Modular ion generator device

Information

  • Patent Grant
  • 11283245
  • Patent Number
    11,283,245
  • Date Filed
    Friday, January 24, 2020
    4 years ago
  • Date Issued
    Tuesday, March 22, 2022
    2 years ago
Abstract
A modular ion generator device that includes a bottom portion, two opposed side portions, a front end, a back end, and a top portion. A cavity is formed within the two opposed side portions, front end, back end, and top portion. At least one electrode is positioned within the cavity, and an engagement device is engaged to the front end and/or an engagement device engaged to the back end for allowing one or more modular ion generator devices to be selectively secured to one another.
Description
FIELD OF THE INVENTION

The present invention relates generally to an ion generator device, and more generally relates to a modular ion generator device that may be selectively secured to at least one other modular ion generator device and mounted to a number of locations on a cooling coil frame or elsewhere in the HVAC system.


BACKGROUND OF THE INVENTION

Air and other fluids are commonly treated and delivered for a variety of applications. For example, in heating, ventilation and air-conditioning (HVAC) applications, air may be heated, cooled, humidified, dehumidified, filtered or otherwise treated for delivery into residential, commercial or other spaces.


Needs exist for improved systems and methods of treating and delivering air for these and other applications. It is to the provision of improved systems and methods meeting these needs that the present invention is primarily directed.


Historically ionization bars have been custom manufactured for a specific application length, thus requiring a lead-time for manufacturing. The present invention solves the custom manufacturing lead-time issue by providing a standard size off-the-shelf modular bar at a fixed length that can be connected in any quantity for the length required for the given application.


BRIEF SUMMARY OF THE INVENTION

According to an embodiment of the present invention an ion generator device that includes a bottom portion, two opposed side portions, a front end, a back end, and a top portion. A cavity is formed within the two opposed side portions, front end, and back end. At least one electrode is positioned within the cavity, and an engagement device is engaged to the front end and a receptacle within the back end allowing one or more modular ion generator devices to be selectively secured to each other.


According to another embodiment of the present invention, the ion generator device wherein one or more modular ion generator devices are selectively secured to one another.


According to yet another embodiment of the present invention, the modular ion generator device includes a magnet positioned on the device for selectively securing the device to a cooling coil frame.


According to yet another embodiment of the present invention, the modular ion generator device includes at least one flange extending from the device for engaging a magnet thereto.


According to yet another embodiment of the present invention, the modular ion generator device includes a printed circuit board housed within the cavity and the at least one electrode that extends outwardly from the printed circuit board.


According to yet another embodiment of the present invention, the modular ion generator device includes an electrode constructed of carbon fiber brushes.


According to yet another embodiment of the present invention, the modular ion generator device includes a nipple extending upwardly from the top portion of the device.


According to yet another embodiment of the present invention, the modular ion generator device includes a bottom portion that extends to an outer edge, two opposed side portions that extend upward from the outer edge, a front end that extends upward from the outer edge, a back end that extends upward from the outer edge, and a top portion. A cavity is formed within the two opposed side portions, front end, and a back end. At least one bore is disposed on the top portion, and at least one electrode is positioned within the cavity and adjacent the bore. An engagement device is engaged to the front end and a receptacle within the back end for allowing one or more ion generator devices to be selectively secured to each other.


According to yet another embodiment of the present invention, the modular ion generator device includes a power head engaged to the engagement device of the modular ion generator device.


According to yet another embodiment of the present invention, the modular ion generator device includes a cylindrical outer portion, a front end, a back end, and an area for the emitters to be exposed to the airstream. A cavity is formed within the cylindrical outer wall, front end, back end, and ionizing portion. At least one electrode is positioned within the cavity, and an engagement device is engaged to the front end and a receptacle is engaged to the back end for allowing one or more ion generator devices to be secured together.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated and described herein with reference to the various drawings, in which like reference numbers denote like method steps and/or system components, respectively, and in which:



FIG. 1 is a perspective view of a plurality of modular ion generator devices engaged to each other above a coiling coil;



FIG. 2 is a top perspective view of the modular ion generator device engaged to a second ion generator device;



FIG. 3 is a top perspective view of a plurality of modular ion generator devices selectively secured to each other;



FIG. 4 is a perspective view of the modular ion generator device;



FIG. 5 is a perspective view of the modular ion generator device;



FIG. 6 is a perspective view of a plurality of modular ion generator devices engaged to each other;



FIG. 7A is an exploded view of the modular ion generator device including magnets;



FIG. 7B is a perspective view of the modular ion generator device including magnets; and



FIG. 8 is a top view of the modular ion generator device; and



FIG. 9 is a top view of an alternative embodiment of the ion modular generator device.





