Mobile robot with a head-based movement mapping scheme

Abstract
A robotic system that includes a mobile robot and a remote input device. The input device may be a joystick that is used to move a camera and a mobile platform of the robot. The system may operate in a mode where the mobile platform moves in a camera reference coordinate system. The camera reference coordinate system is fixed to a viewing image provided by the camera so that movement of the robot corresponds to a direction viewed on a screen. This prevents disorientation during movement of the robot if the camera is panned across a viewing area.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The subject matter disclosed generally relates to the field of robotics.


2. Background Information


There is a growing need to provide remote health care to patients that have a variety of ailments ranging from Alzheimers to stress disorders. To minimize costs it is desirable to provide home care for such patients. Home care typically requires a periodic visit by a health care provider such as a nurse or some type of assistant. Due to financial and/or staffing issues the health care provider may not be there when the patient needs some type of assistance. Additionally, existing staff must be continuously trained, which can create a burden on training personnel.


The assignee of this invention(s), InTouch-Health, Inc. markets a remote controlled mobile robot under the trademark COMPANION that can be used by medical personnel to remotely “visit” patients. The COMPANION system includes a mobile robot with a camera, monitor, microphone, speakers, and other equipment that allow for two-way audio/visual communication between the patient and someone operating the system from a remotely located computer.


The COMPANION system includes a joystick that can be manipulated to move a mobile platform of the robot. A forward pivot of the joystick causes a corresponding forward movement of the mobile platform. The joystick button can be depressed to move the camera and allow the user to pan a room. Unfortunately, panning the camera may cause the forward viewing direction depicted by the screen to be different than the forward vector of the mobile platform. A forward pivot of the joystick will cause an angular movement of the robot relative to the field of view provided by the robot camera. This can cause disorientation and in general complicates movement of the robot.


BRIEF SUMMARY OF THE INVENTION

A mobile robot system that is controlled through an input device. The system includes a robot that has a camera located in a camera reference coordinate system, and a mobile platform. The input device causes movement of the camera, and movement of the mobile platform within the camera reference coordinate system.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an illustration of a robotic system;



FIG. 2 is a schematic of an electrical system of a robot;



FIG. 3 is a further schematic of the electrical system of the robot;



FIG. 4 is side view of the robot;



FIG. 5 is an illustration of a mapping scheme for a joystick of the system;



FIG. 6 is a top perspective view of a holonomic platform of the robot;



FIG. 7 is a side perspective view of a roller assembly of the holonomic platform;



FIG. 8 is a bottom perspective view showing a pedestal assembly of the robot;



FIG. 9 is a sectional view showing an actuator of the pedestal assembly.





DETAILED DESCRIPTION

Disclosed is a robotic system that includes a mobile robot and a remote input device. The input device may be a joystick that is used to move a camera and a mobile platform of the robot. The system may operate in a mode where the mobile platform moves in a camera reference coordinate system. The camera reference coordinate system is fixed to a viewing image provided by the camera so that movement of the robot corresponds to a direction viewed on a screen. This prevents disorientation during movement of the robot if the camera is panned across a viewing area.


Referring to the drawings more particularly by reference numbers, FIG. 1 shows a robotic system 10. The robotic system 10 includes a robot 12, a base station 14 and a remote control station 16. The remote control station 16 may be coupled to the base station 14 through a network 18. By way of example, the network 18 may be either a packet switched network such as the Internet, or a circuit switched network such has a Public Switched Telephone Network (PSTN), or other broadband system. The base station 14 may be coupled to the network 18 by a modem 20 or other broadband network interface device.


The remote control station 16 may include a computer 22 that has a monitor 24, a camera 26, a microphone 28 and a speaker 30. The computer 22 may also contain an input device 32 such as a joystick or a mouse. The joystick 32 may have a toggle button 33 that allows the system to operate in two different modes. In one mode the robot moves in a platform reference coordinate system. In another mode the robot moves in a camera reference coordinate system.


The control station 16 is typically located in a place that is remote from the robot 12. Although only one robot 12 and one station 16 are shown, it is to be understood that the system 10 may have a plurality of robots 12 and/or a plurality of remote stations that communicate through the broadband network. In general any number of robots 12 may be controlled by any number of remote stations 16. For example, one remote station 16 may be coupled to a plurality of robots 12, or one robot 12 may be coupled to a plurality of remote stations 16.


The robot 12 includes a mobile platform 34 that is attached to a robot housing 36. Also attached to the robot housing 36 are a camera 38, a monitor 40, a microphone(s) 42 and a speaker 44. The microphone 42 and speaker 30 may create a stereophonic sound. The robot 12 may also have an antenna 45 that is wirelessly coupled to an antenna 46 of the base station 14. The system 10 allows a user at the remote control station 16 to move the robot 12 through the input device 32. The robot camera 38 is coupled to the remote monitor 24 so that a user at the remote station 16 can view a patient. Likewise, the robot monitor 40 is coupled to the remote camera 26 so that the patient can view the user. The microphones 28 and 42, and speakers 30 and 44, allow for audible communication between the patient and the user.


Each remote station computer 22 may operate Microsoft OS software and WINDOWS XP or other operating systems such as LINUX. The remote computer 22 may also operate a video driver, a camera driver, an audio driver and a joystick driver. The video images may be transmitted and received with compression software such as MPEG CODEC.



FIGS. 2 and 3 show an embodiment of the robot 12. The robot 12 may include a high level control system 50 and a low level control system 52. The high level control system 50 may include a processor 54 that is connected to a bus 56. The bus is coupled to the camera 38 by an input/output (I/O) port 58, and to the monitor 40 by a serial output port 60 and a VGA driver 62. The monitor 40 may include a touchscreen function that allows the patient to enter input by touching the monitor screen.


The speaker 44 is coupled to the bus 56 by a digital to analog converter 64. The microphone 42 is coupled to the bus 56 by an analog to digital converter 66. The high level controller 50 may also contain random access memory (RAM) device 68, a non-volatile RAM device 70 and a mass storage device 72 that are all coupled to the bus 62. The mass storage device 72 may contain medical files of the patient that can be accessed by the user at the remote control station 16. For example, the mass storage device 72 may contain a picture of the patient. The user, particularly a health care provider, can recall the old picture and make a side by side comparison on the monitor 24 with a present video image of the patient provided by the camera 38. The robot antennae 45 may be coupled to a wireless transceiver 74. By way of example, the transceiver 74 may transmit and receive information in accordance with IEEE 802.11b.


The controller 54 may operate with a LINUX OS operating system. The controller 54 may also operate MS WINDOWS along with video, camera and audio drivers for communication with the remote control station 16. Video information may be transceived using MPEG CODEC compression techniques. The software may allow the user to send e-mail to the patient and vice versa, or allow the patient to access the Internet. In general the high level controller 50 operates to control the communication between the robot 12 and the remote control station 16.


The high level controller 50 may be linked to the low level controller 52 by serial ports 76 and 78. The low level controller 52 includes a processor 80 that is coupled to a RAM device 82 and non-volatile RAM device 84 by a bus 86. The robot 12 contains a plurality of motors 88 and motor encoders 90. The encoders 90 provide feedback information regarding the output of the motors 88. The motors 88 can be coupled to the bus 86 by a digital to analog converter 92 and a driver amplifier 94. The encoders 90 can be coupled to the bus 86 by a decoder 96. The robot 12 also has a number of proximity sensors 98 (see also FIG. 1). The position sensors 98 can be coupled to the bus 86 by a signal conditioning circuit 100 and an analog to digital converter 102.


The low level controller 52 runs software routines that mechanically actuate the robot 12. For example, the low level controller 52 provides instructions to actuate the movement platform to move the robot 12. The low level controller 52 may receive movement instructions from the high level controller 50. The movement instructions may be received as movement commands from the remote control station 16. Although two controllers are shown, it is to be understood that the robot 12 may have one controller controlling the high and low level functions.


The various electrical devices of the robot 12 may be powered by a battery(ies) 104. The battery 104 may be recharged by a battery recharger station 106 (see also FIG. 1). The low level controller 52 may include a battery control circuit 108 that senses the power level of the battery 104. The low level controller 52 can sense when the power falls below a threshold and then send a message to the high level controller 50. The high level controller 50 may include a power management software routine that causes the robot 12 to move so that the battery 104 is coupled to the recharger 106 when the battery power falls below a threshold value. Alternatively, the user can direct the robot 12 to the battery recharger 106. Additionally, the battery 104 may be replaced or the robot 12 may be coupled to a wall power outlet by an electrical cord (not shown).



FIG. 4 shows an embodiment of the robot 12. The robot 12 may include a holonomic platform 110 that is attached to a robot housing 112. The holonomic platform 110 provides three degrees of freedom to allow the robot 12 to move in any direction.


The robot 12 may have a pedestal assembly 114 that supports the camera 38 and the monitor 40. The pedestal assembly 114 may have two degrees of freedom so that the camera 26 and monitor 24 can be swiveled and pivoted as indicated by the arrows.


The platform 110 is located within a platform reference coordinate system that may have axes Xp, Yp and Zp. By way of example, the y-axis Yp may extend from a nose of the platform 110. The camera 38 is fixed to a camera reference coordinate system that may have axes Xc, Yc and Zc. The y-axis Yc may extend perpendicular from the camera lens. When the robot is initialized, the y-axis Yc of the camera coordinate system may be aligned with the y-axis Yp of the platform coordinate system. A forward pivoting of the joystick 32 (shown in FIG. 1) may cause a corresponding movement of the platform 110 in the direction of the y-axis Yp in the platform coordinate system.


The robot may have a drive vector that may have axes Xd, Yd, and Zd that is mapped to the camera coordinate system, the platform coordinate system or some other system. By way of example, the y-axis Yp may extend in the direction of forward motion. Mapping includes the process of transforming an input command into a directional movement relative to one or more coordinate systems. The robot controller may perform certain algorithms to translate input commands to platform movement in accordance with a specified mapping scheme. For example, when the drive vector is mapped to the camera coordinate system the controller computes the drive vector of the input command relative to the camera coordinate system. In a platform mapping scheme the input drive vector is computed relative to the platform coordinate system. In yet another scheme the drive vector can be computed relative to another coordinate system, such as a world coordinate system (eg. coordinate system relative to the ground) that is independent of the camera or platform coordinate systems. Mapping the drive vector to the camera coordinate system may be desirable because all movement would be relative to the image viewed by the user, providing a system that is intuitive to use.


