20130080467 Carson et al. Mar 2013 A1
20130085804 Left et al. Apr 2013 A1
20130117832 Gandhi May 2013 A1
20130132151 Stibel et al. May 2013 A1
20130173481 Hirtenstein et al. Jul 2013 A1
20130218638 Kilger et al. Aug 2013 A1
20130226857 Shim Aug 2013 A1
20130252638 Yang Sep 2013 A1
20130262226 LaChapelle et al. Oct 2013 A1
20130293363 Plymouth Nov 2013 A1
20130332230 Fanelli et al. Dec 2013 A1
20130339087 Fanelli et al. Dec 2013 A1
20130339143 Drozd et al. Dec 2013 A1
20140025489 Srivastava et al. Jan 2014 A1
20140025815 Low Jan 2014 A1
20140032265 Paprocki et al. Jan 2014 A1
20140046887 Lessin Feb 2014 A1
20140058818 Drozd et al. Feb 2014 A1
20140096249 Dupont et al. Apr 2014 A1
20140164112 Kala Jun 2014 A1
20140164398 Smith et al. Jun 2014 A1
20140188555 Durvasula Jul 2014 A1
20140214482 Williams et al. Jul 2014 A1
20140222908 Park et al. Aug 2014 A1
20140236706 Opie et al. Aug 2014 A1
20140279420 Okerlund et al. Sep 2014 A1
20140330670 Ainsworth, III et al. Nov 2014 A1
20150019394 Unser Jan 2015 A1
20150058957 Halliday et al. Feb 2015 A1
20150095104 Goldberg Apr 2015 A1
20150106270 Burrell et al. Apr 2015 A1
20150128240 Richards et al. May 2015 A1
20150128287 LaFever May 2015 A1
20150193821 Izumori et al. Jul 2015 A1
20150248691 Pontious Sep 2015 A1
20150262246 Stack et al. Sep 2015 A1
20150262248 Chaouki et al. Sep 2015 A1
20150278225 Weiss et al. Oct 2015 A1
20150295906 Ufford et al. Oct 2015 A1
20150332391 Srivastava et al. Nov 2015 A1
20150348200 Fair et al. Dec 2015 A1
20160055487 Votaw et al. Feb 2016 A1
20160071175 Reuss et al. Mar 2016 A1
20160092997 Shen et al. Mar 2016 A1
20160162913 Linden Jun 2016 A1
20160189192 Walz Jun 2016 A1
20160267508 West Sep 2016 A1
20160371740 Heiser, II et al. Dec 2016 A1
20170032393 Fanelli et al. Feb 2017 A1
20170186297 Brenner Jun 2017 A1
20170193315 El-Khamy et al. Jul 2017 A1
20180060954 Yin Mar 2018 A1
20180121940 Fanelli et al. May 2018 A1
20190087848 Koltnow et al. Mar 2019 A1
20190147519 Ainsworth, III et al. May 2019 A1
20190164184 Walz May 2019 A1
20190180327 Balagopalan et al. Jun 2019 A1
20190230464 Nack et al. Jul 2019 A1
20190244237 Magnuson, Jr. et al. Aug 2019 A1
20200043103 Sheptunov Feb 2020 A1
20200126040 Chilaka et al. Apr 2020 A1
20200286168 Anderson et al. Sep 2020 A1
20200294127 Anderson et al. Sep 2020 A1
20200349240 Yin et al. Nov 2020 A1
20210019742 Pontious et al. Jan 2021 A1
Foreign Referenced Citations (50)
Number Date Country
2 942 328 Apr 2020 CA
1290372 May 2001 CN
91 08 341 Oct 1991 DE
0 554 083 Aug 1993 EP
0 749 081 Dec 1996 EP
1 028 401 Aug 2000 EP
1 122 664 Aug 2001 EP
10-293732 Nov 1998 JP
11-068828 Mar 1999 JP
2009-122880 Jun 2009 JP
10-2013-0107394 Oct 2013 KR
I256569 Jun 2006 TW
WO 91003789 Mar 1991 WO
WO 94006103 Mar 1994 WO
WO 95016971 Jun 1995 WO
WO 96042041 Dec 1996 WO
WO 97023838 Jul 1997 WO