DETAILED DESCRIPTION OF THE INVENTION

The present invention may be understood more readily by reference to the following detailed description of the invention taken in connection with the accompanying drawing figures, which form a part of this disclosure. It is to be understood that this invention is not limited to the specific devices, methods, conditions or parameters described and/or shown herein, and that the terminology used herein is for the purpose of describing particular embodiments by way of example only and is not intended to be limiting of the claimed invention. Any and all patents and other publications identified in this specification are incorporated by reference as though fully set forth herein.


Also, as used in the specification including the appended claims, the singular forms “a,” “an,” and “the” include the plural, and reference to a particular numerical value includes at least that particular value, unless the context clearly dictates otherwise. Ranges may be expressed herein as from “about” or “approximately” one particular value and/or to “about” or “approximately” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment.


Referring now specifically to the drawings, an ion generator device is illustrated in FIGS. 1-9 and is shown generally at reference numeral 10. The device 10 includes a housing having a bottom portion 12 that extends to an outer edge and two opposed side portions 14, a front end 16, and a back end 18 extend upwardly from the outer edge of the bottom portion 12. The two opposed side portions 14, the front end 16, and the back end 18 may have an upper edge with a ridge for receiving a top portion 20. Alternatively, the top portion 20 may be engaged to the upper edge of the two opposed side portions 14, the front end 16, and the back end 18. A cavity 22 is formed within the bottom portion 12, two opposed side portions 14, front end 16, and back end 18.


Engagement flanges 28 are disposed on the device 10. As illustrated in FIGS. 5 and 5, at least one engagement flange 28 is disposed on each of the two opposed side portions 14. Preferably, at least two engagement flanges 28 are disposed on each of the two opposed side portions 14, and most preferably two or more engagement flanges 28 are disposed on each of the two opposed side portions 14. The flanges 28 extend away from the two opposed side portions 14 and contain a bore 27 within each flange 28 and preferably centrally located within each flange 28, extending from an exterior side to an interior side of the flange 28. As illustrated, one flange 28 may have a length less than the length of other flanges 28 on the device 10. Specifically and as shown in FIGS. 4 and 5, when the device contains three flanges 28 on each of the two opposed side portions 14, one of the flanges 28, such as the flange 28 between the two other flanges 28, may have a length less than the length of the adjacent flanges 28.


As shown in FIGS. 7A and 7B, a magnet 30 may be engaged to each flange 28. As illustrated, a circular magnet 30 may be engaged through the flange 28 with a portion of the magnet 30 extending through the bore 27 and selectively securing the magnet 30 to the flange 28. In this arrangement, the device 10 may be face mounted to a coiling coil frame 31, as illustrated in FIG. 1, or elsewhere on the HVAC system. The magnet 30 may include a post on the back side of the magnet 30 that is received within the bore 27 of each flange 28. The bottom portion 12 may also contain at least one post 32. The post 32, as shown in FIG. 7A may also receive a magnet 30. In this embodiment, the post 32 contains a bore for receiving a post on the back side of the magnet 30.


As shown in FIGS. 2, 3, and 4, the front end 16 contains a conductive device 34 that extends outward from the front end 16. The conductive device 34 is composed of brass or other conductive material and may be generally circular or have a circular cross-section. As shown in FIG. 5, the back end 18 may contain a receptacle 33, composed of brass or other conductive material that receives the conductive device 34 for selectively securing a first generator device 10 with a second generator device 10′, as shown in FIG. 2. As illustrated, the conductive device 34 may be generally circular and the receptacle 33 may be correspondingly shaped or generally circular for receiving the conductive device 34. The diameter of the receptacle 33 is slightly larger than the diameter of the conductive device 34 for inserting the conductive device 34 into the receptacle 33.


At least one finger 72 is disposed adjacent the conductive device 34 on the external surface of the front end 16. As shown in FIG. 4, four fingers 72 are disposed on the external surface of the front end 16 and at various locations around the conductive device 34. In other words, a finger 72 is disposed above the conductive device 34, a finger 72 is disposed below the conductive device 34, a finger 72 is disposed on the left side of the conductive device 34, and a finger 72 is disposed on the right side of the conductive device 34. The finger 72 extends outwardly from the external face of the front end 16 and contains a retention edge 74, as shown in FIG. 7A. The finger 72 consists of an elongate portion 76 that extends outwardly from the external surface of the front end 16 and an upper portion 78 that extends perpendicularly from the elongate portion 76. A lip 80 extends downwardly from the upper portion 78 and a retention edge 74 is formed within the internal surfaces of the lip 80, upper portion 78, elongate portion 76. The upper portion 78 extends away from the conductive device 34.


The back end 18 contains a depression 82. The depression 82 contains a base portion and sides extending upwards from the base portion. Preferably, the depression 82 is formed within the back end 18. The receptacle 33 is disposed within the base portion of the depression 82. As illustrated in FIG. 5, the depression 82 may have a plus-sign shape or an X-shape depending upon the orientation of the device 10 when viewed. In other words, the depression 82 contains a central portion and four outwardly extending coves disposed on each side of the central portion of the depression 82. The upper portion of the sides of the depression 82 contains a ridge 84. When the conductive device 34 is inserted into the receptacle 33 within the depression 82, each finger 72 is also inserted into the depression 82 and the lip 80 of the finger 72 engages the ridge 84 of the side of the depression 82. In other words, the ridge 84 is retained within the retention edge 74 of the fingers 72 engaging a first device 10 to a second device 10′. As shown in FIGS. 5 and 6, a third device 10″ can be engaged to the second device 10′ and a fourth device 10′″ can be engaged to the third device 10″.


