Embodiments of the invention relate to compositions and methods for modulating innate and adaptive immunity in a subject and/or for the treatment of an immune-related disorder, cancer, autoimmunity, treating and preventing infections.
Cellular host defense responses to pathogen invasion principally involves the detection of pathogen associated molecular patterns (PAMPs) such as viral nucleic acid or bacterial cell wall components including lipopolysaccharide or flagellar proteins that results in the induction of anti-pathogen genes. For example, viral RNA can be detected by membrane bound Toll-like receptors (TLR's) present in the endoplasmic reticulum (ER) and/or endosomes (e.g. TLR 3 and 7/8) or by TLR-independent intracellular DExD/H box RNA helicases referred to as retinoic acid inducible gene 1 (RIG-I) or melanoma differentiation associated antigen 5 (MDA5, also referred to as IFIH1 and helicard). These events culminate in the activation of downstream signaling events, much of which remains unknown, leading to the transcription of NF-κB and IRF3/7-dependent genes, including type I IFN.
STING (Stimulator of Interferon Genes), a molecule that plays a key role in the innate immune response, includes 5 putative transmembrane (TM) regions, predominantly resides in the endoplasmic reticulum (ER), and is able to activate both NF-κB and IRF3 transcription pathways to induce type I IFN and to exert a potent anti-viral state following expression. See U.S. patent application Ser. No. 13/057,662 and PCT/US2009/052767. Loss of STING reduced the ability of polyIC to activate type I IFN and rendered murine embryonic fibroblasts lacking STING (−/− MEFs) generated by targeted homologous recombination, susceptible to vesicular stomatitis virus (VSV) infection. In the absence of STING, DNA-mediated type I IFN responses were inhibited, indicating that STING may play an important role in recognizing DNA from viruses, bacteria, and other pathogens which can infect cells. Yeast-two hybrid and co-immunoprecipitation studies indicated that STING interacts with RIG-I and with Ssr2/TRAPβ, a member of the translocon-associated protein (TRAP) complex required for protein translocation across the ER membrane following translation. RNAi ablation of TRAPβ inhibited STING function and impeded the production of type I IFN in response to polyIC.
Further experiments showed that STING itself binds nucleic acids including single- and double-stranded DNA such as from pathogens and apoptotic DNA, and plays a central role in regulating proinflammatory gene expression in inflammatory conditions such as DNA-mediated arthritis and cancer. Various new methods of, and compositions for, upregulating STING expression or function are described herein along with further characterization of other cellular molecule which interact with STING. These discoveries allow for the design of new adjuvants, vaccines and therapies to regulate the immune system and other systems.
Described herein are methods for modulating an immune response in a subject having a disease or disorder associated with aberrant STING function. These methods can include the step of administering to the subject an amount of a pharmaceutical composition including an agent which modulates STING function and a pharmaceutically acceptable carrier, wherein amount the pharmaceutical composition is effective to ameliorate the aberrant STING function in the subject. The agent can be a small molecule that increases or decreases STING function, or a nucleic acid molecule that binds to STING under intracellular conditions. The STING-binding nucleic acid molecule can be a single-stranded DNA between 40 and 150 base pairs in length or a double-stranded DNA between 40 and 150, 60 and 120, 80 and 100, or 85 and 95 base pairs in length or longer. The STING-binding nucleic acid molecule can be nuclease-resistant, e.g., made up of nuclease-resistant nucleotides. It can also be associated with a molecule that facilitates transmembrane transport. In these methods, the disease or disorder can be a DNA-dependent inflammatory disease.
Also described herein are methods of treating cancer in a subject having a cancerous tumor infiltrated with inflammatory immune cells. These methods can include the step of administering to the subject an amount of a pharmaceutical composition including an agent which downregulates STING function or expression and a pharmaceutically acceptable carrier, wherein amount the pharmaceutical composition is effective to reduce the number of inflammatory immune cells infiltrating the cancerous tumor by at least 50% (e.g., at least 50, 60, 70, 80, or 90%, or until reduction of inflammatory cell infilitration is detectably reduced by histology or scanning).
Described herein are methods and compositions for modulating an immune response in a subject having a disease or disorder associated with aberrant STING function. The below described preferred embodiments illustrate adaptation of these compositions and methods. Nonetheless, from the description of these embodiments, other aspects of the invention can be made and/or practiced based on the description provided below.
