1. Field of the Invention
The present invention relates in general to electrical connectors. More particularly, the present invention relates to a connector assembly for use in coaxial connection with circuit boards. Even more particularly, this invention relates to electrical connectors having densely packed contact members capable of passing signals while minimizing cross talk between adjacent contact members and increasing electrical efficiencies, especially at high frequencies.
2. Discussion of the Related Art
Electrical interconnect systems (including electronic interconnect systems) are used for interconnecting electrical and electronic systems and components. In general, electrical interconnect systems include both a male interconnect component, such as a conductive pin, and a female interconnect component, such as a conductive socket. In these types of electrical interconnect systems, electrical interconnection is accomplished by inserting the male interconnect component into the female interconnect component. Such insertion brings the conductive pin and socket into contact with each other so that electrical signals may be transmitted through the interconnect components. In a typical interconnect system, a plurality of individual conductive pins are positioned in a grid formation and a plurality of individual conductive sockets are arranged to receive the individual pins, with each pin and socket pair transmitting a different electrical signal.
Regardless of the exact application, electrical connector designs have generally needed to mirror trends in the electronics industry. Electronic systems have generally gotten smaller and faster. They also handle much more data than systems built just a few years ago. These trends mean that electrical connectors must carry more and faster data signals in a smaller space without degrading the signal. Accordingly, computer and telecommunication applications require high density interconnect systems for transferring signals between circuit boards and attached devices. Additionally, as voltages have become smaller, due to smaller transistor features and spacing, the noise allowed for these devices has also been reduced.
High density electrical interconnect systems are characterized by the inclusion of a large number of pin/socket connections within a small area. By definition, high density electrical interconnect systems have a greater number of connections in the same space as required by lower density interconnect systems and also include shorter signal paths than lower density interconnect systems. Short signal paths associated with high density interconnect systems allow high density electrical interconnect systems to transmit electrical signals at higher speeds. The high speed signals that are transferred through such interconnections are susceptible to cross talk due to the signal speeds and proximate locations of the signal carrying conductors adjacent to each other. Because the trend in modern telecommunications equipment and computers requires higher current densities, while operating at lower voltages, there is a need for interconnect systems to connect such higher density circuits while avoiding the introduction of cross talk, reflections and transmission loss, due to the density of signal paths carried by such interconnect systems.
The term “cross talk” refers to electromagnetic coupling between signal paths. As signal paths are placed closer together, the amount of electromagnetic coupling between the signal paths increase. Electromagnetic coupling also increases as the speed of the signals increase.
A traditional method of reducing cross talk is to use ground pins within the field of signal pins. The disadvantage of this approach, however, is that it reduces the effective density of the connectors, as often the ground pins outnumber the signal pins by a wide margin.
Thus, there is a need in the art for a high density electrical interconnect system that reduces or eliminates cross talk between closely spaced electrical signal paths. It would also be highly desirable if the electrical interconnect system were easy to manufacture.
Accordingly, the present invention is directed to utilizing coaxial interconnections in a very dense interconnect structure that substantially obviates one or more of the problems due to limitations and disadvantages of the related art.
An advantage of the present invention is to provide increased signal speed through the use of coaxial contacts assembled as a series of modules.
Another advantage of the present invention is to provide more efficient utilization of the space on the printed wiring board to which the connector is attached due to the density achieved.
Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described, a modular connector assembly may include a modular frame having a first surface and a second surface connected at an angle to each other at a first angle region. The first surface, second surface, and the first angle region include first holes, second holes, and third holes, respectively, that are formed at evenly spaced intervals. Modular interconnect components, fixable within the modular frame, each including a back surface having a back surface projection, a contact housing made of electrically insulating material, wherein an exterior of the contact housing includes first and second side surfaces, a back surface, and a top surface. Contact signal pins may be fixed within and electrically insulated from the contact housing. Side protrusions formed on the first side surface. Side recesses may be formed in the second side surface. At least one back surface peg may be formed on the back surface of the contact housing. Top surface modular frame connection means may be formed on the top surface. The top surface modular frame connection means may be configured for receipt by the first holes, the back surface projection may be configured for receipt by the second holes, the at least one back surface peg may be configured for receipt by the third holes, and wherein side protrusions of the plurality of modular interconnect components may be configured for receipt by side recesses of adjacent ones of the plurality of modular interconnect components.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention.