The conductive device 34 may be retained within the receptacle 33 by friction fit, or alternatively, the conductive device 34 may be magnetized, allowing the conductive device 34 to be selectively secured within the receptacle 33 or an end of the adjacent device 10. A cap may be disposed within the receptacle 33 if no ionization device will be inserted into the receptacle 33.


The receptacle 33 may be internally threaded and the conductive device 34 may be externally threaded, wherein the externally threaded conductive device 34 may be engaged or selectively secured to the internally threaded receptacle 33.


The top portion 20 of the device 10 contains at least one nipple 38 that extends upwards from the top portion 20 and contains an opening 40 that extends from the upper most surface of the nipple 38 to the cavity 22 of the device 10. The device 10 may contain two or more nipples 38 or a plurality of nipples 38. The electrode 26 is positioned adjacent the nipple 38. For example, the electrode 26 may be positioned in the cavity 22 and below the upper most surface of the nipple 38. Alternatively, the electrode 26 may extend through the hollow central portion and above the opening within the upper most surface of the nipple 38. In another embodiment, the electrode 26 may be positioned entirely within the cavity 22, allowing the electrodes 26 to proceed through the opening 40 of the nipple 38 and exiting the nipple 38. The nipples 38 are preferably centrally positioned and spaced-apart along the length of the top portion 20. The nipples 38 are preferably disposed in a straight line along the length of the top portion 20.


Alternatively, the device 10 contains a plurality of openings 40 centrally positioned and spaced-apart along the length of the top portion 20 and without a nipple 38. The openings 40 extend from the external surface of the top portion 20 to the internal surface of the top portion 20. The openings 40 are disposed in a straight line along the length of the top portion 20. The device 10 may contain one opening 40, two or more openings 40, or a plurality of openings 40. An electrode 26 is positioned adjacent the opening 40 for allowing ions to be emitted through the opening 40. Alternatively, the electrode 26 may extend through the opening 40 for emitting ions.


Each device 10 contains at least one electrode 26, two or more electrodes 26, or a plurality of electrodes 26, as shown in FIGS. 8 and 9. The electrodes 26 are engaged or connected to a printed circuit board 42 housed within the cavity 22 of the device 10. The printed circuit board 42 generally extends along the length of the device 10 and between the front end 16 and the back end 18 of the device 10. The printed circuit board 42 allows electricity to flow along the length of the device 10 and within the cavity 22 of the device 10. The electrodes 26 may extend upwardly from the printed circuit board 42 or coupled to the printed circuit board 42 by a wire, connector, or other electrical conducting device that allows electrical current to flow from the printed circuit board 42 to the electrodes 26.


Electrical current flows along the length of the printed circuit board 42, allowing a portion of the electrical current to flow from the circuit board 42 and through the electrodes 26, if the electrodes 26 are engaged to the circuit board 42, allowing ions to flow from the end or ends of the electrodes 26. If the electrodes 26 are electrically coupled to the circuit board 42 by a wire, connector, or other electrical conducting device, the electrical current flows through the wire, connector, or other electrical conducting device and through the electrodes 26. An epoxy may be deposited within the cavity 22 and over the printed circuit board 42. The epoxy may be inserted into the cavity 22 of the device 10 through an access opening 86 disposed on the bottom portion 12 of the device 10 that extends from the exterior surface to the interior surface of the bottom portion 12 and provides access to the cavity 22. Additionally, a sheath 44 may encompass a portion of the electrode 26. As shown in FIGS. 8 and 9, the sheath 44, completely encircles a portion of the electrode 26 and extends from the printed circuit board 42 and up a distance along the electrode 26, without enclosing the upper portion of the electrode 26.


The housing of the device 10 may contain a plurality of ridges 50 disposed on the device 10. The ridges 50 are preferably located adjacent the electrodes 26, or at least a majority of the electrodes 26. As shown in FIGS. 4 and 5, a plurality of ridges 50 are disposed on the device 10 and spaced apart from each other. The ridges 50 are preferably located on the top portion 20 of the housing of the device 10, however the ridges 50 may be located on the opposed side portions 14 or on the upper edge of the opposed side portions 14. By way of an example only, the ridges 50 may be integral with the side portions 14, engaged to the side portions 14, engaged to the upper edge of the side portions 14, integral with the upper edge of the side portions 14, integral with the top portion 20, or engaged to the top portion 20. The ridges 50 are disposed on either side of the electrodes 26, and preferably extend to a height that is above the height of the electrodes 26. The ridges 50 preferably have a width that is greater than the width of the electrodes 26. A space 52 is positioned between each ridge 50 allowing air to flow between the ridges 50. The ridges 50 are spaced-apart in both the lateral and longitudinal directions. The ridges 50 are disposed on either side of the device 10 and spaced apart from each other. The ridges 50 on opposed sides of the top portion 20 face each other and are symmetrically aligned on either side of each electrode 26, or at least most electrodes 26.


