The present invention relates to a molded capacitor that includes a capacitor element and a package covering the capacitor element, and that is used in various electronic devices, electric devices, industrial devices, and automobiles for working with a high electric current. The present invention also relates to a method for manufacturing the molded capacitor.
In recent years, almost every electric device is controlled by an inverter circuit so that energy can be saved and the higher efficiency can be achieved, whereby the environment can be protected. Particularly in an automobile industry, techniques for promoting environmental protection, energy saving, and higher efficiency have been actively developed. Those efforts result in, for instance, an introduction of a hybrid electric vehicle (HEV) to the market, where the HEV can be driven by an electric motor and an engine.
The electric motor employed in the HEV works in a high voltage range, such as several hundreds volts. A metallized-film capacitor featuring a high withstand voltage and a low energy loss has drawn attention as a capacitor to be used in such an electric motor. This metallized-film capacitor can meet the demand from the market for maintenance-free products because of its long service life. The metallized-film capacitor thus has been increasingly employed in the HEV.
The HEV strongly requires a metallized-film capacitor capable of withstanding a higher voltage, working with a large current, and having a large capacitance. To meet these requirements, a molded capacitor has been developed and is put in the market. In this molded capacitor, plural metallized-film capacitors are coupled together in parallel with a busbar, and are accommodated in a case filled with molding resin.
Respective one ends of busbars 112 are connected to electrodes 111A. Respective other ends of busbars 112 functions as external connection terminals 112A. Case 113 opening upward and made of resin accommodates capacitor element 111 having busbars 112 connected thereto. Molding resin 114 fills a space between capacitor element 111 and an inner wall of case 113 so that external connection terminals 112A are exposed from case 113, thus providing molded capacitor 501.
Molding resin 114 covers capacitor elements 111 in order to improve the moisture resistance of element 111. This structure not only prevents the ambient moisture from entering but also builds a tough capacitor 501 by taking advantage of hardness as well as high shock resistance of the resin.
Conventional molded capacitor 501 is used for smoothing an alternating-current component of a direct-current power source to meet the requirements of the HEV for a smaller and lighter body as well as for a large capacitance. A large ripple current flows to capacitor 501, so that capacitor element 111 generates a large amount of heat.
Molding resin 114 is often made of epoxy resin, which needs a certain thickness to obtain sufficient moisture resistance. Since the epoxy resin requires a certain time to be hardened, it takes a long time to obtain an enough thickness of molding resin 114 in case 113 made of resin for securing the moisture resistance. The productivity of capacitor 501 is thus obliged to lower, and on top of that, capacitor 501 requires case 113 made of resin, so that the number of components increases, which raises a cost and increases the size of an apparatus including capacitor 501. Capacitor 501 with case 113 made of resin accommodated in a metal case increases the size of the apparatus.
Patent Literature 1: Japanese Patent Laid-Open Publication No. 2000-58380
Patent Literature 2: Japanese Patent Laid-Open Publication No. 2000-323352
A molded capacitor includes a capacitor-element assembly, a package covering the capacitor-element assembly, and a supporter embedded in the package. The capacitor-element assembly includes a capacitor element having a first electrode, and a busbar joined to the electrode of the capacitor element. The busbar has a terminal. The package is made of norbornene-based resin and covers the capacitor-element assembly while exposing the terminal of the busbar. The supporter has first and second end section and is made of heat-conductive insulating material. The first end section contacts the capacitor-element assembly. The second end section is exposed from the package.
This molded capacitor has high heat resistance and a small, light-weighted body, and can be manufactured inexpensively.
Package 104 is made of norbornene-based resin, and covers capacitor elements 101, busbars 102 and 122 together such that terminals 102A and 122A of busbars 102 and 122 are exposed.
Supporter 103 embedded in package 104 includes end section 103A contacting electrode 101A of capacitor element 101 and end section 103B projecting and exposed from package 104. Supporter 123 embedded in package 104 includes end section 123A contacting electrode 101B of capacitor element 101 and end section 123B projecting and exposed from package 104. Supporters 103 and 123 are made of insulating material having higher heat conductivity than package 104.
