The invention relates to a measurement system for the optical measurement of vehicles and vehicle parts.
Contactless and, in particular, optical measuring systems have been used for several years in automobile manufacturing for the three-dimensional measurement or measuring of vehicles and vehicle parts. Such systems are disclosed, for example, in DE 10 2004 046 752 B4 and DE 10 2014 106 641 A1. In the case of the disclosed systems, the measuring sensor is moved relative to the measurement object (vehicle or vehicle part) by means of a multi-axis robot or the like. These are stationary systems. Additionally disclosed for simple measurement tasks is arranging the measuring sensor on a mobile or portable stand, for example a stand in the manner shown in DE 10 2008 001 617 A1. However, the problem here is the repeatably accurate positioning with respect to the measurement object. In addition, it is not possible to measure the measurement object in an automated or part-automated manner using this system.
The object of the invention is to provide a measurement system for the three-dimensional optical measurement of vehicles and vehicle parts which eliminates or at least minimizes one or more disadvantages of the prior art.
This and other objects are achieved by a mobile measurement system according to the invention for the three-dimensional optical measurement of vehicles and vehicle parts. The mobile measurement system includes:
at least one measurement auxiliary device which can be attached in a repeatably accurate manner (i.e. with a defined position and alignment) on the vehicle or vehicle part or on which the vehicle or vehicle part can be arranged in a repeatably accurate manner; and
a mobile measurement trolley on which a robot, which carries at least one measurement sensor or the like, is arranged, wherein said mobile measurement trolley additionally comprises an, in particular adjustable, coupling device for coupling mechanically with the measurement auxiliary device, as a result of which it is possible to position the measurement trolley in a repeatably accurate manner relative to the measurement auxiliary device and, as a result, also relative to the vehicle or vehicle part.
In a preferred manner, the measurement auxiliary device is only required for positioning and aligning the measurement trolley relative to the measurement object, i.e. to the vehicle or vehicle part, and can then be removed or dismantled again such that it is not able to impair the actual operation of the measurement.
The measurement system according to the invention comprises a driven robot which, in the usual manner, enables an automated or at least partially automated measurement of the measurement object. In addition, the measurement system according to the invention is realized so as to be mobile or portable and can consequently be used in different locations (measurement sites). Repeatably accurate positioning between the robot and the measurement object (vehicle or vehicle part) works indirectly as a result of the mechanical coupling between the measurement trolley and the measurement auxiliary device. The measurement system according to the invention enables the repeatably accurate positioning of the measurement trolley or of the robot fastened thereon relative to the vehicle (also similar vehicles of a derivative) or vehicle part to be measured which is necessary, in particular, for the automatic measurement operation. The measurement system according to the invention additionally makes it possible to setup and align the measurement system components in a simple, time-saving and ergonomic manner. In addition, in the case of multiple measurement tasks, it is possible to re-position the measurement system components in a simple, rapid and ergonomic manner. There is also a large degree of flexibility as regards different measurement tasks or applications.
In a preferred manner, the measurement trolley comprises several ground rollers (for example four or five) by way of which the measurement trolley is able to be moved or pushed, and three supporting feet which are extendible by way of a lifting system (in particular with electric drive) and make it possible for the measurement trolley to stand in a fixed, sturdy and tip-resistant manner. As an option, at least one of the ground rollers can also be provided with a parking brake.
In a preferred manner, the measurement auxiliary device also comprises several ground rollers by way of which the measurement auxiliary device is able to be pushed, wherein in a preferred manner at least one of said ground rollers is provided with a parking brake.
In a preferred manner, the coupling device of the measurement trolley is adjustable in all three directions in space in order to make possible optimum coupling, which is dependent on the measurement task, with the measurement auxiliary device.
In a preferred manner, the coupling device of the measurement trolley comprises several, in a preferred manner two, coupling bolts, wherein the measurement auxiliary device is realized with corresponding coupling bores in which the coupling bolts are able to engage in a positive locking manner.
The coupling bolts on the measurement trolley can be driven by motor (for example by means of an electric motor) such that they are able to engage automatically in the coupling bores on the measurement auxiliary device. As a result, coupling and uncoupling are made easier and the ergonomics are improved.
