1. Field of the Invention
The subject matter disclosed generally relates to the field of robotics.
2. Background Information
There is a growing need to provide remote health care to patients that have a variety of ailments ranging from Alzheimers to stress disorders. To minimize costs it is desirable to provide home care for such patients. Home care typically requires a periodic visit by a health care provider such as a nurse or some type of assistant. Due to financial and/or staffing issues the health care provider may not be there when the patient needs some type of assistance. Additionally, existing staff must be continuously trained, which can create a burden on training personnel.
The assignee of this invention(s), InTouch-Health, Inc. markets a remote controlled mobile robot under the trademark COMPANION that can be used by medical personnel to remotely “visit” patients. The COMPANION system includes a mobile robot with a camera, monitor, microphone, speakers, and other equipment that allow for two-way audio/visual communication between the patient and someone operating the system from a remotely located computer.
The COMPANION system includes a joystick that can be manipulated to move a mobile platform of the robot. A forward pivot of the joystick causes a corresponding forward movement of the mobile platform. The joystick button can be depressed to move the camera and allow the user to pan a room. Unfortunately, panning the camera may cause the forward viewing direction depicted by the screen to be different than the forward vector of the mobile platform. A forward pivot of the joystick will cause an angular movement of the robot relative to the field of view provided by the robot camera. This can cause disorientation and in general complicates movement of the robot.
A mobile robot system that is controlled through an input device. The system includes a robot that has a camera located in a camera reference coordinate system, and a mobile platform. The input device causes movement of the camera, and movement of the mobile platform within the camera reference coordinate system.
Disclosed is a robotic system that includes a mobile robot and a remote input device. The input device may be a joystick that is used to move a camera and a mobile platform of the robot. The system may operate in a mode where the mobile platform moves in a camera reference coordinate system. The camera reference coordinate system is fixed to a viewing image provided by the camera so that movement of the robot corresponds to a direction viewed on a screen. This prevents disorientation during movement of the robot if the camera is panned across a viewing area.
Referring to the drawings more particularly by reference numbers,
The remote control station 16 may include a computer 22 that has a monitor 24, a camera 26, a microphone 28 and a speaker 30. The computer 22 may also contain an input device 32 such as a joystick or a mouse. The joystick 32 may have a toggle button 33 that allows the system to operate in two different modes. In one mode the robot moves in a platform reference coordinate system. In another mode the robot moves in a camera reference coordinate system.
The control station 16 is typically located in a place that is remote from the robot 12. Although only one robot 12 and one station 16 are shown, it is to be understood that the system 10 may have a plurality of robots 12 and/or a plurality of remote stations that communicate through the broadband network. In general any number of robots 12 may be controlled by any number of remote stations 16. For example, one remote station 16 may be coupled to a plurality of robots 12, or one robot 12 may be coupled to a plurality of remote stations 16.
The robot 12 includes a mobile platform 34 that is attached to a robot housing 36. Also attached to the robot housing 36 are a camera 38, a monitor 40, a microphone(s) 42 and a speaker 44. The microphone 42 and speaker 30 may create a stereophonic sound. The robot 12 may also have an antenna 45 that is wirelessly coupled to an antenna 46 of the base station 14. The system 10 allows a user at the remote control station 16 to move the robot 12 through the input device 32. The robot camera 38 is coupled to the remote monitor 24 so that a user at the remote station 16 can view a patient. Likewise, the robot monitor 40 is coupled to the remote camera 26 so that the patient can view the user. The microphones 28 and 42, and speakers 30 and 44, allow for audible communication between the patient and the user.
Each remote station computer 22 may operate Microsoft OS software and WINDOWS XP or other operating systems such as LINUX. The remote computer 22 may also operate a video driver, a camera driver, an audio driver and a joystick driver. The video images may be transmitted and received with compression software such as MPEG CODEC.
The speaker 44 is coupled to the bus 56 by a digital to analog converter 64. The microphone 42 is coupled to the bus 56 by an analog to digital converter 66. The high level controller 50 may also contain random access memory (RAM) device 68, a non-volatile RAM device 70 and a mass storage device 72 that are all coupled to the bus 62. The mass storage device 72 may contain medical files of the patient that can be accessed by the user at the remote control station 16. For example, the mass storage device 72 may contain a picture of the patient. The user, particularly a health care provider, can recall the old picture and make a side by side comparison on the monitor 24 with a present video image of the patient provided by the camera 38. The robot antennae 45 may be coupled to a wireless transceiver 74. By way of example, the transceiver 74 may transmit and receive information in accordance with IEEE 802.11b.
The controller 54 may operate with a LINUX OS operating system. The controller 54 may also operate MS WINDOWS along with video, camera and audio drivers for communication with the remote control station 16. Video information may be transceived using MPEG CODEC compression techniques. The software may allow the user to send e-mail to the patient and vice versa, or allow the patient to access the Internet. In general the high level controller 50 operates to control the communication between the robot 12 and the remote control station 16.
The high level controller 50 may be linked to the low level controller 52 by serial ports 76 and 78. The low level controller 52 includes a processor 80 that is coupled to a RAM device 82 and non-volatile RAM device 84 by a bus 86. The robot 12 contains a plurality of motors 88 and motor encoders 90. The encoders 90 provide feedback information regarding the output of the motors 88. The motors 88 can be coupled to the bus 86 by a digital to analog converter 92 and a driver amplifier 94. The encoders 90 can be coupled to the bus 86 by a decoder 96. The robot 12 also has a number of proximity sensors 98 (see also
The low level controller 52 runs software routines that mechanically actuate the robot 12. For example, the low level controller 52 provides instructions to actuate the movement platform to move the robot 12. The low level controller 52 may receive movement instructions from the high level controller 50. The movement instructions may be received as movement commands from the remote control station 16. Although two controllers are shown, it is to be understood that the robot 12 may have one controller controlling the high and low level functions.
The various electrical devices of the robot 12 may be powered by a battery(ies) 104. The battery 104 may be recharged by a battery recharger station 106 (see also FIG. 1). The low level controller 52 may include a battery control circuit 108 that senses the power level of the battery 104. The low level controller 52 can sense when the power falls below a threshold and then send a message to the high level controller 50. The high level controller 50 may include a power management software routine that causes the robot 12 to move so that the battery 104 is coupled to the recharger 106 when the battery power falls below a threshold value. Alternatively, the user can direct the robot 12 to the battery recharger 106. Additionally, the battery 104 may be replaced or the robot 12 may be coupled to a wall power outlet by an electrical cord (not shown).
The robot 12 may have a pedestal assembly 114 that supports the camera 38 and the monitor 40. The pedestal assembly 114 may have two degrees of freedom so that the camera 26 and monitor 24 can be swiveled and pivoted as indicated by the arrows.
The platform 110 is located within a platform reference coordinate system that may have axes Xp, Yp and Zp. By way of example, the y-axis Yp may extend from a nose of the platform 110. The camera 38 is fixed to a camera reference coordinate system that may have axes Xc, Yc and Zc. The y-axis Yc may extend perpendicular from the camera lens. When the robot is initialized, the y-axis Yc of the camera coordinate system may be aligned with the y-axis Yp of the platform coordinate system. A forward pivoting of the joystick 32 (shown in
The robot may have a drive vector that may have axes Xd, Yd, and Zd that is mapped to the camera coordinate system, the platform coordinate system or some other system. By way of example, the y-axis Yp may extend in the direction of forward motion. Mapping includes the process of transforming an input command into a directional movement relative to one or more coordinate systems. The robot controller may perform certain algorithms to translate input commands to platform movement in accordance with a specified mapping scheme. For example, when the drive vector is mapped to the camera coordinate system the controller computes the drive vector of the input command relative to the camera coordinate system. In a platform mapping scheme the input drive vector is computed relative to the platform coordinate system. In yet another scheme the drive vector can be computed relative to another coordinate system, such as a world coordinate system (eg. coordinate system relative to the ground) that is independent of the camera or platform coordinate systems. Mapping the drive vector to the camera coordinate system may be desirable because all movement would be relative to the image viewed by the user, providing a system that is intuitive to use.
A twisting of the joystick 32 may cause the camera 38 to swivel as indicated by arrows 4. For example, if the joystick 32 is twisted +45 degrees the camera 38 will pivot +45 degrees. Swiveling the camera 38 also moves the y-axis Yc of the camera coordinate system, because the y-axis Yc is fixed to the camera. This may be different than the drive direction. The remote station computer may operate a program to generate a command that will automatically rotate the platform 110 to realign the y-axis Yp of the platform coordinate system with the y-axis Yc of the camera coordinate system. For the above example, the platform 110 is rotated +45 degrees. This approach keeps the platform 110 aligned with the camera 38, so that any subsequent movement of the robot will be intuitive relative to the image provided by the camera. For example, a forward pivot of the joystick will induce a forward movement of the robot as viewed through the monitor of the remote station. In this driving scheme, the platform may not be aligned with the head. The computer may generate trajectory planning for the platform coordinate system to move into alignment with the head coordinate system over a period of time or distance traveled, with or without an initial delay in time or some distance.
