Modular panel assembly

Information

  • Patent Application
  • 20070251179
  • Publication Number
    20070251179
  • Date Filed
    March 10, 2006
    18 years ago
  • Date Published
    November 01, 2007
    17 years ago
Abstract
The modular panel assembly comprises a plurality of different design inserts that can be readily assembled into a panel using a plurality of structural members. The different kinds of design inserts and structural members have the same type of coupling mechanism so as to allow many different configurations based on insert members of many different appearances.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

A detailed description of preferred embodiments of the present invention is provided herein below with reference to the drawings, in which:



FIG. 1(
a) illustrates, in a front view, a panel assembly in accordance with an embodiment of the present invention;



FIG. 1(
b), in a front view, illustrates a panel assembled from the modular panel assembly of FIG. 1(a);



FIGS. 2(
a), 2(b), 2(c), 2(d), 2(e), 2(f), 2(g), 2(h) and 2(i) are front views of different panels (design inserts not shown) assembled from a modular panel assembly in accordance with an embodiment of the invention;



FIGS. 3(
a), 3(b), 3(c), 3(d), 3(e) and 3(f) are front views of lattice-type design inserts;



FIGS. 4(
a), 4(b), 4(c), and 4(d) are front views of design inserts of the open, arch, crossbeam, and full panel type;



FIGS. 5(
a) and 5(b) are front views of design inserts of differing dimensions;



FIG. 6 is a top view of a stile mating with a design insert in accordance with an aspect of an embodiment of the invention;



FIG. 7 is a front view of a design insert with a lip of a modular panel assembly in accordance with an aspect of an embodiment of the present invention;



FIG. 8 is a cross-sectional view of the design insert of FIG. 7 at line A-A of FIG. 7;



FIG. 9 is a top view of a stile mating with the design insert of FIG. 7;



FIG. 10 is cross-sectional view at line B-B of FIG. 9;



FIG. 11 is a front view of a corner of an assembled modular panel in accordance with an embodiment of the invention;



FIG. 12 is a top view of the corner of the assembled modular panel of FIG. 11;



FIGS. 13(
a) and 13(b) show a top view and side view of a mullion of a modular panel assembly in accordance with an aspect of an embodiment of the present invention;



FIG. 14 is a front view of the panel in FIG. 1 as part of a garden architectural system.





DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

Referring to FIG. 1(a), there is illustrated in a front view, some of the different components of a modular panel assembly 100 in accordance with an embodiment of the invention. Referring to FIG. 1(b), there is illustrated in a front view, a panel 102 that has been assembled from the modular panel assembly 100 of FIG. 1(a). As shown in FIG. 1(a), the modular panel assembly 100 comprises two different types of components: structural members and design inserts 106. Structural members comprise rails 108, stiles 110 and at least one mullion 112. These structural members are assembled to provide two insert-receiving spaces 114 shown in FIG. 1(b). The two design inserts are attached to the structural members and are located inside the two insert-receiving spaces 114. Each structural member has the same kind of structural coupler for mating with insert couplers of the design inserts 106. Examples of suitable structural couplers and insert couplers are described below with reference to FIGS. 10 to 13.


The panel 102 illustrated in FIG. 1(b) is merely one example of many different panels that may be constructed using modular panel assemblies in accordance with different aspects of different embodiments of the invention. Similarly, the modular panel assembly 100 shown in FIG. 1(a) would typically include many additional components that could be used to assemble panels. For example, modular panel assemblies in accordance with different aspects of the invention may include structural members of many different dimensions to define insert-receiving spaces 114 of different dimensions that can accommodate design inserts 106 of different dimensions. Many different types of design inserts included in modular panel assemblies in accordance with aspects of embodiments of the invention are illustrated in FIGS. 3(a) to 3(f), 4(a) to 4(d), 5(a) and 5(b). All of these structural members, however, use a common structural coupler, and all of the design inserts 106 also use a common insert coupler, such that different panels of widely varying appearance may readily be constructed using the modular panel assembly 100.


Referring to FIGS. 2(a) to 2(i), different examples of panels 102 that can be assembled from modular panel assembly 100 are illustrated in front views. Design inserts 106 are not shown inserted into the insert-receiving spaces 114 of these panels. The shape and size of each panel 102 is based on the number of insert-receiving spaces 114, as well as the shape and size of each of these insert-receiving spaces 114. Put another way, the shape and size of each panel 102 is based on the number of design inserts 106 that such panel can receive. For example, FIG. 2(a) shows a panel 102 that can receive two different design inserts (not shown) in insert-receiving spaces 114. The panel 102 of FIG. 2(a) can be described as having a one-by-two configuration in that the panel is able to receive one design insert in one direction and two design inserts in the other direction.



