Mobile internet protocol (IP) location

Information

  • Patent Grant
  • 9173059
  • Patent Number
    9,173,059
  • Date Filed
    Wednesday, March 5, 2014
    10 years ago
  • Date Issued
    Tuesday, October 27, 2015
    8 years ago
Abstract
A mobile IP location server that retrieves the location of a mobile device based on the public IP address that a mobile device is using. A mobile IP location server comprises a mobile location protocol interface, an identifier resolver, and a location manager. The mobile location protocol interface interacts with location applications and receives and responds to location requests. The identifier resolver converts a device's public IP address to a real mobile identifier (e.g. MSISDN) and performs address conversion by either interacting with an HTTP proxy server or querying a network address translation (NAT) table. The location manager retrieves the location of a mobile device given the device's real mobile identifier (e.g. MSISDN). A web application requests mobile IP location services by transmitting an IP request to the mobile IP location server. An IP location request contains a mobile device's public IP address, port number, and any application specific information.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention relates generally to wireless Internet Service Providers (ISPs), and information content delivery services/providers. More particularly, it relates to location services for the wireless industry and Web content providers.


2. Background of Related Art


Computer networks amass a collection of digital devices (e.g. computers, mobile devices, etc.), and cooperate with one another to permit communication amongst devices integrated within.


Every device that operates on a computer network is allotted a unique numerical identifier. An Internet Protocol address (IP address), for instance, is a numerical identifier assigned to each device operating on a Transmission Control Protocol/Internet Protocol (TCP/IP) network. An IP address enables a specific network node (e.g. a computer) to be targeted in a communication session and/or an information transmission. Moreover, an IP address identifies the location of a particular device on a network, permitting a communication session and/or an information transmission to be routed accurately.


An IP address is either statically or dynamically assigned to a network device.


A dynamically assigned IP address is allocated to a device each time the device accesses a network (e.g. each time a computer is booted), and/or each time an inherent timer has expired. A dynamic IP address is not fixed for any specific network device. Rather, a multitude of various dynamic IP addresses may be assigned to a host throughout the course of a network session.


Alternatively, a statically assigned IP address is permanently allocated to a network node. In particular, a static IP address is configured manually in the hardware or software portion of a device and thus provides a constant source of identification.


Two versions of the Internet Protocol are currently in use: Internet Protocol version 4 (IPv4) and Internet Protocol version 6 (IPv6). IPv4 and IPv6 each deploy variant addressing schemes.


IPv4 addresses are 32 bits long, yielding an address space that consists of 2^32 unique IP addresses. Recently, as a result of the monumental growth of the internet, the supply of unallocated IPv4 public IP addresses (i.e. globally unique IP addresses that may be routed on the internet) has rapidly diminished.


Consequently, IPv6 was developed to broaden the supply of available address space. An IPv6 address contains 128 bits, providing 2^128 unique IP addresses, which is enough to provide global unique IP addresses to all digital devices. Yet, the majority of today's network operators continue to use IPv4. Thus, several methods have been enacted in an attempt to conserve IPv4 address space.


For instance, one address conservation tactic incorporates private IP addresses. A private IP address is not globally unique and therefore not routable on the internet. Rather, private IP addresses are reserved for private networks, upon which devices primarily communicate and transfer information amongst other locally connected devices. Devices on a private network do not engage in frequent connectivity with outside networks, nor are they directly connected to the internet. Hence, as opposed to a globally unique public IP address, a private IP address is only required to be unique to devices operating on a common private network. Therefore, private IP addresses are essentially unique local addresses, enabling a range of private IP addresses to be reused over a multitude of private networks.


When a device on a private network attempts to access the internet, the device's private IP address is first converted to a public IP address. Address conversion masks a requesting device's private IP address, rendering the address undetectable to external network devices. Address conversion is commonly achieved via Network Address Translation (NAT).



FIG. 4 portrays a conventional network topology incorporating a Network Address Translation (NAT) enabled device.


A device 400 with Network Address Translation (NAT) functionality (e.g. a router, a gateway, a firewall, etc.) is situated between a private network 410 and a public network 420 (e.g. the internet). Private network addresses are not routable on the internet. Therefore, any device on a private network 410 attempting to access a node (e.g. a web server) on a public network 420 (e.g., the internet) must first pass communication through a Network Address Translation (NAT) enabled device 400. Network Address Translation (NAT) 400 converts a private IP address to a public IP address, and vice-versa, by referencing and recording address transformations in a Network Address Translation (NAT) table 430.



FIG. 5 portrays a conventional transmission of an IP packet from a private network node to a public network node using Network Address Translation (NAT).


A Network Address Translation (NAT) enabled device is furnished with a pool of globally unique public IP addresses. In step 500, a device with a private IP address transmits an IP packet to a device (e.g. a web server) operating on a public network. As depicted in step 510, the Network Address Translation (NAT) device on the private network intercepts the transmitted IP packet. Network Address Translation (NAT) then converts the source address in the transmitted IP packet from a private IP address to a public IP address, selected from the Network Address Translation (NAT) routable address pool, as shown in step 520. In step 530, Network Address Translation (NAT) subsequently records the new public/private IP address combination in the Network Address Translation (NAT) table for future lookup. The same address conversion is performed in all subsequent IP packets transmitted across the same line of communication.



FIG. 6 portrays a conventional transmission of an IP packet from a public network node to a private network node using Network Address Translation (NAT).


An IP packet is transmitted from a public network node to a private network node, as depicted in step 600. The transmitted IP packet is subsequently intercepted by a Network Address Translation (NAT) enabled device, configured at an entry point on the receiving private network, as shown in step 610. Network Address Translation (NAT) detects the destination address designated in the received IP packet and queries the Network Address Translation (NAT) table for a match in step 620. If a match is detected (step 630), the public IP address in the packet destination address field is converted to an affiliated private IP address in step 650, as recorded in the Network Address Translation (NAT) table. The packet is thereafter routed to an appropriate destination device in step 660. In the event that a match is not discovered in the Network Address Translation (NAT) table, the packet is dropped (step 640).


A proxy server may alternatively function as a gateway device between a private network and a public network.



FIG. 7 depicts a conventional network topology incorporating a proxy server.


As depicted in FIG. 7, a proxy server 700 is situated between a public network 720 and a private network 710 (i.e. a proxy server 700 is configured at an entry node on a private network 610). A network topology deploying a proxy server 700 routes all communication/information requests transmitted from a private network 710 to a public network 720, and vice versa, through the proxy server 700.


Similar to Network Address Translation (NAT), a proxy server may shield the identity of a device on a private network from being exposed to the Internet. A proxy server is also able to modify received IP packets before forwarding packets to an intended destination. Therefore, a proxy server may perform address conversion in an IP packet and additionally append any relevant application specific information.


The location of a public IP address assigned to a device is currently obtainable on the internet via request to a suitable web service. For instance, http://www.ip2location.com enables a user to supply an IP address in return for location information.


There are numerous situations in which the location of a web client associated with a particular Internet session would be beneficial to a business. For instance, a bank may desire the location of a client requesting online banking resources for security purposes (e.g. authentication and/or anti-fraud). IP location services may additionally be beneficial in law enforcement scenarios and assisting in 911 emergency location determination. Moreover, IP location services enable a business to target promotional information to relevant consumers based on a device's proximity to a particular site of interest. IP location services furthermore enable a business to engage in location based advertising.


There are companies (e.g. Quova) that provide commercial IP location services. However, current IP location services are only applicable to wireline networks (e.g. cable or DSL ISP providers) where static location of each individual user can be pre-provisioned.


Unfortunately, location information associated with a public IP address that is allocated to a mobile device is not available. Instead, current IP location services are merely able to provide the identity of an internet service provider (ISP) that owns an IP address assigned to a mobile device. Hence at the moment, it is not possible to locate a mobile device based upon the public IP address that a mobile device is using.


Wireless packet data services are provided by most wireless carriers using various technologies (e.g. UMTS, LTE, CDMA1x, WiMAX, WiFi hotspots, etc.). While smart phones with high processing power and a high resolution display are popular, more people are using mobile phones to access web interfaces via a built-in web browser. Consumers desire an IP location service that is able to provide location information based upon a mobile device's IP address.


SUMMARY OF THE INVENTION

In accordance with the principles of the present invention, a mobile Internet protocol (IP) location server comprises a mobile location protocol interface to receive an Internet protocol (IP) location request for location of a given mobile device. An identifier resolver converts a public Internet protocol (IP) address supplied in the IP location request, to a real mobile identifier of the given mobile device. A location manager obtains a geographic location of the given mobile device based upon the real mobile identifier of the given mobile device.


