MOLECULAR PROFILING FOR CANCER

Information

  • Patent Application
  • 20170039328
  • Publication Number
    20170039328
  • Date Filed
    October 14, 2016
    8 years ago
  • Date Published
    February 09, 2017
    7 years ago
Abstract
Provided herein are methods and systems of molecular profiling of diseases, such as cancer. In some embodiments, the molecular profiling can be used to identify treatments for a disease, such as treatments that were not initially identified as a treatment for the disease or not expected to be a treatment for a particular disease.
Description
BACKGROUND

Disease states in patients are typically treated with treatment regimens or therapies that are selected based on clinical based criteria; that is, a treatment therapy or regimen is selected for a patient based on the determination that the patient has been diagnosed with a particular disease (which diagnosis has been made from classical diagnostic assays). Although the molecular mechanisms behind various disease states have been the subject of studies for years, the specific application of a diseased individual's molecular profile in determining treatment regimens and therapies for that individual has been disease specific and not widely pursued.


Some treatment regimens have been determined using molecular profiling in combination with clinical characterization of a patient such as observations made by a physician (such as a code from the International Classification of Diseases, for example, and the dates such codes were determined), laboratory test results, x-rays, biopsy results, statements made by the patient, and any other medical information typically relied upon by a physician to make a diagnosis in a specific disease. However, using a combination of selection material based on molecular profiling and clinical characterizations (such as the diagnosis of a particular type of cancer) to determine a treatment regimen or therapy presents a risk that an effective treatment regimen may be overlooked for a particular individual since some treatment regimens may work well for different disease states even though they are associated with treating a particular type of disease state.


Patients with refractory or metastatic cancer are of particular concern for treating physicians. The majority of patients with metastatic or refractory cancer eventually run out of treatment options or may suffer a cancer type with no real treatment options. For example, some patients have very limited options after their tumor has progressed in spite of front line, second line and sometimes third line and beyond) therapies. For these patients, molecular profiling of their cancer may provide the only viable option for prolonging life.


More particularly, additional targets or specific therapeutic agents can be identified assessment of a comprehensive number of targets or molecular findings examining molecular mechanisms, genes, gene expressed proteins, and/or combinations of such in a patient's tumor. Identifying multiple agents that can treat multiple targets or underlying mechanisms would provide cancer patients with a viable therapeutic alternative on a personalized basis so as to avoid standard therapies, which may simply not work or identify therapies that would not otherwise be considered by the treating physician.


There remains a need for better theranostic assessment of cancer victims, including molecular profiling analysis that identifies one or more individual profiles to provide more informed and effective personalized treatment options, resulting in improved patient care and enhanced treatment outcomes. The present invention provides methods and systems for identifying treatments for these individuals by molecular profiling a sample from the individual.


SUMMARY OF THE INVENTION

The present invention provides methods and system for molecular profiling, using the results from molecular profiling to identify treatments for individuals. In some embodiments, the treatments were not identified initially as a treatment for the disease.


In an aspect, the invention provides a method of identifying a candidate treatment for a cancer in a subject in need thereof, comprising: (a) determining a molecular profile for the subject on a panel of gene or gene products, wherein the panel of gene or gene products comprises one or more of: ALK, AR, AREG, BRAF, BRCA1, c-KIT, cMET, EGFR, ER, ERBB3, ERCC1, EREG, HER2, KRAS, MGMT, NRAS, PGP (MDR-1), PIK3CA, PR, PTEN, RRM1, SPARC, TLE3, TOPO1, TOPO2A, TS, TUBB3; and (b) identifying a treatment that is beneficially associated with the molecular profile of the subject, thereby identifying the candidate treatment. In an embodiment, the molecular profile comprises protein analysis performed on one or more of AR, cMET, ER, HER2, MGMT, PR, PTEN, SPARC and TLE3. The molecular profile can include gene expression analysis performed on one or more of AREG, BRCA1, EGFR, ERBB3, ERCC1, EREG, PGP (MDR-1), RRM1, TOPO1, TOPO2A, TS, and TUBB3. The molecular profile may comprise fluorescent in situ hybridization (FISH) analysis performed on one or more of cMET and HER2. The molecular profile may also comprise sequence analysis performed on one or more of BRAF, KRAS, NRAS, PIK3CA and c-KIT. In some embodiments, the molecular profile comprises detection of the presence of ALK, an ALK mutation or translocation, and/or EML4-ALK. The ALK can be assessed by RFLP and optionally FISH. In an embodiment, the molecular profile further comprises detection of the presence of VEGFR2.


The cancer can by any cancer disclosed herein or known in the art, including without limitation an acute lymphoblastic leukemia; acute myeloid leukemia; adrenocortical carcinoma; AIDS-related cancer; AIDS-related lymphoma; anal cancer; appendix cancer; astrocytomas; atypical teratoid/rhabdoid tumor; basal cell carcinoma; bladder cancer; brain stem glioma; brain tumor, brain stem glioma, central nervous system atypical teratoid/rhabdoid tumor, central nervous system embryonal tumors, astrocytomas, craniopharyngioma, ependymoblastoma, ependymoma, medulloblastoma, medulloepithelioma, pineal parenchymal tumors of intermediate differentiation, supratentorial primitive neuroectodermal tumors and pineoblastoma; breast cancer; bronchial tumors; Burkitt lymphoma; cancer of unknown primary site (CUP); carcinoid tumor; carcinoma of unknown primary site; central nervous system atypical teratoid/rhabdoid tumor; central nervous system embryonal tumors; cervical cancer; childhood cancers; chordoma; chronic lymphocytic leukemia; chronic myelogenous leukemia; chronic myeloproliferative disorders; colon cancer; colorectal cancer; craniopharyngioma; cutaneous T-cell lymphoma; endocrine pancreas islet cell tumors; endometrial cancer; ependymoblastoma; ependymoma; esophageal cancer; esthesioneuroblastoma; Ewing sarcoma; extracranial germ cell tumor; extragonadal germ cell tumor; extrahepatic bile duct cancer; gallbladder cancer; gastric (stomach) cancer; gastrointestinal carcinoid tumor; gastrointestinal stromal cell tumor; gastrointestinal stromal tumor (GIST); gestational trophoblastic tumor; glioma; hairy cell leukemia; head and neck cancer; heart cancer; Hodgkin lymphoma; hypopharyngeal cancer; intraocular melanoma; islet cell tumors; Kaposi sarcoma; kidney cancer; Langerhans cell histiocytosis; laryngeal cancer; lip cancer; liver cancer; malignant fibrous histiocytoma bone cancer; medulloblastoma; medulloepithelioma; melanoma; Merkel cell carcinoma; Merkel cell skin carcinoma; mesothelioma; metastatic squamous neck cancer with occult primary; mouth cancer; multiple endocrine neoplasia syndromes; multiple myeloma; multiple myeloma/plasma cell neoplasm; mycosis fungoides; myelodysplastic syndromes; myeloproliferative neoplasms; nasal cavity cancer; nasopharyngeal cancer; neuroblastoma; Non-Hodgkin lymphoma; nonmelanoma skin cancer; non-small cell lung cancer; oral cancer; oral cavity cancer; oropharyngeal cancer; osteosarcoma; other brain and spinal cord tumors; ovarian cancer; ovarian epithelial cancer; ovarian germ cell tumor; ovarian low malignant potential tumor; pancreatic cancer; papillomatosis; paranasal sinus cancer; parathyroid cancer; pelvic cancer; penile cancer; pharyngeal cancer; pineal parenchymal tumors of intermediate differentiation; pineoblastoma; pituitary tumor; plasma cell neoplasm/multiple myeloma; pleuropulmonary blastoma; primary central nervous system (CNS) lymphoma; primary hepatocellular liver cancer; prostate cancer; rectal cancer; renal cancer; renal cell (kidney) cancer; renal cell cancer; respiratory tract cancer; retinoblastoma; rhabdomyosarcoma; salivary gland cancer; Sézary syndrome; small cell lung cancer; small intestine cancer; soft tissue sarcoma; squamous cell carcinoma; squamous neck cancer; stomach (gastric) cancer; supratentorial primitive neuroectodermal tumors; T-cell lymphoma; testicular cancer; throat cancer; thymic carcinoma; thymoma; thyroid cancer; transitional cell cancer; transitional cell cancer of the renal pelvis and ureter; trophoblastic tumor; ureter cancer; urethral cancer; uterine cancer; uterine sarcoma; vaginal cancer; vulvar cancer; Waldenström macroglobulinemia; or Wilm's tumor. In an embodiment, the cancer comprises a melanoma and the molecular profile further comprises detection of mutations in one or more of BRAF, GNA11 and GNAQ. In another embodiment, the cancer comprises a non-small cell lung cancer and the molecular profile further comprises sequence analysis of EGFR, protein analysis of EGFR, RFLP analysis of ALK and/or FISH analysis of ALK. In still another embodiment, the cancer comprises a breast cancer and the molecular profile further comprises FISH analysis of TOPO2A, RFLP analysis of ALK and/or FISH analysis of ALK. In one embodiment, the cancer comprises a gastrointestinal stromal tumor (GIST) and the molecular profile comprises sequence analysis of cKIT.


In an aspect, the invention provides a method of identifying a candidate treatment for an ovarian cancer in a subject in need thereof, comprising: (a) determining a molecular profile for the subject on a panel of gene or gene products, wherein the panel of gene or gene products comprises one or more of: cMET, ER, HER2, PR, PTEN, TLE3, BRCA1, ERBB3, ERCC1, RRM1, TOPO1, TOPO2A, TS, and PIK3CA; and (b) identifying a treatment that is beneficially associated with the molecular profile of the subject, thereby identifying the candidate treatment. In an embodiment, the molecular profile comprises protein analysis performed on one or more of cMET, ER, HER2, PR, PTEN and TLE3. The molecular profile can include gene expression analysis performed on one or more of BRCA1, ERBB3, ERCC1, RRM1, TOPO1, TOPO2A, TS. The molecular profile may comprise sequence analysis performed on PIK3CA.


In an aspect, the invention provides a method of identifying a candidate treatment for a breast cancer in a subject in need thereof, comprising: (a) determining a molecular profile for the subject on a panel of gene or gene products, wherein the panel of gene or gene products comprises one or more of: HER2, TOPO2A, ALK, ER, PR, PTEN, TLE3, BRCA1, ERBB3, ERCC1, RRM1, TOPO1, TS, BRAF, KRAS, PIK3CA; and (b) identifying a treatment that is beneficially associated with the molecular profile of the subject, thereby identifying the candidate treatment. In an embodiment, the molecular profile comprises protein analysis performed on one or more of ER, HER2, PR, PTEN, and TLE3. The molecular profile can include gene expression analysis performed on one or more of BRCA1, ERBB3, ERCC1, RRM1, TOPO1, TS. The molecular profile may comprise FISH and/or CISH analysis performed on one or more of HER2 and TOPO2A. The molecular profile may also comprise sequence analysis performed on one or more of BRAF, KRAS, PIK3CA. In some embodiments, the molecular profile comprises detection of the presence of ALK, an ALK mutation or translocation, and/or EML4-ALK. The ALK can be assessed by RFLP and optionally FISH.


In an aspect, the invention provides a method of identifying a candidate treatment for a skin cancer (melanoma) in a subject in need thereof, comprising: (a) determining a molecular profile for the subject on a panel of gene or gene products, wherein the panel of gene or gene products comprises one or more of: MGMT, PTEN, SPARC, ERBB3, ERCC1, TUBB3, BRAF, c-KIT, GNA11, GNAQ, BRAF, NRAS, PIK3CA; and (b) identifying a treatment that is beneficially associated with the molecular profile of the subject, thereby identifying the candidate treatment. In an embodiment, the molecular profile comprises protein analysis performed on one or more of MGMT, PTEN and SPARC. The molecular profile can include gene expression analysis performed on one or more of ERBB3, ERCC1, and TUBB3. The molecular profile may comprise detection of the BRAF V600E mutation, e.g., by sequencing or PCR. The molecular profile may also comprise sequence analysis performed on one or more of c-KIT, GNA11, GNAQ, BRAF, NRAS and PIK3CA. In an embodiment, the molecular profile further comprises detection of the presence of VEGFR2. In an embodiment, the melanoma comprises uveal melanoma and the molecular profile comprises detection of mutations in GNA11 and/or GNAQ.


In an aspect, the invention provides a method of identifying a candidate treatment for a colorectal cancer in a subject in need thereof, comprising: (a) determining a molecular profile for the subject on a panel of gene or gene products, wherein the panel of gene or gene products comprises one or more of: ALK, PTEN, AREG, EGFR, ERCC1, EREG, TS, TOPO1, BRAF, KRAS, NRAS and PIK3CA; and (b) identifying a treatment that is beneficially associated with the molecular profile of the subject, thereby identifying the candidate treatment. In an embodiment, the molecular profile comprises protein analysis performed on PTEN. The molecular profile can include gene expression analysis performed on one or more of AREG, EGFR, ERCC1, EREG, TS and TOPO1. The molecular profile may comprise sequence analysis performed on one or more of BRAF, KRAS, NRAS and PIK3CA. In some embodiments, the molecular profile comprises detection of the presence of ALK, an ALK mutation or translocation, and/or EML4-ALK. The ALK can be assessed by RFLP and optionally FISH. In an embodiment, the molecular profile further comprises detection of the presence of VEGFR2.


In an aspect, the invention provides a method of identifying a candidate treatment for a non-small cell lung cancer (NSCLC) in a subject in need thereof, comprising: (a) determining a molecular profile for the subject on a panel of gene or gene products, wherein the panel of gene or gene products comprises one or more of: cMET, HER2, ALK, PTEN, TLE3, BRCA1, EGFR, ERCC1, RRM1, TS, BRAF, EGFR, KRAS, PIK3CA; and (b) identifying a treatment that is beneficially associated with the molecular profile of the subject, thereby identifying the candidate treatment. In an embodiment, the molecular profile comprises protein analysis performed on one or more of cMET, EGFR, PTEN and TLE3. The molecular profile can include gene expression analysis performed on one or more of BRCA1, EGFR, ERCC1, RRM1 and TS. The molecular profile may comprise FISH and/or CISH analysis performed on one or more of cMET, HER2 and ALK. The molecular profile may also comprise sequence analysis performed on one or more of BRAF, EGFR, KRAS and PIK3CA. In some embodiments, the molecular profile comprises RFLP analysis performed on one or more of EGFR and ALK. In some embodiments, the molecular profile comprises detection of the presence of ALK, an ALK mutation or translocation, and/or EML4-ALK. The ALK can be assessed by RFLP and optionally FISH.


In the methods of the invention, identifying a treatment that is beneficially associated with the molecular profile of the subject may comprise: (a) correlating the molecular profile with a rules database, wherein the rules database comprises a mapping of treatments whose biological activity is determined against cancers that have different levels of, overexpress, underexpress, and/or have mutations in one or more members of the panel of gene or gene products; and (b) identifying the treatment that is beneficially associated with the molecular profile based on the correlating in (a). In an embodiment, the mapping of treatments contained within the rules database is based on the efficacy of various treatments that are associated with a target gene or gene product. For example, the mapping of treatments can comprise one or more association shown in any of Tables 3-5, 7-13, 20 or 21, or FIGS. 33A-F. In some embodiment, the mapping of treatments comprises the “Comprehensive” mappings shown in Tables 7-12, or FIGS. 33A-F. For an ovarian cancer, the mapping of treatments may comprise the mappings in Table 7 or FIG. 33E. For a breast cancer, the mapping of treatments may comprise the mappings in Table 8 or FIG. 33D. For a melanoma, the mapping of treatments may comprise the mappings in Table 9 or FIG. 33C. For a colorectal cancer, the mapping of treatments may comprise the mappings in Table 10 or FIG. 33B. For a non-small cell lung cancer (NSCLC) cancer, the mapping of treatments may comprise the mappings in Table 11 or FIG. 33A.


In the methods of the invention, the sample may comprise formalin-fixed paraffin-embedded (FFPE) tissue, fresh frozen (FF) tissue, or tissue comprised in a solution that preserves nucleic acid or protein molecules.


In the methods of the invention, the molecular profile for the subject can be compared to a reference molecular profile. In an embodiment, the reference is from a non-cancerous sample. The reference can be from the subject, such as normal adjacent tissue or a sample taken at a different point in time.


The protein analysis used in the methods of the invention comprise may employ any useful protein analysis technology, including without limitation immunohistochemistry (IHC), immunodetection, Western blot, ELISA, a proteomic array, an antibody array, immunoprecipitation, flow cytometry, mass spectrometry, gel electrophoresis, or a combination thereof. In an embodiment, the protein analysis comprises using immunohistochemistry (IHC).


The gene expression analysis used in the methods of the invention comprise may employ any useful gene expression technology, including without limitation polymerase chain reaction (PCR), real-time PCR (qPCR; RT-PCR), next generation sequencing, a low density microarray, a DNA microarray, a comparative genomic hybridization (CGH) microarray, a single nucleotide polymorphism (SNP) microarray, a proteomic array or an antibody array. In an embodiment, the gene expression analysis comprises using real-time PCR (qPCR; RT-PCR).


The sequence analysis used in the methods of the invention comprise may employ any useful sequencing technology, including without limitation amplification, polymerase chain reaction (PCR), real-time PCR (qPCR; RT-PCR), Sanger sequencing, next generation sequencing, restriction fragment length polymorphism (RFLP), pyrosequencing, DNA methylation analysis, or a combination thereof.


The methods of the invention can include the molecular profiling of additional biomarkers. For example, the molecular profiles may include without limitation assessment of one or more additional gene or gene product listed in Table 2. In an embodiment, the molecular profile comprises one or more additional gene or gene product selected from the group consisting of MSH2, ERBB4, ROS1, MGMT, and a combination thereof. Any useful technique can be used to assess the one or more additional gene or gene product. In an embodiment, the molecular profile comprises allele-specific PCR for BRAF and/or KRAS. In another embodiment, the molecular profile comprises RT-PCR for one or more of ER, HER2, MSH2 and PR. In still another embodiment, the molecular profile comprises sequence analysis for ERBB4. The molecular profile may comprise RFLP and/or microsatellite instability for ROS1 and/or HER2 exon 20 insertion. The molecular profile may also comprise pyrosequencing for MGMT methylation status. The molecular profiles may comprise any combination of these or other useful biomarker assessments.


In the methods of the invention, the sample may comprise cancer cells, such as cells from a solid tumor. The sample can be obtained in any useful format. In an embodiment, the sample comprises a formalin fixed paraffin embedded (FFPE) sample. The FFPE sample may comprise one or more of fixed tissue, a core needle biopsy, a fine needle aspirate, and unstained slides. In other embodiments, the sample comprises a bodily fluid. For example, the bodily fluid may comprise a malignant fluid, a pleural fluid, and/or a peritoneal fluid. The bodily fluid can include any bodily fluid useful for carrying out the subject methods, such as peripheral blood, sera, plasma, ascites, urine, cerebrospinal fluid (CSF), sputum, saliva, bone marrow, synovial fluid, aqueous humor, amniotic fluid, cerumen, breast milk, broncheoalveolar lavage fluid, semen, prostatic fluid, cowper's fluid or pre-ejaculatory fluid, female ejaculate, sweat, fecal matter, hair, tears, cyst fluid, pleural and peritoneal fluid, pericardial fluid, lymph, chyme, chyle, bile, interstitial fluid, menses, pus, sebum, vomit, vaginal secretions, mucosal secretion, stool water, pancreatic juice, lavage fluids from sinus cavities, bronchopulmonary aspirates, blastocyl cavity fluid, or umbilical cord blood.


The sample may comprise a microvesicle population. The one or more members of the panel of gene or gene products can be associated with the microvesicle population, e.g., as microvesicle surface antigens, or as microvesicle payload. Such payload may include, without limitation, nucleic acids, mRNA, microRNA, soluble protein, or inner membrane protein, and complexes between each of these.


The methods of the invention may include identifying a prioritized list of candidate treatments. The prioritization can be based on any useful criteria, including without limitation the strength of the evidence supporting the candidate treatment based on the molecular profiling results and/or the subject's clinical history, the results of the molecular profiling for the corresponding gene and/or gene products (e.g., degree of overexpression, nature of mutation, etc), and a combination thereof.


The one or more candidate treatment can be any useful treatment whose projected benefit can be estimated based on the molecular profile. For example, the candidate treatment can be selected from those listed in any of Tables 3-5, 7-13, 20 or 21, or FIGS. 33A-F.


The methods of the invention can be used to identify a candidate treatment for a subject at any stage of disease. For example, the methods can be used to identify a standard of care (e.g., approved or on-conpendium treatment) for a newly diagnosed case. Alternately, the methods can be used to identify a treatment for a patient in a salvage therapy setting where all other treatments have failed. The cancer can be a newly diagnosed cancer. The subject may have not previously been treated for the cancer. The cancer can be a metastatic cancer. The cancer can be a recurrent cancer. In some embodiments, the cancer is refractory to a prior treatment. The prior treatment may be a standard of care for the cancer. The prior treatment may be all standards of care for the cancer. Indeed, the cancer may be refractory to all known standard of care treatments. In an embodiment, the subject has not previously been treated with the identified candidate treatment or candidate treatments.


The methods of the invention may further comprise preparing a report comprising results of the molecular profile for the subject. In an embodiment, the report further comprises a list of one or more treatment that is beneficially associated with the molecular profile, and/or a list of one or more treatment that is negatively associated with the molecular profile. The report may comprise the prioritized list of candidate treatments.


In any of the methods of the invention, progression free survival (PFS) or disease free survival (DFS) for the subject can be extended by administration of the candidate treatment to the subject. Similarly, the subject's lifespan can be extended by administration of the candidate treatment to the subject.


The methods of the invention may further comprise the step of providing a molecular profile report comprising: 1) a list of the genes and/or gene products in the molecular profile; 2) a description of the molecular profile of the genes and/or gene products as determined for the subject; 3) a treatment associated with one or more of the genes and/or gene products in the molecular profile; and 4) and an indication whether each treatment is likely to benefit the patient, not benefit the patient, or has indeterminate benefit. The description of the molecular profile of the genes and/or gene products as determined for the subject may comprise, e.g., the technique used to assess the gene and/or gene products and the results of the assessment.


In an aspect, the invention provides a system for carrying out the method of any previous claim, comprising: a host server; a user interface for accessing the host server to access and input data; a processor for processing the inputted data; a memory coupled to the processor for storing the processed data and instructions for: i) accessing the molecular profile generated for the one or more sample; ii) determining which of the members of the panel are differentially expressed between the one or more sample and the reference; and iii) accessing a rules database to identify one or more agent that interacts with the members of the panel that were determined to be differentially expressed between the one or more sample and the reference; and a display means for displaying the members of the panel that were determined to be differentially expressed between the one or more sample and the reference and the agents that are associated with them. In an embodiment, the rules database comprises one or more of the rules in Tables 7-12. For example, the rules database may comprise all the rules in Tables 7-12. The rules database may comprise all the rules in Table 7. The rules database may comprise all the rules in Table 8. The rules database may comprise all the rules in Table 9. The rules database may comprise all the rules in Table 10. The rules database may comprise all the rules in Table 11. The rules database may comprise all the rules in Table 12.


In another aspect, the invention provides a report summarizing the molecular profiling of the invention, wherein the report comprises: 1) a list of the genes and/or gene products in the molecular profile; 2) a description of the molecular profile of the genes and/or gene products as determined for the subject; 3) a treatment associated with one or more of the genes and/or gene products in the molecular profile; and 4) and an indication whether each treatment is likely to benefit the patient, not benefit the patient, or has indeterminate benefit. The description of the molecular profile of the genes and/or gene products as determined for the subject may comprise the technique used to assess the gene and/or gene products and the results of the assessment. In an embodiment, the report further comprises one or more of the following: a) an indication of whether one or more of the genes and/or gene products in the molecular profile are associated with an ongoing clinical trial and identifiers for any such trials; b) a list of evidence supporting the association of the genes and/or gene products in the molecular profile with the reported treatment; c) a description of the genes and/or gene products in the molecular profile. The description of the genes and/or gene products in the molecular profile may comprise their biological function and/or treatment association.


In another aspect, the invention provides a computer readable medium comprising one or more rules in any of Tables 7-12. The computer readable medium may comprise at least 5, 10, 25, 50 or 100 rules in Tables 7-12. The computer readable medium may comprise all rules in Tables 7-12. The computer readable medium may comprise all the rules in Table 7. The computer readable medium may comprise all the rules in Table 8. The computer readable medium may comprise all the rules in Table 9. The computer readable medium may comprise all the rules in Table 10. The computer readable medium may comprise all the rules in Table 11. The computer readable medium may comprise all the rules in Table 12.


INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are used, and the accompanying drawings of which:



FIG. 1 illustrates a block diagram of an illustrative embodiment of a system for determining individualized medical intervention for a particular disease state that utilizes molecular profiling of a patient's biological specimen that is non disease specific.



FIG. 2 is a flowchart of an illustrative embodiment of a method for determining individualized medical intervention for a particular disease state that utilizes molecular profiling of a patient's biological specimen that is non disease specific.



FIGS. 3A through 3D illustrate an illustrative patient profile report in accordance with step 80 of FIG. 2.



FIG. 4 is a flowchart of an illustrative embodiment of a method for identifying a therapeutic agent capable of interacting with a target.



FIGS. 5-14 are flowcharts and diagrams illustrating various parts of an information-based personalized medicine drug discovery system and method in accordance with the present invention.



FIGS. 15-25 are computer screen print outs associated with various components of the information-based personalized shown in FIGS. 5-14.



FIGS. 26A-26H represent a table that shows the frequency of a significant change in expression of gene expressed proteins by tumor type.



FIGS. 27A-27H represent a table that shows the frequency of a significant change in expression of certain genes by tumor type.



FIGS. 28A-28O represent a table that shows the frequency of a significant change in expression for certain gene expressed proteins by tumor type.



FIG. 29 is a table which shows biomarkers (gene expressed proteins) tagged as targets in order of frequency based on FIG. 28.



FIGS. 30A-30O represent a table that shows the frequency of a significant change in expression for certain genes by tumor type.



FIG. 31 is a table which shows genes tagged as targets in order of frequency based on FIG. 30.



FIG. 32 illustrates biomarkers included within select and comprehensive molecular profiles. FIG. 32A illustrates a select profile for non-small cell lung cancer (NSCLC). FIG. 32B illustrates a select profile for colorectal cancer (CRC). FIG. 32C illustrates a select profile for melanoma. FIG. 32D illustrates a select profile for breast cancer (BrCa). FIG. 32E illustrates a select profile for ovarian cancer (OvCa). FIG. 32F illustrates a core comprehensive molecular profile for cancer. FIG. 32G illustrates lineage specific components of a comprehensive molecular profile for cancer.



FIGS. 33A-F illustrate biomarkers and associated therapeutic agents that can be assessed as part of select and comprehensive molecular profiles. FIG. 33A illustrates select and comprehensive profiles for non-small cell lung cancer (NSCLC). The components of the select profile are shown in the table to the left as indicated. The comprehensive profile for NSCLC includes the components of the select panel and in addition also includes the components shown in the table to the right as indicated. FIG. 33B illustrates select and comprehensive profiles for colorectal cancer (CRC). The components of the select profile are shown in the table to the left as indicated. The comprehensive profile for CRC includes the components of the select panel and in addition also includes the components shown in the table to the right as indicated. FIG. 33C illustrates select and comprehensive profiles for melanoma. The components of the select profile are shown in the table to the left as indicated. The comprehensive profile for melanoma includes the components of the select panel and in addition also includes the components shown in the table to the right as indicated. FIG. 33D illustrates select and comprehensive profiles for breast cancer (BrCa). The components of the select profile are shown in the table to the left as indicated. The comprehensive profile for BrCa includes the components of the select panel and in addition also includes the components shown in the table to the right as indicated. FIG. 33E illustrates select and comprehensive profiles for ovarian cancer (OvCa). The components of the select profile are shown in the table to the left as indicated. The comprehensive profile for OvCa includes the components of the select panel and in addition also includes the components shown in the table to the right as indicated. FIG. 33F illustrates a comprehensive molecular profile that can be used for any cancer, e.g., for assessment of solid tumors.



FIGS. 34A-34T illustrate an exemplary patient report based on molecular profiling using a Select Breast Cancer profile.



FIG. 35 illustrates progression free survival (PFS) using therapy selected by molecular profiling (period B) with PFS for the most recent therapy on which the patient has just progressed (period A). If PFS(B)/PFS(A) ratio ≧1.3, then molecular profiling selected therapy was defined as having benefit for patient.



FIG. 36 is a schematic of methods for identifying treatments by molecular profiling if a target is identified.



FIG. 37 illustrates the distribution of the patients in the study as performed in Example 1.



FIG. 38 is graph depicting the results of the study with patients having PFS ratio ≧1.3 was 18/66 (27%).



FIG. 39 is a waterfall plot of all the patients for maximum % change of summed diameters of target lesions with respect to baseline diameter.



FIG. 40 illustrates the relationship between what clinician selected as what she/he would use to treat the patient before knowing what the molecular profiling results suggested. There were no matches for the 18 patients with PFS ratio ≧1.3.



FIG. 41 is a schematic of the overall survival for the 18 patients with PFS ratio ≧1.3 versus all 66 patients.



FIG. 42 illustrates a molecular profiling system that performs analysis of a cancer sample using a variety of components that measure expression levels, chromosomal aberrations and mutations. The molecular “blueprint” of the cancer is used to generate a prioritized ranking of druggable targets and/or drug associated targets in tumor and their associated therapies.



FIG. 43 shows an example output of microarray profiling results and calls made using a cutoff value.



FIGS. 44A-B illustrate a workflow chart for identifying a therapeutic for an individual having breast cancer. The workflow of FIG. 44A feeds into the workflow of FIG. 44B as indicated.



FIG. 45 illustrates biomarkers used for identifying a therapeutic for an individual having breast cancer such as when following the workflow of FIG. 45. The figure illustrates a biomarker centric view of the workflow described above in different cancer settings.



FIG. 46 illustrates the percentage of HER2 positive breast cancers that are likely to respond to treatment with trastuzumab (Herceptin®), which is about 30%. Characteristics of the tumor that can be identified by molecular profiling are shown as well.



FIG. 47 illustrates a diagram showing a biomarker centric (FIG. 47A) and therapeutic centric (FIG. 47B) approach to identifying a therapeutic agent.



