The present application is related generally to x-ray sources.
A common x-ray tube and power supply configuration is for both to be integrally joined with continuous, electrically insulative, potting material surrounding the x-ray tube and the power supply. The x-ray tube and the power supply can be surrounded by a case, typically at ground voltage. The electrically insulative material can insulate high voltage components of the x-ray tube and the power supply from the case. A reason for integrally joining the x-ray tube and the power supply in this manner is that a large voltage differential of several kilovolts can exist between high voltage components (e.g. cathode, wires connecting the cathode to the power supply, and some power supply components) and the case, and it is difficult to have a removable connection between the x-ray tube and the power supply without failure caused by arcing.
A problem of an integrally joined x-ray tube and power supply is that if one of these two devices fails, both must normally be scrapped. It would be beneficial to have a removable connection between the x-ray tube and the power supply so that the two may be connected and disconnected at will, allowing replacement of one of these devices upon failure while saving the other device—if this could be done with minimal risk of failure by arcing.
It would also be beneficial to allow easy removal and replacement of the x-ray tube. If the x-ray tube is removable, and there are multiple, different x-ray tubes matched to specific power supplies, it would be beneficial to have a mechanism for ensuring that the user correctly matches the x-ray tube to the power supply. Other important features of x-ray supplies include providing x-ray shielding to users and heat transfer of heat generated at the x-ray tube anode or electronic components in order to avoid heat-stress failure.
For example of efforts to solve these or related problems, see U.S. Pat. No. 5,949,849 and U.S. Pat. No. 7,660,097; U.S. Patent Publication Number 2013/0163725; Korean Patent Number KR 10 1163513; and International Patent Publication Number WO2008/048019.
It has been recognized that it would be advantageous to have an x-ray tube that is easily removable and replaceable with an associated power supply, with reduced risk of failure caused by arcing. It has also been recognized that it would be advantageous to correctly match the x-ray tube to the power supply, to provide x-rays shielding to users, and to provide good heat transfer away from electronics and the anode, in order to avoid heat-stress failure of these components. The present invention is directed to various embodiments of x-ray sources that satisfy these needs. Each embodiment may satisfy one, some, or all of these needs.
The x-ray source comprises an x-ray tube and a power supply carried by an electrically-conductive case. An exterior of the case can include a socket. An electrically-conductive cap can attach to an anode of the x-ray tube and can carry the x-ray tube. The cap can be removably received at the socket of the case, forming an electrically and thermally conductive path between the cap and the case and between an anode of the x-ray tube and the cap.
As illustrated in
The power supply 19 can be totally, substantially, or at least partially disposed in the electrically-conductive case 11. As shown in
Factors such as x-ray tube size, type of x-ray tube electrical connections to the power supply 19, effectiveness of x-ray shielding by the cap 14, desired x-ray source appearance, space available for the x-ray source, and desired protrusion of the cap 14 from the case 11 may be considered in determining how much, if any, of the x-ray tube 6 is disposed in the case 11. Extended cap 14 protrusion from the case 11 can allow easy removal of the x-ray tube 6 and cap 14.
The x-ray tube 6 can include an electrically-insulative enclosure 16 with a cathode 17 and an anode 15 attached to the enclosure 16. The enclosure 16 can be evacuated. The cathode 17 and the anode 15 can be disposed at opposite ends of the enclosure 16. The enclosure 16 can be or can comprise a ceramic material. An electron emitter 18 can be disposed in the enclosure 16 and can be associated with the cathode 17. The electron emitter 18 can be a filament. The electron emitter 18 can be attached to the cathode 17 and can have substantially the same bias voltage as the cathode 17. A target material 5 can be associated with the anode 15 and can be configured to emit x-rays 8 in response to impinging electrons 7 from the electron emitter 18. The target material 5 can be a thin film of a material, such as for example a thin film of silver, gold, or rhodium, and can be disposed on the anode 15.
The electrically-conductive case 11 can include a socket 13 in an exterior or wall thereof. An electrically-conductive cap 14 can carry the x-ray tube 6. The cap 14 can be removably received at or in the socket 13 of the case 11 forming an electrically and thermally conductive path between the cap 14 and the case 11 and between the anode 15 and the cap 14.