A method of providing location for a mobile device in a private network in accordance with another aspect of the invention comprises receiving an Internet protocol (IP) location request for location of a given mobile device from a requesting device. An owner of an IP address in the IP location request is determined. A real mobile identifier of the given mobile device is resolved based on a public IP address of the given mobile device. Location for the given mobile device is obtained using the real mobile identifier, and the obtained location is returned to the requesting device.





BRIEF DESCRIPTION OF THE DRAWINGS

Features and advantages of the present invention become apparent to those skilled in the art from the following description with reference to the drawings, in which:



FIG. 1 portrays an exemplary mobile IP location server, in accordance with the principles of the present invention.



FIG. 2 illustrates exemplary high level architecture of IP Mobile Location Services in a 3GPP network environment (including the support of non-3GPP access), in accordance with the principles of the present invention.



FIG. 3 illustrates an exemplary mobile IP location service flow using a mobile IP location server, in accordance with the principles of the present invention.



FIG. 4 portrays a conventional network topology incorporating a Network Address Translation (NAT) enabled device.



FIG. 5 portrays a conventional transmission of an IP packet from a private network node to a public network node using Network Address Translation (NAT).



FIG. 6 portrays a conventional transmission of an IP packet from a public network node to a private network node using Network Address Translation (NAT).



FIG. 7 depicts a conventional network topology incorporating a proxy server.





DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

In accordance with the principles of the present invention, a method and apparatus for acquiring a geographic location for a mobile device, based on a public IP address that the mobile device is using, comprises a mobile IP location server.


A web service requests mobile IP location services for a particular mobile device by transmitting an IP location request to the mobile IP location server, in accordance with the principles of the present invention. An IP location request preferably incorporates a mobile device's public IP address, a port number over which the mobile device is communicating, and an application type for the requesting web service.


A mobile IP location server is comprised of three functional elements: a mobile location protocol (MLP) interface, an identifier resolver, and a location manager.


All requests for location services are transmitted over the mobile location protocol (MLP) interface, in accordance with the principles of the present invention.


The identifier resolver converts a public IP address supplied in an IP location request, to a corresponding device's real mobile identifier, e.g., IMSI, MSISDN, etc. In accordance with the principles of the present invention, the identifier resolver performs address conversion by querying either a Network Address Translation (NAT) enabled device or an HTTP proxy server configured on a mobile device's serving network.


In accordance with the principles of the present invention, the location manager utilizes existing location services to obtain a geographic location for a mobile device, based upon the device's real mobile identifier.


A mobile IP location server may be used for commercial IP location services, wherein city level civic location information is provided, with consideration of subscriber privacy settings. Additionally, a mobile IP location server may perform emergency IP location services (e.g. E-911 location determination), in which precise location is provided with full civic location.


The present invention provides a mobile IP location server that retrieves the location of a mobile device, based on the public IP address that the mobile device is using. A web service requests location information for a particular public IP address by transmitting an IP location request to the mobile IP location server, in accordance with the principles of the present invention.



FIG. 1 portrays an exemplary mobile IP location server, in accordance with the principles of the present invention.


As depicted in FIG. 1, the mobile IP location server 230 comprises three main functional elements: a mobile location protocol (MLP) interface 110, an identifier resolver 120, and a location manager 130.


The mobile location protocol (MLP) interface 110 accepts all IP location requests transmitted to the mobile IP location server 230 and returns all IP location responses. A web service interacts with the mobile location protocol (MLP) interface 110 to request IP location services from the mobile IP location server 230. The mobile location protocol (MLP) interface 110 additionally interacts with location applications to request and obtain location information for particular public IP addresses.


The identifier resolver 120 interworks with network entities, e.g., a firewall, a Hypertext Transfer Protocol (HTTP) proxy server, a serving gateway and/or a Packet Data Network (PDN) gateway to convert a public IP address received for a mobile device to the device's real mobile identifier, e.g., IMSI, MSISDN, etc.


The location manager 130 is a location server (e.g. MPC, GMLC, etc.) that determines a mobile device's current geographic location via conventional mobile location services. A conventional mobile location service uses a device's real mobile identifier (e.g. IMSI, MSISDN, etc.) to obtain a geographic location for that device.


A web service requests IP location services by transmitting an IP location request to the mobile IP location server 100, in accordance with the principles of the present invention. In one particular embodiment, a web service may trigger the transmittal of an IP location request to the mobile IP location server 100, each instance the web service is accessed.


An IP location request preferably contains a mobile device's public IP address, the port number over which a mobile device is communicating, and an application type for the requesting web service.


Due to dynamic address allocation, a mobile device may be reassigned different public IP addresses as it moves and re-registers on a network. Moreover, a mobile device's public IP address may be periodically released on account of idle timeouts. Thus, a public IP address is not a constant source of identification and may not be used to directly identify a specific mobile device.


Moreover, existing control plane location services retrieve location information for a mobile device based on a device's real mobile identifier (e.g. ISMI, MSISDN, etc.), not a device's public IP address.


Therefore, unless a mobile device owns a static public IP address (i.e., a public IP address that remains constant), the public IP address supplied in an IP location request cannot be reliably used to directly identify or locate a mobile device.


The inventive mobile IP location server 100 retrieves a mobile device's real mobile identifier (e.g. IMSI, MSISDN, etc.) based upon the public IP address indicated in a received IP location request. The mobile IP location server 100 then queries a location service to obtain a geographic location for the relevant mobile device, based on the device's retrieved mobile identifier, e.g., IMSI, MSISDN, etc.



FIG. 2 illustrates an exemplary high level architecture of a mobile IP location server 230 in a 3GPP network environment (including the support of non-3GPP access), in accordance with the principles of the present invention.


In accordance with the principles of the present invention, a mobile device 200 accesses a web service 210, which triggers an IP location request 220 to the mobile IP location server 230. The transmitted IP location request 220 incorporates the mobile device's 200 public IP address, port number, and an application type for the web service 210 that transmitted the request 220.


The mobile IP location server 230 interacts with a network address translation enabled device 240 or a proxy server 250 to convert the public IP address supplied in the IP location request to the corresponding device's real mobile identifier, e.g., ISMI, MSISDN, etc. Following address conversion, the mobile IP location server 230 initiates a location request to a location server 260 based on the mobile identifier (e.g., ISMI, MSISDN, etc.) retrieved for the relevant mobile device 200. Location information for the mobile device 200 is returned to the mobile IP location server 230 and forwarded to the web service 210 that initiated the IP location request 220.



FIG. 3 illustrates an exemplary mobile IP location service flow using a mobile IP location server, in accordance with the principles of the present invention.


In step 300, a mobile device gains access to the Internet via an appropriate internet service provider. Internet service providers (e.g. Verizon Wireless, AT&T, etc.) conventionally administer IPv4 dynamic private IP addresses to mobile devices. Private IP addresses are not routable on the Internet. Thus, upon Internet access, the firewall on the device's serving network converts the device's private IP address to a public IP address, preferably via Network Address Translation (NAT).


In step 310, the mobile device 200 initiates a web service session 210 with a web service provider (e.g. an online banking service).


In step 320, the web service 210 that the mobile device 200 is accessing transmits an IP location request to the mobile IP location server 230, to attain location information for the requesting mobile device 200.


The web service 210 preferably transmits the IP location request 220 to the mobile IP location server 230 via a Live Communications Server (LCS) Client protocol over the mobile location protocol (MLP) Interface 120. The IP location request 220 preferably includes the mobile device's public IP address, port number, and any relevant application specific information (e.g. application type).


In step 330, the mobile IP location server 230 receives the transmitted IP location request 220, via the mobile location protocol (MLP) interface 120, and identifies the public IP address that is indicated within. The mobile IP location server 230 then determines the network operator that owns the public IP address received in the IP location request 220.


The owner of a public IP address is registered in the public domain. Therefore, the network/operator that an IP address belongs to may be determined via a database query to the IP address registry.


In an alternate embodiment, the mobile IP location server 230 maintains an IP address database for each mobile operator that the mobile IP location server 230 is serving. An inherent IP address database permits fast and accurate address lookup.


In yet another embodiment, a commercial provider company inserts network operator information into IP location requests sent to the mobile IP location server 230.


In step 340, address conversion is performed to accurately identify the mobile device 200 that corresponds to the public IP address indicated in the received IP location request 220. In particular, the identifier resolver converts the public IP address (e.g. IPv4) received for the mobile device 200 to a corresponding private IP address or real mobile identifier, e.g., IMSI, MSISDN, etc. Several mechanisms may be used to achieve this conversion.


