The present application is based on, and claims priority from JP Application Serial Number 2019-179569, filed Sep. 30, 2019, the disclosure of which is hereby incorporated by reference herein in its entirety.
The present disclosure relates to a mobile robot.
Recently, in factories, due to labor cost rise and labor shortage, work manually performed in the past has been increasingly automated by various robots and robot peripherals. Further, recently, as shown in JP-A-2000-326270, wheeled automated guided vehicles with robots, i.e., mobile robots have autonomously moved and performed work at movement destinations.
The mobile robot shown in JP-A-2000-326270 includes a robot arm, a movement mechanism that moves the robot arm, and a battery that supplies electric power to the movement mechanism and the robot arm. That is, the movement mechanism and the robot arm have configurations driven by the same electrical system. Further, in the mobile robot shown in JP-A-2000-326270, regeneration power when the robot arm is driven is stored in the battery. Thereby, the available time of the battery may be extended.
For example, when increase of the operation speed of the robot is desired or the like, when the drive voltage of the robot arm is set to be higher, the drive voltage of the robot arm and the drive voltage of the movement mechanism may be different. Here, the voltage of the regeneration power of the robot arm and the voltage of the battery are different, and there is a problem that it may be impossible to store the regeneration power of the robot arm in the battery.
The present disclosure can be implemented as follows.
A mobile robot of an application example includes a vehicle having a secondary cell that outputs a first voltage, a first motor driven by the first voltage, and a first circuit that supplies electric power of the secondary cell to the first motor, a robot having a robot arm, a second motor that drives the arm by a second voltage different from the first voltage, and a second circuit that supplies the electric power of the secondary cell to the second motor and supplies regeneration power of the second motor to the secondary cell, and coupled to the vehicle, wherein the second circuit has a voltage conversion unit that mutually converts the first voltage and the second voltage.
As below, a mobile robot according to the present disclosure will be explained in detail based on embodiments shown in the accompanying drawings.
In
Hereinafter, for convenience of explanation, the +z-axis direction in
A mobile robot 100 shown in
The robot 1 shown in
The base 110 supports the robot arm 10. The base 110 has a housing and, inside of the housing, e.g. a drive device that drives the robot arm 10, a communication unit (not shown) for communication with the robot control unit 4, etc. are provided. Further, the origin of the robot coordinate system is set in an arbitrary position e.g. the center of gravity of the base 110. The origin is a control point of the movement by the vehicle 2, which will be described later.
Note that the base 110 is not limited to the shape as shown in the drawing, but may be formed by e.g. a plate-like member and a plurality of legs as long as the base has the function of supporting the robot arm 10.
Or, the base 110 may be omitted or at least partially provided in the vehicle 2.
The robot arm 10 shown in
Further, as shown in
The drive unit 3A has a motor 31A as a second motor, a motor drive circuit 32A, an encoder 33A, a reducer (not shown), etc. The drive unit 3B has a motor 31B as the second motor, a motor drive circuit 32B, an encoder 33B, a reducer (not shown), etc. The drive unit 3C has a motor 31C as the second motor, a motor drive circuit 32C, an encoder 33C, a reducer (not shown), etc. The drive unit 3D has a motor 31D as the second motor, a motor drive circuit 32D, an encoder 33D, a reducer (not shown), etc. The drive unit 3E has a motor 31E as the second motor, a motor drive circuit 32E, an encoder 33E, a reducer (not shown), etc. The drive unit 3F has a motor 31F as the second motor, a motor drive circuit 32F, an encoder 33F, a reducer (not shown), etc.
The motor 31A is electrically coupled to a second control section 42, which will be described later, via the motor drive circuit 32A. The motor 31B is electrically coupled to the second control section 42 via the motor drive circuit 32B. The motor 31C is electrically coupled to the second control section 42 via the motor drive circuit 32C. The motor 31D is electrically coupled to the second control section 42 via the motor drive circuit 32D. The motor 31E is electrically coupled to the second control section 42 via the motor drive circuit 32E. The motor 31F is electrically coupled to the second control section 42 via the motor drive circuit 32F.
