The present invention relates generally to garments/apparel and, in particular, to athletic apparel formed from both moisture wicking and moisture absorbing materials.
Various sports or athletic activities cause participants to perspire in different ways. The participant's ability to more effectively manage this perspiration can often provide a competitive advantage during participation.
Athletes have, for decades, used varying fabrics to optimize performance. By way of specific example, a quarterback that uses a terrycloth towel hanging from his uniform waistband to keep his hands dry during play is generally provided greater accuracy when throwing the football. Tennis players wear headbands while playing to keep perspiration from getting on their face and into their eyes. Similarly, many basketball players wear wristbands to prevent moisture from reaching their hands and affecting ball control. These are examples of independent use of hydrophilic fabrics to absorb moisture from selected parts of the participant's body.
More recently, hydrophobic or moisture wicking fabrics have become somewhat commonplace in athletic activewear. These fabrics are typically defined as nonabsorbent materials that pull moisture away from the participant's skin, distributing the moisture evenly throughout the fabric and allowing the fabric to dry quickly. By wicking away the moisture, less moisture is absorbed by the fabric, generally keeping the garment lighter and in many cases, more comfortable for the participant.
Various embodiments of the present invention are to a moisture control garment comprising a first layer, positioned closest to a wearer, comprising hydrophobic moisture wicking material, and a second layer, joined to the first layer, comprising hydrophilic moisture absorbing material. In some embodiments, the first layer comprises the body of the garment and the second layer comprises one or more patches of fabric overlying the first layer.
In certain embodiments, the first layer comprises 100% polyester. In other embodiments, the first layer comprises between 80% and 99% polyester and 1% to 20% spandex. In certain embodiments of the present invention, the second layer comprises 100% polyester. In other embodiments, the second layer comprises 100% cotton. In still other embodiments, the second layer comprises between 80% and 99% cotton and 1% to 20% polyester. In other embodiments, the second layer comprises between 80% and 99% cotton and 1% to 20% nylon. In still other embodiments, the second layer comprises between 80% and 99% polyester and 1% to 20% polyamide. In further embodiments, the second layer comprises between 80% and 99% nylon and 1% to 20% polyamide.
In some embodiments, the first layer and the second layer are mechanically joined to each other. In other embodiments, the first layer and the second layer are joined at their seams. In still other embodiments, the layers are joined by adhesive bonding. In other embodiments, the first layer and the second layer are joined to each other by lamination. In other embodiments, the first layer and the second layer are joined to each other by sonic bonding.
In accordance with various embodiments of the present invention, the moisture control garment is treated to provide anti-microbial properties, anti-fungal properties, waterproofing or water resistance. In certain embodiments, the moisture control garment is treated using nanotechnology.
In certain embodiments of the present invention, the first layer and the second layer have a difference in thickness of less than 0.25 inches. In other embodiments, the fibers in the first layer and the second layer are positioned in the same direction. In further embodiments, the first layer and the second layer have the same estimated shrinkage percentage.
For a fuller understanding of the present invention, reference should be made to the following detailed description taken in connection with the accompanying figures, in which:
The present invention relates to apparel that can improve athletic performance and provide comfort for the wearer. The invention is centered on the concept of pairing one fabric that has moisture wicking properties (i.e., hydrophobic properties) with another fabric that has moisture absorbing properties (i.e., hydrophilic properties) in the same garment.
When used independently, hydrophilic fabrics will typically absorb their maximum level of moisture. When the fabric reaches its absorption capacity, the collected moisture soaks through the fabric and comes into contact with the wearer's skin, thereby defeating the garment's original purpose to absorb moisture from selected parts of the wearer's body. In addition, the excess moisture may be released from the garment when the garment is pressed and/or touched.
Conversely, when hydrophobic fabrics are used independently, the wearer is provided with no surface area upon which to wipe moisture from their extremities (hands, arms, face, etc.). The moisture wicking nature of these fabrics are by design, intended to pull moisture away rather than absorb.
Various embodiments of the present invention are directed to selecting a moisture wicking material having hydrophobic properties and a moisture absorbing material having hydrophilic properties and joining the materials together to form a garment for performance requirements or athletic application.
By implementing an embodiment of the present invention where a hydrophobic layer of fabric is inserted between the hydrophilic layer and the wearer's skin, the risk of moisture absorbing through the garment and coming into contact with the wearer's skin is almost completely eliminated. Further, the strategic integration of hydrophilic fabric into or on certain sections of a garment in accordance with embodiments of the present invention, allows the wearer to keep parts of their body moisture-free.
In
In certain embodiments, the present invention may have additional layers added on or between layers 10 and 12 to accommodate performance. Exemplary third layers include, but are not limited to hydrophilic material, hydrophobic material, waterproof material, breathable material, nonwoven material, foam, nonwoven and foam composite, spacer fabric, elastomeric composite, membrane, film or exterior shell fabric, depending on the performance requirements or athletic application.