WO 98041913 Sep 1998 WO
WO 98049643 Nov 1998 WO
WO 98057285 Dec 1998 WO
WO 99004350 Jan 1999 WO
WO 99022328 May 1999 WO
WO 99032985 Jul 1999 WO
WO 99033012 Jul 1999 WO
WO 99037066 Jul 1999 WO
WO 99059375 Nov 1999 WO
WO 99067731 Dec 1999 WO
WO 00055789 Sep 2000 WO
WO 00055790 Sep 2000 WO
WO 00068862 Nov 2000 WO
WO 01010090 Feb 2001 WO
WO 01011522 Feb 2001 WO
WO 01075754 Oct 2001 WO
WO 02013025 Feb 2002 WO
WO 03101123 Dec 2003 WO
WO 2006110873 Oct 2006 WO
WO 2007149941 Dec 2007 WO
WO 2008022289 Feb 2008 WO
WO 2008057853 May 2008 WO
WO 2008076343 Jun 2008 WO
WO 2008127288 Oct 2008 WO
WO 2009132114 Oct 2009 WO
WO 2010045160 Apr 2010 WO
WO 2010062537 Jun 2010 WO
WO 2010132492 Nov 2010 WO
WO 2010150251 Dec 2010 WO
WO 2011005876 Jan 2011 WO
WO 2014018900 Jan 2014 WO
WO 2018039377 Mar 2018 WO
200903243 Mar 2010 ZA
Non-Patent Literature Citations (147)
Entry
Philipp Greitsch, “Beginner's Guide to Location-Based Mobile Advertising”, retrieved from https://trendblog.net/beginners-guide-location-based-mobile-advertising/, available on Mar. 8, 2013 (Year: 2013).
CuneXus, “CuneXus Unveils Click-to-Accept Mobile Lending Platform at Finovate (VIDEO)”, https://cunexusonline.com/cunexus-finovatespring-video-released/, May 2, 2014, pp. 2.
TransUnion, “DecisionEdge | MobileCredit”, https://www.transunion.co.za/resources/transunion-za/doc/product/resources/product-decisionedge-acquisition-mobilecredit-as.pdf, 2015, pp. 2.
U.S. Appl. No. 12/705,489, filed Feb. 12, 2010, Bargoli et al.
U.S. Appl. No. 12/705,511, filed Feb. 12, 2010, Bargoli et al.
“Accenture Launches Media Audit and Optimization Service to Help U.S. Companies Measure Return on Investment in Advertising,” Business Wire, May 22, 2006, 2 pages, http://findarticles.eom/p/articles/mi_m0EIN/is_May_2006_22/ai_n16374159.
“Accenture Newsroom: Accenture Completes Acquisition of Media Audits: Acquisition Expands Company's Marketing Sciences and Data Services Capabilities,” accenture.com, Dec. 12, 2005, 2 pages, http://accenture.tekgroup.com/article_display.cfm?article_id=428.
“Aggregate and Analyze Social Media Content: Gain Faster and Broader Insight to Market Sentiment,” SAP Partner, Mantis Technology Group, Apr. 2011, pp. 4.
Akl, Selim G., “Digital Signatures: A Tutorial Survey,” Computer, Feb. 1983, pp. 15-24.
“Atlas on Demand, Concurrent, and Everstream Strike Video-on-Demand Advertising Alliance”, www.atlassolutions.com, Jul. 13, 2006, 3 pages.
“Arbitron 2006 Black Consumers,” Arbitron Inc., lvtsg.com, Jul. 8, 2006, 2 pages, http://www.lvtsg.com/news/publish/Factoids/article_3648.shtml.
“Atlas on Demand and C-COR Join Forces to Offer Advertising Management Solution for on Demand TV: Global Provider of on Demand Systems Partners with Atlas to Develop and Market Comprehensive VOD Advertising Solution,” www.atlassolutions.com, Jul. 25, 2005, 3 pages.