FIG. 2(
b) shows a panel 102 that can receive three different design inserts (not shown) in insert-receiving spaces 114. FIG. 2(c) shows a panel 102 that can receive four different design inserts (not shown) in insert-receiving spaces 114, which have a one-by-four configuration. FIG. 2(d) shows a panel 102 that can receive four different design inserts (not shown) in insert receiving spaces 114. In this example, the panel can be described to be in a two-by-two configuration. FIG. 2(e) shows a panel 102 that can receive six different design inserts (not shown) in insert receiving spaces 114, which have a two-by-three configuration. FIG. 2(f) shows a panel 102 that can receive eight different design inserts (not shown) in insert receiving spaces 114, which have a two-by-four configuration. FIG. 2(g) shows a panel 102 that can receive nine different design inserts (not shown) in insert receiving spaces 114. In this example, the panel 102 is in a three-by-three configuration. FIG. 2(h) shows a panel 102 that can receive twelve different design inserts (not shown) in insert receiving spaces 114, which have a four-by-three configuration. FIG. 2(i) shows a panel 102 that can receive sixteen different design inserts (not shown) in insert receiving spaces 114. In this example, the panel is in a four-by-four configuration.


As described above, the structural members may be of different lengths. For example, the length of the stiles 110 are longer in FIG. 2(b) than in FIG. 2(a). In addition, it will be appreciated by those of skill in the art, that the panel 102 may be of many different shapes and configurations. Further variations of the shape and configuration of panel 102 are discussed with reference to FIGS. 5(a) and 5(b).


Referring to FIGS. 3(a) to 4(d), different kinds of design inserts 106 included in assembly 100 are shown. Each different kind of design insert 106 has a distinct appearance due to a distinct configuration of its design members. The design members can include an external frame 116 that surrounds an internal design area 118. In most kinds of design inserts 106, the internal design area 118 will also include additional design members.


Referring specifically to FIGS. 3(a) to 3(f), six different kinds of design inserts 106 are shown. All of these design inserts 106 include variants of a lattice-type internal member 120 that extends into the internal design area 118 from the external frame 116. In FIGS. 3(e) and 3(f) different variants of the lattice-type internal member 120 divide the internal design area 118 into at least four openings. In the design inserts 106 of FIGS. 3(a) to 3(d) the different variants of the lattice-type internal member 120 divide the internal design area into more than four openings.



FIG. 4(
a) shows a design insert 106 that consists only of an external frame 116, without an internal member, leaving the entire internal design area 118 open. FIG. 4(b) shows a design insert 106 in which the internal member is a curved member 122 for dividing the internal design area 118 into two openings of unequal area. FIG. 4(c) shows a design insert 106 in which the internal member is a straight member 124 for dividing the internal design area 118 into two openings. FIG. 4(d) shows a design insert 106 in which the internal member is an extended member 126 that completely covers the internal design area 118. Of course, it will be appreciated by those of skill in the art, that the design inserts 106 may have many different configurations in addition to those described above.


The design inserts 106 may also be of different sizes. FIGS. 5(a) and 5(b) illustrate two examples of design inserts 106 of the type shown in FIG. 4(d), that have different sizes. The dimensions of the two design inserts shown in FIGS. 5(a) and 5(b) also differ from the dimensions of the design inserts of FIGS. 3(a) to 4(d), which are approximately one-third the size of the design insert of FIG. 5(a) and approximately one half the size of the design insert of FIG. 5(b). As described above, the structural members are of different dimensions and can thus be assembled to form insert-receiving spaces 114 that are capable of accommodating design inserts of many different sizes.


Reference is now made to FIG. 6, which illustrates the top view of a structural member mating with a design insert 106 in accordance with an embodiment of the invention. The structural member shown is the stile 110. However, the configuration of the structural coupler is the same for all structural members of the panel assembly 100. In other words, the structural coupler of the stile 110 shown in FIG. 6 is representative of all structural members of this embodiment. Further, the insert coupler, and the manner in which it mates with the structural coupler, as shown in FIG. 6, is representative of all design inserts 106 of this embodiment. In the embodiment shown, each structural coupler comprises a groove 128 and each insert coupler comprises an edge 130 of the external frame 116. The dimension of groove 128 is selected to engage with the edge 130. The selected dimension of the groove 128 and edge 130 can be any suitable dimension. As described below in connection with FIG. 8, the external frame 116 of each design insert 106 may also include a lip 132. However, in the embodiment of FIG. 6, the design insert 106 does not include a lip.