FIG. 48A shows the distribution of PTPN12 mRNA levels in 105 triple negative breast cancer patients. FIG. 48B illustrates a heatmap of PTPN12 correlated transcripts in a triple negative breast cancer cohort. The top 1000 transcripts with expression levels correlated PTPN12 mRNA are depicted in the heatmap. Green (lighter grey) reflects lower expression and Red (darker grey) reflects higher expression. Genes (rows) and patients (columns) were subjected to two dimensional hierarchical clustering. The dendrogram on the top depicts the presence of three patient populations (P1, P2, P3) among triple negative cohort. “P1” group consists of patients with low expression of PTPN12; “P2” group consists of patients with medium expression of PTPN12; and “P3” consists of patients with high expression of PTPN12. The 1000 genes selected for this analysis can be divided into seven distinct clusters based on pattern of expression across all the patients. The seven clusters are labeled C1 through C7 and the number of genes within each cluster is shown in parentheses. FIG. 48C shows that PTPN12 is significantly correlated with SOCS4 (left panel) and CBL (right panel). Scatter plot colors represent the cluster membership of the sample (blue=P1 or low expressing PTPN12 cluster, grey=P2 or intermediate expressing PTPN12 cluster, red=P3 or high expressing PTPN12 cluster). FIG. 48D illustrates the expression pattern of 42 gene members of the KEGG “Proteasome” pathway in TN patients with high and low PTPN12 expression, as indicated at the top of the figure.



FIG. 49A illustrates cluster analysis of 299 selected genes (y-axis) in primary and recurrent (x-axis) prostate cancers. Five main clusters of genes were identified. FIG. 49B illustrates a box plot analysis showing increased expression of AR in recurrent prostate cancer patients as analyzed by gene expression. FIG. 49C illustrates a box plot analysis showing decreased expression of ras Responsive element binding protein 1 (RREB1) in recurrent prostate cancer patients.



FIG. 50 shows a Kaplan-Meier plot for ERCC1 in colorectal cancer patient samples (p=0.050 using log rank test; 0.029 using Breslow test). The upper curve represents no expression of ERCC1. The lower curve represents increased expression of ERCC1.





DETAILED DESCRIPTION OF THE INVENTION

The present invention provides methods and systems for identifying therapeutic agents for use in treatments on an individualized basis by using molecular profiling. The molecular profiling approach provides a method for selecting a candidate treatment for an individual that could favorably change the clinical course for the individual with a condition or disease, such as cancer. The molecular profiling approach provides clinical benefit for individuals, such as identifying drug target(s) that provide a longer progression free survival (PFS), longer disease free survival (DFS), longer overall survival (OS) or extended lifespan. Methods and systems of the invention are directed to molecular profiling of cancer on an individual basis that can provide alternatives for treatment that may be convention or alternative to conventional treatment regimens. For example, alternative treatment regimes can be selected through molecular profiling methods of the invention where, a disease is refractory to current therapies, e.g., after a cancer has developed resistance to a standard-of-care treatment. Illustrative schemes for using molecular profiling to identify a treatment regime are shown in FIGS. 2, 42 and 44, each of which is described in further detail herein. Thus, molecular profiling provides a personalized approach to selecting candidate treatments that are likely to benefit a cancer. In embodiments, the molecular profiling method is used to identify therapies for patients with poor prognosis, such as those with metastatic disease or those whose cancer has progressed on standard front line therapies, or whose cancer has progressed on multiple chemotherapeutic or hormonal regimens.


Personalized medicine based on pharmacogenetic insights, such as those provided by molecular profiling according to the invention, is increasingly taken for granted by some practitioners and the lay press, but forms the basis of hope for improved cancer therapy. However, molecular profiling as taught herein represents a fundamental departure from the traditional approach to oncologic therapy where for the most part, patients are grouped together and treated with approaches that are based on findings from light microscopy and disease stage. Traditionally, differential response to a particular therapeutic strategy has only been determined after the treatment was given, i.e. a posteriori. The “standard” approach to disease treatment relies on what is generally true about a given cancer diagnosis and treatment response has been vetted by randomized phase III clinical trials and forms the “standard of care” in medical practice. The results of these trials have been codified in consensus statements by guidelines organizations such as the National Comprehensive Cancer Network and The American Society of Clinical Oncology. The NCCN Compendium™ contains authoritative, scientifically derived information designed to support decision-making about the appropriate use of drugs and biologics in patients with cancer. The NCCN Compendium™ is recognized by the Centers for Medicare and Medicaid Services (CMS) and United Healthcare as an authoritative reference for oncology coverage policy. On-compendium treatments are those recommended by such guides. The biostatistical methods used to validate the results of clinical trials rely on minimizing differences between patients, and are based on declaring the likelihood of error that one approach is better than another for a patient group defined only by light microscopy and stage, not by individual differences in tumors. The molecular profiling methods of the invention exploit such individual differences. The methods can provide candidate treatments that can be then selected by a physician for treating a patient. In a study of such an approach presented in Example 1 herein, the results were profound: in 66 consecutive patients, the treating oncologist never managed to identify the molecular target selected by the test, and 27% of patients whose treatment was guided by molecular profiling managed a remission 1.3× longer than their previous best response. At present, such results are virtually unheard of result in the salvage therapy setting.


Molecular profiling can be used to provide a comprehensive view of the biological state of a sample. In an embodiment, molecular profiling is used for whole tumor profiling. Accordingly, a number of molecular approaches are used to assess the state of a tumor. The whole tumor profiling can be used for selecting a candidate treatment for a tumor. Molecular profiling can be used to select candidate therapeutics on any sample for any stage of a disease. In embodiment, the methods of the invention are used to profile a newly diagnosed cancer. The candidate treatments indicated by the molecular profiling can be used to select a therapy for treating the newly diagnosed cancer. In other embodiments, the methods of the invention are used to profile a cancer that has already been treated, e.g., with one or more standard-of-care therapy. In embodiments, the cancer is refractory to the prior treatment/s. For example, the cancer may be refractory to the standard of care treatments for the cancer. The cancer can be a metastatic cancer or other recurrent cancer. The treatments can be on-compendium or off-compendium treatments.


Molecular profiling can be performed by any known means for detecting a molecule in a biological sample. Molecular profiling comprises methods that include but are not limited to, nucleic acid sequencing, such as a DNA sequencing or mRNA sequencing; immunohistochemistry (IHC); in situ hybridization (ISH); fluorescent in situ hybridization (FISH); chromogenic in situ hybridization (CISH); PCR amplification (e.g., qPCR or RT-PCR); various types of microarray (mRNA expression arrays, low density arrays, protein arrays, etc); various types of sequencing (Sanger, pyrosequencing, etc); comparative genomic hybridization (CGH); NextGen sequencing; Northern blot; Southern blot; immunoassay; and any other appropriate technique to assay the presence or quantity of a biological molecule of interest. In various embodiments of the invention, any one or more of these methods can be used concurrently or subsequent to each other for assessing target genes disclosed herein.


Molecular profiling of individual samples is used to select one or more candidate treatments for a disorder in a subject, e.g., by identifying targets for drugs that may be effective for a given cancer. For example, the candidate treatment can be a treatment known to have an effect on cells that differentially express genes as identified by molecular profiling techniques, an experimental drug, a government or regulatory approved drug or any combination of such drugs, which may have been studied and approved for a particular indication that is the same as or different from the indication of the subject from whom a biological sample is obtain and molecularly profiled.


When multiple biomarker targets are revealed by assessing target genes by molecular profiling, one or more decision rules can be put in place to prioritize the selection of certain therapeutic agent for treatment of an individual on a personalized basis. Rules of the invention aide prioritizing treatment, e.g., direct results of molecular profiling, anticipated efficacy of therapeutic agent, prior history with the same or other treatments, expected side effects, availability of therapeutic agent, cost of therapeutic agent, drug-drug interactions, and other factors considered by a treating physician. Based on the recommended and prioritized therapeutic agent targets, a physician can decide on the course of treatment for a particular individual. Accordingly, molecular profiling methods and systems of the invention can select candidate treatments based on individual characteristics of diseased cells, e.g., tumor cells, and other personalized factors in a subject in need of treatment, as opposed to relying on a traditional one-size fits all approach that is conventionally used to treat individuals suffering from a disease, especially cancer. In some cases, the recommended treatments are those not typically used to treat the disease or disorder inflicting the subject. In some cases, the recommended treatments are used after standard-of-care therapies are no longer providing adequate efficacy.


The treating physician can use the results of the molecular profiling methods to optimize a treatment regimen for a patient. The candidate treatment identified by the methods of the invention can be used to treat a patient; however, such treatment is not required of the methods. Indeed, the analysis of molecular profiling results and identification of candidate treatments based on those results can be automated and does not require physician involvement.


Biological Entities


Nucleic acids include deoxyribonucleotides or ribonucleotides and polymers thereof in either single- or double-stranded form, or complements thereof. Nucleic acids can contain known nucleotide analogs or modified backbone residues or linkages, which are synthetic, naturally occurring, and non-naturally occurring, which have similar binding properties as the reference nucleic acid, and which are metabolized in a manner similar to the reference nucleotides. Examples of such analogs include, without limitation, phosphorothioates, phosphoramidates, methyl phosphonates, chiral-methyl phosphonates, 2-O-methyl ribonucleotides, peptide-nucleic acids (PNAs). Nucleic acid sequence can encompass conservatively modified variants thereof (e.g., degenerate codon substitutions) and complementary sequences, as well as the sequence explicitly indicated. Specifically, degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues (Batzer et al., Nucleic Acid Res. 19:5081 (1991); Ohtsuka et al., J. Biol. Chem. 260:2605-2608 (1985); Rossolini et al., Mol. Cell Probes 8:91-98 (1994)). The term nucleic acid can be used interchangeably with gene, cDNA, mRNA, oligonucleotide, and polynucleotide.


A particular nucleic acid sequence may implicitly encompass the particular sequence and “splice variants” and nucleic acid sequences encoding truncated forms. Similarly, a particular protein encoded by a nucleic acid can encompass any protein encoded by a splice variant or truncated form of that nucleic acid. “Splice variants,” as the name suggests, are products of alternative splicing of a gene. After transcription, an initial nucleic acid transcript may be spliced such that different (alternate) nucleic acid splice products encode different polypeptides. Mechanisms for the production of splice variants vary, but include alternate splicing of exons. Alternate polypeptides derived from the same nucleic acid by read-through transcription are also encompassed by this definition. Any products of a splicing reaction, including recombinant forms of the splice products, are included in this definition. Nucleic acids can be truncated at the 5′ end or at the 3′ end. Polypeptides can be truncated at the N-terminal end or the C-terminal end. Truncated versions of nucleic acid or polypeptide sequences can be naturally occurring or created using recombinant techniques.


The terms “genetic variant” and “nucleotide variant” are used herein interchangeably to refer to changes or alterations to the reference human gene or cDNA sequence at a particular locus, including, but not limited to, nucleotide base deletions, insertions, inversions, and substitutions in the coding and non-coding regions. Deletions may be of a single nucleotide base, a portion or a region of the nucleotide sequence of the gene, or of the entire gene sequence. Insertions may be of one or more nucleotide bases. The genetic variant or nucleotide variant may occur in transcriptional regulatory regions, untranslated regions of mRNA, exons, introns, exon/intron junctions, etc. The genetic variant or nucleotide variant can potentially result in stop codons, frame shifts, deletions of amino acids, altered gene transcript splice forms or altered amino acid sequence.


An allele or gene allele comprises generally a naturally occurring gene having a reference sequence or a gene containing a specific nucleotide variant.


A haplotype refers to a combination of genetic (nucleotide) variants in a region of an mRNA or a genomic DNA on a chromosome found in an individual. Thus, a haplotype includes a number of genetically linked polymorphic variants which are typically inherited together as a unit.


As used herein, the term “amino acid variant” is used to refer to an amino acid change to a reference human protein sequence resulting from genetic variants or nucleotide variants to the reference human gene encoding the reference protein. The term “amino acid variant” is intended to encompass not only single amino acid substitutions, but also amino acid deletions, insertions, and other significant changes of amino acid sequence in the reference protein.


The term “genotype” as used herein means the nucleotide characters at a particular nucleotide variant marker (or locus) in either one allele or both alleles of a gene (or a particular chromosome region). With respect to a particular nucleotide position of a gene of interest, the nucleotide(s) at that locus or equivalent thereof in one or both alleles form the genotype of the gene at that locus. A genotype can be homozygous or heterozygous. Accordingly, “genotyping” means determining the genotype, that is, the nucleotide(s) at a particular gene locus. Genotyping can also be done by determining the amino acid variant at a particular position of a protein which can be used to deduce the corresponding nucleotide variant(s).


The term “locus” refers to a specific position or site in a gene sequence or protein. Thus, there may be one or more contiguous nucleotides in a particular gene locus, or one or more amino acids at a particular locus in a polypeptide. Moreover, a locus may refer to a particular position in a gene where one or more nucleotides have been deleted, inserted, or inverted.


Unless specified otherwise or understood by one of skill in art, the terms “polypeptide,” “protein,” and “peptide” are used interchangeably herein to refer to an amino acid chain in which the amino acid residues are linked by covalent peptide bonds. The amino acid chain can be of any length of at least two amino acids, including full-length proteins. Unless otherwise specified, polypeptide, protein, and peptide also encompass various modified forms thereof, including but not limited to glycosylated forms, phosphorylated forms, etc. A polypeptide, protein or peptide can also be referred to as a gene product.


Lists of gene and gene products that can be assayed by molecular profiling techniques are presented herein. Lists of genes may be presented in the context of molecular profiling techniques that detect a gene product (e.g., an mRNA or protein). One of skill will understand that this implies detection of the gene product of the listed genes. Similarly, lists of gene products may be presented in the context of molecular profiling techniques that detect a gene sequence or copy number. One of skill will understand that this implies detection of the gene corresponding to the gene products, including as an example DNA encoding the gene products. As will be appreciated by those skilled in the art, a “biomarker” or “marker” comprises a gene and/or gene product depending on the context.


The terms “label” and “detectable label” can refer to any composition detectable by spectroscopic, photochemical, biochemical, immunochemical, electrical, optical, chemical or similar methods. Such labels include biotin for staining with labeled streptavidin conjugate, magnetic beads (e.g., DYNABEADS™), fluorescent dyes (e.g., fluorescein, Texas red, rhodamine, green fluorescent protein, and the like), radiolabels (e.g., 3H, 125I, 35S, 14C, or 32P), enzymes (e.g., horse radish peroxidase, alkaline phosphatase and others commonly used in an ELISA), and calorimetric labels such as colloidal gold or colored glass or plastic (e.g., polystyrene, polypropylene, latex, etc) beads. Patents teaching the use of such labels include U.S. Pat. Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149; and 4,366,241. Means of detecting such labels are well known to those of skill in the art. Thus, for example, radiolabels may be detected using photographic film or scintillation counters, fluorescent markers may be detected using a photodetector to detect emitted light. Enzymatic labels are typically detected by providing the enzyme with a substrate and detecting the reaction product produced by the action of the enzyme on the substrate, and calorimetric labels are detected by simply visualizing the colored label. Labels can include, e.g., ligands that bind to labeled antibodies, fluorophores, chemiluminescent agents, enzymes, and antibodies which can serve as specific binding pair members for a labeled ligand. An introduction to labels, labeling procedures and detection of labels is found in Polak and Van Noorden Introduction to Immunocytochemistry, 2nd ed., Springer Verlag, NY (1997); and in Haugland Handbook of Fluorescent Probes and Research Chemicals, a combined handbook and catalogue Published by Molecular Probes, Inc. (1996).


Detectable labels include, but are not limited to, nucleotides (labeled or unlabelled), compomers, sugars, peptides, proteins, antibodies, chemical compounds, conducting polymers, binding moieties such as biotin, mass tags, calorimetric agents, light emitting agents, chemiluminescent agents, light scattering agents, fluorescent tags, radioactive tags, charge tags (electrical or magnetic charge), volatile tags and hydrophobic tags, biomolecules (e.g., members of a binding pair antibody/antigen, antibody/antibody, antibody/antibody fragment, antibody/antibody receptor, antibody/protein A or protein G, hapten/anti-hapten, biotin/avidin, biotin/streptavidin, folic acid/folate binding protein, vitamin B12/intrinsic factor, chemical reactive group/complementary chemical reactive group (e.g., sulfhydryl/maleimide, sulfhydryl/haloacetyl derivative, amine/isotriocyanate, amine/succinimidyl ester, and amine/sulfonyl halides) and the like.


The term “antibody” as used herein encompasses naturally occurring antibodies as well as non-naturally occurring antibodies, including, for example, single chain antibodies, chimeric, bifunctional and humanized antibodies, as well as antigen-binding fragments thereof, (e.g., Fab′, F(ab′)2, Fab, Fv and rIgG). See also, Pierce Catalog and Handbook, 1994-1995 (Pierce Chemical Co., Rockford, Ill.). See also, e.g., Kuby, J., Immunology, 3.sup.rd Ed., W. H. Freeman & Co., New York (1998). Such non-naturally occurring antibodies can be constructed using solid phase peptide synthesis, can be produced recombinantly or can be obtained, for example, by screening combinatorial libraries consisting of variable heavy chains and variable light chains as described by Huse et al., Science 246:1275-1281 (1989), which is incorporated herein by reference. These and other methods of making, for example, chimeric, humanized, CDR-grafted, single chain, and bifunctional antibodies are well known to those skilled in the art. See, e.g., Winter and Harris, Immunol. Today 14:243-246 (1993); Ward et al., Nature 341:544-546 (1989); Harlow and Lane, Antibodies, 511-52, Cold Spring Harbor Laboratory publications, New York, 1988; Hilyard et al., Protein Engineering: A practical approach (IRL Press 1992); Borrebaeck, Antibody Engineering, 2d ed. (Oxford University Press 1995); each of which is incorporated herein by reference.


Unless otherwise specified, antibodies can include both polyclonal and monoclonal antibodies. Antibodies also include genetically engineered forms such as chimeric antibodies (e.g., humanized murine antibodies) and heteroconjugate antibodies (e.g., bispecific antibodies). The term also refers to recombinant single chain Fv fragments (scFv). The term antibody also includes bivalent or bispecific molecules, diabodies, triabodies, and tetrabodies. Bivalent and bispecific molecules are described in, e.g., Kostelny et al. (1992) J Immunol 148:1547, Pack and Pluckthun (1992) Biochemistry 31:1579, Holliger et al. (1993) Proc Natl Acad Sci USA. 90:6444, Gruber et al. (1994) J Immunol: 5368, Zhu et al. (1997) Protein Sci 6:781, Hu et al. (1997) Cancer Res. 56:3055, Adams et al. (1993) Cancer Res. 53:4026, and McCartney, et al. (1995) Protein Eng. 8:301.


Typically, an antibody has a heavy and light chain. Each heavy and light chain contains a constant region and a variable region, (the regions are also known as “domains”). Light and heavy chain variable regions contain four framework regions interrupted by three hyper-variable regions, also called complementarity-determining regions (CDRs). The extent of the framework regions and CDRs have been defined. The sequences of the framework regions of different light or heavy chains are relatively conserved within a species. The framework region of an antibody, that is the combined framework regions of the constituent light and heavy chains, serves to position and align the CDRs in three dimensional spaces. The CDRs are primarily responsible for binding to an epitope of an antigen. The CDRs of each chain are typically referred to as CDR1, CDR2, and CDR3, numbered sequentially starting from the N-terminus, and are also typically identified by the chain in which the particular CDR is located. Thus, a VH CDR3 is located in the variable domain of the heavy chain of the antibody in which it is found, whereas a VL CDR1 is the CDR1 from the variable domain of the light chain of the antibody in which it is found. References to VH refer to the variable region of an immunoglobulin heavy chain of an antibody, including the heavy chain of an Fv, scFv, or Fab. References to VL refer to the variable region of an immunoglobulin light chain, including the light chain of an Fv, scFv, dsFv or Fab.


The phrase “single chain Fv” or “scFv” refers to an antibody in which the variable domains of the heavy chain and of the light chain of a traditional two chain antibody have been joined to form one chain. Typically, a linker peptide is inserted between the two chains to allow for proper folding and creation of an active binding site. A “chimeric antibody” is an immunoglobulin molecule in which (a) the constant region, or a portion thereof, is altered, replaced or exchanged so that the antigen binding site (variable region) is linked to a constant region of a different or altered class, effector function and/or species, or an entirely different molecule which confers new properties to the chimeric antibody, e.g., an enzyme, toxin, hormone, growth factor, drug, etc.; or (b) the variable region, or a portion thereof, is altered, replaced or exchanged with a variable region having a different or altered antigen specificity.


A “humanized antibody” is an immunoglobulin molecule that contains minimal sequence derived from non-human immunoglobulin. Humanized antibodies include human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, a humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework (FR) regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature 332:323-327 (1988); and Presta, Curr. Op. Struct. Biol. 2:593-596 (1992)). Humanization can be essentially performed following the method of Winter and co-workers (Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature 332:323-327 (1988); Verhoeyen et al., Science 239:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such humanized antibodies are chimeric antibodies (U.S. Pat. No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species.


The terms “epitope” and “antigenic determinant” refer to a site on an antigen to which an antibody binds. Epitopes can be formed both from contiguous amino acids or noncontiguous amino acids juxtaposed by tertiary folding of a protein. Epitopes formed from contiguous amino acids are typically retained on exposure to denaturing solvents whereas epitopes formed by tertiary folding are typically lost on treatment with denaturing solvents. An epitope typically includes at least 3, and more usually, at least 5 or 8-10 amino acids in a unique spatial conformation. Methods of determining spatial conformation of epitopes include, for example, x-ray crystallography and 2-dimensional nuclear magnetic resonance. See, e.g., Epitope Mapping Protocols in Methods in Molecular Biology, Vol. 66, Glenn E. Morris, Ed (1996).


The terms “primer”, “probe,” and “oligonucleotide” are used herein interchangeably to refer to a relatively short nucleic acid fragment or sequence. They can comprise DNA, RNA, or a hybrid thereof, or chemically modified analog or derivatives thereof. Typically, they are single-stranded. However, they can also be double-stranded having two complementing strands which can be separated by denaturation. Normally, primers, probes and oligonucleotides have a length of from about 8 nucleotides to about 200 nucleotides, preferably from about 12 nucleotides to about 100 nucleotides, and more preferably about 18 to about 50 nucleotides. They can be labeled with detectable markers or modified using conventional manners for various molecular biological applications.


The term “isolated” when used in reference to nucleic acids (e.g., genomic DNAs, cDNAs, mRNAs, or fragments thereof) is intended to mean that a nucleic acid molecule is present in a form that is substantially separated from other naturally occurring nucleic acids that are normally associated with the molecule. Because a naturally existing chromosome (or a viral equivalent thereof) includes a long nucleic acid sequence, an isolated nucleic acid can be a nucleic acid molecule having only a portion of the nucleic acid sequence in the chromosome but not one or more other portions present on the same chromosome. More specifically, an isolated nucleic acid can include naturally occurring nucleic acid sequences that flank the nucleic acid in the naturally existing chromosome (or a viral equivalent thereof). An isolated nucleic acid can be substantially separated from other naturally occurring nucleic acids that are on a different chromosome of the same organism. An isolated nucleic acid can also be a composition in which the specified nucleic acid molecule is significantly enriched so as to constitute at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or at least 99% of the total nucleic acids in the composition.


An isolated nucleic acid can be a hybrid nucleic acid having the specified nucleic acid molecule covalently linked to one or more nucleic acid molecules that are not the nucleic acids naturally flanking the specified nucleic acid. For example, an isolated nucleic acid can be in a vector. In addition, the specified nucleic acid may have a nucleotide sequence that is identical to a naturally occurring nucleic acid or a modified form or mutein thereof having one or more mutations such as nucleotide substitution, deletion/insertion, inversion, and the like.


An isolated nucleic acid can be prepared from a recombinant host cell (in which the nucleic acids have been recombinantly amplified and/or expressed), or can be a chemically synthesized nucleic acid having a naturally occurring nucleotide sequence or an artificially modified form thereof.


The term “isolated polypeptide” as used herein is defined as a polypeptide molecule that is present in a form other than that found in nature. Thus, an isolated polypeptide can be a non-naturally occurring polypeptide. For example, an isolated polypeptide can be a “hybrid polypeptide.” An isolated polypeptide can also be a polypeptide derived from a naturally occurring polypeptide by additions or deletions or substitutions of amino acids. An isolated polypeptide can also be a “purified polypeptide” which is used herein to mean a composition or preparation in which the specified polypeptide molecule is significantly enriched so as to constitute at least 10% of the total protein content in the composition. A “purified polypeptide” can be obtained from natural or recombinant host cells by standard purification techniques, or by chemically synthesis, as will be apparent to skilled artisans.


The terms “hybrid protein,” “hybrid polypeptide,” “hybrid peptide,” “fusion protein,” “fusion polypeptide,” and “fusion peptide” are used herein interchangeably to mean a non-naturally occurring polypeptide or isolated polypeptide having a specified polypeptide molecule covalently linked to one or more other polypeptide molecules that do not link to the specified polypeptide in nature. Thus, a “hybrid protein” may be two naturally occurring proteins or fragments thereof linked together by a covalent linkage. A “hybrid protein” may also be a protein formed by covalently linking two artificial polypeptides together. Typically but not necessarily, the two or more polypeptide molecules are linked or “fused” together by a peptide bond forming a single non-branched polypeptide chain.


The term “high stringency hybridization conditions,” when used in connection with nucleic acid hybridization, includes hybridization conducted overnight at 42° C. in a solution containing 50% formamide, 5×SSC (750 mM NaCl, 75 mM sodium citrate), 50 mM sodium phosphate, pH 7.6, 5×Denhardt's solution, 10% dextran sulfate, and 20 microgram/ml denatured and sheared salmon sperm DNA, with hybridization filters washed in 0.1×SSC at about 65° C. The term “moderate stringent hybridization conditions,” when used in connection with nucleic acid hybridization, includes hybridization conducted overnight at 37° C. in a solution containing 50% formamide, 5×SSC (750 mM NaCl, 75 mM sodium citrate), 50 mM sodium phosphate, pH 7.6, 5×Denhardt's solution, 10% dextran sulfate, and 20 microgram/ml denatured and sheared salmon sperm DNA, with hybridization filters washed in 1×SSC at about 50° C. It is noted that many other hybridization methods, solutions and temperatures can be used to achieve comparable stringent hybridization conditions as will be apparent to skilled artisans.


For the purpose of comparing two different nucleic acid or polypeptide sequences, one sequence (test sequence) may be described to be a specific percentage identical to another sequence (comparison sequence). The percentage identity can be determined by the algorithm of Karlin and Altschul, Proc. Natl. Acad. Sci. USA, 90:5873-5877 (1993), which is incorporated into various BLAST programs. The percentage identity can be determined by the “BLAST 2 Sequences” tool, which is available at the National Center for Biotechnology Information (NCBI) website. See Tatusova and Madden, FEMS Microbiol. Lett., 174(2):247-250 (1999). For pairwise DNA-DNA comparison, the BLASTN program is used with default parameters (e.g., Match: 1; Mismatch: −2; Open gap: 5 penalties; extension gap: 2 penalties; gap x_dropoff: 50; expect: 10; and word size: 11, with filter). For pairwise protein-protein sequence comparison, the BLASTP program can be employed using default parameters (e.g., Matrix: BLOSUM62; gap open: 11; gap extension: 1; x_dropoff: 15; expect: 10.0; and wordsize: 3, with filter). Percent identity of two sequences is calculated by aligning a test sequence with a comparison sequence using BLAST, determining the number of amino acids or nucleotides in the aligned test sequence that are identical to amino acids or nucleotides in the same position of the comparison sequence, and dividing the number of identical amino acids or nucleotides by the number of amino acids or nucleotides in the comparison sequence. When BLAST is used to compare two sequences, it aligns the sequences and yields the percent identity over defined, aligned regions. If the two sequences are aligned across their entire length, the percent identity yielded by the BLAST is the percent identity of the two sequences. If BLAST does not align the two sequences over their entire length, then the number of identical amino acids or nucleotides in the unaligned regions of the test sequence and comparison sequence is considered to be zero and the percent identity is calculated by adding the number of identical amino acids or nucleotides in the aligned regions and dividing that number by the length of the comparison sequence. Various versions of the BLAST programs can be used to compare sequences, e.g., BLAST 2.1.2 or BLAST+ 2.2.22.


A subject or individual can be any animal which may benefit from the methods of the invention, including, e.g., humans and non-human mammals, such as primates, rodents, horses, dogs and cats. Subjects include without limitation a eukaryotic organisms, most preferably a mammal such as a primate, e.g., chimpanzee or human, cow; dog; cat; a rodent, e.g., guinea pig, rat, mouse; rabbit; or a bird; reptile; or fish. Subjects specifically intended for treatment using the methods described herein include humans. A subject may be referred to as an individual or a patient.


Treatment of a disease or individual according to the invention is an approach for obtaining beneficial or desired medical results, including clinical results, but not necessarily a cure. For purposes of this invention, beneficial or desired clinical results include, but are not limited to, alleviation or amelioration of one or more symptoms, diminishment of extent of disease, stabilized (i.e., not worsening) state of disease, preventing spread of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total), whether detectable or undetectable. Treatment also includes prolonging survival as compared to expected survival if not receiving treatment or if receiving a different treatment. A treatment can include administration of a therapeutic agent, which can be an agent that exerts a cytotoxic, cytostatic, or immunomodulatory effect on diseased cells, e.g., cancer cells, or other cells that may promote a diseased state, e.g., activated immune cells. Therapeutic agents selected by the methods of the invention are not limited. Any therapeutic agent can be selected where a link can be made between molecular profiling and potential efficacy of the agent. Therapeutic agents include without limitation drugs, pharmaceuticals, small molecules, protein therapies, antibody therapies, viral therapies, gene therapies, and the like. Cancer treatments or therapies include apoptosis-mediated and non-apoptosis mediated cancer therapies including, without limitation, chemotherapy, hormonal therapy, radiotherapy, immunotherapy, and combinations thereof. Chemotherapeutic agents comprise therapeutic agents and combinations of therapeutic agents that treat, cancer cells, e.g., by killing those cells. Examples of different types of chemotherapeutic drugs include without limitation alkylating agents (e.g., nitrogen mustard derivatives, ethylenimines, alkylsulfonates, hydrazines and triazines, nitrosureas, and metal salts), plant alkaloids (e.g., vinca alkaloids, taxanes, podophyllotoxins, and camptothecan analogs), antitumor antibiotics (e.g., anthracyclines, chromomycins, and the like), antimetabolites (e.g., folic acid antagonists, pyrimidine antagonists, purine antagonists, and adenosine deaminase inhibitors), topoisomerase I inhibitors, topoisomerase II inhibitors, and miscellaneous antineoplastics (e.g., ribonucleotide reductase inhibitors, adrenocortical steroid inhibitors, enzymes, antimicrotubule agents, and retinoids).