“Atlas on Demand and Tandberg Television Join Forces to Enhance Dynamic Ad Placement for on-Demand Television: Combined End-to End Solution to Provide Media Buying and Selling Communities with New Tools for Dynamic Advertising that Eliminate Technical Bar” Jun. 22, 2006—3 pages, http://www.atlassolutions.com/news_20060622.aspx.
Adzilla, Press Release, “ZILLACASTING Technology Approved and Patent Pending,” http://www.adzilla.com/newsroom/pdf/patent_051605.pdf, May 16, 2005, pp. 2.
AFX New Limited—AFX International Focus, “Nielsen moving to measure off-TV viewing,” Jun. 14, 2006, 1 page.
Amo, Tina, “How to Find Out Who Has Lived inYour House Before You”, https://web.archive.org/web/20130327090532/http://homeguides.sfgate.com/out-lived-house-before-50576.html as archived Mar. 27, 2013, pp. 2.
Applied Geographic Solutions, “What is MOSAIC™”, as captured Feb. 15, 2004 from http://web.archive.org/web/20040215224329/http://www.appliedgeographic.com/mosaic.html in 2 pages.
Axiom, “Capabilites”, http://www.axiomcom.com/capabilities/, printed May 7, 2015 in 2 pages.
Bachman, Katy, “Arbitron, VNU Launch Apollo Project,” mediaweek.com Jan. 17, 2006, 3 pages, http://www.mediaweek.com/mw/search/article_display.jsp?schema=&vnu_content id=1001847353.
Bagozzi et al., “On the Evaluation of Structural Equation Models”, JAMS, 1988, pp. 74-94.
“Bank of America Direct Web-Based Network Adds Core Functionality to Meet Day-To-Day Treasury Needs”, Business Wire, Oct. 25, 1999. pp. 2.
“Bank of America Launches Total Security Protection™; Features Address Cardholders' Financial Safety Concerns; Supported by $26 Million National Advertising Campaign; Free Educational Materials”, PR Newswire, Oct. 9, 2002, pp. 2.
Bitran et al., “Mailing Decisions in Catalog Sales Industry”, Management Science (JSTOR), vol. 42, No. 9, pp. 1364-1381, Sep. 1996.
Blackbaud.com, www.blackbaud.com, various pages, retrieved Jan. 22, 2009 from www.archive.org, 23 pages.
Brown et al., “ALCOD IDSS:Assisting the Australian Stock Market Surveillance Team's Review Process,” Applied Artificial Intelligence Journal, Dec. 1, 1996, pp. 625-641.
Bult et al., “Optimal Selection for Direct Mail,” Marketing Science, 1995, vol. 14, No. 4, pp. 378-394.
Burr Ph.D., et al., “Utility Payments as Alternative Credit Data: A Reality Check”, Asset Builders of America, Inc., Octobers, 2006, pp. 1-18, Washington, D.C.
“Cable Solution Now, The Industry Standard for Information Management: Strata's TIM.net Crosses Important Threshold Dominant Solution for All Top 20 TV Markets,” stratag.com, Apr. 28, 2006, 1 page, http://stratag.com/news/cablepress042806.html.
Caliendo, et al., “Some Practical Guidance for the Implementation of Propensity Score Matching”, IZA:Discussion Paper Series, No. 1588, Germany, May 2005, pp. 32.
Card Marketing, Use the Latest CRM Tools and Techniques, www.CardForum.com, vol. 5 No. 10, Dec. 2001.
“Case Study: Expanding to Non-Traditional Prescreen Marketing Channels Reduces Company's Cost Per Account Booked”, Fairlsaac, https://web.archive.org/web/20060428115326/http://www.fairisaac.com/NR/rdonlyres/048FAE87-14B5-4732-970D-BDF20F09EB2D/0/MSDSRealTimeCS.pdf, Apr. 2003, pp. 2.
ChannelWave.com, PRM Central—About PRM, http://web.archive.org/web/20000510214859/http://www.channelwave.com as printed on Jun. 21, 2006, May 2000 Archive.
“Chase Gets Positive,” Bank Technology News, May 6, 2000, vol. 14, No. 5, p. 33.