The case 11 and the cap 14 carrying the x-ray tube 6 can define a coupling 4 where the cap 14 and the case 11 mate to couple the x-ray tube 6 to the power supply 19. A cap coupling 4c can mate with a case coupling/socket coupling 4s in order to removably attach the cap 14 and x-ray tube 6 to the case 11. The coupling 4 can allow easy attachment and removal of the x-ray tube 6 from the power supply 19. Thus, if one of these components (x-ray tube 6 or power supply 19) fails, the defective component can be replaced without loss of the other, still-functioning component (power supply 19 or x-ray tube 6).
The socket 13 of the case 11 can mate with the cap 14 to form the coupling 4. For example, as shown in
A threaded coupling has an advantage of a potentially large area of contact between the cap 14 and the case 11, thus allowing for a firm connection between x-ray tube 6 and case 11 to hold the x-ray tube 6 firmly in position. A threaded coupling, with a potentially large area of contact between the cap 14 and the case 11, also can have advantages of improved heat transfer from the cap 14 to the case 11, and improved electrical transfer from the cap 14 to the case 11. A good connection for heat and electrical transfer can be important because corrosion or poor fit, which can develop after several connections and removals, can cause an undesirable voltage or temperature differential between the cap 14 and the case 11. Also, the anode can heat up due to a large flux of impinging electrons 7. This heat, if not removed, can cause damage to the x-ray window 9. Other coupling 4 types can have other advantages, such as quicker and easier insertion and removal.
The coupling 4 can be configured to ensure a proper match of x-ray tube 6 to power supply 19. For example, the coupling 4 can have a first configuration when the x-ray tube 6 and power supply 19 are configured for a first bias voltage or a different second configuration when the x-ray tube 6 and power supply 19 are configured for a second bias voltage. The cap 14 and the case 11 in the first configuration will not mate with the case 11 and the cap 14, respectively, of the coupling 4 in the different second configuration. This can prevent incorrect coupling of x-ray tube 6 to power supply 19. There may be more than two configurations. For example, there can be one coupling type for matching a 10 kV x-ray tube to a 10 kV power supply, a different coupling type for matching a 15 kV x-ray tube to a 15 kV power supply, and another coupling type for matching a 25 kV x-ray tube to a 25 kV power supply. The different couplings can be different threads, such as for example standard and reverse threads, or different pitches of threads. Matching indicia on an exterior of the case 11 and an exterior of the cap 14 can also be used to match the x-ray tube 6 to the power supply 19.
Cathode electrical connections 3 can electrically couple the electron emitter 18 of the x-ray tube 6 to the power supply 19. The x-ray tube 6, the cathode electrical connections 3, or the x-ray tube 6 and the cathode electrical connections 3 together, can extend through the socket 13. The x-ray tube 6 can extend into the socket 13, as shown in
The cap 14 can be elongated and annular and can have a hollow center 24 (see
A portion of the x-ray tube 6 can extend through the hollow 24 of the cap 14 towards the inner end opening 27 (see
As shown on x-ray source 90 in
As shown in
The x-ray tube 6 can be oriented to direct x-rays 8 through or outward from the outer end opening 25. For example, as shown in
Alternatively, as shown in
As shown in
As shown in the figures, the x-ray tube 6 and the cap 14 can extend beyond a face 11f of the case 11 to allow easy removal of the cap 14 and x-ray tube 6. This can allow a user to easily replace the x-ray tube 6 or power supply 19 in case of failure of one of these components. The cap 14 can extend beyond an outer face 11f of the case 11 for a sufficient distance D2 to allow removal of the cap 14 by grasping the cap 14 and turning by hand without tools. The cap 14 can extend beyond an outer face 11f of the case 11 for a distance D2 of at least 3 millimeters in one aspect, for a distance D2 of at least 4 millimeters in another aspect, for a distance D2 of at least 6 millimeters in another aspect, or for a distance D2 of at least 9 millimeters in another aspect.