The system may be configured so that pivotal movement of the joystick 32 may be mapped to a corresponding directional movement of the robot as shown in
In general the robot may have a number of different mapping schemes and relative, dependent or independent, movement between the camera, the platform and drive direction. Relative movement between the camera and platform may occur in a camera based mapping scheme, a platform based mapping scheme, or some other scheme.
Although, the automatic platform rotation commands have been described as be generated by the remote station computer, it is to be understood that the robot may determine the commands and signals necessary to re-orient the platform 110 and/or the camera 38. The robot 12 may include a potentiometer (not shown) that tracks the position of the camera and provides feedback to the low level controller 80. The low level controller 80 may automatically rotate the platform to align the y-axes Yc and Yp or otherwise compensate for camera movement. The mode button 33 may allow the operator to place the system in either a tracking mode or a normal mode. In the tracking mode the robot moves relative to the camera coordinate system so that movement is intuitive relative to the screen even when the camera is panned. In normal mode the robot moves within the platform coordinate system.
The robot housing 112 may include a bumper 122. The bumper 122 may be coupled to optical position sensors 123 that detect when the bumper 122 has engaged an object. After engagement with the object the robot can determine the direction of contact and prevent further movement into the object.
The transmission rollers 126 are coupled to a motor assembly 132. The assembly 132 corresponds to the motor 88 shown in
Rotation of the output pulley 134 rotates the ball pulleys 138. Rotation of the ball pulleys 138 causes the transmission rollers 126 to rotate and spin the ball 124 through frictional forces. Spinning the ball 124 will move the robot 12. The transmission rollers 126 are constructed to always be in contact with the drive ball 124. The brackets 142 allow the transmission rollers 126 to freely spin in a direction orthogonal to the drive direction when one of the other roller assemblies 120 is driving and moving the robot 12.
As shown in
As shown in
In operation, the robot 12 may be placed in a home or a facility where one or more patients are to be monitored and/or assisted. The facility may be a hospital or a residential care facility. By way of example, the robot 12 may be placed in a home where a health care provider may monitor and/or assist the patient. Likewise, a friend or family member may communicate with the patient. The cameras and monitors at both the robot and remote control stations allow for teleconferencing between the patient and the person at the remote station(s).
The robot 12 can be maneuvered through the home or facility by manipulating the input device 32 at a remote station 16. The robot 10 may be controlled by a number of different users. To accommodate for this the robot may have an arbitration system. The arbitration system may be integrated into the operating system of the robot 12. For example, the arbitration technique may be embedded into the operating system of the high-level controller 50.
By way of example, the users may be divided into classes that include the robot itself, a local user, a caregiver, a doctor, a family member, or a service provider. The robot 12 may override input commands that conflict with robot operation. For example, if the robot runs into a wall, the system may ignore all additional commands to continue in the direction of the wall. A local user is a person who is physically present with the robot. The robot could have an input device that allows local operation. For example, the robot may incorporate a voice recognition system that receives and interprets audible commands.
A caregiver is someone who remotely monitors the patient. A doctor is a medical professional who can remotely control the robot and also access medical files contained in the robot memory. The family and service users remotely access the robot. The service user may service the system such as by upgrading software, or setting operational parameters.
The robot 12 may operate in one of two different modes; an exclusive mode, or a sharing mode. In the exclusive mode only one user has access control of the robot. The exclusive mode may have a priority assigned to each type of user. By way of example, the priority may be in order of local, doctor, caregiver, family and then service user. In the sharing mode two or more users may share access with the robot. For example, a caregiver may have access to the robot, the caregiver may then enter the sharing mode to allow a doctor to also access the robot. Both the caregiver and the doctor can conduct a simultaneous tele-conference with the patient.
The arbitration scheme may have one of four mechanisms; notification, timeouts, queue and call back. The notification mechanism may inform either a present user or a requesting user that another user has, or wants, access to the robot. The timeout mechanism gives certain types of users a prescribed amount of time to finish access to the robot. The queue mechanism is an orderly waiting list for access to the robot. The call back mechanism informs a user that the robot can be accessed. By way of example, a family user may receive an e-mail message that the robot is free for usage. Tables I and II, show how the mechanisms resolve access request from the various users.
The information transmitted between the station 16 and the robot 12 may be encrypted. Additionally, the user may have to enter a password to enter the system 10. A selected robot is then given an electronic key by the station 16. The robot 12 validates the key and returns another key to the station 16. The keys are used to encrypt information transmitted in the session.
The robot 12 and remote station 16 transmit commands through the broadband network 18. The commands can be generated by the user in a variety of ways. For example, commands to move the robot may be generated by moving the joystick 32 (see
Table IV provides a list of reporting commands that are generated by the robot and transmitted to the remote station through the network.
While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art.
This application is a divisional application of claiming priority to U.S. application Ser. No. 10/890,891, filed Jul. 13, 2004, pending.
Number | Name | Date | Kind |
---|---|---|---|
3821995 | Aghnides | Jul 1974 | A |
4413693 | Derby | Nov 1983 | A |
4471354 | Smith | Sep 1984 | A |
4519466 | Shiraishi | May 1985 | A |
4572594 | Schwartz | Feb 1986 | A |
4625274 | Schroeder | Nov 1986 | A |
4638445 | Mattaboni | Jan 1987 | A |
4652204 | Arnett | Mar 1987 | A |
4669168 | Tamura et al. | Jun 1987 | A |
4697472 | Hiyane | Oct 1987 | A |
4709265 | Silverman et al. | Nov 1987 | A |
4733737 | Falamak | Mar 1988 | A |
4751658 | Kadonoff et al. | Jun 1988 | A |
4766581 | Korn et al. | Aug 1988 | A |
4777416 | George, II et al. | Oct 1988 | A |