The second control section 42 respectively independently controls the conduction conditions to the motor drive circuit 32A to motor drive circuit 32F, and thereby, driving of the motor 31A to motor 31F is controlled.
The encoder 33A to encoder 33F are examples as operating state sensors that sense the operating state of the robot arm 10. The encoder 33A to encoder 33F are respectively electrically coupled to the second control section 42, and detected position information, i.e., electrical signals corresponding to the sensing results are transmitted to the second control section 42. According to the configuration, the second control section 42 may control driving of the motor 31A to motor 31F and switch between a first mode and a second mode, which will be described later, based on the sensing results of the encoder 33A to encoder 33F.
Further, as shown in
When the end effector 17 is driven by a motor, the regeneration power therefor may be supplied to a secondary cell 8.
The robot control unit 4 has a first control section 41 that controls operation of the voltage conversion unit 5, which will be described later, the second control section 42 that controls driving of the motor drive circuit 32A to motor drive circuit 32F, and a memory section 43.
The first control section 41 is a control section having a CPU (Central Processing Unit) and reading and executing various programs etc. stored in the memory section 43. Switching of the switch of the voltage conversion unit 5 to be described later is controlled by a command signal generated by the first control section 41.
The second control section 42 has a CPU (Central Processing Unit) and reads and executes various programs etc. stored in the memory section 43. The robot arm 10 may execute predetermined work by a command signal generated by the second control section 42.
The memory section 43 stores various programs etc. that can be executed by the first control section 41 and the second control section 42. The memory section 43 includes e.g. a volatile memory such as a RAM (Random Access Memory), a nonvolatile memory such as a ROM (Read Only Memory), and a detachable external memory device. The coupling between the memory section 43 and the first control section 41 and second control section 42 may be not only wired coupling but also wireless coupling, or coupling by communication via a network such as the Internet.
Next, the vehicle 2 will be explained.
The vehicle 2 is configured by an autonomous traveling system and moves the robot 1.
The vehicle 2 has a plurality of wheels, i.e., a pair of front wheels 21, a pair of rear wheels 22, and a pair of drive wheels 23, a vehicle main body 20 in which these wheels are placed, a vehicle control unit 7, the secondary cell 8, and drive units 9A, 9B.
The pair of drive wheels 23 are examples of movement mechanisms and provided between the pair of front wheels 21 and the pair of rear wheels 22. One drive wheel 23 is driven by the drive unit 9A and the other drive wheel 23 is driven by the drive unit 9B.
The drive unit 9A has a motor 91A as a first motor, a motor drive circuit 92A, an encoder 93A, a regeneration resistor part 94A, and a reducer (not shown), etc. The drive unit 9B has a motor 91B as the first motor, a motor drive circuit 92B, an encoder 93B, a regeneration resistor part 94B, and a reducer (not shown), etc.
The motor 91A is electrically coupled to a third control section 71, which will be described later, via the motor drive circuit 92A. The motor 91B is electrically coupled to the third control section 71 via the motor drive circuit 92B.
The third control section 71 respectively independently controls the conduction conditions to the motor drive circuit 92A and the motor drive circuit 92B, and thereby, driving of the motor 91A and the motor 91B is controlled.
The encoder 93A and the encoder 93B are respectively electrically coupled to the third control section 71 and electrical signals corresponding to the detected position information are transmitted to the third control section 71. According to the configuration, the third control section 71 may control the driving of the motor 91A and the motor 91B based on the detection results of the encoder 93A and the encoder 93B.
The regeneration power of the motor 91A is supplied to the regeneration resistor part 94A via the motor drive circuit 92A and the regeneration power of the motor 91B is supplied to the regeneration resistor part 94B via the motor drive circuit 92B. The regeneration resistor part 94A and the regeneration resistor part 94B are regeneration power absorbing circuits that absorb the regeneration power, respectively have resistors (not shown), and convert the regeneration power into heat and release the heat. That is, the regeneration power of the motor 91A and the motor 91B is not stored in the secondary cell 8.
