Modular hybrid drill bit

Information

  • Patent Grant
  • 8356398
  • Patent Number
    8,356,398
  • Date Filed
    Wednesday, February 2, 2011
    13 years ago
  • Date Issued
    Tuesday, January 22, 2013
    11 years ago
Abstract
An earth-boring bit comprising a bit body is configured at its upper end for connection into a drillstring. A fixed blade depends axially downwardly from the bit body. An axially extending slot is formed in the bit body adjacent the fixed blade. A bit leg is received and retained in the slot by engagement between the slot and correspondingly shaped bit leg, wherein the bit leg cannot be removed from the slot except by axial movement relative to the bit body. A rolling cutter is secured to the bit leg at its lower extent. A fastener secures the bit leg against movement relative to the bit body and extends through oblong apertures in the bit leg and into the bit body, the bit leg can be moved axially relative to the bit body to adjust the projection of the rolling cutter relative to the fixed blade.
Description
BACKGROUND OF THE INVENTION

1. Technical Field


The present invention relates in general to earth-boring drill bits and, in particular, to a bit having a combination of rolling and fixed cutters and cutting elements and a method of drilling with same.


2. Description of the Related Art


The success of rotary drilling enabled the discovery of deep oil and gas reservoirs and production of enormous quantities of oil. The rotary rock bit was an important invention that made the success of rotary drilling possible. Only soft earthen formations could be penetrated commercially with the earlier drag bit and cable tool, but the two-cone rock bit, invented by Howard R. Hughes, U.S. Pat. No. 930,759, drilled the caprock at the Spindletop field, near Beaumont, Tex. with relative ease. That venerable invention, within the first decade of the last century, could drill a scant fraction of the depth and speed of the modern rotary rock bit. The original Hughes bit drilled for hours, the modern bit drills for days. Modern bits sometimes drill for thousands of feet instead of merely a few feet. Many advances have contributed to the impressive improvements in rotary rock bits.


In drilling boreholes in earthen formations using rolling-cone or rolling-cutter bits, rock bits having one, two, or three rolling cutters rotatably mounted thereon are employed. The bit is secured to the lower end of a drillstring that is rotated from the surface or by a downhole motor or turbine. The cutters mounted on the bit roll and slide upon the bottom of the borehole as the drillstring is rotated, thereby engaging and disintegrating the formation material to be removed. The rolling cutters are provided with cutting elements or teeth that are forced to penetrate and gouge the bottom of the borehole by weight from the drillstring. The cuttings from the bottom and sides of the borehole are washed away by drilling fluid that is pumped down from the surface through the hollow, rotating drillstring, and are carried in suspension in the drilling fluid to the surface.


Rolling-cutter bits dominated petroleum drilling for the greater part of the 20th century. With improvements in synthetic or manmade diamond technology that occurred in the 1970s and 1980s, the fixed-cutter, or “drag” bit, became popular again in the latter part of the 20th century. Modern fixed-cutter bits are often referred to as “diamond” or “PDC” (polycrystalline diamond compact) bits and are far removed from the original fixed-cutter bits of the 19th and early 20th centuries. Diamond or PDC bits carry cutting elements comprising polycrystalline diamond compact layers or “tables” formed on and bonded to a supporting substrate, conventionally of cemented tungsten carbide, the cutting elements being arranged in selected locations on blades or other structures on the bit body with the diamond tables facing generally in the direction of bit rotation. Diamond bits have an advantage over rolling-cutter bits in that they generally have no moving parts. The drilling mechanics and dynamics of diamond bits are different from those of rolling-cutter bits precisely because they have no moving parts. During drilling operation, diamond bits are used in a manner similar to that for rolling cutter bits, the diamond bits also being rotated against a formation being drilled under applied weight on bit to remove formation material. Engagement between the diamond cutting elements and the borehole bottom and sides shears or scrapes material from the formation, instead of using a crushing action as is employed by rolling-cutter bits. Rolling-cutter and diamond bits each have particular applications for which they are more suitable than the other; neither type of bit is likely to completely supplant the other in the foreseeable future.


In the prior art, some earth-boring bits use a combination of one or more rolling cutters and one or more fixed blades. Some of these combination-type drill bits are referred to as hybrid bits. Previous designs of hybrid bits, such as is described in U.S. Pat. No. 4,343,371 to Baker, III, have provided for the rolling cutters to do most of the formation cutting, especially in the center of the hole or bit. Other types of combination bits are known as “core bits,” such as U.S. Pat. No. 4,006,788 to Garner. Core bits typically have truncated rolling cutters that do not extend to the center of the bit and are designed to remove a core sample of formation by drilling down, but around, a solid cylinder of the formation to be removed from the borehole generally intact.