Chung, Charles; Internet Retailer, “Multi-channel retailing requires the cleanest data—but don't expect it from the customer”, Jan./Feb. 2002.
“Claritas Forms Life Insurance Consortium with Worldwide Financial Services Association: Initiative with LIMRA International is First of its Kind to Provide Actual Sales Information at Small Geographic Areas,” Feb. 9, 2006, 3 pages, http://www.claritas.com/claritas/Default/jsp?ci=5&si=1&pn=limra.
“Claritas Introduces Prizm Ne Consumer Electronic Monitor Profiles: New Information Product Provides Insight Into the Public's Purchasing Behaviors of Consumer Electronics,” May 30, 2006, 3 pages.
“Cole Taylor Bank Chooses Integrated E-Banking/E-Payments/Reconciliation Solution From Fundtech”, Business Wire, Oct. 21, 1999, pp. 2.
Click Z, “ISPs Collect User Data for Behavioral Ad Targeting,” dated Jan. 3, 2008, printed from http://www.clickz.com/showPage.html?page=clickz Apr. 16, 2008.
CNET news.com, “Target me with your ads, please,” dated Dec. 5, 2007, printed from http://www.news.com/2102-1024_3-6221241.html?tag+st.util.print Mar. 18, 2008.
Creamer, Matthew; Consulting in marketing; Accenture, Others Playing Role in Firms' Processes, Crain's Chicago Business, Jun. 12, 2006, 2 pages.
Culhane, Patrick, “Data: Powerfully Linking Service and Profitability,” Jul./Aug. 1996, Bank Management, vol. 72, No. 4, pp. 8-12.
“Database Marketing: A new Approach to the Old Relationships,” Chain Storage Executive Edition, Dialogue, Sep. 1991, pp. 2.
Davies, Donald W., “Applying the RSA Digital Signature to Electronic Mail,” Computer, Feb. 1983, pp. 55-62.
Davis et al., “User Acceptance of Computer Technology: A Comparison of Two Theoretical Models”, Management Science, Aug. 1989, vol. 35, No. 8, pp. 982-1003.
DeGruchy, et al., “Geodemographic Profiling Benefits Stop-Smoking Service;” The British Journal of Healthcare Computing & Information Management; Feb. 2007; 24, 7; pp. 29-31.
Delany et al., “Firm Mines Offline Data to Target Online”, http://web.archive.org/web/20071117140456/http://www.commercialalert.org/news/archive/2007/10/firm-mines-offline-data-to-target-online-ads, Commercial Alert, Oct. 17, 2007, pp. 3.
demographicsnow.com, sample reports, “Age Rank Report”, Jul. 17, 2006, 3 pages.
demographicsnow.com, sample reports, “Consumer Expenditure Summary Report”, Jul. 17, 2006, 3 pages.
demographicsnow.Com, sample reports, “Income Comparison Report”, Jul. 17, 2006, 4 pages.
Dolnicar, Sara, “Using Cluster Analysis for Market Segmentation—Typical Misconceptions, Established Methodological Weaknesses and Some Recommendations for Improvement,” Australasian Journal of Market Research, 2003, vol. 11, No. 2, pp. 5-12.
Downey, Sarah A., “Smile, you're on Spokeo.com! Concerned? (here's what to do)”, https://www.abine.com/blog/2011/how-to-remove-yourself-from-spokeo/, as posted Jan. 13, 2011 in 7 pages.
Drawbridge, “Customer Success”, http://www.drawbrid.ge/customer-success, printed May 7, 2015 in 17 pages.
Drawbridge, “Solutions”, http://www.drawbrid.ge/solutions, printed May 7, 2015 in 5 pages.
Drawbridge, “Technology”, http://www.drawbrid.ge/technology, printed May 7, 2015 in 3 pages.
Dstillery, “Products”, http://dstillery.com/how-we-do-it/products/, printed May 7, 2015 in 2 pages.
Dstillery, “What We do”, http://dstillery.com/what-we-do/, printed May 7, 2015 in 2 pages.
Dstillery, “Who We are”, http://dstillery.com/who-we-are/, printed May 7, 2015 in 2 pages.