As described above, the vehicle 2 has the regeneration resistor part 94A and the regeneration resistor part 94B that convert the regeneration power of the motor 91A and the motor 91B as the first motors into heat. Thereby, when the vehicle 2 urgently stops, supply of the excessive regeneration power generated in the motor 91A and the motor 91B to the secondary cell 8 is prevented.
Note that the regeneration resistor part 94A and the regeneration resistor part 94B may be omitted and the regeneration power of the motor 91A and the motor 91B may be stored in the secondary cell 8.
In the embodiment, the pair of front wheels 21 and the pair of rear wheels 22 are driven rollers. However, the pair of front wheels 21 and the pair of rear wheels 22 may be coupled to the drive units.
The drive wheels 23 are respectively configured to be forwardly and backwardly rotatable by the drive unit 9A and the drive unit 9B. Accordingly, the traveling direction may be changed by adjustment of at least one of the rotation speed or the rotation direction of the respective drive wheels 23. Further, in the embodiment, the front wheels 21, the rear wheels 22, and the drive wheels 23 are configured not to rotate about the z-axis, however, at least ones of the front wheels 21, the rear wheels 22, or the drive wheels 23 may be configured to rotate about the z-axis. In this case, the traveling direction may be changed by adjustment of the amount of rotation about the z-axis.
Note that “movement” in this specification includes not only “linear movement”, “meandering”, and “reciprocation” but also “rotation”. The number of wheels of the vehicle 2 is not particularly limited. The configuration of the vehicle 2 is not limited to the above described wheeled type, but may be e.g. a configuration with a caterpillar, a configuration walking with a plurality of legs, or the like.
The vehicle control unit 7 has the third control section 71 that controls the driving of the motor drive circuit 92A and the motor drive circuit 92B and a memory section 72.
The third control section 71 has e.g. a CPU (Central Processing Unit) and reads and executes various programs etc. stored in the memory section 72. The vehicle 2 may travel on a predetermined route by a command signal generated in the third control section 71.
The memory section 72 stores various programs etc. that can be executed by the third control section 71. The memory section 72 includes e.g. a volatile memory such as a RAM (Random Access Memory), a nonvolatile memory such as a ROM (Read Only Memory), and a detachable external memory device. The coupling between the memory section 72 and the third control section 71 may be not only wired coupling but also wireless coupling, or coupling by communication via a network such as the Internet.
As shown in
When the stored electric charge is lost, the secondary cell 8 is charged from an external power supply (not shown) for use. The secondary cell 8 is not particularly limited to, but includes e.g. a nickel-cadmium battery, nickel-hydrogen battery, sodium battery, magnesium battery, lithium-ion battery, and lead storage battery as long as the battery can be repeatedly charged and discharged.
Here, circuits of the mobile robot 100 shown in
The first circuit 100A is a circuit that supplies electric power to the motor 91A and the motor 91B as the first motors. That is, the first circuit 100A includes electric wiring containing the motor drive circuit 92A between the secondary cell 8 and the motor 91A and electric wiring containing the motor drive circuit 92B between the secondary cell 8 and the motor 91B.
The second circuit 100B is a circuit that supplies the electric power of the secondary cell 8 to the motor 31A to motor 31F as the second motors and supplies the regeneration power of the motor 31A to motor 31F to the secondary cell 8. That is, the second circuit 100B includes electric wiring containing the voltage conversion unit 5 between the secondary cell 8 and the motor 31A to motor 31F and the motor drive circuit 32A to motor drive circuit 32F and the voltage conversion unit 5. The regeneration power of the motor 31A to motor 31F is supplied to the secondary cell 8 respectively via the motor drive circuit 32A to motor drive circuit 32F and the voltage conversion unit 5.
The above described first circuit 100A and second circuit 100B are provided, and thereby, the respective parts of the mobile robot 100 are driven by the electric power from the secondary cell 8. In other words, the robot 1 and the vehicle 2 have the secondary cell 8 as the single power supply in common and the respective parts of the robot 1 and the respective parts of the vehicle 2 are driven by the electric power from the secondary cell 8.