One address conversion tactic the identifier resolver 110 may perform incorporates Network Address Translation (NAT). With authorization, the identifier resolver 110 may access a Network Address Translation (NAT) enabled device (e.g. a firewall at the proxy server 250) on the relevant device's serving network. The identifier resolver 110 may then initiate a request to query the Network Address Translation (NAT) table for the real mobile identifier of the mobile device 200, as documented in the NAT binding. The mobile identifier of the mobile device 200 is preferably returned in one of the following formats: MSISDN, IMSI, MSN, MIN, MDN, and/or a private IP address assigned to the mobile device 200.


Alternatively, the identifier resolver 110 may retrieve the mobile identifier and/or private IP address of the mobile device 200 by interacting with an HTTP proxy server 250 deployed on the mobile device's serving network.


An HTTP proxy server 250 on a network may insert a proprietary header in to each IP packet that is routed through the HTTP proxy server 250. The supplemental proprietary header may encompass an identifier that represents a transmitted IP packet's originating mobile device 200. However, to preserve user privacy, a device's true mobile identifier (e.g. IMSI, MSISDN, etc.) need not be used. Rather, a proxy server may maintain a database that maps identifiers inserted in a proprietary header to the real mobile identifiers (e.g. IMSI, MSISDN, etc.) they are being used to represent.


If this method is available, the identifier in a proprietary header should also be supplied in an IP location request 220 sent to the mobile IP location server 230. The identifier resolver 110 may then interact with the HTTP proxy server 250 to query the proxy server's database for a real mobile identifier of the mobile device 200, using the identifier supplied in a received IP location request 220.


As shown in step 350, address conversion performed by the identifier resolver 110 results in a mobile device's real mobile identifier (e.g. MSISDN, IMSI, MSN, MIN, and/or MDN) or a corresponding private IP address.


If address conversion yields a private IP address, then the retrieved private IP address must be converted to a real mobile identifier (step 360) before location services may be applied.


To convert a private IP address to a real mobile identifier (e.g. IMSI, MSISDN, etc.), the identifier resolver 110 determines the serving gateway that owns the relevant private IP address. The identifier resolver 110 may then retrieve the mobile identifier (e.g. IMSI, MSISDN, etc.) and current serving node (e.g. SGSN, MME, etc.) affiliated with the private IP address, from the serving gateway or Packet Data Network (PDN) gateway 242 that is serving the mobile device 200.


The PDN gateway 242 may either belong to a mobile operator or reside in an enterprise (e.g. Blackberry™ by Research in Motion uses IP addresses assigned by the enterprise where the RIM server is hosted).


When IPv6 is used, a private IP address assigned to a mobile device may be the same address used to access the internet. Thus, address conversion is not necessary in an IPv6 implementation.


In step 370, once the mobile IP location server 230 retrieves the real mobile identifier of the mobile device 200 and serving node address (optional), the location manager 130 requests the location of the mobile device 200 via standard location procedures (e.g. MPC, SUPL SLP, or GMLC). A location request 220 incorporating the real mobile identifier of the mobile device 200 and optional serving node address, is transmitted to the location manager 130 over the mobile location protocol (MLP) interface 120.


In step 380, the location manager 130 transmits a geographic location for the mobile device 200 to the mobile IP location server 230, over the mobile location protocol (MLP) interface 120. The mobile IP location server 230 subsequently returns the retrieved location information to the web service 210 that transmitted the IP location request 220.


It is preferred that the mobile IP location server 230 cache the results of a location request. Caching may be performed by assigning a key to location results to use in location rebids. A cached location may be configured with a stale age, in accordance with the principles of the present invention. Once a cached location expires based on stale age, the cached location is deleted and the expired location key results in error.


Mobile IP location services may potentially conflict with a subscriber's privacy settings. However, despite location privacy configurations, the present invention may still perform emergency location services and conventional commercial location requests.


If an emergency IP location request (i.e. EME_LIR) for a mobile device with location privacy is transmitted to the mobile IP location server 230, the mobile IP location server 230 may override privacy configurations. The mobile IP location server 230 may return precise location information to the requesting web application 210, along with the civic location of the serving Cell-ID of the mobile device 200.


Alternatively, if a commercial IP location request 220 for a mobile device 200 with location privacy is transmitted to the mobile IP location server 230, the mobile IP location server 230 may provide only city level location information derived from the serving Cell-ID of the mobile device 200.


In an alternate embodiment, the mobile IP location server 230 may transmit a subscriber privacy notification to the mobile device 200 whenever the web service 210 requests location of the mobile device 200 via an IP location request 220.


The present invention preferably utilizes existing location services (e.g. 3GPP Control Plane based via GMLC, etc., OMA User Plane based via SUPL SLP, or MPC for 3GPP2).


The present invention may be used in conjunction with the following wireless access technology: 3GPP based packet data using GERAN, UTRAN, or E-UTRAN radio access, Wireless LAN based on IEEE 802.11x, Wireless Personal Area Network Based on IEEE 802.15, Worldwide Interoperability for Microwave Access or Wireless metropolitan area network based on IEEE 802.16, 2GPP2 packet data access technologies (e.g. 1xEVDO based), Packet Data Access over Satellite, and high packet data access over speed point-to-point optical link (e.g. based on 802.17). Moreover, the present invention is applicable to other network types (e.g. CDMA2000 1X network).


The present invention has particular applicability to localized web content, location orient advertising, local weather applications, automatic product configuration, fraud detection or prevention, user authentication, law enforcement applications, and digital rights management (e.g. digital rights of video and/or audio on demand).


While the invention has been described with reference to the exemplary embodiments thereof, those skilled in the art will be able to make various modifications to the described embodiments of the invention without departing from the true spirit and scope of the invention.

Claims
  • 1. A mobile Internet protocol (IP) location server, comprising: a mobile location protocol interface to receive an IP location request for geographic location information associated with a given mobile device identified only with a public Internet Protocol (IP) address included with said IP location request, said IP location request including application specific information;an identifier resolver to determine a real mobile identifier of said given mobile device from said public Internet protocol (IP) address included with said IP location request; anda location manager to obtain said geographic location information based on said real mobile identifier of said given mobile device and said application specific information included with said IP location request.
  • 2. The mobile Internet protocol (IP) location server according to claim 1, wherein: said geographic location information associated with said given mobile device is current location information of said given mobile device.
  • 3. The mobile Internet protocol (IP) location server according to claim 1, wherein said real mobile identifier comprises: IMSI.
  • 4. The mobile Internet protocol (IP) location server according to claim 1, wherein said real mobile identifier comprises: MSISDN.
  • 5. The mobile Internet protocol (IP) location server according to claim 1, wherein: said identifier resolver determines said real mobile identifier by querying a network address translation (NAT) enabled device.
  • 6. The mobile Internet protocol (IP) location server according to claim 1, wherein: said identifier resolver determines said real mobile identifier by querying an HTTP proxy server configured on a serving network of said given mobile device.
  • 7. A method of providing location for a mobile device identified in an IP location request without a mobile identifier, comprising: receiving an Internet protocol (IP) location request for geographic location information associated with a given mobile device identified only with a public Internet Protocol (IP) address included with said IP location request, said IP location request including application specific information;resolving a real mobile identifier of said given mobile device from said public IP address included with said IP location request;obtaining said geographic location information based on said real mobile identifier of said given mobile device and said application specific information included with said IP location request; andreturning said obtained geographic location information to a requesting device initiating said IP location request.
  • 8. The method of providing location for a mobile device identified in an IP location request without a mobile identifier according to claim 7, wherein: said obtained geographic location is returned to said requesting device via IP protocol.
  • 9. The method of providing location for a mobile device identified in an IP location request without a mobile identifier according to claim 7, wherein: said geographic location information associated with said given mobile device is current location information of said given mobile device.
  • 10. The method of providing location for a mobile device identified in an IP location request without a mobile identifier according to claim 7, wherein: said requesting device is a server hosting a web application.
  • 11. The method of providing location for a mobile device identified in an IP location request without a mobile identifier according to claim 7, wherein said real mobile identifier comprises: IMSI.
  • 12. The method of providing location for a mobile device identified in an IP location request without a mobile identifier according to claim 7, wherein said real mobile identifier comprises: MSISDN.
  • 13. The method of providing location for a mobile device identified in an IP location request without a mobile identifier according to claim 7, wherein: said real mobile identifier is resolved by querying a network address translation (NAT) enabled device.
  • 14. The method of providing location for a mobile device identified in an IP location request without a mobile identifier according to claim 7, wherein: said real mobile identifier is resolved by querying an HTTP proxy server configured on a serving network of said given mobile device.
  • 15. Apparatus for providing location for a mobile device identified in an IP location request without a mobile identifier, comprising: means for receiving an Internet protocol (IP) location request for geographic location information associated with a given mobile device identified only with a public Internet Protocol (IP) address included with said IP location request, said IP location request including application specific information;means for resolving a real mobile identifier of said given mobile device from said public IP address included with said IP location request;means for obtaining said geographic location information based on said real mobile identifier of said given mobile device and said application specific information included with said IP location request; andmeans for returning said obtained geographic location information to a requesting device initiating said IP location request.
  • 16. The apparatus for providing location fora mobile device identified in an IP location request without a mobile identifier according to claim 15, wherein: said means for obtaining said geographic location returns said geographic location to said requesting device via IP protocol.
  • 17. The apparatus for providing location for a mobile device identified in an IP location request without a mobile identifier according to claim 15, wherein: said geographic location information associated with said given mobile device is current location information of said given mobile device.
  • 18. The apparatus for providing location for a mobile device identified in an IP location request without a mobile identifier according to claim 15, wherein: said requesting device is a server hosting a web application.
  • 19. The apparatus for providing location for a mobile device identified in an IP location request without a mobile identifier according to claim 15, wherein said real mobile identifier comprises: IMSI.
  • 20. The apparatus for providing location for a mobile device identified in an IP location request without a mobile identifier according to claim 15, wherein said real mobile identifier comprises: MSISDN.
  • 21. The apparatus for providing location for a mobile device identified in an IP location request without a mobile identifier according to claim 15, wherein: said means for resolving resolves said real mobile identifier by querying a network address translation (NAT) enabled device.
  • 22. The apparatus for providing location for a mobile device identified in an IP location request without a mobile identifier according to claim 15, wherein: said means for resolving resolves said real mobile identifier by querying an HTTP proxy server configured on a serving network of said given mobile device.
Parent Case Info

