MOLDED HEAT SINK AND METHOD OF MAKING SAME

Abstract
A heat sink for use with a heat generating component includes a molded cooling block including a molded cooling passage for receiving a cooling medium. The cooling block is configured to be positioned in sufficient heat transfer relationship with respect to the heat generating component so that the cooling medium is able to receive heat from the heat generating component. Furthermore, the cooling block includes first and second sections that are connected together and that each partially define the cooling passage.
Description
TECHNICAL FIELD

The invention relates to heat sinks for cooling heat generating components.


BACKGROUND

Heat sinks may be used to cool electronic devices for example. One known heat sink includes a copper or aluminum cooling block having cooling passages that are machined into the cooling block. The cooling passages receive a cooling liquid that receives heat from the electronic device.


SUMMARY

In accordance with an embodiment of the present disclosure, a heat sink for use with a heat generating component includes a molded cooling block including a molded cooling passage for receiving a cooling medium. The cooling block is configured to be positioned in sufficient heat transfer relationship with respect to the heat generating component so that the cooling medium is able to receive heat from the heat generating component when the cooling medium is received in the cooling passage. Furthermore, the cooling block includes first and second sections that are connected together and that each partially define the cooling passage.


In accordance with another embodiment of the present disclosure, an electronic circuit assembly includes a circuit assembly body, and a molded cooling block attached to the circuit assembly body. The cooling block includes a molded cooling passage for receiving a cooling medium, and the cooling block is positioned in sufficient heat transfer relationship with respect to the circuit assembly body so that the cooling medium is able to receive heat from the circuit assembly body when the cooling medium is received in the molded cooling passage. Furthermore, the cooling block includes first and second sections that are connected together and that each partially define the cooling passage.


An exemplary method according to the present disclosure for making a heat sink for use with a heat generating component includes molding first and second sections of a cooling block such that each section partially defines a molded cooling passage; and fastening the first and second sections together such that the first and second sections cooperate to define the cooling passage such that a cooling medium is receivable in the cooling passage between the first and second sections. The cooling block is configured to be positioned in sufficient heat transfer relationship with respect to the heat generating component so that the cooling medium is able to receive heat from the heat generating component when the cooling medium is received in the molded cooling passage.


While exemplary embodiments in accordance with the invention are illustrated and disclosed, such disclosure should not be construed to limit the claims. It is anticipated that various modifications and alternative designs may be made without departing from the scope of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic view of a cooling system for cooling a heat generating component, wherein the cooling system includes a molded cooling device or heat sink;



FIG. 2 is a perspective view of the heat generating component and heat sink of FIG. 1;



FIG. 3 is a cross-sectional view of the heat generating component and heat sink of FIG. 2;



FIG. 4 is a fragmentary cross-sectional view of the heat generating component and heat sink of FIG. 3, showing fastener members for connecting the heat generating component and heat sink together;



FIG. 5 is a cross-sectional view of another embodiment of a cooling device or heat sink in accordance with the present disclosure, wherein the heat sink is attached to a heat generating component to form an assembly;



FIG. 6 is a schematic view of another cooling system for cooling a heat generating component, wherein the cooling system includes a cooling device or heat sink having a molded cooling block and a heat transfer member associated with the cooling block;



FIG. 7 is an exploded perspective view of the heat sink of FIG. 6;



FIG. 8 is a cross-sectional view of the heat sink of FIG. 7 attached to the heat generating component shown in FIG. 6; and



FIG. 9 is a cross-sectional view of an exemplary mold for use in making the heat sink shown in FIG. 8.





DETAILED DESCRIPTION

As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.


Several specific embodiments are set forth in the following description and in FIGS. 1-9 to provide a thorough understanding of certain embodiments according to the present disclosure. As those of ordinary skill in the art will understand, various features of the embodiments illustrated and described with reference to any one of the Figures may be combined with features illustrated in one or more other Figures to produce embodiments that are not explicitly illustrated or described. In addition, other embodiments may be practiced without several of the specific features explained in the following description.



