1. Field of Invention
This invention relates to devices for protection of workers performing maintenance and repairs on roadways.
2. General Background
Each year, many highway maintenance workers are injured or killed by errant vehicles. For long term projects, concrete barriers can be installed to create a safe work area for highway workers. But for short term projects, it is impractical to use concrete barriers, so instead cones are sometimes used to protect the side portion of the work area, and a “shadow” vehicle is often used to protect the upstream or rear area.
But cones cannot stop errant vehicles that swerve into the work area, so there is a need for a mobile work zone protection device that can be deployed rapidly, and that can effectively protect workers from errant vehicles.
The present invention is a mobile work zone protection device, comprised of a truck, a front carrier, a barrier beam assembly, and a rear carrier.
The present invention is a mobile work zone protection device, comprised of a truck 10, a front carrier 20, a barrier beam assembly 40, and a rear carrier 180.
Truck
The truck 10 can be any virtually any tractor unit, with an engine (typically diesel), a driver's cab, and standard vehicle controls. The truck will have a standard “fifth wheel” 12 coupling device for removably attaching the truck 10 to the front carrier 20. See
To allow deployment of the barrier beam assembly 40, the truck 10 has a hydraulic power means and a pneumatic power means. As explained below, the present invention uses hydraulic power to deploy the barrier beam assembly, and it uses air controls to lock the assembly. In this embodiment hydraulic power is provided by the truck engine using a PTO, but can also be provided by an independent or alternative engine with a pump installed. Air is supplied by the air brake system compressor, but can be provided by an independent or alternative compressor.
The truck 10 is modified so that it can be locked into non-pivoting alignment with the front carrier 20. See
Front Carrier
The front carrier 20 is removably attached to the truck 10 by means of a standard kingpin 24 that fits into the fifth wheel 12. When the device is traveling, the fifth wheel 12 is positioned on its tracks so as to create sufficient distance between the “V” shaped cross member 14 and the “V” shaped coupler 22 so that the truck 10 can turn without hindrance. See
The front carrier 20 helps support the barrier beam assembly 40. It may follow the “L” shaped design shown in
As shown in
The front carrier 20 also may have a front deck area 30, and straps or fastening means may be provided with the deck area for carrying cargo. See
Barrier Beam Assembly
The barrier beam assembly 40 is the section of the device intermediate between the front carrier 20 and the rear carrier 180. It includes two actuator housings 32, 190, two front arms 42, 44, two rear arms 50, 52, and two beam structures 60, 130. See
The actuator housings 32, 190 are adjacent to the front carrier 20 and rear carrier. See
Each of the two front arms (42 or 44) is attached to one of the beam structures (60 or 130). See
The rear arms 50, 52 are analogous to the front arms 42, 44, except that they are placed on the rear carrier 180. Spacers 46, 48, 49 may be placed adjacent to both the front and rear arms 42, 44, 50, 52. See
In the embodiment shown in the figures, each longitudinal pair of arms (i.e. 42 & 50, 44 & 52) is separately powered, and thus each beam structure 60, 130 can move independently of the other. See
Each beam structure 60, 130 has beam end couplers at each end of the beam structure. See
There are two type of beam end couplers: beam end couplers with pins 62 and beam end couplers without pins, 68. As shown in
When the two beam structures 60, 130 are not joined together, as in
The first beam structure 60 includes a beam 80 that is extendable by telescoping in and out of a box tube assembly 90. See
The beam 80 telescopes in and out of the box tube assembly 90 by rolling on wheels 82, 84, 92, and 94. Wheels are provided on the beam 82, 84 and on the box tube assembly 92, 94. See
The second beam structure 130 is the same as the first beam structure 60, in that it has a beam 140 and a box tube assembly 150. The beam structures 60, 130 may be installed in opposite directions, i.e. the beam 80 of the first beam structure 60 may sit atop the box tube assembly 150 of the second beam structure 130 when the device is deployed, although other configurations can be used. See
Other systems could be used in lieu of the telescoping to achieve extending effect.
Extension or telescoping of the beam structure 60, 130 is accomplished by setting the brakes on the rear carrier 180, and driving the truck 10 forward, until the stops 85, 96 incorporated into the beam structure 60, 130 prevent further extension See
Each beam structure 60, 130 may have a retraction lock 100 to lock the beam structure in its retracted position for transit, as shown in
The beam structures may also have a combination retraction/extension lock 104, that can both lock a beam structure in its retracted state and in its extended state. See
Rotational locks 110, 160 are provided at the front end of each beam structure 60, 130. They also may be provided on the rear (not shown). When activated, locking blocks 112, 162 on these structures rotate to hold down the beam structures 60, 130, to add rigidity to the structures, and to take some stress off the arms 42, 44, 50, 52. See
As shown in
The outer surface of the beam structures can be substantially planar, as shown in
There are a number of different ways to deploy the barrier beam assembly besides the arms described above. For instance, a small crane could be used to lift and move the beams from side to side. Or a single beam or a set of beams could fit into horizontal tracks on the front and rear carrier, and the beam or beams could slide from the left side to the right side, depending on where they are needed. For transit, the beam or beams could be locked into the center of the tracks. Or the beam can be made for one side operation only, but when the opposite side is needed, the towing ends could be swapped before traveling to the work location.