The present application is a continuation of U.S. application Ser. No. 13/402,406 entitled “Mobile Internet Protocol (IP) Location”, filed on Feb. 22, 2012; which claims priority from U.S. Provisional No. 61/457,316, entitled “Mobile Internet Protocol (IP) Location”, to Zhu, filed Feb. 25, 2011; and from U.S. Provisional No. 61/573,086, entitled “Mobile Internet Protocol (IP) Location”, to Zhu, filed Aug. 30, 2011; the entirety of all three of which are explicitly incorporated herein by reference.

US Referenced Citations (835)
Number Name Date Kind
1103073 O'Connell Jul 1914 A
4494119 Wimbush Jan 1985 A
4651156 Martinez Mar 1987 A
4706275 Kamil Nov 1987 A
4737916 Ogawa Apr 1988 A
4891638 Davis Jan 1990 A
4891650 Sheffer Jan 1990 A
4445118 Kuroda May 1990 A
4939662 Nimura Jul 1990 A
4952928 Carroll Aug 1990 A
4972484 Theile Nov 1990 A
5014206 Scribner May 1991 A
5043736 Darnell Aug 1991 A
5055851 Sheffer Oct 1991 A
5068656 Sutherland Nov 1991 A
5068891 Marshall Nov 1991 A
5070329 Jasinaki Dec 1991 A
5081667 Drori Jan 1992 A
5119104 Heller Jun 1992 A
5126722 Kamis Jun 1992 A
5144283 Arens Sep 1992 A
5161180 Chavous Nov 1992 A
5166972 Smith Nov 1992 A
5177478 Wagai Jan 1993 A
5193215 Olmer Mar 1993 A
5208756 Song May 1993 A
5214789 George May 1993 A
5218367 Sheffer Jun 1993 A
5223844 Mansell Jun 1993 A
5239570 Koster Aug 1993 A
5265630 Hartmann Nov 1993 A
5266944 Carroll Nov 1993 A
5283570 DeLuca Feb 1994 A
5289527 Tiedemann Feb 1994 A
5293642 Lo Mar 1994 A
5299132 Wortham Mar 1994 A
5301354 Schwendeman Apr 1994 A
5311516 Kuznicke May 1994 A
5325302 Izidon Jun 1994 A
5327529 Fults Jul 1994 A
5334974 Simms Aug 1994 A
5335246 Yokev Aug 1994 A
5343493 Karimullah Aug 1994 A
5347568 Moody Sep 1994 A
5351235 Lahtinen Sep 1994 A
5361212 Class Nov 1994 A
5363425 Mufti Nov 1994 A
5365451 Wang Nov 1994 A
5374936 Feng Dec 1994 A
5379451 Nakagoshi Jan 1995 A
5381338 Wysocki Jan 1995 A
5387993 Heller Feb 1995 A
5388147 Grimes Feb 1995 A
5389934 Kass Feb 1995 A
5390339 Bruckert Feb 1995 A
5394158 Chia Feb 1995 A
5396227 Carroll Mar 1995 A
5398190 Wortham Mar 1995 A
5406614 Hara Apr 1995 A
5418537 Bird May 1995 A
5422813 Schuchman Jun 1995 A
5423076 Westergren Jun 1995 A
5434789 Fraker Jul 1995 A
5454024 Lebowitz Sep 1995 A
5461390 Hosher Oct 1995 A
5470233 Fruchterman Nov 1995 A
5479408 Will Dec 1995 A
5479482 Grimes Dec 1995 A
5485161 Vaugh Jan 1996 A
5485163 Singer Jan 1996 A
5488563 Chazelle Jan 1996 A
5494091 Freeman Feb 1996 A
5497149 Fast Mar 1996 A
5504491 Chapman Apr 1996 A
5506886 Maine Apr 1996 A
5508931 Snider Apr 1996 A
5513243 Kage Apr 1996 A
5515287 Hakoyama May 1996 A
5517199 DiMattei May 1996 A
5519403 Bickley May 1996 A
5530655 Lokhoff Jun 1996 A
5530914 McPheters Jun 1996 A
5532690 Hertel Jul 1996 A
5535434 Siddoway Jul 1996 A
5539395 Buss Jul 1996 A
5539398 Hall Jul 1996 A
5539829 Lokhoff Jul 1996 A
5543776 L'Esperance Aug 1996 A
5546445 Dennison Aug 1996 A
5552772 Janky Sep 1996 A
5555286 Tendler Sep 1996 A
5557254 Johnson Sep 1996 A
5568119 Schipper Oct 1996 A
5568153 Beliveau Oct 1996 A
5574648 Pilley Nov 1996 A
5579372 Angstrom Nov 1996 A
5588009 Will Dec 1996 A
5592535 Klotz Jan 1997 A
5594780 Wiedeman Jan 1997 A
5604486 Lauro Feb 1997 A
5606313 Allen Feb 1997 A
5606618 Lokhoff Feb 1997 A
5606850 Nakamura Mar 1997 A
5610815 Gudat Mar 1997 A
5614890 Fox Mar 1997 A
5615116 Gudat Mar 1997 A
5621793 Bednarek Apr 1997 A
5628051 Salin May 1997 A
5629693 Janky May 1997 A
5633912 Tsoi May 1997 A
5636122 Shah Jun 1997 A
5636276 Brugger Jun 1997 A
5661652 Sprague Aug 1997 A
5661755 Van de Kerkhof Aug 1997 A
5682600 Salin Oct 1997 A
5684951 Goldman Nov 1997 A
5689245 Noreen Nov 1997 A
5689269 Norris Nov 1997 A
5689809 Grube Nov 1997 A
5699053 Jonsson Dec 1997 A
5717688 Belanger Feb 1998 A
5727057 Emery Mar 1998 A
5731785 Lemelson Mar 1998 A
5740534 Ayerst Apr 1998 A
5761618 Lynch Jun 1998 A
5765152 Erickson Jun 1998 A
5767795 Schaphorst Jun 1998 A
5768509 Gunluk Jun 1998 A
5771353 Eggleston Jun 1998 A
5774533 Patel Jun 1998 A
5774670 Montulli Jun 1998 A
5774824 Streit Jun 1998 A
5787357 Salin Jul 1998 A
5794142 Vanttila Aug 1998 A
5797094 Houde Aug 1998 A
5797096 Lupien Aug 1998 A
5801700 Ferguson Sep 1998 A
5802492 DeLorme Sep 1998 A
5806000 Vo Sep 1998 A
5809415 Rossmann Sep 1998 A
5812086 Bertiger Sep 1998 A
5812087 Krasner Sep 1998 A
5822700 Hult Oct 1998 A
5828740 Khue Oct 1998 A
5841396 Krasner Nov 1998 A
5857201 Wright, Jr. Jan 1999 A
5864667 Barkam Jan 1999 A
5874914 Krasner Feb 1999 A
5896369 Warsta Apr 1999 A
5920821 Seazholtz Jul 1999 A
5922074 Richard Jul 1999 A
5926118 Hayashida Jul 1999 A
5930250 Klok Jul 1999 A
5944768 Ito et al. Aug 1999 A
5953398 Hill Sep 1999 A
5960362 Grob Sep 1999 A
5974054 Couts Oct 1999 A
5978685 Laiho Nov 1999 A
5982301 Ohta Nov 1999 A
5983099 Yao Nov 1999 A
5983109 Montoya Nov 1999 A
5987323 Huotari Nov 1999 A
5998111 Abe Dec 1999 A
5999124 Sheynblat Dec 1999 A
6002936 Roel-Ng Dec 1999 A
6014602 Kithol Jan 2000 A
6032051 Hall Feb 2000 A
6035025 Hanson Mar 2000 A
6035253 Hayashi Mar 2000 A
6049710 Nilsson Apr 2000 A
6052081 Krasner Apr 2000 A
6058300 Hanson May 2000 A
6061018 Sheynblat May 2000 A
6061346 Nordman May 2000 A
6064336 Krasner May 2000 A
6064875 Morgan May 2000 A
6067045 Castelloe May 2000 A
6070067 Nguyen May 2000 A
6075982 Donovan Jun 2000 A
6081229 Soliman Jun 2000 A
6081508 West Jun 2000 A
6085320 Kaliski, Jr. Jul 2000 A
6091957 Larkins Jul 2000 A
6101378 Barabush Aug 2000 A
6108533 Brohoff Aug 2000 A
6115611 Kimoto Sep 2000 A