In the drawings:
Reference will now be made in detail to an embodiment of the present invention, example of which is illustrated in the accompanying drawings.
Referring to
Referring to FIGS. 3 and 4A-4F, an exploded view of the female unit 100 of the modular female interconnect component 300 shown in
Referring to
The female contact housing comprises an integrally formed female contact opening housing 131 containing a plurality of female contact openings 132 formed therein. The female contact openings terminate at the back of the female contact opening housing, and connect to female contact pin holding openings 138 (shown more clearly in
Referring back to
Found within the outer top and bottom surfaces of the female contact opening housing 131, a plurality of guide grooves 133 are formed that extend as cavities into the female housing shell behind the female interconnect housing. As will be discussed in greater detail below, these guide grooves secure subsequently provided shielding contacts which help to ground the device upon connecting to a subsequently provided male interconnect component. Shielding contact ledges 133a allow shielding contacts within the female interconnect component to connect to shielding contacts within the male interconnect component, as will be discussed in greater detail below. Further included within the outer top surface of the female contact opening housing, a plurality of orientation channels 137 which ensure that the female unit is oriented correctly upon a successful mating with a male unit.
Integrally formed at the insertion end 138a of the female contact pin holding openings 138 is a female housing shell 134 which includes two opposing side panels separated by a top panel and makes electrical contact to a subsequently provided female right angle body 210. The female housing shell includes notched slot structure 135 formed therein which extends as a specifically shaped cavity through the female housing shell 134 in the direction of a mating action between a completed female right angle unit and a completed female unit and secures to subsequently provided latching means included in the female right angle unit. Furthermore, the female housing shell also comprises a plurality of press fit pegs 136C protruding from a bottom surface thereof. The press fit pegs may be used to self align signal contacts (not shown) to respective electrical contacts on a circuit board of an electrical device.
As shown in
Referring to
Each female contact opening insulator is molded into a shape which comprises two sections: an elongated support section 141 for preventing the female contact pins from contacting the female contact housing upon insertion of male contact pins into the female contact openings; and an anchor portion 143 for regulating a maximum axial movement of the female contact pin 110 down the length of the elongated support section. The elongated support section includes a support groove 142, in which subsequently provided female contact pins 110 will be provided. The anchor portion 143 is located at the back end of the elongated support section and contains an anchor hole 144 that communicates with the support groove.
Referring to
The conductive receiving pin may be formed of beryllium copper, phosphor copper, brass or other copper alloys and plated with nickel, gold, tin, palladium or an alloy of two or more of nickel, gold, tin, palladium. The conductive receiving pin may be plated on its entire surface or only on the particular portion which comes in contact with the male contact pin.
Each conductive receiving pin comprises three sections: a contact portion 112 for electrically contacting to a portion of a male contact; a beam portion 113 for providing a resilient force to the conductive receiving pin, allowing the contact portion of the conductive receiving pin to exert a contact force on a subsequently provided male contact (not shown) and thereby maintain an electrical connection; and a handling portion 114 for supporting the female pin insulator.
The female pin insulator 115 is a molded product made of Teflon or other suitable electrically insulative material having a hollow axis which allows the female pin insulator to conformably slide over the handling portion 114 of the conductive receiving pin. The female pin insulator comprises two sections 116A and 116B, each having two different exterior shapes. Cylindrical pin insulator portion 116A has an exterior shape which is circular. Faceted pin insulator portion 116B comprises radial dimensions larger than the cylindrical pin insulator portion that yield an exterior shape having a finite rotational symmetry. The exterior shape of the female pin insulator conforms to the dimensions of the female contact pin holding openings 138. The female pin insulator having the shape as described above limits the degree to which the contact portion 112 extends from the back of the contact opening housing 131 into the pin recesses 132a. Accordingly, it is possible to maintain uniform electrical connections electrical connections during a mating of the female and male interconnect components.