A biomarker refers generally to a molecule, including without limitation a gene or product thereof, nucleic acids (e.g., DNA, RNA), protein/peptide/polypeptide, carbohydrate structure, lipid, glycolipid, characteristics of which can be detected in a tissue or cell to provide information that is predictive, diagnostic, prognostic and/or theranostic for sensitivity or resistance to candidate treatment.


Biological Samples


A sample as used herein includes any relevant biological sample that can be used for molecular profiling, e.g., sections of tissues such as biopsy or tissue removed during surgical or other procedures, bodily fluids, autopsy samples, and frozen sections taken for histological purposes. Such samples include blood and blood fractions or products (e.g., serum, buffy coat, plasma, platelets, red blood cells, and the like), sputum, malignant effusion, cheek cells tissue, cultured cells (e.g., primary cultures, explants, and transformed cells), stool, urine, other biological or bodily fluids (e.g., prostatic fluid, gastric fluid, intestinal fluid, renal fluid, lung fluid, cerebrospinal fluid, and the like), etc. The sample can comprise biological material that is a fresh frozen & formalin fixed paraffin embedded (FFPE) block, formalin-fixed paraffin embedded, or is within an RNA preservative+formalin fixative. More than one sample of more than one type can be used for each patient. In a preferred embodiment, the sample comprises a fixed tumor sample.


The sample used in the methods described herein can be a formalin fixed paraffin embedded (FFPE) sample. The FFPE sample can be one or more of fixed tissue, unstained slides, bone marrow core or clot, core needle biopsy, malignant fluids and fine needle aspirate (FNA). In an embodiment, the fixed tissue comprises a tumor containing formalin fixed paraffin embedded (FFPE) block from a surgery or biopsy. In another embodiment, the unstained slides comprise unstained, charged, unbaked slides from a paraffin block. In another embodiment, bone marrow core or clot comprises a decalcified core. A formalin fixed core and/or clot can be paraffin-embedded. In still another embodiment, the core needle biopsy comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more, e.g., 3-4, paraffin embedded biopsy samples. An 18 gauge needle biopsy can be used. The malignant fluid can comprise a sufficient volume of fresh pleural/ascitic fluid to produce a 5×5×2 mm cell pellet. The fluid can be formalin fixed in a paraffin block. In an embodiment, the core needle biopsy comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more, e.g., 4-6, paraffin embedded aspirates.


A sample may be processed according to techniques understood by those in the art. A sample can be without limitation fresh, frozen or fixed cells or tissue. In some embodiments, a sample comprises formalin-fixed paraffin-embedded (FFPE) tissue, fresh tissue or fresh frozen (FF) tissue. A sample can comprise cultured cells, including primary or immortalized cell lines derived from a subject sample. A sample can also refer to an extract from a sample from a subject. For example, a sample can comprise DNA, RNA or protein extracted from a tissue or a bodily fluid. Many techniques and commercial kits are available for such purposes. The fresh sample from the individual can be treated with an agent to preserve RNA prior to further processing, e.g., cell lysis and extraction. Samples can include frozen samples collected for other purposes. Samples can be associated with relevant information such as age, gender, and clinical symptoms present in the subject; source of the sample; and methods of collection and storage of the sample. A sample is typically obtained from a subject.


A biopsy comprises the process of removing a tissue sample for diagnostic or prognostic evaluation, and to the tissue specimen itself. Any biopsy technique known in the art can be applied to the molecular profiling methods of the present invention. The biopsy technique applied can depend on the tissue type to be evaluated (e.g., colon, prostate, kidney, bladder, lymph node, liver, bone marrow, blood cell, lung, breast, etc.), the size and type of the tumor (e.g., solid or suspended, blood or ascites), among other factors. Representative biopsy techniques include, but are not limited to, excisional biopsy, incisional biopsy, needle biopsy, surgical biopsy, and bone marrow biopsy. An “excisional biopsy” refers to the removal of an entire tumor mass with a small margin of normal tissue surrounding it. An “incisional biopsy” refers to the removal of a wedge of tissue that includes a cross-sectional diameter of the tumor. Molecular profiling can use a “core-needle biopsy” of the tumor mass, or a “fine-needle aspiration biopsy” which generally obtains a suspension of cells from within the tumor mass. Biopsy techniques are discussed, for example, in Harrison's Principles of Internal Medicine, Kasper, et al., eds., 16th ed., 2005, Chapter 70, and throughout Part V.


Standard molecular biology techniques known in the art and not specifically described are generally followed as in Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York (1989), and as in Ausubel et al., Current Protocols in Molecular Biology, John Wiley and Sons, Baltimore, Md. (1989) and as in Perbal, A Practical Guide to Molecular Cloning, John Wiley & Sons, New York (1988), and as in Watson et al., Recombinant DNA, Scientific American Books, New York and in Birren et al (eds) Genome Analysis: A Laboratory Manual Series, Vols. 1-4 Cold Spring Harbor Laboratory Press, New York (1998) and methodology as set forth in U.S. Pat. Nos. 4,666,828; 4,683,202; 4,801,531; 5,192,659 and 5,272,057 and incorporated herein by reference. Polymerase chain reaction (PCR) can be carried out generally as in PCR Protocols: A Guide to Methods and Applications, Academic Press, San Diego, Calif. (1990).


Vesicles


The sample can comprise vesicles. Methods of the invention can include assessing one or more vesicles, including assessing vesicle populations. A vesicle, as used herein, is a membrane vesicle that is shed from cells. Vesicles or membrane vesicles include without limitation: circulating microvesicles (cMVs), microvesicle, exosome, nanovesicle, dexosome, bleb, blebby, prostasome, microparticle, intralumenal vesicle, membrane fragment, intralumenal endosomal vesicle, endosomal-like vesicle, exocytosis vehicle, endosome vesicle, endosomal vesicle, apoptotic body, multivesicular body, secretory vesicle, phospholipid vesicle, liposomal vesicle, argosome, texasome, secresome, tolerosome, melanosome, oncosome, or exocytosed vehicle. Furthermore, although vesicles may be produced by different cellular processes, the methods of the invention are not limited to or reliant on any one mechanism, insofar as such vesicles are present in a biological sample and are capable of being characterized by the methods disclosed herein. Unless otherwise specified, methods that make use of a species of vesicle can be applied to other types of vesicles. Vesicles comprise spherical structures with a lipid bilayer similar to cell membranes which surrounds an inner compartment which can contain soluble components, sometimes referred to as the payload. In some embodiments, the methods of the invention make use of exosomes, which are small secreted vesicles of about 40-100 nm in diameter. For a review of membrane vesicles, including types and characterizations, see Thery et al., Nat Rev Immunol. 2009 August; 9(8): 581-93. Some properties of different types of vesicles include those in Table 1:









TABLE 1







Vesicle Properties

















Membrane
Exosome-
Apoptotic


Feature
Exosomes
Microvesicles
Ectosomes
particles
like vesicles
vesicles





















Size
50-100
nm
100-1,000
nm
50-200 nm
50-80
nm
20-50
nm
50-500
nm

















Density in
1.13-1.19
g/ml


1.04-1.07
g/ml
1.1
g/ml
1.16-1.28
g/ml


sucrose













EM appearance
Cup shape
Irregular
Bilamellar
Round
Irregular
Heterogeneous




shape, electron
round structures

shape




dense
















Sedimentation
100,000
g
10,000
g
160,000-
100,000-
175,000
g
1,200 g,







200,000 g
200,000 g


10,000 g,











100,000 g













Lipid
Enriched in
Expose PPS
Enriched in

No lipid rafts



composition
cholesterol,

cholesterol and



sphingomyelin

diacylglycerol;



and ceramide;

expose PPS



contains lipid



rafts; expose PPS


Major protein
Tetraspanins
Integrins,
CR1 and
CD133; no
TNFRI
Histones


markers
(e.g., CD63,
selectins and
proteolytic
CD63



CD9), Alix,
CD40 ligand
enzymes; no



TSG101

CD63


Intracellular
Internal
Plasma
Plasma
Plasma


origin
compartments
membrane
membrane
membrane



(endosomes)





Abbreviations:


phosphatidylserine (PPS);


electron microscopy (EM)






Vesicles include shed membrane bound particles, or “microparticles,” that are derived from either the plasma membrane or an internal membrane. Vesicles can be released into the extracellular environment from cells. Cells releasing vesicles include without limitation cells that originate from, or are derived from, the ectoderm, endoderm, or mesoderm. The cells may have undergone genetic, environmental, and/or any other variations or alterations. For example, the cell can be tumor cells. A vesicle can reflect any changes in the source cell, and thereby reflect changes in the originating cells, e.g., cells having various genetic mutations. In one mechanism, a vesicle is generated intracellularly when a segment of the cell membrane spontaneously invaginates and is ultimately exocytosed (see for example, Keller et al., Immunol. Lett. 107 (2): 102-8 (2006)). Vesicles also include cell-derived structures bounded by a lipid bilayer membrane arising from both herniated evagination (blebbing) separation and sealing of portions of the plasma membrane or from the export of any intracellular membrane-bounded vesicular structure containing various membrane-associated proteins of tumor origin, including surface-bound molecules derived from the host circulation that bind selectively to the tumor-derived proteins together with molecules contained in the vesicle lumen, including but not limited to tumor-derived microRNAs or intracellular proteins. Blebs and blebbing are further described in Charras et al., Nature Reviews Molecular and Cell Biology, Vol. 9, No. 11, p. 730-736 (2008). A vesicle shed into circulation or bodily fluids from tumor cells may be referred to as a “circulating tumor-derived vesicle.” When such vesicle is an exosome, it may be referred to as a circulating-tumor derived exosome (CTE). In some instances, a vesicle can be derived from a specific cell of origin. CTE, as with a cell-of-origin specific vesicle, typically have one or more unique biomarkers that permit isolation of the CTE or cell-of-origin specific vesicle, e.g., from a bodily fluid and sometimes in a specific manner. For example, a cell or tissue specific markers are used to identify the cell of origin. Examples of such cell or tissue specific markers are disclosed herein and can further be accessed in the Tissue-specific Gene Expression and Regulation (TiGER) Database, available at bioinfo.wilmerjhu.edu/tiger/; Liu et al. (2008) TiGER: a database for tissue-specific gene expression and regulation. BMC Bioinformatics. 9:271; TissueDistributionDBs, available at genome.dkfz-heidelberg.de/menu/tissue_db/index.html.


A vesicle can have a diameter of greater than about 10 nm, 20 nm, or 30 nm. A vesicle can have a diameter of greater than 40 nm, 50 nm, 100 nm, 200 nm, 500 nm, 1000 nm or greater than 10,000 nm. A vesicle can have a diameter of about 30-1000 nm, about 30-800 nm, about 30-200 nm, or about 30-100 nm. In some embodiments, the vesicle has a diameter of less than 10,000 nm, 1000 nm, 800 nm, 500 nm, 200 nm, 100 nm, 50 nm, 40 nm, 30 nm, 20 nm or less than 10 nm. As used herein the term “about” in reference to a numerical value means that variations of 10% above or below the numerical value are within the range ascribed to the specified value. Typical sizes for various types of vesicles are shown in Table 1. Vesicles can be assessed to measure the diameter of a single vesicle or any number of vesicles. For example, the range of diameters of a vesicle population or an average diameter of a vesicle population can be determined. Vesicle diameter can be assessed using methods known in the art, e.g., imaging technologies such as electron microscopy. In an embodiment, a diameter of one or more vesicles is determined using optical particle detection. See, e.g., U.S. Pat. No. 7,751,053, entitled “Optical Detection and Analysis of Particles” and issued Jul. 6, 2010; and U.S. Pat. No. 7,399,600, entitled “Optical Detection and Analysis of Particles” and issued Jul. 15, 2010.


In some embodiments, vesicles are directly assayed from a biological sample without prior isolation, purification, or concentration from the biological sample. For example, the amount of vesicles in the sample can by itself provide a biosignature that provides a diagnostic, prognostic or theranostic determination. Alternatively, the vesicle in the sample may be isolated, captured, purified, or concentrated from a sample prior to analysis. As noted, isolation, capture or purification as used herein comprises partial isolation, partial capture or partial purification apart from other components in the sample. Vesicle isolation can be performed using various techniques as described herein or known in the art, including without limitation size exclusion chromatography, density gradient centrifugation, differential centrifugation, nanomembrane ultrafiltration, immunoabsorbent capture, affinity purification, affinity capture, immunoassay, immunoprecipitation, microfluidic separation, flow cytometry or combinations thereof.


Vesicles can be assessed to provide a phenotypic characterization by comparing vesicle characteristics to a reference. In some embodiments, surface antigens on a vesicle are assessed. A vesicle or vesicle population carrying a specific marker can be referred to as a positive (biomarker+) vesicle or vesicle population. For example, a DLL4+ population refers to a vesicle population associated with DLL4. Conversely, a DLL4− population would not be associated with DLL4. The surface antigens can provide an indication of the anatomical origin and/or cellular of the vesicles and other phenotypic information, e.g., tumor status. For example, vesicles found in a patient sample can be assessed for surface antigens indicative of colorectal origin and the presence of cancer, thereby identifying vesicles associated with colorectal cancer cells. The surface antigens may comprise any informative biological entity that can be detected on the vesicle membrane surface, including without limitation surface proteins, lipids, carbohydrates, and other membrane components. For example, positive detection of colon derived vesicles expressing tumor antigens can indicate that the patient has colorectal cancer. As such, methods of the invention can be used to characterize any disease or condition associated with an anatomical or cellular origin, by assessing, for example, disease-specific and cell-specific biomarkers of one or more vesicles obtained from a subject.


In embodiments, one or more vesicle payloads are assessed to provide a phenotypic characterization. The payload with a vesicle comprises any informative biological entity that can be detected as encapsulated within the vesicle, including without limitation proteins and nucleic acids, e.g., genomic or cDNA, mRNA, or functional fragments thereof, as well as microRNAs (miRs). In addition, methods of the invention are directed to detecting vesicle surface antigens (in addition or exclusive to vesicle payload) to provide a phenotypic characterization. For example, vesicles can be characterized by using binding agents (e.g., antibodies or aptamers) that are specific to vesicle surface antigens, and the bound vesicles can be further assessed to identify one or more payload components disclosed therein. As described herein, the levels of vesicles with surface antigens of interest or with payload of interest can be compared to a reference to characterize a phenotype. For example, overexpression in a sample of cancer-related surface antigens or vesicle payload, e.g., a tumor associated mRNA or microRNA, as compared to a reference, can indicate the presence of cancer in the sample. The biomarkers assessed can be present or absent, increased or reduced based on the selection of the desired target sample and comparison of the target sample to the desired reference sample. Non-limiting examples of target samples include: disease; treated/not-treated; different time points, such as a in a longitudinal study; and non-limiting examples of reference sample: non-disease; normal; different time points; and sensitive or resistant to candidate treatment(s).


In an embodiment, molecular profiling of the invention comprises analysis of microvesicles, such as circulating microvesicles.


MicroRNA


Various biomarker molecules can be assessed in biological samples or vesicles obtained from such biological samples. MicroRNAs comprise one class biomarkers assessed via methods of the invention. MicroRNAs, also referred to herein as miRNAs or miRs, are short RNA strands approximately 21-23 nucleotides in length. MiRNAs are encoded by genes that are transcribed from DNA but are not translated into protein and thus comprise non-coding RNA. The miRs are processed from primary transcripts known as pri-miRNA to short stem-loop structures called pre-miRNA and finally to the resulting single strand miRNA. The pre-miRNA typically forms a structure that folds back on itself in self-complementary regions. These structures are then processed by the nuclease Dicer in animals or DCL1 in plants. Mature miRNA molecules are partially complementary to one or more messenger RNA (mRNA) molecules and can function to regulate translation of proteins. Identified sequences of miRNA can be accessed at publicly available databases, such as www.microRNA.org, www.mirbase.org, or www.mirz.unibas.ch/cgi/miRNA.cgi.


miRNAs are generally assigned a number according to the naming convention “mir-[number].” The number of a miRNA is assigned according to its order of discovery relative to previously identified miRNA species. For example, if the last published miRNA was mir-121, the next discovered miRNA will be named mir-122, etc. When a miRNA is discovered that is homologous to a known miRNA from a different organism, the name can be given an optional organism identifier, of the form [organism identifier]-mir-[number]. Identifiers include hsa for Homo sapiens and mmu for Mus Musculus. For example, a human homolog to mir-121 might be referred to as hsa-mir-121 whereas the mouse homolog can be referred to as mmu-mir-121.


Mature microRNA is commonly designated with the prefix “miR” whereas the gene or precursor miRNA is designated with the prefix “mir.” For example, mir-121 is a precursor for miR-121. When differing miRNA genes or precursors are processed into identical mature miRNAs, the genes/precursors can be delineated by a numbered suffix. For example, mir-121-1 and mir-121-2 can refer to distinct genes or precursors that are processed into miR-121. Lettered suffixes are used to indicate closely related mature sequences. For example, mir-121a and mir-121b can be processed to closely related miRNAs miR-121a and miR-121b, respectively. In the context of the invention, any microRNA (miRNA or miR) designated herein with the prefix mir-* or miR-* is understood to encompass both the precursor and/or mature species, unless otherwise explicitly stated otherwise.


Sometimes it is observed that two mature miRNA sequences originate from the same precursor. When one of the sequences is more abundant that the other, a “*” suffix can be used to designate the less common variant. For example, miR-121 would be the predominant product whereas miR-121* is the less common variant found on the opposite arm of the precursor. If the predominant variant is not identified, the miRs can be distinguished by the suffix “5p” for the variant from the 5′ arm of the precursor and the suffix “3p” for the variant from the 3′ arm. For example, miR-121-5p originates from the 5′ arm of the precursor whereas miR-121-3p originates from the 3′ arm. Less commonly, the 5p and 3p variants are referred to as the sense (“s”) and anti-sense (“as”) forms, respectively. For example, miR-121-5p may be referred to as miR-121-s whereas miR-121-3p may be referred to as miR-121-as.


The above naming conventions have evolved over time and are general guidelines rather than absolute rules. For example, the let- and lin-families of miRNAs continue to be referred to by these monikers. The mir/miR convention for precursor/mature forms is also a guideline and context should be taken into account to determine which form is referred to. Further details of miR naming can be found at www.mirbase.org or Ambros et al., A uniform system for microRNA annotation, RNA 9:277-279 (2003).


Plant miRNAs follow a different naming convention as described in Meyers et al., Plant Cell. 2008 20(12):3186-3190.


A number of miRNAs are involved in gene regulation, and miRNAs are part of a growing class of non-coding RNAs that is now recognized as a major tier of gene control. In some cases, miRNAs can interrupt translation by binding to regulatory sites embedded in the 3′-UTRs of their target mRNAs, leading to the repression of translation. Target recognition involves complementary base pairing of the target site with the miRNA's seed region (positions 2-8 at the miRNA's 5′ end), although the exact extent of seed complementarity is not precisely determined and can be modified by 3′ pairing. In other cases, miRNAs function like small interfering RNAs (siRNA) and bind to perfectly complementary mRNA sequences to destroy the target transcript.


Characterization of a number of miRNAs indicates that they influence a variety of processes, including early development, cell proliferation and cell death, apoptosis and fat metabolism. For example, some miRNAs, such as lin-4, let-7, mir-14, mir-23, and bantam, have been shown to play critical roles in cell differentiation and tissue development. Others are believed to have similarly important roles because of their differential spatial and temporal expression patterns.


The miRNA database available at miRBase (www.mirbase.org) comprises a searchable database of published miRNA sequences and annotation. Further information about miRBase can be found in the following articles, each of which is incorporated by reference in its entirety herein: Griffiths-Jones et al., miRBase: tools for microRNA genomics. NAR 2008 36 (Database Issue):D154-D158; Griffiths-Jones et al., miRBase: microRNA sequences, targets and gene nomenclature. NAR 2006 34 (Database Issue):D140-D144; and Griffiths-Jones, S. The microRNA Registry. NAR 2004 32 (Database Issue):D109-D111. Representative miRNAs contained in Release 16 of miRBase, made available September 2010.


As described herein, microRNAs are known to be involved in cancer and other diseases and can be assessed in order to characterize a phenotype in a sample. See, e.g., Ferracin et al., Micromarkers: miRNAs in cancer diagnosis and prognosis, Exp Rev Mol Diag, April 2010, Vol. 10, No. 3, Pages 297-308; Fabbri, miRNAs as molecular biomarkers of cancer, Exp Rev Mol Diag, May 2010, Vol. 10, No. 4, Pages 435-444.


In an embodiment, molecular profiling of the invention comprises analysis of microRNA.


Techniques to isolate and characterize vesicles and miRs are known to those of skill in the art. In addition to the methodology presented herein, additional methods can be found in U.S. Pat. No. 7,888,035, entitled “METHODS FOR ASSESSING RNA PATTERNS” and issued Feb. 15, 2011; and U.S. Pat. No. 7,897,356, entitled “METHODS AND SYSTEMS OF USING EXOSOMES FOR DETERMINING PHENOTYPES” and issued Mar. 1, 2011; and International Patent Publication Nos. WO/2011/066589, entitled “METHODS AND SYSTEMS FOR ISOLATING, STORING, AND ANALYZING VESICLES” and filed Nov. 30, 2010; WO/2011/088226, entitled “DETECTION OF GASTROINTESTINAL DISORDERS” and filed Jan. 13, 2011; WO/2011/109440, entitled “BIOMARKERS FOR THERANOSTICS” and filed Mar. 1, 2011; and WO/2011/127219, entitled “CIRCULATING BIOMARKERS FOR DISEASE” and filed Apr. 6, 2011, each of which applications are incorporated by reference herein in their entirety.


Circulating Biomarkers


Circulating biomarkers include biomarkers that are detectable in body fluids, such as blood, plasma, serum. Examples of circulating cancer biomarkers include cardiac troponin T (cTnT), prostate specific antigen (PSA) for prostate cancer and CA125 for ovarian cancer. Circulating biomarkers according to the invention include any appropriate biomarker that can be detected in bodily fluid, including without limitation protein, nucleic acids, e.g., DNA, mRNA and microRNA, lipids, carbohydrates and metabolites. Circulating biomarkers can include biomarkers that are not associated with cells, such as biomarkers that are membrane associated, embedded in membrane fragments, part of a biological complex, or free in solution. In one embodiment, circulating biomarkers are biomarkers that are associated with one or more vesicles present in the biological fluid of a subject.


Circulating biomarkers have been identified for use in characterization of various phenotypes, such as detection of a cancer. See, e.g., Ahmed N, et al., Proteomic-based identification of haptoglobin-1 precursor as a novel circulating biomarker of ovarian cancer. Br. J. Cancer 2004; Mathelin et al., Circulating proteinic biomarkers and breast cancer, Gynecol Obstet Fertil. 2006 July-August; 34(7-8):638-46. Epub 2006 Jul. 28; Ye et al., Recent technical strategies to identify diagnostic biomarkers for ovarian cancer. Expert Rev Proteomics. 2007 February; 4(1):121-31; Carney, Circulating oncoproteins HER2/neu, EGFR and CAIX (MN) as novel cancer biomarkers. Expert Rev Mol Diagn. 2007 May; 7(3):309-19; Gagnon, Discovery and application of protein biomarkers for ovarian cancer, Curr Opin Obstet Gynecol. 2008 February; 20(1):9-13; Pasterkamp et al., Immune regulatory cells: circulating biomarker factories in cardiovascular disease. Clin Sci (Lond). 2008 August; 115(4):129-31; Fabbri, miRNAs as molecular biomarkers of cancer, Exp Rev Mol Diag, May 2010, Vol. 10, No. 4, Pages 435-444; PCT Patent Publication WO/2007/088537; U.S. Pat. Nos. 7,745,150 and 7,655,479; U.S. Patent Publications 20110008808, 20100330683, 20100248290, 20100222230, 20100203566, 20100173788, 20090291932, 20090239246, 20090226937, 20090111121, 20090004687, 20080261258, 20080213907, 20060003465, 20050124071, and 20040096915, each of which publication is incorporated herein by reference in its entirety. In an embodiment, molecular profiling of the invention comprises analysis of circulating biomarkers.


Gene Expression Profiling


The methods and systems of the invention comprise expression profiling, which includes assessing differential expression of one or more target genes disclosed herein. Differential expression can include overexpression and/or underexpression of a biological product, e.g., a gene, mRNA or protein, compared to a control (or a reference). The control can include similar cells to the sample but without the disease (e.g., expression profiles obtained from samples from healthy individuals). A control can be a previously determined level that is indicative of a drug target efficacy associated with the particular disease and the particular drug target. The control can be derived from the same patient, e.g., a normal adjacent portion of the same organ as the diseased cells, the control can be derived from healthy tissues from other patients, or previously determined thresholds that are indicative of a disease responding or not-responding to a particular drug target. The control can also be a control found in the same sample, e.g. a housekeeping gene or a product thereof (e.g., mRNA or protein). For example, a control nucleic acid can be one which is known not to differ depending on the cancerous or non-cancerous state of the cell. The expression level of a control nucleic acid can be used to normalize signal levels in the test and reference populations. Illustrative control genes include, but are not limited to, e.g., β-actin, glyceraldehyde 3-phosphate dehydrogenase and ribosomal protein P1. Multiple controls or types of controls can be used. The source of differential expression can vary. For example, a gene copy number may be increased in a cell, thereby resulting in increased expression of the gene. Alternately, transcription of the gene may be modified, e.g., by chromatin remodeling, differential methylation, differential expression or activity of transcription factors, etc. Translation may also be modified, e.g., by differential expression of factors that degrade mRNA, translate mRNA, or silence translation, e.g., microRNAs or siRNAs. In some embodiments, differential expression comprises differential activity. For example, a protein may carry a mutation that increases the activity of the protein, such as constitutive activation, thereby contributing to a diseased state. Molecular profiling that reveals changes in activity can be used to guide treatment selection.


Methods of gene expression profiling include methods based on hybridization analysis of polynucleotides, and methods based on sequencing of polynucleotides. Commonly used methods known in the art for the quantification of mRNA expression in a sample include northern blotting and in situ hybridization (Parker & Barnes (1999) Methods in Molecular Biology 106:247-283); RNAse protection assays (Hod (1992) Biotechniques 13:852-854); and reverse transcription polymerase chain reaction (RT-PCR) (Weis et al. (1992) Trends in Genetics 8:263-264). Alternatively, antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. Representative methods for sequencing-based gene expression analysis include Serial Analysis of Gene Expression (SAGE), gene expression analysis by massively parallel signature sequencing (MPSS) and/or next generation sequencing.


RT-PCR


Reverse transcription polymerase chain reaction (RT-PCR) is a variant of polymerase chain reaction (PCR). According to this technique, a RNA strand is reverse transcribed into its DNA complement (i.e., complementary DNA, or cDNA) using the enzyme reverse transcriptase, and the resulting cDNA is amplified using PCR. Real-time polymerase chain reaction is another PCR variant, which is also referred to as quantitative PCR, Q-PCR, qRT-PCR, or sometimes as RT-PCR. Either the reverse transcription PCR method or the real-time PCR method can be used for molecular profiling according to the invention, and RT-PCR can refer to either unless otherwise specified or as understood by one of skill in the art.


RT-PCR can be used to determine RNA levels, e.g., mRNA or miRNA levels, of the biomarkers of the invention. RT-PCR can be used to compare such RNA levels of the biomarkers of the invention in different sample populations, in normal and tumor tissues, with or without drug treatment, to characterize patterns of gene expression, to discriminate between closely related RNAs, and to analyze RNA structure.


The first step is the isolation of RNA, e.g., mRNA, from a sample. The starting material can be total RNA isolated from human tumors or tumor cell lines, and corresponding normal tissues or cell lines, respectively. Thus RNA can be isolated from a sample, e.g., tumor cells or tumor cell lines, and compared with pooled DNA from healthy donors. If the source of mRNA is a primary tumor, mRNA can be extracted, for example, from frozen or archived paraffin-embedded and fixed (e.g. formalin-fixed) tissue samples.


General methods for mRNA extraction are well known in the art and are disclosed in standard textbooks of molecular biology, including Ausubel et al. (1997) Current Protocols of Molecular Biology, John Wiley and Sons. Methods for RNA extraction from paraffin embedded tissues are disclosed, for example, in Rupp & Locker (1987) Lab Invest. 56:A67, and De Andres et al., BioTechniques 18:42044 (1995). In particular, RNA isolation can be performed using purification kit, buffer set and protease from commercial manufacturers, such as Qiagen, according to the manufacturer's instructions (QIAGEN Inc., Valencia, Calif.). For example, total RNA from cells in culture can be isolated using Qiagen RNeasy mini-columns. Numerous RNA isolation kits are commercially available and can be used in the methods of the invention.


In the alternative, the first step is the isolation of miRNA from a target sample. The starting material is typically total RNA isolated from human tumors or tumor cell lines, and corresponding normal tissues or cell lines, respectively. Thus RNA can be isolated from a variety of primary tumors or tumor cell lines, with pooled DNA from healthy donors. If the source of miRNA is a primary tumor, miRNA can be extracted, for example, from frozen or archived paraffin-embedded and fixed (e.g. formalin-fixed) tissue samples.


General methods for miRNA extraction are well known in the art and are disclosed in standard textbooks of molecular biology, including Ausubel et al. (1997) Current Protocols of Molecular Biology, John Wiley and Sons. Methods for RNA extraction from paraffin embedded tissues are disclosed, for example, in Rupp & Locker (1987) Lab Invest. 56:A67, and De Andres et al., BioTechniques 18:42044 (1995). In particular, RNA isolation can be performed using purification kit, buffer set and protease from commercial manufacturers, such as Qiagen, according to the manufacturer's instructions. For example, total RNA from cells in culture can be isolated using Qiagen RNeasy mini-columns. Numerous miRNA isolation kits are commercially available and can be used in the methods of the invention.


Whether the RNA comprises mRNA, miRNA or other types of RNA, gene expression profiling by RT-PCR can include reverse transcription of the RNA template into cDNA, followed by amplification in a PCR reaction. Commonly used reverse transcriptases include, but are not limited to, avilo myeloblastosis virus reverse transcriptase (AMV-RT) and Moloney murine leukemia virus reverse transcriptase (MMLV-RT). The reverse transcription step is typically primed using specific primers, random hexamers, or oligo-dT primers, depending on the circumstances and the goal of expression profiling. For example, extracted RNA can be reverse-transcribed using a GeneAmp RNA PCR kit (Perkin Elmer, Calif., USA), following the manufacturer's instructions. The derived cDNA can then be used as a template in the subsequent PCR reaction.