Rolling-cutter bits tend to fail when the bearing or seal fails and one or more cutters stop rotating or rotating easily. Bearing failure is most often caused by loss of lubricant from the bit or damage to the bearing as a result of severe operating conditions. In some cases, the bearing failure is so catastrophic that a cutter falls off of the bearing, which can lead to costly and time-consuming fishing operations to recover the lost cutter. Typically, rolling-cutter bits cannot successfully be refurbished because of irreparable bearing damage. Diamond bits rarely have such a catastrophic failure. Instead, individual diamond cutters tend to be lost and the bit body is slowly worn away such that it is no longer within drilling specifications. Diamond bits can be refurbished by replacing lost cutters until the bit body is too worn.


Another type of hybrid bit is described in U.S. Pat. No. 5,695,019 to Shamburger, Jr., wherein the rolling cutters extend almost entirely to the center. Fixed cutter inserts 50 (FIGS. 2 and 3) are located in the dome area 2 or “crotch” of the bit to complete the removal of the drilled formation. Still another type of hybrid bit is sometimes referred to as a “hole opener,” an example of which is described in U.S. Pat. No. 6,527,066. A hole opener has a fixed threaded protuberance that extends axially beyond the rolling cutters for the attachment of a pilot bit that can be a rolling cutter or fixed cutter bit. In these latter two cases the center is cut with fixed cutter elements but the fixed cutter elements do not form a continuous, uninterrupted cutting profile from the center to the perimeter of the bit.


Although each of these bits is workable for certain limited applications, an improved hybrid earth-boring bit with enhanced drilling performance would be desirable.


SUMMARY OF THE INVENTION

It is a general object of the present invention to provide an improved earth-boring bit of the hybrid variety. This and other objects are achieved by providing an earth-boring bit comprising a bit body configured at its upper end for connection into a drillstring. At least one fixed blade depends axially downwardly from the bit body. An axially extending slot is formed in the bit body adjacent the fixed blade. A bit leg is received and retained in the slot by engagement between the slot and correspondingly shaped bit leg. At least one rolling cutter is secured to the bit leg at its lower extent.


According to an illustrative embodiment of the invention, at least one fastener secures the bit leg against movement relative to the bit body and the fastener extends through oblong apertures in the bit leg and into the bit body, wherein the bit leg can be moved axially relative to the bit body to adjust the projection of the rolling cutter relative to the fixed blade.


According to an illustrative embodiment of the invention, the slot is formed by at least three sides, and at least one acute angle is formed by two adjacent sides. The slot defines a pair of generally opposed sides connected by a third side, the generally opposed sides being inclined toward one another to define a dovetail that corresponds with the shape of the bit leg.


According to an illustrative embodiment of the invention, the bit body further comprises a shank that is configured for connection into the drillstring at its upper extent and has a generally cylindrical receptacle formed in its lower extent; and a bit body portion having a generally cylindrical upper extent, the receptacle being and dimensioned to receive the upper extent of the bit body, wherein the shank and bit body portions are secured together by welding.


According to an illustrative embodiment of the invention, the earth-boring bit further comprises a nozzle removably secured in the bit body, the nozzle receptacle configured to receive a nozzle; a bearing formed integrally with the bit leg, the rolling cutter mounted for rotation on the bearing; and a lubricant compensator removably secured in the bit leg, the lubricant compensator in fluid communication with the bearing.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the features and advantages of the present invention, which will become apparent, are attained and can be understood in more detail, more particular description of embodiments of the invention as briefly summarized above may be had by reference to the embodiments thereof that are illustrated in the appended drawings which form a part of this specification. It is to be noted, however, that the drawings illustrate only some embodiments of the invention and therefore are not to be considered limiting of its scope as the invention may admit to other equally effective embodiments.



FIG. 1 is a bottom plan view of the embodiment of the hybrid earth-boring bit constructed in accordance with the present invention;



FIG. 2 is a side elevation view of an embodiment of the hybrid earth-boring bit of FIG. 1 constructed in accordance with the present invention;



FIG. 3 is an exploded view of another embodiment of the hybrid earth-boring bit of FIG. 2 constructed in accordance with the present invention; and



FIG. 4 is a sectional view of a portion of the earth-boring bit of FIG. 3, illustrating the configuration of the axial slot in accordance with the present invention.





DETAILED DESCRIPTION OF THE INVENTION

Referring to FIGS. 1-2, an illustrative embodiment of a modular hybrid earth-boring drill bit is disclosed. The bit 11 comprises a bit body 13 having an axis 15 that defines an axial center of the bit body 13. A plurality (e.g., two shown) of bit legs or heads 17 extend from the bit body 13 in the axial direction. The bit body 13 also has a plurality (e.g., also two shown) of fixed blades 19 that extend in the axial direction. The number of each of legs 17 and fixed blades 19 is at least one but may be more than two (as in the case of the embodiment illustrated in FIG. 3). In one embodiment, the centers of the legs 17 and fixed blades 19 are symmetrically spaced apart from each other about the axis 15 in an alternating configuration.