A twisting of the joystick 32 may cause the camera 38 to swivel as indicated by arrows 4. For example, if the joystick 32 is twisted +45 degrees the camera 38 will pivot +45 degrees. Swiveling the camera 38 also moves the y-axis Yc of the camera coordinate system, because the y-axis Yc is fixed to the camera. This may be different than the drive direction. The remote station computer may operate a program to generate a command that will automatically rotate the platform 110 to realign the y-axis Yp of the platform coordinate system with the y-axis Yc of the camera coordinate system. For the above example, the platform 110 is rotated +45 degrees. This approach keeps the platform 110 aligned with the camera 38, so that any subsequent movement of the robot will be intuitive relative to the image provided by the camera. For example, a forward pivot of the joystick will induce a forward movement of the robot as viewed through the monitor of the remote station. In this driving scheme, the platform may not be aligned with the head. The computer may generate trajectory planning for the platform coordinate system to move into alignment with the head coordinate system over a period of time or distance traveled, with or without an initial delay in time or some distance.


The system may be configured so that pivotal movement of the joystick 32 may be mapped to a corresponding directional movement of the robot as shown in FIG. 5. For example, pivoting, the joystick along the +45 degree line shown in FIG. 5 may cause the robot to move in a +45 degree direction relative to the y-axis Yc of the camera coordinate frame. Alternatively, the camera may pan +45 degrees and the platform 110 may rotate +45 degrees before forward movement by the robot. The automatic panning and platform rotation causes the robot to move in a forward direction as depicted by the image provided by the camera. The robot may have a mode wherein the user can twist the joystick to pan the camera during robot movement such that the movement is not in the direction the camera is pointing. This allows the user to visually pan while moving the robot. The joystick may have a spring return that automatically returns the position of the stick when released by the user. This causes the camera to be aligned with the direction of movement.


In general the robot may have a number of different mapping schemes and relative, dependent or independent, movement between the camera, the platform and drive direction. Relative movement between the camera and platform may occur in a camera based mapping scheme, a platform based mapping scheme, or some other scheme.


Although, the automatic platform rotation commands have been described as be generated by the remote station computer, it is to be understood that the robot may determine the commands and signals necessary to re-orient the platform 110 and/or the camera 38. The robot 12 may include a potentiometer (not shown) that tracks the position of the camera and provides feedback to the low level controller 80. The low level controller 80 may automatically rotate the platform to align the y-axes Yc and Yp or otherwise compensate for camera movement. The mode button 33 may allow the operator to place the system in either a tracking mode or a normal mode. In the tracking mode the robot moves relative to the camera coordinate system so that movement is intuitive relative to the screen even when the camera is panned. In normal mode the robot moves within the platform coordinate system.



FIG. 6 shows an embodiment of a holonomic platform 110 may include three roller assemblies 120 that are mounted to a base plate 121. The roller assemblies 120 are typically equally spaced about the platform 110 and allow for movement in any direction, although it is to be understood that the assemblies may not be equally spaced.


The robot housing 112 may include a bumper 122. The bumper 122 may be coupled to optical position sensors 123 that detect when the bumper 122 has engaged an object. After engagement with the object the robot can determine the direction of contact and prevent further movement into the object.



FIG. 7 shows an embodiment of a roller assembly 120. Each assembly 120 may include a drive ball 124 that is driven by a pair of transmission rollers 126. The assembly 120 may include a retainer ring 128 and a plurality of bushings 130 that captures and allows the ball 124 to rotate in an x and y direction but prevents movement in a z direction. The assembly also holds the ball under the transmission rollers 126.


The transmission rollers 126 are coupled to a motor assembly 132. The assembly 132 corresponds to the motor 88 shown in FIG. 3. The motor assembly 132 includes an output pulley 134 attached to a motor 136. The output pulley 134 is coupled to a pair of ball pulleys 138 by a drive belt 140. The ball pulleys 138 are each attached to a transmission bracket 142. The transmission rollers 126 are attached to the transmission brackets 142.


Rotation of the output pulley 134 rotates the ball pulleys 138. Rotation of the ball pulleys 138 causes the transmission rollers 126 to rotate and spin the ball 124 through frictional forces. Spinning the ball 124 will move the robot 12. The transmission rollers 126 are constructed to always be in contact with the drive ball 124. The brackets 142 allow the transmission rollers 126 to freely spin in a direction orthogonal to the drive direction when one of the other roller assemblies 120 is driving and moving the robot 12.


As shown in FIG. 8, the pedestal assembly 114 may include a motor 150 that is coupled to a gear 152 by a belt 154. The gear 152 is attached to a shaft 156. The shaft 156 is attached to an arm 158 that is coupled to the camera 38 and monitor 40 by a bracket 160. Activation of the motor 150 rotates the gear 152 and sleeve 156, and causes the camera 38 and monitor 40 to swivel (see also FIG. 4) as indicated by the arrows 4.


As shown in FIG. 9, the assembly 114 may further include a tilt motor 162 within the arm 158 that can cause the monitor 40 and camera 38 to pivot as indicated by the arrows 5. The tilt motor 162 may rotate a worm 164 that rotates a worm gear 166. The pin 168 is rigidly attached to both the worm gear 166 and the bracket 160 so that rotation of the gear 166 pivots the camera 38 and the monitor 40. The camera 38 may also include a zoom feature to provide yet another degree of freedom for the operator.


In operation, the robot 12 may be placed in a home or a facility where one or more patients are to be monitored and/or assisted. The facility may be a hospital or a residential care facility. By way of example, the robot 12 may be placed in a home where a health care provider may monitor and/or assist the patient. Likewise, a friend or family member may communicate with the patient. The cameras and monitors at both the robot and remote control stations allow for teleconferencing between the patient and the person at the remote station(s).


The robot 12 can be maneuvered through the home or facility by manipulating the input device 32 at a remote station 16. The robot 10 may be controlled by a number of different users. To accommodate for this the robot may have an arbitration system. The arbitration system may be integrated into the operating system of the robot 12. For example, the arbitration technique may be embedded into the operating system of the high-level controller 50.


By way of example, the users may be divided into classes that include the robot itself, a local user, a caregiver, a doctor, a family member, or a service provider. The robot 12 may override input commands that conflict with robot operation. For example, if the robot runs into a wall, the system may ignore all additional commands to continue in the direction of the wall. A local user is a person who is physically present with the robot. The robot could have an input device that allows local operation. For example, the robot may incorporate a voice recognition system that receives and interprets audible commands.


A caregiver is someone who remotely monitors the patient. A doctor is a medical professional who can remotely control the robot and also access medical files contained in the robot memory. The family and service users remotely access the robot. The service user may service the system such as by upgrading software, or setting operational parameters.


The robot 12 may operate in one of two different modes; an exclusive mode, or a sharing mode. In the exclusive mode only one user has access control of the robot. The exclusive mode may have a priority assigned to each type of user. By way of example, the priority may be in order of local, doctor, caregiver, family and then service user. In the sharing mode two or more users may share access with the robot. For example, a caregiver may have access to the robot, the caregiver may then enter the sharing mode to allow a doctor to also access the robot. Both the caregiver and the doctor can conduct a simultaneous tele-conference with the patient.


The arbitration scheme may have one of four mechanisms; notification, timeouts, queue and call back. The notification mechanism may inform either a present user or a requesting user that another user has, or wants, access to the robot. The timeout mechanism gives certain types of users a prescribed amount of time to finish access to the robot. The queue mechanism is an orderly waiting list for access to the robot. The call back mechanism informs a user that the robot can be accessed. By way of example, a family user may receive an e-mail message that the robot is free for usage. Tables I and II, show how the mechanisms resolve access request from the various users.














TABLE I






Access
Medical
Command
Software/Debug
Set


User
Control
Record
Override
Access
Priority







Robot
No
No
Yes (1)
No
No


Local
No
No
Yes (2)
No
No


Caregiver
Yes
Yes
Yes (3)
No
No


Doctor
No
Yes
No
No
No


Family
No
No
No
No
No


Service
Yes
No
Yes
Yes
Yes


















TABLE II









Requesting User













Local
Caregiver
Doctor
Family
Service

















Current
Local
Not Allowed
Warn current user of
Warn current user of
Warn current user of
Warn current user of


User


pending user
pending user
pending user
pending user





Notify requesting
Notify requesting user
Notify requesting user
Notify requesting





user that system is in
that system is in use
that system is in use
user that system is in





use
Set timeout = 5 m
Set timeout = 5 m
use





Set timeout

Call back
No timeout








Call back



Caregiver
Warn current user
Not Allowed
Warn current user of
Warn current user of
Warn current user of




of pending user.

pending user
pending user
pending user




Notify requesting

Notify requesting user
Notify requesting user
Notify requesting




user that system is

that system is in use
that system is in use
user that system is in




in use.

Set timeout = 5 m
Set timeout = 5 m
use




Release control

Queue or callback

No timeout








Callback



Doctor
Warn current user
Warn current user of
Warn current user of
Notify requesting user
Warn current user of




of pending user
pending user
pending user
that system is in use
pending user




Notify requesting
Notify requesting
Notify requesting user
No timeout
Notify requesting




user that system is
user that system is in
that system is in use
Queue or callback
user that system is in




in use
use
No timeout

use




Release control
Set timeout = 5 m
Callback

No timeout








Callback



Family
Warn current user
Notify requesting
Warn current user of
Warn current user of
Warn current user of




of pending user
user that system is in
pending user
pending user
pending user




Notify requesting
use
Notify requesting user
Notify requesting user
Notify requesting




user that system is
No timeout
that system is in use
that system is in use
user that system is in




in use
Put in queue or
Set timeout = 1 m
Set timeout = 5 m
use




Release Control
callback

Queue or callback
No timeout








Callback



Service
Warn current user
Notify requesting
Warn current user of
Warn current user of
Not Allowed




of pending user
user that system is in
request
pending user




Notify requesting
use
Notify requesting user
Notify requesting user




user that system is
No timeout
that system is in use
that system is in use




in use
Callback
No timeout
No timeout




No timeout

Callback
Queue or callback









The information transmitted between the station 16 and the robot 12 may be encrypted. Additionally, the user may have to enter a password to enter the system 10. A selected robot is then given an electronic key by the station 16. The robot 12 validates the key and returns another key to the station 16. The keys are used to encrypt information transmitted in the session.