FIG. 1 shows a cooling system 10, such as a liquid cooling system, for cooling a heat generating component, such as an electronic device 12. The electronic device 12 may be, for example, an electronic circuit or circuit component, electric motor, power supply, etc. Furthermore, the electronic device 12 may be part of a computer system. The cooling system 10 may include a heat exchanger 14, a pump 16 and a liquid cooled cooling device, such as a heat sink 18, in accordance with the present disclosure.


Referring to FIGS. 1-3, the heat sink 18 includes a molded cooling block 20 having one or more molded cooling passages 22, such as channels, that receive a cooling medium, such as a cooling liquid supplied by the pump 16 for example. The cooling liquid may be any suitable liquid, such as water, ethylene glycol and/or mineral oil.


The cooling block 20 is configured to be positioned in sufficient heat transfer relationship with respect to the electronic device 12 so that the cooling liquid receives heat from the electronic device 12 as the cooling liquid passes through the passages 22. The cooling liquid may then be routed to the heat exchanger 14, where heat may be transferred from the cooling liquid to another suitable medium, such as chilled water or air.


In the embodiment shown in FIGS. 1, the cooling block 20 is attached directly to the electronic device 12 to form an assembly. For example, the cooling block 20 may be attached to the electronic device with fasteners and/or adhesive. As another example, the cooling block 20 may be positioned in close proximity to the electronic device 12.


Furthermore, in the embodiment shown in FIGS. 2 and 3, the cooling passages 22 are formed entirely in the cooling block 20. With such a configuration, the cooling liquid remains spaced away from the electronic device 12 and does not come in contact with the electronic device 12. In other embodiments, cooling liquid or other cooling medium may directly contact an associated electronic device.


The cooling block 20 may be made of any suitable material and in any suitable manner. Under one example manufacturing method, the cooling block 20 may include two or more separate plastic pieces or sections, such as first and second sections 24 and 26, respectively (as shown in FIG. 2), that are each formed by an injection molding process or compression molding process. The sections 24 and 26 may then be subsequently sealed together, such as with fasteners, an adhesive and/or through a heat staking process.


Each section 24, 26 may at least partially define one or more of the passages 22. In the embodiment shown in FIGS. 2 and 3 for example, the first section 24 defines an upper portion of each passage 22, and the second section 24 defines a lower portion of each passage 22.


One or both of the sections 24, 26 may also be formed with one or more connecting members, such as alignment members and/or fastener members, that may be used to connect the sections 24 and 26 together and/or to connect the cooling block 20 to the electronic device 12. In the embodiment shown in FIGS. 2 and 3, for example, the sections 24 and 26 each include a molded body portion 28 and one or more alignment members 30, such as metal alignment receptacles, guides, or cylinders, that are insert molded with the body portion 28. More specifically, the alignment members 30 may be positioned in a suitable mold, and plastic material may be injected into the mold to form the body portion 28 such that the body portion 28 is attached to the alignment members 30. Furthermore, the alignment members 30 may receive corresponding alignment members 32, such as rods or posts, formed on the electronic device 12, in order to align one or both of the sections 24 and 26 with respect to the electronic device 12. In another embodiment, one or both of the sections 24 and 26 may be formed with rods or posts that are insert molded with the body portions 28 and that are received in corresponding receptacles, guides, or cylinders formed on the electronic device 12.


Referring to FIGS. 3 and 4, each section 24 and 26 also includes one or more fastener members 34, such as threaded inserts, that are insert molded with the corresponding body portion 28. The fastener members 34 receive complementary fastener members 36, such as screws or bolts, that may be used to fasten the sections 24 and 26 together and/or to fasten the sections 24 and 26 to the electronic device 12.


Under another example manufacturing method, the cooling block 20 may be molded as a single piece. For instance, the cooling block 20 may be made from a castable material, such as epoxy resin or urethane, that is cast about a passage defining material, such as wax, which is formed in the desired size and shape of the cooling passages 22. After the cooling block 20 has been cast, the cooling block 20 may be sufficiently heated, for example, to melt the passage defining material so that the passages 22 are defined in the cooling block 20.