4797557 | Ohman | Jan 1989 | A |
4803625 | Fu et al. | Feb 1989 | A |
4847764 | Halvorson | Jul 1989 | A |
4875172 | Kanayama | Oct 1989 | A |
4942512 | Kohno | Jul 1990 | A |
4942538 | Yuan et al. | Jul 1990 | A |
4953159 | Hayden et al. | Aug 1990 | A |
4974607 | Miwa | Dec 1990 | A |
4977971 | Crane, III et al. | Dec 1990 | A |
5006988 | Borenstein et al. | Apr 1991 | A |
5040116 | Evans et al. | Aug 1991 | A |
5051906 | Evans et al. | Sep 1991 | A |
5073749 | Kanayama | Dec 1991 | A |
5084828 | Kaufman et al. | Jan 1992 | A |
5130794 | Ritchey | Jul 1992 | A |
5148591 | Pryor | Sep 1992 | A |
5153833 | Gordon et al. | Oct 1992 | A |
5155684 | Burke et al. | Oct 1992 | A |
5157491 | Kassatly | Oct 1992 | A |
5182641 | Diner et al. | Jan 1993 | A |
5186270 | West | Feb 1993 | A |
5193143 | Kaemmerer et al. | Mar 1993 | A |
5217453 | Wilk | Jun 1993 | A |
5224157 | Yamada et al. | Jun 1993 | A |
5231693 | Backes et al. | Jul 1993 | A |
5236432 | Matsen, II et al. | Aug 1993 | A |
5413693 | Derby | Nov 1993 | A |
5305427 | Nagata | Apr 1994 | A |
5315287 | Sol | May 1994 | A |
5319611 | Korba | Jun 1994 | A |
5341242 | Gilboa et al. | Aug 1994 | A |
5341459 | Backes | Aug 1994 | A |
5341854 | Zezulka et al. | Aug 1994 | A |
5347457 | Tanaka et al. | Sep 1994 | A |
5350033 | Kraft | Sep 1994 | A |
5366896 | Margrey et al. | Nov 1994 | A |
5374879 | Pin et al. | Dec 1994 | A |
5417210 | Funda et al. | May 1995 | A |
5419008 | West | May 1995 | A |
5436542 | Petelin et al. | Jul 1995 | A |
5441042 | Putman | Aug 1995 | A |
5441047 | David et al. | Aug 1995 | A |
5442728 | Kaufman et al. | Aug 1995 | A |
5462051 | Oka et al. | Oct 1995 | A |
5486853 | Baxter et al. | Jan 1996 | A |
5510832 | Garcia | Apr 1996 | A |
5528289 | Cortjens et al. | Jun 1996 | A |
5539741 | Barraclough et al. | Jul 1996 | A |
5544649 | David et al. | Aug 1996 | A |
5550577 | Verbiest et al. | Aug 1996 | A |
5553609 | Chen et al. | Sep 1996 | A |
5572229 | Fisher | Nov 1996 | A |
5572999 | Funda et al. | Nov 1996 | A |
5594859 | Palmer et al. | Jan 1997 | A |
5600573 | Hendricks et al. | Feb 1997 | A |
5630566 | Case | May 1997 | A |
5636218 | Ishikawa | Jun 1997 | A |
5652849 | Conway et al. | Jul 1997 | A |
5657246 | Hogan et al. | Aug 1997 | A |
5659779 | Laird et al. | Aug 1997 | A |
5682199 | Lankford | Oct 1997 | A |
5684695 | Bauer | Nov 1997 | A |
5701904 | Simmons et al. | Dec 1997 | A |
5739657 | Takayama et al. | Apr 1998 | A |
5749058 | Hashimoto | May 1998 | A |
5749362 | Funda et al. | May 1998 | A |
5762458 | Wang et al. | Jun 1998 | A |
5764731 | Yablon | Jun 1998 | A |
5767897 | Howell | Jun 1998 | A |
5786846 | Hiroaki | Jul 1998 | A |
5802494 | Kuno | Sep 1998 | A |
5836872 | Kenet et al. | Nov 1998 | A |
5838575 | Lion | Nov 1998 | A |
5857534 | DeVault et al. | Jan 1999 | A |
5867653 | Aras et al. | Feb 1999 | A |
5871451 | Unger et al. | Feb 1999 | A |
5876325 | Mizuno et al. | Mar 1999 | A |
5911036 | Wright et al. | Jun 1999 | A |
5917958 | Nunally et al. | Jun 1999 | A |
5927423 | Wada et al. | Jul 1999 | A |
5949758 | Kober | Sep 1999 | A |
5954692 | Smith et al. | Sep 1999 | A |
5959423 | Nakanishi et al. | Sep 1999 | A |
5966130 | Benman, Jr. | Oct 1999 | A |
5973724 | Riddle | Oct 1999 | A |
5974446 | Sonnenreich et al. | Oct 1999 | A |
5995884 | Allen et al. | Nov 1999 | A |
5999977 | Riddle | Dec 1999 | A |
6006946 | Williams et al. | Dec 1999 | A |
6036812 | Williams et al. | Mar 2000 | A |
6133944 | Braun et al. | Oct 2000 | A |
6135228 | Asada et al. | Oct 2000 | A |
6148100 | Anderson et al. | Nov 2000 | A |
6170929 | Wilson et al. | Jan 2001 | B1 |
6175779 | Barrett | Jan 2001 | B1 |
6201984 | Funda et al. | Mar 2001 | B1 |
6211903 | Bullister | Apr 2001 | B1 |
6219587 | Ahlin et al. | Apr 2001 | B1 |
6232735 | Baba et al. | May 2001 | B1 |
6233504 | Das et al. | May 2001 | B1 |
6256556 | Zenke | Jul 2001 | B1 |
6259806 | Green | Jul 2001 | B1 |
6259956 | Myers et al. | Jul 2001 | B1 |
6266162 | Okamura et al. | Jul 2001 | B1 |
6266577 | Popp et al. | Jul 2001 | B1 |
6289263 | Mukherjee | Sep 2001 | B1 |
6292713 | Jouppi et al. | Sep 2001 | B1 |
6304050 | Skaar et al. | Oct 2001 | B1 |
6321137 | De Smet | Nov 2001 | B1 |
6325756 | Webb et al. | Dec 2001 | B1 |
6327516 | Zenke | Dec 2001 | B1 |
6330486 | Padula | Dec 2001 | B1 |
6330493 | Takahashi et al. | Dec 2001 | B1 |
6346950 | Jouppi | Feb 2002 | B1 |
6346962 | Goodridge | Feb 2002 | B1 |
6369847 | James et al. | Apr 2002 | B1 |
6381515 | Inoue et al. | Apr 2002 | B1 |
6408230 | Wada | Jun 2002 | B2 |
6430471 | Kintou et al. | Aug 2002 | B1 |
6430475 | Okamoto et al. | Aug 2002 | B2 |
6438457 | Yokoo et al. | Aug 2002 | B1 |
6452915 | Jorgensen | Sep 2002 | B1 |
6457043 | Kwak et al. | Sep 2002 | B1 |
6459955 | Bartsch et al. | Oct 2002 | B1 |
6463352 | Tadokoro et al. | Oct 2002 | B1 |
6463361 | Wang et al. | Oct 2002 | B1 |
6466844 | Ikeda et al. | Oct 2002 | B1 |
6468265 | Evans et al. | Oct 2002 | B1 |
6474434 | Bech | Nov 2002 | B1 |
6480762 | Uchikubo et al. | Nov 2002 | B1 |
6491701 | Tierney et al. | Dec 2002 | B2 |
6496099 | Wang et al. | Dec 2002 | B2 |
6496755 | Wallach et al. | Dec 2002 | B2 |
6501740 | Sun et al. | Dec 2002 | B1 |
6507773 | Parker et al. | Jan 2003 | B2 |
6522906 | Salisbury et al. | Feb 2003 | B1 |
6523629 | Buttz et al. | Feb 2003 | B1 |
6526332 | Sakamoto et al. | Feb 2003 | B2 |
6529765 | Franck et al. | Mar 2003 | B1 |
6529802 | Kawakita et al. | Mar 2003 | B1 |
6532404 | Colens | Mar 2003 | B2 |
6535182 | Stanton | Mar 2003 | B2 |
6535793 | Allard | Mar 2003 | B2 |
6540039 | Yu et al. | Apr 2003 | B1 |
6543899 | Covannon et al. | Apr 2003 | B2 |
6549215 | Jouppi | Apr 2003 | B2 |
6563533 | Colby | May 2003 | B1 |
6580246 | Jacobs | Jun 2003 | B2 |
6581798 | Liff et al. | Jun 2003 | B2 |
6584376 | Van Kommer | Jun 2003 | B1 |
6587750 | Gerbi et al. | Jul 2003 | B2 |
6594269 | Polcyn | Jul 2003 | B1 |
6594552 | Nowlin et al. | Jul 2003 | B1 |
6602469 | Maus et al. | Aug 2003 | B1 |
6604019 | Ahlin et al. | Aug 2003 | B2 |
6604021 | Imai et al. | Aug 2003 | B2 |
6611120 | Song et al. | Aug 2003 | B2 |
6646677 | Noro et al. | Nov 2003 | B2 |
6650748 | Edwards et al. | Nov 2003 | B1 |
6666374 | Green et al. | Dec 2003 | B1 |
6684129 | Salisbury et al. | Jan 2004 | B2 |
6691000 | Nagai et al. | Feb 2004 | B2 |
6710797 | McNelley et al. | Mar 2004 | B1 |
6728599 | Wang et al. | Apr 2004 | B2 |
6763282 | Glenn et al. | Jul 2004 | B2 |
6764373 | Osawa et al. | Jul 2004 | B1 |
6769771 | Trumbull | Aug 2004 | B2 |
6781606 | Jouppi | Aug 2004 | B2 |
6784916 | Smith | Aug 2004 | B2 |
6785589 | Eggenberger et al. | Aug 2004 | B2 |
6791550 | Goldhor et al. | Sep 2004 | B2 |
6798753 | Doganata et al. | Sep 2004 | B1 |
6799065 | Niemeyer | Sep 2004 | B1 |
6799088 | Wang et al. | Sep 2004 | B2 |
6804580 | Stoddard et al. | Oct 2004 | B1 |
6804656 | Rosenfeld et al. | Oct 2004 | B1 |
6810411 | Coughlin et al. | Oct 2004 | B1 |
6836703 | Wang et al. | Dec 2004 | B2 |
6839612 | Sanchez et al. | Jan 2005 | B2 |
6840904 | Goldberg | Jan 2005 | B2 |
6845297 | Allard | Jan 2005 | B2 |
6852107 | Wang et al. | Feb 2005 | B2 |
6853878 | Hirayama et al. | Feb 2005 | B2 |
