Modular wrist-worn processor for patient monitoring

Information

  • Patent Grant
  • 11179105
  • Patent Number
    11,179,105
  • Date Filed
    Monday, March 25, 2019
    5 years ago
  • Date Issued
    Tuesday, November 23, 2021
    2 years ago
Abstract
The invention provides a physiological probe that comfortably attaches to the base of the patient's thumb, thereby freeing up their fingers for conventional activities in a hospital, such as reading and eating. The probe, which comprises a separate cradle module and sensor module, secures to the thumb and measures time-dependent signals corresponding to LEDs operating near 660 and 905 nm. The cradle module, which contains elements subject to wear, is preferably provided as a disposable unit.
Description
BACKGROUND OF THE INVENTION

The following discussion of the background of the invention is merely provided to aid the reader in understanding the invention and is not admitted to describe or constitute prior art to the present invention.


Blood pressure is a vital sign often considered to be a good indicator of a patient's health. In critical care environments like the ICU and OR, blood pressure can be continuously monitored with an arterial catheter inserted in the patient's radial or femoral artery. Alternatively, blood pressure can be measured intermittently with a cuff using oscillometry, or manually by a medical professional using auscultation. Many patient monitors perform both the catheter and cuff-based measurements of blood pressure.


Blood pressure can also be monitored continuously with a technique called pulse transit time (PTT), defined as the transit time for a pressure pulse launched by a heartbeat in a patient's arterial system. Typical PTT measurements determine the time separating a maximum point on the QRS complex (indicating the peak of ventricular depolarization) and a foot of the PPG waveform (indicating the arriving pressure pulse). PTT depends primarily on arterial compliance, the propagation distance of the pressure pulse (which is closely approximated by the patient's arm length), and blood pressure.


PTT has been shown in a number of studies to correlate to systolic (SYS), diastolic (DIA), and mean (MAP) blood pressures. PTT can be measured with a patient monitor that includes separate modules to determine both an electrocardiogram (ECG) and SpO2. During a PTT measurement, multiple electrodes typically attach to a patient's chest to determine a time-dependent ECG component characterized by a sharp spike called the ‘QRS complex’. The QRS complex indicates an initial depolarization of ventricles within the heart and, informally, marks the beginning of the heartbeat and a pressure pulse that follows. International Patent Application No. PCT/US2010/048866, which is hereby incorporated by reference in its entirety, describes a body-worn monitor that continuously measures a plurality of vital signs from a patient. The body-worn monitor features a series of sensors that attach to the patient to measure time-dependent PPG, ECG, accelerometer-based motion (ACC), oscillometric (OSC), respiratory rate (RR), and impedance pneumography (IP) waveforms. A wrist-worn microprocessor (CPU) continuously processes these waveforms to determine the patient's vital signs, degree of motion, posture and activity level. Sensors that measure these signals typically send digitized information to a wrist-worn transceiver through a serial interface, or bus, operating on a controlled area network (CAN) protocol. The CAN bus is typically used in the automotive industry, which allows different electronic systems to effectively and robustly communicate with each other with a small number of dropped packets, even in the presence of electrically noisy environments. This is particularly advantageous for ambulatory patients that may generate signals with large amounts of motion-induced noise.


It is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of embodiments in addition to those described and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein, as well as the abstract, are for the purpose of description and should not be regarded as limiting.


As such, those skilled in the art will appreciate that the conception upon which this disclosure is based may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.


SUMMARY OF THE INVENTION

It is an object of the present invention to provide a body-worn data processing system for determining/monitoring physiological properties of the wearer. The system comprises a housing which contains the processor module, and a separate plastic casing which receives the housing. The processor module is sealed in a water-proof plastic fashion within the housing, which provides openings to access electrical interconnects operably connected to the processor module. During operation, the housing snaps into a separate plastic base (or “cradle”). Upon mating of the housing and the base, interface cavities, or “ports,” are formed for receiving the terminal ends of data cables leading to and/or from one or more sensors which collect data related to the physiological properties of interest. The ports may also provide connection to one or more peripheral devices such as blood pressure cuffs, wireless communication hardware, etc. Insertion of a terminal end into such a port establishes electrical communication between the port's corresponding electrical interconnects and the cable, thereby permitting electrical communication between the processor module and the corresponding sensor or peripheral device. In certain embodiments, the communications between the processor, sensors, and any peripherals connected through the ports are configured as a peer-to-peer network such that each device on the network is an equally privileged, equipotent participant node which can simultaneously function as both “clients” and “servers” to the other nodes on the network.


The design described herein facilitates activities such as cleaning and disinfection of the processor module, as housing contains no openings for fluids common in the hospital, such as water and blood, to flow inside. During a cleaning process the housing may simply be detached from the cradle and then cleaned. In addition, wear components, such as the tabs described above, can be provided on the cradle such that the majority of wear components are located on an inexpensive disposable unit while the relatively more expensive electronic components provide for multiple uses. Finally, the peer-to-peer architecture permits each node to communicate with, and so synchronize as necessary, with the other nodes available on the system.


In a first aspect, the invention provides a body-worn physiological data processing system, comprising:


a housing supporting electronic circuitry, the housing providing a waterproof enclosure for the electronic circuitry, the electronic circuitry comprising:






    • one or more processors configured to receive data from, and export data to, one or more peripheral devices external to the housing, and to use data received from one or more peripheral devices provide signals in deriving a measurement of at least one physiological property of the wearer,

    • a display operably connected to the processor to display data received by the processor from one or more of the peripheral device(s), or a processed form thereof,

    • a power supply operably connected to the processor and display, and

    • one or more electrical contacts proximate to one or more openings in the housing and operably connected to the processor to provide one or more connections through which the processor receives data from, and exports data to, the one or more peripheral devices; and


      (b) a base, or “cradle,” configured to releasably receive the housing, wherein when the housing is inserted into the base, one or more interface cavities are formed between the base and the housing.


      wherein each interface cavity is adapted to establish an operable connection between one of the peripheral device(s) and the processor through a data cable connected to the peripheral device by insertion of a connector on the data cable into the interface cavity such that electrical contacts on the connector interconnect with a corresponding electrical contact on the housing,





The base and housing can be mated with a positive latch, or may be mated by a simple friction fit, or by a combination of these. In the case of a friction fit, the friction fit is preferably strong enough to prevent separation of the base and housing under the force of gravity. In certain embodiments, at least one interface cavity formed by mating of the housing and the base comprises a latch mechanism which acts to prevent separation of the base from the housing when a connector is inserted fully into the cavity. In preferred embodiments, this latch mechanism comprises at least one first recess in a wall of the interface cavity provided by the base, and at least one second recess in a wall of the interface cavity provided by the housing. The first and second recesses are configured to receive a portion of the connector when it is inserted which acts similarly to a latch bolt on a conventional lock to physically restrain separation of the base and housing until the connector is removed.


In certain embodiments, the base comprises a reclosable tape or retaining strap for reversibly fixing the data processing system to the wearer. In these embodiments, openings may be provided in the base through which such a strap can thread. Other alternatives for affixing the strap include bonding materials such as adhesives, ultrasonic welds, etc. The strap may comprise mated hook-and-loop patches or similar fastening elements such as tapes, snaps, buckles, etc., to secure the system to the wearer's body during use.


Preferably, the base is designed as a disposable component which receives an electronics housing preferably designed for multiple uses. As used herein, the term “disposable” with regard to the base refers to the characteristic that the base may be disengaged from housing in the course of normal use by the user of the system such that the electronics may be easily separated from, and need not be discarded with, the base. This can serve to place the device components of the system most susceptible to wear and cleanability issues on a disposable unit, while retaining the more expensive electronic components on an easily cleanable and reusable unit.


As noted above, the housing provides a waterproof enclosure for the electronic circuitry contained within the housing. The IP Code system defined in international standard IEC 60529 classifies the degrees of protection provided against the intrusion of solid objects (including body parts like hands and fingers), dust, accidental contact, and water in electrical enclosures. Preferably, the housing meets IEC 60529-2004 IPX7 standards, which provides that ingress of water in harmful quantity shall not be possible when the enclosure is immersed in water under up to 1 m of submersion for up to 30 minutes.


The connector may be held in the port by a friction fit, or may utilize a locking mechanism such as that of a standard RJ-45 modular connector which comprises a resilient tab which snap-fits into a recess on the housing. Removal of the connector is accomplished by simply pulling on the connector with sufficient force, or by disengaging the resilient tab from the recess prior to pulling. In preferred embodiments, a port can comprise a tab which exhibits a spring force and which flexes during insertion of a terminal end, and springs back when the terminal end is fully inserted for receiving and holding the cable in its proper orientation to establish data communication.


