Molecular beam source for use in accumulation of organic thin-films

Information

  • Patent Application
  • 20050247267
  • Publication Number
    20050247267
  • Date Filed
    July 18, 2005
    18 years ago
  • Date Published
    November 10, 2005
    18 years ago
Abstract
A molecular beam source for use in accumulation of organic thin-films, for enabling forming of a uniform thin-film on film-forming surfaces of a large-sized substrate, but without producing deposition or separation of a film-forming material in an opening for discharging molecules of the film-forming material, wherein a valve 33 is disposed in a space staring from a side of a molecule heating portion 12 and reaching to a molecule discharge opening 14 for discharging the generated molecules of the film-forming material towards a film-forming surface, and further heaters 18 and 19 are provided at a side of the molecule discharge opening 14, for heating the molecules of the film-forming material to be discharged from. At the side of the molecule discharge opening 14 are provided an exterior guide 13 having a taper-like guide wall, and also an interior guide 16 having a taper-like guide wall, which is provided within an inside of the exterior guide. Between those exterior guide 13 and interior guide 16, there is formed such a molecule discharge passage 17, that the diameter thereof gradually increases along a direction of discharging the molecules therefrom. Those heaters 18 and 19 are provided on the exterior guide 13 and the interior guide 16, respectively, and further, other than that, there is provide a heater 20 penetrating through the molecule discharge opening 14, whereby narrow and/or blockage hardly occur in the discharge opening.
Description
BACKGROUND OF THE INVENTION

The present invention relates to a molecular beam source for use in accumulation of organic thin-films, for heating a material to be formed on a surface of a solid body or matter, such as, a substrate, etc., in the form of a thin-film, thereby melting and evaporating the film-forming material; i.e., generating evaporated molecules for growing up the thin-film upon the surface of the solid body, and it relates to, in particular, a molecular beam source for use in accumulation of the thin-film of an organic material, being suitable for accumulating the thin-film of an organic material upon the film forming surface of the solid body, such as, the substrate, etc.


In recent years, attention is paid upon organic thin-film elements, such as, an organic electro luminescence (i.e., EL) and/or an organic semiconductor, as being typical or representative ones thereof. With such the thin-film elements, an organic material is heated within a vacuum, so as to blast the vapor thereof onto the substrate, and then it is cooled down; thereby, to be solidified or bonded thereon. In general, the following method is applied, wherein an organic material is put into a melting pot or a crucible, which is made of a material having high meting-point, such as, tungsten, etc., and then the material to be formed into a film is heated up through heating the periphery of the crucible by means of a heater; thereby, generating the vapor thereof to be blasted onto the substrate.


However, since almost of the organic materials, i.e., the film forming materials, are inferior, in particular, in the heat conductivity thereof, it is impossible to head the film-forming material in uniform, by means of such the evaporating means as was mentioned above, and therefore there is a drawback that it results into unevenness or un-uniformity in generation of the vapor. It is also apparent that, such the drawback brings about a further large problem, in particular, if trying to put a large amount of the organic material into the crucible.


Then, as is described in the following Patent Document 1, it is proposed to put a material being thermally and chemically stable, as wall as, being greatly superior to the film forming material in the thermal conductivity thereof, together with that film forming material, into the crucible; thereby, obtaining solution of such the drawback mentioned above.


Further, as another drawback relating to the evaporating means of the film forming material, there is also pointed out an ill effect; i.e., since the vapor of the organic film-forming material can be generated under the condition of high vapor pressure and low temperature, the vapor of the film forming material is unintentionally or unexpectedly generated if only putting that material into the crucible and disposing it within a vacuum, and thereby bringing about the contamination onto the substrate. For dealing with such the drawback mentioned above, there is proposed an idea, as is described in the following Patent Document 2, of adjusting an amount of vapor through a needle valve, while bringing the crucible into a closed type in the structure thereof.


Patent Document 1: Japanese Patent Laying-Open No. 2003-2778; and


Patent Document 2: Japanese Patent Laying-Open No. 2003-95787.