Rolling cutters 21 are mounted to respective ones of the bit legs 17. Each of the rolling cutters 21 is shaped and located such that every surface of the rolling cutters 21 is radially spaced apart from the axial center 15 (FIG. 2) by a minimal radial distance 23. A plurality of rolling-cutter cutting inserts or elements 25 are mounted to the rolling cutters 21 and radially spaced apart from the axial center 15 by a minimal radial distance 27. The minimal radial distances 23, 27 may vary according to the application, and may vary from cutter to cutter, and/or cutting element to cutting element.


In addition, a plurality of fixed cutting elements 31 are mounted to the fixed blades 19. At least one of the fixed cutting elements 31 is located at the axial center 15 of the bit body 13 and adapted to cut a formation at the axial center. In one embodiment, the at least one of the fixed cutting elements 31 is within approximately 0.040 inches of the axial center. Examples of rolling-cutter cutting elements 25 and fixed cutting elements 31 include tungsten carbide inserts, cutters made of super-hard material such as polycrystalline diamond, and others known to those skilled in the art.



FIGS. 3 and 4 illustrate the modular aspect of the bit constructed according to the present invention. FIG. 3 is an exploded view of the various parts of the bit 111 disassembled. The illustrative embodiment of FIG. 3 is a three-cutter, three-blade bit. The modular construction principles of the present invention are equally applicable to the two-cutter, two-blade bit 11 of FIGS. 1 and 2, and hybrid bits with any combination of fixed blades and rolling cutters.


As illustrated, bit 111 comprises a shank portion or section 113, which is threaded or otherwise configured at its upper extent for connection into a drillstring. At the lower extent of shank portion 113, a generally cylindrical receptacle 115 is formed. Receptacle 115 receives a correspondingly shaped and dimensioned cylindrical portion 117 at the upper extent of a bit body portion 119. Shank 113 and body 119 portions are joined together by inserting the cylindrical portion 117 at the upper extent of body portion 119 into the cylindrical receptacle 115 in the lower extent of shank 113. For the 12¼ inch bit shown, the receptacle is a Class 2 female thread that engages with a mating male thread at the upper extent of the body. The circular seam or joint is then continuously bead welded to secure the two portions or sections together. Receptacle 115 and upper extent 117 need not be cylindrical, but could be other shapes that mate together, or could be a sliding or running fit relying on the weld for strength. Alternatively, the joint could be strengthened by a close interference fit between upper extent 119 and receptacle 115. Tack welding around the seam could also be used.


A bit leg or head 121 (three are shown for the three-cutter embodiment of FIG. 3) is received in an axially extending slot 123 (again, there is a slot 123 for each leg or head 121). As shown in greater detail in FIG. 4, slot 123 is dovetailed (and leg 121 correspondingly shaped) so that only axial sliding of leg 121 is permitted and leg 121 resists radial removal from slot 123. A plurality (four) of bolts 127 and washers secure each leg 121 in slot 123 so that leg 121 is secured against axial motion in and removal from slot 123. A rolling cutter 125 is secured on a bearing associated with each leg 121 by a ball lock and seal assembly 129. The apertures in leg 121 through which bolts 127 extend are oblong, which permits the axial positioning of leg 121 within slot 123, which in turn permits selection of the relative projection of the cutting elements on each rolling cutter. A lubricant compensator assembly 131 is also carried in each leg 121 and supplies lubricant to the bearing assembly and compensates for pressure variations in the lubricant during drilling operations. A preferred compensator is disclosed in commonly assigned U.S. Pat. No. 4,727,942 to Galle and Zahradnik. At least one nozzle 133 is received and retained in the bit body portion 119 to direct a stream of drilling fluid from the interior of bit 111 to selected locations proximate the cutters and blades of the bit.



FIG. 4 is a sectional section view of bit body 119 illustrating the configuration of slot 123. As previously noted, slot 123 has a pair of adjacent opposing sides 135 that are inclined toward one another at an acute included angle (from vertical) to define a dovetail. A third side, which may be curved or flat, connects the two opposing sides 135. A rectilinear 137 recess is formed within the third side for additional engagement between the bit leg and bit body. As stated, bit leg 121 is provided with a corresponding shape so that once assembled together, bit leg 121 resists removal from slot 123 except by axial force. Preferably, for the 12¼ inch bit illustrated, slot 123 is approximately 3.880 inches wide at its widest point, opposing sides 135 are inclined at an angle of approximately 15 degrees and converge to define an included angle of approximately 30 degrees. Recess 137 is approximately 1.880 inches wide and approximately 0.385 inches deep. The corresponding surfaces of bit leg 121 are similarly dimensioned, but between 0.005 and 0.010 inch smaller to provide a sliding or running fit within the slot. A close interference fit could also be used to enhance strength, at the cost of ease of assembly. A blind threaded hole or aperture 139 is formed in bit body 119 to receive each of the fasteners or bolts 127 (FIG. 3). Alternatively, the opposed sides 135 of slot 123 could be “straight,” but such a construction will not be as strong as the “dovetailed” construction and may unduly strain bolts 127.