After the female pin insulator has been disposed over the handling portion 114 of the conductive receiving pin, a predetermined amount of the handling portion is left exposed by the female pin insulator and so is formed a solder connection portion 117 of the conductive receiving pin. Solder connection portions of the female contact pins are electrically connected to unique signal carrying portions of right angle signal pins within the female right angle unit via subsequently provided solder balls upon mating the female unit with a female right angle unit.
Referring to
Upon mating the female solder guides to the female contact pins, the solder connection portions are fully inserted into the solder ball holes 152, wherein the solder ball holes are only partially filled. Accordingly, when mated to the female contact pins, the female contact pin dividers fully extend between neighboring pairs of female pin insulators. Furthermore, one of the faceted surfaces contained within the faceted pin insulator portion 116B contacts a stabilizing face 153 on the female contact pin divider and thereby prevents the conductive receiving pin from becoming undesirably displaced within the pin recesses 132a. By preventing the conductive receiving pin from moving, reliability when mating to male contact pins is increased.
Referring to
Referring to
Thus, by assembling the female contact housing 130, the female contact pins 110, shielding contact pins 120, female solder guides 150, and optionally the female contact opening insulators 140, a female unit 100 of the female interconnect component 300 is formed.
Referring to FIGS. 3 and 5A-5E, an exploded view of the female right angle unit 200 of the modular female interconnect component 300 shown in FIG. 1 and perspective views of its individual components offers a detailed description of the female right angle unit and its manufacture.
Referring to
The female right angle body 210 includes an upper surface comprising a plurality of stepped cascading surfaces 211, a substantially planar bottom surface 212, and a plurality of parallel signal holes 213 running through the female right angle body to the upper and lower surfaces. Each of the plurality of stepped surfaces in the upper surface includes one row of signal holes. The dimensions of signal holes are chosen such that the right angle signal pins may be securely inserted within the signal holes. The signal holes are arranged in a predetermined pattern that allows subsequently provided right angle signal pins to interface with contacts on a printed circuit board.
Further, the female right angle body 210 includes alignment guide grooves 214 the base of which are located below the stepped surface containing the shortest signal holes.
Female right angle body 210 also includes a plurality of latching means 215 wherein each latching means is surrounded on its lateral sides by stabilizing pegs 216. As shown more clearly in
The female right angle body further includes housing stabilizer structures 217A and B and an upper stabilizing face 218. Upon mating the female unit to the female right angle unit, the housing stabilizer structures contact to integrally formed unit alignment means (not shown) formed on the inside of the female housing shell 134. The unit alignment means extend parallel to a direction of a mating action between the female right angle unit and the female unit and are located on the inside of the female housing shell such that the unit alignment means are inserted, in the direction of the mating action, between housing stabilizer structures 217A and 217B. Accordingly, the housing stabilizer structures increase the mechanical rigidity of the female interconnect component.
Referring to
Referring to
Referring to
As shown in
Referring to
Referring now to
Referring now back to
The right angle pin guide includes a back surface comprising a plurality of stepped cascading surfaces 234, a substantially planar mating surface 231, and a plurality of parallel guide holes 232 running through the right angle pin guide to the female unit interface surface and the back surface. Each of the plurality of stepped surfaces in the back surface of the right angle pin guide includes one row of guide holes. The guide holes 232 are arranged in number and pattern to correspond to number and pattern of the right angle signal pins 220. The dimensions of the guide holes are chosen such that the right angle signal pins 220 may be securely inserted therein upon placing the right angle pin guide proximate the female right angle body 210 having the right angle signal pins 220 inserted therein.