Methods and compositions for modulating an immune response in a subject (e.g., a human being, dog, cat, horse, cow, goat, pig, etc.) having a disease or disorder associated with aberrant STING function involve a pharmaceutical composition including an agent which modulates STING function and a pharmaceutically acceptable carrier, wherein amount the pharmaceutical composition is effective to ameliorate the aberrant STING function in the subject.
Diseases or disorders associated with aberrant STING function can be any where cells having defective STING function or expression cause or exacerbate the physical symptoms of the disease or disorder. Commonly, such diseases or disorders are mediated by immune system cells, e.g., an inflammatory condition, an autoimmune condition, cancer (e.g., breast, colorectal, prostate, ovarian, leukemia, lung, endometrial, or liver cancer), atherosclerosis, arthritis (e.g., osteoarthritis or rheumatoid arthritis), an inflammatory bowel disease (e.g., ulcerative colitis or Crohn's disease), a peripheral vascular disease, a cerebral vascular accident (stroke), one where chronic inflammation is present, one characterized by lesions having inflammatory cell infiltration, one where amyloid plaques are present in the brain (e.g., Alzheimer's disease), Aicardi-Goutieres syndrome, juvenile arthritis, osteoporosis, amyotrophic lateral sclerosis, or multiple sclerosis.
The agent can be a small molecule (i.e., an organic or inorganic molecule having a molecular weight less than 500, 1000, or 2000 daltons) that increases or decreases STING function or expression or a nucleic acid molecule that binds to STING under intracellular conditions (i.e., under conditions inside a cell where STING is normally located). The agent can also be a STING-binding nucleic acid molecule which can be a single-stranded (ss) or double-stranded (ds) RNA or DNA. Preferably the nucleic acid is between 40 and 150, 60 and 120, 80 and 100, or 85 and 95 base pairs in length or longer. The STING-binding nucleic acid molecule can be nuclease-resistant, e.g., made up of nuclease-resistant nucleotides or in cyclic dinucleotide form. It can also be associated with a molecule that facilitates transmembrane transport.
Methods and compositions for treating cancer in a subject having a cancerous tumor infiltrated with inflammatory immune cells involve a pharmaceutical composition including an agent which downregulates STING function or expression and a pharmaceutically acceptable carrier, wherein amount the pharmaceutical composition is effective to reduce the number of inflammatory immune cells infiltrating the cancerous tumor by at least 50% (e.g., at least 50, 60, 70, 80, or 90%, or until reduction of inflammatory cell infiltration is detectably reduced by histology or scanning).
The compositions described herein might be included along with one or more pharmaceutically acceptable carriers or excipients to make pharmaceutical compositions which can be administered by a variety of routes including oral, rectal, vaginal, topical, transdermal, subcutaneous, intravenous, intramuscular, insufflation, intrathecal, and intranasal administration. Suitable formulations for use in the present invention are found in Remington's Pharmaceutical Sciences, Mack Publishing Company, Philadelphia, Pa., 17th ed. (1985).
The active ingredient(s) can be mixed with an excipient, diluted by an excipient, and/or enclosed within a carrier which can be in the form of a capsule, sachet, paper or other container. When the excipient serves as a diluent, it can be a solid, semi-solid, or liquid material, which acts as a vehicle, carrier or medium for the active ingredient. The compositions can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), ointments, soft and hard gelatin capsules, suppositories, sterile injectable solutions, sterile liquids for intranasal administration (e.g., a spraying device), or sterile packaged powders. The formulations can additionally include: lubricating agents such as talc, magnesium stearate, and mineral oil; wetting agents; emulsifying and suspending agents; preserving agents such as methyl- and propylhydroxy-benzoates; sweetening agents; and flavoring agents. The compositions of the invention can be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the patient by employing procedures known in the art.
For preparing solid formulations such as tablets, the composition can be mixed with a pharmaceutical excipient to form a solid preformulation composition containing a homogeneous mixture of a compound. Tablets or pills may be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action. For example, the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former. The two components can be separated by an enteric layer which serves to resist disintegration in the stomach and permit the inner component to pass intact into the duodenum or to be delayed in release. A variety of materials can be used for such enteric layers or coatings, such materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol, and cellulose acetate.
Liquid forms of the formulations include suspensions and emulsions. To enhance serum half-life, the formulations may be encapsulated, introduced into the lumen of liposomes, prepared as a colloid, or incorporated in the layers of liposomes. A variety of methods are available for preparing liposomes, as described in, e.g., Szoka, et al., U.S. Pat. Nos. 4,235,871, 4,501,728 and 4,837,028 each of which is incorporated herein by reference.