Although the PCR step can use a variety of thermostable DNA-dependent DNA polymerases, it typically employs the Taq DNA polymerase, which has a 5′-3′ nuclease activity but lacks a 3′-5′ proofreading endonuclease activity. TaqMan PCR typically uses the 5′-nuclease activity of Taq or Tth polymerase to hydrolyze a hybridization probe bound to its target amplicon, but any enzyme with equivalent 5′ nuclease activity can be used. Two oligonucleotide primers are used to generate an amplicon typical of a PCR reaction. A third oligonucleotide, or probe, is designed to detect nucleotide sequence located between the two PCR primers. The probe is non-extendible by Taq DNA polymerase enzyme, and is labeled with a reporter fluorescent dye and a quencher fluorescent dye. Any laser-induced emission from the reporter dye is quenched by the quenching dye when the two dyes are located close together as they are on the probe. During the amplification reaction, the Taq DNA polymerase enzyme cleaves the probe in a template-dependent manner. The resultant probe fragments disassociate in solution, and signal from the released reporter dye is free from the quenching effect of the second fluorophore. One molecule of reporter dye is liberated for each new molecule synthesized, and detection of the unquenched reporter dye provides the basis for quantitative interpretation of the data.


TaqMan™ RT-PCR can be performed using commercially available equipment, such as, for example, ABI PRISM 7700™ Sequence Detection System™ (Perkin-Elmer-Applied Biosystems, Foster City, Calif., USA), or LightCycler (Roche Molecular Biochemicals, Mannheim, Germany). In one specific embodiment, the 5′ nuclease procedure is run on a real-time quantitative PCR device such as the ABI PRISM 7700 Sequence Detection System. The system consists of a thermocycler, laser, charge-coupled device (CCD), camera and computer. The system amplifies samples in a 96-well format on a thermocycler. During amplification, laser-induced fluorescent signal is collected in real-time through fiber optic cables for all 96 wells, and detected at the CCD. The system includes software for running the instrument and for analyzing the data.


TaqMan data are initially expressed as Ct, or the threshold cycle. As discussed above, fluorescence values are recorded during every cycle and represent the amount of product amplified to that point in the amplification reaction. The point when the fluorescent signal is first recorded as statistically significant is the threshold cycle (Ct).


To minimize errors and the effect of sample-to-sample variation, RT-PCR is usually performed using an internal standard. The ideal internal standard is expressed at a constant level among different tissues, and is unaffected by the experimental treatment. RNAs most frequently used to normalize patterns of gene expression are mRNAs for the housekeeping genes glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) and β-actin.


Real time quantitative PCR (also quantitative real time polymerase chain reaction, QRT-PCR or Q-PCR) is a more recent variation of the RT-PCR technique. Q-PCR can measure PCR product accumulation through a dual-labeled fluorigenic probe (i.e., TaqMan probe). Real time PCR is compatible both with quantitative competitive PCR, where internal competitor for each target sequence is used for normalization, and with quantitative comparative PCR using a normalization gene contained within the sample, or a housekeeping gene for RT-PCR. See, e.g. Held et al. (1996) Genome Research 6:986-994.


Protein-based detection techniques are also useful for molecular profiling, especially when the nucleotide variant causes amino acid substitutions or deletions or insertions or frame shift that affect the protein primary, secondary or tertiary structure. To detect the amino acid variations, protein sequencing techniques may be used. For example, a protein or fragment thereof corresponding to a gene can be synthesized by recombinant expression using a DNA fragment isolated from an individual to be tested. Preferably, a cDNA fragment of no more than 100 to 150 base pairs encompassing the polymorphic locus to be determined is used. The amino acid sequence of the peptide can then be determined by conventional protein sequencing methods. Alternatively, the HPLC-microscopy tandem mass spectrometry technique can be used for determining the amino acid sequence variations. In this technique, proteolytic digestion is performed on a protein, and the resulting peptide mixture is separated by reversed-phase chromatographic separation. Tandem mass spectrometry is then performed and the data collected is analyzed. See Gatlin et al., Anal. Chem., 72:757-763 (2000).


Microarray


The biomarkers of the invention can also be identified, confirmed, and/or measured using the microarray technique. Thus, the expression profile biomarkers can be measured in cancer samples using microarray technology. In this method, polynucleotide sequences of interest are plated, or arrayed, on a microchip substrate. The arrayed sequences are then hybridized with specific DNA probes from cells or tissues of interest. The source of mRNA can be total RNA isolated from a sample, e.g., human tumors or tumor cell lines and corresponding normal tissues or cell lines. Thus RNA can be isolated from a variety of primary tumors or tumor cell lines. If the source of mRNA is a primary tumor, mRNA can be extracted, for example, from frozen or archived paraffin-embedded and fixed (e.g. formalin-fixed) tissue samples, which are routinely prepared and preserved in everyday clinical practice.


The expression profile of biomarkers can be measured in either fresh or paraffin-embedded tumor tissue, or body fluids using microarray technology. In this method, polynucleotide sequences of interest are plated, or arrayed, on a microchip substrate. The arrayed sequences are then hybridized with specific DNA probes from cells or tissues of interest. As with the RT-PCR method, the source of miRNA typically is total RNA isolated from human tumors or tumor cell lines, including body fluids, such as serum, urine, tears, and exosomes and corresponding normal tissues or cell lines. Thus RNA can be isolated from a variety of sources. If the source of miRNA is a primary tumor, miRNA can be extracted, for example, from frozen tissue samples, which are routinely prepared and preserved in everyday clinical practice.


Also known as biochip, DNA chip, or gene array, cDNA microarray technology allows for identification of gene expression levels in a biologic sample. cDNAs or oligonucleotides, each representing a given gene, are immobilized on a substrate, e.g., a small chip, bead or nylon membrane, tagged, and serve as probes that will indicate whether they are expressed in biologic samples of interest. The simultaneous expression of thousands of genes can be monitored simultaneously.


In a specific embodiment of the microarray technique, PCR amplified inserts of cDNA clones are applied to a substrate in a dense array. In one aspect, at least 100, 200, 300, 400, 500, 600, 700, 800, 900, 1,000, 1,500, 2,000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10,000, 15,000, 20,000, 25,000, 30,000, 35,000, 40,000, 45,000 or at least 50,000 nucleotide sequences are applied to the substrate. Each sequence can correspond to a different gene, or multiple sequences can be arrayed per gene. The microarrayed genes, immobilized on the microchip, are suitable for hybridization under stringent conditions. Fluorescently labeled cDNA probes may be generated through incorporation of fluorescent nucleotides by reverse transcription of RNA extracted from tissues of interest. Labeled cDNA probes applied to the chip hybridize with specificity to each spot of DNA on the array. After stringent washing to remove non-specifically bound probes, the chip is scanned by confocal laser microscopy or by another detection method, such as a CCD camera. Quantitation of hybridization of each arrayed element allows for assessment of corresponding mRNA abundance. With dual color fluorescence, separately labeled cDNA probes generated from two sources of RNA are hybridized pairwise to the array. The relative abundance of the transcripts from the two sources corresponding to each specified gene is thus determined simultaneously. The miniaturized scale of the hybridization affords a convenient and rapid evaluation of the expression pattern for large numbers of genes. Such methods have been shown to have the sensitivity required to detect rare transcripts, which are expressed at a few copies per cell, and to reproducibly detect at least approximately two-fold differences in the expression levels (Schena et al. (1996) Proc. Natl. Acad. Sci. USA 93(2):106-149). Microarray analysis can be performed by commercially available equipment following manufacturer's protocols, including without limitation the Affymetrix GeneChip technology (Affymetrix, Santa Clara, Calif.), Agilent (Agilent Technologies, Inc., Santa Clara, Calif.), or Illumina (Illumina, Inc., San Diego, Calif.) microarray technology.


The development of microarray methods for large-scale analysis of gene expression makes it possible to search systematically for molecular markers of cancer classification and outcome prediction in a variety of tumor types.


In some embodiments, the Agilent Whole Human Genome Microarray Kit (Agilent Technologies, Inc., Santa Clara, Calif.). The system can analyze more than 41,000 unique human genes and transcripts represented, all with public domain annotations. The system is used according to the manufacturer's instructions.


In some embodiments, the Illumina Whole Genome DASL assay (Illumina Inc., San Diego, Calif.) is used. The system offers a method to simultaneously profile over 24,000 transcripts from minimal RNA input, from both fresh frozen (FF) and formalin-fixed paraffin embedded (FFPE) tissue sources, in a high throughput fashion.


Microarray expression analysis comprises identifying whether a gene or gene product is up-regulated or down-regulated relative to a reference. The identification can be performed using a statistical test to determine statistical significance of any differential expression observed. In some embodiments, statistical significance is determined using a parametric statistical test. The parametric statistical test can comprise, for example, a fractional factorial design, analysis of variance (ANOVA), a t-test, least squares, a Pearson correlation, simple linear regression, nonlinear regression, multiple linear regression, or multiple nonlinear regression. Alternatively, the parametric statistical test can comprise a one-way analysis of variance, two-way analysis of variance, or repeated measures analysis of variance. In other embodiments, statistical significance is determined using a nonparametric statistical test. Examples include, but are not limited to, a Wilcoxon signed-rank test, a Mann-Whitney test, a Kruskal-Wallis test, a Friedman test, a Spearman ranked order correlation coefficient, a Kendall Tau analysis, and a nonparametric regression test. In some embodiments, statistical significance is determined at a p-value of less than about 0.05, 0.01, 0.005, 0.001, 0.0005, or 0.0001. Although the microarray systems used in the methods of the invention may assay thousands of transcripts, data analysis need only be performed on the transcripts of interest, thereby reducing the problem of multiple comparisons inherent in performing multiple statistical tests. The p-values can also be corrected for multiple comparisons, e.g., using a Bonferroni correction, a modification thereof, or other technique known to those in the art, e.g., the Hochberg correction, Holm-Bonferroni correction, {hacek over (S)}idák correction, or Dunnett's correction. The degree of differential expression can also be taken into account. For example, a gene can be considered as differentially expressed when the fold-change in expression compared to control level is at least 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.2, 2.5, 2.7, 3.0, 4, 5, 6, 7, 8, 9 or 10-fold different in the sample versus the control. The differential expression takes into account both overexpression and underexpression. A gene or gene product can be considered up or down-regulated if the differential expression meets a statistical threshold, a fold-change threshold, or both. For example, the criteria for identifying differential expression can comprise both a p-value of 0.001 and fold change of at least 1.5-fold (up or down). One of skill will understand that such statistical and threshold measures can be adapted to determine differential expression by any molecular profiling technique disclosed herein.


Various methods of the invention make use of many types of microarrays that detect the presence and potentially the amount of biological entities in a sample. Arrays typically contain addressable moieties that can detect the presence of the entity in the sample, e.g., via a binding event. Microarrays include without limitation DNA microarrays, such as cDNA microarrays, oligonucleotide microarrays and SNP microarrays, microRNA arrays, protein microarrays, antibody microarrays, tissue microarrays, cellular microarrays (also called transfection microarrays), chemical compound microarrays, and carbohydrate arrays (glycoarrays). DNA arrays typically comprise addressable nucleotide sequences that can bind to sequences present in a sample. MicroRNA arrays, e.g., the MMChips array from the University of Louisville or commercial systems from Agilent, can be used to detect microRNAs. Protein microarrays can be used to identify protein-protein interactions, including without limitation identifying substrates of protein kinases, transcription factor protein-activation, or to identify the targets of biologically active small molecules. Protein arrays may comprise an array of different protein molecules, commonly antibodies, or nucleotide sequences that bind to proteins of interest. Antibody microarrays comprise antibodies spotted onto the protein chip that are used as capture molecules to detect proteins or other biological materials from a sample, e.g., from cell or tissue lysate solutions. For example, antibody arrays can be used to detect biomarkers from bodily fluids, e.g., serum or urine, for diagnostic applications. Tissue microarrays comprise separate tissue cores assembled in array fashion to allow multiplex histological analysis. Cellular microarrays, also called transfection microarrays, comprise various capture agents, such as antibodies, proteins, or lipids, which can interact with cells to facilitate their capture on addressable locations. Chemical compound microarrays comprise arrays of chemical compounds and can be used to detect protein or other biological materials that bind the compounds. Carbohydrate arrays (glycoarrays) comprise arrays of carbohydrates and can detect, e.g., protein that bind sugar moieties. One of skill will appreciate that similar technologies or improvements can be used according to the methods of the invention.


Certain embodiments of the current methods comprise a multi-well reaction vessel, including without limitation, a multi-well plate or a multi-chambered microfluidic device, in which a multiplicity of amplification reactions and, in some embodiments, detection are performed, typically in parallel. In certain embodiments, one or more multiplex reactions for generating amplicons are performed in the same reaction vessel, including without limitation, a multi-well plate, such as a 96-well, a 384-well, a 1536-well plate, and so forth; or a microfluidic device, for example but not limited to, a TaqMan™ Low Density Array (Applied Biosystems, Foster City, Calif.). In some embodiments, a massively parallel amplifying step comprises a multi-well reaction vessel, including a plate comprising multiple reaction wells, for example but not limited to, a 24-well plate, a 96-well plate, a 384-well plate, or a 1536-well plate; or a multi-chamber microfluidics device, for example but not limited to a low density array wherein each chamber or well comprises an appropriate primer(s), primer set(s), and/or reporter probe(s), as appropriate. Typically such amplification steps occur in a series of parallel single-plex, two-plex, three-plex, four-plex, five-plex, or six-plex reactions, although higher levels of parallel multiplexing are also within the intended scope of the current teachings. These methods can comprise PCR methodology, such as RT-PCR, in each of the wells or chambers to amplify and/or detect nucleic acid molecules of interest.


Low density arrays can include arrays that detect 10s or 100s of molecules as opposed to 1000s of molecules. These arrays can be more sensitive than high density arrays. In embodiments, a low density array such as a TaqMan™ Low Density Array is used to detect one or more gene or gene product in Table 2. For example, the low density array can be used to detect at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90 or 100 genes or gene products in Table 2.


In some embodiments, the disclosed methods comprise a microfluidics device, “lab on a chip,” or micrototal analytical system (pTAS). In some embodiments, sample preparation is performed using a microfluidics device. In some embodiments, an amplification reaction is performed using a microfluidics device. In some embodiments, a sequencing or PCR reaction is performed using a microfluidic device. In some embodiments, the nucleotide sequence of at least a part of an amplified product is obtained using a microfluidics device. In some embodiments, detecting comprises a microfluidic device, including without limitation, a low density array, such as a TaqMan™ Low Density Array. Descriptions of exemplary microfluidic devices can be found in, among other places, Published PCT Application Nos. WO/0185341 and WO 04/011666; Kartalov and Quake, Nucl. Acids Res. 32:2873-79, 2004; and Fiorini and Chiu, Bio Techniques 38:429-46, 2005.


Any appropriate microfluidic device can be used in the methods of the invention. Examples of microfluidic devices that may be used, or adapted for use with molecular profiling, include but are not limited to those described in U.S. Pat. Nos. 7,591,936, 7,581,429, 7,579,136, 7,575,722, 7,568,399, 7,552,741, 7,544,506, 7,541,578, 7,518,726, 7,488,596, 7,485,214, 7,467,928, 7,452,713, 7,452,509, 7,449,096, 7,431,887, 7,422,725, 7,422,669, 7,419,822, 7,419,639, 7,413,709, 7,411,184, 7,402,229, 7,390,463, 7,381,471, 7,357,864, 7,351,592, 7,351,380, 7,338,637, 7,329,391, 7,323,140, 7,261,824, 7,258,837, 7,253,003, 7,238,324, 7,238,255, 7,233,865, 7,229,538, 7,201,881, 7,195,986, 7,189,581, 7,189,580, 7,189,368, 7,141,978, 7,138,062, 7,135,147, 7,125,711, 7,118,910, 7,118,661, 7,640,947, 7,666,361, 7,704,735; U.S. Patent Application Publication 20060035243; and International Patent Publication WO 2010/072410; each of which patents or applications are incorporated herein by reference in their entirety. Another example for use with methods disclosed herein is described in Chen et al., “Microfluidic isolation and transcriptome analysis of serum vesicles,” Lab on a Chip, Dec. 8, 2009 DOI: 10.1039/b916199f.


Gene Expression Analysis by Massively Parallel Signature Sequencing (MPSS)


This method, described by Brenner et al. (2000) Nature Biotechnology 18:630-634, is a sequencing approach that combines non-gel-based signature sequencing with in vitro cloning of millions of templates on separate microbeads. First, a microbead library of DNA templates is constructed by in vitro cloning. This is followed by the assembly of a planar array of the template-containing microbeads in a flow cell at a high density. The free ends of the cloned templates on each microbead are analyzed simultaneously, using a fluorescence-based signature sequencing method that does not require DNA fragment separation. This method has been shown to simultaneously and accurately provide, in a single operation, hundreds of thousands of gene signature sequences from a cDNA library.


MPSS data has many uses. The expression levels of nearly all transcripts can be quantitatively determined; the abundance of signatures is representative of the expression level of the gene in the analyzed tissue. Quantitative methods for the analysis of tag frequencies and detection of differences among libraries have been published and incorporated into public databases for SAGE™ data and are applicable to MPSS data. The availability of complete genome sequences permits the direct comparison of signatures to genomic sequences and further extends the utility of MPSS data. Because the targets for MPSS analysis are not pre-selected (like on a microarray), MPSS data can characterize the full complexity of transcriptomes. This is analogous to sequencing millions of ESTs at once, and genomic sequence data can be used so that the source of the MPSS signature can be readily identified by computational means.


Serial Analysis of Gene Expression (SAGE)


Serial analysis of gene expression (SAGE) is a method that allows the simultaneous and quantitative analysis of a large number of gene transcripts, without the need of providing an individual hybridization probe for each transcript. First, a short sequence tag (e.g., about 10-14 bp) is generated that contains sufficient information to uniquely identify a transcript, provided that the tag is obtained from a unique position within each transcript. Then, many transcripts are linked together to form long serial molecules, that can be sequenced, revealing the identity of the multiple tags simultaneously. The expression pattern of any population of transcripts can be quantitatively evaluated by determining the abundance of individual tags, and identifying the gene corresponding to each tag. See, e.g. Velculescu et al. (1995) Science 270:484-487; and Velculescu et al. (1997) Cell 88:243-51.


DNA Copy Number Profiling


Any method capable of determining a DNA copy number profile of a particular sample can be used for molecular profiling according to the invention as long as the resolution is sufficient to identify the biomarkers of the invention. The skilled artisan is aware of and capable of using a number of different platforms for assessing whole genome copy number changes at a resolution sufficient to identify the copy number of the one or more biomarkers of the invention. Some of the platforms and techniques are described in the embodiments below.


In some embodiments, the copy number profile analysis involves amplification of whole genome DNA by a whole genome amplification method. The whole genome amplification method can use a strand displacing polymerase and random primers.


In some aspects of these embodiments, the copy number profile analysis involves hybridization of whole genome amplified DNA with a high density array. In a more specific aspect, the high density array has 5,000 or more different probes. In another specific aspect, the high density array has 5,000, 10,000, 20,000, 50,000, 100,000, 200,000, 300,000, 400,000, 500,000, 600,000, 700,000, 800,000, 900,000, or 1,000,000 or more different probes. In another specific aspect, each of the different probes on the array is an oligonucleotide having from about 15 to 200 bases in length. In another specific aspect, each of the different probes on the array is an oligonucleotide having from about 15 to 200, 15 to 150, 15 to 100, 15 to 75, 15 to 60, or 20 to 55 bases in length.


In some embodiments, a microarray is employed to aid in determining the copy number profile for a sample, e.g., cells from a tumor. Microarrays typically comprise a plurality of oligomers (e.g., DNA or RNA polynucleotides or oligonucleotides, or other polymers), synthesized or deposited on a substrate (e.g., glass support) in an array pattern. The support-bound oligomers are “probes”, which function to hybridize or bind with a sample material (e.g., nucleic acids prepared or obtained from the tumor samples), in hybridization experiments. The reverse situation can also be applied: the sample can be bound to the microarray substrate and the oligomer probes are in solution for the hybridization. In use, the array surface is contacted with one or more targets under conditions that promote specific, high-affinity binding of the target to one or more of the probes. In some configurations, the sample nucleic acid is labeled with a detectable label, such as a fluorescent tag, so that the hybridized sample and probes are detectable with scanning equipment. DNA array technology offers the potential of using a multitude (e.g., hundreds of thousands) of different oligonucleotides to analyze DNA copy number profiles. In some embodiments, the substrates used for arrays are surface-derivatized glass or silica, or polymer membrane surfaces (see e.g., in Z. Guo, et al., Nucleic Acids Res, 22, 5456-65 (1994); U. Maskos, E. M. Southern, Nucleic Acids Res, 20, 1679-84 (1992), and E. M. Southern, et al., Nucleic Acids Res, 22, 1368-73 (1994), each incorporated by reference herein). Modification of surfaces of array substrates can be accomplished by many techniques. For example, siliceous or metal oxide surfaces can be derivatized with bifunctional silanes, i.e., silanes having a first functional group enabling covalent binding to the surface (e.g., Si-halogen or Si-alkoxy group, as in —SiCl3 or —Si(OCH3)3, respectively) and a second functional group that can impart the desired chemical and/or physical modifications to the surface to covalently or non-covalently attach ligands and/or the polymers or monomers for the biological probe array. Silylated derivatizations and other surface derivatizations that are known in the art (see for example U.S. Pat. No. 5,624,711 to Sundberg, U.S. Pat. No. 5,266,222 to Willis, and U.S. Pat. No. 5,137,765 to Farnsworth, each incorporated by reference herein). Other processes for preparing arrays are described in U.S. Pat. No. 6,649,348, to Bass et. al., assigned to Agilent Corp., which disclose DNA arrays created by in situ synthesis methods.


Polymer array synthesis is also described extensively in the literature including in the following: WO 00/58516, U.S. Pat. Nos. 5,143,854, 5,242,974, 5,252,743, 5,324,633, 5,384,261, 5,405,783, 5,424,186, 5,451,683, 5,482,867, 5,491,074, 5,527,681, 5,550,215, 5,571,639, 5,578,832, 5,593,839, 5,599,695, 5,624,711, 5,631,734, 5,795,716, 5,831,070, 5,837,832, 5,856,101, 5,858,659, 5,936,324, 5,968,740, 5,974,164, 5,981,185, 5,981,956, 6,025,601, 6,033,860, 6,040,193, 6,090,555, 6,136,269, 6,269,846 and 6,428,752, 5,412,087, 6,147,205, 6,262,216, 6,310,189, 5,889,165, and 5,959,098 in PCT Applications Nos. PCT/US99/00730 (International Publication No. WO 99/36760) and PCT/US01/04285 (International Publication No. WO 01/58593), which are all incorporated herein by reference in their entirety for all purposes.


Nucleic acid arrays that are useful in the present invention include, but are not limited to, those that are commercially available from Affymetrix (Santa Clara, Calif.) under the brand name GeneChip™. Example arrays are shown on the website at affymetrix.com. Another microarray supplier is Illumina, Inc., of San Diego, Calif. with example arrays shown on their website at illumina.com.


In some embodiments, the inventive methods provide for sample preparation. Depending on the microarray and experiment to be performed, sample nucleic acid can be prepared in a number of ways by methods known to the skilled artisan. In some aspects of the invention, prior to or concurrent with genotyping (analysis of copy number profiles), the sample may be amplified any number of mechanisms. The most common amplification procedure used involves PCR. See, for example, PCR Technology: Principles and Applications for DNA Amplification (Ed. H. A. Erlich, Freeman Press, NY, N.Y., 1992); PCR Protocols: A Guide to Methods and Applications (Eds. Innis, et al., Academic Press, San Diego, Calif., 1990); Manila et al., Nucleic Acids Res. 19, 4967 (1991); Eckert et al., PCR Methods and Applications 1, 17 (1991); PCR (Eds. McPherson et al., IRL Press, Oxford); and U.S. Pat. Nos. 4,683,202, 4,683,195, 4,800,159 4,965,188, and 5,333,675, and each of which is incorporated herein by reference in their entireties for all purposes. In some embodiments, the sample may be amplified on the array (e.g., U.S. Pat. No. 6,300,070 which is incorporated herein by reference)


Other suitable amplification methods include the ligase chain reaction (LCR) (for example, Wu and Wallace, Genomics 4, 560 (1989), Landegren et al., Science 241, 1077 (1988) and Barringer et al. Gene 89:117 (1990)), transcription amplification (Kwoh et al., Proc. Natl. Acad. Sci. USA 86, 1173 (1989) and WO88/10315), self-sustained sequence replication (Guatelli et al., Proc. Nat. Acad. Sci. USA, 87, 1874 (1990) and WO90/06995), selective amplification of target polynucleotide sequences (U.S. Pat. No. 6,410,276), consensus sequence primed polymerase chain reaction (CP-PCR) (U.S. Pat. No. 4,437,975), arbitrarily primed polymerase chain reaction (AP-PCR) (U.S. Pat. Nos. 5,413,909, 5,861,245) and nucleic acid based sequence amplification (NABSA). (See, U.S. Pat. Nos. 5,409,818, 5,554,517, and 6,063,603, each of which is incorporated herein by reference). Other amplification methods that may be used are described in, U.S. Pat. Nos. 5,242,794, 5,494,810, 4,988,617 and in U.S. Ser. No. 09/854,317, each of which is incorporated herein by reference.


Additional methods of sample preparation and techniques for reducing the complexity of a nucleic sample are described in Dong et al., Genome Research 11, 1418 (2001), in U.S. Pat. Nos. 6,361,947, 6,391,592 and U.S. Ser. Nos. 09/916,135, 09/920,491 (U.S. Patent Application Publication 20030096235), Ser. No. 09/910,292 (U.S. Patent Application Publication 20030082543), and Ser. No. 10/013,598.


Methods for conducting polynucleotide hybridization assays are well developed in the art. Hybridization assay procedures and conditions used in the methods of the invention will vary depending on the application and are selected in accordance with the general binding methods known including those referred to in: Maniatis et al. Molecular Cloning: A Laboratory Manual (2.sup.nd Ed. Cold Spring Harbor, N.Y., 1989); Berger and Kimmel Methods in Enzymology, Vol. 152, Guide to Molecular Cloning Techniques (Academic Press, Inc., San Diego, Calif., 1987); Young and Davism, P.N.A.S, 80: 1194 (1983). Methods and apparatus for carrying out repeated and controlled hybridization reactions have been described in U.S. Pat. Nos. 5,871,928, 5,874,219, 6,045,996 and 6,386,749, 6,391,623 each of which are incorporated herein by reference.


The methods of the invention may also involve signal detection of hybridization between ligands in after (and/or during) hybridization. See U.S. Pat. Nos. 5,143,854, 5,578,832; 5,631,734; 5,834,758; 5,936,324; 5,981,956; 6,025,601; 6,141,096; 6,185,030; 6,201,639; 6,218,803; and 6,225,625, in U.S. Ser. No. 10/389,194 and in PCT Application PCT/US99/06097 (published as WO99/47964), each of which also is hereby incorporated by reference in its entirety for all purposes.


Methods and apparatus for signal detection and processing of intensity data are disclosed in, for example, U.S. Pat. Nos. 5,143,854, 5,547,839, 5,578,832, 5,631,734, 5,800,992, 5,834,758; 5,856,092, 5,902,723, 5,936,324, 5,981,956, 6,025,601, 6,090,555, 6,141,096, 6,185,030, 6,201,639; 6,218,803; and 6,225,625, in U.S. Ser. No. 10/389,194, 60/493,495 and in PCT Application PCT/US99/06097 (published as WO99/47964), each of which also is hereby incorporated by reference in its entirety for all purposes.


Immuno-Based Assays


Protein-based detection molecular profiling techniques include immunoaffinity assays based on antibodies selectively immunoreactive with mutant gene encoded protein according to the present invention. These techniques include without limitation immunoprecipitation, Western blot analysis, molecular binding assays, enzyme-linked immunosorbent assay (ELISA), enzyme-linked immunofiltration assay (ELIFA), fluorescence activated cell sorting (FACS) and the like. For example, an optional method of detecting the expression of a biomarker in a sample comprises contacting the sample with an antibody against the biomarker, or an immunoreactive fragment of the antibody thereof, or a recombinant protein containing an antigen binding region of an antibody against the biomarker; and then detecting the binding of the biomarker in the sample. Methods for producing such antibodies are known in the art. Antibodies can be used to immunoprecipitate specific proteins from solution samples or to immunoblot proteins separated by, e.g., polyacrylamide gels. Immunocytochemical methods can also be used in detecting specific protein polymorphisms in tissues or cells. Other well-known antibody-based techniques can also be used including, e.g., ELISA, radioimmunoassay (RIA), immunoradiometric assays (IRMA) and immunoenzymatic assays (IEMA), including sandwich assays using monoclonal or polyclonal antibodies. See, e.g., U.S. Pat. Nos. 4,376,110 and 4,486,530, both of which are incorporated herein by reference.


In alternative methods, the sample may be contacted with an antibody specific for a biomarker under conditions sufficient for an antibody-biomarker complex to form, and then detecting said complex. The presence of the biomarker may be detected in a number of ways, such as by Western blotting and ELISA procedures for assaying a wide variety of tissues and samples, including plasma or serum. A wide range of immunoassay techniques using such an assay format are available, see, e.g., U.S. Pat. Nos. 4,016,043, 4,424,279 and 4,018,653. These include both single-site and two-site or “sandwich” assays of the non-competitive types, as well as in the traditional competitive binding assays. These assays also include direct binding of a labelled antibody to a target biomarker.


A number of variations of the sandwich assay technique exist, and all are intended to be encompassed by the present invention. Briefly, in a typical forward assay, an unlabelled antibody is immobilized on a solid substrate, and the sample to be tested brought into contact with the bound molecule. After a suitable period of incubation, for a period of time sufficient to allow formation of an antibody-antigen complex, a second antibody specific to the antigen, labelled with a reporter molecule capable of producing a detectable signal is then added and incubated, allowing time sufficient for the formation of another complex of antibody-antigen-labelled antibody. Any unreacted material is washed away, and the presence of the antigen is determined by observation of a signal produced by the reporter molecule. The results may either be qualitative, by simple observation of the visible signal, or may be quantitated by comparing with a control sample containing known amounts of biomarker.