6853880 | Sakagami et al. | Feb 2005 | B2 |
6871117 | Wang et al. | Mar 2005 | B2 |
6879879 | Jouppi et al. | Apr 2005 | B2 |
6888333 | Laby | May 2005 | B2 |
6892112 | Wang et al. | May 2005 | B2 |
6895305 | Lathan et al. | May 2005 | B2 |
6898484 | Lemelson et al. | May 2005 | B2 |
6914622 | Smith et al. | Jul 2005 | B1 |
6925357 | Wang et al. | Aug 2005 | B2 |
6951535 | Ghodoussi et al. | Oct 2005 | B2 |
6952470 | Tioe et al. | Oct 2005 | B1 |
6958706 | Chaco et al. | Oct 2005 | B2 |
6965394 | Gutta et al. | Nov 2005 | B2 |
6995664 | Darling | Feb 2006 | B1 |
7030757 | Matsuhira et al. | Apr 2006 | B2 |
7058689 | Parker et al. | Jun 2006 | B2 |
7092001 | Schulz | Aug 2006 | B2 |
7096090 | Zweig | Aug 2006 | B1 |
7115102 | Abbruscato | Oct 2006 | B2 |
7117067 | McLurkin et al. | Oct 2006 | B2 |
7123285 | Smith et al. | Oct 2006 | B2 |
7123974 | Hamilton | Oct 2006 | B1 |
7123991 | Graf et al. | Oct 2006 | B2 |
7127325 | Nagata et al. | Oct 2006 | B2 |
7129970 | James et al. | Oct 2006 | B2 |
7133062 | Castles | Nov 2006 | B2 |
7142945 | Wang et al. | Nov 2006 | B2 |
7142947 | Wang et al. | Nov 2006 | B2 |
7151982 | Liff | Dec 2006 | B2 |
7154526 | Foote et al. | Dec 2006 | B2 |
7155306 | Haitin et al. | Dec 2006 | B2 |
7156809 | Quy | Jan 2007 | B2 |
7158859 | Wang et al. | Jan 2007 | B2 |
7158860 | Wang et al. | Jan 2007 | B2 |
7161322 | Wang et al. | Jan 2007 | B2 |
7162338 | Goncalves et al. | Jan 2007 | B2 |
7164969 | Wang et al. | Jan 2007 | B2 |
7171286 | Wang et al. | Jan 2007 | B2 |
7174238 | Zweig | Feb 2007 | B1 |
7184559 | Jouppi | Feb 2007 | B2 |
7188000 | Chiappetta et al. | Mar 2007 | B2 |
7199790 | Rosenberg et al. | Apr 2007 | B2 |
7202851 | Cunningham et al. | Apr 2007 | B2 |
7206627 | Abovitz et al. | Apr 2007 | B2 |
7215786 | Nakadai et al. | May 2007 | B2 |
7227334 | Yang et al. | Jun 2007 | B2 |
7256708 | Rosenfeld et al. | Aug 2007 | B2 |
7262573 | Wang et al. | Aug 2007 | B2 |
7289883 | Wang et al. | Oct 2007 | B2 |
7292912 | Wang et al. | Nov 2007 | B2 |
7321807 | Laski | Jan 2008 | B2 |
7346429 | Goldenberg et al. | Mar 2008 | B2 |
7382399 | McCall | Jun 2008 | B1 |
7386730 | Uchikubo | Jun 2008 | B2 |
7432949 | Remy et al. | Oct 2008 | B2 |
7441953 | Banks | Oct 2008 | B2 |
7525281 | Koyanagi et al. | Apr 2009 | B2 |
7535486 | Motomura et al. | May 2009 | B2 |
7593030 | Wang et al. | Sep 2009 | B2 |
7624166 | Foote et al. | Nov 2009 | B2 |
7719229 | Kaneko et al. | May 2010 | B2 |
7761185 | Wang et al. | Jul 2010 | B2 |
7769492 | Wang et al. | Aug 2010 | B2 |
7813836 | Wang et al. | Oct 2010 | B2 |
7831575 | Trossell et al. | Nov 2010 | B2 |
7835775 | Sawayama et al. | Nov 2010 | B2 |
RE42288 | Degioanni | Apr 2011 | E |
7924323 | Walker et al. | Apr 2011 | B2 |
7982763 | King | Jul 2011 | B2 |
8077963 | Wang et al. | Dec 2011 | B2 |
8116910 | Walters et al. | Feb 2012 | B2 |
8170241 | Roe et al. | May 2012 | B2 |
8179418 | Wright et al. | May 2012 | B2 |
8209051 | Wang et al. | Jun 2012 | B2 |
20010002448 | Wilson et al. | May 2001 | A1 |
20010010053 | Ben-Shachar et al. | Jul 2001 | A1 |
20010034475 | Flach et al. | Oct 2001 | A1 |
20010034544 | Mo | Oct 2001 | A1 |
20010037163 | Allard | Nov 2001 | A1 |
20010051881 | Filler | Dec 2001 | A1 |
20010054071 | Loeb | Dec 2001 | A1 |
20010055373 | Yamashita | Dec 2001 | A1 |
20020015296 | Howell | Feb 2002 | A1 |
20020027597 | Sachau | Mar 2002 | A1 |
20020049517 | Ruffner | Apr 2002 | A1 |
20020055917 | Muraca | May 2002 | A1 |
20020057279 | Jouppi | May 2002 | A1 |
20020058929 | Green | May 2002 | A1 |
20020059587 | Cofano et al. | May 2002 | A1 |
20020063726 | Jouppi | May 2002 | A1 |
20020073429 | Beane et al. | Jun 2002 | A1 |
20020082498 | Wendt et al. | Jun 2002 | A1 |
20020095238 | Ahlin et al. | Jul 2002 | A1 |
20020098879 | Rheey | Jul 2002 | A1 |
20020104094 | Alexander et al. | Aug 2002 | A1 |
20020111988 | Sato | Aug 2002 | A1 |
20020120362 | Lathan et al. | Aug 2002 | A1 |
20020130950 | James et al. | Sep 2002 | A1 |
20020141595 | Jouppi | Oct 2002 | A1 |
20020143923 | Alexander | Oct 2002 | A1 |
20020177925 | Onishi et al. | Nov 2002 | A1 |
20020183894 | Wang et al. | Dec 2002 | A1 |
20020184674 | Xi et al. | Dec 2002 | A1 |
20020186243 | Ellis et al. | Dec 2002 | A1 |
20030030397 | Simmons | Feb 2003 | A1 |
20030048481 | Kobayashi et al. | Mar 2003 | A1 |
20030050733 | Wang et al. | Mar 2003 | A1 |
20030060808 | Wilk | Mar 2003 | A1 |
20030063600 | Noma et al. | Apr 2003 | A1 |
20030069752 | Ledain et al. | Apr 2003 | A1 |
20030100892 | Morley et al. | May 2003 | A1 |
20030104806 | Ruef et al. | Jun 2003 | A1 |
20030114962 | Niemeyer | Jun 2003 | A1 |
20030126361 | Slater et al. | Jul 2003 | A1 |
20030135203 | Wang et al. | Jul 2003 | A1 |
20030144579 | Buss | Jul 2003 | A1 |
20030144649 | Ghodoussi et al. | Jul 2003 | A1 |
20030151658 | Smith | Aug 2003 | A1 |
20030171710 | Bassuk et al. | Sep 2003 | A1 |
20030174285 | Trumbull | Sep 2003 | A1 |
20030180697 | Kim et al. | Sep 2003 | A1 |
20030199000 | Valkirs et al. | Oct 2003 | A1 |
20030206242 | Choi | Nov 2003 | A1 |
20030216834 | Allard | Nov 2003 | A1 |
20030220541 | Salisbury, Jr. et al. | Nov 2003 | A1 |
20030220715 | Kneifel et al. | Nov 2003 | A1 |
20030231244 | Bonilla et al. | Dec 2003 | A1 |
20030232649 | Gizis et al. | Dec 2003 | A1 |
20040010344 | Hiratsuka et al. | Jan 2004 | A1 |
20040012362 | Tsurumi | Jan 2004 | A1 |
20040013295 | Sabe et al. | Jan 2004 | A1 |
20040019406 | Wang et al. | Jan 2004 | A1 |
20040024490 | McLurkin et al. | Feb 2004 | A1 |
20040041904 | Lapalme et al. | Mar 2004 | A1 |
20040065073 | Nash | Apr 2004 | A1 |
20040068657 | Alexander et al. | Apr 2004 | A1 |
20040078219 | Kaylor et al. | Apr 2004 | A1 |
20040080610 | James et al. | Apr 2004 | A1 |
20040088077 | Jouppi et al. | May 2004 | A1 |
20040093409 | Thompson et al. | May 2004 | A1 |
20040098167 | Yi et al. | May 2004 | A1 |
20040102167 | Shim et al. | May 2004 | A1 |
20040117065 | Wang et al. | Jun 2004 | A1 |
20040138547 | Wang et al. | Jul 2004 | A1 |
20040143421 | Wang et al. | Jul 2004 | A1 |
20040148638 | Weisman et al. | Jul 2004 | A1 |
20040153211 | Kamoto et al. | Aug 2004 | A1 |
20040157612 | Kim | Aug 2004 | A1 |
20040162637 | Wang et al. | Aug 2004 | A1 |
20040167666 | Wang et al. | Aug 2004 | A1 |
20040167668 | Wang et al. | Aug 2004 | A1 |
20040170300 | Jouppi | Sep 2004 | A1 |
20040172301 | Mihai et al. | Sep 2004 | A1 |
20040174129 | Wang et al. | Sep 2004 | A1 |
20040175684 | Kaasa et al. | Sep 2004 | A1 |
20040179714 | Jouppi et al. | Sep 2004 | A1 |
20040189700 | Mandavilli et al. | Sep 2004 | A1 |
20040201602 | Mody et al. | Oct 2004 | A1 |
20040215490 | Duchon et al. | Oct 2004 | A1 |
20040224676 | Iseki | Nov 2004 | A1 |
20040230340 | Fukuchi et al. | Nov 2004 | A1 |
20040240981 | Dothan et al. | Dec 2004 | A1 |
20050003330 | Asgarinejad | Jan 2005 | A1 |
20050007445 | Foote et al. | Jan 2005 | A1 |
20050013149 | Trossell | Jan 2005 | A1 |
20050021182 | Wang | Jan 2005 | A1 |
20050021183 | Wang et al. | Jan 2005 | A1 |
20050021187 | Wang et al. | Jan 2005 | A1 |
20050021309 | Alexander et al. | Jan 2005 | A1 |
20050024485 | Castles et al. | Feb 2005 | A1 |