The compositions are preferably formulated in a unit dosage form of the active ingredient(s). The amount administered to the patient will vary depending upon what is being administered, the purpose of the administration, such as prophylaxis or therapy, the state of the patient, the manner of administration, and the like all of which are within the skill of qualified physicians and pharmacists. In therapeutic applications, compositions are administered to a patient already suffering from a disease in an amount sufficient to cure or at least partially arrest the symptoms of the disease and its complications. Amounts effective for this use will depend on the disease condition being treated as well as by the judgment of the attending clinician depending upon factors such as the severity of the symptoms, the age, weight and general condition of the patient, and the like.
All documents mentioned herein are incorporated herein by reference. All publications and patent documents cited in this application are incorporated by reference for all purposes to the same extent as if each individual publication or patent document were so individually denoted. By their citation of various references in this document, Applicants do not admit any particular reference is “prior art” to their invention. Embodiments of inventive compositions and methods are illustrated in the following examples.
Previously the isolation of a new transmembrane component of the endoplasmic reticulum (ER), referred to as STING (Stimulator of Interferon Genes), which was demonstrated as essential for the production of type I IFN in fibroblasts, macrophages and dendritic cells (DC's) in response to cytoplasmic dsDNA as well as DNA viruses and intracellular bacteria was described (see U.S. patent application Ser. No. 13/057,662 and PCT/US2009/052767). The minimum size of dsDNA required to activate STING-dependent type I IFN signaling in murine cells was noted to be approximately 45 base pairs in murine cells. In normal human cells (hTERT), however, it was observed that dsDNA of approximately 90 base pairs (referred to herein as interferon stimulatory dsDNA90) were required to fully activate type I IFN. Using RNAi knockdown procedures, it was additionally confirmed that STING is indeed essential for the production of type I IFN in hTERTs (
To further evaluate the possibility that STING itself could associate with DNA species, 293T cells were transfected with STING and after cell lysis observed that the C-terminal region of STING (aa 181-349) could be precipitated using biotin-labeled dsDNA90 (
TREX1, a 3′->5′ DNA exonuclease is also an ER associated molecule, and important for degrading checkpoint activated ssDNA species that could otherwise activate the immune system. RNAi used to silence TREX1 in hTERT cells significantly increased STING-dependent, production of type I IFN by dsDNA90 (
The data herein demonstrated that STING resides in the ER as part of the translocon complex, associating with translocon associated protein β (TRAPβ). The translocon complex includes Sec61 α ρ and γ coupled with TRAP α ρ, γ and δ, which can attach to ribosomes. Secretory and membrane proteins are translocated into the ER for proper folding and glycosylation prior to being exported. To identify TREX1 binding partners full length TREX1 was used as bait in a two hybrid yeast screen. The results indicated that TREX1 recurrently interacted with a protein referred to as Ribophorin I (RPN1), a 68 kDa type I transmembrane protein and member of the oligosaccharyltransferase (OST) complex (
The data evidences that STING can complex with cytoplasmic intracellular ssDNA and dsDNA, which can include plasmid-based DNA and gene therapy vectors, can regulate the induction of a wide array of innate immune genes such as type I IFN, the IFIT family, and a variety of chemokines important for antiviral activity and for initiating adaptive immune responses. STING activation facilitates the escort of TBK1 to clathrin covered endosomal compartments plausibly to activate IRF3/7 by mechanisms that remain to be fully clarified. TREX1 appears present in low levels in the cell and is itself inducible by STING. After translation, TREX1 localizes to the OST complex in close proximity to unactivated STING (which also resides in the OST/translocon complex) where presumably it degrades DNA species that can otherwise provoke STING action. Components of the translocon/OST complex, which now involve STING and TREX1, regulate cytoplasmic ssDNA and dsDNA-mediated innate immune signaling. Since loss of TREX1 manifests autoimmune disorders through elevated type I IFN production, it is possible that these diseases are induced through STING activity.
Drug libraries were screened to identify agents that modulate STING expression, function, activity, etc.
The libraries included, BioMol ICCB known Bioactives Library, 500 targets; LOPAC1280™ Library of Pharmacologically-Active Compounds; Enzo Life Sciences, Screen-Well™ Phosphatase Inhibitor Library, 33 known phosphatase inhibitors;
MicroSource Spectrum Collection 2000 components, 50% drug components, 30% natural products, 20% other bioactive components; EMD: InhibitorSelect™ 96-Well Protein Kinase Inhibitor Library I, InhibitorSelect™ 96-Well Protein Kinase Inhibitor Library II, InhibitorSelect™ 96-Well Protein Kinase Inhibitor Library IIIa; Kinase Library B Kinase TrueClone collection; Kinase Deficient TrueClone collection.