Variations on the forward assay include a simultaneous assay, in which both sample and labelled antibody are added simultaneously to the bound antibody. These techniques are well known to those skilled in the art, including any minor variations as will be readily apparent. In a typical forward sandwich assay, a first antibody having specificity for the biomarker is either covalently or passively bound to a solid surface. The solid surface is typically glass or a polymer, the most commonly used polymers being cellulose, polyacrylamide, nylon, polystyrene, polyvinyl chloride or polypropylene. The solid supports may be in the form of tubes, beads, discs of microplates, or any other surface suitable for conducting an immunoassay. The binding processes are well-known in the art and generally consist of cross-linking covalently binding or physically adsorbing, the polymer-antibody complex is washed in preparation for the test sample. An aliquot of the sample to be tested is then added to the solid phase complex and incubated for a period of time sufficient (e.g. 2-40 minutes or overnight if more convenient) and under suitable conditions (e.g. from room temperature to 40° C. such as between 25° C. and 32° C. inclusive) to allow binding of any subunit present in the antibody. Following the incubation period, the antibody subunit solid phase is washed and dried and incubated with a second antibody specific for a portion of the biomarker. The second antibody is linked to a reporter molecule which is used to indicate the binding of the second antibody to the molecular marker.


An alternative method involves immobilizing the target biomarkers in the sample and then exposing the immobilized target to specific antibody which may or may not be labelled with a reporter molecule. Depending on the amount of target and the strength of the reporter molecule signal, a bound target may be detectable by direct labelling with the antibody. Alternatively, a second labelled antibody, specific to the first antibody is exposed to the target-first antibody complex to form a target-first antibody-second antibody tertiary complex. The complex is detected by the signal emitted by the reporter molecule. By “reporter molecule”, as used in the present specification, is meant a molecule which, by its chemical nature, provides an analytically identifiable signal which allows the detection of antigen-bound antibody. The most commonly used reporter molecules in this type of assay are either enzymes, fluorophores or radionuclide containing molecules (i.e. radioisotopes) and chemiluminescent molecules.


In the case of an enzyme immunoassay, an enzyme is conjugated to the second antibody, generally by means of glutaraldehyde or periodate. As will be readily recognized, however, a wide variety of different conjugation techniques exist, which are readily available to the skilled artisan. Commonly used enzymes include horseradish peroxidase, glucose oxidase, β-galactosidase and alkaline phosphatase, amongst others. The substrates to be used with the specific enzymes are generally chosen for the production, upon hydrolysis by the corresponding enzyme, of a detectable color change. Examples of suitable enzymes include alkaline phosphatase and peroxidase. It is also possible to employ fluorogenic substrates, which yield a fluorescent product rather than the chromogenic substrates noted above. In all cases, the enzyme-labelled antibody is added to the first antibody-molecular marker complex, allowed to bind, and then the excess reagent is washed away. A solution containing the appropriate substrate is then added to the complex of antibody-antigen-antibody. The substrate will react with the enzyme linked to the second antibody, giving a qualitative visual signal, which may be further quantitated, usually spectrophotometrically, to give an indication of the amount of biomarker which was present in the sample. Alternately, fluorescent compounds, such as fluorescein and rhodamine, may be chemically coupled to antibodies without altering their binding capacity. When activated by illumination with light of a particular wavelength, the fluorochrome-labelled antibody adsorbs the light energy, inducing a state to excitability in the molecule, followed by emission of the light at a characteristic color visually detectable with a light microscope. As in the EIA, the fluorescent labelled antibody is allowed to bind to the first antibody-molecular marker complex. After washing off the unbound reagent, the remaining tertiary complex is then exposed to the light of the appropriate wavelength, the fluorescence observed indicates the presence of the molecular marker of interest. Immunofluorescence and EIA techniques are both very well established in the art. However, other reporter molecules, such as radioisotope, chemiluminescent or bioluminescent molecules, may also be employed.


Immunohistochemistry (IHC)


IHC is a process of localizing antigens (e.g., proteins) in cells of a tissue binding antibodies specifically to antigens in the tissues. The antigen-binding antibody can be conjugated or fused to a tag that allows its detection, e.g., via visualization. In some embodiments, the tag is an enzyme that can catalyze a color-producing reaction, such as alkaline phosphatase or horseradish peroxidase. The enzyme can be fused to the antibody or non-covalently bound, e.g., using a biotin-avadin system. Alternatively, the antibody can be tagged with a fluorophore, such as fluorescein, rhodamine, DyLight Fluor or Alexa Fluor. The antigen-binding antibody can be directly tagged or it can itself be recognized by a detection antibody that carries the tag. Using IHC, one or more proteins may be detected. The expression of a gene product can be related to its staining intensity compared to control levels. In some embodiments, the gene product is considered differentially expressed if its staining varies at least 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.2, 2.5, 2.7, 3.0, 4, 5, 6, 7, 8, 9 or 10-fold in the sample versus the control.


IHC comprises the application of antigen-antibody interactions to histochemical techniques. In an illustrative example, a tissue section is mounted on a slide and is incubated with antibodies (polyclonal or monoclonal) specific to the antigen (primary reaction). The antigen-antibody signal is then amplified using a second antibody conjugated to a complex of peroxidase antiperoxidase (PAP), avidin-biotin-peroxidase (ABC) or avidin-biotin alkaline phosphatase. In the presence of substrate and chromogen, the enzyme forms a colored deposit at the sites of antibody-antigen binding. Immunofluorescence is an alternate approach to visualize antigens. In this technique, the primary antigen-antibody signal is amplified using a second antibody conjugated to a fluorochrome. On UV light absorption, the fluorochrome emits its own light at a longer wavelength (fluorescence), thus allowing localization of antibody-antigen complexes.


Epigenetic Status


Molecular profiling methods according to the invention also comprise measuring epigenetic change, i.e., modification in a gene caused by an epigenetic mechanism, such as a change in methylation status or histone acetylation. Frequently, the epigenetic change will result in an alteration in the levels of expression of the gene which may be detected (at the RNA or protein level as appropriate) as an indication of the epigenetic change. Often the epigenetic change results in silencing or down regulation of the gene, referred to as “epigenetic silencing.” The most frequently investigated epigenetic change in the methods of the invention involves determining the DNA methylation status of a gene, where an increased level of methylation is typically associated with the relevant cancer (since it may cause down regulation of gene expression). Aberrant methylation, which may be referred to as hypermethylation, of the gene or genes can be detected. Typically, the methylation status is determined in suitable CpG islands which are often found in the promoter region of the gene(s). The term “methylation,” “methylation state” or “methylation status” may refers to the presence or absence of 5-methylcytosine at one or a plurality of CpG dinucleotides within a DNA sequence. CpG dinucleotides are typically concentrated in the promoter regions and exons of human genes.


Diminished gene expression can be assessed in terms of DNA methylation status or in terms of expression levels as determined by the methylation status of the gene. One method to detect epigenetic silencing is to determine that a gene which is expressed in normal cells is less expressed or not expressed in tumor cells. Accordingly, the invention provides for a method of molecular profiling comprising detecting epigenetic silencing.


Various assay procedures to directly detect methylation are known in the art, and can be used in conjunction with the present invention. These assays rely onto two distinct approaches: bisulphite conversion based approaches and non-bisulphite based approaches. Non-bisulphite based methods for analysis of DNA methylation rely on the inability of methylation-sensitive enzymes to cleave methylation cytosines in their restriction. The bisulphite conversion relies on treatment of DNA samples with sodium bisulphite which converts unmethylated cytosine to uracil, while methylated cytosines are maintained (Furuichi Y, Wataya Y, Hayatsu H, Ukita T. Biochem Biophys Res Commun. 1970 Dec. 9; 41(5):1185-91). This conversion results in a change in the sequence of the original DNA. Methods to detect such changes include MS AP-PCR (Methylation-Sensitive Arbitrarily-Primed Polymerase Chain Reaction), a technology that allows for a global scan of the genome using CG-rich primers to focus on the regions most likely to contain CpG dinucleotides, and described by Gonzalgo et al., Cancer Research 57:594-599, 1997; MethyLight™, which refers to the art-recognized fluorescence-based real-time PCR technique described by Eads et al., Cancer Res. 59:2302-2306, 1999; the HeavyMethyl™ assay, in the embodiment thereof implemented herein, is an assay, wherein methylation specific blocking probes (also referred to herein as blockers) covering CpG positions between, or covered by the amplification primers enable methylation-specific selective amplification of a nucleic acid sample; HeavyMethyl™MethyLight™ is a variation of the MethyLight™ assay wherein the MethyLight™ assay is combined with methylation specific blocking probes covering CpG positions between the amplification primers; Ms-SNuPE (Methylation-sensitive Single Nucleotide Primer Extension) is an assay described by Gonzalgo & Jones, Nucleic Acids Res. 25:2529-2531, 1997; MSP (Methylation-specific PCR) is a methylation assay described by Herman et al. Proc. Natl. Acad. Sci. USA 93:9821-9826, 1996, and by U.S. Pat. No. 5,786,146; COBRA (Combined Bisulfite Restriction Analysis) is a methylation assay described by Xiong & Laird, Nucleic Acids Res. 25:2532-2534, 1997; MCA (Methylated CpG Island Amplification) is a methylation assay described by Toyota et al., Cancer Res. 59:2307-12, 1999, and in WO 00/26401A1.


Other techniques for DNA methylation analysis include sequencing, methylation-specific PCR (MS-PCR), melting curve methylation-specific PCR (McMS-PCR), MLPA with or without bisulfite treatment, QAMA, MSRE-PCR, MethyLight, ConLight-MSP, bisulfite conversion-specific methylation-specific PCR (BS-MSP), COBRA (which relies upon use of restriction enzymes to reveal methylation dependent sequence differences in PCR products of sodium bisulfite-treated DNA), methylation-sensitive single-nucleotide primer extension conformation (MS-SNuPE), methylation-sensitive single-strand conformation analysis (MS-SSCA), Melting curve combined bisulfite restriction analysis (McCOBRA), PyroMethA, HeavyMethyl, MALDI-TOF, MassARRAY, Quantitative analysis of methylated alleles (QAMA), enzymatic regional methylation assay (ERMA), QBSUPT, MethylQuant, Quantitative PCR sequencing and oligonucleotide-based microarray systems, Pyrosequencing, Meth-DOP-PCR. A review of some useful techniques is provided in Nucleic acids research, 1998, Vol. 26, No. 10, 2255-2264; Nature Reviews, 2003, Vol. 3, 253-266; Oral Oncology, 2006, Vol. 42, 5-13, which references are incorporated herein in their entirety. Any of these techniques may be used in accordance with the present invention, as appropriate. Other techniques are described in U.S. Patent Publications 20100144836; and 20100184027, which applications are incorporated herein by reference in their entirety.


Through the activity of various acetylases and deacetylylases the DNA binding function of histone proteins is tightly regulated. Furthermore, histone acetylation and histone deactelyation have been linked with malignant progression. See Nature, 429: 457-63, 2004. Methods to analyze histone acetylation are described in U.S. Patent Publications 20100144543 and 20100151468, which applications are incorporated herein by reference in their entirety.


Sequence Analysis


Molecular profiling according to the present invention comprises methods for genotyping one or more biomarkers by determining whether an individual has one or more nucleotide variants (or amino acid variants) in one or more of the genes or gene products. Genotyping one or more genes according to the methods of the invention in some embodiments, can provide more evidence for selecting a treatment.


The biomarkers of the invention can be analyzed by any method useful for determining alterations in nucleic acids or the proteins they encode. According to one embodiment, the ordinary skilled artisan can analyze the one or more genes for mutations including deletion mutants, insertion mutants, frame shift mutants, nonsense mutants, missense mutant, and splice mutants.


Nucleic acid used for analysis of the one or more genes can be isolated from cells in the sample according to standard methodologies (Sambrook et al., 1989). The nucleic acid, for example, may be genomic DNA or fractionated or whole cell RNA, or miRNA acquired from exosomes or cell surfaces. Where RNA is used, it may be desired to convert the RNA to a complementary DNA. In one embodiment, the RNA is whole cell RNA; in another, it is poly-A RNA; in another, it is exosomal RNA. Normally, the nucleic acid is amplified. Depending on the format of the assay for analyzing the one or more genes, the specific nucleic acid of interest is identified in the sample directly using amplification or with a second, known nucleic acid following amplification. Next, the identified product is detected. In certain applications, the detection may be performed by visual means (e.g., ethidium bromide staining of a gel). Alternatively, the detection may involve indirect identification of the product via chemiluminescence, radioactive scintigraphy of radiolabel or fluorescent label or even via a system using electrical or thermal impulse signals (Affymax Technology; Bellus, 1994).


Various types of defects are known to occur in the biomarkers of the invention. Alterations include without limitation deletions, insertions, point mutations, and duplications. Point mutations can be silent or can result in stop codons, frame shift mutations or amino acid substitutions. Mutations in and outside the coding region of the one or more genes may occur and can be analyzed according to the methods of the invention. The target site of a nucleic acid of interest can include the region wherein the sequence varies. Examples include, but are not limited to, polymorphisms which exist in different forms such as single nucleotide variations, nucleotide repeats, multibase deletion (more than one nucleotide deleted from the consensus sequence), multibase insertion (more than one nucleotide inserted from the consensus sequence), microsatellite repeats (small numbers of nucleotide repeats with a typical 5-1000 repeat units), di-nucleotide repeats, tri-nucleotide repeats, sequence rearrangements (including translocation and duplication), chimeric sequence (two sequences from different gene origins are fused together), and the like. Among sequence polymorphisms, the most frequent polymorphisms in the human genome are single-base variations, also called single-nucleotide polymorphisms (SNPs). SNPs are abundant, stable and widely distributed across the genome.


Molecular profiling includes methods for haplotyping one or more genes. The haplotype is a set of genetic determinants located on a single chromosome and it typically contains a particular combination of alleles (all the alternative sequences of a gene) in a region of a chromosome. In other words, the haplotype is phased sequence information on individual chromosomes. Very often, phased SNPs on a chromosome define a haplotype. A combination of haplotypes on chromosomes can determine a genetic profile of a cell. It is the haplotype that determines a linkage between a specific genetic marker and a disease mutation. Haplotyping can be done by any methods known in the art. Common methods of scoring SNPs include hybridization microarray or direct gel sequencing, reviewed in Landgren et al., Genome Research, 8:769-776, 1998. For example, only one copy of one or more genes can be isolated from an individual and the nucleotide at each of the variant positions is determined. Alternatively, an allele specific PCR or a similar method can be used to amplify only one copy of the one or more genes in an individual, and the SNPs at the variant positions of the present invention are determined. The Clark method known in the art can also be employed for haplotyping. A high throughput molecular haplotyping method is also disclosed in Tost et al., Nucleic Acids Res., 30(19):e96 (2002), which is incorporated herein by reference.


Thus, additional variant(s) that are in linkage disequilibrium with the variants and/or haplotypes of the present invention can be identified by a haplotyping method known in the art, as will be apparent to a skilled artisan in the field of genetics and haplotyping. The additional variants that are in linkage disequilibrium with a variant or haplotype of the present invention can also be useful in the various applications as described below.


For purposes of genotyping and haplotyping, both genomic DNA and mRNA/cDNA can be used, and both are herein referred to generically as “gene.”


Numerous techniques for detecting nucleotide variants are known in the art and can all be used for the method of this invention. The techniques can be protein-based or nucleic acid-based. In either case, the techniques used must be sufficiently sensitive so as to accurately detect the small nucleotide or amino acid variations. Very often, a probe is used which is labeled with a detectable marker. Unless otherwise specified in a particular technique described below, any suitable marker known in the art can be used, including but not limited to, radioactive isotopes, fluorescent compounds, biotin which is detectable using streptavidin, enzymes (e.g., alkaline phosphatase), substrates of an enzyme, ligands and antibodies, etc. See Jablonski et al., Nucleic Acids Res., 14:6115-6128 (1986); Nguyen et al., Biotechniques, 13:116-123 (1992); Rigby et al., J. Mol. Biol., 113:237-251 (1977).


In a nucleic acid-based detection method, target DNA sample, i.e., a sample containing genomic DNA, cDNA, mRNA and/or miRNA, corresponding to the one or more genes must be obtained from the individual to be tested. Any tissue or cell sample containing the genomic DNA, miRNA, mRNA, and/or cDNA (or a portion thereof) corresponding to the one or more genes can be used. For this purpose, a tissue sample containing cell nucleus and thus genomic DNA can be obtained from the individual. Blood samples can also be useful except that only white blood cells and other lymphocytes have cell nucleus, while red blood cells are without a nucleus and contain only mRNA or miRNA. Nevertheless, miRNA and mRNA are also useful as either can be analyzed for the presence of nucleotide variants in its sequence or serve as template for cDNA synthesis. The tissue or cell samples can be analyzed directly without much processing. Alternatively, nucleic acids including the target sequence can be extracted, purified, and/or amplified before they are subject to the various detecting procedures discussed below. Other than tissue or cell samples, cDNAs or genomic DNAs from a cDNA or genomic DNA library constructed using a tissue or cell sample obtained from the individual to be tested are also useful.


To determine the presence or absence of a particular nucleotide variant, sequencing of the target genomic DNA or cDNA, particularly the region encompassing the nucleotide variant locus to be detected. Various sequencing techniques are generally known and widely used in the art including the Sanger method and Gilbert chemical method. The pyrosequencing method monitors DNA synthesis in real time using a luminometric detection system. Pyrosequencing has been shown to be effective in analyzing genetic polymorphisms such as single-nucleotide polymorphisms and can also be used in the present invention. See Nordstrom et al., Biotechnol. Appl. Biochem., 31(2):107-112 (2000); Ahmadian et al., Anal. Biochem., 280:103-110 (2000).


Nucleic acid variants can be detected by a suitable detection process. Non limiting examples of methods of detection, quantification, sequencing and the like are; mass detection of mass modified amplicons (e.g., matrix-assisted laser desorption ionization (MALDI) mass spectrometry and electrospray (ES) mass spectrometry), a primer extension method (e.g., iPLEX™; Sequenom, Inc.), microsequencing methods (e.g., a modification of primer extension methodology), ligase sequence determination methods (e.g., U.S. Pat. Nos. 5,679,524 and 5,952,174, and WO 01/27326), mismatch sequence determination methods (e.g., U.S. Pat. Nos. 5,851,770; 5,958,692; 6,110,684; and 6,183,958), direct DNA sequencing, restriction fragment length polymorphism (RFLP analysis), allele specific oligonucleotide (ASO) analysis, methylation-specific PCR (MSPCR), pyrosequencing analysis, acycloprime analysis, Reverse dot blot, GeneChip microarrays, Dynamic allele-specific hybridization (DASH), Peptide nucleic acid (PNA) and locked nucleic acids (LNA) probes, TaqMan, Molecular Beacons, Intercalating dye, FRET primers, AlphaScreen, SNPstream, genetic bit analysis (GBA), Multiplex minisequencing, SNaPshot, GOOD assay, Microarray miniseq, arrayed primer extension (APEX), Microarray primer extension (e.g., microarray sequence determination methods), Tag arrays, Coded microspheres, Template-directed incorporation (TDI), fluorescence polarization, Colorimetric oligonucleotide ligation assay (OLA), Sequence-coded OLA, Microarray ligation, Ligase chain reaction, Padlock probes, Invader assay, hybridization methods (e.g., hybridization using at least one probe, hybridization using at least one fluorescently labeled probe, and the like), conventional dot blot analyses, single strand conformational polymorphism analysis (SSCP, e.g., U.S. Pat. Nos. 5,891,625 and 6,013,499; Orita et al., Proc. Natl. Acad. Sci. U.S.A. 86: 27776-2770 (1989)), denaturing gradient gel electrophoresis (DGGE), heteroduplex analysis, mismatch cleavage detection, and techniques described in Sheffield et al., Proc. Natl. Acad. Sci. USA 49: 699-706 (1991), White et al., Genomics 12: 301-306 (1992), Grompe et al., Proc. Natl. Acad. Sci. USA 86: 5855-5892 (1989), and Grompe, Nature Genetics 5: 111-117 (1993), cloning and sequencing, electrophoresis, the use of hybridization probes and quantitative real time polymerase chain reaction (QRT-PCR), digital PCR, nanopore sequencing, chips and combinations thereof. The detection and quantification of alleles or paralogs can be carried out using the “closed-tube” methods described in U.S. patent application Ser. No. 11/950,395, filed on Dec. 4, 2007. In some embodiments the amount of a nucleic acid species is determined by mass spectrometry, primer extension, sequencing (e.g., any suitable method, for example nanopore or pyrosequencing), Quantitative PCR (Q-PCR or QRT-PCR), digital PCR, combinations thereof, and the like.


The term “sequence analysis” as used herein refers to determining a nucleotide sequence, e.g., that of an amplification product. The entire sequence or a partial sequence of a polynucleotide, e.g., DNA or mRNA, can be determined, and the determined nucleotide sequence can be referred to as a “read” or “sequence read.” For example, linear amplification products may be analyzed directly without further amplification in some embodiments (e.g., by using single-molecule sequencing methodology). In certain embodiments, linear amplification products may be subject to further amplification and then analyzed (e.g., using sequencing by ligation or pyrosequencing methodology). Reads may be subject to different types of sequence analysis. Any suitable sequencing method can be used to detect, and determine the amount of, nucleotide sequence species, amplified nucleic acid species, or detectable products generated from the foregoing. Examples of certain sequencing methods are described hereafter.


A sequence analysis apparatus or sequence analysis component(s) includes an apparatus, and one or more components used in conjunction with such apparatus, that can be used by a person of ordinary skill to determine a nucleotide sequence resulting from processes described herein (e.g., linear and/or exponential amplification products). Examples of sequencing platforms include, without limitation, the 454 platform (Roche) (Margulies, M. et al. 2005 Nature 437, 376-380), Illumina Genomic Analyzer (or Solexa platform) or SOLID System (Applied Biosystems; see PCT patent application publications WO 06/084132 entitled “Reagents, Methods, and Libraries For Bead-Based Sequencing” and WO07/121,489 entitled “Reagents, Methods, and Libraries for Gel-Free Bead-Based Sequencing”), the Helicos True Single Molecule DNA sequencing technology (Harris T D et al. 2008 Science, 320, 106-109), the single molecule, real-time (SMRT™) technology of Pacific Biosciences, and nanopore sequencing (Soni G V and Meller A. 2007 Clin Chem 53: 1996-2001), Ion semiconductor sequencing (Ion Torrent Systems, Inc, San Francisco, Calif.), or DNA nanoball sequencing (Complete Genomics, Mountain View, Calif.), VisiGen Biotechnologies approach (Invitrogen) and polony sequencing. Such platforms allow sequencing of many nucleic acid molecules isolated from a specimen at high orders of multiplexing in a parallel manner (Dear Brief Funct Genomic Proteomic 2003; 1: 397-416; Haimovich, Methods, challenges, and promise of next-generation sequencing in cancer biology. Yale J Biol Med. 2011 December; 84(4):439-46). These non-Sanger-based sequencing technologies are sometimes referred to as NextGen sequencing, NGS, next-generation sequencing, next generation sequencing, and variations thereof. Typically they allow much higher throughput than the traditional Sanger approach. See Schuster, Next-generation sequencing transforms today's biology, Nature Methods 5:16-18 (2008); Metzker, Sequencing technologies—the next generation. Nat Rev Genet. 2010 January; 11(1):31-46. These platforms can allow sequencing of clonally expanded or non-amplified single molecules of nucleic acid fragments. Certain platforms involve, for example, sequencing by ligation of dye-modified probes (including cyclic ligation and cleavage), pyrosequencing, and single-molecule sequencing. Nucleotide sequence species, amplification nucleic acid species and detectable products generated there from can be analyzed by such sequence analysis platforms. Next-generation sequencing can be used in the methods of the invention, e.g., to determine mutations, copy number, or expression levels, as appropriate. The methods can be used to perform whole genome sequencing or sequencing of specific sequences of interest, such as a gene of interest or a fragment thereof.


Sequencing by ligation is a nucleic acid sequencing method that relies on the sensitivity of DNA ligase to base-pairing mismatch. DNA ligase joins together ends of DNA that are correctly base paired. Combining the ability of DNA ligase to join together only correctly base paired DNA ends, with mixed pools of fluorescently labeled oligonucleotides or primers, enables sequence determination by fluorescence detection. Longer sequence reads may be obtained by including primers containing cleavable linkages that can be cleaved after label identification. Cleavage at the linker removes the label and regenerates the 5′ phosphate on the end of the ligated primer, preparing the primer for another round of ligation. In some embodiments primers may be labeled with more than one fluorescent label, e.g., at least 1, 2, 3, 4, or 5 fluorescent labels.


Sequencing by ligation generally involves the following steps. Clonal bead populations can be prepared in emulsion microreactors containing target nucleic acid template sequences, amplification reaction components, beads and primers. After amplification, templates are denatured and bead enrichment is performed to separate beads with extended templates from undesired beads (e.g., beads with no extended templates). The template on the selected beads undergoes a 3′ modification to allow covalent bonding to the slide, and modified beads can be deposited onto a glass slide. Deposition chambers offer the ability to segment a slide into one, four or eight chambers during the bead loading process. For sequence analysis, primers hybridize to the adapter sequence. A set of four color dye-labeled probes competes for ligation to the sequencing primer. Specificity of probe ligation is achieved by interrogating every 4th and 5th base during the ligation series. Five to seven rounds of ligation, detection and cleavage record the color at every 5th position with the number of rounds determined by the type of library used. Following each round of ligation, a new complimentary primer offset by one base in the 5′ direction is laid down for another series of ligations. Primer reset and ligation rounds (5-7 ligation cycles per round) are repeated sequentially five times to generate 25-35 base pairs of sequence for a single tag. With mate-paired sequencing, this process is repeated for a second tag.


Pyrosequencing is a nucleic acid sequencing method based on sequencing by synthesis, which relies on detection of a pyrophosphate released on nucleotide incorporation. Generally, sequencing by synthesis involves synthesizing, one nucleotide at a time, a DNA strand complimentary to the strand whose sequence is being sought. Target nucleic acids may be immobilized to a solid support, hybridized with a sequencing primer, incubated with DNA polymerase, ATP sulfurylase, luciferase, apyrase, adenosine 5′ phosphosulfate and luciferin. Nucleotide solutions are sequentially added and removed. Correct incorporation of a nucleotide releases a pyrophosphate, which interacts with ATP sulfurylase and produces ATP in the presence of adenosine 5′ phosphosulfate, fueling the luciferin reaction, which produces a chemiluminescent signal allowing sequence determination. The amount of light generated is proportional to the number of bases added. Accordingly, the sequence downstream of the sequencing primer can be determined. An illustrative system for pyrosequencing involves the following steps: ligating an adaptor nucleic acid to a nucleic acid under investigation and hybridizing the resulting nucleic acid to a bead; amplifying a nucleotide sequence in an emulsion; sorting beads using a picoliter multiwell solid support; and sequencing amplified nucleotide sequences by pyrosequencing methodology (e.g., Nakano et al., “Single-molecule PCR using water-in-oil emulsion,” Journal of Biotechnology 102: 117-124 (2003)).


Certain single-molecule sequencing embodiments are based on the principal of sequencing by synthesis, and use single-pair Fluorescence Resonance Energy Transfer (single pair FRET) as a mechanism by which photons are emitted as a result of successful nucleotide incorporation. The emitted photons often are detected using intensified or high sensitivity cooled charge-couple-devices in conjunction with total internal reflection microscopy (TIRM). Photons are only emitted when the introduced reaction solution contains the correct nucleotide for incorporation into the growing nucleic acid chain that is synthesized as a result of the sequencing process. In FRET based single-molecule sequencing, energy is transferred between two fluorescent dyes, sometimes polymethine cyanine dyes Cy3 and Cy5, through long-range dipole interactions. The donor is excited at its specific excitation wavelength and the excited state energy is transferred, non-radiatively to the acceptor dye, which in turn becomes excited. The acceptor dye eventually returns to the ground state by radiative emission of a photon. The two dyes used in the energy transfer process represent the “single pair” in single pair FRET. Cy3 often is used as the donor fluorophore and often is incorporated as the first labeled nucleotide. Cy5 often is used as the acceptor fluorophore and is used as the nucleotide label for successive nucleotide additions after incorporation of a first Cy3 labeled nucleotide. The fluorophores generally are within 10 nanometers of each for energy transfer to occur successfully.


An example of a system that can be used based on single-molecule sequencing generally involves hybridizing a primer to a target nucleic acid sequence to generate a complex; associating the complex with a solid phase; iteratively extending the primer by a nucleotide tagged with a fluorescent molecule; and capturing an image of fluorescence resonance energy transfer signals after each iteration (e.g., U.S. Pat. No. 7,169,314; Braslaysky et al., PNAS 100(7): 3960-3964 (2003)). Such a system can be used to directly sequence amplification products (linearly or exponentially amplified products) generated by processes described herein. In some embodiments the amplification products can be hybridized to a primer that contains sequences complementary to immobilized capture sequences present on a solid support, a bead or glass slide for example. Hybridization of the primer-amplification product complexes with the immobilized capture sequences, immobilizes amplification products to solid supports for single pair FRET based sequencing by synthesis. The primer often is fluorescent, so that an initial reference image of the surface of the slide with immobilized nucleic acids can be generated. The initial reference image is useful for determining locations at which true nucleotide incorporation is occurring. Fluorescence signals detected in array locations not initially identified in the “primer only” reference image are discarded as non-specific fluorescence. Following immobilization of the primer-amplification product complexes, the bound nucleic acids often are sequenced in parallel by the iterative steps of, a) polymerase extension in the presence of one fluorescently labeled nucleotide, b) detection of fluorescence using appropriate microscopy, TIRM for example, c) removal of fluorescent nucleotide, and d) return to step a with a different fluorescently labeled nucleotide.


In some embodiments, nucleotide sequencing may be by solid phase single nucleotide sequencing methods and processes. Solid phase single nucleotide sequencing methods involve contacting target nucleic acid and solid support under conditions in which a single molecule of sample nucleic acid hybridizes to a single molecule of a solid support. Such conditions can include providing the solid support molecules and a single molecule of target nucleic acid in a “microreactor.” Such conditions also can include providing a mixture in which the target nucleic acid molecule can hybridize to solid phase nucleic acid on the solid support. Single nucleotide sequencing methods useful in the embodiments described herein are described in U.S. Provisional Patent Application Ser. No. 61/021,871 filed Jan. 17, 2008.