BRIEF SUMMARY OF THE INVENTION

From studies made by the inventors of the present invention, it is possible to generate the vapor uniformly, by putting the material into the crucible, being superior in the thermal conductivity, together with the film forming material. However, it is also found out that, if trying to form a thin-film of the organic material, uniformly or evenly, upon the film-forming surface of a large-sized substrate, it is necessary to take a large distance between an evaporation source and the substrate, and therefore it deteriorates or lowers an efficiency of using the material, greatly. Also, though an interruption of an opening for discharging molecules by means of such the needle valve is a superior one for achieving control upon discharge/stoppage of the vapor of material, however, it is too narrow, as being the opening for discharging the molecules therefrom; i.e., near to a point-like, and therefore, there also brings about a drawback that it cannot be applied into the forming of a uniform thin-film upon such the film-forming surface of the large-sized substrate.


Also, the organic film-forming material has the high vapor pressure, and it generates the vapor thereof at low temperature; however, it can be easily re-condensed due to lowering of temperature. For this reason, when the vapor of the film-forming material makes contact with a wall surface in the vicinity of the opening for discharging the molecules and when the temperature goes down, then the organic film-forming material is separated or deposited on the wall surface. As a result of this, the opening for discharging the molecules therefrom is narrowed or it is blocked; thereby, lowering the efficiency of the film-forming on the substrate, or brining about ill effects in the film-forming. In addition thereto, the organic film-forming material re-condensed or solidified in vicinity of the opening for discharging the molecules therefrom is exfoliated from the wall surface, to be dispersed within a vacuum space floating under the dust-like condition thereof; i.e., increasing the chance that it adheres upon the film surface, on which a film should be formed.


According to the present invention, being achieved by taking the drawbacks owned in relation to such the conventional molecular beam source for use in accumulation of organic thin-films as was mentioned above into the consideration thereof, in particular, by making studies upon the structures of portions for discharging molecules, in particular, in the opening for discharging molecules therefrom, and as a result thereof, an object is to provided a molecular beam source for use in accumulation of organic thin-films, enabling to form an uniform thin-film upon the film-forming surface of the large-sized substrate, as well as, preventing the film-forming material from being separated or deposited in the opening for discharging molecules of the film-forming material, thereby hardly causing narrow and/or blockage in the opening for discharging.


For accomplishing the object mentioned above, according to the present invention, firstly there is provided a molecular beam source for use in accumulation of organic thin-films, in particular, for use of evaporation of an organic material, comprising: a vapor generating source; an exterior guide having a taper-like guide wall on a side of a molecule discharge opening for discharging molecules of a film-forming material, which are generated in said vapor generating source, towards a film-forming surface; an interior guide being provided within an inside of said exterior guide, and having a taper-like guide wall; a molecule discharge passage being formed between said exterior guide and said interior guide, and having a taper having a diameter thereof, being gradually enlarged along with a direction of discharging molecules. Heaters are provided within the exterior guide and the interior guide, respectively, and thereby forming the heaters within an outside and an inside of the molecule discharge passage.


With such the molecular beam source of disposing the heater at the molecule discharge opening where the vapor can be easily re-condensed, so that the evaporation material is prevented from being separated or deposited in the vicinity of the molecule discharge opening, narrow and/or blockage will hardly occur in the opening for discharging molecules, which will be caused due to the re-condensation or separation of the vapor. This enables discharging of the vapor, with stability.


Also, according to the present invention, with the molecular beam source disposing such the heaters as was mentioned above, it further comprises a heater, being provided penetrating through said molecule discharge passage, neighboring to members for supporting said exterior guide and said interior guide; therefore, it is possible to prevent the vapor from being produced to be re-condensation or solidification thereof on the support members, which penetrate through the molecule discharge passage. With this, it is also possible to protect the molecule discharge passage from being narrowed and/or blocked, in particularly, in a portion just before reaching to the molecule discharge opening.