In certain embodiments, the processor is configured to derive a measurement of at least one physiological property of the wearer selected from the group consisting of heart rate, electrical activity of the heart, temperature, SpO2, blood pressure, cardiac stroke volume, cardiac output, motion, activity, posture, pulse rate, and respiration rate. Peripheral devices such as sensors to be connected to the system are selected appropriately for the physiological properties of interest. The peripheral devices which may be pluaggbly connected to the physiological data processing system may be selected from the group consisting of a body-worn optical probe adapted to measure at least one optical signal detected after interaction with the wearer's tissue, an accelerometer, a pump module configured to inflate a blood pressure cuff, an ECG sensor, an ICG sensor, and a temperature sensor. As noted, each peripheral device is adapted to establish an operable connection with the processor through a data cable connected to the peripheral device by insertion of a connector on the data cable into the interface cavity. This data cable can carry 110 signals to and from the peripheral, and preferably also provides power to one or more peripherals from a power supply contained within the housing. By powering a peripheral from the body worn housing, the peripheral may be made lighter, less expensive, and more readily disposable. It is not necessary that each peripheral be so powered; for example a first peripheral may be controlled and powered by the physiological data processing system, while a second peripheral may be controlled by the physiological data processing system but powered by its own on-board battery.


As noted above, the communications between the processor, sensors, and any other peripherals connected through the ports are configured as a peer-to-peer network such that each device on the network is an equally privileged, equipotent participant node which can simultaneously function as both “clients” and “servers” to the other nodes on the network. In preferred embodiments, the nodes communicate through a serial interface, or bus, operating on a controlled area network (CAN) protocol. The CAN bus, which is typically used in the automotive industry, allows different electronic systems to effectively and robustly communicate with each other with a small number of dropped packets, even in the presence of electrically noisy environments. This is particularly advantageous for ambulatory patients that may generate signals with large amounts of motion-induced noise.


In certain embodiments, the physiological data processing system comprises a transceiver for wirelessly communicating with a data acquisition system external to the body-worn physiological data processing system. In these embodiments, the necessary communications hardware may be provided within the housing, or may be external, e.g., provided as a “dongle” which pluggably inserts into one of the interface cavities formed by the housing and the base, or may be provided partially within the housing and partially externally. Provision of the communications hardware as an external pluggable component can provide additional flexibility in configuration for the end user.


The system may utilize one or more electronic connectors adapted to insert into an interface cavity and which act as “keys” to unlock menus within the processing system which are not otherwise available to the user. Examples of such key connectors include “mode connectors” which enable certain special modes including, but not limited to a sleep mode (disabling the system, for example during shipping), a manufacturer mode (permitting a manufacturer to interact with the system for calibration, servicing, etc.), a demo mode (permitting the unit to display a pre-programmed demonstration), and a biomedical mode (permitting a hospital or other care site access to settings generally not available to a patient).


Advantageously, the system may also utilize one or more non-electronic “dummy” connectors adapted to insert into an interface cavity which is not in operable use. These plugs can serve to protect the structures within an interface cavity and, in the case of a system utilizing connectors to provide a latch between the base and the housing, can serve as a latch when no electrically active connector is being employed by the user.


A number of additional features may be incorporated into the electronics contained within the housing. By way of non-limiting example, the display may provide a touch-screen interface for data entry to the processor; a microphone and speaker configured for two-way voice communication may be provided; a voice over Internet protocol (VOIP) communication protocol may be provided; etc.


Mis-connection of medical devices by medical workers due to the use of common connectors across different device types is increasingly understood as both a source of patient injury and damage to equipment. Thus, in certain embodiments, the interface cavity comprises a “key” structure, and the corresponding connector is adapted to match the key structure to reduce the risk of insertion of an incompatible connector into an interface cavity. For example, the base may comprise a raised element in the wall of the interface cavity which is matched by a recess in the appropriate connector. Incompatible connectors lacking the appropriate recess and interface dimension would be physically prevented from insertion. This description is by way of example only and is non-limiting on the types of lock-and-key structures which may be used.


In related aspects, the present invention provides a base configured to releasably receive a housing supporting a processor, wherein when the housing is inserted into the base, one or more interface cavities are formed between the base and the housing, each interface cavity comprising one or more electrical contacts on the housing operably connected to the processor, and each interface cavity adapted to receive an electrical connector which makes sliding contact with the electrical contacts within the interface cavity to establish an operable connection between a peripheral device and the processor, the base comprising:

    • a latch mechanism at a first end of the base, the latch mechanism comprising at least one recess in a portion of the base which forms part of a first interface cavity, said first recesses configured to receive a portion of the electrical connector when inserted;
    • a tab on a portion of the base which forms part of the first interface cavity, the tab configured to insert into a recess on the electrical connector when inserted and thereby position the connector into a recess on a portion of the housing which forms part of the first interface cavity;
    • a tab at a second end of the base which is configured to insert into a corresponding opening in the housing when mated thereto;
    • wherein insertion of the electrical connector into the first interface cavity so that the connector is positioned into the recess on the housing prevents separation of the base from the housing until the connector is removed.


Still other embodiments are found in the following detailed description of the invention, and in the claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a three-dimensional mechanical drawing of an exemplary processor module housing and base module of the present invention, depicting a mode of mating the processor module housing to the base module.



FIG. 2 shows an alternative view of a three-dimensional mechanical drawing of an exemplary processor module housing and base module of the present invention.



FIG. 3 shows a detailed view of a base module of the present invention.



FIGS. 4A-4H show a series of sectional views of the base module shown in FIG. 3.



FIGS. 5A-B show a three-dimensional mechanical drawing depicting the top and bottom halves of an exemplary connector shell for use in the present invention.



FIG. 6 shows a three-dimensional mechanical drawing of a completed connector for use in the present invention.



FIG. 7 shows a three-dimensional mechanical drawing depicting the bottom half of an exemplary processor module housing of the present invention.



FIG. 8 shows a three-dimensional mechanical drawing depicting one view of a completed processor module housing of the present invention.



FIGS. 9A-B show a pair of three-dimensional mechanical drawings depicting the mode of insertion of a connector as shown in FIGS. 5A-B into the mated processor module housing and base module as shown in FIG. 1.





DETAILED DESCRIPTION OF THE INVENTION


FIGS. 1 and 2 depict a top and bottom view of a base 100, and housing 101 which releasably attaches thereto, for use in the body-worn data processing system of the present invention. The housing provides a water-proof plastic casing housing a processor (the “system processor”) and associated electronics (collectively the housing and the associated electronics being referred to herein as a “processing module”), and features openings on the underside that provide access to electrical interconnects that interface to connectors at the terminal ends of cables leading to the system's various sensors and other peripherals. In addition to being waterproof, this design facilitates activities such as cleaning and disinfection, as the housing contains no openings for fluids common in the hospital, such as water and blood, to flow inside.


The base is preferably designed as a disposable component which receives an electronics housing preferably designed for multiple uses. As used herein, the term “disposable” with regard to the base refers to the characteristic that the base may be disengaged from the housing in the course of normal use by the user of the body-worn data processing system such that the housing may be easily separated from, and need not be discarded with, the base. This can serve to place the system components most susceptible to wear and cleanability issues on a disposable unit, while retaining the more expensive electronic components in an easily cleanable and reusable unit.


During use, the housing reversibly snaps into the plastic base. Upon mating of the housing and the base, interface cavities, or “ports,” are formed for receiving the terminal connectors of data cables leading to and/or from one or more peripheral devices such as sensors which collect data related to the physiological properties of interest. Insertion of a terminal connectors into such a port establishes electrical communication between the port's corresponding electrical interconnects and the cable, thereby permitting electrical communication between the system processor and the corresponding sensor or peripheral device. When mated, the housing and base are releasably attached; likewise, when a connector is inserted into a port, the connector and the port are releasably attached. As used herein, the terms “releasably attached” and “releasably receive” refers to two separate modules which may be engaged with and disengaged from one another in the course of normal use.



FIGS. 3 and 4 depict base 100 in more detail. Openings 302a, b and c positioned at a first end of the base, and a larger opening 303 positioned at a second end of the base, are configured to receive appropriately constructed terminal connectors, which are described in more detail below. The base provides a bottom wall and side walls for each interface cavity which receives a connector, while the waterproof electronics housing, when mated to the base, provides a top wall which includes electrical interconnects which are in sliding contact with the conductors of the terminal connector.