The ridges 50 are preferably parabolic shaped. In other words, the ridges 50 have an arcuate top portion 54 and a first side 56 and a second side 58. The first side 56 and the second side 58 extend downwardly and outwardly from the arcuate top portion 54 to the top portion 20, the side portion 14, or the upper ridge of the side portion 14 of the housing of the device 10. The distance between the first side 56 and the second side 58 of the portion of the ridge 50 adjacent the top portion 20 is greater than the distance between the first side 56 and the second side 58 of the ridge 50 adjacent the arcuate top portion 54. In other words, the width of the ridge 50 increases as it extends downward from the arcuate top portion 54. The ridges 50 may also be another shape sufficient for the purposes of the invention, such as square, triangle, rectangular or other geometric shape.


At the front end 16 and back end 18 of the housing of the device 10, a first extension 60 and a second extension 62 extend upwards from the device, and as illustrated extend upwards from the top portion 20 of the device 10. The first extension 60 is adjacent the front end 16 and the second extension 62 is adjacent the back end 18. The first extension 60 and the second extension 62 are generally c-shaped, and as shown in FIGS. 4-5, the first extension 60 and the second extension 62 do not have to be identical. The first extension 60 may partially surround an electrode 26, while the second extension 62 may or may not partially surround an electrode 26. The first extension 60 may be positioned entirely on the top portion 20 of the housing or may be positioned on the front end 16, positioned on the front end 16 and the top portion 20, positioned on the front end 16 and opposed side portions 14, or positioned on the front end 16, opposed side portions 14, and the top portion 20. The second extension 62 may be positioned entirely on the top portion 20 of the housing or may be positioned on the back end 18, positioned on the back end 18 and the top portion 20, positioned on the back end 18 and opposed side portions 14, or positioned on the back end 18, opposed side portions 14, and the top portion 20.


The printed circuit board 42 may be engaged within the device 10 in two alternative arrangements. As illustrated in FIG. 8, a first electrical connector 64 and a second electrical connector 66 are positioned on either side of the cavity 22. The first electrical connector 64 may be positioned adjacent the internal side of the front end 16 and the second electrical connector 66 may be positioned adjacent the internal side of the back end 18. The first electrical connector 64 positioned adjacent the internal side of the front end 16 is coupled to the conductive device 34 for allowing electricity to flow from the conductive device 34 to the first electrical connector 64. The second electrical connector 66 is coupled to a conductive element within the receptacle 33 for allowing electricity to flow from the second electrical connector 66 to the receptacle and allowing the electricity to progress from the conductive element within the receptacle 33 to an conductive device 34 that may be selectively secured to the receptacle 33.


The first electrical connector 64 and second electrical connector 66 each contain an eye for receiving the first end of a wire 68. The second end of the wire 68 is engaged to an end of the printed circuit board 42 and allowing electricity to flow from the first electrical connector 64 through the wire 68 to the first end of the printed circuit board 42. The electricity flow through the printed circuit board 42, allowing a portion of the electricity to flow through the electrodes 26 and producing ions, wherein the remainder of the electricity progresses down the printed circuit board 42 towards the second end. The remainder of the electricity flows to the second end of the printed circuit board 42 and through the wire 68 to the second electrical connector 66. A screw or other fastener may be used to engage the first electrical connector 64, a second electrical connector 66, and printed circuit board 42 to the device 10.


Alternatively, as shown in FIG. 9, the first end of the printed circuit board 42 is engaged to the first electrical connector 64 and the second end of the printed circuit board 42 is engaged to the second electrical connector 66. The first electrical connector 64 and first end of the printed circuit board 42 each contain a hole, and the hole in the printed circuit board 42 is placed overtop the hole in the first electrical connector 64. A fastener, such as a screw, is inserted in the hole, allowing electricity to flow from the first electrical connector 64 through the screw and into the printed circuit board 42. The second electrical connector 66 and second end of the printed circuit board 42 each contain a hole, and the hole in the printed circuit board 42 is placed overtop the hole in the second electrical connector 66. A fastener, such as a screw, is inserted in the hole, allowing electricity to flow from the printed circuit board 42 and into the second electrical connector 66.