And also, according to the present invention, with the molecular beam source disposing such the heaters as was mentioned above, it further comprises a valve provided on a way starting from said vapor generating source and reaching to said molecule discharge opening for discharging the molecules of the film-forming material, which is generated in said vapor generating source, towards the film-forming surface; therefore, it is possible to heat the material, but without leaking out the vapor, by closing the valve when starting the evaporation thereof. For this reason, it is possible to maintain a balanced pressure, easily, at the pressure depending upon the material temperature at a side of the vapor-generating source. Under this condition, it is possible to maintain a completely uniform or even pressure at the side of the vapor-generating source.


However, according to the present invention, within the molecular beam source, disposing such the heaters as was mentioned above, the heater provided at the side of the molecule discharge opening has winding density thereof, being dense or crowded, comparing to that of the heater provided at the side of the vapor generating source. With doing this, it is possible to prevent the vapor from being re-condensed or solidified in the molecule discharge opening, with certainty.


Further, according to the present invention, within the molecular beam source, disposing such the heaters as was mentioned above, the interior guide and the exterior guide are made movable with each other, directing to the film-forming surface. With this, it is possible to adjust an opening portion of the molecule discharge opening to be wide or narrow. Also, since it is possible to shift the central position of the opening portion of the molecule discharge opening, therefore the discharge condition of molecules can be determined, arbitrarily, depending upon, for example, sizes of an area, etc., on the film-forming surface to be formed with a thin-film thereon.




BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING

Those and other objects, features and advantages of the present invention will become more readily apparent from the following detailed description when taken in conjunction with the accompanying drawings wherein:



FIG. 1 is a vertical cross-section view for showing an embodiment of the molecular beam source for use in accumulation of organic thin-films, according to an embodiment of the present invention;



FIG. 2 is a front view of the molecular beam source for use in accumulation of organic thin-films mentioned above;



FIG. 3 is an enlarged vertical cross-sectional side view for showing a principle portion, including a molecule discharge portion and a cooling/heating unit disposed in an outside thereof, of the molecular beam source for use in accumulation of organic thin-films mentioned above;



FIG. 4 is an enlarged vertical cross-sectional side view for showing the principle portion, in particular, under the condition when forming a film on a substrate with using the molecular beam source for use in accumulation of organic thin-films mentioned above;



FIG. 5 is an enlarged vertical cross-sectional side view for showing the principle portion, in particular, under the condition when forming the film on the substrate at a position of shifting the interior guide from that shown in FIG. 4 in the above;



FIG. 6 is a vertical cross-section view for showing a heating material to be received within a crucible of the molecular beam source for use in accumulation of organic thin-films mentioned above;



FIG. 7 is a graph for showing temperatures on a side of a molecule heating chamber and also on a side of a molecule discharge opening, when discharging the molecules therefrom, while heaters are provided not only on the molecule heating chamber, but also on the side of molecule discharge opening, within the molecular beam source for use in accumulation of organic thin-films mentioned above; and



FIG. 8 is a graph also for showing temperatures at a side of a molecule heating chamber and at a side of molecule discharge opening, when discharging the molecules, while the heaters are provided not only on the molecule heating chamber, but also on the side of molecule discharge opening, within the molecular beam source for use in accumulation of organic thin-films mentioned above.




DETAILED DESCRIPTION OF THE INVENTION

In accordance with the present invention, a valve is disposed on a route of a vapor, thereby enabling to shut down the vapor to be discharged from. Also, a heater is provided at a side a molecule discharge opening, where the vapor can be easily condensed or solidified; thereby, preventing the evaporation material from being separated or deposited in the vicinity of the molecule discharge opening.


Hereinafter, embodiments according to the present invention will be fully explained by referring to the attached drawings.


Embodiment


FIG. 1 shows a molecular beam source cell 1 for irradiating a film-forming material “a”, through sublimation or evaporation thereof.


A heating material receiving portion 3 of the molecular-beam source cell 1 has a cylinder-like vapor-generating source 31 made of a metal, such as, SUS or the like, i.e., a material having a high thermal conductivity, and within this crucible 31 is received the heating material “a” to be heated. This heating material “a” has, as shown in FIG. 6, a coating of film-forming material “b”, which is a main component of a film, on the surface a core, i.e., a grain-like thermo-conductive or heat-transfer medium “c”. Such the heating material “a” is received within the crucible 31 of the heating material receiving portion 3 mentioned above.