The coupling bores on the measurement auxiliary device can be arranged in a grid, as a result of which different, although defined nonetheless, relative positions between the measurement trolley and the measurement auxiliary device are made possible.
The measurement trolley and/or the measurement auxiliary device can comprise pushing aids or auxiliary devices for manual pushing. These are, for example, handles, grab rods or the like.
The mobile measurement system according to the invention is used in a preferred manner for measuring or measurement of a vehicle, in particular a passenger vehicle. To this end, the measurement auxiliary device is realized in a preferred manner as an L-shaped frame, the one frame leg thereof being positioned on a longitudinal side of the vehicle and the other frame leg thereof being positioned on the front or rear side of the vehicle. The L-shaped frame makes it possible for the mobile measurement trolley to be able to be positioned in any arbitrary position around the vehicle. A high degree of flexibility and series independence are produced as a result. In a preferred manner, the measurement system according to the invention also includes separate locator elements or spacers which can be fastened or supported in a damage-free manner, for example, on the wheels of the vehicle and which adjust or predetermine a defined and reproducible spacing between the L-shaped frame and the vehicle. In a preferred manner, the frame legs of the frame are connected together in an articulated manner and as a result are collapsible.
The measurement system according to the invention can also be used for other measurement processes which are not optical, but which measure contactlessly in a similar, in particular equivalent manner.
Other objects, advantages and novel features of the present invention will become apparent from the following detailed description of one or more preferred embodiments when considered in conjunction with the accompanying drawings.
The measurement trolley 100 shown in
The measurement trolley 100 additionally includes a coupling device 190 which includes two coupling bolts 194. The coupling bolts 194 are fastened on a rail 192 so as to be horizontally displaceable. The rail 192 is fastened on the framework 110 by means of a retractable and extendible carrier 191. The coupling bolts 194 can also be moved vertically by motor-driven actuating mechanisms 193. Consequently, the coupling device 190 is adjustable in all three directions in space, as illustrated by the double arrows. The function of the coupling device 190 will be explained in more detail below.
In the example shown, one of the frame legs 210 is positioned on the right-hand longitudinal side of the vehicle 2 and the other frame leg 220 is positioned on the front side of the vehicle 2. The correct positioning works by way of a first locator element 310, this being a disk which is fastened magnetically on the wheel screws of the right-hand front wheel of the vehicle 2, and a second locator element 320 which is supported in a chock-like manner on the left-hand front wheel of the vehicle 2 and projects forward beyond the vehicle outline. The two locator elements 310 and 320 form stops against which the frame legs 210 and 220 of the frame 200 can be moved to abut and, in this case, take up a defined spacing from the vehicle 2. In this respect, the locator element 310 and 320 can also be designated as spacers.
The measurement trolley 100 is mechanically coupled with the frame 200, for which purpose the coupling bolts 194 of the coupling device 190 engage in corresponding coupling bores 260 in the frame leg 210. As a result of the positive locking closure, the measurement trolley 100 is aligned relative to the frame 200, and as a result relative to the vehicle 2. Both frame legs 210 and 220 of the measurement auxiliary device 200 are realized with a plurality of coupling bores 260 which are arranged in a grid (for example a 100 mm grid). The measurement trolley 100 can consequently also assume a different relative position with respect to the frame 200, in dependence on the measurement task, or can be coupled with the frame 200 at a different position.
The measurement system 1 is mobile and can be used in any location. The components of the measurement system 1 are set up at the place of measurement, for example in the arrangement shown in
To set up the measurement system 1, the locator elements 310 and 320 are first of all arranged on the vehicle 2. The frame or L-shaped trolley 200 is then aligned with the locator elements 310 and 320 and fixed as a result of locking the ground rollers 230. The measurement trolley 100 can then be coupled with the frame 200 in a desired position or in a position determined by earlier measurements, to which end said measurement trolley is positioned relative to the frame 200, the coupling unit 190 is adjusted and the coupling bolts 194 are lowered by way of the actuating mechanisms 193 such that they engage in a positive locking manner in the corresponding coupling bores 260 of the frame 200.