Supporters 103 and 123 are placed in a mold, and then, capacitor elements 101 having busbars 102 and 122 connected thereto are placed on supporters 103 and 123. Then, norbornene-based monomer is injected into the mold for forming package 104 by a reaction injection molding (RIM) method which reacts and hardens the monomer. Package 104 exposes terminals 102A and 122A from an upper surface of the package, and allows supporters 103 and 123 to project from a lower surface of the package to expose supporters 103 and 123 from the lower surface.
The norbornene-based monomer, a material of package 104, is two-part hardening type dicyclopentadiene (DCPD); however, it can be one-part hardening type DCPD that uses ruthenium catalyst.
In the mold, supporters 103 and 123 are more rigid and harder than the norbornene-based monomer, i.e. the material for package 104, and accordingly position capacitor elements 101 having busbars 102 and 122 connected thereto, thereby allowing package 104 to be molded dimensionally accurately.
The norbornene-based monomer can be hardened within a short period of time, such as one minute, so that molded capacitor 1001 in accordance with Embodiment 1 can be manufactured without using resin case 113 used for conventional molded capacitor 501 shown in
End sections 103A and 123A of supporters 103 and 123 made of insulating material having high heat-conductivity contact electrodes 101A and 101B of capacitor element 101, and have end sections 103B and 123B exposed from package 104. This structure allows the heat generated by capacitor element 101 to be dissipated to the outside of package 104 via supporters 103 and 123. This structure thus prevents capacitor element 101 from raising its temperature and improves the heat resistance of capacitor 1001. The temperature of capacitor element 101 of molded capacitor 1001 in accordance with Embodiment 1 can be lower by about 3 to 5° C. than that of capacitor element 101 of a comparative example of a molded capacitor which does not include supporter 103.
Heat-conductive grease 448 can be applied onto surfaces of end sections 103A and 123A of supporters 103 and 123 contacting electrodes 101A and 101B of capacitor element 101. This grease allows capacitor element 101 to dissipate heat efficiently via supporters 103 and 123. Heat-conductive grease 448 is general grease, such as silicone grease, fluorine-based grease, mixed with highly heat-conductive powder formed of, e.g. boron nitride, aluminum nitride, or zinc oxide.
Molded capacitor 1001 shown in
End sections 103A and 123A of supporters 103 and 123 contact electrodes 101A and 101B of capacitor element 101, and end section 103B and 123B are exposed from package 104. According to Embodiment 1, end sections 103A and 123A of supporters 103 and 123 can be connected to busbars 102 and 122 which are made of highly heat-conductive metal. This structure allows the heat generated by capacitor element 101 to transmit to supporters 103 and 123 via busbars 102 and 122, thus allowing capacitor element 101 to dissipate heat efficiently. As discussed above, capacitor elements 101 coupled with busbars 102 and 122 are placed in the mold which is used for molding package 104, so that supporters 103 and 123 can position capacitor elements 101 although supporters 103 and 123 contact busbars 102 and 122.
According to Embodiment 1, supporters 103 and 123 are insert-molded in package 104; however, it is not limited to this method. Instead of supporters 103 and 123, pins can be placed in the mold together with capacitor-element assembly 191 for molding package 104. Then, the pins are removed out to produce cavities to accommodate supporters 103 and 123. Supporters 103 and 123 are then press-fitted into the cavities and embedded into package 104.
According to Embodiment 1, three capacitor elements 101 are coupled together in parallel; however, the number of capacitor elements 101 is not limited to three, or multiple capacitor elements 101 are not always needed. The number may be one.
According to Embodiment 1, molded capacitor 1001 employs wound-type metallized-film capacitor; however, capacitor 1001 is not limited to this type, and it can be another type, such as a multilayer metallized-film capacitor.
Case 105 is made of material, such as metal, e.g. aluminum, having high heat conductivity, and accommodates capacitor elements 101 covered with package 104. Recesses 105A and 125A are provided in an inner surface of case 105. End sections 103B and 123B of supporters 103 and 123 projecting from the lower surface of package 104 are fitted into recesses 105A and 125A, thereby positioning package 104 with respect to case 105.
Insulating molding resin 106 fills between case 105 and package 104. Resin 106 is made of insulating resin, such as urethane resin or epoxy resin. The insulating resin can be mixed with heat-conductive filler or foaming agent.