In the embodiment presented in the illustrations, two beam structures are provided. When the device is in transit, one beam is placed on each side. When the device is deployed on site, both beams are placed on the same side, namely the side closest to traffic. It can be left in the transit position for both left and right protection for center lane deployment The workers then have a safe work area with the zone between the front carrier, the rear carrier, and the beam structures. The beam structures provides protection against vehicles of various sizes, from low-to-the-ground subcompacts to high-clearance trucks.
Rear Carrier
The rear carrier 180 provides support for the beam structures 60, 130, as well as the rear actuator housing 190 and rear arms 50, 52. See
Operation
In operation, the device can be readied for transit by positioning the beam structures 60, 130 so that one is on the left, and one is on the right. The beam structures 60, 130 are then locked into placed, by activating the retraction lock 100 (and/or the retraction/extension lock 104) and the rotational lock(s) 110. The fifth wheel 12 is positioned so that there is sufficient space between tractor unit 10 and the front carrier 20 to allow complete freedom for turning.
The device is then driven to the work site, and is prepared for deployment. Since the beam structures 60, 130 can be deployed on either side, the present invention can easily be used to create a safe work area on either the side of the road, the median, or within lanes of traffic.
The united beam structure can then be extended, by locking the brakes on the rear carrier, and driving the truck forward until the stop plate 96 is engaged.
Once the vehicle parks at the work area, the jacks 26, 28 or “landing gear” are lowered to stabilize the device for deployment. The air locks (retraction, retraction/extension, and rotational) are released, and the beam structure that is distal from the traffic is rotated approximately 180 degrees so that it sits atop the other beam structure. The beam end couplers then mate with each other, and the beams structure are united to form a single worker protection barrier beam.
In the embodiment shown in the figures, the device is designed to provide the best protection when both beam structures are united to form a single barrier beam structure. However, simply by extending the height of each beam structure, an alternative embodiment could be created in which each beam structure alone can provide as much protection as the unified barrier beam structure of
Deployment of the device can be “manual,” in the sense that the operator uses hydraulic and pneumatic control to lower the jacks, unlock the air locks, rotate the beam structures, extend the beam structures, and then relock the rotational air locks 110. The process could also be made automated with circuitry, so that the entire deployment sequence could be accomplished by pressing a single button. Also, deployment could be controlled by using remote control placed in the cab of the truck 10.
The device of the present invention can “creep” along in its deployed mode as workers perform their duties, thereby saving time that would otherwise be spent in setting up and taking down the structure.
Typically, the present invention would be used with one or two other vehicles, namely a work vehicle that contains needed equipment etc., and a “shadow” vehicle that would be parked upstream of the protected work zone to provided added safety. An attenuator can be added to the rear of the shadow vehicle. If no shadow vehicle is used, an attenuator can be added to the rear carrier.
One skilled in the art will appreciate that the present invention can be practiced by other than the preferred embodiments, which are presented for purposes of illustration and not of limitation.
This patent claims the benefit of U.S. provisional application No. 60/461,347, filed on Apr. 8, 2003.
Number | Name | Date | Kind |
---|---|---|---|
3734540 | Thiermann | May 1973 | A |
4240647 | Lewis | Dec 1980 | A |
4385771 | Eckels | May 1983 | A |
4600178 | Zucker et al. | Jul 1986 | A |
4624601 | Quittner | Nov 1986 | A |
5007763 | Burgett | Apr 1991 | A |
5088874 | Quittner | Feb 1992 | A |
5688071 | Owen | Nov 1997 | A |
5947452 | Albritton | Sep 1999 | A |
6098767 | Unrath | Aug 2000 | A |
6213047 | Means et al. | Apr 2001 | B1 |
6220780 | Schindler et al. | Apr 2001 | B1 |
6231065 | Brown | May 2001 | B1 |
6450522 | Yamada et al. | Sep 2002 | B1 |
6523872 | Breed | Feb 2003 | B1 |
6581992 | Gertz | Jun 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20050141960 A1 | Jun 2005 | US |
Number | Date | Country | |
---|---|---|---|
60461347 | Apr 2003 | US |