A tab 312 (also shown in cross section in FIG. 4E, 402) fits into a groove in the housing to secure the first end of the base in the housing. Raised areas 313 and 314 at the second end of the base provide a friction fit for the housing; the tightness of this friction fit may be controlled by the thickness and flexibility of these raised areas. Preferably, the friction fit is sufficiently tight that the base can be inverted with the housing in place without the housing disengaging from the base.


Opening 303 (which in this example accommodates a terminal connector having 8 electrical interconnects) is capable of receiving a larger terminal connector than are openings 302a, b and c (which each accommodate a terminal connector having 4 electrical interconnects). Opening 303 includes in its lateral walls recesses 304 and 305 (also shown in cross section in FIGS. 4G, 404 and 405). These recesses are configured to receive extensions (FIGS. 6, 603 and 605) at the edge of the terminal connector when it is inserted into the interface cavity. A tab 311 that exhibits a spring force due to its material composition (thickness and stiffness of the material forming the tab) flexes during insertion of the terminal connector, and springs back when the terminal connector is fully inserted into the interface cavity.


A raised portion of this tab (shown in cross-section in FIG. 4E, 401) inserts into a depression in the bottom surface of the terminal connector (FIG. 6, 602), thereby forming a detent to provide positive location of the terminal connector when in its proper position. In this position, the electrical conductors of the terminal connector are in sliding contact with the corresponding electrical interconnects on the housing, and the distal end of the terminal connector (FIG. 6, 606) is inserted into a recess in the housing (FIG. 8, 801). So inserted, the housing is secured at one end by tab 312, while at the other end the terminal connector 600 forms a “deadbolt” lock due to insertion of its distal end 606 into recess 801 and insertion of extensions 603 and 605 into lateral walls recesses 304 and 305. This “latch” prevents removal of the housing from the base until the terminal connector 600 is removed. Once the terminal connector is removed, the base and housing may be separated by simply lifting the housing from the base.


Like opening 303, each of openings 302a, b, and c also contain a tab that flexes during insertion of the terminal connector, and springs back when the terminal connector is fully inserted into the interface cavity. A raised portion of this tab (shown in cross-section in FIG. 4E, 401) inserts into a depression in the bottom surface of the terminal connector (FIG. 5B, 504) to form a detent to provide positive location of the terminal connector when in its proper position. In this position, the electrical conductors of the terminal connector are in sliding contact with the corresponding electrical interconnects on the housing. These connectors, however, do not participate in the “latch” mechanism.


Raised posts 306, 307, 308, and 309 in each interface cavity provide a keying mechanism to prevent inadvertent insertion of an incompatible terminal connector. Each terminal connector has a corresponding slot (FIG. 5B, 503; FIG. 6, 604) which is adapted to receive the raised post. A similarly sized connector lacking this slot would be prevented from insertion. It is preferred that this keying mechanism be unique as compared to other electrical cable connectors used in the particular care setting to limit chances for inadvertent insertion of an incorrect cable connector.


To affix the base to a wearer, slots (FIG. 3, 310; FIG. 4A, 403) are provided through which a strap may be threaded. This strap may be sized according to the body location to which the base is to be affixed. A preferred site is the wrist of the wearer.



FIGS. 5A and B show the top and bottom halves of a data cable connector 500 configured to insert into one of openings 302a, b, and c without the associated cable hardware. An opening 501 allows the cable leads to pass into the connector, and spring-tension “sliding” or “wiping” electrical contacts (similar to those of a standard modular RJ-45 cable) are positioned in opening 502. The connector is conveniently made as a 2-piece component for ease of cable attachment. As noted above, slot 503 and detent recess 504 serve to position the connector in its proper orientation and in a compatible interface recess.



FIG. 6 shows the bottom surface of a completed data cable connector 600 configured to fit larger opening 303. Cable 601 extending from a peripheral (not shown) enters the connector at its proximal end, relative to distal end 606 which forms part of the latch mechanism described above. Spring-tension “sliding” or “wiping” electrical contacts are positioned on the top surface of the connector (not shown). In some cases, it may be desirable to latch the housing and base together without the use of a data cable. In this case, a “dummy” connector lacking cable 601 and the associated wiring and electrical contacts may be provided. This dummy connector will comprise slot 604, detent recess 602, distal end 606, and extensions 605 and 603 to support insertion into opening 303. As in the case of connector 600, the dummy connector will provide a latch preventing removal of the housing from the base until the dummy connector is removed.



FIGS. 7 and 8 show the underside of bottom portion of the housing. When mated to the base, contact pads 701a and b and 702 overlay openings 302a, b, and c in the base, thus forming the electrical interconnects that interface to the terminal connector at the end of cables. As noted above, openings 302a, b, and c are sized to accommodate a connector having four electrical contacts, and contact pads 701a and b contain a corresponding number of electrical interconnects. In contrast, contact pad 702 contains 8 electrical interconnects. The central four interconnects interface to the terminal end of a cable inserted into opening 302b, and when the housing is mated to the base, the other four electrical connectors are unavailable. However, when the housing is separated from the base, these additional four contacts can provide for additional electrical access to the electronics within the housing. These additional four contacts can be used, for example, for battery charging, and a separate battery charging station which is adapted to receive the housing can be provided for this purpose.


Similarly, contact pad 802 overlays opening 303 in the base, thus forming the electrical interconnects that interface to the terminal connector of the larger cable. As discussed, opening 303 is sized to accommodate a connector having eight electrical contacts, and contact pad 802 contains a corresponding number of electrical interconnects. FIG. 9A depicts the releasable insertion of connector 902 into the interface cavity formed between opening 303 and contact pad 802 when the housing is mated to the base. Connector 902 is inserted until the detent depression 904 snaps into the ridge on tab 903. At this point, the distal end of the connector is inserted into recess 801, forming the latch which retains the housing in the base until the connector is removed.


Suitable electronics to be provided within the housing is described in detail in International Patent Application No. PCT/US2010/048866, International publication WO2010/135518, U.S. publication US20090018453A1, and U.S. publication US20100168589A1, each of which is hereby incorporated by reference in its entirety. The electronics preferably support serial communication through the CAN protocol. This allows the system processor to easily interpret signals that arrive from the various sensors, and means that the interface cavities need not be associated with a specific cable; any cable can be plugged into any compatible port. Furthermore, because the CAN protocol supports peer-to-peer connection of the peripherals, these peripherals may communicate directly with one another, for example for purposes of synchronization. Digital information generated by the attached peripherals can include a header that indicates the identity or origin of the signals so that the system processor can process them accordingly.


A variety of peripheral devices may communicate with the processing module. For example, a cable may transport 110 signals to/from an ECG circuit and electrodes; accelerometers; a cuff-based system for determining blood pressure values; a glucometer; an infusion pump, a body-worn insulin pump; a ventilator; an end-tidal CO2 monitoring system; a pulse oximeter or other optical physiological probe; and a thermometer. This list is not meant to be limiting. Using one or more of these inputs, the processing system can determine one or more physiological properties associated with the wearer, such as heart rate, electrical activity of the heart, temperature, SpO2, blood pressure, cardiac stroke volume, cardiac output, medication dosage, patient weight, blood glucose levels, end tidal CO2, motion, activity, posture, pulse rate, and respiration rate.


The processing module can include a speaker and/or microphone that allows a medical professional to communicate with the patient, using an appropriate protocol such as a voice over Internet protocol (VOIP). For example, the medical professional can query the patient from a central nursing station; the electronics carried within the housing may function much like a conventional cellular telephone or ‘walkie talkie’: the processing module can be used for voice communications with a medical professional and can additionally relay information describing the patient's vital signs and motion. The processing module can be configured via software to support speech-to-text annotations. By this is meant that speech generated externally can be converted into text for display on the processing module, and/or speech generated at the processing module can be converted into text at an external computer.


The system processor is preferably operably connected to a data input device such as a keypad or touchscreen located at the top of the housing to permit the wearer or medical personnel to interact with the system. Openings may be provided in the top of the housing for the speaker and/or microphone, as depicted in FIGS. 9A, 905 and 906; in order to maintain water resistance (e.g., at an IPX-7 standard), these openings may be sealed from underneath with a waterproof but breathable material such as a GORE-TEX® membrane (W. L. Gore & Associates, Inc.).


The electronics within the housing preferably include a battery or other power supply. Numerous battery technologies are known in the art, including common alkaline batteries, oxyride batteries, lithium batteries, etc. There are three preferred battery technologies that could be employed: Nickel Cadmium (NiCad), Nickel Metal Hydride (NiMH) and Lithium Ion (Li-ion), and most preferred are Li-ion batteries.