All or part of the case 11 can be made of sheet metal (e.g. about 1 mm thickness). It can be beneficial for a region of the case 11 in which the socket 13 is disposed to be thicker than other parts of the case. This thicker region can be called a face plate 11p.
A first benefit of a relatively thicker face plate 11p is to allow space for coupling 4 the cap 14 to the face plate 11p. This can especially be important if the coupling 4 is a threaded coupling with the cap threading into the socket 13 of the face plate 11p. A second benefit of a relatively thicker face plate 11p is to provide a strong support for attachment of the cap 14 and x-ray tube 6. A third benefit of a thicker face plate 11p is increased heat capacity. This increased heat capacity can allow for improved heat transfer from the anode 15 through the cap 14 to the face plate 11p, thus reducing anode 15 temperature and reducing the risk of damage to the x-ray window 9. A fourth benefit of a relatively thicker face plate 11p is that a thicker face plate 11p can allow space for drilling mounting holes 3 into or through the face plate 11p. These mounting holes 3 can be used to mount the x-ray source to a mount or support, such as a support bracket or wall. The mounting holes 3 can include female threads for attachment to the mount. Disadvantages of a thicker face plate 11p can include increased material cost and increased x-ray source weight. The advantages of a thicker face plate 11p can be weighed against the disadvantages in each specific x-ray source design.
A thickness of the face plate 11p can be the same as a depth and the socket. The socket 13 can have a depth D1 of at least 4 millimeters in one aspect, a depth D1 of at least 8 millimeters in another aspect, a depth D1 of at least 10 millimeters in another aspect, or a depth D1 of at least 15 millimeters in another aspect.
Another portion of the case 11, called a housing 11h, can include at least four contiguous side walls. The housing 11h can substantially circumscribe the power supply 19 with at least four contiguous side walls. The contiguous side walls of the housing 11h can also circumscribe at least a portion of the x-ray tube 6.
The face plate 11p can be disposed at an open end of the contiguous side walls of the housing 11h. The face plate 11p and the housing 11h can be made from a single piece of metal, such as by machining, but this can be expensive. Thus, for saving manufacturing cost, the housing 11h can be sheet metal (e.g. about 1 mm thickness) folded into the correct shape. The face plate 11p can be manufactured separately (e.g. cut to shape from a thicker piece of metal) from the housing 11h then attached to the side walls of the housing 11h. The term “attached to” as used herein in reference to the face plate 11p and housing 11h means that the face plate 11p is manufactured separately (e.g. the face plate is cut to shape and the housing bent to shape) then attached to the housing 11h, such as by welding, fasteners, or an adhesive for example.
The first annular gap G1, between the cap 14 and the x-ray tube 6, can be filled with air in one aspect. Alternatively, as shown in
As shown in
A second annular gap G2 can exist between the x-ray tube and the case 11. As shown in
An annular, electrically-insulative, solid plug 31b can be disposed in, can extend into, or can extend through the second annular gap G2. The plug 31b in the second annular gap G2 can electrically insulate a portion of the x-ray tube 6 from the case 11 at the inner region Si, can electrically insulate a portion of the x-ray tube 6 from the case 11 in the socket 13, and/or can be an extension of the plug 31a in the first annular gap G1 and thus can be made of the same electrically-insulative material 31 as the plug 31a in the first annular gap G1. The plugs 31a and 31b can be attached or sealed to the case 11 and can remain with case 11 when the cap 14 and x-ray tube 6 are removed from the case 11.
The electrically-insulative material 31 can extend around and can provide electrical insulation 31c between all or a portion (at least a portion) of the power supply 19 and the case 11. The electrically-insulative material 31 can be attached or sealed to the case 11, can be attached or sealed to the power supply 19, and/or can remain with case 11 when the cap 14 and x-ray tube 6 are removed from the case 11.
The electrically-insulative material 31 can be used to transfer heat away from the x-ray tube 6 and/or electronic components in the power supply 19. This improved heat transfer can reduce stress and instability of electronic components. Thus, the electrically-insulative material 31 can have a relatively high thermal conductivity. For example, the electrically-insulative material 31 can have a thermal conductivity of greater than
in one aspect, a thermal conductivity of greater than
in another aspect, a thermal conductivity of greater than
in another aspect, or a thermal conductivity of between than
in another aspect.