Also, in the place of coating of the film-forming material “b” on the surface of the heat-transfer medium “c”, but the film-forming material “b” and the heat-transfer medium “c” may be received within the crucible 31 of the heating material receiving portion 3, under the condition of being uniformly mixed at an appropriate ratio or combination thereof. For example, the volume ratio between the film-forming material “b” and the heat-transfer medium “c”, to be received within is, preferably, 70%:30% or more or less.


The heat-transfer medium “c” is stable, thermally and chemically, and further it is made of a material having the heat conductivity higher than that of the film-forming material “b”. For example, the heat-transfer medium “c” is made of a high heat-transfer material, such as, Pyrolithic Boron Nitride (PBN), silicon carbide, or aluminum nitride, etc.


As is shown in FIG. 1, around the crucible 31 is provided a heater 32, and an outer periphery thereof is surrounded by a shroud 39, which is cooled down with using a liquid nitrogen, etc. By means of a temperature measuring means (not shown in figures), such as, a thermocouple, etc., for example, which is provided on the crucible 31, the calorific or heat value of the heater 32 is controlled, and the film-forming material “b” received within the crucible 31 is sublimated or evaporated through heating of the heating material “a” within the crucible 31; thereby generating molecules thereof. Also, when stopping the heat generation of the heater 32, so as to cool down the interior of the crucible by means of the shroud 39, then the heating material “a” is cooled down, and at the same time, the sublimation or the evaporation of the film-forming material is stopped.


When heating, the film-forming material “b” is heated up through the heat-transfer medium “c”. Since the heat-transfer medium “c” is higher in the heat conductivity than the film-forming material “b”, therefore, the heat is transferred or propagated up to a center of the crucible 31 with an aid of this heat-transfer medium “c”, even in a case where the heat cannot reach up to the center of the crucible 31 only with the film-forming material “b”, and then also the film-forming material “b” locating at the center of the crucible 31 is heated, to be melted and/or evaporated. With doing so, the film-forming material “b” received within the crucible 31 can be heated, melted, and evaporated, thoroughly or uniformly.


Also, since the heat-transfer medium “c” is made of the material, which is stable, thermally and chemically, such as, Pyrolithic Boron Nitride (PBN), silicon carbide, or aluminum nitride, etc., it will not melted nor evaporated, if being heated by the heater 32, up to such a degree that the film-forming material “b” is evaporated. Accordingly, no molecule of the heat-transfer medium “c” is contained within the vapor molecules emitted from a vapor discharge opening 2 of the crucible 31, and therefore it gives no ill influence upon the composition of a film of growing up crystals thereon.


However, in case where the film-forming material “b” is of organic low-molecular material or of organic polymeric material, having an EL luminescence function or capacity, the temperature of vaporization is far low, comparing to that of a metal, such as, copper, etc.; i.e., that of almost of them be equal to or less than 200° C. On the other hand, the heat-durable temperature thereof is also relatively low, and therefore, it is necessary to heat at temperature, being equal or higher than the vaporization temperature and also equal or lower than the heat-durable temperature, for obtaining the evaporation of such the organic low-molecular or organic polymeric material mentioned above.


A valve 33 is provided on a side where molecules of the film-forming material are discharged from the crucible 31. This valve 33, so-called a needle valve, has a sharp needle 34 and a valve seat 35 including a molecule pass opening, which can be closed, or choked or narrowed in the cross-section area of a flow passage thereof, through insertion of a tip of the needle 34. The needle 34 mentioned above is moved into a direction of the center axis thereof, through a linear movement, which is introduced through a bellows 37 with an aid of a servomotor 36.