The robot 12 and remote station 16 transmit commands through the broadband network 18. The commands can be generated by the user in a variety of ways. For example, commands to move the robot may be generated by moving the joystick 32 (see FIG. 1). The commands are preferably assembled into packets in accordance with TCP/IP protocol. Table III provides a list of control commands that are generated at the remote station and transmitted to the robot through the network.









TABLE III







Control Commands









Command
Example
Description





drive
drive 10.0 0.0 5.0
The drive command directs the robot to move




at the specified velocity (in cm/sec) in the




(x, y) plane, and turn its facing at the




specified rate (degrees/sec).


goodbye
goodbye
The goodbye command terminates a user




session and relinquishes control of the




robot


gotoHomePosition
gotoHomePosition 1
The gotoHomePosition command moves the head




to a fixed “home” position (pan and tilt),




and restores zoom to default value. The




index value can be 0, 1, or 2. The exact




pan/tilt values for each index are specified




in robot configuration files.


head
head vel pan 5.0 tilt
The head command controls the head motion.



10.0
It can send commands in two modes,




identified by keyword: either positional




(“pos”) or velocity (“vol”). In velocity




mode, the pan and tilt values are desired




velocities of the head on the pan and tilt




axes, in degree/sec. A single command can




include just the pan section, or just the




tilt section, or both.


keepalive
keepalive
The keepalive command causes no action, but




keeps the communication (socket) link open




so that a session can continue. In scripts,




it can be used to introduce delay time into




the action.


odometry
odometry 5
The odometry command enables the flow of




odometry messages from the robot. The




argument is the number of times odometry is




to be reported each second. A value of 0




turns odometry off.


reboot
reboot
The reboot command causes the robot computer




to reboot immediately. The ongoing session




is immediately broken off.


restoreHeadPosition
restoreHeadPosition
The restoreHeadPosition functions like the




gotoHomePosition command, but it homes the




head to a position previously saved with




gotoHomePosition.


saveHeadPosition
saveHeadPosition
The saveHeadPosition command causes the




robot to save the current head position (pan




and tilt) in a scratch location in temporary




storage so that this position can be




restored. Subsequent calls to




“restoreHeadPosition” will restore this




saved position. Each call to




saveHeadPosition overwrites any previously




saved position.


setCameraFocus
setCameraFocus 100.0
The setCameraFocus command controls focus




for the camera on the robot side. The value




sent is passed “raw” to the video




application running on the robot, which




interprets it according to its own




specification.


setCameraZoom
setCameraZoom 100.0
The setCameraZoom command controls zoom for




the camera on the robot side. The value




sent is passed “raw” to the video




application running on the robot, which




interprets it according to its own




specification.


shutdown
Shutdown
The shutdown command shuts down the robot




and powers down its computer.


stop
stop
The stop command directs the robot to stop




moving immediately. It is assumed this will




be as sudden a stop as the mechanism can




safely accommodate.


timing
Timing 3245629 500
The timing message is used to estimate




message latency. It holds the UCT value




(seconds + milliseconds) of the time the




message was sent, as recorded on the sending




machine. To do a valid test, you must




compare results in each direction (i.e.,




sending from machine A to machine B, then




from machine B to machine A) in order to




account for differences in the clocks




between the two machines. The robot records




data internally to estimate average and




maximum latency over the course of a




session, which it prints to log files.


userTask
userTask “Jane Doe”
The userTask command notifies the robot of



“Remote Visit”
the current user and task. It typically is




sent once at the start of the session,




although it can be sent during a session if




the user and/or task change. The robot uses




this information for record-keeping.









Table IV provides a list of reporting commands that are generated by the robot and transmitted to the remote station through the network.









TABLE IV







Reporting Commands









Command
Example
Description





abnormalExit
abnormalExit
This message informs the user that the robot




software has crashed or otherwise exited




abnormally. Te robot software catches top-




level exceptions and generates this message




if any such exceptions occur.


bodyType
bodyType 3
The bodyType message informs the station




which type body (using the numbering of the




mechanical team) the current robot has.




This allows the robot to be drawn correctly




in the station user interface, and allows




for any other necessary body-specific




adjustments.


driveEnabled
driveEnabled true
This message is sent at the start of a




session to indicate whether the drive system




is operational.


emergencyShutdown
emergencyShutdown
This message informs the station that the




robot software has detected a possible




“runaway” condition (an failure causing the




robot to move out of control) and is




shutting the entire system down to prevent




hazardous motion.


odometry
odometry 10 20 340
The odometry command reports the current




(x, y) position (cm) and body orientation




(degrees) of the robot, in the original




coordinate space of the robot at the start




of the session.


sensorGroup
group_data
Sensors on the robot are arranged into




groups, each group of a single type (bumps,




range sensors, charge meter, etc.) The




sensorGroup message is sent once per group




at the start of each session. It contains




the number, type, locations, and any other




relevant data for the sensors in that group.




The station assumes nothing about the




equipment carried on the robot; everything




it knows about the sensors comes from the




sensorGroup messages.


sensorState
groupName state data
The sensorState command reports the current




state values for a specified group of




sensor. The syntax and interpretation for




the state data is specific to each group.




This message is sent once for each group at




each sensor evaluation (normally several




times per second).


systemError
systemError
This message informs the station user of a



driveController
failure in one of the robot's subsystems.




The error_type argument indicates which




subsystem failed, including driveController,




sensorController, headHome.


systemInfo
systemInfo wireless 45
This message allows regular reporting of




information that falls outside the sensor




system such as wireless signal strength.


text
text “This is some
The text string sends a text string from the



text”
robot to the station, where the string is




displayed to the user. This message is used




mainly for debugging.


version
version 1.6
This message identifies the software version




currently running on the robot. It is sent




once at the start of the session to allow




the station to do any necessary backward




compatibility adjustments.









While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art.

Claims
  • 1. A mobile robot system that is controlled through an input device, comprising: a robot that has a camera with a camera reference coordinate system having at least a first axis fixed to said camera and a mobile platform with a platform reference coordinate system having at least a first axis fixed to said mobile platform; and,an input device that causes movement of both said camera and said mobile platfoiin within the camera reference coordinate system such that the first axes of the camera and platform reference coordinate systems become aligned from a state wherein the first axes of the camera and platform reference coordinate systems were not in alignment.
  • 2. The system of claim 1, wherein said input device is a joystick.
  • 3. The system of claim 1, wherein said mobile platform rotates to align an axis of a platform reference coordinate system fixed to said mobile platform with an axis of the camera reference coordinate system.
  • 4. The system of claim 1, wherein movement of said mobile platform is accompanied by a movement of said camera.
  • 5. The system of claim 2, wherein twisting said joystick causes rotation of said camera and pivoting said joystick causes said mobile platform to move.
  • 6. The system of claim 1, further comprising a computer coupled to said input device and said robot.
  • 7. The system of claim 1, further comprising a wireless base station coupled to said robot and said input device.
  • 8. The system of claim 7, further comprising a broadband network that is coupled to said wireless base station and said input device.
  • 9. The system of claim 1, wherein said robot includes a monitor.
  • 10. A mobile robot system that is controlled through an input device, comprising: a robot that has a camera with a camera reference coordinate system with at least a first axis fixed to said camera, and a mobile platform with a platform reference coordinate system with at least a first axis fixed to said mobile platform; and,input means for moving both said camera and said mobile platform within the camera reference coordinate system such that the first axes of the camera and platform reference coordinate systems become aligned from a state wherein the first axes of the camera and platform reference coordinate systems were not in alignment.
  • 11. The system of claim 10, wherein said input means includes a joystick.
  • 12. The system of claim 10, wherein movement of said mobile platform is accompanied by a movement of said camera.
  • 13. The system of claim 11, wherein twisting said joystick causes rotation of said camera and pivoting said joystick causes said mobile platform to move.
  • 14. The system of claim 10, wherein said input means includes a computer.
  • 15. The system of claim 10, further comprising a wireless base station coupled to said robot and said input means.
  • 16. The system of claim 15, further comprising a broadband network that is coupled to said wireless base station and said input means.
  • 17. The system of claim 1, wherein said robot includes a monitor.
  • 18. A method for controlling a robot, comprising: moving both a camera of a robot with a camera reference coordinate system with at least a first axis that is fixed to the camera and a mobile platform with a platform reference coordinate system with at least a first axis fixed to the mobile platform, such that the first axes of the camera and platform reference coordinate systems become aligned from a state wherein the first axes of the camera and platform reference coordinate systems were not in alignment.
  • 19. The method of claim 18, wherein the robot is in a mode where the robot moves within a platform reference coordinate system.
  • 20. The method of claim 18, wherein the robot has a mobile platform with a platform reference coordinate system, and the mobile platform is rotated so that an axis of a platform reference coordinate system is aligned with an axis of the camera reference coordinate system.
  • 21. The method of claim 18, wherein the robot receives commands from a wireless base station.
  • 22. The method of claim 21, wherein the command is transmitted through a broadband network.
  • 23. The method of claim 18, wherein the camera and robot are moved through manipulation of a joystick.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional application of claiming priority to U.S. application Ser. No. 10/890,891, filed Jul. 13, 2004, pending.