Thus, in accordance with the present invention, the threaded shank is separable from the bit body and each bit leg and associated rolling cutter is also separable from the bit body (along with the associated lubricant compensator, bearing and seal assembly). Thus, as the bit wears, various parts may be replaced as appropriate. If the bearing associated with a cutter loses lubricant and fails, the entire bit leg assembly can be replaced as needed. If the bit body wears to the degree that it will no longer support fixed cutters (or other parts of the bit assembly), it can be replaced. If the shank is damaged, it can be replaced. Although the welded joint is not typically considered a replaceable joint, in this instance, the weld can be removed, a new shank or body portion fitted, and there will be ample material remaining to permit re-welding of the two together.


While the invention has been shown or described in only some of its forms, it should be apparent to those skilled in the art that it is not so limited, but is susceptible to various changes without departing from the scope of the invention as hereinafter claimed, and legal equivalents thereof.

Claims
  • 1. A method of assembling a hybrid drill bit, the method including the steps of: providing a bit body having at least one fixed blade having a plurality of fixed cutting elements mounted thereon, and at least one slot, the blade and slot extending in the axial direction;assembling a bit leg within the slot using one or more bolts, with each bolt passing through each of one or more oblong holes through the leg, the leg having a rolling cutter rotatably mounted thereon, the collar rolling cutter having a plurality of rolling cutter cutting elements mounted thereon;adjusting the projection of the rolling cutter relative to the fixed blade; andthereafter tightening the bolt.
  • 2. The method as set forth in claim 1, further including the step of assembling the bit leg within the slot using two bolts, with each bolt through each of two axially oblong holes through the leg.
  • 3. The method as set forth in claim 2, wherein the step of adjusting the projection of the rolling cutter relative to the fixed blade comprises sliding the leg in the axial direction relative to the two bolts.
  • 4. The method as set forth in claim 1, wherein the step of thereafter tightening the bolt includes tightening the bolt to fix the projection of the rolling cutter relative to the fixed blade.
  • 5. The method as set forth in claim 1, wherein the projection of the rolling cutter relative to the fixed blade is fixed after the step of thereafter tightening the bolt.
  • 6. The method as set forth in claim 1, wherein the projection of the rolling cutter relative to the fixed blade is fixed during manufacturing.
  • 7. The method as set forth in claim 1, wherein the projection of the rolling cutter relative to the fixed blade is fixed before being employed.
  • 8. A method of assembling a hybrid drill bit, the method including the steps of: providing a bit body having a plurality of fixed blades, each blade having a plurality of fixed cutting elements mounted thereon, and plurality of slots, each slot including a plurality of circular threaded holes extending radially into the body, the blade and slot extending in the axial direction;assembling a bit leg within each slot using a plurality of bolts through axially oblong holes in the leg and the circular threaded holes in the body, the leg having a rolling cutter rotatably mounted thereon, the rolling cutter having a plurality of rolling cutter cutting elements mounted thereon;adjusting the projection of the rolling cutter relative to the fixed blade; andthereafter tightening the bolts.
  • 9. The method as set forth in claim 8, wherein the step of adjusting the projection of the rolling cutter relative to the fixed blade comprises sliding the leg in the axial direction relative to the bolts.
  • 10. The method as set forth in claim 8, wherein the step of thereafter tightening the bolt includes tightening the bolt to fix the projection of the rolling cutter relative to the fixed blade.
  • 11. The method as set forth in claim 8, wherein the projection of the rolling cutter relative to the fixed blade is fixed after the step of thereafter tightening the bolt.
  • 12. The method as set forth in claim 8, wherein the projection of the rolling cutter relative to the fixed blade is fixed during manufacturing.
  • 13. The method as set forth in claim 8, wherein the projection of the rolling cutter relative to the fixed blade is fixed before being employed.
  • 14. A method of assembling a hybrid drill bit, the method including the steps of: providing a bit body having at least one fixed blade having a plurality of fixed cutting elements mounted thereon, and at least two slots, the blade and slots extending in the axial direction;assembling a first bit leg within a first one of the slots using at least a first bolt, the first leg having a first rolling cutter rotatably mounted thereon, the first rolling cutter having a plurality of rolling cutter cutting elements mounted thereon;assembling a second bit leg within a second one of the slots using at least a second bolt, the second leg having a second roller cutter rotatably mounted thereon, the second roller cutter having a plurality of rolling cutter cutting elements mounted thereon;adjusting a projection of each rolling cutter relative to the fixed blade; andthereafter tightening the bolt, wherein tightening the bolt fixes the projection of each rolling cutter relative to the fixed blade, with the projection of the first rolling cutter relative to the fixed blade being independent of the projection of the second rolling cutter relative to the fixed blade.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a divisional application of, and claims priority benefit of, U.S. application Ser. No. 12/114,537, filed May 2, 2008 and entitled “MODULAR HYBRID DRILL BIT”, now abandoned, which is incorporated herein by specific reference.

