This application claims the benefit of U.S. Provisional Application Ser. No. 60/441,930, filed on Jan. 21, 2003, the disclosure of which is incorporated herein by reference.
The present invention relates to liquid disinfection and, more particularly, to liquid disinfection using ultraviolet (UV) radiation.
It is known to use UV radiation to disinfect clear or opaque liquids such as water, including wastewater, juices, brines, marinades, beverages, and the like. A couple of examples include U.S. Patent Nos. 3,527,940 and 4,968,891, the disclosures of which are incorporated herein by reference. Using UV radiation to disinfect liquids offers many advantages that often make it a very attractive option as compared to other methods of disinfecting liquids. It will often provide for improved disinfection in a fast, simple, relatively inexpensive manner.
Still, prior equipment and methods of disinfecting liquids using UV radiation suffer from a number of disadvantages. For example, the relatively fragile nature of the equipment has placed undesirable limitations on the flow rates that may be treated and operating pressures that may be used. The relatively fragile nature of the equipment similarly limited pressures and flow rates that could be used for cleaning purposes, making it more difficult or impossible to provide the convenience of clean in place equipment. The effectiveness of UV radiation to disinfect a liquid diminishes rapidly, likely exponentially, with distance, so relying primarily upon turbulence in a liquid to provide for even, thorough disinfection of the liquid can be unreliable. Also, exposure times for desired levels of disinfection can often lead to the use of undesirably large equipment or the use of an undesirably large number of units of such equipment, adding to the cost of the system and taking up valuable floor space. In a typical prior art unit, a significant portion of the radiation emitted by the bulbs is not directed toward the liquid to be treated and is wasted, making inefficient use of the radiation and of the power consumed to generate the radiation. Prior cabinets or units used to provide UV disinfection of liquids also provided little or no flexibility in handling differing flow patterns, flow rates, and treatment times. Further, prior cabinets and units were difficult and time-consuming to service or repair, and typically required an entire cabinet or unit to be shut down and placed out of service for extended periods.
It is therefore an object of the present invention to provide a system and method for treating a liquid with radiation that offers increased efficiency.
It is a further object of the present invention to provide a system of the above type that allows the flexibility of switching between parallel and series flow with minimal adjustments.
It is a still further object of the present invention to provide a system of the above type that provides a rugged system that may handle high pressures and flow rates.
It is a still further object of the present invention to provide a system of the above type which uses modular illumination units to allow for fast and easy replacement of bulbs or other components.
It is a still further object of the present invention to provide a system of the above type that makes highly efficient use of radiation generated by treating bulbs.
It is a still further object of the present invention to provide a system of the above type which provides for an extended treatment path without a corresponding increase in the length of the treatment chamber.
It is a still further object of the present invention to provide a system of the above type which provides for more even and thorough exposure of the liquid to be treated.
It is a still further object of the present invention to provide a system of the above type which provides for the convenience of fluid input and output at the same end of a treatment chamber.
Toward the fulfillment of these and other objects and advantages, a radiation treatment method and device are disclosed. The device comprises a treatment chamber and a radiation source, such as one or more UV bulbs, disposed in close proximity thereto. The treatment chamber has a header to which are connected coaxially aligned inner and outer tubes. The coaxially aligned tubes form an annulus area, and a static mixer defines a spiral liquid travel path through the annulus. An exit path is provided through the center of the inner tube and through the header. Input and output manifolds are provided, and adjacent treatment chambers may alternately be aligned and connected to provide for parallel or serial flow. Modular illumination units may be used in which two mirror image halves each have a bracket that supports and aligns reflectors and UV bulbs adjacent each treatment chamber.
The above brief description, as well as further objects, features and advantages of the present invention will be more fully appreciated by reference to the following detailed description of the presently preferred but nonetheless illustrative embodiments in accordance with the present invention when taken in conjunction with the accompanying drawings, wherein:
Referring to
The treatment chamber 12 comprises a header 16, inner and outer tubes 18 and 20, a static mixer 22, and an end cap 24. The header 16 has an outer housing 26, an inner header tube 28, an input pipe 30 with an input opening 32, and an output pipe 34 with an output opening 36. The outer housing 26 is open at the top, closed at the bottom, and has two side openings disposed on opposite sides, with one side opening being larger than the other. A mount 38 is secured to the bottom wall of the outer housing 26. The input pipe is affixed to the outer housing 26, aligned with the larger of the two side openings. The output pipe 34 is affixed to the outer housing 26 aligned with the smaller of the two other side openings. The input and output pipes 30 and 34 both have inner diameters of approximately 1.5 inches. The inner diameter of the output pipe 34 is larger than the diameter of the side opening. The inner header tube 28 has an input opening centrally disposed and coaxially aligned with the outer housing 26 and an output opening aligned with the smaller of the two side openings. The inner diameter of the inner header tube 28 is substantially the same as the diameter of this side opening. The header 16 is preferably made of stainless steel and is of clean in place construction. It is of course understood that the header 16 may be made of any number of different materials or combinations of materials. It is also understood that the header 16 may be assembled or fabricated from a number of different parts or may be cast or molded as one or more integral pieces.