In molded capacitor 1002 in accordance with Embodiment 2, supporters 103 and 123 projecting from package 104 are fitted into recesses 105A and 125A provided in the inner surface of case 105, thereby positioning package 104 with respect to case 105 accurately.
Molding resin 106 made of insulating resin, such as urethane resin or epoxy resin, mixed with heat-conductive filler fills case 105 which accommodates package 104, facilitating heat-dissipation from capacitor element 101. The insulating resin mixed with the foaming agent as the material for molding resin 106 increases the resistance against vibration.
Heat-conductive grease 449 (shown in
In molded capacitor 1002 according to Embodiment 2, recesses 105A and 125A provided in the inner surface of case 105 accept end sections 103B and 123B of supporters 103 and 123 fitted thereto, respectively. However, case 105 may not necessarily have recesses 105A and 125A therein. For instance, as long as supporters 103 and 123 contact the inner surface of case 105, a similar advantage to what is discussed previously, i.e. heat dissipation effect, can be obtained.
Busbar 202 made of metal includes connecting section 202B connected to electrode 101A of capacitor element 101 by soldering and terminal 202A for external connection. Busbar 222 made of metal includes connecting section 222B connected to electrode 101B of capacitor element 101 by soldering and terminal 222A for external connection. Busbar 202 extends across electrodes 101A of plural capacitor elements 101 perpendicularly to center axes 159 of elements 101. Busbar 222 extends across electrodes 101B of plural capacitor elements 101 perpendicularly to center axes 159 of elements 101. Capacitor elements 101 and busbars 202 and 222 joined to capacitor elements 101 together form capacitor-element assembly 291.
Package 204 is made of norbornene-based resin, and covers capacitor elements 101, busbars 202 and 222 together such that terminals 202A and 222A of busbars 202 and 222 are exposed.
Supporter 203 embedded in package 204 includes end section 203A contacting busbar 202 and end section 203B exposed from package 204. Supporter 223 embedded in package 204 includes end section 223A contacting busbar 222 and end section 223B exposed from package 204. Supporters 203 and 223 are made of insulating material having higher heat conductivity than package 204. Both of supporters 203 and 223, similar to supporters 103 and 123 shown in
Similar to supporter 103 and 123 shown in
Then, norbornene-based monomer is injected from inlet 225A of mold 225 into mold 225, thereby forming molding package 204 by a Reaction Injection Molding (RIM) method. The norbornene-based monomer, the material for package 204, is two-part hardening type dicyclopentadiene (DCPD); however, it can be one-part hardening type DCPD that uses ruthenium catalyst.
End sections 203A and 223A of supporters 203 and 223 may preferably be fixed tentatively to busbars 202 and 222 with adhesive before package 204 is molded in order to improve workability and assure the contact between supporters 203 and 223 and busbars 202 and 222.
Supporter fixing sections 206A and 226A provided at lower mold 206 and supporter fixing sections 205B and 225B provided at upper mold 225 not only accurately position supporters 203 and 223 at predetermined places along a vertical direction but also absorb dimensional variations along longitudinal direction 158 of capacitor elements 101. Supporters 203 and 223 can be thus accurately and rigidly mounted to the predetermined places with respect to package 204.
End sections 203A and 223A of supporters 203 and 223 made of insulating material having high heat conductivity contact busbars 202 and 222 which contact electrodes 101A and 101B of capacitor element 101. End sections 203B and 223B are exposed from package 204. This structure allows the heat generated by capacitor element 101 to be dissipated to the outside of package 204 via supporters 203 and 223. The foregoing structure thus prevents capacitor element 101 from raising its temperature and improves the heat resistance of capacitor 2001.
Heat-conductive grease can be applied onto surfaces of end sections 203A and 223A of supporters 203 and 223 contacting busbars 202 and 222. This grease allows heat in capacitor element 101 to dissipate heat efficiently via supporters 203 and 223. The heat-conductive grease is made of general grease, such as silicone grease, fluorine-based grease, mixed with highly heat-conductive powder formed of, e.g. boron nitride, aluminum nitride, or zinc oxide.