6122503 Daly Sep 2000 A
6122520 Want Sep 2000 A
6124810 Segal Sep 2000 A
6128664 Yanagidate Oct 2000 A
6131067 Girerd Oct 2000 A
6133874 Krasner Oct 2000 A
6134316 Kallioniemi Oct 2000 A
6134483 Vayanos Oct 2000 A
6138003 Kingdon Oct 2000 A
6148197 Bridges Nov 2000 A
6148198 Anderson Nov 2000 A
6149353 Nilsson Nov 2000 A
6150980 Krasner Nov 2000 A
6154172 Piccionelli Nov 2000 A
6169516 Watanabe Jan 2001 B1
6169891 Gorham Jan 2001 B1
6169901 Boucher Jan 2001 B1
6169902 Kawamoto Jan 2001 B1
6173181 Losh Jan 2001 B1
6178505 Schneider Jan 2001 B1
6178506 Quick, Jr. Jan 2001 B1
6181935 Gossman Jan 2001 B1
6181939 Ahvenainen Jan 2001 B1
6182006 Meek Jan 2001 B1
6182227 Blair Jan 2001 B1
6185426 Alperovich Feb 2001 B1
6188354 Soliman Feb 2001 B1
6188752 Lesley Feb 2001 B1
6188909 Alanara Feb 2001 B1
6188957 Bechtolsheim Feb 2001 B1
6189098 Kaliski, Jr. Feb 2001 B1
6195557 Havinis Feb 2001 B1
6198431 Gibson Mar 2001 B1
6199045 Giniger Mar 2001 B1
6199113 Alegre Mar 2001 B1
6204844 Fumarolo Mar 2001 B1
6205330 Winbladh Mar 2001 B1
6208290 Krasner Mar 2001 B1
6208854 Roberts Mar 2001 B1
6215441 Moeglein Apr 2001 B1
6219557 Havinis Apr 2001 B1
6223046 Hamill-Keays Apr 2001 B1
6226529 Bruno May 2001 B1
6239742 Krasner May 2001 B1
6247135 Feague Jun 2001 B1
6249680 Wax Jun 2001 B1
6249742 Friederich Jun 2001 B1
6249744 Morita Jun 2001 B1
6249873 Richard Jun 2001 B1
6253074 Carlsson Jun 2001 B1
6253203 O'Flaherty Jun 2001 B1
6260147 Quick, Jr. Jul 2001 B1
6266614 Alumbaugh Jul 2001 B1
6275692 Skog Aug 2001 B1
6275849 Ludwig Aug 2001 B1
6278701 Ayyagari Aug 2001 B1
6278936 Jones Aug 2001 B1
6289373 Dezonno Sep 2001 B1
6297768 Allen, Jr. Oct 2001 B1
6307504 Sheynblat Oct 2001 B1
6308269 Proidl Oct 2001 B2
6313786 Sheynblat Nov 2001 B1
6317594 Gossman Nov 2001 B1
6317684 Roeseler Nov 2001 B1
6321091 Holland Nov 2001 B1
6321092 Fitch Nov 2001 B1
6321158 DeLorme Nov 2001 B1
6321257 Kotola Nov 2001 B1
6324524 Lent Nov 2001 B1
6327473 Soliman Dec 2001 B1
6327479 Mikkola Dec 2001 B1
6331825 Ladner Dec 2001 B1
6333919 Gaffney Dec 2001 B2
6360093 Ross Mar 2002 B1
6360102 Havinis Mar 2002 B1
6363254 Jones Mar 2002 B1
6366782 Fumarolo Apr 2002 B1
6366856 Johnson Apr 2002 B1
6367019 Ansell Apr 2002 B1
6370389 Isomursu Apr 2002 B1
6377209 Krasner Apr 2002 B1
6397143 Peschke May 2002 B1
6400314 Krasner Jun 2002 B1
6400943 Montoya Jun 2002 B1
6400958 Isomursu Jun 2002 B1
6411254 Moeglein Jun 2002 B1
6415224 Wako Jul 2002 B1
6421002 Krasner Jul 2002 B2
6427001 Contractor Jul 2002 B1
6429808 King Aug 2002 B1
6433734 Krasner Aug 2002 B1
6434381 Moore Aug 2002 B1
6441752 Fomukong Aug 2002 B1
6442384 Shah Aug 2002 B1
6442391 Johansson Aug 2002 B1
6449473 Raivisto Sep 2002 B1
6449476 Hutchison, IV Sep 2002 B1
6456852 Bar Sep 2002 B2
6463272 Wallace Oct 2002 B1
6466788 Carlsson Oct 2002 B1
6477150 Maggenti Nov 2002 B1
6504491 Christians Jan 2003 B1
6505049 Dorenbosch Jan 2003 B1
6510387 Fuchs Jan 2003 B2
6512922 Burg Jan 2003 B1
6512930 Sandegren Jan 2003 B2
6515623 Johnson Feb 2003 B2
6519466 Pande Feb 2003 B2
6522682 Kohli Feb 2003 B1
6526026 Menon Feb 2003 B1
6529500 Pandharipande Mar 2003 B1
6529722 Heinrich Mar 2003 B1
6529829 Turetzky Mar 2003 B2
6531982 White Mar 2003 B1
6538757 Sansone Mar 2003 B1
6539200 Schiff Mar 2003 B1
6539232 Hendrey Mar 2003 B2
6539304 Chansarkar Mar 2003 B1
6542464 Takeda Apr 2003 B1
6542734 Abrol Apr 2003 B1
6542743 Soliman Apr 2003 B1
6549522 Flynn Apr 2003 B1
6549776 Joong Apr 2003 B1
6549844 Egberts Apr 2003 B1
6556832 Soliman Apr 2003 B1
6560461 Fomukong May 2003 B1
6560534 Abraham May 2003 B2
6563824 Bhatia May 2003 B1
6564261 Gudjonsson May 2003 B1
6570530 Gaal May 2003 B2
6571095 Koodli May 2003 B1
6571174 Rigazio May 2003 B2
6574558 Kohli Jun 2003 B2
6580390 Hay Jun 2003 B1
6584552 Kuno Jun 2003 B1
6587691 Granstam Jul 2003 B1
6594500 Bender Jul 2003 B2
6597311 Sheynblat Jul 2003 B2
6600927 Hamilton Jul 2003 B2
6603973 Foladare Aug 2003 B1
6606495 Korpi Aug 2003 B1
6606554 Edge Aug 2003 B2
6609004 Morse Aug 2003 B1
6611757 Brodie Aug 2003 B2
6618670 Chansarkar Sep 2003 B1
6618757 Babbitt et al. Sep 2003 B1
6621423 Cooper Sep 2003 B1
6621452 Knockeart Sep 2003 B2
6621810 Leung Sep 2003 B1
6628233 Knockeart Sep 2003 B2
23003020193 Durst Oct 2003
6633255 Krasner Oct 2003 B2
6640184 Rabe Oct 2003 B1
6640185 Tokota Oct 2003 B2
6643516 Stewart Nov 2003 B1
6650288 Pitt Nov 2003 B1
6661353 Gopen Dec 2003 B1
6661372 Girerd Dec 2003 B1
6665539 Sih Dec 2003 B2
6665541 Krasner Dec 2003 B1
6665613 Duvall Dec 2003 B2
6665715 Houri Dec 2003 B1
6671620 Garin Dec 2003 B1
6677894 Sheynblat Jan 2004 B2
6680694 Knockeart Jan 2004 B1
6687504 Raith Feb 2004 B1
6691019 Seeley Feb 2004 B2
6694258 Johnson Feb 2004 B2
6697629 Grilli Feb 2004 B1
6698195 Hellinger Mar 2004 B1
6701144 Kirbas Mar 2004 B2
6703971 Pande Mar 2004 B2
6703972 Van Diggelen Mar 2004 B2
6704651 Van Diggelen Mar 2004 B2
6707421 Drury Mar 2004 B1
6714793 Carey Mar 2004 B1
6718174 Vayanos Apr 2004 B2
6720915 Sheynblat Apr 2004 B2
6721578 Minear Apr 2004 B2
6721652 Sanqunetti Apr 2004 B1
6721716 Gross Apr 2004 B1
6721871 Piispanen Apr 2004 B2
6724342 Bloebaum Apr 2004 B2
6725159 Krasner Apr 2004 B2
6728701 Stoica Apr 2004 B1
6731940 Nagendran May 2004 B1
6734821 Van Diggelen May 2004 B2
6738013 Orler May 2004 B2
6738800 Aquilon May 2004 B1
6741842 Goldberg May 2004 B2
6744856 Karnik Jun 2004 B2
6744858 Ryan Jun 2004 B1
6745038 Callaway, Jr. Jun 2004 B2
6747596 Orler Jun 2004 B2
6748195 Phillips Jun 2004 B1
6751464 Burg Jun 2004 B1