The battery can be provided in a “hot swap” configuration so that the electronics' data, wireless connections, etc., are preserved after the battery change. For example, prior to the hot swap a battery-powered dongle operating a firmware program may be plugged into one of the interface cavities. After being plugged in, the dongle sends a packet formatted according to the CAN protocol to the system processor indicating that its battery is about to be replaced with one having a full charge. The system processor receives the packet, and in response stores in non-volatile memory information that is normally not present when a device is initially powered on. Alternatively this information can be temporarily transferred for storage to a data buffer on an external network, or on non-volatile memory associated with the dongle. Once this is complete, the system processor can signal that the battery may be replaced. The depleted battery, located on the bottom side of the housing, can now be replaced with a charged battery. After this operation is complete the system processor can be returned to its configuration before the battery swap.


The “hot swap” configuration may not be suitable for IPX-7 standard waterproofing of the housing. Thus, in an alternative, the processor module itself may be swapped, rather than the battery within the module. In this scenario, a first processor module currently in use should transfer its store of data about the wearer to a second replacement processor module. Advantageously, a “bumping” action can be used to transfer this data. To initiate a transfer, a person accesses a special “data transfer” mode on the first and second processor modules. Then the first and second processor modules are brought into contact with one another using a sideways “bumping” action. Sensors (accelerometers) within each processor module sense the bump, and a matching algorithm pairs processor modules that detected the same bump (in terms of time and force). If and only if the bump is confirmed on the two processor modules will the data be exchanged. Following data exchange, the second processor module replaces the first processor module on the wrist-worn base of the wearer, and the first processor module is cleaned and recharged for later use. The matching algorithm may run locally on the processing modules themselves, or may run externally on a separate network. In the latter case, the processor modules would communicate the bump characteristics to the external network for processing.


Preferably, the electronics of the system support wireless transfer of data from the system to an external monitor or network. For relatively short distance RF communications, Bluetooth, Bluetooth LE, ANT+, HomeRF, IEEE 802.11x (e.g., IEEE 802.11a/b/g/n), and IEEE 802.15.4 are well known exemplary standard communications protocols that may be used. For somewhat longer range data transfers, cellular telephone protocols such as CDMA, TDMA, GSM, WAP, 3G (e.g., 3GPP, W-CDMA, TD-SCDMA, HSPA+, EVDO rev B, and CDMA2000), and 4G (e.g., LTE advanced, IEEE 802.16m) may be employed. These lists are not meant to be limiting. The electronics supporting wireless communication can be contained within the housing, or may be connected in a pluggable fashion through one of the interface cavities. Moreover, peripherals may also communicate with the system processor wirelessly rather than through a data cable connected to an interface cavity.


One skilled in the art readily appreciates that the present invention is well adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those inherent therein. The examples provided herein are representative of preferred embodiments, are exemplary, and are not intended as limitations on the scope of the invention.


It will be readily apparent to a person skilled in the art that varying substitutions and modifications may be made to the invention disclosed herein without departing from the scope and spirit of the invention.


All patents and publications mentioned in the specification are indicative of the levels of those of ordinary skill in the art to which the invention pertains. All patents and publications are herein incorporated by reference to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference.


The invention illustratively described herein suitably may be practiced in the absence of any element or elements, limitation or limitations which is not specifically disclosed herein. Thus, for example, in each instance herein any of the terms “comprising”, “consisting essentially of” and “consisting of” may be replaced with either of the other two terms. The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention that in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed. Thus, it should be understood that although the present invention has been specifically disclosed by preferred embodiments and optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention as defined by the appended claims.


Other embodiments are set forth within the following claims.

Claims
  • 1. A body-worn physiological data processing system, comprising: (a) a housing supporting electronic circuitry, the housing providing a waterproof enclosure for the electronic circuitry, the electronic circuitry comprising: a processor configured to receive data from, and export data to, one or more peripheral devices external to the housing, and to use data received from one or more peripheral devices provide signals in deriving a measurement of at least one physiological property of a wearer of the body-worn physiological data processing system,a display operably connected to the processor to display data received by the processor from one or more of the one or more peripheral devices, or a processed form thereof,a power supply operably connected to the processor and display,one or more electrical contacts proximate to one or more openings in the housing and operably connected to the processor to provide one or more connections through which the processor receives data from, and exports data to, the one or more peripheral devices;(b) a base configured to releasably receive the housing, wherein when the housing is inserted into the base, one or more interface cavities are formed between the base and the housing, wherein each interface cavity is adapted to releasably receive a connector on a data cable connected to at least one of the one or more peripheral devices, thereby establishing an operable connection between the one or more peripheral devices and the processor through the data cable, wherein insertion of the connector on the data cable into the interface cavity interconnects electrical contacts on the connector with corresponding electrical contacts on the housing,and wherein at least one interface cavity comprises a latch mechanism comprising at least one first recess in a wall thereof provided by the base, and at least one second recess in a wall thereof provided by the housing, said first and second recesses configured to receive a portion of the connector when inserted, the insertion of the connector thereby preventing separation of the base from the housing until the connector is removed;(c) a reclosable retaining strap for reversibly fixing the data processing system to the wearer; and(d) the one or more peripheral devices, wherein the one or more peripheral devices are selected from the group consisting of a body-worn optical probe adapted to measure at least one optical signal detected after interaction with the wearer's tissue, an accelerometer, a pump module configured to inflate a blood pressure cuff, an ECG sensor, an ICG sensor, and a temperature sensor.
RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 15/263,277, filed Sep. 12, 2016, now U.S. Pat. No. 10,238,338, issued Mar. 26, 2019, which is a continuation of U.S. patent application Ser. No. 13/399,616 filed Feb. 17, 2012, now U.S. Pat. No. 9,439,574, issued Sep. 13, 2016, which claims the benefit of priority to U.S. Provisional Application No. 61/444,285, filed Feb. 18, 2011, each of which is hereby incorporated by reference, including the drawings.