Before insert-molding supporters 203 and 223 in package 204, busbars 202 and 222 are positioned via supporters 203 and 223, thereby positioning capacitor elements 101 coupled with busbars 202 and 222. This process accurately positions, in mold 225, capacitor elements 101 having larger dimensional variations than busbars 202 and 222, thus allowing molded capacitor 2001 with high dimensional accuracy to be manufactured.
A sample of Example 1 of molded capacitor 2001 in accordance with Embodiment 3 was produced. A sample of Comparative Example 1 including no supporters 203 and 223 was produced. The dimensional accuracies of these two samples were measured. As shown in
As shown in
In molded capacitor 2001 in accordance with Embodiment 3, the heat generated by capacitor elements 101 transmit to the outside of package 204 via supporters 203 and 223. This structure thus prevents capacitor elements 101 from raising its temperature and improves the heat resistance of capacitor 2001. The temperature of capacitor element 101 of molded capacitor 2001 in accordance with Embodiment 3 can be lower by about 3 to 5° C. than that of the sample of Comparative Example 1 of the capacitor element 101 including no supporters 203 or 223.
The norbornene-based monomer can be hardened within a short time, only one minute, so that molded capacitor 2001 in accordance with Embodiment 3 can be manufactured without resin case 113 used for conventional molded capacitor 501 shown in
According to Embodiment 3, supporters 203 and 223 are insert-molded in package 204; however, the present invention is not limited to this method.
According to Embodiment 3, three capacitor elements 101 are coupled together in parallel; however, the number of capacitor elements 101 is not limited to three, or may be one.
According to Embodiment 3, molded capacitor 2001 is a rolled-type metallized-film capacitor; however, capacitor 2001 is not limited to this type, and it can be another type, e.g. multilayer metallized-film capacitor.
Busbar made of metal 208 includes connecting sections 208B connected to electrodes 101A of capacitor elements 101 by soldering and terminal 208A for external connection. Busbar 228 made of metal includes connecting sections 228B connected to electrodes 101B of capacitor elements 101 by soldering and terminal 228A for external connection. Busbars 208 and 228 extend across side surfaces 101C of electrodes 101A of plural capacitor elements 101 perpendicularly to center axes 159 of capacitor elements 101. Capacitor elements 101 and busbars 208 and 228 joined capacitor elements 101 together form capacitor-element assembly 292.
Package 204 is made of norbornene-based resin, and covers capacitor elements 101, busbars 208 and 228 together such that terminals 208A and 228A of busbars 208 and 228 can be exposed.
Supporter 209 embedded in package 204 includes end section 209A contacting electrode 101A and end section 209B exposed from package 204. End sections 209B does not project from package 204 but are flush with a lower surface of package 204. Supporter 229 embedded in package 204 includes end section 229A contacting electrode 101B and end section 229B exposed from package 204. End sections 229B do not projects from package 204 but are flush with the lower surface of package 204. Supporters 209 and 229 are made of insulating material having higher heat conductivity than package 204.
To be more specific, both of supporters 209 and 229, similar to supporters 103 and 123 shown in
Similar to supporter 103 and 123 shown in
A sample of Example 2 of molded capacitor 2002 in accordance with Embodiment 4 was produced, and the dimensional accuracy of the sample was measured. As shown in
As shown in
Molded capacitor 2002 in accordance with Embodiment 4 allows the heat generated by capacitor elements 101 to be dissipated to the outside of package 204 via supporters 209 and 229. This structure thus prevents capacitor elements 101 from raising its temperature and improves the heat resistance of capacitor 2002.
The norbornene-based monomer can be hardened within only one minute, so that molded capacitor 2002 in accordance with Embodiment 4 can be manufactured without using resin case 113 used for conventional molded capacitor 501 shown in
Case 305 is made of highly heat-conductive metal, such as aluminum. Busbar 302 made of metal includes connecting sections 302B connected to electrodes 101A of capacitor elements 101 by soldering and terminal 302A for external connection. Busbar 302 made of metal includes connecting sections 322B connected to electrodes 101B of capacitor elements 101 by soldering and terminal 322A for external connection. Busbars 302 and 322 extend across side surfaces 101C of multiple capacitor elements 101 perpendicularly to center axes 159 of capacitor elements 101. Capacitor elements 101, busbars 320 and 322 for joining capacitor elements 101 together constitute capacitor-element assembly 391.