US Referenced Citations (261)
Number Name Date Kind
930759 Hughes Aug 1909 A
1388424 George Sep 1921 A
1394769 Sorensen Oct 1921 A
1519641 Thompson Dec 1924 A
1816568 Carlson Jul 1931 A
1821474 Mercer Sep 1931 A
1874066 Scott et al. Aug 1932 A
1879127 Schlumpf Sep 1932 A
1896243 Macdonald Feb 1933 A
1932487 Scott Oct 1933 A
2030722 Scott Feb 1936 A
2117481 Howard et al. May 1938 A
2119618 Zublin Jun 1938 A
2198849 Waxler Apr 1940 A
2216894 Stancliff Oct 1940 A
2244537 Kammerer Jun 1941 A
2297157 McClinton Sep 1942 A
2320136 Kammerer May 1943 A
2320137 Kammerer May 1943 A
2380112 Kinnear Jul 1945 A
RE23416 Kinnear Oct 1951 E
2719026 Boice Sep 1955 A
2815932 Wolfram Dec 1957 A
2994389 Bus, Sr. Aug 1961 A
3010708 Hlinsky et al. Nov 1961 A
3050293 Hlinsky Aug 1962 A
3055443 Edwards Sep 1962 A
3066749 Hildebrandt Dec 1962 A
3126066 Williams, Jr. Mar 1964 A
3126067 Schumacher, Jr. Mar 1964 A
3174564 Morlan Mar 1965 A
3239431 Raymond Mar 1966 A
3250337 Demo May 1966 A
3269469 Kelly, Jr. Aug 1966 A
3387673 Thompson Jun 1968 A
3424258 Nakayama Jan 1969 A
3583501 Aalund Jun 1971 A
RE28625 Cunningham Nov 1975 E
4006788 Garner Feb 1977 A
4140189 Garner Feb 1979 A
4190126 Kabashima Feb 1980 A
4270812 Thomas Jun 1981 A
4285409 Allen Aug 1981 A
4293048 Kloesel, Jr. Oct 1981 A
4320808 Garrett Mar 1982 A
4343371 Baker, III et al. Aug 1982 A
4359112 Garner et al. Nov 1982 A
4369849 Parrish Jan 1983 A
4386669 Evans Jun 1983 A
4410284 Herrick Oct 1983 A
4428687 Zahradnik Jan 1984 A
4444281 Schumacher, Jr. et al. Apr 1984 A
4527637 Bodine Jul 1985 A
4572306 Dorosz Feb 1986 A
4657091 Higdon Apr 1987 A
4664705 Horton et al. May 1987 A
4690228 Voelz et al. Sep 1987 A
4706765 Lee et al. Nov 1987 A
4726718 Meskin et al. Feb 1988 A
4727942 Galle et al. Mar 1988 A
4738322 Hall et al. Apr 1988 A
4765205 Higdon Aug 1988 A
4874047 Hixon Oct 1989 A
4875532 Langford, Jr. Oct 1989 A
4892159 Holster Jan 1990 A
4915181 Labrosse Apr 1990 A
4932484 Warren et al. Jun 1990 A
4936398 Auty et al. Jun 1990 A
4943488 Sung et al. Jul 1990 A
4953641 Pessier Sep 1990 A
4976324 Tibbitts Dec 1990 A
4984643 Isbell et al. Jan 1991 A
4991671 Pearce et al. Feb 1991 A
5016718 Tandberg May 1991 A
5027912 Juergens Jul 1991 A
5028177 Meskin et al. Jul 1991 A
5030276 Sung et al. Jul 1991 A
5049164 Horton et al. Sep 1991 A
5116568 Sung et al. May 1992 A
5145017 Holster et al. Sep 1992 A
5176212 Tandberg Jan 1993 A
5224560 Fernandez Jul 1993 A
5238074 Tibbitts et al. Aug 1993 A
5287936 Grimes et al. Feb 1994 A
5289889 Gearhart et al. Mar 1994 A
5337843 Torgrimsen et al. Aug 1994 A
5346026 Pessier et al. Sep 1994 A
5351770 Cawthorne et al. Oct 1994 A
5361859 Tibbitts Nov 1994 A
5429200 Blackman et al. Jul 1995 A
5439068 Huffstutler et al. Aug 1995 A
5452771 Blackman et al. Sep 1995 A
5467836 Grimes et al. Nov 1995 A
5472057 Winfree Dec 1995 A
5472271 Bowers et al. Dec 1995 A
5513715 Dysart May 1996 A
5518077 Blackman et al. May 1996 A
5547033 Campos, Jr. Aug 1996 A
5553681 Huffstutler et al. Sep 1996 A
5558170 Thigpen et al. Sep 1996 A
5560440 Tibbitts Oct 1996 A
5570750 Williams Nov 1996 A
5593231 Ippolito Jan 1997 A
5606895 Huffstutler Mar 1997 A
5624002 Huffstutler Apr 1997 A
5641029 Beaton et al. Jun 1997 A
5644956 Blackman et al. Jul 1997 A
5655612 Grimes et al. Aug 1997 A