The electrodes 26 may consist of a high voltage wire having a first end and a second end. The first end of the high voltage wire may contain a plurality of bristles or clusters that extend upwardly from the printed circuit board 42. The bristles are composed of any material that conducts electricity. The bristles or clusters may be composed of nylon, carbon fibers, or a thermoplastic polymer imbedded with conductive material that allows the polymer to conduct electricity. For example, the bristles may be composed of polypropylene or polyethylene and impregnated with carbon. Generally, the bristles of the electrode 26 may contain between about 20 to about 80 wt % polypropylene copolymer or polyethylene copolymer, between about 5 to about 40 wt % talc, and from about 5 to 40 wt % carbon black. However, any other resistive, inductive, reactive or conductive plastic or non-metallic material may be utilized for the bristles. As illustrated in FIG. 4, the electrode consists of a plurality of carbon fibers having a first end and a second end. The first end is engaged to the printed circuit board 42 for receiving the flow of electricity flowing through the printed circuit board 42 and the second end extends upwardly from the printed circuit board 42 for emitting ions. Each fiber within the cluster can emit ions from its second end.


The device 10 may produce approximately equal amounts of positive and negative ions, regardless of airflow velocity or other conditions such as humidity or temperature. In example forms, the device 10 produces positive ions and negative ions in a concentration of at least about 40 million ions per cubic centimeter as measured 2 inches from the device electrodes. In alternate embodiments, the device generates negative ions only, or positive ions only, or generate negative ions and positive ions in unequal quantities.


In one embodiment, the top portion 20 of the device 10 may contain an LED bore that extends through the top portion 20 and into the cavity 22. An LED light may be positioned over the LED bore and engaged to an LED wire that extends from a circuit board to the LED light. When current is flowing through the high voltage wires current also flows through the LED wire and illuminates the LED light, indicating the device 10 is operating. The top portion 20 contains a first power supply bore and a second power supply bore for receiving the positive and negative power supply wires that serve as the power supply source.


The device 10 may be positioned and secured in place within the housing of the air handler unit such that the electrodes are aligned generally perpendicularly to the direction of the airflow across the device 10, to prevent recombination of the positively charged ions with the negatively charged ions.


The treatment of air by delivery of bipolar ionization to an airflow within a conduit according to the systems and methods of the present invention may be utilized for various purposes. For example, application of bipolar ionization to an airflow within an HVAC conduit such as an air handler housing or duct may be utilized to abate allergens, pathogens, odors, gases, volatile organic compounds, bacteria, virus, mold, dander, fungus, dust mites, animal and smoke odors, and/or static electricity in a treated air space to which the airflow is directed. Ionization of air in living and working spaces may reduce building related illness and improve indoor air quality; and additionally can reduce the quantity of outside air needed to be mixed with the treated indoor air, reducing heating and cooling costs by enabling a greater degree of air recirculation.


As shown in FIG. 1, a power head 70 provides, preferably AC current, to the device 10. Alternatively, the power head 70 could provide DC current. The power head 70 contains a female portion or receptacle allowing the conductive device 34 of the device 10 to be inserted and mated to the power head 70. The power head 70 may also contain a depression, similar to the depression 82 on the back end 18 of the device 10. The depression contains a base portion and sides extending upwards from the base portion. The female portion or may be disposed within the base portion of the depression. The depression may have a plus-sign shape or an X-shape depending upon the orientation of the power head 70 when viewed. In other words, the depression contains a central portion and four coves disposed on each side of the central portion of the depression. The upper portion of the sides of the depression contain a ridge, and the lip 80 of the fingers 72 engage the ridge of the sides of the depression. In other words, the ridge is retained within the retention edge 74 of the fingers 72 engaging a device 10 to the power head 70.


In one embodiment, the female portion of the power head 70 is internally threaded for the receiving the externally threaded conductive device 34 in a selectively secured arrangement. Selectively secured means the two devices, or in this instance power head 70 and device 10, can be separated from each other.


The electrodes 26 within the ionizer may be removable or replaceable. The emitter points may be constructed of conductive resins, gold, titanium, or any other corrosion resistant conductive material.


Although the present invention has been illustrated and described herein with reference to preferred embodiments and specific examples thereof, it will be readily apparent to those of ordinary skill in the art that other embodiments and examples may perform similar functions and/or achieve like results. All such equivalent embodiments and examples are within the spirit and scope of the present invention and are intended to be covered by the following claims.