In certain embodiments, nanopore sequencing detection methods include (a) contacting a target nucleic acid for sequencing (“base nucleic acid,” e.g., linked probe molecule) with sequence-specific detectors, under conditions in which the detectors specifically hybridize to substantially complementary subsequences of the base nucleic acid; (b) detecting signals from the detectors and (c) determining the sequence of the base nucleic acid according to the signals detected. In certain embodiments, the detectors hybridized to the base nucleic acid are disassociated from the base nucleic acid (e.g., sequentially dissociated) when the detectors interfere with a nanopore structure as the base nucleic acid passes through a pore, and the detectors disassociated from the base sequence are detected. In some embodiments, a detector disassociated from a base nucleic acid emits a detectable signal, and the detector hybridized to the base nucleic acid emits a different detectable signal or no detectable signal. In certain embodiments, nucleotides in a nucleic acid (e.g., linked probe molecule) are substituted with specific nucleotide sequences corresponding to specific nucleotides (“nucleotide representatives”), thereby giving rise to an expanded nucleic acid (e.g., U.S. Pat. No. 6,723,513), and the detectors hybridize to the nucleotide representatives in the expanded nucleic acid, which serves as a base nucleic acid. In such embodiments, nucleotide representatives may be arranged in a binary or higher order arrangement (e.g., Soni and Meller, Clinical Chemistry 53(11): 1996-2001 (2007)). In some embodiments, a nucleic acid is not expanded, does not give rise to an expanded nucleic acid, and directly serves a base nucleic acid (e.g., a linked probe molecule serves as a non-expanded base nucleic acid), and detectors are directly contacted with the base nucleic acid. For example, a first detector may hybridize to a first subsequence and a second detector may hybridize to a second subsequence, where the first detector and second detector each have detectable labels that can be distinguished from one another, and where the signals from the first detector and second detector can be distinguished from one another when the detectors are disassociated from the base nucleic acid. In certain embodiments, detectors include a region that hybridizes to the base nucleic acid (e.g., two regions), which can be about 3 to about 100 nucleotides in length (e.g., about 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 50, 55, 60, 65, 70, 75, 80, 85, 90, or 95 nucleotides in length). A detector also may include one or more regions of nucleotides that do not hybridize to the base nucleic acid. In some embodiments, a detector is a molecular beacon. A detector often comprises one or more detectable labels independently selected from those described herein. Each detectable label can be detected by any convenient detection process capable of detecting a signal generated by each label (e.g., magnetic, electric, chemical, optical and the like). For example, a CD camera can be used to detect signals from one or more distinguishable quantum dots linked to a detector.


In certain sequence analysis embodiments, reads may be used to construct a larger nucleotide sequence, which can be facilitated by identifying overlapping sequences in different reads and by using identification sequences in the reads. Such sequence analysis methods and software for constructing larger sequences from reads are known to the person of ordinary skill (e.g., Venter et al., Science 291: 1304-1351 (2001)). Specific reads, partial nucleotide sequence constructs, and full nucleotide sequence constructs may be compared between nucleotide sequences within a sample nucleic acid (i.e., internal comparison) or may be compared with a reference sequence (i.e., reference comparison) in certain sequence analysis embodiments. Internal comparisons can be performed in situations where a sample nucleic acid is prepared from multiple samples or from a single sample source that contains sequence variations. Reference comparisons sometimes are performed when a reference nucleotide sequence is known and an objective is to determine whether a sample nucleic acid contains a nucleotide sequence that is substantially similar or the same, or different, than a reference nucleotide sequence. Sequence analysis can be facilitated by the use of sequence analysis apparatus and components described above.


Primer extension polymorphism detection methods, also referred to herein as “microsequencing” methods, typically are carried out by hybridizing a complementary oligonucleotide to a nucleic acid carrying the polymorphic site. In these methods, the oligonucleotide typically hybridizes adjacent to the polymorphic site. The term “adjacent” as used in reference to “microsequencing” methods, refers to the 3′ end of the extension oligonucleotide being sometimes 1 nucleotide from the 5′ end of the polymorphic site, often 2 or 3, and at times 4, 5, 6, 7, 8, 9, or 10 nucleotides from the 5′ end of the polymorphic site, in the nucleic acid when the extension oligonucleotide is hybridized to the nucleic acid. The extension oligonucleotide then is extended by one or more nucleotides, often 1, 2, or 3 nucleotides, and the number and/or type of nucleotides that are added to the extension oligonucleotide determine which polymorphic variant or variants are present. Oligonucleotide extension methods are disclosed, for example, in U.S. Pat. Nos. 4,656,127; 4,851,331; 5,679,524; 5,834,189; 5,876,934; 5,908,755; 5,912,118; 5,976,802; 5,981,186; 6,004,744; 6,013,431; 6,017,702; 6,046,005; 6,087,095; 6,210,891; and WO 01/20039. The extension products can be detected in any manner, such as by fluorescence methods (see, e.g., Chen & Kwok, Nucleic Acids Research 25: 347-353 (1997) and Chen et al., Proc. Natl. Acad. Sci. USA 94/20: 10756-10761 (1997)) or by mass spectrometric methods (e.g., MALDI-TOF mass spectrometry) and other methods described herein. Oligonucleotide extension methods using mass spectrometry are described, for example, in U.S. Pat. Nos. 5,547,835; 5,605,798; 5,691,141; 5,849,542; 5,869,242; 5,928,906; 6,043,031; 6,194,144; and 6,258,538.


Microsequencing detection methods often incorporate an amplification process that proceeds the extension step. The amplification process typically amplifies a region from a nucleic acid sample that comprises the polymorphic site. Amplification can be carried out using methods described above, or for example using a pair of oligonucleotide primers in a polymerase chain reaction (PCR), in which one oligonucleotide primer typically is complementary to a region 3 of the polymorphism and the other typically is complementary to a region 5′ of the polymorphism. A PCR primer pair may be used in methods disclosed in U.S. Pat. Nos. 4,683,195; 4,683,202, 4,965,188; 5,656,493; 5,998,143; 6,140,054; WO 01/27327; and WO 01/27329 for example. PCR primer pairs may also be used in any commercially available machines that perform PCR, such as any of the GeneAmp™ Systems available from Applied Biosystems.


Other appropriate sequencing methods include multiplex polony sequencing (as described in Shendure et al., Accurate Multiplex Polony Sequencing of an Evolved Bacterial Genome, Sciencexpress, Aug. 4, 2005, pg 1 available at www.sciencexpress.org/4Aug.2005/Page1/10.1126/science.1117389, incorporated herein by reference), which employs immobilized microbeads, and sequencing in microfabricated picoliter reactors (as described in Margulies et al., Genome Sequencing in Microfabricated High-Density Picolitre Reactors, Nature, August 2005, available at www.nature.com/nature (published online 31 Jul. 2005, doi:10.1038/nature03959, incorporated herein by reference).


Whole genome sequencing may also be used for discriminating alleles of RNA transcripts, in some embodiments. Examples of whole genome sequencing methods include, but are not limited to, nanopore-based sequencing methods, sequencing by synthesis and sequencing by ligation, as described above.


Nucleic acid variants can also be detected using standard electrophoretic techniques. Although the detection step can sometimes be preceded by an amplification step, amplification is not required in the embodiments described herein. Examples of methods for detection and quantification of a nucleic acid using electrophoretic techniques can be found in the art. A non-limiting example comprises running a sample (e.g., mixed nucleic acid sample isolated from maternal serum, or amplification nucleic acid species, for example) in an agarose or polyacrylamide gel. The gel may be labeled (e.g., stained) with ethidium bromide (see, Sambrook and Russell, Molecular Cloning: A Laboratory Manual 3d ed., 2001). The presence of a band of the same size as the standard control is an indication of the presence of a target nucleic acid sequence, the amount of which may then be compared to the control based on the intensity of the band, thus detecting and quantifying the target sequence of interest. In some embodiments, restriction enzymes capable of distinguishing between maternal and paternal alleles may be used to detect and quantify target nucleic acid species. In certain embodiments, oligonucleotide probes specific to a sequence of interest are used to detect the presence of the target sequence of interest. The oligonucleotides can also be used to indicate the amount of the target nucleic acid molecules in comparison to the standard control, based on the intensity of signal imparted by the probe.


Sequence-specific probe hybridization can be used to detect a particular nucleic acid in a mixture or mixed population comprising other species of nucleic acids. Under sufficiently stringent hybridization conditions, the probes hybridize specifically only to substantially complementary sequences. The stringency of the hybridization conditions can be relaxed to tolerate varying amounts of sequence mismatch. A number of hybridization formats are known in the art, which include but are not limited to, solution phase, solid phase, or mixed phase hybridization assays. The following articles provide an overview of the various hybridization assay formats: Singer et al., Biotechniques 4:230, 1986; Haase et al., Methods in Virology, pp. 189-226, 1984; Wilkinson, In situ Hybridization, Wilkinson ed., IRL Press, Oxford University Press, Oxford; and Hames and Higgins eds., Nucleic Acid Hybridization: A Practical Approach, IRL Press, 1987.


Hybridization complexes can be detected by techniques known in the art. Nucleic acid probes capable of specifically hybridizing to a target nucleic acid (e.g., mRNA or DNA) can be labeled by any suitable method, and the labeled probe used to detect the presence of hybridized nucleic acids. One commonly used method of detection is autoradiography, using probes labeled with 3H, 125I, 35S, 14C, 32P, 33P, or the like. The choice of radioactive isotope depends on research preferences due to ease of synthesis, stability, and half-lives of the selected isotopes. Other labels include compounds (e.g., biotin and digoxigenin), which bind to antiligands or antibodies labeled with fluorophores, chemiluminescent agents, and enzymes. In some embodiments, probes can be conjugated directly with labels such as fluorophores, chemiluminescent agents or enzymes. The choice of label depends on sensitivity required, ease of conjugation with the probe, stability requirements, and available instrumentation.


In embodiments, restriction fragment length polymorphism (RFLP) and/or (amplified fragment length polymorphism) AFLP method are used for molecular profiling. If a nucleotide variant in the target DNA corresponding to the one or more genes results in the elimination or creation of a restriction enzyme recognition site, then digestion of the target DNA with that particular restriction enzyme will generate an altered restriction fragment length pattern. Thus, a detected RFLP or AFLP will indicate the presence of a particular nucleotide variant.


Terminal restriction fragment length polymorphism (TRFLP) works by PCR amplification of DNA using primer pairs that have been labeled with fluorescent tags. The PCR products are digested using RFLP enzymes and the resulting patterns are visualized using a DNA sequencer. The results are analyzed either by counting and comparing bands or peaks in the TRFLP profile, or by comparing bands from one or more TRFLP runs in a database.


The sequence changes directly involved with an RFLP can also be analyzed more quickly by PCR. Amplification can be directed across the altered restriction site, and the products digested with the restriction enzyme. This method has been called Cleaved Amplified Polymorphic Sequence (CAPS). Alternatively, the amplified segment can be analyzed by Allele specific oligonucleotide (ASO) probes, a process that is sometimes assessed using a Dot blot.


A variation on AFLP is cDNA-AFLP, which can be used to quantify differences in gene expression levels.


Another useful approach is the single-stranded conformation polymorphism assay (SSCA), which is based on the altered mobility of a single-stranded target DNA spanning the nucleotide variant of interest. A single nucleotide change in the target sequence can result in different intramolecular base pairing pattern, and thus different secondary structure of the single-stranded DNA, which can be detected in a non-denaturing gel. See Orita et al., Proc. Natl. Acad. Sci. USA, 86:2776-2770 (1989). Denaturing gel-based techniques such as clamped denaturing gel electrophoresis (CDGE) and denaturing gradient gel electrophoresis (DGGE) detect differences in migration rates of mutant sequences as compared to wild-type sequences in denaturing gel. See Miller et al., Biotechniques, 5:1016-24 (1999); Sheffield et al., Am. J. Hum, Genet., 49:699-706 (1991); Wartell et al., Nucleic Acids Res., 18:2699-2705 (1990); and Sheffield et al., Proc. Natl. Acad. Sci. USA, 86:232-236 (1989). In addition, the double-strand conformation analysis (DSCA) can also be useful in the present invention. See Arguello et al., Nat. Genet., 18:192-194 (1998).


The presence or absence of a nucleotide variant at a particular locus in the one or more genes of an individual can also be detected using the amplification refractory mutation system (ARMS) technique. See e.g., European Patent No. 0,332,435; Newton et al., Nucleic Acids Res., 17:2503-2515 (1989); Fox et al., Br. J. Cancer, 77:1267-1274 (1998); Robertson et al., Eur. Respir. J., 12:477-482 (1998). In the ARMS method, a primer is synthesized matching the nucleotide sequence immediately 5′ upstream from the locus being tested except that the 3′-end nucleotide which corresponds to the nucleotide at the locus is a predetermined nucleotide. For example, the 3′-end nucleotide can be the same as that in the mutated locus. The primer can be of any suitable length so long as it hybridizes to the target DNA under stringent conditions only when its 3′-end nucleotide matches the nucleotide at the locus being tested. Preferably the primer has at least 12 nucleotides, more preferably from about 18 to 50 nucleotides. If the individual tested has a mutation at the locus and the nucleotide therein matches the 3′-end nucleotide of the primer, then the primer can be further extended upon hybridizing to the target DNA template, and the primer can initiate a PCR amplification reaction in conjunction with another suitable PCR primer. In contrast, if the nucleotide at the locus is of wild type, then primer extension cannot be achieved. Various forms of ARMS techniques developed in the past few years can be used. See e.g., Gibson et al., Clin. Chem. 43:1336-1341 (1997).


Similar to the ARMS technique is the mini sequencing or single nucleotide primer extension method, which is based on the incorporation of a single nucleotide. An oligonucleotide primer matching the nucleotide sequence immediately 5′ to the locus being tested is hybridized to the target DNA, mRNA or miRNA in the presence of labeled dideoxyribonucleotides. A labeled nucleotide is incorporated or linked to the primer only when the dideoxyribonucleotides matches the nucleotide at the variant locus being detected. Thus, the identity of the nucleotide at the variant locus can be revealed based on the detection label attached to the incorporated dideoxyribonucleotides. See Syvanen et al., Genomics, 8:684-692 (1990); Shumaker et al., Hum. Mutat., 7:346-354 (1996); Chen et al., Genome Res., 10:549-547 (2000).


Another set of techniques useful in the present invention is the so-called “oligonucleotide ligation assay” (OLA) in which differentiation between a wild-type locus and a mutation is based on the ability of two oligonucleotides to anneal adjacent to each other on the target DNA molecule allowing the two oligonucleotides joined together by a DNA ligase. See Landergren et al., Science, 241:1077-1080 (1988); Chen et al, Genome Res., 8:549-556 (1998); Iannone et al., Cytometry, 39:131-140 (2000). Thus, for example, to detect a single-nucleotide mutation at a particular locus in the one or more genes, two oligonucleotides can be synthesized, one having the sequence just 5′ upstream from the locus with its 3′ end nucleotide being identical to the nucleotide in the variant locus of the particular gene, the other having a nucleotide sequence matching the sequence immediately 3′ downstream from the locus in the gene. The oligonucleotides can be labeled for the purpose of detection. Upon hybridizing to the target gene under a stringent condition, the two oligonucleotides are subject to ligation in the presence of a suitable ligase. The ligation of the two oligonucleotides would indicate that the target DNA has a nucleotide variant at the locus being detected.


Detection of small genetic variations can also be accomplished by a variety of hybridization-based approaches. Allele-specific oligonucleotides are most useful. See Conner et al., Proc. Natl. Acad. Sci. USA, 80:278-282 (1983); Saiki et al, Proc. Natl. Acad. Sci. USA, 86:6230-6234 (1989). Oligonucleotide probes (allele-specific) hybridizing specifically to a gene allele having a particular gene variant at a particular locus but not to other alleles can be designed by methods known in the art. The probes can have a length of, e.g., from 10 to about 50 nucleotide bases. The target DNA and the oligonucleotide probe can be contacted with each other under conditions sufficiently stringent such that the nucleotide variant can be distinguished from the wild-type gene based on the presence or absence of hybridization. The probe can be labeled to provide detection signals. Alternatively, the allele-specific oligonucleotide probe can be used as a PCR amplification primer in an “allele-specific PCR” and the presence or absence of a PCR product of the expected length would indicate the presence or absence of a particular nucleotide variant.


Other useful hybridization-based techniques allow two single-stranded nucleic acids annealed together even in the presence of mismatch due to nucleotide substitution, insertion or deletion. The mismatch can then be detected using various techniques. For example, the annealed duplexes can be subject to electrophoresis. The mismatched duplexes can be detected based on their electrophoretic mobility that is different from the perfectly matched duplexes. See Cariello, Human Genetics, 42:726 (1988). Alternatively, in an RNase protection assay, a RNA probe can be prepared spanning the nucleotide variant site to be detected and having a detection marker. See Giunta et al., Diagn. Mol. Path., 5:265-270 (1996); Finkelstein et al., Genomics, 7:167-172 (1990); Kinszler et al., Science 251:1366-1370 (1991). The RNA probe can be hybridized to the target DNA or mRNA forming a heteroduplex that is then subject to the ribonuclease RNase A digestion. RNase A digests the RNA probe in the heteroduplex only at the site of mismatch. The digestion can be determined on a denaturing electrophoresis gel based on size variations. In addition, mismatches can also be detected by chemical cleavage methods known in the art. See e.g., Roberts et al., Nucleic Acids Res., 25:3377-3378 (1997).


In the mutS assay, a probe can be prepared matching the gene sequence surrounding the locus at which the presence or absence of a mutation is to be detected, except that a predetermined nucleotide is used at the variant locus. Upon annealing the probe to the target DNA to form a duplex, the E. coli mutS protein is contacted with the duplex. Since the mutS protein binds only to heteroduplex sequences containing a nucleotide mismatch, the binding of the mutS protein will be indicative of the presence of a mutation. See Modrich et al., Ann. Rev. Genet., 25:229-253 (1991).


A great variety of improvements and variations have been developed in the art on the basis of the above-described basic techniques which can be useful in detecting mutations or nucleotide variants in the present invention. For example, the “sunrise probes” or “molecular beacons” use the fluorescence resonance energy transfer (FRET) property and give rise to high sensitivity. See Wolf et al., Proc. Nat. Acad. Sci. USA, 85:8790-8794 (1988). Typically, a probe spanning the nucleotide locus to be detected are designed into a hairpin-shaped structure and labeled with a quenching fluorophore at one end and a reporter fluorophore at the other end. In its natural state, the fluorescence from the reporter fluorophore is quenched by the quenching fluorophore due to the proximity of one fluorophore to the other. Upon hybridization of the probe to the target DNA, the 5′ end is separated apart from the 3′-end and thus fluorescence signal is regenerated. See Nazarenko et al., Nucleic Acids Res., 25:2516-2521 (1997); Rychlik et al., Nucleic Acids Res., 17:8543-8551 (1989); Sharkey et al., Bio/Technology 12:506-509 (1994); Tyagi et al., Nat. Biotechnol., 14:303-308 (1996); Tyagi et al., Nat. Biotechnol., 16:49-53 (1998). The homo-tag assisted non-dimer system (HANDS) can be used in combination with the molecular beacon methods to suppress primer-dimer accumulation. See Brownie et al., Nucleic Acids Res., 25:3235-3241 (1997).


Dye-labeled oligonucleotide ligation assay is a FRET-based method, which combines the OLA assay and PCR. See Chen et al., Genome Res. 8:549-556 (1998). TaqMan is another FRET-based method for detecting nucleotide variants. A TaqMan probe can be oligonucleotides designed to have the nucleotide sequence of the gene spanning the variant locus of interest and to differentially hybridize with different alleles. The two ends of the probe are labeled with a quenching fluorophore and a reporter fluorophore, respectively. The TaqMan probe is incorporated into a PCR reaction for the amplification of a target gene region containing the locus of interest using Taq polymerase. As Taq polymerase exhibits 5′-3′ exonuclease activity but has no 3′-5′ exonuclease activity, if the TaqMan probe is annealed to the target DNA template, the 5′-end of the TaqMan probe will be degraded by Taq polymerase during the PCR reaction thus separating the reporting fluorophore from the quenching fluorophore and releasing fluorescence signals. See Holland et al., Proc. Natl. Acad. Sci. USA, 88:7276-7280 (1991); Kalinina et al., Nucleic Acids Res., 25:1999-2004 (1997); Whitcombe et al., Clin. Chem., 44:918-923 (1998).


In addition, the detection in the present invention can also employ a chemiluminescence-based technique. For example, an oligonucleotide probe can be designed to hybridize to either the wild-type or a variant gene locus but not both. The probe is labeled with a highly chemiluminescent acridinium ester. Hydrolysis of the acridinium ester destroys chemiluminescence. The hybridization of the probe to the target DNA prevents the hydrolysis of the acridinium ester. Therefore, the presence or absence of a particular mutation in the target DNA is determined by measuring chemiluminescence changes. See Nelson et al., Nucleic Acids Res., 24:4998-5003 (1996).


The detection of genetic variation in the gene in accordance with the present invention can also be based on the “base excision sequence scanning” (BESS) technique. The BESS method is a PCR-based mutation scanning method. BESS T-Scan and BESS G-Tracker are generated which are analogous to T and G ladders of dideoxy sequencing. Mutations are detected by comparing the sequence of normal and mutant DNA. See, e.g., Hawkins et al., Electrophoresis, 20:1171-1176 (1999).


Mass spectrometry can be used for molecular profiling according to the invention. See Graber et al., Curr. Opin. Biotechnol., 9:14-18 (1998). For example, in the primer oligo base extension (PROBE™) method, a target nucleic acid is immobilized to a solid-phase support. A primer is annealed to the target immediately 5′ upstream from the locus to be analyzed. Primer extension is carried out in the presence of a selected mixture of deoxyribonucleotides and dideoxyribonucleotides. The resulting mixture of newly extended primers is then analyzed by MALDI-TOF. See e.g., Monforte et al., Nat. Med., 3:360-362 (1997).


In addition, the microchip or microarray technologies are also applicable to the detection method of the present invention. Essentially, in microchips, a large number of different oligonucleotide probes are immobilized in an array on a substrate or carrier, e.g., a silicon chip or glass slide. Target nucleic acid sequences to be analyzed can be contacted with the immobilized oligonucleotide probes on the microchip. See Lipshutz et al., Biotechniques, 19:442-447 (1995); Chee et al., Science, 274:610-614 (1996); Kozal et al., Nat. Med. 2:753-759 (1996); Hacia et al., Nat. Genet., 14:441-447 (1996); Saiki et al., Proc. Natl. Acad. Sci. USA, 86:6230-6234 (1989); Gingeras et al., Genome Res., 8:435-448 (1998). Alternatively, the multiple target nucleic acid sequences to be studied are fixed onto a substrate and an array of probes is contacted with the immobilized target sequences. See Drmanac et al., Nat. Biotechnol., 16:54-58 (1998). Numerous microchip technologies have been developed incorporating one or more of the above described techniques for detecting mutations. The microchip technologies combined with computerized analysis tools allow fast screening in a large scale. The adaptation of the microchip technologies to the present invention will be apparent to a person of skill in the art apprised of the present disclosure. See, e.g., U.S. Pat. No. 5,925,525 to Fodor et al; Wilgenbus et al., J. Mol. Med., 77:761-786 (1999); Graber et al., Curr. Opin. Biotechnol., 9:14-18 (1998); Hacia et al., Nat. Genet., 14:441-447 (1996); Shoemaker et al., Nat. Genet., 14:450-456 (1996); DeRisi et al., Nat. Genet., 14:457-460 (1996); Chee et al., Nat. Genet., 14:610-614 (1996); Lockhart et al., Nat. Genet., 14:675-680 (1996); Drobyshev et al., Gene, 188:45-52 (1997).


As is apparent from the above survey of the suitable detection techniques, it may or may not be necessary to amplify the target DNA, i.e., the gene, cDNA, mRNA, miRNA, or a portion thereof to increase the number of target DNA molecule, depending on the detection techniques used. For example, most PCR-based techniques combine the amplification of a portion of the target and the detection of the mutations. PCR amplification is well known in the art and is disclosed in U.S. Pat. Nos. 4,683,195 and 4,800,159, both which are incorporated herein by reference. For non-PCR-based detection techniques, if necessary, the amplification can be achieved by, e.g., in vivo plasmid multiplication, or by purifying the target DNA from a large amount of tissue or cell samples. See generally, Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1989. However, even with scarce samples, many sensitive techniques have been developed in which small genetic variations such as single-nucleotide substitutions can be detected without having to amplify the target DNA in the sample. For example, techniques have been developed that amplify the signal as opposed to the target DNA by, e.g., employing branched DNA or dendrimers that can hybridize to the target DNA. The branched or dendrimer DNAs provide multiple hybridization sites for hybridization probes to attach thereto thus amplifying the detection signals. See Detmer et al., J. Clin. Microbiol., 34:901-907 (1996); Collins et al., Nucleic Acids Res., 25:2979-2984 (1997); Horn et al., Nucleic Acids Res., 25:4835-4841 (1997); Horn et al., Nucleic Acids Res., 25:4842-4849 (1997); Nilsen et al., J. Theor. Biol., 187:273-284 (1997).


The Invader™ assay is another technique for detecting single nucleotide variations that can be used for molecular profiling according to the invention. The Invader™ assay uses a novel linear signal amplification technology that improves upon the long turnaround times required of the typical PCR DNA sequenced-based analysis. See Cooksey et al., Antimicrobial Agents and Chemotherapy 44:1296-1301 (2000). This assay is based on cleavage of a unique secondary structure formed between two overlapping oligonucleotides that hybridize to the target sequence of interest to form a “flap.” Each “flap” then generates thousands of signals per hour. Thus, the results of this technique can be easily read, and the methods do not require exponential amplification of the DNA target. The Invader™ system uses two short DNA probes, which are hybridized to a DNA target. The structure formed by the hybridization event is recognized by a special cleavase enzyme that cuts one of the probes to release a short DNA “flap.” Each released “flap” then binds to a fluorescently-labeled probe to form another cleavage structure. When the cleavase enzyme cuts the labeled probe, the probe emits a detectable fluorescence signal. See e.g. Lyamichev et al., Nat. Biotechnol., 17:292-296 (1999).


The rolling circle method is another method that avoids exponential amplification. Lizardi et al., Nature Genetics, 19:225-232 (1998) (which is incorporated herein by reference). For example, Sniper™, a commercial embodiment of this method, is a sensitive, high-throughput SNP scoring system designed for the accurate fluorescent detection of specific variants. For each nucleotide variant, two linear, allele-specific probes are designed. The two allele-specific probes are identical with the exception of the 3′-base, which is varied to complement the variant site. In the first stage of the assay, target DNA is denatured and then hybridized with a pair of single, allele-specific, open-circle oligonucleotide probes. When the 3′-base exactly complements the target DNA, ligation of the probe will preferentially occur. Subsequent detection of the circularized oligonucleotide probes is by rolling circle amplification, whereupon the amplified probe products are detected by fluorescence. See Clark and Pickering, Life Science News 6, 2000, Amersham Pharmacia Biotech (2000).


A number of other techniques that avoid amplification all together include, e.g., surface-enhanced resonance Raman scattering (SERRS), fluorescence correlation spectroscopy, and single-molecule electrophoresis. In SERRS, a chromophore-nucleic acid conjugate is absorbed onto colloidal silver and is irradiated with laser light at a resonant frequency of the chromophore. See Graham et al., Anal. Chem., 69:4703-4707 (1997). The fluorescence correlation spectroscopy is based on the spatio-temporal correlations among fluctuating light signals and trapping single molecules in an electric field. See Eigen et al., Proc. Natl. Acad. Sci. USA, 91:5740-5747 (1994). In single-molecule electrophoresis, the electrophoretic velocity of a fluorescently tagged nucleic acid is determined by measuring the time required for the molecule to travel a predetermined distance between two laser beams. See Castro et al., Anal. Chem., 67:3181-3186 (1995).


In addition, the allele-specific oligonucleotides (ASO) can also be used in in situ hybridization using tissues or cells as samples. The oligonucleotide probes which can hybridize differentially with the wild-type gene sequence or the gene sequence harboring a mutation may be labeled with radioactive isotopes, fluorescence, or other detectable markers. In situ hybridization techniques are well known in the art and their adaptation to the present invention for detecting the presence or absence of a nucleotide variant in the one or more gene of a particular individual should be apparent to a skilled artisan apprised of this disclosure.


Accordingly, the presence or absence of one or more genes nucleotide variant or amino acid variant in an individual can be determined using any of the detection methods described above.


Typically, once the presence or absence of one or more gene nucleotide variants or amino acid variants is determined, physicians or genetic counselors or patients or other researchers may be informed of the result. Specifically the result can be cast in a transmittable form that can be communicated or transmitted to other researchers or physicians or genetic counselors or patients. Such a form can vary and can be tangible or intangible. The result with regard to the presence or absence of a nucleotide variant of the present invention in the individual tested can be embodied in descriptive statements, diagrams, photographs, charts, images or any other visual forms. For example, images of gel electrophoresis of PCR products can be used in explaining the results. Diagrams showing where a variant occurs in an individual's gene are also useful in indicating the testing results. The statements and visual forms can be recorded on a tangible media such as papers, computer readable media such as floppy disks, compact disks, etc., or on an intangible media, e.g., an electronic media in the form of email or website on internet or intranet. In addition, the result with regard to the presence or absence of a nucleotide variant or amino acid variant in the individual tested can also be recorded in a sound form and transmitted through any suitable media, e.g., analog or digital cable lines, fiber optic cables, etc., via telephone, facsimile, wireless mobile phone, internet phone and the like.


Thus, the information and data on a test result can be produced anywhere in the world and transmitted to a different location. For example, when a genotyping assay is conducted offshore, the information and data on a test result may be generated and cast in a transmittable form as described above. The test result in a transmittable form thus can be imported into the U.S. Accordingly, the present invention also encompasses a method for producing a transmittable form of information on the genotype of the two or more suspected cancer samples from an individual. The method comprises the steps of (1) determining the genotype of the DNA from the samples according to methods of the present invention; and (2) embodying the result of the determining step in a transmittable form. The transmittable form is the product of the production method.


In Situ Hybridization


In situ hybridization assays are well known and are generally described in Angerer et al., Methods Enzymol. 152:649-660 (1987). In an in situ hybridization assay, cells, e.g., from a biopsy, are fixed to a solid support, typically a glass slide. If DNA is to be probed, the cells are denatured with heat or alkali. The cells are then contacted with a hybridization solution at a moderate temperature to permit annealing of specific probes that are labeled. The probes are preferably labeled, e.g., with radioisotopes or fluorescent reporters, or enzymatically. FISH (fluorescence in situ hybridization) uses fluorescent probes that bind to only those parts of a sequence with which they show a high degree of sequence similarity. CISH (chromogenic in situ hybridization) uses conventional peroxidase or alkaline phosphatase reactions visualized under a standard bright-field microscope.