The results showed that one drug (termed ‘Drug A”) induced STING trafficking (
Table 2: The following were identified as STING inhibitors:
Cinchona family of South
Activators of STING included dihydroouabain and BNTX maleate salt hydrate.
Bone marrow derived macrophages (BMDM) were obtained from Sting+/+ and Sting−/− mice and transfected them with 90 base pair dsDNA (dsDNA90) to activate the STING pathway, or with apoptotic DNA (aDNA) derived from dexamethasone (Dex)-treated thymocytes. It was observed that both types of DNA potently induced the production of IFNβ in BMDM and conventional dendritic cells (BMDC's) in a STING dependent manner. DNA microarray experiments confirmed that aDNA triggered STING-dependent production of a wide array of innate immune and inflammatory related cytokines in BMDM such as IFNβ as well as TNFα (Table 3). These data were confirmed by measuring cytokine production in Sting+/+ or Sting−/− BMDM treated with aDNA. Thus, STING can facilitate apoptotic DNA-mediated pro-inflammatory gene production in BMDM's as well as BMDC's.
Table 3 shows the gene expression of higher expressed genes in BMDM treated with apoptic DNA (aDNA).
2
indicates data missing or illegible when filed
To determine if STING played a role in DNase II related inflammatory disease, STING and/or DNase II was knocked down in THP1 cells or BMDM using RNAi and it was noticed that loss of DNase II facilitated the upregulation of cytokines, including type I IFN, in response to aDNA in a STING-dependent manner. Since DNase II−/− mice usually die before birth, DNase II−/−, Sting−/−, or Sting−/− DNase II−/− DKO 17 day embryos (E17 days) were analyzed. Genotyping analysis, including RT-PCR and immunoblot confirmed that the embryos lacked Sting, DNase II or both functional genes. It was observed that DNase II−/− embryos exhibited anemia, as described above, which was in significant contrast to Sting−/− DNase II−/− DKO embryos or controls which noticeably lacked this phenotype. Lethal anemia has been reported to be due to type I IFN inhibition of erythropoiesis during development. It was subsequently observed by hematoxylin and eosin staining that the livers of DNase II−/− embryos contained numerous infiltrating macrophages full of engulfed apoptotic cells responsible for producing high levels of cytokines. In contrast to control mice, the livers of Sting−/− DNase II−/− embryos exhibited a similar phenotype. Analysis of fetal livers by TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP biotin nick end-labeling) confirmed that the Sting−/− DNase II−/− embryos and DNase II-deficient but not wild-type fetal livers contained numerous large inappropriately digested dying cells. In vitro analysis has indicated that macrophages from the embryos of of wild-type or DNase II−/− mice engulf apoptotic cells adequately. However, while the DNA of the engulfed apoptotic cells is efficiently degraded in the lysosomes of wild-type macrophages, DNase II−/− macrophages accumulate engulfed nuclei and cannot digest DNA. This event leads to the stimulation of innate immune signaling pathways and production of autoimmune related cytokines. Given this, the ability of embryonic liver derived macrophages that lacked both DNase II and STING were evaluated as to whether they to engulf apoptotic cells and digest DNA. It was noted that Sting−/− DNase II−/− macrophages, similar to DNase II−/− macrophages, were not able to digest the engulfed nuclei from dexamethasone treated apoptotic thymocytes compared to control macrophages taken from wild type or Sting−/− mice. Thus, macrophages harvested from the livers of Sting−/− DNase II−/− embryonic mice similarly exhibit an inability to digest engulfed apoptotic cells, analogous to DNase II−/− macrophages.