Claims
  • 1. An ion generator device, comprising: a housing; a cavity formed within the housing having a front end and a back end;a plurality of openings positioned along the housing;a plurality of ridges positioned adjacent the openings;at least one finger extending from the front end of the housing;at least one electrode positioned within the cavity; anda conductive device engaged to the front end and a receptacle within the back end for allowing one or more modular ion generator devices to be selectively secured to each other.
  • 2. The modular ion generator device of claim 1, further comprising a magnet positioned on the device for selectively securing the device to a metal surface.
  • 3. The modular ion generator device of claim 1, further comprising at least one flange extending from the device.
  • 4. The modular ion generator device of claim 1, further comprising a printed circuit board housed within the cavity and the at least one electrode extends outwardly from the printed circuit board.
  • 5. The modular ion generator device of claim 1, where the at least one electrode is constructed of carbon fiber brushes.
  • 6. An ion generator device, comprising: a housing comprising a bottom portion that extends to an outer edge, two opposed side portions that extend upward from the outer edge, a front end that extends upward from the outer edge, a back end that extends upward from the outer edge, and a top portion; a cavity formed within the two opposed side portions, front end, and back end; a plurality of openings disposed on the top portion;a plurality of electrodes positioned within the cavity;at least one finger extending from the front end of the housing; anda conductive device extending from the front end and a receptacle within the back end for allowing one or more ion generator devices to be selectively secured to each other.
  • 7. The modular ion generator device of claim 6, further comprising a power head engaged to the modular ion generator device.
  • 8. The modular ion generator device of claim 6, further comprising a magnet positioned on the device for selectively securing the device to a metal surface.
  • 9. The modular ion generator device of claim 6, further comprising at least one flange extending from the device for engaging a magnet thereto.
  • 10. The modular ion generator device of claim 6, further comprising at least one nipple extending from the top portion.
  • 11. The modular ion generator device of claim 6, where the at least one electrode may be constructed of carbon fiber brushes.
  • 12. The ion generator device of claim 6, further comprising a plurality of ridges adjacent the electrodes.
  • 13. The ion generator device of claim 6, wherein four fingers extend from the frontend of the housing.
  • 14. An ion generator device, comprising: a housing comprising a front end and a back end; a cavity formed within the housing;a plurality of openings positioned along the housing; at least one finger extending from the front end;at least one electrode extending from the housing; and
  • 15. The ion generator device of claim 14, wherein one or more modular ion generator devices are selectively engaged to one another.
  • 16. The ion generator device of claim 14, further comprising a magnet positioned on the device for selectively securing the device to a metal surface.
  • 17. The ion generator device of claim 14, further comprising a plurality of ridges adjacent the electrodes.
  • 18. The ion generator device of claim 14, where the electrodes are removable.
  • 19. The ion generator device of claim 14, where the electrodes are constructed of carbon fiber brushes.
CROSS REFERENCE TO RELATED PATENT APPLICATION

This application is a continuation-in-part of U.S. patent application Ser. No. 16/003,327 filed Jun. 8, 2018 and entitled “MODULAR ION GENERATOR DEVICE,” which is a continuation of U.S. patent application Ser. No. 15/670,219 filed Aug. 7, 2017 and entitled “MODULAR ION GENERATOR DEVICE” which claims the benefit of U.S. Provisional Patent Application No. 62/372,053, filed on Aug. 8, 2016, and entitled “MODULAR ION GENERATION DEVICE,” the contents of which are incorporated in full by reference herein.