The motor 91A and the motor 91B of the vehicle 2 are driven by the first voltage V1. On the other hand, the motor 31A to motor 31F of the robot arm 10 are driven by a second voltage V2 different from the first voltage V1. As below, as an example, a case where the second voltage V2 is larger than the first voltage V1 will be explained. Note that these motor 91A, motor 91B, and motor 31A to motor 31F are driven by alternating-current voltages and the first voltage V1 and the second voltage V2 refer to the maximum values of the amplitude of the voltage waveforms.
Here, converters such as DC/DC converters may be provided between the secondary cell 8 and the motor drive circuit 92A and motor drive circuit 92B. The output voltage of the secondary cell 8 may be unstable depending on the state of charge, remaining charge, or the like. The converters are provided, and thereby, the voltages supplied from the secondary cell 8 to the motor 91A and the motor 91B may be stabilized for stable operation of the control circuits, and adjustment to raise the absolute maximum rating of the motor 91A and motor 91B, the encoder 93A and encoder 93B, etc. or the like may be unnecessary. Further, the converters are provided, and thereby, the distances between the motor drive circuit 92A and motor drive circuit 92B and the secondary cell 8 may be made longer and, when the voltage supply from the secondary cell 8 is turned off, the data evacuation time can be secured.
Next, the voltage conversion unit 5 will be explained.
The voltage conversion unit 5 is a circuit that may mutually convert the first voltage V1 and the second voltage V2. As the voltage conversion unit 5, e.g. an isolated or non-isolated DC/DC bidirectional converter may be used, and the isolated DC/DC bidirectional converter is preferably used. Thereby, the voltage range for conversion may be increased for the better versatility.
The robot arm 10 has the arm 11 to arm 16 as the plurality of arms and the motor 31A to motor 31F as the plurality of second motors that drive the arms 11 to 16, respectively. The respective motor 31A to motor 31F are electrically coupled to the same voltage conversion unit 5. Thereby, as will be described later, whether the electric power is supplied to the motor 31A to motor 31F or the regeneration power is supplied to the secondary cell 8 may be collectively changed by a simple operation of switching the single voltage conversion unit 5. Therefore, control of switching between the first mode and the second mode to be described later may be easily performed.
As shown
The voltage conversion unit 5 has a switch (not shown) and the switch is switched by the first control section 41. By the switching, the first mode and the second mode to be described later are switched.
The first mode is a state in which the electric power of the secondary cell 8 is supplied to the motor 31A to motor 31F as the second motors. In the first mode, the first voltage V1 supplied from the secondary cell 8 is converted into the second voltage V2 and respectively output to the motor drive circuit 32A to motor drive circuit 32F. Thereby, the motor 31A to motor 31F driven by the second voltage V2 may be driven by the electric power of the secondary cell 8 outputting the first voltage V1.
On the other hand, the second mode is a state in which the regeneration power of the motor 31A to motor 31F as the second motors is supplied to the secondary cell 8. In the second mode, the regeneration power of the motor 31A to motor 31F as the second voltage V2 is converted into the first voltage V1 and output to the secondary cell 8. Thereby, the regeneration power as the second voltage V2, which is converted into heat and released in the related art, may be converted into the first voltage V1 and stored in the secondary cell 8. Therefore, the time to drive the mobile robot 100 on a single charge may be extended.
In a case where the operation speed of the robot arm 10 is increased or the like, the power consumption increases with the increase of the second voltage V2. The regeneration power of the motor 31A to motor 31F is supplied to the secondary cell 8, and thereby, reduction of the remaining power of the secondary cell 8 may be suppressed. Accordingly, when the second voltage V2 is increased, the above described effects are more remarkable and effective.
As described above, the voltage conversion unit 5 converts from the first voltage V1 into the second voltage V2 in the first mode in which the electric power of the secondary cell 8 is supplied to the motor 31A to motor 31F as the second motors, and converts from the second voltage V2 into the first voltage V1 in the second mode in which the regeneration power of the motor 31A to motor 31F is supplied to the secondary cell 8. Thereby, the regeneration power of the motor 31A to motor 31F may be stored in the secondary cell 8. Therefore, the time to drive the mobile robot 100 on a single charge may be extended.