D384084 Huffstutler et al. Sep 1997 S
5695018 Pessier et al. Dec 1997 A
5695019 Shamburger, Jr. Dec 1997 A
5755297 Young et al. May 1998 A
5862871 Curlett Jan 1999 A
5868502 Cariveau et al. Feb 1999 A
5873422 Hansen et al. Feb 1999 A
5941322 Stephenson et al. Aug 1999 A
5944125 Byrd Aug 1999 A
5967246 Caraway et al. Oct 1999 A
5979576 Hansen et al. Nov 1999 A
5988303 Arfele Nov 1999 A
5992542 Rives Nov 1999 A
5996713 Pessier et al. Dec 1999 A
6092613 Caraway et al. Jul 2000 A
6095265 Alsup Aug 2000 A
6109375 Tso Aug 2000 A
6116357 Wagoner et al. Sep 2000 A
6173797 Dykstra et al. Jan 2001 B1
6220374 Crawford Apr 2001 B1
6241034 Steinke et al. Jun 2001 B1
6241036 Lovato et al. Jun 2001 B1
6250407 Karlsson Jun 2001 B1
6260635 Crawford Jul 2001 B1
6279671 Panigrahi et al. Aug 2001 B1
6283233 Lamine et al. Sep 2001 B1
6296069 Lamine et al. Oct 2001 B1
RE37450 Deken et al. Nov 2001 E
6345673 Siracki Feb 2002 B1
6360831 Akesson et al. Mar 2002 B1
6367568 Steinke et al. Apr 2002 B2
6386302 Beaton May 2002 B1
6401844 Doster et al. Jun 2002 B1
6405811 Borchardt Jun 2002 B1
6408958 Isbell et al. Jun 2002 B1
6415687 Saxman Jul 2002 B2
6439326 Huang et al. Aug 2002 B1
6446739 Richman et al. Sep 2002 B1
6450270 Saxton Sep 2002 B1
6460635 Kalsi et al. Oct 2002 B1
6474424 Saxman Nov 2002 B1
6510906 Richert et al. Jan 2003 B1
6510909 Portwood et al. Jan 2003 B2
6527066 Rives Mar 2003 B1
6533051 Singh et al. Mar 2003 B1
6544308 Griffin et al. Apr 2003 B2
6562462 Griffin et al. May 2003 B2
6568490 Tso et al. May 2003 B1
6581700 Curlett et al. Jun 2003 B2
6585064 Griffin et al. Jul 2003 B2
6589640 Griffin et al. Jul 2003 B2
6592985 Griffin et al. Jul 2003 B2
6601661 Baker et al. Aug 2003 B2
6601662 Matthias et al. Aug 2003 B2
6684967 Mensa-Wilmot et al. Feb 2004 B2
6729418 Slaughter, Jr. et al. May 2004 B2
6739214 Griffin et al. May 2004 B2
6742607 Beaton Jun 2004 B2
6745858 Estes Jun 2004 B1
6749033 Griffin et al. Jun 2004 B2
6797326 Griffin et al. Sep 2004 B2
6823951 Yong et al. Nov 2004 B2
6843333 Richert et al. Jan 2005 B2
6861098 Griffin et al. Mar 2005 B2
6861137 Griffin et al. Mar 2005 B2
6878447 Griffin et al. Apr 2005 B2
6883623 McCormick et al. Apr 2005 B2
6902014 Estes Jun 2005 B1
6986395 Chen Jan 2006 B2
6988569 Lockstedt et al. Jan 2006 B2
7096978 Dykstra et al. Aug 2006 B2
7111694 Beaton Sep 2006 B2
7137460 Slaughter, Jr. et al. Nov 2006 B2
7152702 Bhome et al. Dec 2006 B1
7197806 Boudreaux et al. Apr 2007 B2
7198119 Hall et al. Apr 2007 B1
7234550 Azar et al. Jun 2007 B2
7270196 Hall Sep 2007 B2
7281592 Runia et al. Oct 2007 B2
7320375 Singh Jan 2008 B2
7350568 Mandal et al. Apr 2008 B2
7350601 Belnap et al. Apr 2008 B2
7360612 Chen et al. Apr 2008 B2
7377341 Middlemiss et al. May 2008 B2
7387177 Zahradnik et al. Jun 2008 B2
7392862 Zahradnik et al. Jul 2008 B2
7398837 Hall et al. Jul 2008 B2
7416036 Forstner et al. Aug 2008 B2
7435478 Keshavan Oct 2008 B2
7462003 Middlemiss Dec 2008 B2
7473287 Belnap et al. Jan 2009 B2
7493973 Keshavan et al. Feb 2009 B2
7517589 Eyre Apr 2009 B2
7533740 Zhang et al. May 2009 B2
7568534 Griffin et al. Aug 2009 B2
7621346 Trinh et al. Nov 2009 B1
7621348 Hoffmaster et al. Nov 2009 B2
7703556 Smith et al. Apr 2010 B2
7703557 Durairajan et al. Apr 2010 B2
7819208 Pessier et al. Oct 2010 B2
7836975 Chen et al. Nov 2010 B2