US Referenced Citations (490)
Number Name Date Kind
3821995 Aghnides Jul 1974 A
4413693 Derby Nov 1983 A
4471354 Smith Sep 1984 A
4519466 Shiraishi May 1985 A
4572594 Schwartz Feb 1986 A
4625274 Schroeder Nov 1986 A
4638445 Mattaboni Jan 1987 A
4652204 Arnett Mar 1987 A
4669168 Tamura et al. Jun 1987 A
4697472 Hiyane Oct 1987 A
4709265 Silverman et al. Nov 1987 A
4733737 Falamak Mar 1988 A
4751658 Kadonoff et al. Jun 1988 A
4766581 Korn et al. Aug 1988 A
4777416 George, II et al. Oct 1988 A
4797557 Ohman Jan 1989 A
4803625 Fu et al. Feb 1989 A
4847764 Halvorson Jul 1989 A
4875172 Kanayama Oct 1989 A
4942512 Kohno Jul 1990 A
4942538 Yuan et al. Jul 1990 A
4953159 Hayden et al. Aug 1990 A
4974607 Miwa Dec 1990 A
4977971 Crane, III et al. Dec 1990 A
5006988 Borenstein et al. Apr 1991 A
5040116 Evans et al. Aug 1991 A
5051906 Evans et al. Sep 1991 A
5073749 Kanayama Dec 1991 A
5084828 Kaufman et al. Jan 1992 A
5130794 Ritchey Jul 1992 A
5148591 Pryor Sep 1992 A
5153833 Gordon et al. Oct 1992 A
5155684 Burke et al. Oct 1992 A
5157491 Kassatly Oct 1992 A
5182641 Diner et al. Jan 1993 A
5186270 West Feb 1993 A
5193143 Kaemmerer et al. Mar 1993 A
5217453 Wilk Jun 1993 A
5224157 Yamada et al. Jun 1993 A
5231693 Backes et al. Jul 1993 A
5236432 Matsen, II et al. Aug 1993 A
5413693 Derby Nov 1993 A
5305427 Nagata Apr 1994 A
5315287 Sol May 1994 A
5319611 Korba Jun 1994 A
5341242 Gilboa et al. Aug 1994 A
5341459 Backes Aug 1994 A
5341854 Zezulka et al. Aug 1994 A
5347457 Tanaka et al. Sep 1994 A
5350033 Kraft Sep 1994 A
5366896 Margrey et al. Nov 1994 A
5374879 Pin et al. Dec 1994 A
5417210 Funda et al. May 1995 A
5419008 West May 1995 A
5436542 Petelin et al. Jul 1995 A
5441042 Putman Aug 1995 A
5441047 David et al. Aug 1995 A
5442728 Kaufman et al. Aug 1995 A
5462051 Oka et al. Oct 1995 A
5486853 Baxter et al. Jan 1996 A
5510832 Garcia Apr 1996 A
5528289 Cortjens et al. Jun 1996 A
5539741 Barraclough et al. Jul 1996 A
5544649 David et al. Aug 1996 A
5550577 Verbiest et al. Aug 1996 A
5553609 Chen et al. Sep 1996 A
5572229 Fisher Nov 1996 A
5572999 Funda et al. Nov 1996 A
5594859 Palmer et al. Jan 1997 A
5600573 Hendricks et al. Feb 1997 A
5630566 Case May 1997 A
5636218 Ishikawa Jun 1997 A
5652849 Conway et al. Jul 1997 A
5657246 Hogan et al. Aug 1997 A
5659779 Laird et al. Aug 1997 A
5682199 Lankford Oct 1997 A
5684695 Bauer Nov 1997 A
5701904 Simmons et al. Dec 1997 A
5739657 Takayama et al. Apr 1998 A
5749058 Hashimoto May 1998 A
5749362 Funda et al. May 1998 A
5762458 Wang et al. Jun 1998 A
5764731 Yablon Jun 1998 A
5767897 Howell Jun 1998 A
5786846 Hiroaki Jul 1998 A
5802494 Kuno Sep 1998 A
5836872 Kenet et al. Nov 1998 A
5838575 Lion Nov 1998 A
5857534 DeVault et al. Jan 1999 A
5867653 Aras et al. Feb 1999 A
5871451 Unger et al. Feb 1999 A
5876325 Mizuno et al. Mar 1999 A
5911036 Wright et al. Jun 1999 A
5917958 Nunally et al. Jun 1999 A
5927423 Wada et al. Jul 1999 A
5949758 Kober Sep 1999 A
5954692 Smith et al. Sep 1999 A
5959423 Nakanishi et al. Sep 1999 A
5966130 Benman, Jr. Oct 1999 A
5973724 Riddle Oct 1999 A
5974446 Sonnenreich et al. Oct 1999 A
5995884 Allen et al. Nov 1999 A
5999977 Riddle Dec 1999 A
6006946 Williams et al. Dec 1999 A
6036812 Williams et al. Mar 2000 A
6133944 Braun et al. Oct 2000 A
6135228 Asada et al. Oct 2000 A
6148100 Anderson et al. Nov 2000 A
6170929 Wilson et al. Jan 2001 B1
6175779 Barrett Jan 2001 B1
6201984 Funda et al. Mar 2001 B1
6211903 Bullister Apr 2001 B1
6219587 Ahlin et al. Apr 2001 B1
6232735 Baba et al. May 2001 B1
6233504 Das et al. May 2001 B1
6256556 Zenke Jul 2001 B1
6259806 Green Jul 2001 B1
6259956 Myers et al. Jul 2001 B1
6266162 Okamura et al. Jul 2001 B1
6266577 Popp et al. Jul 2001 B1
6289263 Mukherjee Sep 2001 B1
6292713 Jouppi et al. Sep 2001 B1
6304050 Skaar et al. Oct 2001 B1
6321137 De Smet Nov 2001 B1
6325756 Webb et al. Dec 2001 B1
6327516 Zenke Dec 2001 B1
6330486 Padula Dec 2001 B1
6330493 Takahashi et al. Dec 2001 B1
6346950 Jouppi Feb 2002 B1
6346962 Goodridge Feb 2002 B1
6369847 James et al. Apr 2002 B1
6381515 Inoue et al. Apr 2002 B1
6408230 Wada Jun 2002 B2
6430471 Kintou et al. Aug 2002 B1
6430475 Okamoto et al. Aug 2002 B2
6438457 Yokoo et al. Aug 2002 B1
6452915 Jorgensen Sep 2002 B1
6457043 Kwak et al. Sep 2002 B1
6459955 Bartsch et al. Oct 2002 B1
6463352 Tadokoro et al. Oct 2002 B1
6463361 Wang et al. Oct 2002 B1
6466844 Ikeda et al. Oct 2002 B1
6468265 Evans et al. Oct 2002 B1
6474434 Bech Nov 2002 B1
6480762 Uchikubo et al. Nov 2002 B1
6491701 Tierney et al. Dec 2002 B2
6496099 Wang et al. Dec 2002 B2
6496755 Wallach et al. Dec 2002 B2
6501740 Sun et al. Dec 2002 B1
6507773 Parker et al. Jan 2003 B2
6522906 Salisbury et al. Feb 2003 B1
6523629 Buttz et al. Feb 2003 B1
6526332 Sakamoto et al. Feb 2003 B2
6529765 Franck et al. Mar 2003 B1
6529802 Kawakita et al. Mar 2003 B1
6532404 Colens Mar 2003 B2
6535182 Stanton Mar 2003 B2
6535793 Allard Mar 2003 B2
6540039 Yu et al. Apr 2003 B1
6543899 Covannon et al. Apr 2003 B2
6549215 Jouppi Apr 2003 B2
6563533 Colby May 2003 B1
6580246 Jacobs Jun 2003 B2
6581798 Liff et al. Jun 2003 B2
6584376 Van Kommer Jun 2003 B1
6587750 Gerbi et al. Jul 2003 B2
6594269 Polcyn Jul 2003 B1
6594552 Nowlin et al. Jul 2003 B1
6602469 Maus et al. Aug 2003 B1
6604019 Ahlin et al. Aug 2003 B2
6604021 Imai et al. Aug 2003 B2
6611120 Song et al. Aug 2003 B2
6646677 Noro et al. Nov 2003 B2
6650748 Edwards et al. Nov 2003 B1
6666374 Green et al. Dec 2003 B1
6684129 Salisbury et al. Jan 2004 B2
6691000 Nagai et al. Feb 2004 B2
6710797 McNelley et al. Mar 2004 B1
6728599 Wang et al. Apr 2004 B2
6763282 Glenn et al. Jul 2004 B2
6764373 Osawa et al. Jul 2004 B1
6769771 Trumbull Aug 2004 B2
6781606 Jouppi Aug 2004 B2
6784916 Smith Aug 2004 B2
6785589 Eggenberger et al. Aug 2004 B2
6791550 Goldhor et al. Sep 2004 B2
6798753 Doganata et al. Sep 2004 B1
6799065 Niemeyer Sep 2004 B1
6799088 Wang et al. Sep 2004 B2
6804580 Stoddard et al. Oct 2004 B1
6804656 Rosenfeld et al. Oct 2004 B1
6810411 Coughlin et al. Oct 2004 B1
6836703 Wang et al. Dec 2004 B2
6839612 Sanchez et al. Jan 2005 B2
6840904 Goldberg Jan 2005 B2
6845297 Allard Jan 2005 B2
6852107 Wang et al. Feb 2005 B2
6853878 Hirayama et al. Feb 2005 B2
6853880 Sakagami et al. Feb 2005 B2
6871117 Wang et al. Mar 2005 B2
6879879 Jouppi et al. Apr 2005 B2
6888333 Laby May 2005 B2
6892112 Wang et al. May 2005 B2
6895305 Lathan et al. May 2005 B2
6898484 Lemelson et al. May 2005 B2
6914622 Smith et al. Jul 2005 B1
6925357 Wang et al. Aug 2005 B2
6951535 Ghodoussi et al. Oct 2005 B2
6952470 Tioe et al. Oct 2005 B1
6958706 Chaco et al. Oct 2005 B2
6965394 Gutta et al. Nov 2005 B2
6995664 Darling Feb 2006 B1
7030757 Matsuhira et al. Apr 2006 B2
7058689 Parker et al. Jun 2006 B2
7092001 Schulz Aug 2006 B2
7096090 Zweig Aug 2006 B1
7115102 Abbruscato Oct 2006 B2
7117067 McLurkin et al. Oct 2006 B2
7123285 Smith et al. Oct 2006 B2
7123974 Hamilton Oct 2006 B1
7123991 Graf et al. Oct 2006 B2
7127325 Nagata et al. Oct 2006 B2
7129970 James et al. Oct 2006 B2
7133062 Castles Nov 2006 B2
7142945 Wang et al. Nov 2006 B2
7142947 Wang et al. Nov 2006 B2
7151982 Liff Dec 2006 B2
7154526 Foote et al. Dec 2006 B2
7155306 Haitin et al. Dec 2006 B2
7156809 Quy Jan 2007 B2
7158859 Wang et al. Jan 2007 B2
7158860 Wang et al. Jan 2007 B2
7161322 Wang et al. Jan 2007 B2
7162338 Goncalves et al. Jan 2007 B2
7164969 Wang et al. Jan 2007 B2
7171286 Wang et al. Jan 2007 B2
7174238 Zweig Feb 2007 B1
7184559 Jouppi Feb 2007 B2
7188000 Chiappetta et al. Mar 2007 B2
7199790 Rosenberg et al. Apr 2007 B2
7202851 Cunningham et al. Apr 2007 B2
7206627 Abovitz et al. Apr 2007 B2
7215786 Nakadai et al. May 2007 B2
7227334 Yang et al. Jun 2007 B2
7256708 Rosenfeld et al. Aug 2007 B2
7262573 Wang et al. Aug 2007 B2