US Referenced Citations (465)
Number Name Date Kind
4263918 Swearingen et al. Apr 1981 A
4270547 Steffen et al. Jun 1981 A
4305400 Logan Dec 1981 A
4577639 Simon et al. Mar 1986 A
4582068 Phillipps et al. Apr 1986 A
4653498 New, Jr. et al. Mar 1987 A
4710164 Levin et al. Dec 1987 A
4722351 Phillipps et al. Feb 1988 A
4802486 Goodman et al. Feb 1989 A
4807638 Sramek Feb 1989 A
4905697 Heggs et al. Mar 1990 A
5025791 Niwa Jun 1991 A
5140990 Jones et al. Aug 1992 A
5190038 Polson et al. Mar 1993 A
5197489 Conlan Mar 1993 A
5247931 Norwood Sep 1993 A
5316008 Suga et al. May 1994 A
5339818 Baker et al. Aug 1994 A
5435315 McPhee et al. Jul 1995 A
5448991 Polson et al. Sep 1995 A
5465082 Chaco Nov 1995 A
5482036 Diab et al. Jan 1996 A
5485838 Ukawa et al. Jan 1996 A
5490505 Diab et al. Feb 1996 A
5515858 Myllymaki May 1996 A
5517988 Gerhard May 1996 A
5524637 Erickson Jun 1996 A
5549650 Bornzin et al. Aug 1996 A
5575284 Athan et al. Nov 1996 A
5577508 Medero Nov 1996 A
5588427 Tien Dec 1996 A
5593431 Sheldon Jan 1997 A
5632272 Diab et al. May 1997 A
5649543 Hosaka et al. Jul 1997 A
5680870 Hood et al. Oct 1997 A
5685299 Diab et al. Nov 1997 A
5709205 Bukta Jan 1998 A
5743856 Oka et al. Apr 1998 A
5766131 Kondo et al. Jun 1998 A
5769785 Diab et al. Jun 1998 A
5800349 Isaacson et al. Sep 1998 A
5820550 Polson et al. Oct 1998 A
5848373 Delorme et al. Dec 1998 A
5853370 Chance et al. Dec 1998 A
5857975 Golub Jan 1999 A
5865755 Golub Feb 1999 A
5865756 Peel, III Feb 1999 A
5873834 Yanagi et al. Feb 1999 A
5876353 Riff Mar 1999 A
5895359 Peel, III Apr 1999 A
5899855 Brown May 1999 A
5913827 Gorman Jun 1999 A
5919141 Money et al. Jul 1999 A
5941836 Friedman Aug 1999 A
5964701 Asada et al. Oct 1999 A
5964720 Pelz Oct 1999 A
5971930 Elghazzawi Oct 1999 A
6002952 Diab et al. Dec 1999 A
6011985 Athan et al. Jan 2000 A
6018673 Chin et al. Jan 2000 A
6036642 Diab et al. Mar 2000 A
6041783 Gruenke Mar 2000 A
6057758 Dempsey et al. May 2000 A
6067462 Diab et al. May 2000 A
6081735 Diab et al. Jun 2000 A
6081742 Amano et al. Jun 2000 A
6094592 Yorkey et al. Jul 2000 A
6117077 Del Mar et al. Sep 2000 A
6129686 Friedman Oct 2000 A
6157850 Diab et al. Dec 2000 A
6159147 Lichter et al. Dec 2000 A
6160478 Jacobsen et al. Dec 2000 A
6168569 McEwen et al. Jan 2001 B1
6176831 Voss et al. Jan 2001 B1
6198394 Jacobsen et al. Mar 2001 B1
6198951 Kosuda et al. Mar 2001 B1
6199550 Wiesmann et al. Mar 2001 B1
6206830 Diab et al. Mar 2001 B1
6236872 Diab et al. May 2001 B1
6251080 Henkin et al. Jun 2001 B1
6261247 Ishikawa et al. Jul 2001 B1
6262769 Anderson et al. Jul 2001 B1
6263222 Diab et al. Jul 2001 B1
6287262 Amano et al. Sep 2001 B1
6322516 Masuda et al. Nov 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6371921 Caro et al. Apr 2002 B1
6388240 Schulz et al. May 2002 B2
RE37852 Aso et al. Sep 2002 E
6443890 Schulze et al. Sep 2002 B1
6468222 Mault Oct 2002 B1
6478736 Mault Nov 2002 B1
6480729 Schulz et al. Nov 2002 B2
6491647 Bridger et al. Dec 2002 B1
6503206 Li et al. Jan 2003 B1
6516218 Cheng et al. Feb 2003 B1
6516289 David Feb 2003 B2
6526310 Carter et al. Feb 2003 B1
6527729 Turcott Mar 2003 B1
6541756 Schulz et al. Apr 2003 B2
6544173 West et al. Apr 2003 B2
6544174 West et al. Apr 2003 B2
6546267 Sugiura et al. Apr 2003 B1
6551252 Sackner et al. Apr 2003 B2
6584336 Ali et al. Jun 2003 B1
6589170 Flach et al. Jul 2003 B1
6595929 Stivoric et al. Jul 2003 B2
6605038 Teller Aug 2003 B1
6606993 Wiesmann et al. Aug 2003 B1
6616606 Petersen et al. Sep 2003 B1
6645154 Oka Nov 2003 B2
6650917 Diab et al. Nov 2003 B2
6684090 Ali et al. Jan 2004 B2
6694177 Eggers et al. Feb 2004 B2
6699194 Diab et al. Mar 2004 B1
6732064 Kadtke et al. May 2004 B1
6745060 Diab et al. Jun 2004 B2
6770028 Ali et al. Aug 2004 B1
6790178 Mault Sep 2004 B1
6811538 Westbrook et al. Nov 2004 B2
6845256 Chin et al. Jan 2005 B2
6850787 Weber et al. Feb 2005 B2
6879850 Kimball Apr 2005 B2
6893396 Schulze et al. May 2005 B2
6912414 Tong Jun 2005 B2
6934571 Wiesmann et al. Aug 2005 B2
6947781 Asada et al. Sep 2005 B2
6976958 Quy Dec 2005 B2
6985078 Suzuki et al. Jan 2006 B2
6997882 Parker et al. Feb 2006 B1
7020508 Stivoric Mar 2006 B2
7020578 Sorensen et al. Mar 2006 B2
7029447 Rantala Apr 2006 B2
7041060 Flaherty et al. May 2006 B2
7048687 Reuss et al. May 2006 B1
7115824 Lo Oct 2006 B2
7156809 Quy Jan 2007 B2
7184809 Sterling et al. Feb 2007 B1
7186966 Al-Ali Mar 2007 B2
7194293 Baker, Jr. Mar 2007 B2
7215984 Diab et al. May 2007 B2
7215987 Sterling et al. May 2007 B1
7225007 Al-Ali et al. May 2007 B2
7237446 Chan et al. Jul 2007 B2
7241265 Cummings et al. Jul 2007 B2
7257438 Kinast Aug 2007 B2
7296312 Menkedick et al. Nov 2007 B2
7299159 Nanikashvili Nov 2007 B2
7301451 Hastings Nov 2007 B2
7314451 Halperin et al. Jan 2008 B2
7351206 Suzuki et al. Apr 2008 B2
7355512 Al-Ali Apr 2008 B1
7373191 Delonzer et al. May 2008 B2
7373912 Self et al. May 2008 B2
7377794 Al-Ali et al. May 2008 B2
7382247 Welch et al. Jun 2008 B2
7383069 Ruchti et al. Jun 2008 B2
7383070 Diab et al. Jun 2008 B2
7384398 Gagnadre et al. Jun 2008 B2
7400919 Petersen et al. Jul 2008 B2
7420472 Tran Sep 2008 B2
7427926 Sinclair et al. Sep 2008 B2
7455643 Li et al. Nov 2008 B1
7468036 Rulkov et al. Dec 2008 B1
7477143 Albert Jan 2009 B2
7479890 Lehrman et al. Jan 2009 B2
7485095 Shusterman Feb 2009 B2
7502643 Farringdon et al. Mar 2009 B2
7508307 Albert Mar 2009 B2
7509131 Krumm et al. Mar 2009 B2
7509154 Diab et al. Mar 2009 B2
7522035 Albert Apr 2009 B2
7530949 Al-Ali et al. May 2009 B2
7539532 Tran May 2009 B2
7541939 Zadesky et al. Jun 2009 B2
7542878 Nanikashvili Jun 2009 B2
7586418 Cuddihy et al. Sep 2009 B2
7598878 Goldreich Oct 2009 B2
7602301 Stirling et al. Oct 2009 B1
7616110 Crump et al. Nov 2009 B2
7625344 Brady et al. Dec 2009 B1
7628071 Sasaki et al. Dec 2009 B2
7628730 Watterson et al. Dec 2009 B1
7641614 Asada et al. Jan 2010 B2
7648463 Elhag et al. Jan 2010 B1
7656287 Albert et al. Feb 2010 B2
7668588 Kovacs Feb 2010 B2
7670295 Sackner et al. Mar 2010 B2
7674230 Reisfeld Mar 2010 B2
7674231 McCombie et al. Mar 2010 B2
7678061 Lee et al. Mar 2010 B2
7684954 Shahabdeen et al. Mar 2010 B2
7689437 Teller et al. Mar 2010 B1
7698101 Alten et al. Apr 2010 B2
7698830 Townsend et al. Apr 2010 B2
7698941 Sasaki et al. Apr 2010 B2
7715984 Ramakrishnan et al. May 2010 B2
7725147 Li et al. May 2010 B2
7782189 Spoonhower et al. Aug 2010 B2
7827011 Devaul et al. Nov 2010 B2
7925022 Jung et al. Apr 2011 B2
7976480 Grajales et al. Jul 2011 B2
7983933 Karkanias et al. Jul 2011 B2
8047998 Kolluri et al. Nov 2011 B2
8082160 Collins, Jr. et al. Dec 2011 B2
8137270 Keenan et al. Mar 2012 B2
8167800 Ouchi et al. May 2012 B2
9439574 McCombie Sep 2016 B2
10238338 McCombie Mar 2019 B2
20010004234 Petelenz et al. Jun 2001 A1
20010007923 Yamamoto Jul 2001 A1
20010013826 Ahmed et al. Aug 2001 A1
20020013517 West et al. Jan 2002 A1
20020032386 Sackner et al. Mar 2002 A1
20020072859 Kajimoto et al. Jun 2002 A1
20020151805 Sugo et al. Oct 2002 A1
20020156354 Larson Oct 2002 A1
20020170193 Townsend et al. Nov 2002 A1