Package 304 is made of norbornene-based resin, and covers capacitor elements 101, busbars 302 and 322 together such that terminals 302A and 322A of busbars 302 and 322 are exposed.
Supporters 303 embedded in package 304 include end sections 303A contacting electrodes 101A of capacitor elements 101 and end sections 303B projected and exposed from package 304. Supporters 323 embedded in package 304 include end sections 323A contacting electrodes 101B of capacitor elements 101 and end sections 323B projecting and exposed from package 304. Both of supporters 303 and 323 are made of insulating material having higher heat conductivity than package 304. To be more specific, both of supporters 303 and 323, similar to supporters 103 and 123 shown in
Similar to supporter 103 and 123 shown in
Supporters 303 and 323 are placed in a mold, and capacitor elements 101 connected with busbars 302 and 322 are placed on supporters 303 and 323. Then, norbornene-based monomer is injected into the mold for forming package 304 by a reaction injection molding (RIM) method which reacts and hardens the monomer. Package 304 exposes terminals 302A and 322A from its upper surface. Supporters 303 and 323 are exposed and project from its lower surface.
The norbornene-based monomer, the material for package 304, is two-part hardening type dicyclopentadiene (DCPD); however, it can be one-part hardening type DCPD that uses ruthenium catalyst.
Case 305 is made of metal, such as aluminum, having high heat conductivity, and accommodates capacitor elements 101 covered with package 304. Recesses 305A and 325A are provided in an inner surface of the case 305. Supporters 303 and 323 are harder than the norbornene-based monomer, i.e. the material for package 304. End sections 303B and 323B projecting from the lower surface of package 304 are fitted into recesses 305A and 325A, thereby positioning package 304 respect to case 305.
Insulating molding resin 306 fills between case 305 and package 304. Resin 306 is made of insulating resin, such as urethane resin or epoxy resin. The insulating resin can be mixed with heat-conductive filler or foaming agent.
Molding resin 306 made of insulating resin, such as urethane resin or epoxy resin, mixed with heat-conductive filler for filling case 305 which accommodates package 304 allows capacitor elements 101 to produce much more heat-dissipation effect. The insulating resin mixed with the foaming agent as the materials of molding resin 306 increases the resistance against vibration.
End sections 303A and 323A of supporters 303 and 323 made of insulating material having high heat conductivity contact electrodes 101A and 101B of capacitor elements 101, respectively, while end sections 303B and 323B are exposed from package 304. This structure allows the heat generated by capacitor elements 101 to be dissipated to the outside of package 304 via supporters 303 and 323. The foregoing structure thus prevents capacitor elements 101 from raising the temperature and improves the heat resistance of capacitor 3001. Supporters 303 and 323 exposed from package 304 contact the inner surface of case 305, facilitating the heat dissipation from capacitor elements 101. This structure thus prevents capacitor elements 101 from raising the temperature and improves resistance to heat of capacitor 3001.
A sample for comparative example 2 was also produced, and this sample is similar to the samples of Examples 3 to 8, but it includes none of supporters 303, 323, and 333. Samples for Examples 3 to 8 and comparative example 2 have the temperatures measured at supporters 303, 323 and 333 under the condition of atmospheric temperature of 85° C. and the temperature of the lower surface of the case 305 of 65° C.
As shown in
Heat-conductive grease can be applied onto surfaces of end sections 303A and 323A of supporters 303 and 323 contacting electrodes 101A and 101B of capacitor element 101. The heat-conductive grease can be also applied onto surfaces of end sections 303B and 323B of supporters 303 and 323 contacting case 305. This grease allows capacitor element 101 to dissipate heat efficiently via supporters 303 and 323. The heat-conductive grease is made of general grease, such as silicone grease, fluorine-based grease, mixed with highly heat-conductive powder formed of, e.g. boron nitride, aluminum nitride, or zinc oxide.
Supporters 303 and 323 can position the capacitor elements 101 coupled with busbars 302 and 322 in the mold, so that package 304 can be molded with accurate dimensions.
