This invention relates to suppression of electromagnetic interference.
CAT5 unshielded twisted pair cable terminating in an RJ45 modular connector is typically used for local data transmissions, such as the 100 Mb Ethernet local area network (LAN). Prior art regarding RJ45 connectors with integrated signal-conditioning magnetics for 100 Mb Ethernet applications is bountiful. Examples thereof include U.S. Pat. Nos. 5,971,813 and 6,171,152. But, to my knowledge, none can provide Class B electromagnetic interference performance with unshielded CAT5 cable. Class B is a conducted and radiated emissions standard of the FCC Part 15 in the US and of CISPR 22 internationally. Some of the existing connectors can provide Class B performance with shielded CAT5 cable. But shielded cable is expensive and therefore not widely used. For example, the cabling infrastructure of most businesses uses unshielded CAT5 cable to make data connections to employees' desktops.
Generally according to an embodiment of this invention, there is provided a connector that provides Class B electromagnetic interference performance with unshielded data cable. Illustratively, there is provided an RJ45 modular connector that provides Class B performance with unshielded CAT5 cable. According to an aspect of the invention, at least one of a socket and a corresponding jack that together form a connector for a data transmission medium that has a plurality of pairs of conductors, comprises, for each conductor of each active pair of conductors, a pair of common-mode filter inductors connected in series with each other and with the conductor, where the pair of inductors substantially meet or exceed the impedance, reactance, and resistance curves of
These and other features and advantages of the invention will become more apparent from the following description of an illustrative embodiment of the invention considered together with the drawing, in which:
Each of the two active twisted pairs of cable 106 is connected to signal-conditioning circuitry in socket 102. Tip lead J1 and ring lead J2 are each connected via a serial pair of common-mode rejection filters 120 and 122 to one side of a transformer 124, whose center tap is connected via a resistor 126 to a conductor 140. Illustratively, the two filters 120 share a common ferrite core, as do the two filters 122. The other side of transformer 124 is connected to a first pair of pads, and its center tap is connected to a third pad of pads P1-P8, or is left floating. Correspondingly, tip lead J3 and ring lead J6 are connected via a serial pair of common-mode rejection filters 130 and 132 to one side of a transformer 134, whose center tap is connected via a resistor 136 to conductor 140. Illustratively, the two filters 130 share a common ferrite core, as do the two filters 132. The other side of transformer 134 is connected to a second pair of pads and its center tap is connected to a sixth pad of pads P1-P8, or is left floating. Each transformer 124 and 134 may be thought of as connecting together two segments of each of three conductors. Conductor 140 connects the leads J4-J5 and J7-J8 of inactive twisted pairs of cable 106 to ground 116 via a DC-blocking capacitor 142. Illustratively, the turns ratio of the windings of each transformer 124 and 134 is 1:1±3%, resistors 126 and 136 are each about 75Ω, and capacitor 142 is about 1,000 pF. As described so far, RJ45 connector 102-104 is conventional.
According to one aspect of the invention, each pair of filters 120-122 and 130-132 are selected such that the pair's impedance, reactance, and resistance substantially meet or exceed the respective curves 200, 300, and 400 shown in
According to another aspect of the invention, conductor 140 is connected to leads J4, J5, J7, and J8 of the inactive twisted pairs of cable 106 across a current-blocking filter 150. Filter 150 blocks any current that might be conducted to lead 140 by transformers 126 and 136 or ground 116 from reaching cable 106. Filter 150 is selected such that its impedance, reactance, and resistance meet or exceed the respective curves 500, 600, and 700 shown in
Of course, various changes and modifications to the illustrative embodiment described above will be apparent to those skilled in the art. For example, the signal-conditioning circuitry can be implemented in the connector jack instead of the socket, or can be divided among the jack and the socket. Or, the connector can be used to advantage with other types of cable, including CAT3, CAT5+, and CAT6 cable. Or, instead of being shorted to each other, leads J4, J5, J7, and J8 may be connected to filter 150 each by its own 50Ω resistor. Such changes and modifications can be made without departing from the spirit and the scope of the invention and without diminishing its attendant advantages. It is therefore intended that such changes and modifications be covered by the following claims except insofar as limited by the prior art.
Number | Name | Date | Kind |
---|---|---|---|
5971813 | Kunz et al. | Oct 1999 | A |
6171152 | Kunz | Jan 2001 | B1 |
6227911 | Boutros et al. | May 2001 | B1 |
6334787 | Chang | Jan 2002 | B1 |
6663423 | Belopolsky et al. | Dec 2003 | B2 |
6881096 | Brown et al. | Apr 2005 | B2 |
7123117 | Chen et al. | Oct 2006 | B2 |
20040164619 | Parker et al. | Aug 2004 | A1 |