The placement of each fabric type (wicking vs. absorbing) on or within an individual garment may be varied based upon the specific sport and/or activity in which the wearer is participating in order to effectively manage perspiration and maximize athletic performance.
The joining together of the moisture wicking material and the moisture absorbing material may be varied based performance requirements or athletic application. In accordance with various embodiments of the invention, the hydrophilic layer and the hydrophobic layer are joined to each other. In some embodiments, the hydrophilic and hydrophobic fabrics paired together in the same garment are joined at one or more seams where each fabric has been cut according to a specific pattern used in making the garment. In other embodiments, such as where a hydrophilic fabric patch or panel is placed directly on top of a continuous piece of hydrophobic fabric, the fabrics may not be joined at a seam. Rather, in some embodiments, the hydrophilic patch or panel may be joined directly on top of the hydrophobic fabric. In certain embodiments, the entire portion of one side of the hydrophilic patch or panel may be joined to the hydrophobic fabric, while in other embodiments, only a portion of the hydrophilic patch or panel may be joined to the hydrophobic fabric. In other embodiments, the hydrophilic and hydrophobic fabrics are joined both at a seam and directly together.
In certain embodiments, the fabrics are mechanically joined (e.g., sewn or stitched together). A variety of stitch methods (e.g., flatlock, surge, double seam) may be utilized based on the method best suited to pair the specific fabrics and the intended use of the garment.
Alternatively, adhesive may be used to join the hydrophilic fabric to the hydrophobic fabric. In these embodiments, the type of adhesive utilized must be compatible with the overall garment construction as well as the garment's care instructions. Exempleary adhesives that may be used in this process include, but are not limited to the DESMOCOLL®, DESMOMELT®, DISPERCOLL®, DESMODUR® and BAYHYDUR® product lines from Bayer MaterialScience AG, a variety of seam sealing tapes and heat transfer adhesives that allow for the permanent bonding of two fabrics without the use of any stitching. The bonding is instead effectuated using, for example, heat, lamination or sonic pressure.
Additional methods of bonding the hydrophilic layer and the hydrophobic layer include welding or a combination of any of the bonding techniques referenced herein. In certain embodiments, the use of an adhesive is paired with sewing the hydrophilic panel to the hydrophobic fabric.
The moisture absorbing and moisture wicking layered system embodied in the present invention has been optimized so that when the layers are bonded together or otherwise paired, the garment fits the wearer properly and maintains that fit after multiple washings/launderings. This is an especially challenging process in light of the varying properties and behavior of most hydrophobic vs. hydrophilic fabrics.
When two different fabrics are joined or combined together in one garment, it is critical that the fabrics paired together are compatible. Further, once it is determined that the fabrics are compatible, the fabrics need to be combined together in a way so as to maximize effectiveness and durability. To ensure quality and durability, the following characteristics have been addressed in various embodiments of the present invention:
Shrinkage Levels
Different fabrics shrink in distinct ways and in distinct proportions when they are washed. Typically, fabric mills will test the percentage levels that their fabrics shrink after laundering, and will include those shrinkage levels when selling fabric to customers. In embodiments of the present invention, when pairing the moisture wicking (i.e., hydrophobic properties) fabric and the moisture absorbing (i.e., hydrophilic) fabric together, the shrinkage levels, both “east/west” and “north/south”, are determined to be compatible so that when the two fabrics are washed together in the same garment, there is no warping around the seam or other point of attachment. Preferably, the hydrophobic fabric and the hydrophilic fabric paired together will have the same estimated shrinkage percentage. If there is more than a 1 to 2% difference in shrinkage, the one or more of the fabrics should be preshrunk before joining the two fabrics together. In addition, a garment wash test is typically performed on the finished garment at a testing lab to confirm compatibility.
Matching the Knap
As used herein, the term “matching the knap” refers to the process of ensuring that the fibers in both the hydrophobic fabric and the hydrophilic fabric are positioned in the same direction. If the “knap” is not matched between the two fabrics used in one garment, potential problems may occur. In particular, the garment runs the risk of warping after laundering, if the fabrics used have any elastic properties (i.e., where spandex, LYCRA®, elastane and the like have been incorporated in one or more of the fabrics) the level of elasticity may vary depending upon the direction of the fibers and the feel of the garment may be rough to the touch.
Care Instructions
Recommended care instructions may vary based on type of fabric. In accordance with various embodiments of the present invention, the recommended care instructions for both the moisture wicking fabric and the moisture absorbing fabric are examined when pairing the fabrics together in one garment to ensure that the recommended care instructions for both fabrics will effectively clean the entire garment without affecting its wearability. For example, if one fabric's care instructions recommends “Machine Wash Cold, Tumble Dry Low” and the other recommends “Machine Wash Cold, Line Dry Only”, the garment runs the risk of becoming warped when laundered. Further, each garment can only have one set of care instructions, the instructions must be consistent between the two fabrics.