As is shown in FIG. 1, the molecule pass opening of the valve seat 35, which can be opened or closed by this valve 33 is communicated or conducted through an introduction passage 21 to a molecule discharge portion 11. This molecule discharge portion 11 has a cylindrical molecule heater chamber 12, and a heater 15 is provided around of this molecule heater chamber 12. This molecule heater chamber 12 is communicated to the valve 33 mentioned above through the introduction passage 21 for guiding or introducing the molecules evaporated into the molecule heater chamber 12. The molecules of the film-forming material, leaking from a side of the valve 33 mentioned above and reaching to the molecule discharge portion 11 through the introduction passage 21, then it is heated, again, up to a desired temperature by the heater 15 within the molecule heater chamber 12, and is emitted from a molecule discharge opening 14 towards a substrate, which is disposed within a vacuum chamber or vessel.



FIGS. 2 and 3 show the details of the molecule discharge portion 11, at a tip of the molecular-beam source cell 1.


Between the periphery portion at the tip of the molecule heater chamber 12 and the molecule discharge opening 14, there is provided an exterior guide 13. An inner surface of this exterior guide 13 defines a taper-like guide surface, gradually enlarging the diameter thereof, along a direction from the tip periphery side of the molecule heater chamber 12 to the molecule discharge opening 14.


Further, within an inside of this exterior guide 13, there is provided an interior guide 16. As is shown in FIG. 3, an outer surface of this interior guide 16 also defines a guide surface, having a slope or an inclination same to that of the inner guide surface of the exterior guide 13 mentioned above; i.e., this guide surface is also shaped to be the taper-like, gradually enlarging the diameter thereof along the direction from the tip periphery side of the molecule heater chamber 12 to the molecule discharge opening 14. Between the guide surface of this interior guide 16 and the guide surface of the exterior guide 13, there is defined a molecule discharge passage 17 reaching from the tip periphery side of the molecule heater chamber 12 to the molecule discharge opening 14.


Into the molecule discharge passage 17 defined between the interior guide 16 and the interior guide 13 are inserted supports 23, in radial directions at a distance of 45°. Each of the supports 23 of the embodiment shown in the figure is made up with two (2) pieces of plate-like members, which are disposed on the interior guide 16 and the exterior guide 13 separated at a distance in the circumferential direction thereof. Into those supports 23 are inserted screws 24, and those supports 23 are fixed on to the interior guide 16 and the exterior guide 13 by means of the screws 24. With an aid of such supporting structures of the support members, mainly including those supports 23 and the screws 24, etc., the interior guide 16 and the exterior guide 13 are disposed in a concentric manner with fitting the central axes thereof to each other, and are fixed to each other.


The interior guide 16 is able to move towards the exterior guide 13, into a direction directed to the film-forming surface of a substrate, on which a thin-film should be formed, and to be fixed at an arbitrary position thereon. The movable direction of that interior guide 16 is the vertical direction (or up-down direction) in FIG. 3. The position of the interior guide 16, which is shown by two-dots chain lines in FIG. 3, indicates that when it is moved backward from the position of the interior guide 16 shown by solid lines back to a side of the molecule discharge portion 11. At the time when the interior guide 16 locates at the position shown by the solid lines, the taper-like guide surface of the interior guide 16 is close to the guide surface, i.e., the inner surface of the exterior guide 13, comparing to the position shown by the two-dots chain lines; therefore, the molecule discharge passage 17 comes to be narrow. FIG. 4 shows the condition when the interior guide 16 is at the position shown by the solid lines in FIG. 3. Also, FIG. 5 shows the condition when the interior guide 16 is at the position shown by the two-dots chain lines in FIG. 3. In this manner, the interior guide 16 is able to move into the vertical direction in FIG. 3, and also it is fixed at the arbitrary position thereof.


On an outside of the exterior guide 13 is disposed a cooling/heating unit 21, which comprises a heater 18 and a cooler 22, and this exterior guide 13 is surrounded by the cooling/heating unit 21. The cooler 22 of the cooling/heating unit 21 cools down or refrigerates the exterior guide 13 from the surrounding thereof, by using of a cooling liquid, for example, a water or a liquid nitrogen, etc. Also, the heater 18 of the cooling/heating unit 21, applying a micro-heater therein, for example, heats up the exterior guide 13 from the surrounding thereof, thereby heating the molecule discharge passage 17 provided within the inside thereof. The density of calorific value of the heater 18 of the cooling/heating unit 21, i.e., an amount of heat generated per a unit area thereof, it is determined to be larger than that of the heater 15, which is provided within the periphery of the molecule heater chamber 12. For this reason, the winding density of the heater 18 is more crowded or denser than that of the heater 15 in the molecule heater chamber 12.