The extendible carrier 191 and the bearing rail 192 of the coupling unit 190 are provided with graduations which enable the restoring of a specific setting. In addition, the bores 260 are numbered on the frame 200 in order to enable the restoring of a specific engagement pairing. Once the measurement trolley 100 is correctly positioned, it is locked as a result of extending three supporting feet 175, which enable a tip-resistant 3-point base. As an option, only the frame 200 and the locator elements 310 and 320 can be removed again so that they do not impair the measurement. Where applicable, reference marks or the like are also applied to the vehicle 2 to be measured. The measurement can then be started, to which end, for example, the robot 120 or the robot arm thereof with the measurement head 130 fastened thereon can be manually controlled via the input device 150 or a previously generated measurement program is started. (The measurement system 1 according to the invention makes it possible to run stored measurement programs for the relevant vehicle model or a similar vehicle model in a safe manner automatically as the always same positioning of the L-shaped trolley 200 with respect to the vehicle 2 ensures the repeatably accurate positioning and alignment of the measurement trolley 100 relative to the vehicle 2). In a preferred manner, the evaluation of the measurement is also taken over by the control device 140. Further measurements can also be performed on the vehicle 2, to which end it is also possible to re-position the measurement trolley 100 and/or the frame 200 where applicable.
The foregoing disclosure has been set forth merely to illustrate the invention and is not intended to be limiting. Since modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
10 2016 205 519 | Apr 2016 | DE | national |
This application is a continuation of PCT International Application No. PCT/EP2017/056605, filed Mar. 21, 2017, which claims priority under 35 U.S.C. § 119 from German Patent Application No. 10 2016 205 519.4, filed Apr. 4, 2016, the entire disclosures of which are herein expressly incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4719801 | Blaser | Jan 1988 | A |
5359542 | Pahmeier | Oct 1994 | A |
5438525 | Shimbara | Aug 1995 | A |
5528505 | Granger et al. | Jun 1996 | A |
5532816 | Spann et al. | Jul 1996 | A |
10323932 | Adams | Jun 2019 | B1 |
20030089183 | Jacobsen | May 2003 | A1 |
20070097382 | Granger | May 2007 | A1 |
20070113690 | Wilcox | May 2007 | A1 |
20080250842 | Nobis et al. | Oct 2008 | A1 |
20100208416 | Shoda | Aug 2010 | A1 |
20100274390 | Walser et al. | Oct 2010 | A1 |
20140139659 | Lim | May 2014 | A1 |
20150032387 | Froom | Jan 2015 | A1 |
20150292999 | Futatsuka et al. | Oct 2015 | A1 |
20180059029 | Yeum | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
200977655 | Nov 2007 | CN |
101351683 | Jan 2009 | CN |
101909828 | Dec 2010 | CN |
101949687 | Jan 2011 | CN |
101957176 | Jan 2011 | CN |
104769411 | Jul 2015 | CN |
104865897 | Aug 2015 | CN |
105257044 | Jan 2016 | CN |
205074157 | Mar 2016 | CN |
10 2007 017 675 | Oct 2008 | DE |
10 2008 001 617 | Nov 2009 | DE |
10 2004 046 752 | Oct 2010 | DE |
10 2009 039 811 | Mar 2011 | DE |
10 2010 032 467 | Feb 2012 | DE |
10 2014 106 641 | Nov 2015 | DE |
10 2015 204 473 | Sep 2016 | DE |
1 777 494 | Jul 2008 | EP |
2007-24764 | Feb 2007 | JP |
2007-260799 | Oct 2007 | JP |
4877105 | Feb 2012 | JP |
Entry |
---|
Chinese-language Office Action issued in counterpart Chinese Application No. 201780005327.X dated Sep. 18, 2019 with English translation (12 pages). |
International Search Report (PCT/ISA/210) issued in PCT Application No. PCT/EP2017/056605 dated Jun. 9, 2017 with English translation (five pages). |
German-language Written Opinion (PCT/ISA/237) issued in PCT Application No. PCT/EP2017/056605 dated Jun. 9, 2017 (five pages). |
German-language Search Report issued in counterpart German Application No. 10 2016 205 519.4 dated Jan. 12, 2017 with partial English translation (10 pages). |
Number | Date | Country | |
---|---|---|---|
20190033063 A1 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2017/056605 | Mar 2017 | US |
Child | 16150308 | US |