In situ hybridization can be used to detect specific gene sequences in tissue sections or cell preparations by hybridizing the complementary strand of a nucleotide probe to the sequence of interest. Fluorescent in situ hybridization (FISH) uses a fluorescent probe to increase the sensitivity of in situ hybridization.


FISH is a cytogenetic technique used to detect and localize specific polynucleotide sequences in cells. For example, FISH can be used to detect DNA sequences on chromosomes. FISH can also be used to detect and localize specific RNAs, e.g., mRNAs, within tissue samples. In FISH uses fluorescent probes that bind to specific nucleotide sequences to which they show a high degree of sequence similarity. Fluorescence microscopy can be used to find out whether and where the fluorescent probes are bound. In addition to detecting specific nucleotide sequences, e.g., translocations, fusion, breaks, duplications and other chromosomal abnormalities, FISH can help define the spatial-temporal patterns of specific gene copy number and/or gene expression within cells and tissues.


Various types of FISH probes can be used to detect chromosome translocations. Dual color, single fusion probes can be useful in detecting cells possessing a specific chromosomal translocation. The DNA probe hybridization targets are located on one side of each of the two genetic breakpoints. “Extra signal” probes can reduce the frequency of normal cells exhibiting an abnormal FISH pattern due to the random co-localization of probe signals in a normal nucleus. One large probe spans one breakpoint, while the other probe flanks the breakpoint on the other gene. Dual color, break apart probes are useful in cases where there may be multiple translocation partners associated with a known genetic breakpoint. This labeling scheme features two differently colored probes that hybridize to targets on opposite sides of a breakpoint in one gene. Dual color, dual fusion probes can reduce the number of normal nuclei exhibiting abnormal signal patterns. The probe offers advantages in detecting low levels of nuclei possessing a simple balanced translocation. Large probes span two breakpoints on different chromosomes. Such probes are available as Vysis probes from Abbott Laboratories, Abbott Park, Ill.


CISH, or chromogenic in situ hybridization, is a process in which a labeled complementary DNA or RNA strand is used to localize a specific DNA or RNA sequence in a tissue specimen. CISH methodology can be used to evaluate gene amplification, gene deletion, chromosome translocation, and chromosome number. CISH can use conventional enzymatic detection methodology, e.g., horseradish peroxidase or alkaline phosphatase reactions, visualized under a standard bright-field microscope. In a common embodiment, a probe that recognizes the sequence of interest is contacted with a sample. An antibody or other binding agent that recognizes the probe, e.g., via a label carried by the probe, can be used to target an enzymatic detection system to the site of the probe. In some systems, the antibody can recognize the label of a FISH probe, thereby allowing a sample to be analyzed using both FISH and CISH detection. CISH can be used to evaluate nucleic acids in multiple settings, e.g., formalin-fixed, paraffin-embedded (FFPE) tissue, blood or bone marrow smear, metaphase chromosome spread, and/or fixed cells. In an embodiment, CISH is performed following the methodology in the SPoT-Light® HER2 CISH Kit available from Life Technologies (Carlsbad, Calif.) or similar CISH products available from Life Technologies. The SPoT-Light® HER2 CISH Kit itself is FDA approved for in vitro diagnostics and can be used for molecular profiling of HER2. CISH can be used in similar applications as FISH. Thus, one of skill will appreciate that reference to molecular profiling using FISH herein can be performed using CISH, unless otherwise specified.


Silver-enhanced in situ hybridization (SISH) is similar to CISH, but with SISH the signal appears as a black coloration due to silver precipitation instead of the chromogen precipitates of CISH.


Modifications of the in situ hybridization techniques can be used for molecular profiling according to the invention. Such modifications comprise simultaneous detection of multiple targets, e.g., Dual ISH, Dual color CISH, bright field double in situ hybridization (BDISH). See e.g., the FDA approved INFORM HER2 Dual ISH DNA Probe Cocktail kit from Ventana Medical Systems, Inc. (Tucson, Ariz.); DuoCISH™, a dual color CISH kit developed by Dako Denmark A/S (Denmark).


Comparative Genomic Hybridization (CGH) comprises a molecular cytogenetic method of screening tumor samples for genetic changes showing characteristic patterns for copy number changes at chromosomal and subchromosomal levels. Alterations in patterns can be classified as DNA gains and losses. CGH employs the kinetics of in situ hybridization to compare the copy numbers of different DNA or RNA sequences from a sample, or the copy numbers of different DNA or RNA sequences in one sample to the copy numbers of the substantially identical sequences in another sample. In many useful applications of CGH, the DNA or RNA is isolated from a subject cell or cell population. The comparisons can be qualitative or quantitative. Procedures are described that permit determination of the absolute copy numbers of DNA sequences throughout the genome of a cell or cell population if the absolute copy number is known or determined for one or several sequences. The different sequences are discriminated from each other by the different locations of their binding sites when hybridized to a reference genome, usually metaphase chromosomes but in certain cases interphase nuclei. The copy number information originates from comparisons of the intensities of the hybridization signals among the different locations on the reference genome. The methods, techniques and applications of CGH are known, such as described in U.S. Pat. No. 6,335,167, and in U.S. App. Ser. No. 60/804,818, the relevant parts of which are herein incorporated by reference.


In an embodiment, CGH used to compare nucleic acids between diseased and healthy tissues. The method comprises isolating DNA from disease tissues (e.g., tumors) and reference tissues (e.g., healthy tissue) and labeling each with a different “color” or fluor. The two samples are mixed and hybridized to normal metaphase chromosomes. In the case of array or matrix CGH, the hybridization mixing is done on a slide with thousands of DNA probes. A variety of detection system can be used that basically determine the color ratio along the chromosomes to determine DNA regions that might be gained or lost in the diseased samples as compared to the reference.


Data and Analysis


The practice of the present invention may also employ conventional biology methods, software and systems. Computer software products of the invention typically include computer readable medium having computer-executable instructions for performing the logic steps of the method of the invention. Suitable computer readable medium include floppy disk, CD-ROM/DVD/DVD-ROM, hard-disk drive, flash memory, ROM/RAM, magnetic tapes and etc. The computer executable instructions may be written in a suitable computer language or combination of several languages. Basic computational biology methods are described in, for example Setubal and Meidanis et al., Introduction to Computational Biology Methods (PWS Publishing Company, Boston, 1997); Salzberg, Searles, Kasif, (Ed.), Computational Methods in Molecular Biology, (Elsevier, Amsterdam, 1998); Rashidi and Buehler, Bioinformatics Basics: Application in Biological Science and Medicine (CRC Press, London, 2000) and Ouelette and Bzevanis Bioinformatics: A Practical Guide for Analysis of Gene and Proteins (Wiley & Sons, Inc., 2.sup.nd ed., 2001). See U.S. Pat. No. 6,420,108.


The present invention may also make use of various computer program products and software for a variety of purposes, such as probe design, management of data, analysis, and instrument operation. See, U.S. Pat. Nos. 5,593,839, 5,795,716, 5,733,729, 5,974,164, 6,066,454, 6,090,555, 6,185,561, 6,188,783, 6,223,127, 6,229,911 and 6,308,170.


Additionally, the present invention relates to embodiments that include methods for providing genetic information over networks such as the Internet as shown in U.S. Ser. Nos. 10/197,621, 10/063,559 (U.S. Publication Number 20020183936), Ser. Nos. 10/065,856, 10/065,868, 10/328,818, 10/328,872, 10/423,403, and 60/482,389. For example, one or more molecular profiling techniques can be performed in one location, e.g., a city, state, country or continent, and the results can be transmitted to a different city, state, country or continent. Treatment selection can then be made in whole or in part in the second location. The methods of the invention comprise transmittal of information between different locations.


Molecular Profiling for Treatment Selection


The methods of the invention provide a candidate treatment selection for a subject in need thereof. Molecular profiling can be used to identify one or more candidate therapeutic agents for an individual suffering from a condition in which one or more of the biomarkers disclosed herein are targets for treatment. For example, the method can identify one or more chemotherapy treatments for a cancer. In an aspect, the invention provides a method comprising: performing an immunohistochemistry (IHC) analysis on a sample from the subject to determine an IHC expression profile on at least five proteins; performing a microarray analysis on the sample to determine a microarray expression profile on at least ten genes; performing a fluorescent in-situ hybridization (FISH) analysis on the sample to determine a FISH mutation profile on at least one gene; performing DNA sequencing on the sample to determine a sequencing mutation profile on at least one gene; and comparing the IHC expression profile, microarray expression profile, FISH mutation profile and sequencing mutation profile against a rules database, wherein the rules database comprises a mapping of treatments whose biological activity is known against diseased cells that: i) overexpress or underexpress one or more proteins included in the IHC expression profile; ii) overexpress or underexpress one or more genes included in the microarray expression profile; iii) have zero or more mutations in one or more genes included in the FISH mutation profile; and/or iv) have zero or more mutations in one or more genes included in the sequencing mutation profile; and identifying the treatment if the comparison against the rules database indicates that the treatment should have biological activity against the diseased cells; and the comparison against the rules database does not contraindicate the treatment for treating the diseased cells. The disease can be a cancer. The molecular profiling steps can be performed in any order. In some embodiments, not all of the molecular profiling steps are performed. As a non-limiting example, microarray analysis is not performed if the sample quality does not meet a threshold value, as described herein. In another example, sequencing is performed only if FISH analysis meets a threshold value. Any relevant biomarker can be assessed using one or more of the molecular profiling techniques described herein or known in the art. The marker need only have some direct or indirect association with a treatment to be useful.


Molecular profiling comprises the profiling of at least one gene (or gene product) for each assay technique that is performed. Different numbers of genes can be assayed with different techniques. Any marker disclosed herein that is associated directly or indirectly with a target therapeutic can be assessed. For example, any “druggable target” comprising a target that can be modulated with a therapeutic agent such as a small molecule or binding agent such as an antibody, is a candidate for inclusion in the molecular profiling methods of the invention. The target can also be indirectly drug associated, such as a component of a biological pathway that is affected by the associated drug. The molecular profiling can be based on either the gene, e.g., DNA sequence, and/or gene product, e.g., mRNA or protein. Such nucleic acid and/or polypeptide can be profiled as applicable as to presence or absence, level or amount, activity, mutation, sequence, haplotype, rearrangement, copy number, or other measurable characteristic. In some embodiments, a single gene and/or one or more corresponding gene products is assayed by more than one molecular profiling technique. A gene or gene product (also referred to herein as “marker” or “biomarker”), e.g., an mRNA or protein, is assessed using applicable techniques (e.g., to assess DNA, RNA, protein), including without limitation FISH, microarray, IHC, sequencing or immunoassay. Therefore, any of the markers disclosed herein can be assayed by a single molecular profiling technique or by multiple methods disclosed herein (e.g., a single marker is profiled by one or more of IHC, FISH, sequencing, microarray, etc.). In some embodiments, at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or at least about 100 genes or gene products are profiled by at least one technique, a plurality of techniques, or using a combination of FISH, microarray, IHC, and sequencing. In some embodiments, at least about 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10,000, 11,000, 12,000, 13,000, 14,000, 15,000, 16,000, 17,000, 18,000, 19,000, 20,000, 21,000, 22,000, 23,000, 24,000, 25,000, 26,000, 27,000, 28,000, 29,000, 30,000, 31,000, 32,000, 33,000, 34,000, 35,000, 36,000, 37,000, 38,000, 39,000, 40,000, 41,000, 42,000, 43,000, 44,000, 45,000, 46,000, 47,000, 48,000, 49,000, or at least 50,000 genes or gene products are profiled using various techniques. The number of markers assayed can depend on the technique used. For example, microarray and massively parallel sequencing lend themselves to high throughput analysis. Because molecular profiling queries molecular characteristics of the tumor itself, this approach provides information on therapies that might not otherwise be considered based on the lineage of the tumor.


In some embodiments, a sample from a subject in need thereof is profiled using methods which include but are not limited to IHC expression profiling, microarray expression profiling, FISH mutation profiling, and/or sequencing mutation profiling (such as by PCR, RT-PCR, pyrosequencing) for one or more of the following: ABCC1, ABCG2, ACE2, ADA, ADH1C, ADH4, AGT, AR, AREG, ASNS, BCL2, BCRP, BDCA1, beta III tubulin, BIRC5, B-RAF, BRCA1, BRCA2, CA2, caveolin, CD20, CD25, CD33, CD52, CDA, CDKN2A, CDKN1A, CDKN1B, CDK2, CDW52, CES2, CK 14, CK 17, CK 5/6, c-KIT, c-Met, c-Myc, COX-2, Cyclin D1, DCK, DHFR, DNMT1, DNMT3A, DNMT3B, E-Cadherin, ECGF1, EGFR, EML4-ALK fusion, EPHA2, Epiregulin, ER, ERBR2, ERCC1, ERCC3, EREG, ESR1, FLT1, folate receptor, FOLR1, FOLR2, FSHB, FSHPRH1, FSHR, FYN, GART, GNA11, GNAQ, GNRH1, GNRHR1, GSTP1, HCK, HDAC1, hENT-1, Her2/Neu, HGF, HIF1A, HIG1, HSP90, HSP90AA1, HSPCA, IGF-1R, IGFRBP, IGFRBP3, IGFRBP4, IGFRBP5, IL13RA1, IL2RA, KDR, Ki67, KIT, K-RAS, LCK, LTB, Lymphotoxin Beta Receptor, LYN, MET, MGMT, MLH1, MMR, MRP1, MS4A1, MSH2, MSH5, Myc, NFKB1, NFKB2, NFKBIA, NRAS, ODC1, OGFR, p16, p27, p53, p95, PARP-1, PDGFC, PDGFR, PDGFRA, PDGFRB, PGP, PGR, PI3K, POLA, POLA1, PPARG, PPARGC1, PR, PTEN, PTGS2, PTPN12, RAF1, RARA, ROS1, RRM1, RRM2, RRM2B, RXRB, RXRG, SIK2, SPARC, SRC, SSTR1, SSTR2, SSTR3, SSTR4, SSTR5, Survivin, TK1, TLE3, TNF, TOP1, TOP2A, TOP2B, TS, TUBB3, TXN, TXNRD1, TYMS, VDR, VEGF, VEGFA, VEGFC, VHL, YES1, ZAP70.


Table 2 provides a listing of gene and corresponding protein symbols and names of many of the molecular profiling targets that are analyzed according to the methods of the invention. As understood by those of skill in the art, genes and proteins have developed a number of alternative names in the scientific literature. Thus, the listing in Table 2 comprises an illustrative but not exhaustive compilation. A further listing of gene aliases and descriptions can be found using a variety of online databases, including GeneCards® (www.genecards.org), HUGO Gene Nomenclature (www.genenames.org), Entrez Gene (www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene), UniProtKB/Swiss-Prot (www.uniprot.org), UniProtKB/TrEMBL (www.uniprot.org), OMIM (www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM), GeneLoc (genecards.weizmann.ac.il/geneloc/), and Ensembl (www.ensembl.org). Generally, gene symbols and names below correspond to those approved by HUGO, and protein names are those recommended by UniProtKB/Swiss-Prot. Common alternatives are provided as well. Where a protein name indicates a precursor, the mature protein is also implied. Throughout the application, gene and protein symbols may be used interchangeably and the meaning can be derived from context, e.g., FISH is used to analyze nucleic acids whereas IHC is used to analyze protein.









TABLE 2







Genes and Protein Names










Gene Symbol
Gene Name
Protein Symbol
Protein Name





ABCB1,
ATP-binding cassette, sub-family B
ABCB1,
Multidrug resistance protein 1;


PGP
(MDR/TAP), member 1
MDR1, PGP
P-glycoprotein


ABCC1,
ATP-binding cassette, sub-family C
MRP1,
Multidrug resistance-associated protein 1


MRP1
(CFTR/MRP), member 1
ABCC1


ABCG2,
ATP-binding cassette, sub-family G
ABCG2
ATP-binding cassette sub-family G


BCRP
(WHITE), member 2

member 2


ACE2
angiotensin I converting enzyme
ACE2
Angiotensin-converting enzyme 2



(peptidyl-dipeptidase A) 2

precursor


ADA
adenosine deaminase
ADA
Adenosine deaminase


ADH1C
alcohol dehydrogenase 1C (class I),
ADH1G
Alcohol dehydrogenase 1C



gamma polypeptide


ADH4
alcohol dehydrogenase 4 (class II), pi
ADH4
Alcohol dehydrogenase 4



polypeptide


AGT
angiotensinogen (serpin peptidase
ANGT,
Angiotensinogen precursor



inhibitor, clade A, member 8)
AGT


ALK
anaplastic lymphoma receptor tyrosine
ALK
ALK tyrosine kinase receptor precursor



kinase


AR
androgen receptor
AR
Androgen receptor


AREG
amphiregulin
AREG
Amphiregulin precursor


ASNS
asparagine synthetase
ASNS
Asparagine synthetase [glutamine-





hydrolyzing]


BCL2
B-cell CLL/lymphoma 2
BCL2
Apoptosis regulator Bcl-2


BDCA1,
CD1c molecule
CD1C
T-cell surface glycoprotein CD1c precursor


CD1C


BIRC5
baculoviral IAP repeat-containing 5
BIRC5,
Baculoviral IAP repeat-containing protein




Survivin
5; Survivin


BRAF
v-raf murine sarcoma viral oncogene
B-RAF,
Serine/threonine-protein kinase B-raf



homolog B1
BRAF


BRCA1
breast cancer 1, early onset
BRCA1
Breast cancer type 1 susceptibility protein


BRCA2
breast cancer 2, early onset
BRCA2
Breast cancer type 2 susceptibility protein


CA2
carbonic anhydrase II
CA2
Carbonic anhydrase 2


CAV1
caveolin 1, caveolae protein, 22 kDa
CAV1
Caveolin-1


CCND1
cyclin D1
CCND1,
G1/S-specific cyclin-D1




Cyclin D1,




BCL-1


CD20,
membrane-spanning 4-domains,
CD20
B-lymphocyte antigen CD20


MS4A1
subfamily A, member 1


CD25,
interleukin 2 receptor, alpha
CD25
Interleukin-2 receptor subunit alpha


IL2RA


precursor


CD33
CD33 molecule
CD33
Myeloid cell surface antigen CD33





precursor


CD52,
CD52 molecule
CD52
CAMPATH-1 antigen precursor


CDW52


CDA
cytidine deaminase
CDA
Cytidine deaminase


CDH1,
cadherin 1, type 1, E-cadherin
E-Cad
Cadherin-1 precursor (E-cadherin)


ECAD
(epithelial)


CDK2
cyclin-dependent kinase 2
CDK2
Cell division protein kinase 2


CDKN1A,
cyclin-dependent kinase inhibitor 1A
CDKN1A, p21
Cyclin-dependent kinase inhibitor 1


P21
(p21, Cip1)


CDKN1B
cyclin-dependent kinase inhibitor 1B
CDKN1B, p27
Cyclin-dependent kinase inhibitor 1B



(p27, Kip1)


CDKN2A,
cyclin-dependent kinase inhibitor 2A
CD21A, p16
Cyclin-dependent kinase inhibitor 2A,


P16
(melanoma, p16, inhibits CDK4)

isoforms 1/2/3


CES2
carboxylesterase 2 (intestine, liver)
CES2, EST2
Carboxylesterase 2 precursor


CK 5/6
cytokeratin 5/cytokeratin 6
CK 5/6
Keratin, type II cytoskeletal 5; Keratin,





type II cytoskeletal 6


CK14,
keratin 14
CK14
Keratin, type I cytoskeletal 14


KRT14


CK17,
keratin 17
CK17
Keratin, type I cytoskeletal 17


KRT17


COX2,
prostaglandin-endoperoxide synthase 2
COX-2,
Prostaglandin G/H synthase 2 precursor


PTGS2
(prostaglandin G/H synthase and
PTGS2



cyclooxygenase)


DCK
deoxycytidine kinase
DCK
Deoxycytidine kinase


DHFR
dihydrofolate reductase
DHFR
Dihydrofolate reductase


DNMT1
DNA (cytosine-5-)-methyltransferase 1
DNMT1
DNA (cytosine-5)-methyltransferase 1


DNMT3A
DNA (cytosine-5-)-methyltransferase 3
DNMT3A
DNA (cytosine-5)-methyltransferase 3A



alpha


DNMT3B
DNA (cytosine-5-)-methyltransferase 3
DNMT3B
DNA (cytosine-5)-methyltransferase 3B



beta


ECGF1,
thymidine phosphorylase
TYMP, PD-
Thymidine phosphorylase precursor


TYMP

ECGF,




ECDF1


EGFR,
epidermal growth factor receptor
EGFR,
Epidermal growth factor receptor


ERBB1,
(erythroblastic leukemia viral (v-erb-b)
ERBB1,
precursor


HER1
oncogene homolog, avian)
HER1


EML4
echinoderm microtubule associated
EML4
Echinoderm microtubule-associated



protein like 4

protein-like 4


EPHA2
EPH receptor A2
EPHA2
Ephrin type-A receptor 2 precursor


ER, ESR1
estrogen receptor 1
ER, ESR1
Estrogen receptor


ERBB2,
v-erb-b2 erythroblastic leukemia viral
ERBB2,
Receptor tyrosine-protein kinase erbB-2


HER2/NEU
oncogene homolog 2,
HER2,
precursor



neuro/glioblastoma derived oncogene
HER-2/neu



homolog (avian)


ERCC1
excision repair cross-complementing
ERCC1
DNA excision repair protein ERCC-1



rodent repair deficiency,



complementation group 1 (includes



overlapping antisense sequence)


ERCC3
excision repair cross-complementing
ERCC3
TFIIH basal transcription factor complex



rodent repair deficiency,

helicase XPB subunit



complementation group 3 (xeroderma



pigmentosum group B complementing)


EREG
Epiregulin
EREG
Proepiregulin precursor


FLT1
fms-related tyrosine kinase 1 (vascular
FLT-1,
Vascular endothelial growth factor receptor



endothelial growth factor/vascular
VEGFR1
1 precursor



permeability factor receptor)


FOLR1
folate receptor 1 (adult)
FOLR1
Folate receptor alpha precursor


FOLR2
folate receptor 2 (fetal)
FOLR2
Folate receptor beta precursor


FSHB
follicle stimulating hormone, beta
FSHB
Follitropin subunit beta precursor



polypeptide


FSHPRH1,
centromere protein I
FSHPRH1,
Centromere protein I


CENP1

CENP1


FSHR
follicle stimulating hormone receptor
FSHR
Follicle-stimulating hormone receptor





precursor


FYN
FYN oncogene related to SRC, FGR,
FYN
Tyrosine-protein kinase Fyn



YES


GART
phosphoribosylglycinamide
GART,
Trifunctional purine biosynthetic protein



formyltransferase,
PUR2
adenosine-3



phosphoribosylglycinamide synthetase,



phosphoribosylaminoimidazole



synthetase


GNA11,
guanine nucleotide binding protein
GNA11, G
Guanine nucleotide-binding protein


GA11
(G protein), alpha 11 (Gq class)
alpha-11, G-
subunit alpha-11




protein subunit




alpha-11


GNAQ,
guanine nucleotide binding protein
GNAQ
Guanine nucleotide-binding protein


GAQ
(G protein), q polypeptide

G(q) subunit alpha


GNRH1
gonadotropin-releasing hormone 1
GNRH1,
Progonadoliberin-1 precursor



(luteinizing-releasing hormone)
GON1


GNRHR1,
gonadotropin-releasing hormone
GNRHR1
Gonadotropin-releasing hormone receptor


GNRHR
receptor


GSTP1
glutathione S-transferase pi 1
GSTP1
Glutathione S-transferase P


HCK
hemopoietic cell kinase
HCK
Tyrosine-protein kinase HCK


HDAC1
histone deacetylase 1
HDAC1
Histone deacetylase 1


HGF
hepatocyte growth factor (hepapoietin
HGF
Hepatocyte growth factor precursor



A; scatter factor)


HIF1A
hypoxia inducible factor 1, alpha
HIF1A
Hypoxia-inducible factor 1-alpha



subunit (basic helix-loop-helix



transcription factor)


HIG1,
HIG1 hypoxia inducible domain
HIG1,
HIG1 domain family member 1A


HIGD1A,
family, member 1A
HIGD1A,


HIG1A

HIG1A


HSP90AA1,
heat shock protein 90 kDa alpha
HSP90,
Heat shock protein HSP 90-alpha


HSP90,
(cytosolic), class A member 1
HSP90A


HSPCA


IGF1R
insulin-like growth factor 1 receptor
IGF-1R
Insulin-like growth factor 1 receptor





precursor


IGFBP3,
insulin-like growth factor binding
IGFBP-3,
Insulin-like growth factor-binding protein


IGFRBP3
protein 3
IBP-3
3 precursor


IGFBP4,
insulin-like growth factor binding
IGFBP-4,
Insulin-like growth factor-binding protein


IGFRBP4
protein 4
IBP-4
4 precursor


IGFBP5,
insulin-like growth factor binding
IGFBP-5,
Insulin-like growth factor-binding protein


IGFRBP5
protein 5
IBP-5
5 precursor


IL13RA1
interleukin 13 receptor, alpha 1
IL-13RA1
Interleukin-13 receptor subunit alpha-1





precursor


KDR
kinase insert domain receptor (a type
KDR,
Vascular endothelial growth factor receptor



III receptor tyrosine kinase)
VEGFR2
2 precursor


KIT, c-KIT
v-kit Hardy-Zuckerman 4 feline
KIT, c-KIT,
Mast/stem cell growth factor receptor



sarcoma viral oncogene homolog
CD117, SCFR
precursor


KRAS
v-Ki-ras2 Kirsten rat sarcoma viral
K-RAS
GTPase KRas precursor



oncogene homolog


LCK
lymphocyte-specific protein tyrosine
LCK
Tyrosine-protein kinase Lck



kinase


LTB
lymphotoxin beta (TNF superfamily,
LTB, TNF3
Lymphotoxin-beta



member 3)


LTBR
lymphotoxin beta receptor (TNFR
LTBR,
Tumor necrosis factor receptor superfamily



superfamily, member 3)
LTBR3,
member 3 precursor




TNFR


LYN
v-yes-1 Yamaguchi sarcoma viral
LYN
Tyrosine-protein kinase Lyn



related oncogene homolog


MET, c-
met proto-oncogene (hepatocyte
MET, c-
Hepatocyte growth factor receptor


MET
growth factor receptor)
MET
precursor


MGMT
O-6-methylguanine-DNA
MGMT
Methylated-DNA--protein-cysteine



methyltransferase

methyltransferase


MKI67,
antigen identified by monoclonal
Ki67, Ki-67
Antigen KI-67


KI67
antibody Ki-67


MLH1
mutL homolog 1, colon cancer,
MLH1
DNA mismatch repair protein Mlh1



nonpolyposis type 2 (E. coli)


MMR
mismatch repair (refers to MLH1,



MSH2, MSH5)


MSH2
mutS homolog 2, colon cancer,
MSH2
DNA mismatch repair protein Msh2



nonpolyposis type 1 (E. coli)


MSH5
mutS homolog 5 (E. coli)
MSH5,
MutS protein homolog 5




hMSH5


MYC, c-
v-myc myelocytomatosis viral
MYC, c-
Myc proto-oncogene protein


MYC
oncogene homolog (avian)
MYC


NBN, P95
nibrin
NBN, p95
Nibrin


NDGR1
N-myc downstream regulated 1
NDGR1
Protein NDGR1


NFKB1
nuclear factor of kappa light
NFKB1
Nuclear factor NF-kappa-B p105 subunit



polypeptide gene enhancer in B-cells 1


NFKB2
nuclear factor of kappa light
NFKB2
Nuclear factor NF-kappa-B p100 subunit



polypeptide gene enhancer in B-cells 2



(p49/p100)


NFKBIA
nuclear factor of kappa light
NFKBIA
NF-kappa-B inhibitor alpha



polypeptide gene enhancer in B-cells



inhibitor, alpha


NRAS
neuroblastoma RAS viral (v-ras) oncogene
NRAS
GTPase NRas, Transforming protein N-Ras



homolog


ODC1
ornithine decarboxylase 1
ODC
Ornithine decarboxylase


OGFR
opioid growth factor receptor
OGFR
Opioid growth factor receptor


PARP1
poly (ADP-ribose) polymerase 1
PARP-1
Poly [ADP-ribose] polymerase 1


PDGFC
platelet derived growth factor C
PDGF-C,
Platelet-derived growth factor C precursor




VEGF-E


PDGFR
platelet-derived growth factor receptor
PDGFR
Platelet-derived growth factor receptor


PDGFRA
platelet-derived growth factor receptor,
PDGFRA,
Alpha-type platelet-derived growth factor



alpha polypeptide
PDGFR2,
receptor precursor




CD140 A


PDGFRB
platelet-derived growth factor receptor,
PDGFRB,
Beta-type platelet-derived growth factor



beta polypeptide
PDGFR,
receptor precursor




PDGFR1,




CD140 B


PGR
progesterone receptor
PR
Progesterone receptor


PIK3CA
phosphoinositide-3 -kinase, catalytic,
PI3K subunit
phosphoinositide-3-kinase, catalytic, alpha



alpha polypeptide
p110α
polypeptide


POLA1
polymerase (DNA directed), alpha 1,
POLA, POLA1, p180
DNA polymerase alpha catalytic subunit



catalytic subunit; polymerase (DNA



directed), alpha, polymerase (DNA



directed), alpha 1


PPARG,
peroxisome proliferator-activated receptor
PPARG
Peroxisome proliferator-activated receptor


PPARG1,
gamma

gamma


PPARG2,


PPAR-


gamma,


NR1C3


PPARGC1A,
peroxisome proliferator-activated receptor
PGC-1-alpha,
Peroxisome proliferator-activated receptor


LEM6,
gamma, coactivator 1 alpha
PPARGC-1-alpha
gamma coactivator 1-alpha; PPAR-gamma


PGC1,


coactivator 1-alpha


PGC1A,


PPARGC1


PSMD9, P27
proteasome (prosome, macropain) 26S
p27
26S proteasome non-ATPase regulatory



subunit, non-ATPase, 9

subunit 9


PTEN,
phosphatase and tensin homolog
PTEN
Phosphatidylinositol-3,4,5-trisphosphate 3-