7845435 Zahradnik et al. Dec 2010 B2
7845437 Bielawa et al. Dec 2010 B2
7847437 Chakrabarti et al. Dec 2010 B2
8201646 Vezirian Jun 2012 B2
20020092684 Singh et al. Jul 2002 A1
20020108785 Slaughter, Jr. et al. Aug 2002 A1
20040099448 Fielder et al. May 2004 A1
20040238224 Runia Dec 2004 A1
20050087370 Ledgerwood, III et al. Apr 2005 A1
20050103533 Sherwood, Jr. et al. May 2005 A1
20050178587 Witman, IV et al. Aug 2005 A1
20050183892 Oldham et al. Aug 2005 A1
20050263328 Middlemiss Dec 2005 A1
20050273301 Huang Dec 2005 A1
20060032674 Chen et al. Feb 2006 A1
20060032677 Azar et al. Feb 2006 A1
20060162969 Belnap et al. Jul 2006 A1
20060196699 Estes et al. Sep 2006 A1
20060254830 Radtke Nov 2006 A1
20060266558 Middlemiss et al. Nov 2006 A1
20060266559 Keshavan et al. Nov 2006 A1
20060278442 Kristensen Dec 2006 A1
20060283640 Estes et al. Dec 2006 A1
20070029114 Middlemiss Feb 2007 A1
20070062736 Cariveau et al. Mar 2007 A1
20070079994 Middlemiss Apr 2007 A1
20070187155 Middlemiss Aug 2007 A1
20070221417 Hall et al. Sep 2007 A1
20080066970 Zahradnik et al. Mar 2008 A1
20080264695 Zahradnik et al. Oct 2008 A1
20080296068 Zahradnik et al. Dec 2008 A1
20090114454 Belnap et al. May 2009 A1
20090120693 McClain et al. May 2009 A1
20090126998 Zahradnik et al. May 2009 A1
20090159338 Buske Jun 2009 A1
20090159341 Pessier et al. Jun 2009 A1
20090166093 Pessier et al. Jul 2009 A1
20090178855 Zhang et al. Jul 2009 A1
20090183925 Zhang et al. Jul 2009 A1
20090272582 McCormick et al. Nov 2009 A1
20100155146 Nguyen et al. Jun 2010 A1
20100224417 Zahradnik et al. Sep 2010 A1
20100276205 Oxford et al. Nov 2010 A1
20100288561 Zahradnik et al. Nov 2010 A1
20100320001 Kulkarni Dec 2010 A1
20110024197 Centala et al. Feb 2011 A1
20110079440 Buske et al. Apr 2011 A1
20110079441 Buske et al. Apr 2011 A1
20110079442 Buske et al. Apr 2011 A1
20110079443 Buske et al. Apr 2011 A1
20110162893 Zhang Jul 2011 A1
20120111638 Nguyen et al. May 2012 A1
Foreign Referenced Citations (12)
Number Date Country
13 01 784 Aug 1969 DE
0225101 Jun 1987 EP
0157278 Nov 1989 EP
0391683 Jan 1996 EP
0874128 Oct 1998 EP
2089187 Aug 2009 EP
2183694 Jun 1987 GB
2001159289 Jun 2001 JP
1 331 988 Aug 1987 SU
8502223 May 1985 WO
2008124572 Oct 2008 WO
WO 2009064969 May 2009 WO
Non-Patent Literature Citations (27)
Entry
Jung Hye Lee, International Search Report for International Patent Application No. PCT/US2009/042514, Korean Intellectual Property Office, dated Nov. 27, 2009.
Jung Hye Lee, Written Opinion for International Patent Application No. PCT/US2009/042514, Korean Intellectual Property Office, dated Nov. 27, 2009.
Pessier, R. and Damschen, M., “Hybrid Bits Offer Distinct Advantages in Selected Roller Cone and PDC Bit Applications,” IADC/SPE Drilling Conference and Exhibition, Feb. 2-4, 2010, New Orleans.
Sung Joon Lee, International Search Report for International Patent Application No. PCT/US2009/050672, Korean Intellectual Property Office, dated Mar. 3, 2010.
Sung Joon Lee, Written Opinion for International Patent Application No. PCT/US2009/050672, Korean Intellectual Property Office, dated Mar. 3, 2010.
S.H. Kim, International Search Report for International Patent Application No. PCT/US2009/067969, Korean Intellectual Property Office, dated May 25, 2010.