The norbornene-based monomer can be hardened within a short period of time, such as only one minute, so that molded capacitor 3001 in accordance with Embodiment 5 can be manufactured without resin case 113 used for conventional molded capacitor 501 shown in
According to Embodiment 5, supporters 303 and 323 contact electrodes 101A and 101B of capacitor element 101. The molded capacitor in accordance with Embodiment 5 includes three capacitor elements 101 coupled together with busbar 302, so that it is not necessarily for supporters 303 and 323 to contact all the three elements 101. In this case, the number of supporters 303 and 323 can be smaller than the number of capacitor elements 101, and yet, capacitor elements 101 can still produce the advantages discussed above, i.e. capacitor elements 101 can dissipate heat sufficiently and can be positioned accurately.
End sections 303A and 323A of supporter 303 and 323 contact electrodes 101A and 101B of capacitor element 101, and end section 303B and 323B are exposed from package 304. According to Embodiment 5, end sections 303A and 323A of supporters 303 and 323 can be connected to busbars 302 and 322. Busbars 302 and 303 are made of highly heat-conductive metal, and allow the heat generated by capacitor elements 101 to transmit to supporters 303 and 323 via busbars 302 and 322. Capacitor elements 101 thus can dissipate the heat efficiently. As discussed above, capacitor elements 101 coupled with busbars 302 and 322 are placed in the mold which forms package 304, so that supporters 303 and 323 can position capacitor elements 101 although supporters 303 and 323 contact busbars 302 and 322.
According to Embodiment 5, supporters 303 and 323 are insert-molded to package 304; however, it is not limited to this method. Instead of supporters 303 and 323, pins can be placed in the mold together with capacitor-element assembly 391 for molding package 304. Then, the pins are pulled out so that cavities for accommodating supporters 303 and 323 can be formed. Then, supporters 303 and 323 are press-fitted into the cavities to be embedded into package 304.
According Embodiment 5, molded capacitor 3001 has recesses 305A and 325A provided in the inner surface of case 305, and end sections 303B and 323B of supporters 303 and 323 are fitted into recesses 305A and 325A; however, case 305 may not necessarily have recesses 305A and 325A therein. For instance, as long as supporters 303 and 323 contact the inner surface of case 305, an advantage of heat dissipation similar to what is discussed previously can be obtained.
According to Embodiment 5, three capacitor elements 101 are coupled together in parallel; however, the number of capacitor element 101 is not limited to three, or multiple capacitor elements 101 are not always needed.
According to Embodiment 5, molded capacitor 3001 includes roll-type metallized-film capacitors; however, capacitor 3001 is not limited to this type, and it can be another type, such as multilayer metallized film capacitors.
Metal plate 307 can contact supporter 303 or can be isolated from supporter 303. Metal plate 327 can contact supporter 323 or it can be isolated from supporter 323. Capacitor 3002 may not include one of metal plates 307 and 327.
Metal plates 307 and 327 of molded capacitor 3002 in accordance with Embodiment 6 allow each of capacitor elements 101 to have a uniform temperature, so that elements 101 can further suppress the rise in temperature and dissipate the heat efficiently.
The norbornene-based monomer, the material of package 308, is two-part hardening type dicyclopentadiene (DCPD); however, it can be one-part hardening type DCPD that uses ruthenium catalyst.
As shown in
End sections 303A and 323A of supporters 303 and 323 contact the lower part of capacitor elements 101, and end sections 303B and 323B appearing from package 308 contact the inner surface of case 305.
Supporters 303 and 323 are made of highly heat-conductive insulating material, and end sections 303A and 323A of the supporters contact electrodes 101A and 101B of capacitor element 101, and end sections 303B and 323B are exposed from package 308. This structure allows the heat generated by elements 101 to dissipate to the outside of package 308 via supporters 303 and 323, so that capacitor elements 101 can suppress temperature rise, and the heat resistance of capacitor 3003 can be improved. Since portions of supporters 303 and 323 exposed from package 308 contact the inner surface of case 305, capacitor elements 101 expedites heat dissipation, and suppresses the temperature rise, so that the heat resistance of capacitor 3003 can be improved.