US Referenced Citations (134)
Number Name Date Kind
1811687 Goldberg et al. Jun 1931 A
3624448 Saurenman Nov 1971 A
3652897 Iosue Mar 1972 A
3769695 Price Nov 1973 A
3968405 Testone Jul 1976 A
4031599 Testone Jun 1977 A
D253281 Kim Oct 1979 S
4216518 Simons Aug 1980 A
4263636 Testone Apr 1981 A
4264343 Natarajan Apr 1981 A
4284420 Borysiak Aug 1981 A
D286765 Prouty et al. Nov 1986 S
4734580 Rodrigo et al. Mar 1988 A
4757422 Bossard et al. Jul 1988 A
4809127 Steinman et al. Feb 1989 A
4829398 Wilson May 1989 A
5034651 Domschat Jul 1991 A
5084077 Junker et al. Jan 1992 A
D332942 Julien Feb 1993 S
D353575 Macomber Dec 1994 S
5464754 Dennis et al. Nov 1995 A
5492557 Vanella Feb 1996 A
5737176 Muz Apr 1998 A
5741352 Ford et al. Apr 1998 A
5768087 Vernitskiy Jun 1998 A
5879435 Satyapal Mar 1999 A
5931989 Knutsson Aug 1999 A
6019815 Satyapal Feb 2000 A
6118645 Partridge Sep 2000 A
D434523 Ford Nov 2000 S
6156099 Hironaka et al. Dec 2000 A
D443587 Sakasegawa Jun 2001 S
6252756 Richie, Jr Jun 2001 B1
6330146 Blitshteyn Dec 2001 B1
6350417 Lau et al. Feb 2002 B1
6417581 Hall Jul 2002 B2
6544485 Taylor Apr 2003 B1
D476298 Lee Jun 2003 S
6576046 Prueiie Jun 2003 B2
6653638 Fujii Nov 2003 B2
6680033 Shii Jan 2004 B2
6744617 Fujii Jun 2004 B2
6791814 Dachi et al. Sep 2004 B2
6850403 Gefter et al. Feb 2005 B1
6855190 Nikkhah Feb 2005 B1
D533832 Hock Dec 2006 S
7177133 Riskin Feb 2007 B2
7244289 Su Jul 2007 B2
7256979 Sekoguchi et al. Aug 2007 B2
7273515 Yuen Sep 2007 B2
7408759 Gefter et al. Aug 2008 B2
D587198 Nagasawa Feb 2009 S
7492568 Takayanagi Feb 2009 B2
7497898 Sato et al. Mar 2009 B2
7639472 Sekoguchi Dec 2009 B2
7716772 Shih et al. May 2010 B2
7824477 Kang et al. Nov 2010 B2
7916445 Sekoguchi Mar 2011 B2
7940509 Orihara et al. May 2011 B2
7948733 Hashimoto May 2011 B2
7961451 Sekoguchi Jun 2011 B2
7969707 Riskin Jun 2011 B2
7995321 Shimada Aug 2011 B2
8043573 Darker et al. Oct 2011 B2
8053741 Sekoguchi Nov 2011 B2
8106367 Riskin Jan 2012 B2
8134821 Fukai Mar 2012 B2
8328902 Boyden et al. Dec 2012 B2
8351168 Sicard Jan 2013 B2
8425658 Lee Apr 2013 B2
8554924 Waddell et al. Oct 2013 B2
8710456 Klochkov Apr 2014 B2
8724286 Uchida et al. May 2014 B2
8951024 Ishii Feb 2015 B2
8957571 Riskin Feb 2015 B2
9293895 Pucciani Mar 2016 B2
D754314 Ellis et al. Apr 2016 S
9579664 Marra Feb 2017 B2
9623422 Overdahl Apr 2017 B2
9630185 Riskin Apr 2017 B1
9630186 Back Apr 2017 B2
9646806 Jang May 2017 B2
9660425 Sunshine May 2017 B1
9661725 Gefter May 2017 B2
9661727 Gefter May 2017 B2
9847623 Sunshine Dec 2017 B2
9849208 Waddell Dec 2017 B2
9859090 Gefter Jan 2018 B2
9948071 Chen et al. Apr 2018 B2
9985421 Sunshine May 2018 B2
10020180 Waddell Jul 2018 B2
10116124 Sung Oct 2018 B2
10153623 Sunshine Dec 2018 B2
10258922 Hsieh Apr 2019 B2
D848945 Lin May 2019 S
10297984 Sunshine May 2019 B2
10322205 Waddell Jun 2019 B2
10439370 Sunshine Oct 2019 B2
10492285 Lee Nov 2019 B2
10566769 Waddell Feb 2020 B2
10695455 Waddell Jun 2020 B2
10710098 Marra Jul 2020 B2
10737279 Gefter et al. Aug 2020 B2
10758947 Heymann et al. Sep 2020 B2
10786818 Galbreath et al. Sep 2020 B2
20030072697 Taylor Apr 2003 A1
20030147783 Taylor Aug 2003 A1
20060193100 Izaki Aug 2006 A1
20070253860 Schroder Nov 2007 A1
20080130190 Shimada Jun 2008 A1
20080160904 Fl et al. Jul 2008 A1
20090052108 Innami Feb 2009 A1
20090211459 Hu et al. Aug 2009 A1
20100172808 Garashi Jan 2010 A1
20100175391 Lee et al. Jan 2010 A1
20100157503 Saito Jun 2010 A1
20120068082 Noda Mar 2012 A1
20120154973 Vaynerman et al. Jun 2012 A1
20140076162 Waddell et al. Mar 2014 A1
20140078639 Waddell et al. Mar 2014 A1
20140103793 Nishida et al. Apr 2014 A1
20140147333 Morfill May 2014 A1
20140233232 Radermacher Aug 2014 A1
20150255961 Chen et al. Sep 2015 A1
20160167059 Waddell Jun 2016 A1
20160175852 Waddell Jun 2016 A1
20170040149 Waddell Feb 2017 A1
20170232131 Waddell Aug 2017 A1
20170274113 Takasahara Sep 2017 A1
20180040466 Waddell Feb 2018 A1
20180071426 Waddell Mar 2018 A1
20180169711 Waddell Jun 2018 A1
20190353359 Seibold Nov 2019 A1
20200388994 Waddell Dec 2020 A1