20050027567 | Taha | Feb 2005 | A1 |
20050027794 | Decker | Feb 2005 | A1 |
20050028221 | Liu et al. | Feb 2005 | A1 |
20050035862 | Wildman et al. | Feb 2005 | A1 |
20050038416 | Wang et al. | Feb 2005 | A1 |
20050038564 | Burick | Feb 2005 | A1 |
20050049898 | Hirakawa | Mar 2005 | A1 |
20050052527 | Remy et al. | Mar 2005 | A1 |
20050065435 | Rauch et al. | Mar 2005 | A1 |
20050065438 | Miller | Mar 2005 | A1 |
20050065659 | Tanaka et al. | Mar 2005 | A1 |
20050065813 | Mishelevich et al. | Mar 2005 | A1 |
20050071046 | Miyazaki et al. | Mar 2005 | A1 |
20050083011 | Yang et al. | Apr 2005 | A1 |
20050099493 | Chew | May 2005 | A1 |
20050104964 | Bovyrin et al. | May 2005 | A1 |
20050110867 | Schulz | May 2005 | A1 |
20050122390 | Wang et al. | Jun 2005 | A1 |
20050154265 | Miro et al. | Jul 2005 | A1 |
20050182322 | Grispo | Aug 2005 | A1 |
20050192721 | Jouppi | Sep 2005 | A1 |
20050204438 | Wang et al. | Sep 2005 | A1 |
20050212478 | Takenaka | Sep 2005 | A1 |
20050219356 | Smith et al. | Oct 2005 | A1 |
20050225634 | Brunetti et al. | Oct 2005 | A1 |
20050231156 | Yan | Oct 2005 | A1 |
20050232647 | Takenaka | Oct 2005 | A1 |
20050267826 | Levy et al. | Dec 2005 | A1 |
20050283414 | Fernandes et al. | Dec 2005 | A1 |
20060007943 | Fellman | Jan 2006 | A1 |
20060013263 | Fellman | Jan 2006 | A1 |
20060013469 | Wang et al. | Jan 2006 | A1 |
20060013488 | Inoue | Jan 2006 | A1 |
20060029065 | Fellman | Feb 2006 | A1 |
20060047365 | Ghodoussi et al. | Mar 2006 | A1 |
20060048286 | Donato | Mar 2006 | A1 |
20060052676 | Wang et al. | Mar 2006 | A1 |
20060052684 | Takahashi et al. | Mar 2006 | A1 |
20060064212 | Thorne | Mar 2006 | A1 |
20060074525 | Close et al. | Apr 2006 | A1 |
20060082642 | Wang et al. | Apr 2006 | A1 |
20060087746 | Lipow | Apr 2006 | A1 |
20060095158 | Lee et al. | May 2006 | A1 |
20060095170 | Yang et al. | May 2006 | A1 |
20060098573 | Beer et al. | May 2006 | A1 |
20060103659 | Karandikar et al. | May 2006 | A1 |
20060104279 | Fellman et al. | May 2006 | A1 |
20060106493 | Niemeyer et al. | May 2006 | A1 |
20060122482 | Mariotti et al. | Jun 2006 | A1 |
20060142983 | Sorensen | Jun 2006 | A1 |
20060161303 | Wang et al. | Jul 2006 | A1 |
20060164546 | Adachi | Jul 2006 | A1 |
20060173712 | Joubert | Aug 2006 | A1 |
20060178776 | Feingold et al. | Aug 2006 | A1 |
20060189393 | Edery | Aug 2006 | A1 |
20060195569 | Barker | Aug 2006 | A1 |
20060259193 | Wang et al. | Nov 2006 | A1 |
20060293788 | Pogodin | Dec 2006 | A1 |
20070021871 | Wang et al. | Jan 2007 | A1 |
20070046237 | Lakshmanan et al. | Mar 2007 | A1 |
20070050937 | Song et al. | Mar 2007 | A1 |
20070064092 | Sandbeg et al. | Mar 2007 | A1 |
20070078566 | Wang et al. | Apr 2007 | A1 |
20070112700 | Den et al. | May 2007 | A1 |
20070117516 | Saidi et al. | May 2007 | A1 |
20070120965 | Sandberg et al. | May 2007 | A1 |
20070122783 | Habashi | May 2007 | A1 |
20070135967 | Jung et al. | Jun 2007 | A1 |
20070142964 | Abramson | Jun 2007 | A1 |
20070176060 | White et al. | Aug 2007 | A1 |
20070192910 | Vu et al. | Aug 2007 | A1 |
20070197896 | Moll et al. | Aug 2007 | A1 |
20070198128 | Ziegler et al. | Aug 2007 | A1 |
20070199108 | Angle et al. | Aug 2007 | A1 |
20070216347 | Kaneko et al. | Sep 2007 | A1 |
20070250212 | Halloran et al. | Oct 2007 | A1 |
20070262884 | Goncalves et al. | Nov 2007 | A1 |
20070273751 | Sachau | Nov 2007 | A1 |
20070291109 | Wang et al. | Dec 2007 | A1 |
20070291128 | Wang et al. | Dec 2007 | A1 |
20080011904 | Cepollina et al. | Jan 2008 | A1 |
20080065268 | Wang et al. | Mar 2008 | A1 |
20080082211 | Wang et al. | Apr 2008 | A1 |
20080133052 | Jones et al. | Jun 2008 | A1 |
20080201017 | Wang et al. | Aug 2008 | A1 |
20080215987 | Alexander et al. | Sep 2008 | A1 |
20080229531 | Takida | Sep 2008 | A1 |
20080255703 | Wang et al. | Oct 2008 | A1 |
20080263451 | Portele et al. | Oct 2008 | A1 |
20080269949 | Norman et al. | Oct 2008 | A1 |
20080281467 | Pinter | Nov 2008 | A1 |
20090030552 | Nakadai et al. | Jan 2009 | A1 |
20090055023 | Walters et al. | Feb 2009 | A1 |
20090105882 | Wang et al. | Apr 2009 | A1 |
20090125147 | Wang et al. | May 2009 | A1 |
20090237317 | Rofougaran | Sep 2009 | A1 |
20090240371 | Wang et al. | Sep 2009 | A1 |
20090259339 | Wright et al. | Oct 2009 | A1 |
20100010672 | Wang et al. | Jan 2010 | A1 |
20100010673 | Wang et al. | Jan 2010 | A1 |
20100019715 | Roe et al. | Jan 2010 | A1 |
20100070079 | Mangaser et al. | Mar 2010 | A1 |
20100073490 | Wang et al. | Mar 2010 | A1 |
20100076600 | Cross et al. | Mar 2010 | A1 |
20100115418 | Wang et al. | May 2010 | A1 |
20100116566 | Ohm et al. | May 2010 | A1 |
20100131103 | Herzog et al. | May 2010 | A1 |
20100191375 | Wright et al. | Jul 2010 | A1 |
20100268383 | Wang et al. | Oct 2010 | A1 |
20100323783 | Nonaka et al. | Dec 2010 | A1 |
20110050841 | Wang et al. | Mar 2011 | A1 |
20110071702 | Wang et al. | Mar 2011 | A1 |
20110172822 | Ziegler et al. | Jul 2011 | A1 |
20110187875 | Sanchez et al. | Aug 2011 | A1 |
20110190930 | Hanrahan et al. | Aug 2011 | A1 |
20110218674 | Stuart et al. | Sep 2011 | A1 |
20110245973 | Wang et al. | Oct 2011 | A1 |
20110292193 | Wang et al. | Dec 2011 | A1 |
20110301759 | Wang et al. | Dec 2011 | A1 |
20120023506 | Maeckel et al. | Jan 2012 | A1 |
20120072023 | Ota | Mar 2012 | A1 |
20120092157 | Tran | Apr 2012 | A1 |
Number | Date | Country |
---|---|---|
2 289 697 | Nov 1998 | CA |
1554193 | Dec 2004 | CN |
1554985 | Dec 2004 | CN |
101106939 | Jan 2008 | CN |
101390098 | Mar 2009 | CN |
101507260 | Aug 2009 | CN |
101730894 | Jun 2010 | CN |
101866396 | Oct 2010 | CN |
101978365 | Feb 2011 | CN |
102203759 | Sep 2011 | CN |
101106939 | Nov 2011 | CN |
0 466 492 | Jan 1992 | EP |
94488673 | Jun 1992 | EP |
09 81905 | Jan 2002 | EP |
1 262 142 | Dec 2002 | EP |
1 536 660 | Sep 2004 | EP |
1 536 660 | Jun 2005 | EP |
20051573406 | Sep 2005 | EP |
20051594660 | Nov 2005 | EP |
2007179464 | Jun 2007 | EP |
20071800476 | Jun 2007 | EP |
20071856644 | Nov 2007 | EP |
20081928310 | Jun 2008 | EP |
20092027716 | Feb 2009 | EP |
20102145274 | Jan 2010 | EP |
20102214111 | Aug 2010 | EP |
20102263158 | Dec 2010 | EP |
20112300930 | Mar 2011 | EP |
20112342651 | Jul 2011 | EP |
2007081646 | Mar 2007 | JO |
2007-213753 | Aug 1995 | JP |
2007-248823 | Aug 1995 | JP |
07-257422 | Oct 1995 | JP |
08-084328 | Mar 1996 | JP |
968320727 | Dec 1996 | JP |
9-267276 | Oct 1997 | JP |
10079097 | Mar 1998 | JP |
10288689 | Oct 1998 | JP |
2000-032319 | Jan 2000 | JP |
2000049800 | Feb 2000 | JP |
2000079587 | Mar 2000 | JP |
2000196876 | Jul 2000 | JP |
2000-235423 | Aug 2000 | JP |
2001125641 | May 2001 | JP |
2001-147718 | May 2001 | JP |
2001179663 | Jul 2001 | JP |
2001-198865 | Jul 2001 | JP |
2001-198868 | Jul 2001 | JP |
2001-199356 | Jul 2001 | JP |
2000-188124 | Jan 2002 | JP |
2002-000574 | Jan 2002 | JP |
2002-046088 | Feb 2002 | JP |
20021129670 | Apr 2002 | JP |
2002101333 | May 2002 | JP |
2002-305743 | Oct 2002 | JP |
2002-355779 | Dec 2002 | JP |
2004524824 | Aug 2004 | JP |
2004261941 | Sep 2004 | JP |
2004289379 | Oct 2004 | JP |
2005028066 | Feb 2005 | JP |
2005059170 | Mar 2005 | JP |
2006508806 | Mar 2006 | JP |