Norbornene-based resin has, in general, higher resistance to humidity and greater rigidity than thermosetting resin, such as epoxy resin, so that molded capacitor 3003 in accordance with Embodiment 7 has excellent humidity proof, strength, impact proof, and reliability.
Next, a method of manufacturing molded capacitor 3003 in accordance with Embodiment 7 will be demonstrated below. First, busbars 302 and 322 are joined to capacitor elements 101, and then, capacitor elements 101 coupled with busbar 302 are placed in case 305. At this moment, as shown in
After the positioning, the norbornene-based monomer is injected through opening 305 of case 305 such that the monomer reaches a level not higher than upper end 305B of case 305, and embeds elements 101 and busbars 302, 322 therein. Case 305 is thus filled with the norbornene-based monomer. Then, the monomer is hardened, thereby providing molded capacitor 3003.
In the method according to Embodiment 7, the norbornene-based monomer is injected into case 305 directly and is hardened for molding package 308. End sections 303B and 323B are exposed from package and contact the inner surface of case 305.
In the manufacturing method according to Embodiment 7, capacitor elements 101 and busbars 302 and 323 placed in case 305 are covered with package 308 made of norbornene-based resin, thereby simply completing molded capacitor 3003. This method thus needs no molding resin 306, which is used in capacitor 3001 in accordance with Embodiment 5, made of urethane resin or epoxy resin. The manufacturing method in accordance with Embodiment 7 thus can shorten the time needed for manufacturing, and on top of that, since the norbornene-based resin can be hardened in a shorter time, the productivity can be further improved.
As shown in
Upper mold 309 has holes therein through which terminals 302A and 322A of busbars 302 and 322 extend. When upper mold 309 is solidly and rigidly mounted to case 305, terminals 302A and 322A extend through these holes, which are designed such that there are spaces as small as possible between the inner wall of the holes and outer wall of terminal 302A. This design prevents the norbornene-based monomer from leaking from the holes when the monomer is injected into case 305.
Upper mold 309 solidly and rigidly mounted onto upper end 305B of case 305 forms cavity 310 between the lower surface of upper mold 309 and the inner wall of case 305.
Then, the norbornene-based monomer is injected from inlet 309A into cavity 310 so that cavity 310 can be filled with the monomer.
The norbornene-based monomer is hardened for molding package 304, and then, upper mold 309 is removed, thereby providing capacitor 3004 shown in
Molded capacitor 3004 differs from capacitor 3003 shown in
When the norbornene-based monomer is injected into cavity 310, the upper opening of case 305 is sealed with upper mold 309, so that the monomer can be prevented from leaking outside case 305. As a result, the productivity of molded capacitor 3004 can be improved.
A molded capacitor according to the present invention has high heat proof, and a small size as well as light weight, and can be manufactured at a low cost, so that the molded capacitor is useful for the automobile industry.
101A Electrode (First Electrode, Second Electrode)
101 Capacitor Element (First Capacitor Element, Second Capacitor Element)
102 Busbar
102A Terminal
104 Package
103 Supporter
103A End Section (First End Section)
103B End Section (Second End Section)
105 Case
105A Recess
106 Molding Resin
151 Dielectric Film
152 Electrode Film (First Electrode Film)
155 Electrode Film (Second Electrode Film)
191 Capacitor-Element Assembly
202 Busbar
202A Terminal
203 Supporter
203A End Section (First End Section)
203B End Section (Second End Section)
204 Package
208 Busbar
208A Terminal
209 Supporter
209A End Section (First End Section)
209B End Section (Second End Section)
225 Mold
263 Pin
264 Cavity
291 Capacitor-Element Assembly
302 Busbar
302A Terminal
303 Supporter
303A End Section (First End Section)
303B End Section (Second End Section)
304 Package
305 Case
307 Metal Plate
309 Upper Mold
310 Cavity
391 Capacitor-Element Assembly
448 Heat-Conductive Grease
449 Heat-Conductive Grease
Number | Date | Country | Kind |
---|---|---|---|
2008-179836 | Jul 2008 | JP | national |
2008-179837 | Jul 2008 | JP | national |
2008-179838 | Jul 2008 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2009/003048 | 7/1/2009 | WO | 00 | 12/20/2010 |