6756938 Zhao Jun 2004 B2
6757266 Hundscheidt Jun 2004 B1
6757544 Rangarajan Jun 2004 B2
6757545 Nowak Jun 2004 B2
6766174 Kenyon Jul 2004 B1
6771639 Holden Aug 2004 B1
6771742 McCalmont Aug 2004 B2
6772340 Peinado Aug 2004 B1
6775267 Kung Aug 2004 B1
6775534 Lindgren Aug 2004 B2
6775655 Peinado Aug 2004 B1
6775802 Gaal Aug 2004 B2
6778136 Gronemeyer Aug 2004 B2
6778885 Agashe Aug 2004 B2
6781963 Crockett Aug 2004 B2
6788249 Farmer Sep 2004 B1
6795444 Vo Sep 2004 B1
6795699 McCraw Sep 2004 B1
6799049 Zellner Sep 2004 B1
6799050 Krasner Sep 2004 B1
6801159 Swope Oct 2004 B2
6801850 Wolfson Oct 2004 B1
6804524 Vandermeijden Oct 2004 B1
6807534 Erickson Oct 2004 B1
6810323 Bullock Oct 2004 B1
6810405 LaRue Oct 2004 B1
6813264 Vassilovski Nov 2004 B2
6813501 Kinnunen Nov 2004 B2
6813560 Van Diggelen Nov 2004 B2
6816111 Krasner Nov 2004 B2
6816710 Krasner Nov 2004 B2
6816719 Heinonen Nov 2004 B1
6816734 Wong Nov 2004 B2
6816782 Walters Nov 2004 B1
6819919 Tanaka Nov 2004 B1
6820069 Kogan Nov 2004 B1
6829475 Lee Dec 2004 B1
6829532 Obradovich Dec 2004 B2
6832373 O'Neill Dec 2004 B2
6839020 Geier Jan 2005 B2
6839021 Sheynblat Jan 2005 B2
6839417 Weisman Jan 2005 B2
6839630 Sakamoto Jan 2005 B2
6842696 Silvester Jan 2005 B2
6842715 Gaal Jan 2005 B1
6845321 Kerns Jan 2005 B1
6847822 Dennison Jan 2005 B1
6853916 Fuchs Feb 2005 B2
6856282 Mauro Feb 2005 B2
6861980 Rowitch Mar 2005 B1
6865171 Nilsson Mar 2005 B1
6865395 Riley Mar 2005 B2
6867733 Sandhu Mar 2005 B2
6867734 Voor Mar 2005 B2
6873854 Crockett Mar 2005 B2
6882850 McConnell Apr 2005 B2
6885874 Grube Apr 2005 B2
6885940 Brodie Apr 2005 B2
6888497 King May 2005 B2
6888932 Snip May 2005 B2
6895238 Newell May 2005 B2
6895249 Gaal May 2005 B2
6895329 Wolfson May 2005 B1
6898516 Pechatnikov May 2005 B2
6900758 Mann May 2005 B1
6903684 Simic Jun 2005 B1
6904029 Fors Jun 2005 B2
6907224 Younis Jun 2005 B2
6907238 Leung Jun 2005 B2
6910818 McLoone Jun 2005 B2
6912230 Salkini Jun 2005 B1
6912395 Benes Jun 2005 B2
6912545 Lundy Jun 2005 B1
6915208 Garin Jul 2005 B2
6917331 Gronemeyer Jul 2005 B2
6925603 Naito Aug 2005 B1
6930634 Peng Aug 2005 B2
6934705 Tu Aug 2005 B2
6937187 Van Diggelen Aug 2005 B2
6937872 Krasner Aug 2005 B2
6940950 Dickinson Sep 2005 B2
6941144 Stein Sep 2005 B2
6944535 Iwata Sep 2005 B2
6944540 King Sep 2005 B2
6947772 Minear Sep 2005 B2
6950058 Davis Sep 2005 B1
6957068 Hutchison Oct 2005 B2
6957073 Bye Oct 2005 B2
6961562 Ross Nov 2005 B2
6963557 Knox Nov 2005 B2
6963748 Chithambaram Nov 2005 B2
6965754 King Nov 2005 B2
6965767 Maggenti Nov 2005 B2
6968044 Beason Nov 2005 B2
6970871 Rayburn Nov 2005 B1
6970917 Kushwaha Nov 2005 B1
6973320 Brown Dec 2005 B2
6975266 Abraham Dec 2005 B2
6978453 Rao Dec 2005 B2
6980816 Rohler Dec 2005 B2
6985747 Chithambaram Jan 2006 B2
6990081 Schaefer Jan 2006 B2
6993355 Pershan Jan 2006 B1
6996720 DeMello Feb 2006 B1
6999782 Shaughnessy Feb 2006 B2
7024321 Deninger Apr 2006 B1
7024393 Peinado Apr 2006 B1
7047411 DeMello May 2006 B1
7058506 Kawase Jun 2006 B2
7065351 Carter Jun 2006 B2
7065507 Mohammed Jun 2006 B2
7072667 Olrik Jul 2006 B2
7079857 Maggenti Jul 2006 B2
7089110 Pechatnikov Aug 2006 B2
7092385 Gallant Aug 2006 B2
7103018 Hansen Sep 2006 B1
7103574 Peinado Sep 2006 B1
7106717 Rousseau Sep 2006 B2
7110773 Wallace Sep 2006 B1
7136466 Gao Nov 2006 B1
7136838 Peinado Nov 2006 B1
7142196 Connor Nov 2006 B1
7142205 Chithambaram Nov 2006 B2
7145900 Nix Dec 2006 B2
7151946 Maggenti Dec 2006 B2
7167187 Scott Jan 2007 B2
7171220 Belcea Jan 2007 B2
7171304 Wako Jan 2007 B2
7177397 McCalmont Feb 2007 B2
7177398 Meer Feb 2007 B2
7177399 Dawson Feb 2007 B2
7184418 Baba Feb 2007 B1
7200380 Havlark Apr 2007 B2
7202801 Chou Apr 2007 B2
7209758 Moll Apr 2007 B1
7209969 Lahti Apr 2007 B2
7218940 Niemenna May 2007 B2
7221959 Lindqvist May 2007 B2
7245900 Lamb Jul 2007 B1
7245910 Osmo Jul 2007 B2
7260186 Zhu Aug 2007 B2
7260384 Bales Aug 2007 B2
7266376 Nakagawa Sep 2007 B2
7286929 Staton Oct 2007 B2
7330899 Wong Feb 2008 B2
7333480 Clarke Feb 2008 B1
7340241 Rhodes Mar 2008 B2
7369508 Parantainen May 2008 B2
7369530 Keagy May 2008 B2
7424293 Zhu Sep 2008 B2
7426380 Hines Sep 2008 B2
7428571 Ichimura Sep 2008 B2
7436785 McMullen Oct 2008 B1
7440442 Grabelsky Oct 2008 B2
7450951 Vimpari Nov 2008 B2
7453990 Welenson Nov 2008 B2
7454489 Chauffour Nov 2008 B2
7477903 Wilcock Jan 2009 B2
7495608 Chen Feb 2009 B1
7522581 Acharya Apr 2009 B2
7565157 Ortega Jul 2009 B1
7602886 Beech Oct 2009 B1
7623447 Faccin Nov 2009 B1
7627331 Winterbottom Dec 2009 B2
7653544 Bradley Jan 2010 B2
7660321 Cortes Feb 2010 B2
7702081 Klesper Apr 2010 B1
7711094 Olshansky May 2010 B1
7739033 Murata Jun 2010 B2
7747258 Farmer Jun 2010 B2
7751614 Funakura Jul 2010 B2
7774003 Ortega Aug 2010 B1
7783297 Ishii Aug 2010 B2
7822823 Jhanji Oct 2010 B2
7881233 Bieselin Feb 2011 B2
7881730 Sheha Feb 2011 B2
7895263 Kirchmeier Feb 2011 B1
7929556 Melia et al. Apr 2011 B2
7937067 Maier May 2011 B2
8175921 Kopra May 2012 B1
8422391 Zhu Apr 2013 B2
8531995 Khan et al. Sep 2013 B2
8682321 Zhu Mar 2014 B2
20010011247 O'Flaherty Aug 2001 A1
20010015756 Wilcock Aug 2001 A1
20010016849 Squibbs Aug 2001 A1
20020032036 Nakajima Mar 2002 A1
20020037735 Maggenti Mar 2002 A1
20020052214 Maggenti May 2002 A1
20020058515 Holler May 2002 A1
20020061760 Maggenti May 2002 A1
20020069239 Katada Jun 2002 A1
20020069529 Wieres Jun 2002 A1
20020077083 Zellner Jun 2002 A1
20020077084 Zellner Jun 2002 A1
20020077118 Zellner Jun 2002 A1