Dymi, Amilda, Need for Leads Spurs Some Upgrades, Origination News—Special Report, May 1, 2008, vol. vol. 17, Issue No. 8, pp. p. 24, Atlanta, Copyright 2008 SourceMedia, Inc.
Egol, Len; “What's New in Database Marketing Software,” Direct, Aug. 1994, vol. 6, No. 8, p. 39.
“Epsilon Leads Discussion on Paradigm Shift in TV Advertising,” epsilon.com, Jun. 24, 2004, 2 pages, http://www.epsilon.com/who-pr_tvad040624.html.
Experian and AGS Select SRC to Deliver Complete Marketing Solutions; Partnership First to Marketplace with Census2000 Data. PR Newswire. New York: Mar. 21, 2001. p. 1.
“Experian Launches Portfolio Monitor—Owner NoticesSM”, News Release, Feb. 2003, Costa Mesa, CA.
Fanelli, Marc, “Building a Holistic Customer View”, MultiChannel Merchant, Jun. 26, 2006, pp. 2.
Findermind, “PeopleFinders Review”, as archived Jun. 1, 2012 in 4 pages. http://web.archive.org/web/20120601010134/http://www.findermind.com/tag/peoplefinders-review/.
Frontporch, “Ad Networks-Partner with Front Porch!,” www.frontporch.com printed Apr. 2008 in 2 pages.
Frontporch, “New Free Revenue for Broadband ISPs!”, http://www.frontporch.com/html/bt/FPBroadbandISPs.pdf printed May 28, 2008 in 2 pages.
“FTC Testifies: Identity Theft on the Rise”, FTC News Release, Mar. 7, 2000, pp. 3.
Georges, et al., “KDD'99 Competition: Knowledge Discovery Contest”, SAS Institute, 1999, 6 pages.
Gilje, Shelby, “Keeping Tabs on Businesses That Keep Tabs on US”, NewsRoom, The Seattle Times, Section: Scene, Apr. 19, 1995, pp. 4.
Gonul, et al., “Optimal Mailing of Catalogs: A New Methodology Using Estimable Structural Dynamic Programming Models”, 14 pages, Management Science, vol. 44, No. 9, Sep. 1998.
Halliday, Jean, “Ford Recruits Accenture for Marketing Plan,” Automotive News Feb. 13, 2006, 2 pages, Crain Communications.
Hartfeil, Guenther, “Bank One Measures Profitability of Customers, Not Just Products,” Journal of Retail Banking Services, Aug. 1996, vol. 18, No. 2, pp. 23-29.
Haughton et al., “Direct Marketing Modeling with CART and CHAID”, Journal of Direct Marketing, Fall 1997, vol. 11, No. 4, pp. 42-52.
Helm, Burt, “Nielsen's New Ratings Yardstick,” businessweek.com, Jun. 20, 2006, 3 pages, http://www.businessweek.com/technology/content/jun2006/tc20060620_054223.htm.
Hill, Kerry, “Identity Theft Your Social Security Number Provides Avenue for Thieves”, NewsRoom, Wisconsin State Journal, Sep. 13, 1998, pp. 4.
Hinman, Donald P., “The Perfect Storm: Response Metrics and Digital TV,” chiefmarketer.com, May 17, 2006, 2 pages, http://www.chiefmarketer.com/crm_loop/roi/perfect-storm-051706/index.html.
Information Resources, Inc. and Navic Networks Form Joint Relationship to Support Next Generation of Technology for Advertising Testing, IRI Expands BehaviorScan® Solution to Meet Digital and on-demand Needs, Feb. 27, 2006, http://us.infores.com/page/news/pr/pr_archive?mode=single&pr_id=117, printed Oct. 4, 2007 in 2 pages.
“Intelligent Miner Applications Guide”, IBM Corp., Apr. 2, 1999, Chapters 4-7, pp. 33-132.
“IRI and Acxiom Introduce More Efficient and Actionable Approach to Consumer Segmentation and Targeted Marketing,” eu-marketingportal.de, Jan. 26, 2006, 2 pages, http://www.eu-marketingportal.de.