20020183627 Nishii et al. Dec 2002 A1
20020193671 Ciurczak et al. Dec 2002 A1
20020193692 Inukai et al. Dec 2002 A1
20020198679 Victor et al. Dec 2002 A1
20030004420 Narimatsu Jan 2003 A1
20030130590 Bui et al. Jul 2003 A1
20030135099 Al-Ali Jul 2003 A1
20030153836 Gagnadre et al. Aug 2003 A1
20030158699 Townsend et al. Aug 2003 A1
20030167012 Friedman et al. Sep 2003 A1
20030171662 O'Connor et al. Sep 2003 A1
20030181815 Ebner et al. Sep 2003 A1
20030208335 Unuma et al. Nov 2003 A1
20040019288 Kinast Jan 2004 A1
20040030261 Rantala Feb 2004 A1
20040034293 Kimball Feb 2004 A1
20040034294 Kimball et al. Feb 2004 A1
20040054821 Warren et al. Mar 2004 A1
20040073128 Hatlestad et al. Apr 2004 A1
20040077934 Massad Apr 2004 A1
20040122315 Krill Jun 2004 A1
20040133079 Mazar et al. Jul 2004 A1
20040162466 Quy Aug 2004 A1
20040162493 Mills Aug 2004 A1
20040225207 Bae et al. Nov 2004 A1
20040267099 McMahon et al. Dec 2004 A1
20050027205 Tarassenko et al. Feb 2005 A1
20050043598 Goode, Jr. et al. Feb 2005 A1
20050059870 Aceti Mar 2005 A1
20050070773 Chin et al. Mar 2005 A1
20050113107 Meunier May 2005 A1
20050113703 Farringdon et al. May 2005 A1
20050119586 Coyle et al. Jun 2005 A1
20050119833 Nanikashvili Jun 2005 A1
20050124866 Elaz et al. Jun 2005 A1
20050124903 Roteliuk et al. Jun 2005 A1
20050149350 Kerr et al. Jul 2005 A1
20050171444 Ono et al. Aug 2005 A1
20050187796 Rosenfeld et al. Aug 2005 A1
20050206518 Welch et al. Sep 2005 A1
20050209511 Heruth et al. Sep 2005 A1
20050228296 Banet Oct 2005 A1
20050228298 Banet et al. Oct 2005 A1
20050228301 Banet et al. Oct 2005 A1
20050234317 Kiani Oct 2005 A1
20050240087 Keenan et al. Oct 2005 A1
20050261565 Lane et al. Nov 2005 A1
20050261593 Zhang et al. Nov 2005 A1
20050265267 Hwang Dec 2005 A1
20050283088 Bernstein Dec 2005 A1
20060036141 Kamath et al. Feb 2006 A1
20060047215 Newman et al. Mar 2006 A1
20060074321 Kouchi et al. Apr 2006 A1
20060074322 Nitzan Apr 2006 A1
20060128263 Baird Jun 2006 A1
20060142648 Banet et al. Jun 2006 A1
20060155589 Lane et al. Jul 2006 A1
20060178591 Hempfling Aug 2006 A1
20060200029 Evans et al. Sep 2006 A1
20060252999 Devaul et al. Nov 2006 A1
20060265246 Hoag Nov 2006 A1
20060270949 Mathie et al. Nov 2006 A1
20060271404 Brown Nov 2006 A1
20060281979 Kim et al. Dec 2006 A1
20070010719 Huster et al. Jan 2007 A1
20070055163 Asada et al. Mar 2007 A1
20070066910 Inukai et al. Mar 2007 A1
20070071643 Hall et al. Mar 2007 A1
20070094045 Cobbs et al. Apr 2007 A1
20070118056 Wang et al. May 2007 A1
20070129769 Bourget et al. Jun 2007 A1
20070142715 Banet et al. Jun 2007 A1
20070156456 McGillin et al. Jul 2007 A1
20070161912 Zhang et al. Jul 2007 A1
20070185393 Zhou et al. Aug 2007 A1
20070188323 Sinclair et al. Aug 2007 A1
20070193834 Pai et al. Aug 2007 A1
20070208233 Kovacs Sep 2007 A1
20070232867 Hansmann Oct 2007 A1
20070237719 Jones et al. Oct 2007 A1
20070244376 Wang Oct 2007 A1
20070250261 Soehren Oct 2007 A1
20070252853 Park et al. Nov 2007 A1
20070255116 Mehta et al. Nov 2007 A1
20070260487 Bartfeld et al. Nov 2007 A1
20070265533 Tran Nov 2007 A1
20070265880 Bartfeld et al. Nov 2007 A1
20070270671 Gal Nov 2007 A1
20070276261 Banet et al. Nov 2007 A1
20070282208 Jacobs et al. Dec 2007 A1
20070287386 Agrawal et al. Dec 2007 A1
20070293770 Bour et al. Dec 2007 A1
20070293781 Sims et al. Dec 2007 A1
20080004500 Cazares et al. Jan 2008 A1
20080004507 Williams, Jr. et al. Jan 2008 A1
20080004904 Tran Jan 2008 A1
20080027341 Sackner et al. Jan 2008 A1
20080033255 Essenpreis et al. Feb 2008 A1
20080039731 McCombie et al. Feb 2008 A1
20080077027 Allgeyer Mar 2008 A1
20080082001 Hatlestad et al. Apr 2008 A1
20080101160 Besson May 2008 A1
20080103405 Banet et al. May 2008 A1
20080114220 Banet et al. May 2008 A1
20080132106 Burnes et al. Jun 2008 A1
20080139955 Hansmann et al. Jun 2008 A1
20080146887 Rao et al. Jun 2008 A1
20080146892 Leboeuf et al. Jun 2008 A1
20080161707 Farringdon et al. Jul 2008 A1
20080162496 Postrel Jul 2008 A1
20080167535 Stivoric et al. Jul 2008 A1
20080171927 Yang et al. Jul 2008 A1
20080194918 Kulik et al. Aug 2008 A1
20080195735 Hodges et al. Aug 2008 A1
20080204254 Kazuno Aug 2008 A1
20080208013 Zhang et al. Aug 2008 A1
20080208273 Owen et al. Aug 2008 A1
20080214963 Guillemaud et al. Sep 2008 A1
20080221399 Zhou et al. Sep 2008 A1
20080221404 Tso Sep 2008 A1
20080262362 Kolluri et al. Oct 2008 A1
20080275349 Halperin et al. Nov 2008 A1
20080281168 Gibson et al. Nov 2008 A1
20080281310 Dunning et al. Nov 2008 A1
20080287751 Stivoric et al. Nov 2008 A1
20080294019 Tran Nov 2008 A1
20080319282 Tran Dec 2008 A1
20080319327 Banet et al. Dec 2008 A1
20090018408 Ouchi et al. Jan 2009 A1
20090018409 Banet et al. Jan 2009 A1
20090018453 Banet et al. Jan 2009 A1
20090040041 Janetis et al. Feb 2009 A1
20090054752 Jonnalagadda et al. Feb 2009 A1
20090069642 Gao et al. Mar 2009 A1
20090076363 Bly et al. Mar 2009 A1
20090076397 Libbus et al. Mar 2009 A1
20090076398 Li et al. Mar 2009 A1
20090076405 Amurthur et al. Mar 2009 A1
20090082681 Yokoyama et al. Mar 2009 A1
20090112072 Banet et al. Apr 2009 A1
20090112281 Miyazawa et al. Apr 2009 A1
20090112630 Collins, Jr. et al. Apr 2009 A1
20090118590 Teller et al. May 2009 A1
20090118626 Moon et al. May 2009 A1
20090131759 Sims et al. May 2009 A1
20090187085 Pav Jul 2009 A1
20090192366 Mensinger et al. Jul 2009 A1
20090198139 Lewicke et al. Aug 2009 A1
20090221937 Smith et al. Sep 2009 A1
20090222119 Plahey et al. Sep 2009 A1
20090227877 Tran Sep 2009 A1
20090233770 Vincent et al. Sep 2009 A1
20090259113 Liu et al. Oct 2009 A1
20090262074 Nasiri et al. Oct 2009 A1
20090264712 Baldus et al. Oct 2009 A1
20090287067 Dorogusker et al. Nov 2009 A1
20090295541 Roof Dec 2009 A1
20090306485 Bell Dec 2009 A1
20090306487 Crowe et al. Dec 2009 A1
20090306524 Muhlsteff et al. Dec 2009 A1
20090312973 Hatlestad et al. Dec 2009 A1
20090318779 Tran Dec 2009 A1
20090322513 Hwang et al. Dec 2009 A1
20090326349 McGonigle et al. Dec 2009 A1
20100010380 Panken et al. Jan 2010 A1
20100030034 Schulhauser et al. Feb 2010 A1
20100030085 Rojas Ojeda et al. Feb 2010 A1
20100056881 Libbus et al. Mar 2010 A1
20100056886 Hurtubise et al. Mar 2010 A1
20100113948 Yang et al. May 2010 A1
20100125188 Schilling et al. May 2010 A1
20100130811 Leuthardt et al. May 2010 A1
20100160793 Lee et al. Jun 2010 A1
20100160794 Banet et al. Jun 2010 A1
20100160795 Banet et al. Jun 2010 A1
20100160796 Banet et al. Jun 2010 A1
20100160797 Banet et al. Jun 2010 A1
20100160798 Banet et al. Jun 2010 A1
20100168589 Banet et al. Jul 2010 A1
20100210930 Saylor Aug 2010 A1
20100217099 Leboeuf et al. Aug 2010 A1
20100222649 Schoenberg Sep 2010 A1
20100234693 Srinivasan et al. Sep 2010 A1
20100234786 Fulkerson et al. Sep 2010 A1
20100241011 McCombie et al. Sep 2010 A1
20100261988 Tamir Oct 2010 A1
20100280440 Skelton et al. Nov 2010 A1
20100298650 Moon et al. Nov 2010 A1
20100298651 Moon et al. Nov 2010 A1
20100298652 McCombie et al. Nov 2010 A1
20100298653 McCombie et al. Nov 2010 A1
20100298654 McCombie et al. Nov 2010 A1
20100298655 McCombie et al. Nov 2010 A1