7289883 Wang et al. Oct 2007 B2
7292912 Wang et al. Nov 2007 B2
7321807 Laski Jan 2008 B2
7346429 Goldenberg et al. Mar 2008 B2
7382399 McCall Jun 2008 B1
7386730 Uchikubo Jun 2008 B2
7432949 Remy et al. Oct 2008 B2
7441953 Banks Oct 2008 B2
7525281 Koyanagi et al. Apr 2009 B2
7535486 Motomura et al. May 2009 B2
7593030 Wang et al. Sep 2009 B2
7624166 Foote et al. Nov 2009 B2
7719229 Kaneko et al. May 2010 B2
7761185 Wang et al. Jul 2010 B2
7769492 Wang et al. Aug 2010 B2
7813836 Wang et al. Oct 2010 B2
7831575 Trossell et al. Nov 2010 B2
7835775 Sawayama et al. Nov 2010 B2
RE42288 Degioanni Apr 2011 E
7924323 Walker et al. Apr 2011 B2
7982763 King Jul 2011 B2
8077963 Wang et al. Dec 2011 B2
8116910 Walters et al. Feb 2012 B2
8170241 Roe et al. May 2012 B2
8179418 Wright et al. May 2012 B2
8209051 Wang et al. Jun 2012 B2
20010002448 Wilson et al. May 2001 A1
20010010053 Ben-Shachar et al. Jul 2001 A1
20010034475 Flach et al. Oct 2001 A1
20010034544 Mo Oct 2001 A1
20010037163 Allard Nov 2001 A1
20010051881 Filler Dec 2001 A1
20010054071 Loeb Dec 2001 A1
20010055373 Yamashita Dec 2001 A1
20020015296 Howell Feb 2002 A1
20020027597 Sachau Mar 2002 A1
20020049517 Ruffner Apr 2002 A1
20020055917 Muraca May 2002 A1
20020057279 Jouppi May 2002 A1
20020058929 Green May 2002 A1
20020059587 Cofano et al. May 2002 A1
20020063726 Jouppi May 2002 A1
20020073429 Beane et al. Jun 2002 A1
20020082498 Wendt et al. Jun 2002 A1
20020095238 Ahlin et al. Jul 2002 A1
20020098879 Rheey Jul 2002 A1
20020104094 Alexander et al. Aug 2002 A1
20020111988 Sato Aug 2002 A1
20020120362 Lathan et al. Aug 2002 A1
20020130950 James et al. Sep 2002 A1
20020141595 Jouppi Oct 2002 A1
20020143923 Alexander Oct 2002 A1
20020177925 Onishi et al. Nov 2002 A1
20020183894 Wang et al. Dec 2002 A1
20020184674 Xi et al. Dec 2002 A1
20020186243 Ellis et al. Dec 2002 A1
20030030397 Simmons Feb 2003 A1
20030048481 Kobayashi et al. Mar 2003 A1
20030050733 Wang et al. Mar 2003 A1
20030060808 Wilk Mar 2003 A1
20030063600 Noma et al. Apr 2003 A1
20030069752 Ledain et al. Apr 2003 A1
20030100892 Morley et al. May 2003 A1
20030104806 Ruef et al. Jun 2003 A1
20030114962 Niemeyer Jun 2003 A1
20030126361 Slater et al. Jul 2003 A1
20030135203 Wang et al. Jul 2003 A1
20030144579 Buss Jul 2003 A1
20030144649 Ghodoussi et al. Jul 2003 A1
20030151658 Smith Aug 2003 A1
20030171710 Bassuk et al. Sep 2003 A1
20030174285 Trumbull Sep 2003 A1
20030180697 Kim et al. Sep 2003 A1
20030199000 Valkirs et al. Oct 2003 A1
20030206242 Choi Nov 2003 A1
20030216834 Allard Nov 2003 A1
20030220541 Salisbury, Jr. et al. Nov 2003 A1
20030220715 Kneifel et al. Nov 2003 A1
20030231244 Bonilla et al. Dec 2003 A1
20030232649 Gizis et al. Dec 2003 A1
20040010344 Hiratsuka et al. Jan 2004 A1
20040012362 Tsurumi Jan 2004 A1
20040013295 Sabe et al. Jan 2004 A1
20040019406 Wang et al. Jan 2004 A1
20040024490 McLurkin et al. Feb 2004 A1
20040041904 Lapalme et al. Mar 2004 A1
20040065073 Nash Apr 2004 A1
20040068657 Alexander et al. Apr 2004 A1
20040078219 Kaylor et al. Apr 2004 A1
20040080610 James et al. Apr 2004 A1
20040088077 Jouppi et al. May 2004 A1
20040093409 Thompson et al. May 2004 A1
20040098167 Yi et al. May 2004 A1
20040102167 Shim et al. May 2004 A1
20040117065 Wang et al. Jun 2004 A1
20040138547 Wang et al. Jul 2004 A1
20040143421 Wang et al. Jul 2004 A1
20040148638 Weisman et al. Jul 2004 A1
20040153211 Kamoto et al. Aug 2004 A1
20040157612 Kim Aug 2004 A1
20040162637 Wang et al. Aug 2004 A1
20040167666 Wang et al. Aug 2004 A1
20040167668 Wang et al. Aug 2004 A1
20040170300 Jouppi Sep 2004 A1
20040172301 Mihai et al. Sep 2004 A1
20040174129 Wang et al. Sep 2004 A1
20040175684 Kaasa et al. Sep 2004 A1
20040179714 Jouppi et al. Sep 2004 A1
20040189700 Mandavilli et al. Sep 2004 A1
20040201602 Mody et al. Oct 2004 A1
20040215490 Duchon et al. Oct 2004 A1
20040224676 Iseki Nov 2004 A1
20040230340 Fukuchi et al. Nov 2004 A1
20040240981 Dothan et al. Dec 2004 A1
20050003330 Asgarinejad Jan 2005 A1
20050007445 Foote et al. Jan 2005 A1
20050013149 Trossell Jan 2005 A1
20050021182 Wang Jan 2005 A1
20050021183 Wang et al. Jan 2005 A1
20050021187 Wang et al. Jan 2005 A1
20050021309 Alexander et al. Jan 2005 A1
20050024485 Castles et al. Feb 2005 A1
20050027567 Taha Feb 2005 A1
20050027794 Decker Feb 2005 A1
20050028221 Liu et al. Feb 2005 A1
20050035862 Wildman et al. Feb 2005 A1
20050038416 Wang et al. Feb 2005 A1
20050038564 Burick Feb 2005 A1
20050049898 Hirakawa Mar 2005 A1
20050052527 Remy et al. Mar 2005 A1
20050065435 Rauch et al. Mar 2005 A1
20050065438 Miller Mar 2005 A1
20050065659 Tanaka et al. Mar 2005 A1
20050065813 Mishelevich et al. Mar 2005 A1
20050071046 Miyazaki et al. Mar 2005 A1
20050083011 Yang et al. Apr 2005 A1
20050099493 Chew May 2005 A1
20050104964 Bovyrin et al. May 2005 A1
20050110867 Schulz May 2005 A1
20050122390 Wang et al. Jun 2005 A1
20050154265 Miro et al. Jul 2005 A1
20050182322 Grispo Aug 2005 A1
20050192721 Jouppi Sep 2005 A1
20050204438 Wang et al. Sep 2005 A1
20050212478 Takenaka Sep 2005 A1
20050219356 Smith et al. Oct 2005 A1
20050225634 Brunetti et al. Oct 2005 A1
20050231156 Yan Oct 2005 A1
20050232647 Takenaka Oct 2005 A1
20050267826 Levy et al. Dec 2005 A1
20050283414 Fernandes et al. Dec 2005 A1
20060007943 Fellman Jan 2006 A1
20060013263 Fellman Jan 2006 A1
20060013469 Wang et al. Jan 2006 A1
20060013488 Inoue Jan 2006 A1
20060029065 Fellman Feb 2006 A1
20060047365 Ghodoussi et al. Mar 2006 A1
20060048286 Donato Mar 2006 A1
20060052676 Wang et al. Mar 2006 A1
20060052684 Takahashi et al. Mar 2006 A1
20060064212 Thorne Mar 2006 A1
20060074525 Close et al. Apr 2006 A1
20060082642 Wang et al. Apr 2006 A1
20060087746 Lipow Apr 2006 A1
20060095158 Lee et al. May 2006 A1
20060095170 Yang et al. May 2006 A1
20060098573 Beer et al. May 2006 A1
20060103659 Karandikar et al. May 2006 A1
20060104279 Fellman et al. May 2006 A1
20060106493 Niemeyer et al. May 2006 A1
20060122482 Mariotti et al. Jun 2006 A1
20060142983 Sorensen Jun 2006 A1
20060161303 Wang et al. Jul 2006 A1
20060164546 Adachi Jul 2006 A1
20060173712 Joubert Aug 2006 A1
20060178776 Feingold et al. Aug 2006 A1
20060189393 Edery Aug 2006 A1
20060195569 Barker Aug 2006 A1
20060259193 Wang et al. Nov 2006 A1
20060293788 Pogodin Dec 2006 A1
20070021871 Wang et al. Jan 2007 A1
20070046237 Lakshmanan et al. Mar 2007 A1
20070050937 Song et al. Mar 2007 A1
20070064092 Sandbeg et al. Mar 2007 A1
20070078566 Wang et al. Apr 2007 A1
20070112700 Den et al. May 2007 A1
20070117516 Saidi et al. May 2007 A1
20070120965 Sandberg et al. May 2007 A1
20070122783 Habashi May 2007 A1
20070135967 Jung et al. Jun 2007 A1
20070142964 Abramson Jun 2007 A1
20070176060 White et al. Aug 2007 A1
20070192910 Vu et al. Aug 2007 A1
20070197896 Moll et al. Aug 2007 A1
20070198128 Ziegler et al. Aug 2007 A1
20070199108 Angle et al. Aug 2007 A1
20070216347 Kaneko et al. Sep 2007 A1
20070250212 Halloran et al. Oct 2007 A1
20070262884 Goncalves et al. Nov 2007 A1
20070273751 Sachau Nov 2007 A1
20070291109 Wang et al. Dec 2007 A1
20070291128 Wang et al. Dec 2007 A1
20080011904 Cepollina et al. Jan 2008 A1
20080065268 Wang et al. Mar 2008 A1
20080082211 Wang et al. Apr 2008 A1
20080133052 Jones et al. Jun 2008 A1
20080201017 Wang et al. Aug 2008 A1
20080215987 Alexander et al. Sep 2008 A1
20080229531 Takida Sep 2008 A1
20080255703 Wang et al. Oct 2008 A1
20080263451 Portele et al. Oct 2008 A1
20080269949 Norman et al. Oct 2008 A1
20080281467 Pinter Nov 2008 A1
20090030552 Nakadai et al. Jan 2009 A1
20090055023 Walters et al. Feb 2009 A1
20090105882 Wang et al. Apr 2009 A1
20090125147 Wang et al. May 2009 A1
20090237317 Rofougaran Sep 2009 A1
20090240371 Wang et al. Sep 2009 A1
20090259339 Wright et al. Oct 2009 A1
20100010672 Wang et al. Jan 2010 A1