Jost, Allen; Neural Networks, Credit World, Mar./Apr. 1993, vol. 81, No. 4, pp. 26-33.
Karlan et al., “Observing Unobservables:Identifying Information Asymmetries with a Consumer Credit Field Experiment”, Jun. 17, 2006, pp. 58, http://aida.econ.yale.edu/karlan/papers/ObservingUnobservables.KarlanZinman.pdf.
Lamons, Bob, “Be Smart: Offer Inquiry Qualification Services,” Marketing News, ABI/Inform Global, Nov. 6, 1995, vol. 29, No. 23, pp. 13.
LeadVerifier: Why Should You Use LeadVerifier?, downloaded from www.leadverifier.com/LeadVerifier_Why.asp, dated Feb. 7, 2006 on www.archive.org.
Leskovec, Jure, “Social Media Analytics: Tracking, Modeling and Predicting the Flow of Information through Networks”, WWW 2011-Tutorial, Mar. 28-Apr. 1, 2011, Hyderabad, India, pp. 277-278.
LifeLock, http://web.archive.org/web/20110724011010/http://www.lifelock.com/? as archived Jul. 24, 2011 in 1 page.
Littwin, Angela, “Beyond Usury: A Study of Credit-Card Use and Preference Among Low-Income Consumers”, Texas Law Review, vol. 86, No. 3, pp. 451-506; Feb. 2008.
Longo, Tracey, “Managing Money: Your Family Finances”, Kiplinger's Personal Finance Magazine, Jun. 1, 1995, vol. 49, No. 6, pp. 4.
Loshin, Intelligent Enterprise: Better Insight for Business Decisions, “Value-Added Data: Merge Ahead”, Feb. 9, 2000, vol. 3, No. 3, 5 pages.
McManus et al.; “Street Wiser,” American Demographics; ABI/Inform Global; Jul./Aug. 2003; 25, 6; pp. 32-35.
McNamara, Paul, “Start-up's pitch: The Envelope, please,” Network World, Apr. 28, 1997, vol. 14, No. 17, p. 33.
“Mediamark Research Inc. Releases Findings From Mobile Marketing Consumer Study; Outback Steakhouse and Royal Caribbean Cruise Lines Among Brands Participating in Mobile Marketing Research,” www.thefreelibrary.com, May 9, 2006, 4 pages.
Morrissey, Brian, “Aim High: Ad Targeting Moves to the Next Level”, Adweek, dated Jan. 21, 2008 as downloaded from http://www.adweek.com/aw/magazine/article_display.isp?vnu on Apr. 16, 2008.
Muus, et al., “A Decision Theoretic Framework for Profit Maximization in Direct Marketing”, Sep. 1996, pp. 20.
NebuAd, “Venture Capital: What's New—The Latest on Technology Deals From Dow Jones VentureWire”, Press Release, http://www.nebuad.com/company/media_coverage/media_10_22_07.php, Oct. 22, 2007, pp. 2.
“New FICO score extends lenders' reach to credit-underserved millions”, Viewpoints: News, Ideas and Solutions from Fair Isaac, Sep./Oct. 2004 as downloaded from http://www.fairisaac.com/NR/exeres/F178D009-B47A-444F-BD11-8B4D7D8B3532,frame . . . in 6 pages.
“New Privista Product Provides Early Warning System to Combat Identity Theft”, PR Newswire, Oct. 24, 2000, PR Newswire Association, Inc., New York.
Otter, et al., “Direct Mail Selection by Joint Modeling of the Probability and Quantity of Response”, Jun. 1997, pp. 14.
Polatoglu et al., “Theory and Methodology, Probability Distributions of Cost, Revenue and Profit over a Warranty Cycle”, European Journal of Operational Research, Jul. 1998, vol. 108, Issue 1, pp. 170-183.
“PostX to Present at Internet Showcase”, PR Newswire, Apr. 28, 1997, pp. 2.
PostX, “PostX® Envelope and ActiveView”, http://web.archive.org/web/19970714203719/http://www.postx.com/priducts_fm.html, Jul. 14, 1997 (retrieved Nov. 7, 2013) in 2 pages.