2006109094 | Apr 2006 | JP |
2006224294 | Aug 2006 | JP |
2006246438 | Sep 2006 | JP |
2010064154 | Mar 2010 | JP |
20100532109 | Sep 2010 | JP |
2010246954 | Nov 2010 | JP |
20060037979 | May 2006 | KR |
20090012542 | Feb 2009 | KR |
20100019479 | Feb 2010 | KR |
20100139037 | Dec 2010 | KR |
WO 9306690 | Apr 1993 | WO |
WO 9851078 | Nov 1998 | WO |
WO 9967067 | Dec 1999 | WO |
0033726 | Jun 2000 | WO |
WO 03077745 | Sep 2003 | WO |
2004008738 | Jan 2004 | WO |
2004012018 | Feb 2004 | WO |
WO 2004075456 | Sep 2004 | WO |
2006012797 | Feb 2006 | WO |
2006078611 | Apr 2006 | WO |
2006044847 | Apr 2006 | WO |
2007041295 | Apr 2007 | WO |
2007041295 | Apr 2007 | WO |
2007041038 | Jun 2007 | WO |
2008100272 | Aug 2008 | WO |
2008100272 | Oct 2008 | WO |
2009117274 | Sep 2009 | WO |
2009128997 | Oct 2009 | WO |
2009145958 | Dec 2009 | WO |
2010006205 | Jan 2010 | WO |
2010006211 | Jan 2010 | WO |
2010033666 | Mar 2010 | WO |
2010047881 | Apr 2010 | WO |
2010062798 | Jun 2010 | WO |
2010065257 | Jun 2010 | WO |
2010120407 | Oct 2010 | WO |
2011028589 | Mar 2011 | WO |
2011028589 | Apr 2011 | WO |
2011097130 | Aug 2011 | WO |
2011097132 | Aug 2011 | WO |
2011109336 | Sep 2011 | WO |
2011097132 | Dec 2011 | WO |
2011149902 | Dec 2011 | WO |
Entry |
---|
Knight et al, “Active Visual Alignment of a Mobile Stereo Camera Platform,” Apr. 24-28, 2000, Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco, pp. 3202-3208. |
Al-Kassab, “A Review of Telemedicine”, Journal of Telemedicine and Telecare, 1999, vol. 5, Supplement 1. |
F. Ando et al., “A Multimedia Self-service Terminal with Conferencing Functions”, 1995, IEEE, pp. 357-362. |
Android Amusement Corp., “What Marketing Secret . . . Renting Robots from Android Amusement Corp!”, (Advertisement) 1982. |
Applebome, “Planning Domesticated Robots for Tomorrow's Household”, New York Times, Mar. 4, 1982, pp. 21 and 23, http://www.theoldrobots.com/images17/dc17.JPG. |
Baltus et al., “Towards Personal Service Robots for the Elderly, Proceedings for the Elderly Workshop on Interactive Robots and Entertainment”, 2000, Computer Science and Robotics, http://www.cs.cmu.edu/thrun/papers/thrun.nursebot-early.pdf |
Bar-Cohen et al., Virtual reality robotic telesurgery simulations using MEMICA haptic system, Mar. 5, 2001, Internet, pp. 1-7. |
Bartholomew, “An Apothecary's Pharmacy”, 1230-1240 http://classes.bnf.fr/ema/grands/034.htm. |
Bauer, Jeffrey C., “Service Robots in Health Care: The Evolution of Mechanical Solutions to Human Resource Problems”, Jun. 2003. |
Bauer, John et al., “Remote telesurgical mentoring: feasibility and efficacy”, 2000, IEEE, pp. 1-9. |
Bischoff, “Design Concept and Realization of the Humanoid Service Robot HERMES”, Field and Service Robotics, Springer, London, 1998, pp. 485-492. |
Blackwell, Gerry, “Video: A Wireless LAN Killer App?”, Apr. 16, 2002, Internet pp. 1-3. |
Breslow, Michael J., MD et al., “Effect of a multiple-site intensive care unit telemedicine program on clinical and economic outcome: An alternative paradigm for intensivist staffing”, Critical Care Med, Jan. 2004, vol. 32, No. 1, pp. 31-38. |
Brooks, Rodney, Abstracts from Flesh & Machines, How Robots Will Change Us, “Remote Presence”, p. 131-147, Feb. 2002. |
Celi et al., “The eICU: It's not just telemedicine”, Critical Care Medicine, vol. 29, No. 8 (Supplement), Aug. 2001. |
Cheetham, Anastasia et al., “Interface Development for a Child's Video Conferencing Robot”, 2000, pp. 1-4. |
Cleary et al., “State of the art in surgical robotics: Clinical applications and technology challenges”, Feb. 24, 2002 Internet, pp. 1-26. |
CNN, “Floating ‘droids’ to roam space corridors of the future”, Jan. 12, 2000, Internet, pp. 1-4. |
CNN.com/Technology,“ Paging R.Robot: Machine helps doctors with patients”, Sep. 30, 2003, Internet, 1-3. |
Crowley, “Hello to Our Future”, AARP Bulletin, Jan. 2000 http://www.cs.cmu.ed/-nursebot/web/press/aarp—99—14/millennium.html. |
Dalton, “Techniques for Web Telerobotics”, PhD Thesis, University of Western Australia, 2001, pp. 27-62, 149-191; http://telerobot.mech.uwa.edu.au/information.html, http://catalogue.library.uwa.edu.au/search. |
Davies, “Robotics in Minimally Invasive Surgery”, 1995, Internet, pp. 5/1-5/2. |
Discovery Channel Canada, “Inventing the Future: 2000 Years of Discovery”, Jan. 2, 2000 (Video/Transcript). |
Elhajj et al., “Supermedia in Internet-based telerobotic operations”, 2001, Internet, pp. 1-14. |
Elhajj et al., “Synchronization and Control of Supermedia Transmission Via the Internet”, Proceedings of 2001 International Symposium on Intelligent Multimedia, Video and Speech Processing, May 2-4, 2001, Hong Kong. |
Ellison et al., “Telerounding and Patient Satisfaction Following Surgery”. |
Fels, “Developing a Video-Mediated Communication System for Hospitalized Children”, Telemedicine Journal, vol. 5, No. 2, 1999. |
Fetterman, “Videoconferencing over the Internet”, 2001, Internet, pp. 1-8. |
Fiorini, “Health Care Robotics: A Progress Report”, IEEE International Conference on Robotics and Automation, pp. 1271-1276, Apr. 1997. |
Ghiasi, “A Generic Web-based Teleoperations Architecture: Details and Experience”, SPIE Conference on Telemanipulator and Telepresence Technologies VI, Sep. 1999. |
Goldberg et al., “Collaborative Teleoperation via the Internet”, IEEE International Conference on Robotics and Automation, Apr. 2000, San Francisco, California. |
Goldberg, “Desktop Teleoperation via the World Wide Web, Proceedings of the IEEE International Conference on Robotics and Automation”, 1995, pp. 654-659 http://citeseer.ist.psu.edu/cache/papers/cs/5/ftp:zSzzSzusc.eduzSzpubzSziriszSzraiders.pdf/gol. |
Goldberg, “More Online Robots, Robots that Manipulate”, Internet, Updated Aug. 2001 http://ford.ieor.berkeley.edu/ir/robots—a2.html. |
Goldenberg, et al., “Telemedicine in Otolaryngology”, American Journal of Otolaryngology, vol. 23, No. 1, 2002, pp. 35-43. |
Goldman, Lea, “Machine Dreams”, Entrepreneurs, Forbes, May 27, 2002. |
Gump, Michael D., “Robot Technology Improves VA Pharmacies”, 2001, Internet, pp. 1-3. |
Han, et al., “Construction of an Omnidirectional Mobile Robot Platform Based on Active Dual-Wheel Caster Mechanisms and Development of a Control Simulator”, 2000, Kluwer Acedemic Publishers, vol. 29, pp. 257-275. |
Handley, “RFC 2327—SDP: Session Description Protocol”, Apr. 1998 http://www.faqs.org/rfcs/rfc2327.html. |
Hanebeck, “ROMAN: a mobile Robotic Assistant for Indoor Service Applications”, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1997. |
Harmo et al., “Moving Eye—Interactive Telepresence Over Internet With a Ball Shaped Mobile Robot”, 2000. |
Haule et al., “Control Scheme for Delayed Teleoperation Tasks”, May 17, 1995, Proceedings of the Pacific Rim Conference on Communications, Computer and Signal Processing. |
Hees, William P., “Communications Design for a Remote Presence Robot”, Jan. 14, 2002. |
Holmberg, “Development of a Holonomic Mobile Robot for Mobile Manipulation Tasks”, International Conference on Field and Service Robotics, Pittsburgh, PA, Aug. 1999. |