20100010673 Wang et al. Jan 2010 A1
20100019715 Roe et al. Jan 2010 A1
20100070079 Mangaser et al. Mar 2010 A1
20100073490 Wang et al. Mar 2010 A1
20100076600 Cross et al. Mar 2010 A1
20100115418 Wang et al. May 2010 A1
20100116566 Ohm et al. May 2010 A1
20100131103 Herzog et al. May 2010 A1
20100191375 Wright et al. Jul 2010 A1
20100268383 Wang et al. Oct 2010 A1
20100323783 Nonaka et al. Dec 2010 A1
20110050841 Wang et al. Mar 2011 A1
20110071702 Wang et al. Mar 2011 A1
20110172822 Ziegler et al. Jul 2011 A1
20110187875 Sanchez et al. Aug 2011 A1
20110190930 Hanrahan et al. Aug 2011 A1
20110218674 Stuart et al. Sep 2011 A1
20110245973 Wang et al. Oct 2011 A1
20110292193 Wang et al. Dec 2011 A1
20110301759 Wang et al. Dec 2011 A1
20120023506 Maeckel et al. Jan 2012 A1
20120072023 Ota Mar 2012 A1
20120092157 Tran Apr 2012 A1
Foreign Referenced Citations (105)
Number Date Country
2 289 697 Nov 1998 CA
1554193 Dec 2004 CN
1554985 Dec 2004 CN
101106939 Jan 2008 CN
101390098 Mar 2009 CN
101507260 Aug 2009 CN
101730894 Jun 2010 CN
101866396 Oct 2010 CN
101978365 Feb 2011 CN
102203759 Sep 2011 CN
101106939 Nov 2011 CN
0 466 492 Jan 1992 EP
94488673 Jun 1992 EP
09 81905 Jan 2002 EP
1 262 142 Dec 2002 EP
1 536 660 Sep 2004 EP
1 536 660 Jun 2005 EP
20051573406 Sep 2005 EP
20051594660 Nov 2005 EP
2007179464 Jun 2007 EP
20071800476 Jun 2007 EP
20071856644 Nov 2007 EP
20081928310 Jun 2008 EP
20092027716 Feb 2009 EP
20102145274 Jan 2010 EP
20102214111 Aug 2010 EP
20102263158 Dec 2010 EP
20112300930 Mar 2011 EP
20112342651 Jul 2011 EP
2007081646 Mar 2007 JO
2007-213753 Aug 1995 JP
2007-248823 Aug 1995 JP
07-257422 Oct 1995 JP
08-084328 Mar 1996 JP
968320727 Dec 1996 JP
9-267276 Oct 1997 JP
10079097 Mar 1998 JP
10288689 Oct 1998 JP
2000-032319 Jan 2000 JP
2000049800 Feb 2000 JP
2000079587 Mar 2000 JP
2000196876 Jul 2000 JP
2000-235423 Aug 2000 JP
2001125641 May 2001 JP
2001-147718 May 2001 JP
2001179663 Jul 2001 JP
2001-198865 Jul 2001 JP
2001-198868 Jul 2001 JP
2001-199356 Jul 2001 JP
2000-188124 Jan 2002 JP
2002-000574 Jan 2002 JP
2002-046088 Feb 2002 JP
20021129670 Apr 2002 JP
2002101333 May 2002 JP
2002-305743 Oct 2002 JP
2002-355779 Dec 2002 JP
2004524824 Aug 2004 JP
2004261941 Sep 2004 JP
2004289379 Oct 2004 JP
2005028066 Feb 2005 JP
2005059170 Mar 2005 JP
2006508806 Mar 2006 JP
2006109094 Apr 2006 JP
2006224294 Aug 2006 JP
2006246438 Sep 2006 JP
2010064154 Mar 2010 JP
20100532109 Sep 2010 JP
2010246954 Nov 2010 JP
20060037979 May 2006 KR
20090012542 Feb 2009 KR
20100019479 Feb 2010 KR
20100139037 Dec 2010 KR
WO 9306690 Apr 1993 WO
WO 9851078 Nov 1998 WO
WO 9967067 Dec 1999 WO
0033726 Jun 2000 WO
WO 03077745 Sep 2003 WO
2004008738 Jan 2004 WO
2004012018 Feb 2004 WO
WO 2004075456 Sep 2004 WO
2006012797 Feb 2006 WO
2006078611 Apr 2006 WO
2006044847 Apr 2006 WO
2007041295 Apr 2007 WO
2007041295 Apr 2007 WO
2007041038 Jun 2007 WO
2008100272 Aug 2008 WO
2008100272 Oct 2008 WO
2009117274 Sep 2009 WO
2009128997 Oct 2009 WO
2009145958 Dec 2009 WO
2010006205 Jan 2010 WO
2010006211 Jan 2010 WO
2010033666 Mar 2010 WO
2010047881 Apr 2010 WO
2010062798 Jun 2010 WO
2010065257 Jun 2010 WO
2010120407 Oct 2010 WO
2011028589 Mar 2011 WO
2011028589 Apr 2011 WO
2011097130 Aug 2011 WO
2011097132 Aug 2011 WO
2011109336 Sep 2011 WO
2011097132 Dec 2011 WO
2011149902 Dec 2011 WO
Non-Patent Literature Citations (144)
Entry
Knight et al, “Active Visual Alignment of a Mobile Stereo Camera Platform,” Apr. 24-28, 2000, Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco, pp. 3202-3208.
Al-Kassab, “A Review of Telemedicine”, Journal of Telemedicine and Telecare, 1999, vol. 5, Supplement 1.
F. Ando et al., “A Multimedia Self-service Terminal with Conferencing Functions”, 1995, IEEE, pp. 357-362.
Android Amusement Corp., “What Marketing Secret . . . Renting Robots from Android Amusement Corp!”, (Advertisement) 1982.
Applebome, “Planning Domesticated Robots for Tomorrow's Household”, New York Times, Mar. 4, 1982, pp. 21 and 23, http://www.theoldrobots.com/images17/dc17.JPG.
Baltus et al., “Towards Personal Service Robots for the Elderly, Proceedings for the Elderly Workshop on Interactive Robots and Entertainment”, 2000, Computer Science and Robotics, http://www.cs.cmu.edu/thrun/papers/thrun.nursebot-early.pdf
Bar-Cohen et al., Virtual reality robotic telesurgery simulations using MEMICA haptic system, Mar. 5, 2001, Internet, pp. 1-7.
Bartholomew, “An Apothecary's Pharmacy”, 1230-1240 http://classes.bnf.fr/ema/grands/034.htm.
Bauer, Jeffrey C., “Service Robots in Health Care: The Evolution of Mechanical Solutions to Human Resource Problems”, Jun. 2003.
Bauer, John et al., “Remote telesurgical mentoring: feasibility and efficacy”, 2000, IEEE, pp. 1-9.
Bischoff, “Design Concept and Realization of the Humanoid Service Robot HERMES”, Field and Service Robotics, Springer, London, 1998, pp. 485-492.
Blackwell, Gerry, “Video: A Wireless LAN Killer App?”, Apr. 16, 2002, Internet pp. 1-3.
Breslow, Michael J., MD et al., “Effect of a multiple-site intensive care unit telemedicine program on clinical and economic outcome: An alternative paradigm for intensivist staffing”, Critical Care Med, Jan. 2004, vol. 32, No. 1, pp. 31-38.
Brooks, Rodney, Abstracts from Flesh & Machines, How Robots Will Change Us, “Remote Presence”, p. 131-147, Feb. 2002.
Celi et al., “The eICU: It's not just telemedicine”, Critical Care Medicine, vol. 29, No. 8 (Supplement), Aug. 2001.
Cheetham, Anastasia et al., “Interface Development for a Child's Video Conferencing Robot”, 2000, pp. 1-4.
Cleary et al., “State of the art in surgical robotics: Clinical applications and technology challenges”, Feb. 24, 2002 Internet, pp. 1-26.
CNN, “Floating ‘droids’ to roam space corridors of the future”, Jan. 12, 2000, Internet, pp. 1-4.
CNN.com/Technology,“ Paging R.Robot: Machine helps doctors with patients”, Sep. 30, 2003, Internet, 1-3.
Crowley, “Hello to Our Future”, AARP Bulletin, Jan. 2000 http://www.cs.cmu.ed/-nursebot/web/press/aarp—99—14/millennium.html.
Dalton, “Techniques for Web Telerobotics”, PhD Thesis, University of Western Australia, 2001, pp. 27-62, 149-191; http://telerobot.mech.uwa.edu.au/information.html, http://catalogue.library.uwa.edu.au/search.
Davies, “Robotics in Minimally Invasive Surgery”, 1995, Internet, pp. 5/1-5/2.
Discovery Channel Canada, “Inventing the Future: 2000 Years of Discovery”, Jan. 2, 2000 (Video/Transcript).
Elhajj et al., “Supermedia in Internet-based telerobotic operations”, 2001, Internet, pp. 1-14.
Elhajj et al., “Synchronization and Control of Supermedia Transmission Via the Internet”, Proceedings of 2001 International Symposium on Intelligent Multimedia, Video and Speech Processing, May 2-4, 2001, Hong Kong.
Ellison et al., “Telerounding and Patient Satisfaction Following Surgery”.
Fels, “Developing a Video-Mediated Communication System for Hospitalized Children”, Telemedicine Journal, vol. 5, No. 2, 1999.
Fetterman, “Videoconferencing over the Internet”, 2001, Internet, pp. 1-8.
Fiorini, “Health Care Robotics: A Progress Report”, IEEE International Conference on Robotics and Automation, pp. 1271-1276, Apr. 1997.
Ghiasi, “A Generic Web-based Teleoperations Architecture: Details and Experience”, SPIE Conference on Telemanipulator and Telepresence Technologies VI, Sep. 1999.
Goldberg et al., “Collaborative Teleoperation via the Internet”, IEEE International Conference on Robotics and Automation, Apr. 2000, San Francisco, California.
Goldberg, “Desktop Teleoperation via the World Wide Web, Proceedings of the IEEE International Conference on Robotics and Automation”, 1995, pp. 654-659 http://citeseer.ist.psu.edu/cache/papers/cs/5/ftp:zSzzSzusc.eduzSzpubzSziriszSzraiders.pdf/gol.
Goldberg, “More Online Robots, Robots that Manipulate”, Internet, Updated Aug. 2001 http://ford.ieor.berkeley.edu/ir/robots—a2.html.