20100298656 McCombie et al. Nov 2010 A1
20100298657 McCombie et al. Nov 2010 A1
20100298658 McCombie et al. Nov 2010 A1
20100298659 McCombie et al. Nov 2010 A1
20100298660 McCombie et al. Nov 2010 A1
20100298661 McCombie et al. Nov 2010 A1
20100312115 Dentinger Dec 2010 A1
20100324384 Moon et al. Dec 2010 A1
20100324385 Moon et al. Dec 2010 A1
20100324386 Moon et al. Dec 2010 A1
20100324387 Moon et al. Dec 2010 A1
20100324388 Moon et al. Dec 2010 A1
20100324389 Moon et al. Dec 2010 A1
20100331640 Medina Dec 2010 A1
20110066006 Banet et al. Mar 2011 A1
20110066007 Banet et al. Mar 2011 A1
20110066008 Banet et al. Mar 2011 A1
20110066009 Moon et al. Mar 2011 A1
20110066010 Moon et al. Mar 2011 A1
20110066037 Banet et al. Mar 2011 A1
20110066038 Banet et al. Mar 2011 A1
20110066039 Banet et al. Mar 2011 A1
20110066043 Banet et al. Mar 2011 A1
20110066044 Moon et al. Mar 2011 A1
20110066045 Moon et al. Mar 2011 A1
20110066050 Moon et al. Mar 2011 A1
20110066051 Moon et al. Mar 2011 A1
20110066062 Banet et al. Mar 2011 A1
20110070829 Griffin et al. Mar 2011 A1
20110076942 Taveau et al. Mar 2011 A1
20110093281 Plummer et al. Apr 2011 A1
20110105862 Gies et al. May 2011 A1
20110144456 Muhlsteff et al. Jun 2011 A1
20110152632 Le Neel et al. Jun 2011 A1
20110178375 Forster Jul 2011 A1
20110224498 Banet Sep 2011 A1
20110224499 Banet et al. Sep 2011 A1
20110224500 Banet et al. Sep 2011 A1
20110224506 Moon et al. Sep 2011 A1
20110224507 Banet et al. Sep 2011 A1
20110224508 Moon Sep 2011 A1
20110224556 Moon et al. Sep 2011 A1
20110224557 Banet et al. Sep 2011 A1
20110224564 Moon et al. Sep 2011 A1
20110257489 Banet et al. Oct 2011 A1
20110257551 Banet et al. Oct 2011 A1
20110257552 Banet et al. Oct 2011 A1
20110257554 Banet et al. Oct 2011 A1
20110257555 Banet et al. Oct 2011 A1
20110275907 Inciardi et al. Nov 2011 A1
20120065525 Douniama et al. Mar 2012 A1
20120123232 Najarian et al. May 2012 A1
20120296174 McCombie Nov 2012 A1
20170224281 McCombie Aug 2017 A1
Foreign Referenced Citations (17)
Number Date Country
201564472 Sep 2010 CN
201658363 Dec 2010 CN
0443267 Aug 1991 EP
0993803 Apr 2000 EP
2329250 Mar 1999 GB
9932030 Jul 1999 WO
2006005169 Jan 2006 WO
2007024777 Mar 2007 WO
2007143535 Dec 2007 WO
2008037820 Apr 2008 WO
2008110788 Sep 2008 WO
2009112981 Sep 2009 WO
2010135516 Nov 2010 WO
2010135518 Nov 2010 WO
2010148205 Dec 2010 WO
2011032132 Mar 2011 WO
2011034881 Mar 2011 WO
Non-Patent Literature Citations (77)
Entry
Extended European Search Report issued in EP 19207051 dated Mar. 16, 2020 (5 pages).
Allen et al., Classification of a known sequence of motions and postures from accelerometry data using adapted Gaussian mixture models. Physiol. Meas. 2006;27:935-951.
Alves et al., CAN Protocol: A Laboratory Prototype for Fieldbus Applications_ XIX IMEKO World Congress Fundamental and Applied Metrology Sep. 6-11, 2009, Lisbon, Portugal. 4 pp. 454-457 ISBN 978-963-88410-0-1.
Asada et al., Active Noise Cancellation Using MEMS Accelerometers for Motion-Tolerant Wearable Bio-Sensors. Proceedings of the 26th Annual International Conference of the IEEE EMBS. San Francisco, CA, USA. Sep. 1-5, 2004:2157-2160.
Benefits of Digital Sensors. Gems Sensors. Feb. 14, 2008. Accessed online at: https://www.sensorland.com/HowPage054.html.
Bowers et al., Respiratory Rate Derived from Principal Component Analysis of Single Lead Electrocardiogram. Computers in Cardiology Conference Proceedings Sep. 2008;35:437-440.
Bussmann et al., Measuring daily behavior using ambulatory accelerometry: The Activity Monitor. Behav Res Methods Instrum Comput. Aug. 2001;33(3):349-356.
Chan et al., Noninvasive and Cuffless Measurements of Blood Pressure for Telemedicine. Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2001:3 pages.
Clifford et al., Measuring Tilt with Low-g Accelerometers. Freescale Semiconductor, Inc., 2005:8 pages.
Cretikos et al., The Objective Medical Emergency Team Activation Criteria: a case-control study. Resuscitation Apr. 2007;73(1 ):62-72.
Drinnan et al., Relation between heart rate and pulse transit time during paced respiration. Physiol. Meas. Aug. 2001 ;22(3 ): 425-432.
Espina et al., Wireless Body Sensor Network for Continuous Cuff-less Blood Pressure Monitoring. Proceedings of the 3rd IEEE-EMBS. International Summer School and Symposium on Medical Devices and Biosensors. MIT, Boston, USA, Sep. 4-6, 2006:11-15.
Fieselmann et al., Respiratory rate predicts cardiopulmonary arrest for internal medicine patients. J Gen Intern Med Jul. 1993; 8(7):354-360.
Flash et al., The Coordination of Arm Movements: An Experimentally Confirmed Mathematical Model. J Neurosci. Jul. 1985;5(7): 1688-1703.
Fung, Advisory System for Administration of Phenylephrine Following Spinal Anesthesia for Cesarean Section. Master's Thesis. University of British Columbia 2002: 119 pages.
Gallagher, Comparison of Radial and Femoral Arterial Blood Pressure in Children after Cardiopulmonary Bypass. J Clin Monit. Jul. 1985;1(3):168-171.
Goldhill et al., A physiologically-based early warning score for ward patients: the association between score and outcome. Anaesthesia Jun. 2005;60(6):547-553.
Hung et al., Estimation of Respiratory Waveform Using an Accelerometer. 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, May 14-17, 2008:1493-1496.
Jackson, Digital Filter Design and Synthesis Using High-Level Modeling Tools. Virginia Polytechnic Institute and State University Thesis. Dec. 1999.
Jin, A Respiration Monitoring System Based on a Tri-Axial Accelerometer and an Air-Coupled Microphone. Technische Universiteit Eindhoven, University of Technology. Master's Graduation Paper, Electrical Engineering Aug. 25, 2009.
Karantonis et al., Implementation of a Real-Time Human Movement Classifier Using a Triaxial Accelerometer for Ambulatory Monitoring. IEEE Transactions on Information Technology in Biomedicine. Jan. 2006;10(1):156-167.
Khambete et al., Movement artefact rejection in impedance pneumography using six strategically placed electrodes. Physiol. Meas. 2000;21 :79-88.
Khan et al., Accelerometer Signal-based Human Activity Recognition Using Augmented Autoregressive Model Coefficients and Artificial w Neural Nets. 3oth Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Aug. 20-24, 2008:5172-5175.
Kim et al., Two Algorithms for Detecting Respiratory Rate from ECG Signal. IFMBE Proceedings 2007;14(6) JC27:4069-4071.
Liu et al., The Changes in Pulse Transit Time at Specific Cuff Pressures during Inflation and Deflation. Proceedings of the 28th IEEE EMBS Annual International Conference New York City, USA, Aug. 30-Sep. 3, 2006:6404-6405.
Ma and Zhang, A Correlation Study on the Variabilities in Pulse Transit Time, Blood Pressure, and Heart Rate Recorded Simultaneously from Healthy Subjects. Conf Proc IEEE Eng Med Biol Soc. 2005;1 :996-999.
Mason, Signal Processing Methods for Non-Invasive Respiration Monitoring. Department of Engineering Science, University of Oxford 2002.
Mathie et al., Classification of basic daily movements using a triaxial accelerometer. Med Biol Eng Comput. Sep. 2004;42(5):679-687.