Furthermore, also into the interior guide 16 is installed a heater 19. This heater 19, also applying the micro-heater therein, for example, heats up the interior guide 16 from an inside thereof, thereby heating the molecule discharge passage 17 provided in the outside thereof. The density of calorific value of the heater 19 of the interior guide 16, i.e., an amount of heat generated per a unit area thereof, it is determined to be larger than that of the heater 15, which is provided within the periphery of the molecule heater chamber 12. For this reason, the winding density of the heater 19 is more crowded or denser than that of the heater 15 in the molecule heater chamber 12.


Within the molecule discharge passage 17 provided between the exterior guide 13 and the interior guide 16, there is disposed or wired a heater 20, penetrating therethrough. This heater 20 penetrates through the molecule discharge passage 17, under the condition of being inserted into the supports 23 together with the screws inserted into the supports 23 mentioned above; i.e., being close to the supports 23 and the screws 24 therein. As the heater 20 penetrating through the molecule discharge passage 17, it is appropriate to utilize an intermediate line of the heater connecting between the exterior heater 18 and the interior heater 19, however the heater 20 may be made separate from, independently, from those heaters 18 and 19.


In this manner, in addition that the heaters 18 and 19 are disposed in the vicinity of the molecule discharge opening where the vapor can easily re-condensed or solidified, again; i.e., in more details, at the outside and the inside of the molecule discharge passage 17, and further with provision of the heater 20 penetrating through the in the molecule discharge passage 17, then, the evaporation material is prevented from being deposited on or separated from in the vicinity of the molecule discharge opening 14, with certainty. With this, narrow and/or blockage hardly occur in the molecule charge opening, which will be generated due to re-condensation or solidification of the vapor. In particular, since the sensor 20 penetrates through the molecule discharge passage 17 under the condition of being inserted into the supports 23 together with the screws 24 inserted within the supports 23, it enables to prevent the vapor from being re-condensed or solidified on the support members, such as, the support 23, the screw 24, etc., which are provided penetrating through the molecule discharge passage 17, with certainty.



FIGS. 7 and 8 show results, obtained through measurements of temperatures on a wall surface of the interior guide 16, when heating up the molecule discharge passage 17, but further with provision of the heater 18 on a side of the exterior guide 13 and the heater 19 on a side of the interior guide 16 other than the heater 15 on a side of the molecule heater chamber 12, in an actual test or experiment of molecule discharge. In particular, FIG. 7 shows the result of measurement, which is made at a tip side of the wall surface of the interior guide 16, near to the molecule discharge opening 14, as being a temperature-measurement point. And, FIG. 8 shows the result of measurement, which is made at a base portion of the support, near to the molecule heater chamber 12, as being a temperature-measurement point. The measurements are made while changing the wall-surface temperature of the molecule heater chamber 12 within a range from 200° C. to 400° C., with heating a side of the molecule heater chamber 12 by means of the heater 15. In those cases, including cases of no provision of the heater 18 on the side of the exterior guide 13 and the heater 19 on the side of the interior guide 16, the measurements are made with using several kinds of heaters to be the heater at the side of the molecule discharge opening 14, being different in the density of windings thereof. The winding densities of the heater 18 and 19 are indicted, each by a ratio to that of the heater 15 at the side of the molecule heater chamber 12.


Since the support members, for fixing the exterior guide 13 and also the interior guide 16, are facing or fronting on an outside where the molecules are discharged, they can be easily lowered in the temperature thereof, due to radiation. For this reason, the molecules of the film-forming material to be discharged from the molecule discharge opening 14 can be easily condensed or solidified, again, when they are in touch on or contact with the exterior guide 13 and/or the interior guide 16, due to the heat absorption thereon.