The right angle pin guide further includes lower and upper stabilizing projections 233 and 235, respectively. Upon insertion of the seated right angle signal pins into the guide holes, the lower stabilizing projection 233 is simultaneously inserted into the alignment guide grooves 214 of the female right angle body and the upper stabilizing projection 235 abuts the upper stabilizing face 218 of the female right angle body. Accordingly, the upper and lower stabilizing projections fix a lateral and angular movement of the right angle signal pins and ensures that portions of the right angle single pins not inserted within the female right angle body are parallel. Lastly, upon insertion of the right angle signal pins into the guide holes, the stepped surfaces 234 on the back surface of the right angle pin guide are slid over the right angle signal pins to the angle 225 thereby protecting the angle 225 from external objects.
Thus, in assembling the female right angle body 210, the right angle signal pins 220, and the right angle pin guide 230, a female right angle unit 200 of the modular female interconnect component 300 is formed.
The modular female interconnect component 300 is formed by electrically and mechanically mating the female right angle unit and the female unit to each other. According to one aspect of the invention, while referring to
Referring now to
As shown in
Referring to
Referring to FIGS. 8 and 9A-9E, an exploded view of the male interconnect component 500 shown in
Referring to
The male contact housing comprises an integrally formed male fin housing 531 which includes a plurality of male fins 532 formed therein. In one exemplary embodiment according to the principles of the present invention, the plurality of male fins may be arranged in a regular grid pattern containing rows and columns within the male fin housing.
Furthermore, each of the male fins 532 is formed generally as a prism having diametrically opposing major surfaces which are not flat. This prism shape prevents any undesirable lateral and rotational motion of a subsequently provided male fin insulator 540 from occurring.
Behind each of the male fins, at the back of the male fin housing, a plurality of male contact pin holding openings 538 are provided within the male contact housing which allow male contact pins 510 to be installed within the male contact housing. The male contact pin holding openings formed behind the male fins have a cross sectional area with a finite rotational symmetry, a portion of which, conforms to a shape of a male pin insulator which will be discussed in greater detail below.
Found within the inner top and bottom surfaces of the male fin housing 531, a plurality of guide grooves 533 are formed that extend as cavities to the back of the male fin housing. As will be discussed later, these guide grooves secure subsequently provided shielding contacts which help to ground the device upon connecting to a subsequently provided female interconnect component. Further included within the inner top surface of the male fin housing, a plurality of orientation keys 537 which ensure that the modular male interconnect component is oriented correctly upon a successful mating with a female unit of a modular female interconnect component.
Referring to
As shown in
As further shown in
Referring to
Each male fin insulator is molded into a shape which generally comprises two sections: a male contact pin dividing portion 541 and a male contact pin supporting portion 542. The male contact pin supporting portion 542 of the male contact insulator contains a fin receiving cavity 543 which conforms to the dimensions of the male interconnect contact fins 532. Accordingly, the male fin insulators are attached to the male fins by completely inserting the male fins into the fin receiving cavity. The male contact pin supporting portion also includes a plurality of support guides 544 formed therein which support subsequently provided male contact pins when they are contacted with female contact pins. The male contact pin dividing portion 541 includes a plurality of male contact pin dividers 545, wherein the male contact pin dividers include a stabilizing face 546.
Upon insertion of the male fin into the fin receiving cavities, the male contact dividing portion 541 is inserted into and divides male contact pin holding openings 538.
Referring to
The conductive projecting pin may be formed of beryllium copper, phosphor copper, brass or other copper alloys and plated with nickel, gold, tin, palladium or an alloy of two or more of nickel, gold, tin, palladium. The conductive projecting pin may be plated on its entire surface or only on the particular portion which comes in contact with the female contact pin.
Each conductive projecting pin comprises three sections: a tapered contact portion 512 for electrically contacting and deflecting the contact portion 112 of the female contact pin 110; an elongated contact portion 513 for electrically contacting the contact portion 112 of the female contact pin 110; and a handling portion 514 for supporting the male pin insulator.