As yet another example, the cooling block 20 may be formed from molded glass, ceramic, metal or composite material, such as epoxy resin with aramid fibers and/or carbon fibers.


Because the cooling block 20 may be made from any suitable moldable material, the material for the cooling block 20 may be selected to match, complement or otherwise correlate to a material used to make the electronic device 12. For example, if the electronic device 12 is an integrated circuit board having a glass or ceramic substrate, the cooling block 20 may be made of the same or similar material, such that the coefficient of thermal expansion for the cooling block 20 may be the same as or similar to the coefficient of thermal expansion for the substrate of the electronic device 12. As a result, the cooling block 20 and the substrate of the electronic device 12 may expand and contract at the same or similar rates due to temperature changes.


Because the thermal expansion rates of the cooling block 20 and electronic device 12 may be the same or similar, wear and tear on the electronic device 12 due to temperature changes may be reduced.


In one embodiment, the coefficient of thermal expansion for the cooling block 20 may be in the range of 90% to 110% of the coefficient of thermal expansion for the substrate. In another embodiment, the coefficient of thermal expansion for the cooling block 20 may be in the range of 95% to 105% of the coefficient of thermal expansion for the substrate.


Furthermore, the cooling block 20 may be made in any suitable size and shape. For example, the cooling block 20 may have a generally planar body, such as shown in FIGS. 1-3. As another example, the cooling block 20 may have an annular shaped body so that it may be positioned around a complementary electronic device 12, such as a motor. Such a body may be made as one piece, or multiple ring-shaped pieces or arcuate segments that are attached together.



FIG. 5 shows another embodiment of a heat generating component and heat sink assembly in accordance with the present disclosure, which may be used with the cooling system 10 for example. That embodiment includes an electronic device 112 sealed against a molded cooling block 120 such as with fasteners and/or an adhesive. The assembly may further include a seal member 121, such as a rubber seal, positioned between the electronic device 112 and the cooling block 120.


The cooling block 120 includes one or more molded cooling passages 122 that allow a cooling medium to directly contact the electronic device 112. For example, one or more of the cooling passages 122 may be open toward the electronic device 112, as shown in FIG. 5.


The cooling block 120 may be made of any suitable material and in any suitable manner. For example, the cooling block 120 may be made of any of the materials and by any of the methods described above with respect to the cooling block 20.



FIG. 6 shows another embodiment 210 of a cooling system for cooling a heat generating components, such as an electronic device 212. The cooling system 210 may be a phase-change cooling system, for example, and may include a compressor 213, a condenser 214, a pump 215, an expansion valve 216 and a heat sink 218 in accordance with the present disclosure.


The compressor 213 may be used to compress a cooling medium, which may be in the form of a gas or mixture of gasses. For example, the cooling medium may be ethane (R-170), 1,1,1-Trifluoroethane (R-143a), or nitrogen (R-728). The compressed gas may then be routed to the condenser 214 where it is condensed into a liquid. The liquid may then be routed through the expansion valve 216, such as via pumping action of the pump 215. The liquid may then evaporate in the heat sink 218 and absorb heat from the electronic device 212.


Referring to FIGS. 6-8, the heat sink 218 includes a molded cooling block 220 having one or more molded cooling passages 222 that receive the cooling medium. For example, the cooling passages 222 may include an inlet passage 222a, an outlet passage 222b, multiple lateral passages 222c, multiple first vertical passages 222d that connect the inlet passage 222a to the lateral passages 222c, and multiple second vertical passages 222e that connect the lateral passages 222c to the outlet passage 222b. Furthermore, the cooling block 220 is configured to be positioned in sufficient heat transfer relationship with respect to the electronic device 212 so that the cooling medium receives heat from the electronic device 212 as the cooling medium passes through the passages 222.