In general, the structural couplers of all of the structural members are capable of mating, and are dimensioned to engage, with any of the insert couplers of the design inserts 106. It should be noted that many different coupling mechanisms can be used as long as they can be universally applied to all structural and insert members as described above. In some embodiments, the structural and insert couplers are symmetrically located on the structural members and design inserts, respectively. This allows certain structural members and insert members to be used in more than one manner, making them more versatile and easier to assemble, which is especially helpful to reduce inventory costs. For example, the same stile and the same rail could be used on either side of the panel 102. Furthermore, in other embodiments, the groove can be provided on the design inserts, while the edge is provided on the structural members.


Reference is now made to FIG. 7, which illustrates a front view of an embodiment of a design insert 106 (internal design area 118 is not shown). In this embodiment, the design insert 106 comprises lip 132 on each side of the edge 130 of the external frame 116. FIG. 8 further illustrates the design insert 106 of FIG. 7 along a cross-sectional view at line A-A of FIG. 7. According to one method of manufacturing this embodiment of the invention, the design insert 106 is initially provided with an unformed edge. That is, the edge does not include a lip. Then, the finished edge is formed from the unformed edge by cutting away a portion of the unformed edge to provide the lip such that the formed edge is dimensioned to engage with the groove 128. In some cases, portions of the lattice-type internal members 120 may also be cut away such that the edges are flush with the lip. For example, in the case of the lattice member shown in FIG. 3(f), the width of these X members will, in one embodiment, be the same as the width of the structural members. As shown in FIG. 3(f), each end of the X member fits into a corner of the design insert 106. According to one method of assembly, the X members are fit into the design insert 106 before the edge is formed. Thus, when the edge is being formed on the design insert 106, portions of the ends of the X members will also be cut away such that they align with the lip. Of course, other lattice-type internal members may have a width that is no greater than the width of the formed edge.



FIG. 9 illustrates a top view of stile 110 mating with a design insert 106 of FIGS. 7 and 8. The lip 132 and edge 130 of the design insert 106 define a non-planar sealing surface 134 for abutting a corresponding sealing surface 136 along the groove 128 of the stile 110. In general, the non-planar sealing surface 134 of the design insert 106 abuts the corresponding sealing surface 136 along the structural members to which the design insert 106 is attached. The lip 132 can serve to provide a more finished look by hiding the groove 128 and edge 130 from view. In addition, the lip 132 can help impede moisture from leaking between the groove 128 and edge 130.


Reference is now made to FIG. 10, which shows a side view of stile 110 mating with design insert 106 at line B-B of FIG. 9. The edge 130 of design insert 106 mates with the groove 128 of stile 110. Reference is also made to FIG. 11, which shows a front view of FIGS. 9 and 10, with the addition of rail 108. As shown, rail 108 mates with design insert 106 in the same manner that stile 110 mates with design insert 106. In addition, rail 108 mates with stile 110. More specifically, rail 108 comprises an end protrusion 138 on both ends of the rail and each protrusion mates with the end parts of the groove 128 of each stile 110. FIG. 12 shows a top view of the connection of end protrusion 138 of the rail 108 and groove 128 of stile 110. It should be noted that the opposite rail 108 connects to the stiles 110 in the same manner as the above-described rail 108.


Generally, the structural members consist of both external and internal members. However, it is possible that the structural members of an actual panel 102 may consist only of external members. The external members, which comprise rails 108 and stiles 110, are assembled to provide an external frame having an internal perimeter. In some embodiments, the structural couplers of the external members are grooves 128. Therefore, when the external members are assembled to make an external frame, a groove 128 runs along the internal perimeter.


In some embodiments, mullion 112 is an internal member for extending across the internal perimeter of the external frame. FIGS. 13(a) and 13(b) illustrate a top and side view, respectively, of a mullion 112. At each end of the mullion 112, there is an end protrusion 140 dimensioned to mate with the groove 128 along the internal perimeter of the external frame. As a structural member, mullion 112 also comprises two structural couplers that mate with the insert couplers of at least two design inserts 106 (not shown), one on each side. This structural coupler consists of two grooves 128 that are of a selected dimension that allows them to mate with edge 130 (See FIG. 6) of a design insert 106. Grooves 128 runs along each side of the mullion 112.