The above analysis was complemented with analyzing mRNA expression levels in the livers of the embryonic mice. This study indicated very little inflammatory gene production in the livers of wild type or Sting−/− embryos. However, it was observed that the livers of DNase II−/− embryos contained abnormally high levels of cytokine related mRNA. Significantly, the livers of Sting−/− DNase II−/− mice had dramatically reduced levels of innate immune gene expression activity compared to DNase II−/− mice. These results were confirmed by analyzing the mRNA expression levels of select innate immune genes in embryonic livers by RT-PCR. For example, the production of IFNβ was reduced several fold in Sting−/− DNase II−/− mice compared to DNase II−/− mice. The production of key interferon-stimulated genes (ISG's) such as the 2′-5′ oligoadenylate synthetases (OAS), interferon-induced proteins with tetratricopeptide repeats (IFITs) interferon-inducible protein 27 (IFI27) and ubiquitin-like modifier (ISG15) were also dramatically reduced. Pro-inflammatory cytokines such as TNFα and IL1β were also decreased in the embryonic livers of Sting−/− and Sting−/− DNase II−/− compared to DNase II−/− mice. While the production of innate immune genes was dramatically suppressed in the absence of STING, the presence of some genes remained slightly elevated in Sting−/− DNase II−/− mice, albeit in low levels as determined by anay analysis, which may be due to variation in mRNA expression between the animals analyzed, or perhaps due to the stimulation of other pathways. Many of these genes are regulated by NF-κB and interferon regulatory factor (IRF) pathways. The function of these transcription factors was thus evaluated in Sting−/− DNase II−/− or control murine embryonic fibroblasts (MEFs), developed from 14 day embryos (E14 days). Principally, a defect was observed in NF-κB activity (p65 phosphorylation) in Sting−/− DNase II−/− MEFs when exposed to cytoplasmic DNA. The same defect was obtained in Sting−/− DNase II−/− BMDM when exposed to apoptotic DNA as well as cytoplasmic DNA. This was confirmed by noting that NF-κB as well as IRF3 also failed to translocate in Sting−/− DNase II−/− MEF's but not in control MEFs following exposure to dsDNA. Thus, STING is likely responsible for controlling self DNA-induced inflammatory cytokine production that is responsible for causing lethal embryonic erythropoiesis.
To extend of the importance of STING in mediating self-DNA-facilitated lethal erythropoiesis, it was evaluated whether DNase II−/− mice could be born in the absence of STING. Significantly, it was observed that DNase II−/− mice were born, with apparent Mendelian frequency, when crossed onto a Sting−/− background. PCR genotyping, Northern blot, RT-PCR and immunoblot analysis confirmed DNase II and STING deficiency in the progeny mice. Sting−/− DNase II−/− double knockout mice (DKO) appeared to grow normally and exhibited similar size and weight compared to control mice although it was noted that Sting−/− mice were somewhat larger for reasons that remain unclear. Preliminary immunological evaluation also indicated that the Sting−/− DNase II−/− DKO animals shared a similar CD4+/CD8+ profile similar to Sting−/− and and wild type mice, although the DKO's were noted to develop splenomegaly as they aged. Splenomegaly was also noted in surviving DNase II deficient mice that lacked type I IFN signaling (DNase II−/− Ifnar1−/− mice) and has been reported to be due to enlargement of the red pulp. However, analysis of serum from Sting−/− DNase II−/− mice indicated no detectable abnormal cytokine production compared to control mice at 8 weeks of age, due to the general low immeasurable levels of cytokines produced. Through these studies it was noted in vitro that Sting−/− DNase II−/− macrophages, similar to DNase II−/− macrophages, were not able to digest the engulfed nuclei from apoptotic thymocytes (Dex+) compared to control macrophages taken from wild type or Sting−/− mice. The accumulation of undigested DNA in DNase II−/− Sting−/− macrophages was less pronounced when WT thymocytes were used as targets (Dex−). Thus, BMDM derived from Sting−/− DNase II−/− mice are also incapable of digesting DNA from apoptotic cells, although in contrast to DNase II−/− BMDM do not produce inflammatory cytokine responses.
While DNase II mediated embryonic lethality can be avoided by crossing DNase II+/− mice with type I IFN defective Ifnar1−/− mice, the resultant progeny suffer from severe polyarthritis approximately 8 weeks after birth (arthritis score of 2) since undigested DNA activates innate immune signaling pathways and triggers the production of inflammatory cytokines such as TNFα. Significantly, it was noted that Sting−/− DNase II−/− mice did not manifest any signs of polyarthritis following birth. Arthritis scores remained at approximately zero (no score) in the Sting−/− DNase II−/−, up to 12 months of age in contrast to reported DNase II−/− Ifnar1−/− mice which exhibited an arthritis score of up to 7 after a similar period. While H&E and TUNEL staining of spleen and thymus tissues of DNase II−/− Sting−/− mice illustrated the presence of infiltrating macrophages that also contained apoptotic DNA, histology of joints from 6 month old Sting−/− DNase II−/− mice exhibited normal bone (B) synovial joint (S) and cartilage (C) structure with no evidence of pannus infiltration in the joint structure. Levels of TNFα, IL1β and IL6 from sera of Sting−/− DNase II−/− mice remained at low levels as predicted from our array analysis of BMDM that lacked STING (Table 3). Neither was there evidence of CD4, CD68 or TRAP positive cells infiltration within the joints of Sting−/− DNase II−/− mice. Analysis of the serum of Sting−/− DNase II−/− mice also indicated no elevated levels of Rheumatoid Factor (RF), anti-dsDNA antibody or MMP3. Thus, loss of STING eliminates pro-inflammatory cytokine production responsible for self DNA-mediated polyarthritis.