Foreign Referenced Citations (81)
Number Date Country
2014214642 Aug 2015 AU
2108790 Apr 1995 CA
107138028 Sep 2017 CN
111228535 Jun 2020 CN
3735219 Apr 1989 DE
10355834 Jul 2005 DE
202006006549 Aug 2007 DE
102009035066 Mar 2010 DE
102008062415 Jul 2010 DE
202020102021 Apr 2020 DE
0919287 Jun 1999 EP
1878506 Jan 2008 EP
2336665 Jun 2011 EP
2683042 Jan 2014 EP
2411058 May 2015 EP
2905036 Aug 2015 EP
3093564 Nov 2016 EP
3165833 May 2017 EP
3346560 Jul 2018 EP
1494344 Sep 1967 FR
1356211 Jun 1974 GB
2117676 Oct 1983 GB
2117676 Oct 1983 GB
2245200 Jan 1992 GB
2301179 Nov 1996 GB
2377660 Jan 2003 GB
2415774 Jan 2006 GB
2525280 Oct 2015 GB
2529173 Feb 2016 GB
D0000005939-0001 Apr 2004 ID
2681623 Nov 1997 JP
2002-043092 Feb 2002 JP
2004-006152 Jan 2004 JP
2009043580 Feb 2009 JP
4778289 Sep 2011 JP
5094492 Dec 2012 JP
2017-098139 Jun 2017 JP
10-0776572 Nov 2007 KR
10-1589055 Jan 2016 KR
2016-0138931 Dec 2016 KR
101800326 Dec 2017 KR
10-1816255 Jan 2018 KR
WO 8700089 Jan 1987 WO
WO 9820288 May 1998 WO
2006039147 Apr 2006 WO
2007009336 Jan 2007 WO
WO 2007131981 Nov 2007 WO
2010074654 Jul 2010 WO
2011136735 Nov 2011 WO
WO 2012176099 Dec 2012 WO
WO 2013173528 Nov 2013 WO
2014047445 Mar 2014 WO
WO 2015052557 Apr 2015 WO
WO 2015101348 Jul 2015 WO
WO 2015111853 Jul 2015 WO
2015138802 Sep 2015 WO
2016000411 Jan 2016 WO
WO 2016082730 Jun 2016 WO
2016134204 Aug 2016 WO
WO 2016147127 Sep 2016 WO
2016204688 Dec 2016 WO
2017022255 Feb 2017 WO
WO 2017067341 Apr 2017 WO
2017085954 May 2017 WO
2017152693 Sep 2017 WO
2017155458 Sep 2017 WO
WO 2017155458 Sep 2017 WO
2017168800 Oct 2017 WO
WO 2017168800 Oct 2017 WO
WO 2018175828 Sep 2018 WO
WO 2018189924 Oct 2018 WO
2018234633 Dec 2018 WO
WO 2019000694 Jan 2019 WO
2019108898 Jun 2019 WO
WO 2020037851 Feb 2020 WO
WO 2020056855 Mar 2020 WO
WO 2020078284 Apr 2020 WO
2020158967 Aug 2020 WO
2020186576 Sep 2020 WO
2020218247 Oct 2020 WO
WO 2020218247 Oct 2020 WO
Non-Patent Literature Citations (9)
Entry
Pushpawala Buddhi, et al., “Efficiency of Ionizers in Removing Airborne Particles in Indoor Environments.” Journal of Electrostatics, vol. 90, pp. 79-84, Dec. 2017.
Wang, Wei, et al., “Assessment of Indoor Air Quality Using Different Air-Condition for Cooling.” Advanced Materials Research, vol. 518-523, pp. 910-913, May 2012.
Wang, Yun Han, et al., “Research Progress of Air Purifier Principles and Material Technologies.” Advanced Materials Research, vol. 1092-1093, pp. 1025-1028, Mar. 2015.
K. Nishikawa and H. Nojima, “Air purification technology by means of cluster ions generated by discharge plasma at atmospheric pressure.” The 30th International Conference on Plasma Science, 2003. ICOPS 2003. IEEE Conference Record—Abstracts, p. 379-, 2003.
Airmaid by Interzon product brochure; Sep. 2016; Interzon AB,Propellervagen 4A,SE-183 62 Taby, Sweden www.airmaid.com.
“Products” Web Page, http://www.gpshvac.com/index.php?option=com_content&view=article&id=11&itemid=93, 1 Page, Apr. 29, 2013, retrieved from Internet Archive Wayback Machine, https://web.archive.org/web/20130429232411/http://www.gpshvac.com/index.php?option=com_content&view=article&id=11&1temid=93 on Jan. 20, 2017.
“RGF Environmental Air Purification Technologies—Guardian Air HVAC Cell” Web Page, http://www.airstarsolutions.com/Pages/RGFguardian.aspx, 3 pages, Aug. 20, 2012, retrieved from Internet Archive Wayback Machine, https://web.archive.org/web/20120820000149/http://www.airstarsolutions.com/Pages/RGFguardian.aspx on Jan. 20, 2017.
Extended European Search Report dated Sep. 28, 2021, in European Application No. 19750315.4, 60 pages.
Global Plasma Solutions. Link: https://gpshvac.com/wp-content/uploads/2017/07/GPS-FC48-AC-IOM-Rev-.pdf Visited Jul. 5, 2019. GPS-FC48-AC-IOM-Rev Self-Cleaning Ion Generator Device. (Year: 2019).
Related Publications (1)
Number Date Country
20200161839 A1 May 2020 US
Provisional Applications (1)
Number Date Country
62372053 Aug 2016 US
Continuations (1)
Number Date Country
Parent 15670219 Aug 2017 US
Child 16003327 US
Continuation in Parts (1)
Number Date Country
Parent 16003327 Jun 2018 US
Child 16751717 US