Reference is now made to FIG. 14, which illustrates a panel 102 in one embodiment as part of a simple garden architectural system. The panel 102 may also be part of other architectural systems, such as a deck, patio or any other outdoor space. The panel 102, as shown, is attached to posts 142. Of course, it will be appreciated by those of skill in the art that the panel 102 may be part of more complex architectural systems and that other methods of support may be used. For example, panel 102 may be supported by building at one or both ends.


To assemble a panel in accordance with an embodiment of the invention, the desired appearance of the panel is first to be determined based on the option available given the modular panel assembly 100, and in particular the different design inserts 106 available in this modular panel assembly. Then, the particular structural members and design inserts required to construct such panel would be selected. The structural members and select design inserts 106 could then be assembled to provide the panel.


During assembly, additional means may be employed to strengthen the connections of the structural members with one another. For example, dowel could be used in both end protrusion 140 of any mullions used to secure this end protrusion in the groove 128 with which it meets. That is, the dowel would fit into molding holes in both in protrusion 140 and groove 128. Similarly, dowel may be provided in end protrusion 138 of rail 108 that secures rail 108 in a groove 128 of stile 110. This dowel projecting from end protrusion 138, would then mate with a corresponding hole in the base of groove 128 of stile 110. Of course, other suitable securing means may be used, or, alternatively, the structural members may be simply glued together.


The present invention has been described here by way of example only. Various modifications and variations may be made to these exemplary embodiments without departing from the spirit and scope of the invention, which is limited only by the appended claims.

Claims
  • 1. A modular panel assembly comprising: a) a plurality of structural members for assembling to define a plurality of insert receiving spaces, wherein the plurality of structural members comprise a plurality of structural couplers for each insert-receiving space in the plurality of insert-receiving spaces; and,b) a plurality of design inserts of a plurality of different design insert kinds, wherein each design insert kind in the plurality of different design insert kinds has a distinct appearance, andeach design insert of the plurality of design inserts i) is receivable into a corresponding insert-receiving space in the plurality of insert-receiving spaces, ii) is of a corresponding design insert kind in the plurality of different design insert kinds, and, iii) comprises a configuration of design members to provide the distinct appearance of the corresponding design insert kind, the configuration of design members including an external frame having a plurality of insert couplers for mating with the plurality of structural couplers to secure the design insert in the corresponding insert-receiving space;
  • 2. The assembly as defined in claim 1 wherein the plurality of design inserts comprises design inserts of different sizes; and,the plurality of structural members comprises structural members of different sizes operable to form insert-receiving spaces of different sizes to accommodate the design inserts of different sizes.
  • 3. The assembly as defined in claim 1 wherein, for each design insert of the plurality of design inserts, the configuration of design members defines an internal design area surrounded by the external frame and comprises an internal member extending into the internal design area.
  • 4. The assembly as defined in claim 3 wherein the internal member is one of a curved member for dividing the internal design area into two openings, a straight member for dividing the internal design area into two openings, an extended member for completely covering the internal design area, and a lattice for dividing the internal design area into at least four openings.
  • 5. The assembly as defined in claim 4 wherein when different design inserts have different corresponding design insert kinds, the internal members of the different design inserts differ to provide the distinct appearances of the corresponding design insert kinds.
  • 6. The assembly as defined in claim 1 wherein, for each design insert of the plurality of design inserts, each design member in the configuration of design members is made of wood.
  • 7. The assembly as defined in claim 1 wherein each structural coupler in the plurality of structural couplers comprises a groove of a selected dimension, and each insert coupler in the plurality of insert couplers comprises an edge of the external frame dimensioned to engage with the groove of the selected dimension.
  • 8. The assembly as defined in claim 7 wherein each design insert in the plurality of design inserts comprises a lip on each side of the edge to define a non-planar sealing surface for abutting a corresponding sealing surface along the groove of the plurality of structural members.
  • 9. The assembly as defined in claim 1 wherein the plurality of structural members comprises a plurality of external members for assembling to provide an external frame having an internal perimeter, wherein the structural coupler of each external member comprises a groove of a selected dimension along at least one side thereof such that after assembly the external frame comprises the groove along the internal perimeter; and,at least one internal member for extending across the internal perimeter, wherein i) the structural coupler of the at least one internal member comprises a first groove of the selected dimension along a first side of the at least one internal member and a second groove of the selected dimension along a second side of the at least one internal member, the second side being opposite to the first side, and, ii) the at least one internal member comprises, at each end of the internal member, an end protrusion dimensioned to engage with the groove along the internal perimeter.