Mathie, Monitoring and Interpreting Human Movement Patterns using a Triaxial Accelerometer. Faculty of Engineenng. The University of New South Wales. PhD Dissertation. Aug. 2003: part1 pp. 1-256.
Mathie, Monitoring and Interpreting Human Movement Patterns using a Triaxial Accelerometer. Faculty of Engineenng. The University of New South Wales. PhD Dissertation. Aug. 2003: part2 pp. 256-512.
McKneely et al., Plug-and-Play and Network-Capable Medical Instrumentation and Database with a Complete Healthcare Technology Suite: MediCAN. Joint Workshop on High Confidence Medical Devices, Software, and Systems and Medical Device Plug-and-Play Interoperability. 2007:122-129.
Montgomery et al., Lifeguard—A Personal Physiological Monitor for Extreme Environments. Conf Proc IEEE Eng Med Biol Soc. 2004;3:2192-2195.
Nitzan et al., Effects of External Pressure on Arteries Distal to the Cuff During Sphygmomanometry. IEEE Transactions on Biomedical Engineering, Jun. 2005;52{6):1120-1127.
O'Haver, Peak Finding and Measurement, Version 1.6 Oct. 26, 2006. Accessed online at: https://terpconnect.umd.edu/˜toh/spectrum/PeakFindingandMeasurement.htm.
Otto et al., System Architecture of a Wireless Body Area Sensor Network for Ubiquitous Health Monitoring. Journal of Mobile Multimedia Jan. 10, 2006;1 (4):307-326.
Packet Definition. The Linux Information Project Jan. 8, 2006 http://www.linfo.org/packethtml.
Park et al., An improved algorithm for respiration signal extraction from electrocardiogram measured by conductive textile electrodes using instantaneous frequency estimation. Med Bio Eng Comput 2008;46:147-158.
Park et al., Direct Blood Pressure Measurements in Brachia! and Femoral Arteries in Children. Circulation Feb. 1970; 41 (2):231-237.
PDF-Pro for iPhone & iPod touch User Manual. ePapyrus Jul. 2009;1 :1-25 http://epapyrus.com/en/files/PDFPro%.
Poon and Zhang, Cuff-Less and Noninvasive Measurements of Arterial Blood Pressure by Pulse Transit Time. Conf Proc IEEE Eng Med Biol Soc. 2005;6:5877-5880.
Reinvuo et al., Measurement of Respiratory Rate with High-Resolution Accelerometer and EMFit Pressure Sensor. Proceedings of the 2006 IEEE Sensors Applications Symposium Feb. 7-9, 2006:192-195.
RS-232. Wikipedia Dec. 5, 2008 accessed online at: https://en.wikipedia.org/wiki/RS-232.
Scanaill et al., A Review of Approaches to Mobility Telemonitoring of the Elderly in Their Living Environment. Annals of Biomed Engineer. Apr. 2006;34(4):547-563.
Seo et al., Performance Improvement of Pulse Oximetry-Based Respiration Detection by Selective Mode Bandpass Filtering. Ergonomics and Health Aspects of Work with Computers Lecture Notes in Computer Science, 2007;4566:300-308.
Sifil et al., Evaluation of the Harmonized Alert Sensing Technology Device for Hemodynamic Monitoring in Chronic Hemodialysis Patients. ASAIO J. Nov.-Dec. 2003;49(6):667-672.
Signal Strength. Oct. 6, 2008. accessed online at: https://en.wikipedia.org/wiki/ Signal_ strength.
Soh et al., An investigation of respiration while wearing back belts. Applied Ergonomics 1997; 28(3):189-192.
Subbe et al., Effect of introducing the Modified Early Warning score on clinical outcomes, cardiopulmonary arrests and intensive care utilization in acute medical admissions. Anaesthesia Aug. 2003;58(8):797-802.
Talkowski, Quantifying Physical Activity in Community Dwelling Older Adults Using Accelerometry. University of Pittsburgh (Dissertation) 2008: 1-91.
Thongpithoonrat et al., Networking and Plug-and-Play of Bedside Medical Instruments. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:1514-1517.
USB 2.0 Specification Engineering Change Notice. Oct. 20, 2000.
Vuorela et al., Two portable long-term measurement devices for ECG and bioimpedance. Second International Conference on Pervasive Computing Technologies for Healthcare. Jan. 30-Feb. 1, 2008: 169-172.
Weinhold et al., Buprenorphine alone and in combination with naloxone in non-dependent humans. Drug Alcohol Depend. Aug. 1992 ;30(3 ):263-274.
Wolf et al., Development of a Fall Detector and Classifier based on a Triaxial Accelerometer Demo Board. 2007:210-213.
Yan and Zhang, A Novel Calibration Method for Noninvasive Blood Pressure Measurement Using Pulse Transit Time. Proceedings of the 4th IEEE-EMBS International Summer School and Symposium on Medical Devices and Biosensors St Catharine's College, Cambridge, UK, Aug. 19-22, 2007.
Yang et al., Research on Multi-Parameter Physiological Monitor Based on CAN Bus. IFMBE Proceed. 2008; 19:417-419.
Zeltwanger, Controller Area Network and CANopen in Medical Equipment. Bus Briefing: Med Dev Manuf Technol. 2002:34-37.
Zislin et al., Ways of Improving the Accuracy of Arterial Pressure Oscillometry. Biomedical Engineering 2005;39(4):174-178.
Zitzmann and Schumann, Interoperable Medical Devices Due to Standardized CANopen Interfaces. Joint Workshop on High Confidence Medical Devices, Software, and Systems and Medical Device Plug-and-Play Interoperability. 2007:97-103.
Extended European Search Report and Written Opinion issued in application No. EP 10817733 dated Aug. 29, 2013.
Extended European Search Report and Written Opinion issued in application No. EP 08770884 dated Sep. 17, 2013.
International Preliminary Report on Patentability issued in PCT/US2010/039000 dated Jan. 5, 2012.
International Preliminary Report on Patentability issued in PCT/US2010/035554 dated Dec. 1, 2011.
International Search Report and Written Opinion issued in PCT/US2010/062564 dated Mar. 3, 2011.
International Search Report and Written Opinion issued in PCT/US2011/067441 dated Apr. 27, 2012.
International Search Report and Written Opinion issued in PCT/US2012/025648 dated May 29, 2012.
International Search Report and Written Opinion issued in PCT/US2012/025640 dated Jun. 29, 2012.
International Search Report and Written Opinion issued in PCT/US2011/027843 dated Jul. 22, 2011.
International Search Report and Written Opinion issued in PCT/US2011/033100 dated Jul. 20, 2011.
International Search Report and Written Opinion issued in PCT/US2010/035554 dated Sep. 23, 2010.
International Search Report and Written Opinion issued in PCT/US2010/039000 dated Sep. 7, 2010.
International Search Report and Written Opinion issued in PCT/US2010/035550 dated Oct. 15, 2010.
International Search Report and Written Opinion issued in PCT/US2010/048729 dated Nov. 3, 2010.
International Search Report and Written Opinion issued in PCT/US2010/048866 dated Nov. 5, 2010.
International Search Report and Written Opinion issued in PCT/US2012/064302 dated Jan. 15, 2013.
Office Action issued by SIPO in PRC Patent Application No. 2012800118426 dated Dec. 2, 2014—includes Engl lang translation.
Office Action issued by SIPO in PRC Patent Application No. 2012800118426 dated Sep. 16, 2015—includes Engl lang translation.
Related Publications (1)
Number Date Country
20190216396 A1 Jul 2019 US
Provisional Applications (1)
Number Date Country
61444285 Feb 2011 US
Continuations (2)
Number Date Country
Parent 15263277 Sep 2016 US
Child 16364147 US
Parent 13399616 Feb 2012 US
Child 15263277 US