Goldenberg, et al., “Telemedicine in Otolaryngology”, American Journal of Otolaryngology, vol. 23, No. 1, 2002, pp. 35-43.
Goldman, Lea, “Machine Dreams”, Entrepreneurs, Forbes, May 27, 2002.
Gump, Michael D., “Robot Technology Improves VA Pharmacies”, 2001, Internet, pp. 1-3.
Han, et al., “Construction of an Omnidirectional Mobile Robot Platform Based on Active Dual-Wheel Caster Mechanisms and Development of a Control Simulator”, 2000, Kluwer Acedemic Publishers, vol. 29, pp. 257-275.
Handley, “RFC 2327—SDP: Session Description Protocol”, Apr. 1998 http://www.faqs.org/rfcs/rfc2327.html.
Hanebeck, “ROMAN: a mobile Robotic Assistant for Indoor Service Applications”, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1997.
Harmo et al., “Moving Eye—Interactive Telepresence Over Internet With a Ball Shaped Mobile Robot”, 2000.
Haule et al., “Control Scheme for Delayed Teleoperation Tasks”, May 17, 1995, Proceedings of the Pacific Rim Conference on Communications, Computer and Signal Processing.
Hees, William P., “Communications Design for a Remote Presence Robot”, Jan. 14, 2002.
Holmberg, “Development of a Holonomic Mobile Robot for Mobile Manipulation Tasks”, International Conference on Field and Service Robotics, Pittsburgh, PA, Aug. 1999.
Ishiguro, “Integrating a Perceptual Information Infrastructure with Robotic Avatars: A Framework for Tele-Existence” Proceeding of IEEE Conference on Intelligent Robots and Systems, http://www.ai.soc.i.kyoto-u.ac.jp/services/publications/99/99conf/07.pdf.
Ishihara, Ken et al., “Intelligent Microrobot DDS (Drug Delivery System) Measured and Controlled by Ultrasonics”, Nov. 3-5, 1991, IEEE/RSJ, pp. 1145-1150, vol. 2.
ITU, “ITU-T H.323 Packet-based multimedia communications”, ITU, Feb. 1998, http://www.itu.int/rec./T-REC-H.323-199802-S/en.
Ivanova, Natali, “Master's thesis: Internet Based Interface for Control of a Mobile Robot”, Department of Numerical Analysis and Computer Science.
Jenkins, “Telehealth Advancing Nursing Practice”, Nursing Outlook, Mar./Apr. 2001, vol. 49, No. 2.
Johanson, “Supporting video-mediated communication over the Internet”, Chalmers University of Technology, Dept of Computer Engineering, Gothenburg, Sweden, 2003.
Jouppi, et al., “Mutually-Immersive Audio Telepresence”, Audio Engineering Society Convention Paper, presented at 113th Convention Oct. 2002.
Jouppi, Norman P., “First Steps Towards Mutually-Immersive Mobile Telepresence”, CSCW '02, Nov. 16-20, 2002, New Orleans LA.
Kanehiro, Fumio et al., “Virtual Humanoid Robot Platform to Develop Controllers of Real Humanoid Robots without Porting”, 2001, IEEE, pp. 3217-3276.
Kaplan et al., “An Internet Accessible Telepresence”.
Keller et al., “Raven Interface Project”, Fall 2001 http://upclose.lrdc.pittedu/people/louw—assets/Raven—Slides.pps.
Khatib, “Robots in Human Environments”, Proc. International Conference on Control, Automation, Robotics, and Vision, ICRACV2000, Dec. 2000, Singapore, pp. 454-457.
Kuzuoka et al., “Can the GestureCam Be a Surrogate?”.
Lane, “Automated Aides”, Newsday, Oct. 17, 2000, http://www.cs.cum.edu/-nursebot/web/press/nd4380.htm.
Lee et al., “A novel method of surgical instruction: International telementoring”, 1998, Internet pp. 1-4.
Lim, Hun-ok et al., “Control to Realize Human-like Walking of a Biped Humanoid Robot”, IEEE 2000, pp. 3271-3276.
Linebarger, John M. et al., “Concurrency Control Mechanisms for Closely Coupled Collaboration in Multithreaded Virtual Environments”, Presence, Special Issue on Advances in Collaborative VEs (2004).
Loeb, Gerald, “Virtual Visit: Improving Communication for Those Who Need It Most”, 2001.
Long, “HelpMate Robotics, Inc. (Formerly Transitions Research Corporation) Robot Navigation Technology”, NIST Special Publication 950-1, Mar. 1999, http://www.atp.nist.gov/eao/sp950-1/helpmate.htm.
Luna, Nancy, “Robot a new face on geriatric care”, OC Register, Aug. 6, 2003.
Mack, “Minimally invasive and robotic surgery”, 2001, Internet IEEE, pp. 568-572.
Mair, “Telepresence—The Technology and Its Economic and Social Implications”, IEEE Technology and Society, 1997.
Martin, Anya, “Days Ahead”, Assisted Living Today, vol. 9, Nov./Dec. 2002, pp. 19-22.
McCardle et al., “The challenge of utilizing new technology in design education”, 2000 Internet, pp. 122-127.
Meng et al., “E-Service Robot in Home Healthcare”, Proceedings of the 2000 IEEE/RSJ, International Conference on Intelligent Robots and Systems, 2000, pp. 832-837.
Michaud, “Introducing ‘Nursebot’”, The Boston Globe, Sep. 11, 2001, pp. 1-5, http://www.cs.cmu.edu/nursebot/web/press/globe—3—01/index.html.
Mobile Robotics Research Group, “Mobile Robotics Research Group”, 2000 Internet, pp. 1-2, Edinburgh.
Montemerlo, “Telepresence: Experiments in Next Generation Internet”, CMU Robotics Institute, Oct. 20, 1998, http://www.ri.cmu.edu/creative/archives.htm (Video/Transcript).
Murphy, “Introduction to A1 Robotics”, 2000.
Nakajima et al., “A Multimedia Teleteaching System sing an Electronic Whiteboard for Two-Way Communication of Motion Videos and Chalkboards”, 1993, IEEE, pp. 436-441.
“National Energy Research Scientific Computing Center, Berkeley Lab's RAGE Telepresence Robot Captures R&D100 Award”, Jul. 2, 2002, http://www.nersc.gov/news/newsroom/RAGE070202.php.
Nomadic Technologies, Inc., “Nomad XR4000 Hardware Manual”, Mar. 1999.
Ogata et al., “Emotional Communication Robot: WAMOEBA-2R—Emotion Model and Evaluation Experiments”, 1999, Internet, pp. 1-16.
Ogata et al., “Development of Emotional Communication Robot: WAMOEBA-2r—Experimental evaluation . . . ”, 2000 IEEE, pp. 175-180.
Oh et al., “Autonomous Battery Recharging for Indoor Mobile Robots”, Proceedings of Australian Conference on Robotics and Automation, 2000, http://users.rsise.anu.edu.au/rsl/rsl—papers/ACRA2000/Auto—Recharge—Paper.pdf.
Ojha, Anad, “An application of Virtual Reality in Rehabilitation”, Jan. 1994, IEEE, pp. 4-6.
Paulos et al., “A World Wide Web Telerobotic Remote Environment Browser”, http://vive.cs.berkeley.edu/capek, 1995.
Paulos, “Designing Personal Tele-embodiment”, IEEE International Conference on Robotics and Automation, 1998, http://www.prop.org/papers/icra98.pdf.
Paulos, Eric John, “Personal Tele-Embodiment”, UC Berkeley, Fall 2001.
Paulos, “PRoP: Personal Roving Presence”, ACM:CHI Proceedings of CHI '98, http://www.prop.org/papers/chi98.pdf.
Paulos, Video of PRoP 2 at Richmond Field Station, www.prop.org.May 2001, Printout of Home Page of Website and two-page Transcript of the audio portion of said PRoP Video.
Paulos, et al. , “Ubiquitous Tele-embodiment: Applications and Implications”, International Journal of Human Computer Studies, Jun. 1997, vol. 46, No. 6, pp. 861-877.
Pin.et al., “A New Family of Omnidirectional and Holonomic Wheeled Platforms for Mobile Robots”, IEEE, vol. 10, No. 4, Aug. 1994.
Rovetta et al., “A New Telerobotic Application: Remote Laparoscopic Surgery Using Satellites and Optical Fiber Networks for Data Exchange”, Jun. 1, 1996, International Journal of Robotics Research, pp. 267-279.
Roy et al., “Towards Personal Service Robots for the Elderly”, Internet, Mar. 7, 2002.
Sandt, Frederic et al., “Perceptions for a Transport Robot in Public Environments”, 1997, IROS '97.
Schaeffer, “Care-O-bot: A System for Assisting Elderly or Disabled Persons in Home Environments”, Proceedings of AAATE-99, 1999, http://morpha.de/download/publications/IPA—Systems—For—AssistingElderly—or—DisabledPersons—AAATE1999.pdf.
Schulz, “Web Interfaces for Mobile Robots in Public Places”, Robotics & Automation Magazine, IEEE, vol. 7, Issue 1, Mar. 2000.
Shimoga et al., Touch and force reflection for telepresence surgery, 1994, IEEE, pp. 1049-1050.