In the embodiment shown in FIGS. 7 and 8, the heat sink 218 also includes a heat transfer member 224, such as a heat transfer plate, attached to the cooling block 220. For example, the heat transfer member 224 may be received in a recess 226 of the cooling block 220 and may attached to the cooling block 220 with fasteners and/or adhesive. A sealing member may also be positioned between the cooling block 220 and the heat transfer member 224.


The heat transfer member 224 is closely associated with the electronic device 212 so that heat may sufficiently transfer from the electronic device 212 to the heat transfer member 224 and then to the cooling medium. For example, the heat transfer member 224 may be positioned immediately adjacent the electronic device 212, and may also be in direct contact with the electronic device 212.


Referring to FIG. 8, the heat transfer member 224 may partially define the cooling passages 222. For example, the heat transfer member 224 may define bottom portions of the cooling passages 222.


The cooling block 220 may be made of any suitable material and in any suitable manner. For example, the cooling block 220 may be made of any of the materials and by any of the methods described above with respect to the cooling block 20.


As a more specific example, the cooling block 220 may be made of injection molded plastic, or plastic composite material, using a suitable mold, such as mold 228 shown in FIG. 9. Mold 228 includes first and second mold portions 230 and 232, respectively, that may be closed together to form a cavity 234. The first mold portion 230 includes suitable projections 236 for forming the lateral passages 222c, the vertical passages 222d and 222e, and the recess 226. The second mold portion 232 includes movable or retractable projections 238 that are movable into the cavity 234 to form the inlet passage 222a and the outlet passage 222b. The projections 238 may also be moved out of the cavity 234 after the plastic has been introduced into the cavity to form the cooling block 220, so that the cooling block 220 may be removed from the mold 228.


The heat transfer member 224 may also be made of any suitable material and in any suitable manner. For example, the heat transfer member may be made of stamped or cast metal, such as aluminum or copper.


Because cooling blocks according to the present disclosure can be made of any suitable moldable material and with any suitable molding process, material costs and manufacturing costs can be reduced. In addition, cooling blocks with relatively complex cooling passage configurations can be efficiently and cost-effectively produced. For example, relatively dense cooling passage configurations may be readily molded into a cooling block in areas requiring significant heat transfer between the cooling block and the associated heat generating component or components. As a result, liquid cooling systems and/or phase-change cooling systems may be cost-effectively utilized in a large variety of applications.


While embodiments of the invention have been illustrated and described, it is not intended that these embodiments illustrate and describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. For example, any of the above described heat sink embodiments may be used with either a liquid cooling system or a phase-change cooling system.


While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the invention.