Outer tube 20 is made of a material that is transparent to UV radiation or to the type of radiation used. The outer tube 20 is preferably constructed of a polymer, is more preferably constructed of a fluoropolymer, and is most preferably constructed of fluorinated ethylene propylene. The outer tube may of course be constructed of any number of materials known to possess the desired degree of transparency. The outer tube 20 has a length of approximately 60 inches and has an inner diameter of approximately 1.25 inches. A lower portion of the outer tube 20 is secured to the header 16, such as by using a hose clamp 40. The end cap 24 is affixed to an upper portion of the outer tube 20, such as by using a hose clamp 40. A lower surface 42 of the end cap 24 is curved to assist in redirection of the liquid with minimal pressure drop. The cap 24 is preferably stainless steel.
An output end of the inner tube 18 is affixed to the input end of the inner header tube 28, and the inner tube 18 extends coaxially aligned within the outer tube 20 along most if not all of the height of the outer tube 20. The inner tube 18 is preferably stainless steel having an inner diameter of substantially within a range of from approximately 0.5 inch to approximately 3.25 inch. The inner tube has an outer diameter that is substantially within a range of approximately from approximately 0.75 inch to approximately 3.5 inch. The outer diameter of the inner tube 18 and the inner diameter of the outer tube 20 are preferably selected to provide a relatively narrow annulus 44 between the two having a width of approximately 0.25 inch. An inner surface of the inner tube 18 defines an inner flow path. An inner surface of outer tube 20 and an outer surface of inner tube 18 define an outer flow path. An opening in a distal end of the inner tube 18 places the outer flow path in fluid flow communication with the inner flow path. The outer surface of the inner tube 18 is not transparent with respect to the radiation from the radiation source 14 and is preferably reflective of the radiation.
The static mixer or helical member 22 is an auger style static mixer that is affixed to the outer diameter of the inner tube 18, such as by welding. The mixer 22 extends between the outer wall of the inner tube 18 and the inner wall of the outer tube 20 and preferably contacts the inner wall of the outer tube 20. The mixer 22 is preferably stainless steel. Different degrees of winding may be used depending upon desired characteristics of the device 10. In one preferred embodiment the winding provides a liquid travel path of approximately 3.9 inches for each 1 inch of annulus 44 height. For a treatment chamber 12 in which the height of the annulus 44 area is approximately 60 inches, this would provide a liquid travel path of approximately 234 inches.
Referring to
In an alternate embodiment depicted in
Referring to
As shown in
Referring to
In parallel flow (
The rugged device 10 of the present invention may be operated under wide ranges or pressures and flow rates without fear of damaging the device 10. For example, the device 10 of the present invention may be safely operated at a working pressure reaching or exceeding a pressure that is preferably substantially within a range of from approximately 30 psig to approximately 60 psig and that is more preferably approximately 57 psig. The device 10 may withstand burst pressures reaching or exceeding a pressure that is preferably substantially within a range of from approximately 100 psig to approximately 300 psig and that is more preferably approximately 286 psig. Desired flow rates for many applications will typically be within a range of from approximately 1 gallon per minute to approximately 20 gallons per minute. Similarly, desired flow rates for typical clean in place cleaning will typically be less than or equal to approximately 25 gallons per minute. Still, much higher flow rates may be desirable for some applications, such as for the batch processing of juice. In the batch processing of juice, it is sometimes desirable to process flow rates reaching or exceeding approximately 70 gallons per minute. Because of limitations imposed by the relatively fragile nature of prior radiation treatment devices, it is not believed that UV radiation treatment has been used in applications calling for such high flow rates. In contrast, the rigid construction of the present invention will preferably allow the present invention to safely process flows rates of up to approximately 30 gallons per minute, will more preferably allow the present invention to safely process flows rates of up to approximately 55 gallons per minute, and will most preferably allow the present invention to safely process flows rates of up to approximately 80 gallons per minute. A treatment chamber 12 typically processes approximately 10 to 12 gallons per minute. Parallel flow is typically used for higher rates.
Other modifications, changes and substitutions are intended in the foregoing, and in some instances, some features of the invention will be employed without a corresponding use of other features. For example, any number of treatment chambers 12 may be used, from one to several. Similarly, although it is preferred to use a configuration of eight bulbs 14 per treatment chamber 12, any number of bulbs 14 may be used in connection with a treatment chamber 12, from one to several. Also, any number of different types of mixers 22 may be used in the annulus 44, or a mixer 22 may be omitted. Further, any number of different flow paths may be used, including but not limited to a flow path that is roughly the reverse of that described in the preferred embodiment. Similarly, strictly series flow may be used, strictly parallel flow may be used, or any number of combinations of series and parallel flows may be used. Also, the header 16 may be disposed in different locations, such as at the top of the treatment chamber 12. Similarly, any number of different methods may be used to route the fluid to or from the annulus 44 area and to or from the inner tube 18. Although bulbs 14 providing UV radiation are preferred, any number of different types of radiation and types of radiation sources 14 may be used depending upon the desired application. Further, the reflectors 48 may take any number of shapes, sizes or configurations or may be omitted. Further still, any number of different structures and arrangements may be used for supporting and aligning the various components of the device. Similarly, any number of different structures and arrangements may be provided for shielding users and surrounding environments from radiation exposure. Although the preferred embodiment is particularly useful for treating liquids, it is of course understood that the invention may be used in connection with treating any number of different forms of matter. For example, a device of the present invention may also be used to treat a gas or to treat fluid matter, including but not limited to solid particulate matter. It is of course understood that all quantitative information is given by way of example only and is not intended to limit the scope of the present invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2003/028218 | 9/3/2003 | WO | 00 | 5/30/2008 |
Number | Date | Country | |
---|---|---|---|
60441930 | Jan 2003 | US |