The male pin insulator 515 is a molded product made of electrically insulating material such as Teflon or other suitable material having a hollow axis which allows the male pin insulator to conformably slide over the handling portion 514 of the conductive projecting pin. The male pin insulator comprises two sections 516A and 516B, each having two different exterior shapes. Cylindrical pin insulator portion 516A has an exterior shape which is circular. Faceted pin insulator portion 516B comprises radial dimensions larger than the cylindrical pin insulator portion that yield an exterior shape having a finite rotational symmetry. The exterior shape of the male pin insulator conforms to the dimensions of the male contact pin holding openings 538. The male pin insulator having the shape as described above limits the degree to which the contact portion 512 extends from the back of the male fin housing 531 within the pin supporting portion 542. Accordingly, it is possible to maintain uniform connections electrical connections during a mating of the modular female and male interconnect components.
After the male pin insulator has been disposed over the handling portion 514 of the conductive projecting pin, a predetermined amount of the handling portion is left exposed by the male pin insulator and so is formed a solder connection portion 517 of the conductive projecting pin. The solder connection portion is electrically connected to a subsequently provided printed circuit board (PCB) via subsequently provided solder balls, conductive epoxy or solder paste.
Upon inserting the male contact pins, the conductive projecting pins 511 are disposed within the support guides 544 of the male fin insulators. Further, one of the faceted surfaces contained within the faceted pin insulator portion 516B of the male pin insulator contacts a stabilizing face 546 of the male fin insulators 540 and thereby prevents the conductive projecting pin from undesirably moving within the male contact pin holding openings 538. By preventing the conductive projecting pin from moving, reliability when mating to female contact pins is increased.
Referring to
Referring to
Thus, by assembling the male contact housing 530, the male fin insulators 540, the male contact pins 510, the shielding contact pins 520, and male solder guides 550, a modular male interconnect component 500 is formed.
Referring now to
As shown in
Referring to
Thus, according to one aspect of the invention a completed male or female interconnect component may essentially be characterized as containing a plurality of electrically isolated coaxial signal carrying paths, i.e., contact pins and/or wires of right angle signal pins, wherein the signal carrying paths are electrically insulated from each other using various electrically insulating structures, i.e., fin insulators, contact pin insulators, solder guides, right angle signal pin insulators, in addition to being electrically shielded from each other using various metallized insulating structures, i.e., contact housings, angle bodies, and shielding insulators, shielding contacts, and ground bumps. Given that the angle bodies and the contact housings are mechanically coupled together, they are also electrically connected to one another through the shielding contacts and the metallized surfaces they comprise. Accordingly, the exterior surfaces of the interconnect components shield signal carrying paths from electrical interference, i.e., signal noise within the interconnect components and between neighboring signal carrying paths. Accordingly, the present invention is capable of providing a high density electrical interconnect system that may operate at frequencies above 10 GHz with a substantially reduced amount of cross talk between signal paths and increase signal transmission.
Once connected to their respective PCBs, the male and female interconnect components transmit electrical signals therebetween. For example, a PCB connected to a male interconnect component sends a plurality of electrical signals. Within both the male and female interconnect components, the electrically conductive structures provided to carry each of the signals, i.e., the contact pins and the signal carrying portions of right angle signal pins are both electrically insulated and electrically shielded from each other, except with differential pairs, in which case neighboring contacts serve to quiet the adjacent signal noise.
As shown in
As shown in
Further, upon the insertion, portions 547 of the male fin insulators contact the upper, lower, and side walls 132b of the contact openings 132. Upon completion of the mating process, the contact opening housing 131 is fully inserted within the fin housing 531 and the plurality of male fin insulators 540 are fully inserted and contact the back of the female contact openings. Accordingly, a plurality of electrical signal connections may be made by inserting the male fin insulators and their respective male contact pins into corresponding female contact openings, each containing a plurality of female contact pins. As a result, each individual electrical connection created by a mated female contact pin and male contact pin is electrically insulated from adjacent electrical signal connections due to its location within a pin recess and to the presence of the male fin insulator within the female contact opening.