20020077897 Zellner Jun 2002 A1
20020085538 Leung Jul 2002 A1
20020086683 Kohar Jul 2002 A1
20020102996 Jenkins Aug 2002 A1
20020102999 Maggenti Aug 2002 A1
20020111172 DeWolf Aug 2002 A1
20020112047 Kushwaha Aug 2002 A1
20020118650 Jagadeesan Aug 2002 A1
20020123327 Vataja Sep 2002 A1
20020123354 Nowak Sep 2002 A1
20020126656 Park Sep 2002 A1
20020130906 Miyaki Sep 2002 A1
20020158777 Flick Oct 2002 A1
20020164998 Younis Nov 2002 A1
20020169539 Menard Nov 2002 A1
20020173317 Nykanen Nov 2002 A1
20020191595 Mar Dec 2002 A1
20030009277 Fan Jan 2003 A1
20030009602 Jacobs Jan 2003 A1
20030012148 Peters Jan 2003 A1
20030013449 Hose Jan 2003 A1
20030014487 Iwakawa Jan 2003 A1
20030016804 Sheha Jan 2003 A1
20030026245 Ejzak Feb 2003 A1
20030032448 Bulthuis Feb 2003 A1
20030036848 Sheha Feb 2003 A1
20030036949 Kaddeche Feb 2003 A1
20030037163 Kitada Feb 2003 A1
20030040272 Lelievre Feb 2003 A1
20030045327 Kobayashi Mar 2003 A1
20030054835 Gutowski Mar 2003 A1
20030060938 Duvall Mar 2003 A1
20030065788 Salomaki Apr 2003 A1
20030072318 Lam Apr 2003 A1
20030078054 Okuda Apr 2003 A1
20030078064 Chan Apr 2003 A1
20030081557 Mettala May 2003 A1
20030096623 Kim May 2003 A1
20030101329 Lahti May 2003 A1
20030101341 Kettler May 2003 A1
20030103484 Oommen Jun 2003 A1
20030108176 Kung Jun 2003 A1
20030109245 McCalmont Jun 2003 A1
20030114157 Spitz Jun 2003 A1
20030119521 Tipnis Jun 2003 A1
20030119528 Pew Jun 2003 A1
20030125064 Koskinen Jul 2003 A1
20030126250 Jhanji Jul 2003 A1
20030137961 Tsirtsis Jul 2003 A1
20030149526 Zhou Aug 2003 A1
20030151501 Teckchandani Aug 2003 A1
20030153340 Crockett Aug 2003 A1
20030153341 Crockett Aug 2003 A1
20030153342 Crockett Aug 2003 A1
20030153343 Crockett Aug 2003 A1
20030161298 Bergman Aug 2003 A1
20030165254 Chen Sep 2003 A1
20030182053 Swope Sep 2003 A1
20030186709 Rhodes Oct 2003 A1
20030196105 Fineburg Oct 2003 A1
20030204640 Sahineja Oct 2003 A1
20030223381 Schroderus Dec 2003 A1
20030231190 Jawerth Dec 2003 A1
20030236618 Kamikawa Dec 2003 A1
20040002326 Maher Jan 2004 A1
20040002814 Gogic Jan 2004 A1
20040008225 Campbell Jan 2004 A1
20040021567 Dunn Feb 2004 A1
20040032485 Stephens Feb 2004 A1
20040041729 Rowitch Mar 2004 A1
20040043775 Kennedy Mar 2004 A1
20040044623 Wake Mar 2004 A1
20040047342 Gavish Mar 2004 A1
20040047461 Weisman Mar 2004 A1
20040054428 Sheha Mar 2004 A1
20040068724 Gardner Apr 2004 A1
20040076277 Kuusinen Apr 2004 A1
20040098497 Banet May 2004 A1
20040100976 Chang May 2004 A1
20040124977 Biffar Jul 2004 A1
20040132465 Mattila Jul 2004 A1
20040146040 Phan-Anh Jul 2004 A1
20040181689 Kiyoto Sep 2004 A1
20040184584 McCalmont Sep 2004 A1
20040186880 Yamamoto Sep 2004 A1
20040190497 Knox Sep 2004 A1
20040198332 Lundsgaard Oct 2004 A1
20040198375 Schwengler Oct 2004 A1
20040198386 Dupray Oct 2004 A1
20040203732 Brusilovsky Oct 2004 A1
20040204829 Endo Oct 2004 A1
20040204847 Yanai Oct 2004 A1
20040205151 Sprigg Oct 2004 A1
20040205517 Lampert Oct 2004 A1
20040220957 McDonough Nov 2004 A1
20040229632 Flynn Nov 2004 A1
20040242238 Wang Dec 2004 A1
20040267445 De Luca Dec 2004 A1
20050021769 Kim Jan 2005 A1
20050027445 McDonough Feb 2005 A1
20050028034 Gantman Feb 2005 A1
20050031095 Pietrowicz Feb 2005 A1
20050039178 Marolia Feb 2005 A1
20050041578 Huotari Feb 2005 A1
20050043037 Loppe Feb 2005 A1
20050043038 Maanoja Feb 2005 A1
20050053209 D'Evelyn Mar 2005 A1
20050062636 Conway Mar 2005 A1
20050063519 James Mar 2005 A1
20050071671 Karaoguz Mar 2005 A1
20050078612 Lang Apr 2005 A1
20050083911 Grabelsky Apr 2005 A1
20050085999 Onishi Apr 2005 A1
20050086467 Asokan Apr 2005 A1
20050090236 Schwinke Apr 2005 A1
20050101335 Kelly May 2005 A1
20050107673 Ball May 2005 A1
20050111630 Potorney May 2005 A1
20050112030 Gaus May 2005 A1
20050119012 Merheb Jun 2005 A1
20050125148 Van Buer Jun 2005 A1
20050134504 Harwood Jun 2005 A1
20050135569 Dickinson Jun 2005 A1
20050136885 Kaltsukis Jun 2005 A1
20050149430 Williams Jul 2005 A1
20050159883 Humphries Jul 2005 A1
20050174991 Keagy Aug 2005 A1
20050190746 Xiong Sep 2005 A1
20050190892 Dawson Sep 2005 A1
20050192822 Hartenstein Sep 2005 A1
20050201358 Nelson Sep 2005 A1
20050201528 Meer Sep 2005 A1
20050201529 Nelson Sep 2005 A1
20050209995 Aksu Sep 2005 A1
20050213716 Zhu Sep 2005 A1
20050219067 Chung Oct 2005 A1
20050232252 Hoover Oct 2005 A1
20050239458 Hurtta Oct 2005 A1
20050242168 Tesavis Nov 2005 A1
20050255857 Kim Nov 2005 A1
20050259675 Tuohino Nov 2005 A1
20050261002 Cheng Nov 2005 A1
20050265318 Khartabil Dec 2005 A1
20050271029 Iffland Dec 2005 A1
20050282518 D'Evelyn Dec 2005 A1
20050287979 Rollender Dec 2005 A1
20050289097 Trossen Dec 2005 A1
20060008065 Longman Jan 2006 A1
20060019724 Bahl Jan 2006 A1
20060023747 Koren Feb 2006 A1
20060026288 Acharya Feb 2006 A1
20060041375 Witmer Feb 2006 A1
20060053225 Poikselka Mar 2006 A1
20060058102 Nguyen Mar 2006 A1
20060068753 Karpen Mar 2006 A1
20060069503 Suomela Mar 2006 A1
20060072729 Lee Apr 2006 A1
20060074547 Kaufman Apr 2006 A1
20060077911 Shaffer Apr 2006 A1
20060088152 Green Apr 2006 A1
20060104306 Adamczyk May 2006 A1
20060114934 Shin Jun 2006 A1
20060120517 Moon Jun 2006 A1
20060128395 Muhonen Jun 2006 A1
20060135177 Winterbottom Jun 2006 A1
20060188083 Breen Aug 2006 A1
20060193447 Schwartz Aug 2006 A1
20060200359 Khan Sep 2006 A1
20060212558 Sahinoja Sep 2006 A1
20060212562 Kushwaha Sep 2006 A1
20060224752 Parekh Oct 2006 A1
20060233338 Venkata Oct 2006 A1
20060234639 Kushwaha Oct 2006 A1
20060234698 Fok Oct 2006 A1