PR Web: Press Release Newswire, Anchor Launches LeadVerifier to Verify, Correct and Enhance Internet Leads, Jul. 19, 2005, pp. 2 pages, Farmingdale, NY.
Predictive Behavioral Targeting http://www.predictive-behavioral-targeting.com/index.php.Main_Page as printed Mar. 28, 2008 in 4 pages.
Privacyguard, http://web.archive.org/web/20110728114049/http://www.privacyguard.com/ as archived Jul. 28, 2011 in 1 page.
Punj et al., “Cluster Analysis in Marketing Research: Review and Suggestions for Application,” Journal of Marketing Research, May 1983, vol. 20, No. 2, pp. 134-148.
Reinbach, Andrew, “MCIF Aids Banks in CRA Compliance”, Bank Systems & Technology, Aug. 1995, vol. 32, No. 8, p. 27.
Rossi et al.; “The Value of Purchasing History Data in Target Marketing”; Marketing Science, Apr. 1996, vol. 15, No. 4, pp. 321-340.
Schmittlein et al., “Customer Base Analysis: An Industrial Purchase Process Application”, Marketing Science, vol. 13, No. 1, Winter 1994, pp. 41-67.
Smith, Richard M., “The Web Bug FAQ”, Nov. 11, 1999, Version 1.0, pp. 4.
“SRC Announces Free Dashups to Mashups Adding Geographic Business Intelligence at Web Speed to the Enterprise on www.FreeDemographics.com/API,”directionsmag.com, Jun. 12, 2006, 3 pages, http://www.directionsmag.com/press.releases/index.php?duty=Show&id=1.
“SRC Delivers Industry's First Drive Time Engine Developed to Follow Actual Road Networks,” thomasnet.com, May 21, 2006, 4 pages, http://news.thomasnet.com/companystory/485722.
Stein, Benchmarking Default Prediction Models: Pitfalls and Remedies in Model Validation, Moody's KMV, Revised Jun. 13, 2002, Technical Report #020305; New York.
Sweat, Jeff; “Know Your Customers,” Information Week, Nov. 30, 1998, pp. 20.
Tao, Lixin, “Shifting Paradigms with the Application Service Provider Model”; Concordia University, IEEE, Oct. 2001, Canada.
TARGUSinfo: Lead Verification, Verify Your Leads With Unique Accuracy and Ease, downloaded from www.targusinfo.com/solutions/verify/Default.asp, as printed Aug. 1, 2006.
TARGUSinfo: Solutions: Services: Verify Express—Verify, Correct and Enhance Customer Provided Data, downloaded from http://web.archive.org/web/20051028122545/http://www.targusinfo.com/solutions/services/verify/, Oct. 28, 2005, as printed Apr. 30, 2011, 27 pgs.
Thoemmes, Felix, “Propensity Score Matching in SPSS”, Center for Educational Science and Psychology, University of Tübingen, Jan. 2012.
UPI, “Nielsen Media Research goes electronic,” Jun. 14, 2006, 1 page.
“VOD Integration Now Available in Strata: Buyers / Sellers Benefit from VOD Component on Popular Platform,” stratag.com, Feb. 21, 2006, 1 page, http://www.stratag.com/news/mediapress022106.html.
Warshaw, Paul R., “A New Model for Predicting Behavioral Intentions: An Alternative to Fishbein”, Journal of Marketing Research, May 1980, vol. XVII, pp. 153-172.
Webber, Richard, “The Relative Power of Geodemographics vis a vis Person and Household Level Demographic Variables as Discriminators of Consumer Behavior,” CASA:Working Paper Series, http://www.casa.ucl.ac.uk/working_papers/paper84.pdf, Oct. 2004, pp. 17.
White, Ron, “How Computers Work”, Millennium Edition, Que Corporation, Indianapolis, IN, Sep. 1999, pp. 284.
Whitney, Daisy; Atlas Positioning to Shoulder VOD Ads; Campaign Management Tools Optimize Inventory, Television Week, May 23, 2005, 3 pages.