Fabric Weight and Thickness
The moisture wicking and moisture absorbing fabrics paired together in certain embodiments of the present invention are of comparable weight and thickness. If weight and thickness are not considered, certain sections of the garment may outweigh others, thereby adversely affecting the overall fit of the garment or pulling the garment in a manner not conducive to athletic performance By way of example, if the hydrophilic fabric used in a garment had a thickness of 0.25 inches and the hydrophobic fabric a thickness of 0.625 inches, the hydrophilic fabric would likely retain more moisture (and with that moisture, more weight) than the hydrophobic fabric could adequately handle. The result would be a garment where the added weight of the hydrophilic fabric would pull the hydrophobic fabric and distort the fit of the garment. In preferred embodiments of the present invention, the moisture wicking and moisture absorbing fabrics have a difference in thickness of less than 0.25 inches.
Color Blocking
Certain fabrics of particular colors cannot be paired with other fabrics of different colors in the same garment (a manufacturing term known as “color blocking”) because the dye used in some fabrics can run onto the dye of the other fabric. In preferred embodiments of the present invention, the color selected for use in one fabric will not run onto any other fabric on the garment. By way of example, if a 100% polyester fabric in red is paired in the same garment with a 100% polyester fabric in white, there is a strong likelihood that when the garment is washed, the white section of the garment will absorb some of the red dye and turn a shade of pink. Such a selection will not be made in embodiments of the present invention.
The specific fabrics used in apparel construction are of significant importance to the present invention. Exemplary wicking (i.e., hydrophobic) fabrics include, but are not limited to 100% polyester, polyester/spandex, polyester/LYCRA® and polyester/elastane compositions that maintain a percentage ratio between 80% polyester/20% spandex, LYCRA® and elastane and 99% polyester/1% spandex, LYCRA® and elastane, 100% nylon, nylon/spandex, nylon/LYCRA® and nylon/elastane compositions that maintain a percentage ratio between 80% nylon/20% spandex, LYCRA® and elastane and 99% nylon/1% spandex, LYCRA® and elastane.
Exemplary absorbing (i.e., hydrophilic) fabrics include, but are not limited to 100% cotton, 100% looped terry cotton, 100% velour, 100% modal cotton, 100% bamboo, cotton/polyester compositions that maintain a percentage ratio between 80% cotton/20% polyester and 99% cotton/1% polyester, cotton/nylon compositions that maintain a percentage ratio between 80% cotton/20% nylon and 99% cotton/1% nylon, polyester/polyamide compositions that maintain a percentage ratio between 80% polyester/20% polyamide and 99% polyester/1% polyamide, and nylon/polyamide compositions that maintain a percentage ratio between 80% nylon/20% polyamide and 99% nylon/1% polyamide. In preferred embodiments of the present invention, the hydrophilic fabric is 100% polyester.
Independent of the composition of the fabrics used in the present invention, the fabrics may also have certain benefits specifically engineered for athletic activewear. Some such benefits could derive from the natural composition of the fiber (e.g., the natural anti-microbial nature of bamboo). In other embodiments, the benefits are derived from treatments integrated directly into the fiber (e.g., utilizing nanotechnology) or based on certain applications after knitting. In any event, the engineered design to enhance performance and will typically include one or all of the following benefits: anti-microbial/anti-fungal, moisture wicking, water proof/water resistance and moisture absorbing properties.
Although the foregoing refers to particular embodiments, it will be understood that the present invention is not so limited. It will occur to those of ordinary skill in the art that various modifications may be made to the disclosed embodiments and that such modifications are intended to be within the scope of the present invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2011/050120 | 9/1/2011 | WO | 00 | 5/23/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/031059 | 3/8/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3045245 | Kohen | Jul 1962 | A |
3174156 | Dale et al. | Mar 1965 | A |
4768236 | Klob | Sep 1988 | A |
5014360 | Smith et al. | May 1991 | A |
5075901 | Vollrath | Dec 1991 | A |
5090060 | Gates | Feb 1992 | A |
5746013 | Fay, Sr. | May 1998 | A |
5792714 | Schindler et al. | Aug 1998 | A |
5901373 | Dicker | May 1999 | A |
7737056 | Chang | Jun 2010 | B2 |
20050208243 | Chambers et al. | Sep 2005 | A1 |
20050282455 | Foshee | Dec 2005 | A1 |
20080104739 | Kharazmi | May 2008 | A1 |
20090133446 | Burrow et al. | May 2009 | A1 |
Number | Date | Country |
---|---|---|
2006133094 | Dec 2006 | WO |
2009017729 | Feb 2009 | WO |
Entry |
---|
International Search Report and the Written Opinion of the International Searching Authority dated Feb. 17, 2012 from the corresponding PCT/US2011/050120. |
Number | Date | Country | |
---|---|---|---|
20120291177 A1 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
61378993 | Sep 2010 | US |