Claims
  • 1. A heat sink for use with a heat generating component, the heat sink comprising: a molded cooling block including a molded cooling passage for receiving a cooling medium, wherein the cooling block is configured to be positioned in sufficient heat transfer relationship with respect to the heat generating component so that the cooling medium is able to receive heat from the heat generating component when the cooling medium is received in the cooling passage;wherein the cooling block includes first and second sections that are connected together and that each partially define the cooling passage.
  • 2. The heat sink of claim 1 wherein at least one of the sections of the cooling block comprises molded plastic.
  • 3. The heat sink of claim 1 wherein at least one of the sections of the cooling block comprises a composite material.
  • 4. The heat sink of claim 1 wherein at least one of the sections of the cooling block comprises molded metal.
  • 5. The heat sink of claim 1 wherein at least one of the sections of the cooling block includes a molded body portion, and one or more alignment members that are insert molded with the body portion, and wherein the one or more alignment members are for aligning the at least one section with respect to the heat generating component.
  • 6. The heat sink of claim 1 wherein at least one of the sections of the cooling block includes a molded body portion and one or more fastener members that are insert molded with the body portion, and wherein the fastener members are for fastening the at least one section to the heat generating component.
  • 7. The heat sink of claim 1 wherein each of the first and second sections of the cooling block includes a molded body portion, an alignment member that is insert molded with the body portion, and a faster member that is insert molded with the body portion, and wherein the alignment members are for aligning the first and second sections with respect to the heat generating component, and the fastener members are for fastening the first and second sections to the heat generating component.
  • 8. The heat sink of claim 1 wherein the first and second sections of the cooling block are configured to define the cooling passage such that the cooling medium is receivable in the cooling passage between the first and second sections of the cooling block.
  • 9. The heat sink of claim 8 wherein the cooling passage is configured to be spaced away from the heat generating component when the heat sink is used with the heat generating component, and wherein the cooling passage is configured such that no cooling medium flows between the cooling block and the heat generating component when the heat sink is used with the heat generating component and the cooling medium is received in the cooling passage.
  • 10. An electronic circuit assembly comprising: a circuit assembly body; anda molded cooling block attached to the circuit assembly body and including a molded cooling passage for receiving a cooling medium, wherein the cooling block is positioned in sufficient heat transfer relationship with respect to the circuit assembly body so that the cooling medium is able to receive heat from the circuit assembly body when the cooling medium is received in the molded cooling passage, and wherein the cooling block includes first and second sections that are connected together and that each partially define the cooling passage.
  • 11. The circuit assembly of claim 10 wherein the first and second sections of the cooling block each comprise molded plastic.
  • 12. The circuit assembly of claim 10 wherein the circuit assembly body includes an alignment member, and each of the first and second sections of the cooling block includes a molded body portion, and an alignment member that is insert molded with the body portion, and wherein the alignment member of the circuit assembly body cooperates with the alignment members of the first and second sections of the cooling block to align the first and second sections of the cooling block with respect to the circuit assembly body.
  • 13. The circuit assembly of claim 10 wherein each of the first and second sections of the cooling block includes a molded body portion, and a fastener member that is insert molded with the body portion, and wherein the assembly further includes an additional fastener member that cooperates with the circuit assembly body and the fastener members of the first and second sections of the cooling block to fasten the first and second sections of the cooling block to the circuit assembly body.
  • 14. The circuit assembly of claim 10 wherein the first and second sections of the cooling block are configured to define the cooling passage such that the cooling passage is spaced away from the circuit assembly body and such that the cooling medium is receivable in the cooling passage between the first and second sections of the cooling block, and wherein the cooling passage is configured such that no cooling medium flows between the cooling block and the circuit assembly body when the cooling medium is received in the cooling passage.
  • 15. A method for making a heat sink for use with a heat generating component, the method comprising: molding first and second sections of a cooling block such that each section partially defines a molded cooling passage; andfastening the first and second sections together such that the first and second sections cooperate to define the cooling passage such that a cooling medium is receivable in the cooling passage between the first and second sections;wherein the cooling block is configured to be positioned in sufficient heat transfer relationship with respect to the heat generating component so that the cooling medium is able to receive heat from the heat generating component when the cooling medium is received in the molded cooling passage.
  • 16. The method of claim 15 wherein the molding step comprises molding plastic to form the first and second sections of the cooling block.
  • 17. The method of claim 15 further comprising positioning one or more alignment members in a mold, and wherein the molding step comprises introducing moldable material into the mold to form at least one of the sections of the cooling block such that the at least one section includes the one or more alignment members.
  • 18. The method of claim 15 further comprising positioning one or more fastener members in a mold, and wherein the molding step comprises introducing moldable material into the mold to form at least one of the sections of the cooling block such that the at least one section includes the one or more faster members.
  • 19. The method of claim 18 wherein the fastening step comprises fastening the first and second sections together using the one or more faster members.
  • 20. The method of claim 15 wherein the cooling passage is formed such that no cooling medium is flowable between the cooling block and the heat generating component when the heat sink is used with the heat generating component and the cooling medium is received in the cooling passage.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a division of U.S. application Ser. No. 12/491,497 filed Jun. 25, 2007, the disclosure of which is incorporated in its entirety by reference herein.

Divisions (1)
Number Date Country
Parent 12491497 Jun 2009 US
Child 13833345 US