Wyner, “Customer valuation: Linking behavior and economics”, Aug. 1996, Marketing Research: A Magazine of Management & Applications vol. 8, No. 2 pp. 36-38.
Yoon, Chang Woo; “Vicarious Certification and Billing Agent for Web Information Service”, High Spped Network Access Section, Electronics and Telecommunications Research Institute, Jan. 21-23, 1998, pp. 344-349.
Yun et al., “An Efficient Clustering Algorithm for Market Basket Data Based on Small Large Ratios,” Computer Software and Applications Conference, Oct. 2001, pp. 505-510.
Zen et al., “Value-Added Internet: a Pragmatic TINA-Based Path to the Internet and PSTN Integration”, Global Convergence of Telecommunications and Distribute Object Computing, Nov. 17-20, 1997, pp. 10.
Declaration of Paul Clark, DSc. for Inter Partes Review of U.S. Pat. No. 8,504,628 (Symantec Corporation, Petitioner), dated Jan. 15, 2014 in 76 pages.
Exhibit D to Joint Claim Construction Statement, filed in Epsilon Data Management, LLC, No. 2:12-cv-00511-JRG (E.D. Tex.) (combined for pretrial purposes with RPost Holdings. Inc., et al. v. Experian Marketing Solutions. Inc., No. 2:12-cv-00513-JRG (E.D. Tex.)) Filed Jan. 14, 2014 in 9 pages.
First Amended Complaint in Civil Action No. 2:12-cv-511-JRG (Rpost Holdings, Inc. and Rpost Communications Limited V. Constant Contact, Inc.; et al.) filed Feb. 11, 2013 in 14 pages.
First Amended Complaint in Civil Action No. 2:12-cv-511-JRG (Rpost Holdings, Inc. and Rpost Communications Limited V. Epsilon Data Management, LLC.) filed Sep. 13, 2013 in 9 pages.
First Amended Complaint in Civil Action No. 2:12-cv-513-JRG (Rpost Holdings, Inc. and Rpost Communications Limited V. Experian Marketing Solutions, Inc.) filed Aug. 30, 2013 in 9 pages.
Petition for Covered Business Method Patent Review in U.S. Pat. No. 8,161,104 (Experian Marketing Solutions, Inc., Epsilon Data Management, LLC, and Constant Contact, Inc., v. Rpost Communications Limited) dated Jan. 29, 2014 in 90 pages.
Source Code Appendix attached to U.S. Appl. No. 08/845,722 by Venkatraman et al., Exhibit A, Part 1 & 2, pp. 32.
Official Communication in Canadian Patent Application No. 2,381,349, dated May 17, 2013.
Official Communication in Canadian Patent Application No. 2,381,349, dated Jul. 31, 2014.
International Preliminary Examination Report in International Application No. PCT/US00/21453 dated Jun. 26, 2001.
International Search Report and Written Opinion for Application No. PCT/US2007/021815, dated Sep. 5, 2008.
International Search Report and Written Opinion for Application No. PCT/US2008/064594, dated Oct. 30, 2008.
International Preliminary Report and Written Opinion in PCT/US2008/064594, dated Dec. 10, 2009.
International Search Report and Written Opinion in PCT/US08/083939, dated Jan. 29, 2009.
International Search Report and Written Opinion for Application No. PCT/US09/60393, dated Dec. 23, 2009.
International Search Report and Written Opinion for Application No. PCT/US2010/034434, dated Jun. 23, 2010.
International Preliminary Report on Patentability for Application No. PCT/US2010/034434, dated Feb. 4, 2014.
International Search Report and Written Opinion for Application No. PCT/US2013/052342, dated Nov. 21, 2013.
International Preliminary Report on Patentability for Application No. PCT/US2013/052342, dated Feb. 5, 2015.
International Search Report and Written Opinion for Application No. PCT/US2017/048265, dated Dec. 5, 2017.
International Preliminary Report on Patentability in Application No. PCT/US2017/048265, dated Mar. 7, 2019.
Provisional Applications (1)
Number Date Country
62016989 Jun 2014 US
Continuations (1)
Number Date Country
Parent 14748675 Jun 2015 US
Child 16698546 US