Then, with provision of the heater 18 at the side of the exterior guide 13, having the winding density as four (4) or more times large as the heater 15 at the side of the molecule heater chamber 12; it is possible to bring the wall-surface temperature of the interior guide 16 to be near that of the molecule heater chamber 12. Further, also with provision of the heater 19 at the side of the exterior guide 16, and bringing the winding densities of the both to be as twelve (12) times large as the heater 15 at the side of the molecule heater chamber 12; it is possible to keep the wall-surface temperature of the interior guide 16 to be equal or higher than that of the molecule heater chamber 12. Moreover, with insertion of the heater 20 into the supports 23 together with the screws 24, penetrating through the molecule discharge passage 17; therefore, also the support members, such as, the supports 23 and the screws 24, etc., which are provided penetrating through the molecule discharge passage 17, can be maintained to be similar to, in particular, with the temperature thereof.


As was fully mentioned in the above, according to the molecular beam source for use in accumulation of the organic thin-films, it is possible to prevent the vapor-generating source from unexpectedly discharging the vapor therefrom, thereby, enabling the discharge of vapor under a stable standing condition, and therefore, it is possible to form the thin-film, with stability, on the film-forming surface of the substrate. With this, it is also possible to form a uniform thin-film, even on a large-sized substrate. Further, with the heater(s) provided at the side of vapor discharge opening, it is possible to prevent the vapor of film-forming material from being re-condensed or solidified, to be deposition or separation of the film-forming material in the vapor discharge opening. With this, narrow and/or blockage will hardly occur in the molecule discharge opening; therefore, it is possible to discharge the molecules, with stability for a long time-period. And, it enables a stable film forming.


The present invention may be embodied in other specific forms without departing from the spirit or essential feature or characteristics thereof. The present embodiment(s) is/are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the forgoing description and range of equivalency of the claims are therefore to be embraces therein.