A very high level of electrical insulation between the x-ray tube 6 and the cap 14 can be achieved by having a third annular gap G3 which is free of solid material (typically air-filled) between the plug 31a and the x-ray tube 6. As shown in
The ribs 32 and the third annular gap G3 can be disposed between the x-ray tube 6 and the plug 31a in the first annular gap G1 region. The ribs 32 and the third annular gap G3 can also or alternatively be disposed between the x-ray tube 6 and the plug 31b in the second annular gap G2 region. The ribs 32 and the third annular gap G3 can also or alternatively be disposed between the x-ray tube 6 and the plug 31c in the region inside the case 11 (not in the socket 13).
As part of the first step 1, the power supply 19 can be installed in or attached to the case 11. Electrically insulative potting material 31 can then be poured into the area surrounding the power supply 19 within the case 11 and/or desired areas of the socket 13, then cured to harden. A spacer plug can be used as a temporary filler to save room for later insertion of the cap 14 and x-ray tube 6. A non-stick spray on the spacer plug may be used to allow separation of the spacer plug from the cured potting.
Also as part of the first step 1, the x-ray tube 6 can be connected to the cap 14, which can be done by various means. For example, the x-ray tube 6 can be connected to the cap 14 by a set screw, which can allow reuse of the cap 14 if the x-ray tube 6 fails. The x-ray tube 6 can be connected to the cap 14 by an adhesive, such as for example an adhesive comprising silver suspended in a resin. An adhesive can provide a very sturdy attachment which can limit x-ray tube 6 movement or vibration with respect to the cap 14.
Included in step 2 is coupling 4 the cap 14 to the case 11, which was described previously, and removably attaching the x-ray tube 6 to the power supply 19. One option for removably attaching the x-ray tube 6 to the power supply 19 is shown on x-ray source 130 in
The cathode electrical connections 3 can also include a first power supply connection 3i and a second power supply connection 3o. The inner tube 134i can make electrical connection to the first power supply connection 3i by various means, such as by a leaf spring 135. The outer tube 134o can make electrical connection to the second power supply connection 3o by various means, including a helical spring 132. The helical spring 132 can be substantially or totally enclosed within an electrically-conductive cup 133 that is capped off with the cathode 17. The cup 133 can act as a corona guard to shield sharp edges of the helical spring 132, the leaf spring 135, and/or the dual-concentric emitter tubes 134. The corona-guard cup 133 can help to prevent arcing between these components and surrounding or near-by components. An electrical connection for the leaf spring 135 (or other electrical connection for the inner tube 134i) can enter the cup 133 through an electrically insulative region 136 of the cup 133 or by an electrically insulated wire 3i.
The power supply 19 can provide a third electrical connection 138 to the anode 15. This third electrical connection 138 can be made from the power supply 19 to the case 11, then from the case 11 to and through the cap 14 to the anode 15. This third electrical connection 138 can be ground electrical potential 137. Thus, the cap 14, the anode 15, and the case 11 can be, or can be configured to be, maintained at ground voltage 137.
The power supply 19 can provide a voltage (typically a few volts) across the first and second cathode electrical connections 3i and 3o to cause an electrical current to flow through and to heat the electron emitter 18. The power supply 19 can provide a large bias voltage, such as several kilovolts, between the cathode electrical connections 3 and the third electrical connection 138 to the anode 15. The cathode electrical connections 3 can have a bias voltage of negative tens of kilovolts. The heat of the electron emitter 18 and the large bias voltage between the electron emitter 18 and the anode 15 can cause electrons 7 to be propelled from the electron emitter 18 towards the anode 15. Impinging electrons 7 on the target material 5 of the anode 15 can cause x-rays 8 to emit from the x-ray source.
This claims priority to U.S. Provisional Patent Application No. 61/888,407, filed on Oct. 8, 2013, which is hereby incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61888407 | Oct 2013 | US |