Siegwart, “Interacting Mobile Robots on the Web”, Proceedings of the 1999 IEEE International Conference on Robotics and Automation, May 1999.
Simmons, “Xavier: An Autonomous Mobile Robot on the Web”, IEEE Robotics and Automation Magazine, 1999, pp. 43-48.
Spawar Systems Center, “Robart”, 1998, San Diego, CA, http://web.archive.org/web/*/http://www.nosc.mil/robots/land/robart/robart.html http://web.archive.org/web/19981202205636/http://www.nosc.mil/robots/land/robart/robart.html.
Stephenson, Gary, “Dr. Robot Tested at Hopkins”, Aug. 5, 2003, Internet, pp. 1-2.
Stoianovici et al., “Robotic Tools for Minimally Invasive Urologic Surgery”, Dec. 2002, Internet, 1-17.
Suplee, “Mastering the Robot”, The Washington Post, p. A01, Sep. 17, 2000 http://www.cs.cmu.edu-nursebot/web/press/wash/index.html.
Tahboub, Karim A. et al., “Dynamics Analysis and Control of a Holonomic Vehicle With Continously Variable Transmission”, Mar. 2002, Journal of Dynamic Systems, Measurement, and Control, ASME vol. 124, pp. 118-126.
Tendick et al., “Human-Machine Interfaces for Minimally Invasive Surgery”, 1997, IEEE, pp. 2771-2776.
Thrun et al, “Probabilistic Algorithms and the Interactive Museum Tour-Guide Robot Minerva”, 2000, Internet pp. 1-35.
Tzafestas, et al., “VR-based Teleoperation of a Mobile Robotic Assistant: Progress Report”, Nov. 2000, Internet, pp. 1-23.
Urquhart, Kim, “InTouch's robotic Companion ‘beams up’ healthcare experts”, Medical Device Daily, vol. 7, No. 39, Feb. 27, 2003, p. 1, 4.
Weiss et al., Telework and video-mediated communication: Importance of real-time, interactive communication for workers with disabilities, pp. 1-4, California State University Northridge, http://www.csun.edu/cod/conf/1999/proceedings/session0238.html.
West et al., “Design of Ball Wheel Mechanisms for Omnidirectional Vehicles with Full Mobility and Invariant Kinematics”, Journal of Mechanical Design, vol. 119, pp. 153-161, Jun. 1997.
Yamasaki et al., Applying Personal Robots and Active Interface to Video Conference Systems, 1995, Internet, pp. 243-248.
Yamauchi et al., PackBot: A Versatile Platform for Military Robotics, 2004, Internet, pp. 1-10.
Yong et al., “Robot task execution with telepresence using virtual reality technology”, 1998, Internet, pp. 1-9.
Zamrazil, Kristie, “Telemedicine in Texas: Public Policy Concerns”, House Research Organization Focus Report, Texas House of Representatives, No. 76-22, May 5, 2000 http://www.hro.house.state.tx.us/focus/telemed.pdf.
Zipperer, Lorri, “Robotic dispensing system”, 1999, Internet, pp. 1-2.
Zorn, Benjamin G., “Ubiquitous Telepresence”, http://www.cs.colorado.edu/˜zorn/ut/vision/vision.html, Mar. 5, 1996.
Linebarger, et al., “Concurrency Control Mechanisms for Closely Coupled Collaboration in Multithreaded Virtual Environments”, Presence, Special Issue on Advances in Collaborative VEs, 2004.
Yamauchi, “PackBot: A Versatile Platform for Military Robotics”, Internet, 2004, pp. 1-10.
Yong, et al., “Robot task execution with telepresence using virtual reality technology”, Internet, 1998, pp. 1-8.
Zamrazil, “Telemedicine in Texas: Public Policy Concerns”, House Research Organization Focus Report, Texas House of Representatives, http://www.hro.house.state.tx.us/focus/telemed.pdf, May 5, 2000, pp. 76-22.
Zipperer, “Robotic dispensing system”, ISMP Medication Safety Alert! vol. 4, Issue 17, Aug. 25, 1999, pp. 1-2.
Zorn, “Ubiquitous Telepresence”, http://www.cs.colorado.edu/-zorn/utlvision/vision.html, Mar. 3, 1996.
Barrett, “Video Conferencing Business Soars as Companies Cut Travel; Some Travel Cuts Are Permanent”, http://www.ivci.com/international—videoconferencing—news—videoconferencing—news—19.html, Mar. 13, 2002.
Brooks, “A Robust Layered Control System for a Mobile Robot,” IEEE Journal of Robotics and Automation, 2 (1), Mar. 1986, 10 pgs.
Candelas, et al., “Flexible virtual and remote laboratory for teaching Robotics”, FORMATEX 2006; Proc. Advance in Control Education Madrid, Spain, Jun. 2006, pp. 21-23.
Davis, “Meet iRobot, The Smartest Webcam on Wheels,” Wired Magazine, 8.09, http://www.wired.com/wired/archive/8.09/irobot—pr.html, Sep. 2000, 2 pgs.
Dean, et al., “1992 AAAI Robot Exhibition and Competition,” AI Magazine, Spring 1993, 10 pgs.
“Defendant VGo Communications, Inc.'s Invalidity Contentions Pursuant to the Feb. 27, 2012 Civil Minute Order”, May 2, 2012.
“Defendant-Counterclaimant VGo Communications, Inc.'s Supplemental Invalidity Contentions Pursuant to the Feb. 27, 2012 Civil Minute Order”, May 14, 2012.
DiGiorgio, “Is Your Emergency Department of the Leading Edge?”, Internet, 2005, pp. 1-4.
Dudenhoeffer, et al., “Command and Control Architectures for Autonomous Micro-Robotic Forces”, http://www.inl.gov/technicalpublications/Documents/3157051.pdf, Apr. 2001.
Elhajj, “Real-Time Haptic Feedback in Internet-Based Telerobotic Operation”, IEEE International Conference on Electro/Information Technology, http://www.egr.msu.edu/˜ralab-web/cgi—bin/internet-teleoperation.php, Jun. 2000.
Fong, “Collaborative Control: A Robot-Centric Model for Vehicle Teleoperation”, The Robotics Institute Carnegie Mellon University, http://web.archive.org/web/20030504040803/www.ricmu.edu/cgi-bin/tech—reports.cgi?year=2001&text=0, Nov. 2001.
Grow, “Office Coworker Robot,” Time Magazine, http://www.time.com/time/specials/packages/article/0,28804,1936165—1936255—1936640,00.html, Nov. 19, 2001, 2 pgs.
ITU, “ITU-T H.281 A Far End Camera Control Protocol for Videoconferences using H.224”, http://www.itu.int/rec/T-RECHch.281-199411-l/en, Nov. 1994.
ITU, “ITU-T H.450.11 Call Intrusion Supplementary Service for H.323”, http://www.itu.int/rec/T-RECH.450.11-200103-I/en, Mar. 2001.
ITU, “ITU-T H.450.9 Call Completion Supplementary Services for H.323”, http://www.itu.int/rec/T-RECH.450.9-200011-I/en, Nov. 2000.
Keller, et al., “Raven Interface Project”, Fall 2001, http://upclose.lrdc.pitt.edu/people/louw—assets/Raven—Slides.pps , Fall 2001.
Knight, et al., “Active Visual Alignment of a Mobile Stereo Camera Platform”, Proceedings of the IEEE, International Conference on Robotics and Automation, San Francisco, Apr. 24-28, 2000, pp. 3202-3208.
Metz, “HP Labs”, PCMAG.com, http://www.pcmag.com/article2/0,2817,1130820,00.asp, Jul. 1, 2003.
Picturetel, “PictureTel Live200 for Windows NT Product Guide”, http://support.polycom.com/global/documents/support/user/products/video/live200—live2OONT—product—guide.pdf, Nov. 1994.
“PictureTel Adds New Features and Functionality to Its Award-Winning Live200 Desktop Videoconferencing System”, PR Newswire Association, LLC, Gale, Cengage Learning, http://www.thefreelibrary.com/PictureTel+Adds+New+Features+And+Functionality+To+Its+Award-Winning...-a019512804, Jun. 13, 1997.
Roach, “Automatic Call Back Service in SIP”, http://tools.ietf.org/pdf/draftroach-sip-acb-00.pdf, Mar. 2000.
Salemi, et al., “MILO: Personal robot platform”, Internet, 2005, pp. 1-6.
Summers, “Microsoft NetMeeting 3 Features excerpt from Official Microsoft NetMeeting 3.0 Book”, http://technet.microsoft.com/en-us/library/cc723477.aspx#XSLTsection121121120120, excerpt from Microsoft Press http://www.computerbooksonline.com/abook.asp?i=0735605823, Mar. 1999.
U.S. Appl. No. 10/783,760, filed Feb. 20, 2004, Wang, et al., 48 pgs.
U.S. Appl. No. 60/449,762, filed Feb. 24, 2003, Wang, et al., 28 pgs.
Weiss, et al., “PEBBLES: A Personal Technology for Meeting Education, Social and Emotional Needs of Hospitalised Children”, Personal and Ubiquitous Computing 5, Springer-Verlag London Ltd., 2001, pp. 157-168.
Zambroski, “CMU, Pitt Developing ‘nursebor’”, http://www.cs.cmu.edu/˜nursebot/web/press/tribunereview.html, Oct. 27, 2000.
Related Publications (1)
Number Date Country
20100073490 A1 Mar 2010 US
Divisions (1)
Number Date Country
Parent 10890891 Jul 2004 US
Child 12413038 US