It will be apparent to those skilled in the art that various modifications and variation can be made in the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
3201722 | May et al. | Aug 1965 | A |
3366920 | Laudig et al. | Jan 1968 | A |
4605269 | Cohen et al. | Aug 1986 | A |
4686607 | Johnson | Aug 1987 | A |
RE32760 | Chandler et al. | Oct 1988 | E |
4842528 | Frantz | Jun 1989 | A |
4861271 | Bogar et al. | Aug 1989 | A |
4900258 | Hnatuck et al. | Feb 1990 | A |
5011425 | Van Zanten et al. | Apr 1991 | A |
5055068 | Machura et al. | Oct 1991 | A |
5088937 | Gabany | Feb 1992 | A |
5116245 | Baker | May 1992 | A |
5161991 | Bauer | Nov 1992 | A |
5169343 | Andrews | Dec 1992 | A |
5228871 | Goodman | Jul 1993 | A |
5344340 | Bouleau | Sep 1994 | A |
5397241 | Cox et al. | Mar 1995 | A |
5484310 | McNamara et al. | Jan 1996 | A |
5516294 | Andrews et al. | May 1996 | A |
5516307 | Cartesse et al. | May 1996 | A |
5575688 | Crane, Jr. | Nov 1996 | A |
5577935 | Harting et al. | Nov 1996 | A |
5595490 | Cohen et al. | Jan 1997 | A |
5605476 | McNamara et al. | Feb 1997 | A |
5607326 | McNamara et al. | Mar 1997 | A |
5641294 | Beard | Jun 1997 | A |
5645454 | Kosmala | Jul 1997 | A |
5672064 | Provencher et al. | Sep 1997 | A |
5675891 | Childs et al. | Oct 1997 | A |
5679006 | Madelaine | Oct 1997 | A |
5702258 | Provencher et al. | Dec 1997 | A |
5718606 | Rigby et al. | Feb 1998 | A |
5775947 | Suzuki et al. | Jul 1998 | A |
5795191 | Preputnick et al. | Aug 1998 | A |
5842872 | Hosler, Sr. et al. | Dec 1998 | A |
5851121 | Thenaisie et al. | Dec 1998 | A |
5882227 | Neidich | Mar 1999 | A |
5919063 | Wang | Jul 1999 | A |
5938450 | Nagafuji | Aug 1999 | A |
5943770 | Thenaisie et al. | Aug 1999 | A |
5980321 | Cohen et al. | Nov 1999 | A |
5993259 | Stokoe et al. | Nov 1999 | A |
6037787 | Corwith | Mar 2000 | A |
6056559 | Olson | May 2000 | A |
6071127 | Acke et al. | Jun 2000 | A |
6120306 | Evans | Sep 2000 | A |
6137064 | Kiani et al. | Oct 2000 | A |
6152742 | Cohen et al. | Nov 2000 | A |
6152747 | McNamara | Nov 2000 | A |
6171149 | van Zanten | Jan 2001 | B1 |
6179663 | Bradley et al. | Jan 2001 | B1 |
6224423 | Yip et al. | May 2001 | B1 |
6270366 | Jeon et al. | Aug 2001 | B1 |
6293827 | Stokoe | Sep 2001 | B1 |
6299483 | Cohen et al. | Oct 2001 | B1 |
6305947 | Bruce | Oct 2001 | B1 |
6322379 | Ortega et al. | Nov 2001 | B1 |
6354877 | Shuey et al. | Mar 2002 | B1 |
6540559 | Kemmick et al. | Apr 2003 | B1 |
20020111068 | Cohen et al. | Aug 2002 | A1 |
Number | Date | Country |
---|---|---|
PC-WO 8707441 | Dec 1987 | WO |
PC-WO 9009686 | Aug 1990 | WO |
PC-WO 9702629 | Jan 1997 | WO |
PC-WO 9740554 | Oct 1997 | WO |
Number | Date | Country | |
---|---|---|---|
20040014360 A1 | Jan 2004 | US |