Ishiguro, “Integrating a Perceptual Information Infrastructure with Robotic Avatars: A Framework for Tele-Existence” Proceeding of IEEE Conference on Intelligent Robots and Systems, http://www.ai.soc.i.kyoto-u.ac.jp/services/publications/99/99conf/07.pdf. |
Ishihara, Ken et al., “Intelligent Microrobot DDS (Drug Delivery System) Measured and Controlled by Ultrasonics”, Nov. 3-5, 1991, IEEE/RSJ, pp. 1145-1150, vol. 2. |
ITU, “ITU-T H.323 Packet-based multimedia communications”, ITU, Feb. 1998, http://www.itu.int/rec./T-REC-H.323-199802-S/en. |
Ivanova, Natali, “Master's thesis: Internet Based Interface for Control of a Mobile Robot”, Department of Numerical Analysis and Computer Science. |
Jenkins, “Telehealth Advancing Nursing Practice”, Nursing Outlook, Mar./Apr. 2001, vol. 49, No. 2. |
Johanson, “Supporting video-mediated communication over the Internet”, Chalmers University of Technology, Dept of Computer Engineering, Gothenburg, Sweden, 2003. |
Jouppi, et al., “Mutually-Immersive Audio Telepresence”, Audio Engineering Society Convention Paper, presented at 113th Convention Oct. 2002. |
Jouppi, Norman P., “First Steps Towards Mutually-Immersive Mobile Telepresence”, CSCW '02, Nov. 16-20, 2002, New Orleans LA. |
Kanehiro, Fumio et al., “Virtual Humanoid Robot Platform to Develop Controllers of Real Humanoid Robots without Porting”, 2001, IEEE, pp. 3217-3276. |
Kaplan et al., “An Internet Accessible Telepresence”. |
Keller et al., “Raven Interface Project”, Fall 2001 http://upclose.lrdc.pittedu/people/louw—assets/Raven—Slides.pps. |
Khatib, “Robots in Human Environments”, Proc. International Conference on Control, Automation, Robotics, and Vision, ICRACV2000, Dec. 2000, Singapore, pp. 454-457. |
Kuzuoka et al., “Can the GestureCam Be a Surrogate?”. |
Lane, “Automated Aides”, Newsday, Oct. 17, 2000, http://www.cs.cum.edu/-nursebot/web/press/nd4380.htm. |
Lee et al., “A novel method of surgical instruction: International telementoring”, 1998, Internet pp. 1-4. |
Lim, Hun-ok et al., “Control to Realize Human-like Walking of a Biped Humanoid Robot”, IEEE 2000, pp. 3271-3276. |
Linebarger, John M. et al., “Concurrency Control Mechanisms for Closely Coupled Collaboration in Multithreaded Virtual Environments”, Presence, Special Issue on Advances in Collaborative VEs (2004). |
Loeb, Gerald, “Virtual Visit: Improving Communication for Those Who Need It Most”, 2001. |
Long, “HelpMate Robotics, Inc. (Formerly Transitions Research Corporation) Robot Navigation Technology”, NIST Special Publication 950-1, Mar. 1999, http://www.atp.nist.gov/eao/sp950-1/helpmate.htm. |
Luna, Nancy, “Robot a new face on geriatric care”, OC Register, Aug. 6, 2003. |
Mack, “Minimally invasive and robotic surgery”, 2001, Internet IEEE, pp. 568-572. |
Mair, “Telepresence—The Technology and Its Economic and Social Implications”, IEEE Technology and Society, 1997. |
Martin, Anya, “Days Ahead”, Assisted Living Today, vol. 9, Nov./Dec. 2002, pp. 19-22. |
McCardle et al., “The challenge of utilizing new technology in design education”, 2000 Internet, pp. 122-127. |
Meng et al., “E-Service Robot in Home Healthcare”, Proceedings of the 2000 IEEE/RSJ, International Conference on Intelligent Robots and Systems, 2000, pp. 832-837. |
Michaud, “Introducing ‘Nursebot’”, The Boston Globe, Sep. 11, 2001, pp. 1-5, http://www.cs.cmu.edu/nursebot/web/press/globe—3—01/index.html. |
Mobile Robotics Research Group, “Mobile Robotics Research Group”, 2000 Internet, pp. 1-2, Edinburgh. |
Montemerlo, “Telepresence: Experiments in Next Generation Internet”, CMU Robotics Institute, Oct. 20, 1998, http://www.ri.cmu.edu/creative/archives.htm (Video/Transcript). |
Murphy, “Introduction to A1 Robotics”, 2000. |
Nakajima et al., “A Multimedia Teleteaching System sing an Electronic Whiteboard for Two-Way Communication of Motion Videos and Chalkboards”, 1993, IEEE, pp. 436-441. |
“National Energy Research Scientific Computing Center, Berkeley Lab's RAGE Telepresence Robot Captures R&D100 Award”, Jul. 2, 2002, http://www.nersc.gov/news/newsroom/RAGE070202.php. |
Nomadic Technologies, Inc., “Nomad XR4000 Hardware Manual”, Mar. 1999. |
Ogata et al., “Emotional Communication Robot: WAMOEBA-2R—Emotion Model and Evaluation Experiments”, 1999, Internet, pp. 1-16. |
Ogata et al., “Development of Emotional Communication Robot: WAMOEBA-2r—Experimental evaluation . . . ”, 2000 IEEE, pp. 175-180. |
Oh et al., “Autonomous Battery Recharging for Indoor Mobile Robots”, Proceedings of Australian Conference on Robotics and Automation, 2000, http://users.rsise.anu.edu.au/rsl/rsl—papers/ACRA2000/Auto—Recharge—Paper.pdf. |
Ojha, Anad, “An application of Virtual Reality in Rehabilitation”, Jan. 1994, IEEE, pp. 4-6. |
Paulos et al., “A World Wide Web Telerobotic Remote Environment Browser”, http://vive.cs.berkeley.edu/capek, 1995. |
Paulos, “Designing Personal Tele-embodiment”, IEEE International Conference on Robotics and Automation, 1998, http://www.prop.org/papers/icra98.pdf. |
Paulos, Eric John, “Personal Tele-Embodiment”, UC Berkeley, Fall 2001. |
Paulos, “PRoP: Personal Roving Presence”, ACM:CHI Proceedings of CHI '98, http://www.prop.org/papers/chi98.pdf. |
Paulos, Video of PRoP 2 at Richmond Field Station, www.prop.org.May 2001, Printout of Home Page of Website and two-page Transcript of the audio portion of said PRoP Video. |
Paulos, et al. , “Ubiquitous Tele-embodiment: Applications and Implications”, International Journal of Human Computer Studies, Jun. 1997, vol. 46, No. 6, pp. 861-877. |
Pin.et al., “A New Family of Omnidirectional and Holonomic Wheeled Platforms for Mobile Robots”, IEEE, vol. 10, No. 4, Aug. 1994. |
Rovetta et al., “A New Telerobotic Application: Remote Laparoscopic Surgery Using Satellites and Optical Fiber Networks for Data Exchange”, Jun. 1, 1996, International Journal of Robotics Research, pp. 267-279. |
Roy et al., “Towards Personal Service Robots for the Elderly”, Internet, Mar. 7, 2002. |
Sandt, Frederic et al., “Perceptions for a Transport Robot in Public Environments”, 1997, IROS '97. |
Schaeffer, “Care-O-bot: A System for Assisting Elderly or Disabled Persons in Home Environments”, Proceedings of AAATE-99, 1999, http://morpha.de/download/publications/IPA—Systems—For—AssistingElderly—or—DisabledPersons—AAATE1999.pdf. |
Schulz, “Web Interfaces for Mobile Robots in Public Places”, Robotics & Automation Magazine, IEEE, vol. 7, Issue 1, Mar. 2000. |
Shimoga et al., Touch and force reflection for telepresence surgery, 1994, IEEE, pp. 1049-1050. |
Siegwart, “Interacting Mobile Robots on the Web”, Proceedings of the 1999 IEEE International Conference on Robotics and Automation, May 1999. |
Simmons, “Xavier: An Autonomous Mobile Robot on the Web”, IEEE Robotics and Automation Magazine, 1999, pp. 43-48. |
Spawar Systems Center, “Robart”, 1998, San Diego, CA, http://web.archive.org/web/*/http://www.nosc.mil/robots/land/robart/robart.html http://web.archive.org/web/19981202205636/http://www.nosc.mil/robots/land/robart/robart.html. |
Stephenson, Gary, “Dr. Robot Tested at Hopkins”, Aug. 5, 2003, Internet, pp. 1-2. |
Stoianovici et al., “Robotic Tools for Minimally Invasive Urologic Surgery”, Dec. 2002, Internet, 1-17. |
Suplee, “Mastering the Robot”, The Washington Post, p. A01, Sep. 17, 2000 http://www.cs.cmu.edu-nursebot/web/press/wash/index.html. |