The robot 1 has the first control section 41 as the control section that controls the operation of the voltage conversion unit 5 to switch between the first mode and the second mode. Thereby, for example, the first mode and the second mode may be switched appropriately at the following times.
The regeneration power is generated when the motor 31A to motor 31F make decelerated motion, and the first control section 41 controls the operation of the voltage conversion unit 5 to set the second mode when the motor 31A to motor 31F make decelerated motion and set the first mode when the motor 31A to motor 31F make accelerated motion and uniform motion.
Specifically, the first control section 41 specifies the operating state of the robot arm 10, i.e., one state of the decelerated motion, the accelerated motion, and the uniform motion based on the encoder values transmitted from the encoder 33A to encoder 33F as needed. Then, the switch of the voltage conversion unit 5 is switched according to the result and the first mode and the second mode are switched.
As described above, the robot 1 has the encoder 33A to encoder 33F as the operating state sensors that sense the operating state of the robot arm 10. Further, the first control section 41 as the control section controls the operation of the voltage conversion unit 5 based on the sensing results of the encoder 33A to encoder 33F. Thereby, switching between the first mode and the second mode may be performed at proper times.
Note that the switching between the first mode and the second mode is not limited to that described above, but may be performed based on an operation program, for example. That is, for execution of the operation program, when the state of the robot arm 10 is known as one state of the decelerated motion, the accelerated motion, and the uniform motion, the first mode and the second mode may be switched based on an elapsed time or the like.
As described above, the mobile robot 100 includes the vehicle 2 having the secondary cell 8 that outputs the first voltage V1, the motor 91A and the motor 91B as the first motors driven by the first voltage V1, and the first circuit 100A that supplies the electric power of the secondary cell 8 to the motor 91A and the motor 91B, and the robot 1 having the robot arm 10, the motor 31A to motor 31F as the second motors that drive the arm 11 to arm 16 by the second voltage V2 different from the first voltage V1, and the second circuit 100B that supplies the electric power of the secondary cell 8 to the motor 31A to motor 31F and supplies the regeneration power of the motor 31A to motor 31F to the secondary cell 8 and coupled to the vehicle 2. Further, the second circuit 100B has the voltage conversion unit 5 that may mutually convert the first voltage V1 and the second voltage V2. Thereby, the regeneration power as the second voltage V2, which is converted into heat and released in the related art, may be converted into the first voltage V1 and stored in the secondary cell 8. Therefore, the time to drive the mobile robot 100 on a single charge may be extended.
According to the configuration, when the operation of the robot 1 is stopped, a user moves the robot arm 10 by applying an external force to the robot arm 10, and thereby, the regeneration power may be generated from the motor 31A to motor 31F and the secondary cell 8 may be charged.
As below, the second embodiment of the mobile robot according to the present disclosure will be explained with reference to
As shown in
The robot arm 10 has the arm 11 to arm 16 as the plurality of arms and the motor 31A to motor 31F as the plurality of second motors that drive the arms 11 to 16, respectively. The plurality of, i.e., six voltage conversion units 5 are respectively provided for the motor 31A to motor 31F. Thereby, the first mode and the second mode may be switched for each of the voltage conversion units 5, and the operation of the motor 31A to motor 31F may be varied more widely.
As below, the third embodiment of the mobile robot according to the present disclosure will be explained with reference to
As shown in
As described above, the robot 1 has the base 110 supporting the robot arm 10. Further, the voltage conversion unit 5 is placed outside of the base 110. Thereby, for example, maintenance of the voltage conversion unit 5 may be easily performed.
As above, the mobile robot according to the present disclosure is explained based on the illustrated embodiments, however, the present disclosure is not limited to those. The configurations of the respective parts may be replaced by arbitrary configurations having the same functions. Further, another arbitrary configuration may be added to the present disclosure. The robots of the mobile robots according to the above described embodiments are of the systems including the six-axis vertical articulated robots, however, the number of axes of the vertical articulated robot may be five or less, seven, or more. Or, horizontal articulated robots may be used in place of the vertical articulated robots.
Number | Date | Country | Kind |
---|---|---|---|
2019-179569 | Sep 2019 | JP | national |