Claims
  • 1. A molecular beam source for use in accumulation of organic thin-films, for evaporation of an organic material, comprising: a vapor generating source; an exterior guide having a taper-like guide wall on a side of a molecule discharge opening for discharging molecules of a film-forming material, which are generated in said vapor generating source, towards a film-forming surface; an interior guide being provided within an inside of said exterior guide, and having a taper-like guide wall; a molecule discharge passage being formed between said exterior guide and said interior guide, and having a taper having a diameter thereof, being gradually enlarged along a direction of discharging molecules; and a heater being provided within said molecule discharge passage, for heating the vapor particles of film-forming material to be discharged.
  • 2. The molecular beam source for use in accumulation of organic thin-films, as described in the claim 1, further comprising a valve provided on a way starting from said vapor generating source and reaching to said molecule discharge opening for discharging the molecules of the film-forming material, which is generated in said vapor generating source, towards the film-forming surface.
  • 3. The molecular beam source for use in accumulation of organic thin-films, as described in the claim 1, wherein said interior guide and said exterior guide are movable with each other, directing to the film-forming surface.
  • 4. The molecular beam source for use in accumulation of organic thin-films, as described in the claim 2, wherein said interior guide and said exterior guide are movable to each other, directing to the film-forming surface.
  • 5. The molecular beam source for use in accumulation of organic thin-films, as described in the claim 1, wherein said heater is provided in said exterior guide and said interior guide, respectively.
  • 6. The molecular beam source for use in accumulation of organic thin-films, as described in the claim 2, wherein said heater is provided in said exterior guide and said interior guide, respectively.
  • 7. The molecular beam source for use in accumulation of organic thin-films, as described in the claim 3, wherein said heater is provided in said exterior., guide and said interior guide, respectively.
  • 8. The molecular beam source for use in accumulation of organic thin-films, as described in the claim 4, wherein said heater is provided in said exterior guide and said interior guide, respectively.
  • 9. The molecular beam source for use in accumulation of organic thin-films, as described in the claim 1, further comprising a heater provided penetrating through said molecule discharge passage, neighboring to members for supporting said exterior guide and said interior guide.
  • 10. The molecular beam source for use in accumulation of organic thin-films, as described in the claim 2, further comprising a heater provided penetrating through said molecule discharge passage, neighboring to members for supporting said exterior guide and said interior guide.
  • 11. The molecular beam source for use in accumulation of organic thin-films, as described in the claim 3, further comprising a heater provided penetrating through said molecule discharge passage, neighboring to members for supporting said exterior guide and said interior guide.
  • 12. The molecular beam source for use in accumulation of organic thin-films, as described in the claim 4, further comprising a heater provided penetrating through said molecule discharge passage, neighboring to members for supporting said exterior guide and said interior guide.
  • 13. The molecular beam source for use in accumulation of organic thin-films, as described in the claim 5, further comprising a heater provided penetrating through said molecule discharge passage, neighboring to members for supporting said exterior guide and said interior guide.
  • 14. The molecular beam source for use in accumulation of organic thin-films, as described in the claim 6, further comprising a heater provided penetrating through said molecule discharge passage, neighboring to members for supporting said exterior guide and said interior guide.
  • 15. The molecular beam source for use in accumulation of organic thin-films, as described in the claim 7, further comprising a heater provided penetrating through said molecule discharge passage, neighboring to members for supporting said exterior guide and said interior guide.
  • 16. The molecular beam source for use in accumulation of organic thin-films, as described in the claim 8, further comprising a heater provided penetrating through said molecule discharge passage, neighboring to members for supporting said exterior guide and said interior guide.
  • 17. The molecular beam source for use in accumulation of organic thin-films, as described in the claim 5, wherein said heater provided at the side of said molecule discharge opening is larger in winding density thereof comparing to that of said heater provided at a side of said vapor generating source.
  • 18. The molecular beam source for use in accumulation of organic thin-films, as described in the claim 6, wherein said heater provided at the side of said molecule discharge opening is larger in winding density thereof comparing to that of said heater provided at a side of said vapor generating source.
  • 19. The molecular beam source for use in accumulation of organic thin-films, as described in the claim 7, wherein said heater provided at the side of said molecule discharge opening is larger in winding density thereof comparing to that of said heater provided at a side of said vapor generating source.
  • 20. The molecular beam source for use in accumulation of organic thin-films, as described in the claim 8, wherein said heater provided at the side of said molecule discharge opening is larger in winding density thereof comparing to that of said heater provided at a side of said vapor generating source.
  • 21. The molecular beam source for use in accumulation of organic thin-films, as described in the claim 9, wherein said heater provided at the side of said molecule discharge opening is larger in winding density thereof comparing to that of said heater provided at a side of said vapor generating source.
  • 22. The molecular beam source for use in accumulation of organic thin-films, as described in the claim 10, wherein said heater provided at the side of said molecule discharge opening is larger in winding density thereof comparing to that of said heater provided at a side of said vapor generating source.
  • 23. The molecular beam source for use in accumulation of organic thin-films, as described in the claim 11, wherein said heater provided at the side of said molecule discharge opening is larger in winding density thereof comparing to that of said heater provided at a side of said vapor generating source.
  • 24. The molecular beam source for use in accumulation of organic thin-films, as described in the claim 12, wherein said heater provided at the side of said molecule discharge opening is larger in winding density thereof comparing to that of said heater provided at a side of said vapor generating source.
  • 25. The molecular beam source for use in accumulation of organic thin-films, as described in the claim 13, wherein said heater provided at the side of said molecule discharge opening is larger in winding density thereof comparing to that of said heater provided at a side of said vapor generating source.
  • 26. The molecular beam source for use in accumulation of organic thin-films, as described in the claim 14, wherein said heater provided at the side of said molecule discharge opening is larger in winding density thereof comparing to that of said heater provided at a side of said vapor generating source.
  • 27. The molecular beam source for use in accumulation of organic thin-films, as described in the claim 15, wherein said heater provided at the side of said molecule discharge opening is larger in winding density thereof comparing to that of said heater provided at a side of said vapor generating source.
  • 28. The molecular beam source for use in accumulation of organic thin-films, as described in the claim 16, wherein said heater provided at the side of said molecule discharge opening is larger in winding density thereof comparing to that of said heater provided at a side of said vapor generating source.
Priority Claims (2)
Number Date Country Kind
2004-57049 Mar 2004 JP national
2004-65318 Mar 2004 JP national