Tahboub, Karim A. et al., “Dynamics Analysis and Control of a Holonomic Vehicle With Continously Variable Transmission”, Mar. 2002, Journal of Dynamic Systems, Measurement, and Control, ASME vol. 124, pp. 118-126. |
Tendick et al., “Human-Machine Interfaces for Minimally Invasive Surgery”, 1997, IEEE, pp. 2771-2776. |
Thrun et al, “Probabilistic Algorithms and the Interactive Museum Tour-Guide Robot Minerva”, 2000, Internet pp. 1-35. |
Tzafestas, et al., “VR-based Teleoperation of a Mobile Robotic Assistant: Progress Report”, Nov. 2000, Internet, pp. 1-23. |
Urquhart, Kim, “InTouch's robotic Companion ‘beams up’ healthcare experts”, Medical Device Daily, vol. 7, No. 39, Feb. 27, 2003, p. 1, 4. |
Weiss et al., Telework and video-mediated communication: Importance of real-time, interactive communication for workers with disabilities, pp. 1-4, California State University Northridge, http://www.csun.edu/cod/conf/1999/proceedings/session0238.html. |
West et al., “Design of Ball Wheel Mechanisms for Omnidirectional Vehicles with Full Mobility and Invariant Kinematics”, Journal of Mechanical Design, vol. 119, pp. 153-161, Jun. 1997. |
Yamasaki et al., Applying Personal Robots and Active Interface to Video Conference Systems, 1995, Internet, pp. 243-248. |
Yamauchi et al., PackBot: A Versatile Platform for Military Robotics, 2004, Internet, pp. 1-10. |
Yong et al., “Robot task execution with telepresence using virtual reality technology”, 1998, Internet, pp. 1-9. |
Zamrazil, Kristie, “Telemedicine in Texas: Public Policy Concerns”, House Research Organization Focus Report, Texas House of Representatives, No. 76-22, May 5, 2000 http://www.hro.house.state.tx.us/focus/telemed.pdf. |
Zipperer, Lorri, “Robotic dispensing system”, 1999, Internet, pp. 1-2. |
Zorn, Benjamin G., “Ubiquitous Telepresence”, http://www.cs.colorado.edu/˜zorn/ut/vision/vision.html, Mar. 5, 1996. |
Linebarger, et al., “Concurrency Control Mechanisms for Closely Coupled Collaboration in Multithreaded Virtual Environments”, Presence, Special Issue on Advances in Collaborative VEs, 2004. |
Yamauchi, “PackBot: A Versatile Platform for Military Robotics”, Internet, 2004, pp. 1-10. |
Yong, et al., “Robot task execution with telepresence using virtual reality technology”, Internet, 1998, pp. 1-8. |
Zamrazil, “Telemedicine in Texas: Public Policy Concerns”, House Research Organization Focus Report, Texas House of Representatives, http://www.hro.house.state.tx.us/focus/telemed.pdf, May 5, 2000, pp. 76-22. |
Zipperer, “Robotic dispensing system”, ISMP Medication Safety Alert! vol. 4, Issue 17, Aug. 25, 1999, pp. 1-2. |
Zorn, “Ubiquitous Telepresence”, http://www.cs.colorado.edu/-zorn/utlvision/vision.html, Mar. 3, 1996. |
Barrett, “Video Conferencing Business Soars as Companies Cut Travel; Some Travel Cuts Are Permanent”, http://www.ivci.com/international—videoconferencing—news—videoconferencing—news—19.html, Mar. 13, 2002. |
Brooks, “A Robust Layered Control System for a Mobile Robot,” IEEE Journal of Robotics and Automation, 2 (1), Mar. 1986, 10 pgs. |
Candelas, et al., “Flexible virtual and remote laboratory for teaching Robotics”, FORMATEX 2006; Proc. Advance in Control Education Madrid, Spain, Jun. 2006, pp. 21-23. |
Davis, “Meet iRobot, The Smartest Webcam on Wheels,” Wired Magazine, 8.09, http://www.wired.com/wired/archive/8.09/irobot—pr.html, Sep. 2000, 2 pgs. |
Dean, et al., “1992 AAAI Robot Exhibition and Competition,” AI Magazine, Spring 1993, 10 pgs. |
“Defendant VGo Communications, Inc.'s Invalidity Contentions Pursuant to the Feb. 27, 2012 Civil Minute Order”, May 2, 2012. |
“Defendant-Counterclaimant VGo Communications, Inc.'s Supplemental Invalidity Contentions Pursuant to the Feb. 27, 2012 Civil Minute Order”, May 14, 2012. |
DiGiorgio, “Is Your Emergency Department of the Leading Edge?”, Internet, 2005, pp. 1-4. |
Dudenhoeffer, et al., “Command and Control Architectures for Autonomous Micro-Robotic Forces”, http://www.inl.gov/technicalpublications/Documents/3157051.pdf, Apr. 2001. |
Elhajj, “Real-Time Haptic Feedback in Internet-Based Telerobotic Operation”, IEEE International Conference on Electro/Information Technology, http://www.egr.msu.edu/˜ralab-web/cgi—bin/internet-teleoperation.php, Jun. 2000. |
Fong, “Collaborative Control: A Robot-Centric Model for Vehicle Teleoperation”, The Robotics Institute Carnegie Mellon University, http://web.archive.org/web/20030504040803/www.ricmu.edu/cgi-bin/tech—reports.cgi?year=2001&text=0, Nov. 2001. |
Grow, “Office Coworker Robot,” Time Magazine, http://www.time.com/time/specials/packages/article/0,28804,1936165—1936255—1936640,00.html, Nov. 19, 2001, 2 pgs. |
ITU, “ITU-T H.281 A Far End Camera Control Protocol for Videoconferences using H.224”, http://www.itu.int/rec/T-RECHch.281-199411-l/en, Nov. 1994. |
ITU, “ITU-T H.450.11 Call Intrusion Supplementary Service for H.323”, http://www.itu.int/rec/T-RECH.450.11-200103-I/en, Mar. 2001. |
ITU, “ITU-T H.450.9 Call Completion Supplementary Services for H.323”, http://www.itu.int/rec/T-RECH.450.9-200011-I/en, Nov. 2000. |
Keller, et al., “Raven Interface Project”, Fall 2001, http://upclose.lrdc.pitt.edu/people/louw—assets/Raven—Slides.pps , Fall 2001. |
Knight, et al., “Active Visual Alignment of a Mobile Stereo Camera Platform”, Proceedings of the IEEE, International Conference on Robotics and Automation, San Francisco, Apr. 24-28, 2000, pp. 3202-3208. |
Metz, “HP Labs”, PCMAG.com, http://www.pcmag.com/article2/0,2817,1130820,00.asp, Jul. 1, 2003. |
Picturetel, “PictureTel Live200 for Windows NT Product Guide”, http://support.polycom.com/global/documents/support/user/products/video/live200—live2OONT—product—guide.pdf, Nov. 1994. |
“PictureTel Adds New Features and Functionality to Its Award-Winning Live200 Desktop Videoconferencing System”, PR Newswire Association, LLC, Gale, Cengage Learning, http://www.thefreelibrary.com/PictureTel+Adds+New+Features+And+Functionality+To+Its+Award-Winning...-a019512804, Jun. 13, 1997. |
Roach, “Automatic Call Back Service in SIP”, http://tools.ietf.org/pdf/draftroach-sip-acb-00.pdf, Mar. 2000. |
Salemi, et al., “MILO: Personal robot platform”, Internet, 2005, pp. 1-6. |
Summers, “Microsoft NetMeeting 3 Features excerpt from Official Microsoft NetMeeting 3.0 Book”, http://technet.microsoft.com/en-us/library/cc723477.aspx#XSLTsection121121120120, excerpt from Microsoft Press http://www.computerbooksonline.com/abook.asp?i=0735605823, Mar. 1999. |
U.S. Appl. No. 10/783,760, filed Feb. 20, 2004, Wang, et al., 48 pgs. |
U.S. Appl. No. 60/449,762, filed Feb. 24, 2003, Wang, et al., 28 pgs. |
Weiss, et al., “PEBBLES: A Personal Technology for Meeting Education, Social and Emotional Needs of Hospitalised Children”, Personal and Ubiquitous Computing 5, Springer-Verlag London Ltd., 2001, pp. 157-168. |
Zambroski, “CMU, Pitt Developing ‘nursebor’”, http://www.cs.cmu.edu/˜nursebot/web/press/tribunereview.html, Oct. 27, 2000. |
Number | Date | Country | |
---|---|---|---|
20100073490 A1 | Mar 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10890891 | Jul 2004 | US |
Child | 12413038 | US |