S.H. Kim, Written Opinion for International Patent Application No. PCT/US2009/067969, Korean Intellectual Property Office, dated May 25, 2010.
Beijer, G., International Preliminary Report on Patentability for International Patent Application No. PCT/US2009/042514, The International Bureau of WIPO, dated Nov. 2, 2010.
Adri Schouten, International Search Report for International Patent Application No. PCT/US2008/083532, European Patent Office, dated Feb. 25, 2009.
Adri Schouten, Written Opinion for International Patent Application No. PCT/US2008/083532, European Patent Office, dated Feb. 25, 2009.
Sheppard, N. and Dolly, B. “Rock Drilling—Hybrid Bit Success for Syndax3 Pins.” Industrial Diamond Review, Jun. 1993, pp. 309-311.
Tomlinson, P. and Clark, I. “Rock Drilling—Syndax3 Pins—New Concepts in PCD Drilling.” Industrial Diamond Review, Mar. 1992, pp. 109-114.
Williams, J. and Thompson, A. “An Analysis of the Performance of PDC Hybrid Drill Bits.” SPE/IADC 16117, SPE/IADC Drilling Conference, Mar. 1987, pp. 585-594.
Warren, T. and Sinor L. “PDC Bits: What's Needed to Meet Tomorrow's Challenge.” SPE 27978, University of Tulsa Centennial Petroleum Engineering Symposium, Aug. 1994, pp. 207-214.
Smith Services. “Hole Opener—Model 6980 Hole Opener.” [retrieved from the Internet on May 7, 2008 using <URL: http://www.siismithservices.com/b—products/product—page.asp?ID=589>].
Mills Machine Company, Inc. “Rotary Hole Openers—Section 8.” [retrieved from the Internet on Apr. 27, 2009 using <URL: http://www.millsmachine.com/pages/home—page/mills—catalog/cat—holeopen/cat—holeopen.pdf>].
Georgescu, M., International Search Report for International Patent Application No. PCT/US2010/051019, dated Jun. 6, 2011, European Patent Office.
Georgescu, M., Written Opinion for International Patent Application No. PCT/US2010/051019, dated Jun. 6, 2011, European Patent Office.
Georgescu, M., International Search Report for International Patent Application No. PCT/US2010/051020, dated Jun. 1, 2011, European Patent Office.
Georgescu, M., Written Opinion for International Patent Application No. PCT/US2010/051020, dated Jun. 1, 2011, European Patent Office.
Georgescu, M., International Search Report for International Patent Application No. PCT/US2010/051017, dated Jun. 8, 2011, European Patent Office.
Georgescu, M., Written Opinion for International Patent Application No. PCT/US2010/051017, dated Jun. 8, 2011, European Patent Office.
Georgescu, M., International Search Report for International Patent Application No. PCT/US2010/051014, dated Jun. 9, 2011, European Patent Office.
Georgescu, M., Written Opinion for International Patent Application No. PCT/US2010/051014, dated Jun. 9, 2011, European Patent Office.
Georgescu, M., International Search Report for International Patent Application No. PCT/US2010/050631, dated Jun. 10, 2011, European Patent Office.
Georgescu, M., Written Opinion for International Patent Application No. PCT/US2010/050631, dated Jun. 10, 2011, European Patent Office.
Becamel, P., International Preliminary Report on Patentability, dated Jan. 5, 2012, The International Bureau of WIPO, Switzerland.
Related Publications (1)
Number Date Country
20110120269 A1 May 2011 US
Divisions (1)
Number Date Country
Parent 12114537 May 2008 US
Child 13019929 US