20060239205 Warren et al. Oct 2006 A1
20060250987 White Nov 2006 A1
20060258380 Liebowitz Nov 2006 A1
20060259365 Agarwal Nov 2006 A1
20060268120 Funakura Nov 2006 A1
20060270421 Phillips Nov 2006 A1
20060281437 Cook Dec 2006 A1
20060293024 Benco Dec 2006 A1
20060293066 Edge Dec 2006 A1
20070003024 Olivier Jan 2007 A1
20070004461 Bathina Jan 2007 A1
20070014282 Mitchell Jan 2007 A1
20070019614 Hoffmann Jan 2007 A1
20070021908 Jaugilas Jan 2007 A1
20070022011 Altberg Jan 2007 A1
20070026854 Nath Feb 2007 A1
20070026871 Wager Feb 2007 A1
20070027997 Polk Feb 2007 A1
20070030539 Nath Feb 2007 A1
20070032244 Counts Feb 2007 A1
20070036139 Patel Feb 2007 A1
20070049288 Lamprecht Mar 2007 A1
20070054676 Duan et al. Mar 2007 A1
20070060097 Edge Mar 2007 A1
20070072553 Barbera Mar 2007 A1
20070081635 Croak Apr 2007 A1
20070083911 Madden Apr 2007 A1
20070115941 Patel May 2007 A1
20070121601 Kikinis May 2007 A1
20070139411 Jawerth Jun 2007 A1
20070149166 Turcotte Jun 2007 A1
20070149213 Lamba Jun 2007 A1
20070162228 Mitchell Jul 2007 A1
20070182631 Berlinsky Aug 2007 A1
20070201623 Hines Aug 2007 A1
20070206568 Silver Sep 2007 A1
20070206613 Silver Sep 2007 A1
20070208687 O'Conor Sep 2007 A1
20070242660 Xu Oct 2007 A1
20070253429 James Nov 2007 A1
20070254625 Edge Nov 2007 A1
20070263610 Mitchell Nov 2007 A1
20070270164 Maier Nov 2007 A1
20070291733 Doran Dec 2007 A1
20080032703 Krumm Feb 2008 A1
20080037715 Prozeniuk Feb 2008 A1
20080045250 Hwang Feb 2008 A1
20080063153 Krivorot Mar 2008 A1
20080065775 Polk Mar 2008 A1
20080077324 Hatano Mar 2008 A1
20080117859 Shahidi May 2008 A1
20080129475 Breed Jun 2008 A1
20080162637 Adamczyk Jul 2008 A1
20080176582 Ghai Jul 2008 A1
20080186164 Emigh Aug 2008 A1
20080195314 Green Aug 2008 A1
20080200182 Shim Aug 2008 A1
20080214202 Toomey Sep 2008 A1
20080220747 Ashkenazi Sep 2008 A1
20080288166 Onishi Nov 2008 A1
20090003535 Grabelsky Jan 2009 A1
20090067417 Kalavade Mar 2009 A1
20090097450 Wallis Apr 2009 A1
20090113346 Wickramasuriya Apr 2009 A1
20090128404 Martino May 2009 A1
20090177557 Klein Jul 2009 A1
20090224931 Dietz Sep 2009 A1
20090298488 Snapp Dec 2009 A1
20090328163 Preece Dec 2009 A1
20100003976 Zhu Jan 2010 A1
20100004993 Troy Jan 2010 A1
20100042592 Stolz Feb 2010 A1
20100054220 Bischinger Mar 2010 A1
20100067444 Faccin et al. Mar 2010 A1
20100167760 Kim Jul 2010 A1
20100188992 Raleigh Jul 2010 A1
20100198933 Smith Aug 2010 A1
20100223222 Zhou Sep 2010 A1
20100268848 Maurya Oct 2010 A1
20110113060 Martini May 2011 A1
20110165861 Wilson et al. Jul 2011 A1
20120314699 Qiu et al. Dec 2012 A1
20130012232 Titus Jan 2013 A1
Foreign Referenced Citations (6)
Number Date Country
WO9921380 Apr 1999 SE
WO0145342 Jun 2001 WO
WO0211407 Feb 2002 WO
WO2004025941 Mar 2004 WO
WO2005051033 Jun 2005 WO
WO2007027166 Mar 2007 WO
Non-Patent Literature Citations (21)
Entry
Le-Pond Chin, Jyh-Hong Wen, Ting-Way Liu, The Study of the Interconnection of GSM Mobile Communications Systems Over IP Based Network, May 6, 2001, IEEE, Vehicular Technology Conference, vol. 3, pp. 2219-2223.
Qualcomm CDMA Technologies, LBS Control Plane Roaming—80-VD377-1 NP A, 2006, pp. 1-10.
Qualcomm CDMA Technologies, MS Resident User Plane LBS Roaming—80-VC718-1 E, 2006, pp. 1-37.
3rd Generation Partnership Project 2, Position Determination Service Standard for Dual Mode Spread Spectrum Systems, Feb. 16, 2001, pp. i-X, 1-1-1-5, 2-1-2-2, 3-1-3-51, 4-1-4-66, A-1-A2, B-1-B-2, C-1-C-2, D-1-D-2.
Intrado Inc., Qwest Detailed SR/ALI to MPC/GMLC Interface Specification for TCP/IP Implementation of TIA/EIA/J-STD-036 E2 with Phase I Location Description Addition, Intrado Informed Response; Apr. 2004; Issue 1.11; pp. 1-57.
Extended European Search Report from EPO in European Appl. No. 06827172.5 dated Dec. 29, 2009.
Qualcomm CDMA Technologies, LBS Control Plane/User Plane Overview—80-VD378-1 NP B, 2006, pp. 1-36.
Bhalla et al, TELUS Technology Strategy—LBS Roaming Summit, Sep. 19, 2006.
Alfredo Aguirre, Ilusacell, First and Only Carrier in Mexico with a 3G CDMA Network, 2007.
Mike McMullen, Sprint, LBS Roaming Summit, Sep. 19, 2006.
Nars Haran, U.S. Cellular, Packet Data—Roaming and LBS Overview, Nov. 2, 2007, pp. 1-15.
Location Based Services V2 Roaming Support (non proprietary), 80-V8470-2NP A, dated Jan. 27, 2005, pp. 1-56.
Yilin Ahao, Efficient and reliable date transmission for cellular and GPS based mayday systems, Nov. 1997, IEEE, IEEE Conference on Intelligent Transportation System, 1997. ITSC 97, 555-559.
Examiner's Office Letterin Japanese Patent Application No. 2006-542691 dated Sep. 7, 2009.
JP Laid-Open Gazette No. 2004-158947 (English abstract only).
JP Laid-Open Gazette No. 2007-507123 (counterpart English text US Patent Application Publication No. 2007/0054676).
T. Hattori, “Wireless Broadband Textbook,” IDG Japan, Jun. 10, 2002, p. 142-p. 143. (no English text).
Schulzrinne et al., Emergency Services for Internet Telephony Systems draft-schulzrinne-sipping-emergency-arch, IETF Standard Working Draft, Feb. 4, 2004, 1-22.
International Search Report received in PCT/US12/00100 dated Mar. 13, 2013.
International Search Report received in PCT/US2011/02001 dated Apr. 27, 2012.
International Search Report received in PCT/US2011/000100 dated Apr. 24, 2012.
Related Publications (1)
Number Date Country
20140187265 A1 Jul 2014 US
Provisional Applications (2)
Number Date Country
61573086 Aug 2011 US
61457316 Feb 2011 US
Continuations (1)
Number Date Country
Parent 13402406 Feb 2012 US
Child 14198027 US