STING is responsible for inflammatory disease such as for example, Aicardi-Goutieres syndrome (AGS). AGS is genetically determined encephalopathy and is characterized by calcification of basal ganglia and white matter, demyelination. High levels of lymphocytes and type I IFN in cerebrospinal fluid. The features mimic chronic infection. Serum levels of type I IFN are also raised in autoimmune syndrome systemic lupus erythromatosis (SLE). AGS is caused by mutations in 3′-5′ DNA exonuclease TREX1. Loss of TREX1 function-DNA species accumulates in the ER of cells and activates cytoplasmic DNA sensors (STING). TREX1 digests this DNA source (housekeeping function) to prevent innate immune gene activation.
Given that STING seems responsible for inflammatory disease in mice defective in apoptosis, it was next evaluated whether other types of self-DNA triggered disease occurred through activation of the STING pathway. For example, patients defective in the 3′ repair exonuclease 1 (Trex1) suffer from Aicardi-Goutieres Syndrome (AGS) which instigates lethal encephalitis characterized by high levels of type I IFN production being present in the cerebrospinal fluid. Trex1-deficient mice exhibit a median life span of approximately 10 weeks since as yet uncharacterized self-DNA, presumably normally digested by Trex1, activates intracellular DNA sensors which triggers cytokine production and causes lethal inflammatory aggravated myocarditis. Recent data indicates that loss of STING can extend the lifespan of Trex1−/− mice although the causes are unknown. These studies were extended and it was noted that there were slightly elevated levels of type I IFN production in Trex1 deficient BMDC (Trex1−/− BMDC) exposed to dsDNA90. Significantly, loss of STING (Sting−/− Trex1−/− BMDC) eliminated the ability of DNA to augment type I IFN production in BMDM's deficient in Trex1. Interestingly, a size reduction of the hearts of Sting−/− Trex1−/−, Sting−/+ Trex1−/− was observed when compared to Trex1−/− mice. Evidence of myocarditis was also note to be dramatically reduced in Sting−/− Trex1−/− compared to Trex1−/− alone. In addition, anti-nuclear autoantibody (ANA) observed to be highly prevalent in the sera of Trex1−/− mice, was almost completely absent in the sera of Sting−/− Trex1−/− mice. Microarray analysis demonstrated dramatically, reduced levels of pro-inflammatory genes in the hearts of Sting−/− Trex1−/−, Sting−/+ Trex1−/− compared to Trex1−/− mice. Collectively, these data indicates that STING is responsible for pro-inflammatory gene induction in Trex1 deficient mice and plausibly AGS.
The activity of 217 protein kinase targets were evaluated against 2 peptides (A366 and S366) as substrate. Protein kinases were mixed with each peptide and 33P-ATP and then activity (CPM) was measured. The below kinases were identified as phosphorylating S366 in STING. Identification of kinases which target this serine opens up avenues for drug discovery. Drugs that target this association may inhibit STING activity and be used for therapeutic purposes to inhibit STING activity. STING over activity may lead to inflammatory diseases which can exacerbate cancer.
STING WT and STING−/− animals were treated with DNA damaging agents and mice lacking STING were resistant to tumor formation. This is because infiltrating immune cells such as dendritic cells, macrophages etc eat the damaged cells that have undergone necrosis or apoptosis and the DNA or other ligands from such cells activate STING and the production of cytokines that promote tumor formation. STING may be involved in facilitating tumor progression in a wide variety of other cancers.
The invention described herein was made with U.S. government support under grant number R01A1079336 awarded by the National Institutes of Health. The U.S. government has certain rights in the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/038840 | 4/30/2013 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
Parent | 13460408 | Apr 2012 | US |
Child | 15120694 | US |