MMAC1,


phosphatase and dual-specificity protein


TEP1


phosphatase; Mutated in multiple advanced





cancers 1


PTPN12
protein tyrosine phosphatase, non-receptor
PTPG1
Tyrosine-protein phosphatase non-receptor



type 12

type 12; Protein-tyrosine phosphatase G1


RAF1
v-raf-1 murine leukemia viral oncogene
RAF, RAF-1,
RAF proto-oncogene serine/threonine-protein



homolog 1
c-RAF
kinase


RARA
retinoic acid receptor, alpha
RAR, RAR-
Retinoic acid receptor alpha




alpha, RARA


ROS1, ROS,
c-ros oncogene 1, receptor tyrosine kinase
ROS1, ROS
Proto-oncogene tyrosine-protein kinase ROS


MCF3


RRM1
ribonucleotide reductase M1
RRM1, RR1
Ribonucleoside-diphosphate reductase





large subunit


RRM2
ribonucleotide reductase M2
RRM2,
Ribonucleoside-diphosphate reductase




RR2M, RR2
subunit M2


RRM2B
ribonucleotide reductase M2 B (TP53
RRM2B,
Ribonucleoside-diphosphate reductase



inducible)
P53R2
subunit M2 B


RXRB
retinoid X receptor, beta
RXRB
Retinoic acid receptor RXR-beta


RXRG
retinoid X receptor, gamma
RXRG,
Retinoic acid receptor RXR-gamma




RXRC


SIK2
salt-inducible kinase 2
SIK2,
Salt-inducible protein kinase 2;




Q9H0K1
Serine/threonine-protein kinase SIK2


SLC29A1
solute carrier family 29 (nucleoside
ENT-1
Equilibrative nucleoside transporter 1



transporters), member 1


SPARC
secreted protein, acidic, cysteine-rich
SPARC
SPARC precursor; Osteonectin



(osteonectin)


SRC
v-src sarcoma (Schmidt-Ruppin A-2)
SRC
Proto-oncogene tyrosine-protein kinase



viral oncogene homolog (avian)

Src


SSTR1
somatostatin receptor 1
SSTR1,
Somatostatin receptor type 1




SSR1, SS1R


SSTR2
somatostatin receptor 2
SSTR2,
Somatostatin receptor type 2




SSR2, SS2R


SSTR3
somatostatin receptor 3
SSTR3,
Somatostatin receptor type 3




SSR3, SS3R


SSTR4
somatostatin receptor 4
SSTR4,
Somatostatin receptor type 4




SSR4, SS4R


SSTR5
somatostatin receptor 5
SSTR5,
Somatostatin receptor type 5




SSR5, SS5R


TK1
thymidine kinase 1, soluble
TK1, KITH
Thymidine kinase, cytosolic


TLE3
transducin-like enhancer of split 3
TLE3
Transducin-like enhancer protein 3



(E(sp1) homolog, Drosophila)


TNF
tumor necrosis factor (TNF
TNF, TNF-
Tumor necrosis factor precursor



superfamily, member 2)
alpha, TNF-a


TOP1,
topoisomerase (DNA) I
TOP1,
DNA topoisomerase 1


TOPO1

TOPO1


TOP2A,
topoisomerase (DNA) II alpha 170 kDa
TOP2A,
DNA topoisomerase 2-alpha;


TOPO2A

TOP2,
Topoisomerase II alpha




TOPO2A


TOP2B,
topoisomerase (DNA) II beta 180 kDa
TOP2B,
DNA topoisomerase 2-beta;


TOPO2B

TOPO2B
Topoisomerase II beta


TP53
tumor protein p53
p53
Cellular tumor antigen p53


TUBB3
tubulin, beta 3
Beta III
Tubulin beta-3 chain




tubulin,




TUBB3,




TUBB4


TXN
thioredoxin
TXN, TRX,
Thioredoxin




TRX-1


TXNRD1
thioredoxin reductase 1
TXNRD1,
Thioredoxin reductase 1, cytoplasmic;




TXNR
Oxidoreductase


TYMS, TS
thymidylate synthetase
TYMS, TS
Thymidylate synthase


VDR
vitamin D (1,25-dihydroxyvitamin D3)
VDR
Vitamin D3 receptor



receptor


VEGFA,
vascular endothelial growth factor A
VEGF-A,
Vascular endothelial growth factor A


VEGF

VEGF
precursor


VEGFC
vascular endothelial growth factor C
VEGF-C
Vascular endothelial growth factor C





precursor


VHL
von Hippel-Lindau tumor suppressor
VHL
Von Hippel-Lindau disease tumor





suppressor


YES1
v-yes-1 Yamaguchi sarcoma viral
YES1, Yes,
Proto-oncogene tyrosine-protein kinase



oncogene homolog 1
p61-Yes
Yes


ZAP70
zeta-chain (TCR) associated protein
ZAP-70
Tyrosine-protein kinase ZAP-70



kinase 70 kDa









In some embodiments, additional molecular profiling methods are performed. These can include without limitation PCR, RT-PCR, Q-PCR, SAGE, MPSS, immunoassays and other techniques to assess biological systems described herein or known to those of skill in the art. The choice of genes and gene products to be assayed can be updated over time as new treatments and new drug targets are identified. Once the expression or mutation of a biomarker is correlated with a treatment option, it can be assessed by molecular profiling. One of skill will appreciate that such molecular profiling is not limited to those techniques disclosed herein but comprises any methodology conventional for assessing nucleic acid or protein levels, sequence information, or both. The methods of the invention can also take advantage of any improvements to current methods or new molecular profiling techniques developed in the future. In some embodiments, a gene or gene product is assessed by a single molecular profiling technique. In other embodiments, a gene and/or gene product is assessed by multiple molecular profiling techniques. In a non-limiting example, a gene sequence can be assayed by one or more of FISH and pyrosequencing analysis, the mRNA gene product can be assayed by one or more of RT-PCR and microarray, and the protein gene product can be assayed by one or more of IHC and immunoassay. One of skill will appreciate that any combination of biomarkers and molecular profiling techniques that will benefit disease treatment are contemplated by the invention.


Genes and gene products that are known to play a role in cancer and can be assayed by any of the molecular profiling techniques of the invention include without limitation 2AR, A DISINTEGRIN, ACTIVATOR OF THYROID AND RETINOIC ACID RECEPTOR (ACTR), ADAM 11, ADIPOGENESIS INHIBITORY FACTOR (ADIF), ALPHA 6 INTEGRIN SUBUNIT, ALPHA V INTEGRIN SUBUNIT, ALPHA-CATENIN, AMPLIFIED IN BREAST CANCER 1 (AIB1), AMPLIFIED IN BREAST CANCER 3 (AIB3), AMPLIFIED IN BREAST CANCER 4 (AIB4), AMYLOID PRECURSOR PROTEIN SECRETASE (APPS), AP-2 GAMMA, APPS, ATP-BINDING CASSETTE TRANSPORTER (ABCT), PLACENTA-SPECIFIC (ABCP), ATP-BINDING CASSETTE SUBFAMILY C MEMBER (ABCC1), BAG-1, BASIGIN (BSG), BCEI, B-CELL DIFFERENTIATION FACTOR (BCDF), B-CELL LEUKEMIA 2 (BCL-2), B-CELL STIMULATORY FACTOR-2 (BSF-2), BCL-1, BCL-2-ASSOCIATED X PROTEIN (BAX), BCRP, BETA 1 INTEGRIN SUBUNIT, BETA 3 INTEGRIN SUBUNIT, BETA 5 INTEGRIN SUBUNIT, BETA-2 INTERFERON, BETA-CATENIN, BETA-CATENIN, BONE SIALOPROTEIN (BSP), BREAST CANCER ESTROGEN-INDUCIBLE SEQUENCE (BCEI), BREAST CANCER RESISTANCE PROTEIN (BCRP), BREAST CANCER TYPE 1 (BRCA1), BREAST CANCER TYPE 2 (BRCA2), BREAST CARCINOMA AMPLIFIED SEQUENCE 2 (BCAS2), CADHERIN, EPITHELIAL CADHERIN-11, CADHERIN-ASSOCIATED PROTEIN, CALCITONIN RECEPTOR (CTR), CALCIUM PLACENTAL PROTEIN (CAPL), CALCYCLIN, CALLA, CAM5, CAPL, CARCINOEMBRYONIC ANTIGEN (CEA), CATENIN, ALPHA 1, CATHEPSIN B, CATHEPSIN D, CATHEPSIN K, CATHEPSIN L2, CATHEPSIN O, CATHEPSIN O1, CATHEPSIN V, CD10, CD146, CD147, CD24, CD29, CD44, CD51, CD54, CD61, CD66e, CD82, CD87, CD9, CEA, CELLULAR RETINOL-BINDING PROTEIN 1 (CRBP1), c-ERBB-2, CK7, CK8, CK18, CK19, CK20, CLAUDIN-7, c-MET, COLLAGENASE, FIBROBLAST, COLLAGENASE, INTERSTITIAL, COLLAGENASE-3, COMMON ACUTE LYMPHOCYTIC LEUKEMIA ANTIGEN (CALLA), CONNEXIN 26 (Cx26), CONNEXIN 43 (Cx43), CORTACTIN, COX-2, CTLA-8, CTR, CTSD, CYCLIN D1, CYCLOOXYGENASE-2, CYTOKERATIN 18, CYTOKERATIN 19, CYTOKERATIN 8, CYTOTOXIC T-LYMPHOCYTE-ASSOCIATED SERINE ESTERASE 8 (CTLA-8), DIFFERENTIATION-INHIBITING ACTIVITY (DIA), DNA AMPLIFIED IN MAMMARY CARCINOMA 1 (DAM1), DNA TOPOISOMERASE II ALPHA, DR-NM23, E-CADHERIN, EMMPRIN, EMS1, ENDOTHELIAL CELL GROWTH FACTOR (ECGR), PLATELET-DERIVED (PD-ECGF), ENKEPHALINASE, EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR), EPISIALIN, EPITHELIAL MEMBRANE ANTIGEN (EMA), ER-ALPHA, ERBB2, ERBB4, ER-BETA, ERF-1, ERYTHROID-POTENTIATING ACTIVITY (EPA), ESR1, ESTROGEN RECEPTOR-ALPHA, ESTROGEN RECEPTOR-BETA, ETS-1, EXTRACELLULAR MATRIX METALLOPROTEINASE INDUCER (EMMPRIN), FIBRONECTIN RECEPTOR, BETA POLYPEPTIDE (FNRB), FIBRONECTIN RECEPTOR BETA SUBUNIT (FNRB), FLK-1, GA15.3, GA733.2, GALECTIN-3, GAMMA-CATENIN, GAP JUNCTION PROTEIN (26 kDa), GAP JUNCTION PROTEIN (43 kDa), GAP JUNCTION PROTEIN ALPHA-1 (GJA1), GAP JUNCTION PROTEIN BETA-2 (GJB2), GCP1, GELATINASE A, GELATINASE B, GELATINASE (72 kDa), GELATINASE (92 kDa), GLIOSTATIN, GLUCOCORTICOID RECEPTOR INTERACTING PROTEIN 1 (GRIP1), GLUTATHIONE S-TRANSFERASE p, GM-CSF, GRANULOCYTE CHEMOTACTIC PROTEIN 1 (GCP1), GRANULOCYTE-MACROPHAGE-COLONY STIMULATING FACTOR, GROWTH FACTOR RECEPTOR BOUND-7 (GRB-7), GSTp, HAP, HEAT-SHOCK COGNATE PROTEIN 70 (HSC70), HEAT-STABLE ANTIGEN, HEPATOCYTE GROWTH FACTOR (HGF), HEPATOCYTE GROWTH FACTOR RECEPTOR (HGFR), HEPATOCYTE-STIMULATING FACTOR III (HSF III), HER-2, HER2/NEU, HERMES ANTIGEN, HET, HHM, HUMORAL HYPERCALCEMIA OF MALIGNANCY (HHM), ICERE-1, INT-1, INTERCELLULAR ADHESION MOLECULE-1 (ICAM-1), INTERFERON-GAMMA-INDUCING FACTOR (IGIF), INTERLEUKIN-1 ALPHA (IL-1A), INTERLEUKIN-1 BETA (IL-1B), INTERLEUKIN-11 (IL-11), INTERLEUKIN-17 (IL-17), INTERLEUKIN-18 (IL-18), INTERLEUKIN-6 (IL-6), INTERLEUKIN-8 (IL-8), INVERSELY CORRELATED WITH ESTROGEN RECEPTOR EXPRESSION-1 (ICERE-1), KAI1, KDR, KERATIN 8, KERATIN 18, KERATIN 19, KISS-1, LEUKEMIA INHIBITORY FACTOR (LIF), LIF, LOST IN INFLAMMATORY BREAST CANCER (LIBC), LOT (“LOST ON TRANSFORMATION”), LYMPHOCYTE HOMING RECEPTOR, MACROPHAGE-COLONY STIMULATING FACTOR, MAGE-3, MAMMAGLOBIN, MASPIN, MC56, M-CSF, MDC, MDNCF, MDR, MELANOMA CELL ADHESION MOLECULE (MCAM), MEMBRANE METALLOENDOPEPTIDASE (MME), MEMBRANE-ASSOCIATED NEUTRAL ENDOPEPTIDASE (NEP), CYSTEINE-RICH PROTEIN (MDC), METASTASIN (MTS-1), MLN64, MMP1, MMP2, MMP3, MMP7, MMP9, MMP11, MMP13, MMP14, MMP15, MMP16, MMP17, MOESIN, MONOCYTE ARGININE-SERPIN, MONOCYTE-DERIVED NEUTROPHIL CHEMOTACTIC FACTOR, MONOCYTE-DERIVED PLASMINOGEN ACTIVATOR INHIBITOR, MTS-1, MUC-1, MUC18, MUCIN LIKE CANCER ASSOCIATED ANTIGEN (MCA), MUCIN, MUC-1, MULTIDRUG RESISTANCE PROTEIN 1 (MDR, MDR1), MULTIDRUG RESISTANCE RELATED PROTEIN-1 (MRP, MRP-1), N-CADHERIN, NEP, NEU, NEUTRAL ENDOPEPTIDASE, NEUTROPHIL-ACTIVATING PEPTIDE 1 (NAP1), NM23-H1, NM23-H2, NME1, NME2, NUCLEAR RECEPTOR COACTIVATOR-1 (NCoA-1), NUCLEAR RECEPTOR COACTIVATOR-2 (NCoA-2), NUCLEAR RECEPTOR COACTIVATOR-3 (NCoA-3), NUCLEOSIDE DIPHOSPHATE KINASE A (NDPKA), NUCLEOSIDE DIPHOSPHATE KINASE B (NDPKB), ONCOSTATIN M (OSM), ORNITHINE DECARBOXYLASE (ODC), OSTEOCLAST DIFFERENTIATION FACTOR (ODF), OSTEOCLAST DIFFERENTIATION FACTOR RECEPTOR (ODFR), OSTEONECTIN (OSN, ON), OSTEOPONTIN (OPN), OXYTOCIN RECEPTOR (OXTR), p27/kip1, p300/CBP COINTEGRATOR ASSOCIATE PROTEIN (p/CIP), p53, p9Ka, PAI-1, PAI-2, PARATHYROID ADENOMATOSIS 1 (PRAD1), PARATHYROID HORMONE-LIKE HORMONE (PTHLH), PARATHYROID HORMONE-RELATED PEPTIDE (PTHrP), P-CADHERIN, PD-ECGF, PDGF, PEANUT-REACTIVE URINARY MUCIN (PUM), P-GLYCOPROTEIN (P-GP), PGP-1, PHGS-2, PHS-2, PIP, PLAKOGLOBIN, PLASMINOGEN ACTIVATOR INHIBITOR (TYPE 1), PLASMINOGEN ACTIVATOR INHIBITOR (TYPE 2), PLASMINOGEN ACTIVATOR (TISSUE-TYPE), PLASMINOGEN ACTIVATOR (UROKINASE-TYPE), PLATELET GLYCOPROTEIN Ma (GP3A), PLAU, PLEOMORPHIC ADENOMA GENE-LIKE 1 (PLAGL1), POLYMORPHIC EPITHELIAL MUCIN (PEM), PRAD1, PROGESTERONE RECEPTOR (PgR), PROGESTERONE RESISTANCE, PROSTAGLANDIN ENDOPEROXIDE SYNTHASE-2, PROSTAGLANDIN G/H SYNTHASE-2, PROSTAGLANDIN H SYNTHASE-2, pS2, PS6K, PSORIASIN, PTHLH, PTHrP, RAD51, RAD52, RAD54, RAP46, RECEPTOR-ASSOCIATED COACTIVATOR 3 (RAC3), REPRESSOR OF ESTROGEN RECEPTOR ACTIVITY (REA), S100A4, S100A6, S100A7, S6K, SART-1, SCAFFOLD ATTACHMENT FACTOR B (SAF-B), SCATTER FACTOR (SF), SECRETED PHOSPHOPROTEIN-1 (SPP-1), SECRETED PROTEIN, ACIDIC AND RICH IN CYSTEINE (SPARC), STANNICALCIN, STEROID RECEPTOR COACTIVATOR-1 (SRC-1), STEROID RECEPTOR COACTIVATOR-2 (SRC-2), STEROID RECEPTOR COACTIVATOR-3 (SRC-3), STEROID RECEPTOR RNA ACTIVATOR (SRA), STROMELYSIN-1, STROMELYSIN-3, TENASCIN-C(TN-C), TESTES-SPECIFIC PROTEASE 50, THROMBOSPONDIN I. THROMBOSPONDIN II, THYMIDINE PHOSPHORYLASE (TP), THYROID HORMONE RECEPTOR ACTIVATOR MOLECULE 1 (TRAM-1), TIGHT JUNCTION PROTEIN 1 (TJP1), TIMP1, TIMP2, TIMP3, TIMP4, TISSUE-TYPE PLASMINOGEN ACTIVATOR, TN-C, TP53, tPA, TRANSCRIPTIONAL INTERMEDIARY FACTOR 2 (TIF2), TREFOIL FACTOR 1 (TFF1), TSG101, TSP-1, TSP1, TSP-2, TSP2, TSP50, TUMOR CELL COLLAGENASE STIMULATING FACTOR (TCSF), TUMOR-ASSOCIATED EPITHELIAL MUCIN, uPA, uPAR, UROKINASE, UROKINASE-TYPE PLASMINOGEN ACTIVATOR, UROKINASE-TYPE PLASMINOGEN ACTIVATOR RECEPTOR (uPAR), UVOMORULIN, VASCULAR ENDOTHELIAL GROWTH FACTOR, VASCULAR ENDOTHELIAL GROWTH FACTOR RECEPTOR-2 (VEGFR2), VASCULAR ENDOTHELIAL GROWTH FACTOR-A, VASCULAR PERMEABILITY FACTOR, VEGFR2, VERY LATE T-CELL ANTIGEN BETA (VLA-BETA), VIMENTIN, VITRONECTIN RECEPTOR ALPHA POLYPEPTIDE (VNRA), VITRONECTIN RECEPTOR, VON WILLEBRAND FACTOR, VPF, VWF, WNT-1, ZAC, ZO-1, and ZONULA OCCLUDENS-1.


The gene products used for IHC expression profiling include without limitation one or more of AR, BCRP, BCRP1, BRCA1, CAV-1, CK 5/6, CK14, CK17, c-Kit, cMET, cMYC, COX2, Cyclin D1, ECAD, EGFR, ER, ERCC1, Her2/Neu, IGF1R, IGFRBP1, IGFRBP2, IGFRBP3, IGFRBP4, IGFRBP5, IGFRBP6, IGFRBP7, Ki67, MGMT, MRP1, P53, P95, PDGFR, PDGFRA, PGP (MDR1), PR, PTEN, RRM1, SPARC, TLE3, TOP1, TOP2, TOP2A, TS, and TUBB3. In an embodiment, the IHC is performed on AR, BCRP, CAV-1, CK 5/6, CK14, CK17, c-Kit, COX2, Cyclin D1, ECAD, EGFR, ER, ERCC1, Her2/Neu, IGF1R, Ki67, MGMT, MRP1, P53, P95, PDGFRa, PGP (MDR1), PR, PTEN, RRM1, SPARC, TLE3, TOP1, TOP2A, TS, and TUBB3. In some embodiments, IHC analysis includes one or more of c-Met, EML4-ALK fusion, hENT-1, IGF-1R, MMR, p16, p21, p27, PARP-1, PI3K, and TLE3. IHC profiling of EGFR can also be performed. IHC is also used to detect or test for various gene products, including without limitation one or more of the following: EGFR, SPARC, C-kit, ER, PR, Androgen receptor, PGP, RRM1, TOPO1, BRCP1, MRP1, MGMT, PDGFR, DCK, ERCC1, Thymidylate synthase, Her2/neu, or TOPO2A. In some embodiments, IHC is used to detect on or more of the following proteins, including without limitation: ADA, AR, ASNA, BCL2, BRCA2, c-Met, CD33, CDW52, CES2, DNMT1, EGFR, EML4-ALK fusion, ERBB2, ERCC3, ESR1, FOLR2, GART, GSTP1, HDAC1, hENT-1, HIF1A, HSPCA, IGF-1R, IL2RA, KIT, MLH1, MMR, MS4A1, MASH2, NFKB2, NFKBIA, OGFR, p16, p21, p27, PARP-1, PI3K, PDGFC, PDGFRA, PDGFRB, PGR, POLA, PTEN, PTGS2, RAF1, RARA, RXRB, SPARC, SSTR1, TK1, TLE3, TNF, TOP1, TOP2A, TOP2B, TXNRD1, TYMS, VDR, VEGF, VHL, or ZAP70. The proteins can be detected by IHC using monoclonal or polyclonal antibodies. In some embodiments, both are used. As an illustrative example, SPARC can be detected by anti-SPARC monoclonal (SPARC mono, SPARC m) and/or anti-SPARC polyclonal (SPARC poly, SPARC p) antibodies.


In some embodiments, IHC analysis according to the methods of the invention includes one or more of AR, c-Kit, COX2, CAV-1, CK 5/6, CK14, CK17, ECAD, ER, Her2/Neu, Ki67, MRP1, P53, PDGFR, PGP, PR, PTEN, SPARC, TLE3 and TS. All of these genes can be examined. As indicated by initial results of IHC or other molecular profiling methods as described herein, additional IHC assayscan be performed. In one embodiment, the additional IHC comprises that of p95, or p95, Cyclin D1 and EGFR. IHC can also be performed on IGFRBP3, IGFRBP4, IGFRBP5, or other forms of IGFRBP (e.g., IGFRBP1, IGFRBP2, IGFRBP6, IGFRBP7). In another embodiment, the additional IHC comprises that of one or more of BCRP, ERCC1, MGMT, P95, RRM1, TOP2A, and TOP1. In still another embodiment, the additional IHC comprises that of one or more of BCRP, Cyclin D1, EGFR, ERCC1, MGMT, P95, RRM1, TOP2A, and TOP1. Any useful subset or all of these genes can be examined. The additional IHC can be selected on the basis of molecular characteristics of the tumor so that IHC is only performed where it is likely to indicate a candidate therapy for treating the cancer. As described herein, the molecular characteristics of the tumor determined can be determined by IHC combined with one or more of FISH, DNA microarray and mutation analysis. The genes and/or gene products used for IHC analysis can be at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100 or all of the genes and/or gene products listed in Table 2.


Microarray expression profiling can be used to simultaneously measure the expression of one or more genes or gene products, including without limitation ABCC1, ABCG2, ADA, AR, ASNS, BCL2, BIRC5, BRCA1, BRCA2, CD33, CD52, CDA, CES2, DCK, DHFR, DNMT1, DNMT3A, DNMT3B, ECGF1, EGFR, EPHA2, ERBB2, ERCC1, ERCC3, ESR1, FLT1, FOLR2, FYN, GART, GNRH1, GSTP1, HCK, HDAC1, HIF1A, HSP90AA1, IGFBP3, IGFBP4, IGFBP5, IL2RA, KDR, KIT, LCK, LYN, MET, MGMT, MLH1, MS4A1, MSH2, NFKB1, NFKB2, NFKBIA, OGFR, PARP1, PDGFC, PDGFRA, PDGFRB, PGP, PGR, POLA1, PTEN, PTGS2, RAF1, RARA, RRM1, RRM2, RRM2B, RXRB, RXRG, SIK2, SPARC, SRC, SSTR1, SSTR2, SSTR3, SSTR4, SSTR5, TK1, TNF, TOP1, TOP2A, TOP2B, TXNRD1, TYMS, VDR, VEGFA, VHL, YES1, and ZAP70. In some embodiments, the genes used for the microarray expression profiling comprise one or more of: EGFR, SPARC, C-kit, ER, PR, Androgen receptor, PGP, RRM1, TOPO1, BRCP1, MRP1, MGMT, PDGFR, DCK, ERCC1, Thymidylate synthase, Her2/neu, TOPO2A, ADA, AR, ASNA, BCL2, BRCA2, CD33, CDW52, CES2, DNMT1, EGFR, ERBB2, ERCC3, ESR1, FOLR2, GART, GSTP1, HDAC1, HIF1A, HSPCA, IL2RA, KIT, MLH1, MS4A1, MASH2, NFKB2, NFKBIA, OGFR, PDGFC, PDGFRA, PDGFRB, PGR, POLA, PTEN, PTGS2, RAF1, RARA, RXRB, SPARC, SSTR1, TK1, TNF, TOP1, TOP2A, TOP2B, TXNRD1, TYMS, VDR, VEGF, VHL, and ZAP70. One or more of the following genes can also be assessed by microarray expression profiling: ALK, EML4, hENT-1, IGF-1R, HSP90AA1, MMR, p16, p21, p27, PARP-1, PI3K and TLE3. The microarray expression profiling can be performed using a low density microarray, an expression microarray, a comparative genomic hybridization (CGH) microarray, a single nucleotide polymorphism (SNP) microarray, a proteomic array an antibody array, or other array as disclosed herein or known to those of skill in the art. In some embodiments, high throughput expression arrays are used. Such systems include without limitation commercially available systems from Affymetrix, Agilent or Illumina, as described in more detail herein.


Microarray expression profiling can be used to simultaneously measure the expression of one or more genes or gene products, including without limitation ABCC1, ABCG2, ADA, AR, ASNS, BCL2, BIRC5, BRCA1, BRCA2, CD33, CD52, CDA, CES2, DCK, DHFR, DNMT1, DNMT3A, DNMT3B, ECGF1, EGFR, EPHA2, ERBB2, ERCC1, ERCC3, ESR1, FLT1, FOLR2, FYN, GART, GNRH1, GSTP1, HCK, HDAC1, HIF1A, HSP90AA1, IGFBP3, IGFBP4, IGFBP5, IL2RA, KDR, KIT, LCK, LYN, MET, MGMT, MLH1, MS4A1, MSH2, NFKB1, NFKB2, NFKBIA, OGFR, PARP1, PDGFC, PDGFRA, PDGFRB, PGP, PGR, POLA1, PTEN, PTGS2, PTPN12, RAF1, RARA, RRM1, RRM2, RRM2B, RXRB, RXRG, SIK2, SPARC, SRC, SSTR1, SSTR2, SSTR3, SSTR4, SSTR5, TK1, TNF, TOP1, TOP2A, TOP2B, TXNRD1, TYMS, VDR, VEGFA, VHL, YES1, and ZAP70. The genes and/or gene products used for RT-PCR profiling analysis can be at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100 or all of the genes and/or gene products listed in Table 2.


Expression profiling can be performed using PCR, e.g., real-time PCR (qPCR or RT-PCR). RT-PCR can be used to measure the expression of one or more genes or gene products, including without limitation ABCC1, ABCG2, ACE2, ADA, ADH1C, ADH4, AGT, AR, AREG, ASNS, BCL2, BCRP, BDCA1, beta III tubulin, BIRC5, B-RAF, BRCA1, BRCA2, CA2, caveolin, CD20, CD25, CD33, CD52, CDA, CDKN2A, CDKN1A, CDKN1B, CDK2, CDW52, CES2, CK 14, CK 17, CK 5/6, c-KIT, c-Met, c-Myc, COX-2, Cyclin D1, DCK, DHFR, DNMT1, DNMT3A, DNMT3B, E-Cadherin, ECGF1, EGFR, EML4-ALK fusion, EPHA2, Epiregulin, ER, ERBR2, ERCC1, ERCC3, EREG, ESR1, FLT1, folate receptor, FOLR1, FOLR2, FSHB, FSHPRH1, FSHR, FYN, GART, GNA11, GNAQ, GNRH1, GNRHR1, GSTP1, HCK, HDAC1, hENT-1, Her2/Neu, HGF, HIF1A, HIG1, HSP90, HSP90AA1, HSPCA, IGF-1R, IGFRBP, IGFRBP3, IGFRBP4, IGFRBP5, IL13RA1, IL2RA, KDR, Ki67, KIT, K-RAS, LCK, LTB, Lymphotoxin Beta Receptor, LYN, MET, MGMT, MLH1, MMR, MRP1, MS4A1, MSH2, MSH5, Myc, NFKB1, NFKB2, NFKBIA, NRAS, ODC1, OGFR, p16, p21, p27, p53, p95, PARP-1, PDGFC, PDGFR, PDGFRA, PDGFRB, PGP, PGR, PI3K, POLA, POLA1, PPARG, PPARGC1, PR, PTEN, PTGS2, PTPN12, RAF1, RARA, ROS1, RRM1, RRM2, RRM2B, RXRB, RXRG, SIK2, SPARC, SRC, SSTR1, SSTR2, SSTR3, SSTR4, SSTR5, Survivin, TK1, TLE3, TNF, TOP1, TOP2A, TOP2B, TS, TUBB3, TXN, TXNRD1, TYMS, VDR, VEGF, VEGFA, VEGFC, VHL, YES1, ZAP70. For example, the genes assessed by RT-PCR can include AREG, BRCA1, EGFR, ERBB3, ERCC1, EREG, PGP (MDR-1), RRM1, TOPO1, TOPO2A, TS, TUBB3 and VEGFR2. The genes and/or gene products used for real-time PCR analysis can be at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100 or all of the genes and/or gene products listed in Table 2. The PCR can be performed in a high throughput fashion, e.g., using multiplex amplification, microfluidics, and/or using a low density microarray.


FISH analysis can be used to profile one or more of HER2, CMET, PIK3CA, EGFR, TOP2A, CMYC and EML4-ALK fusion. In some embodiments, FISH is used to detect or test for one or more of the following genes, including without limitation: EGFR, SPARC, C-kit, ER, PR, AR, PGP, RRM1, TOPO1, BRCP1, MRP1, MGMT, PDGFR, DCK, ERCC1, TS, HER2, or TOPO2A. In some embodiments, FISH is used to detect or test for one or more of EML4-ALK fusion and IGF-1R. In some embodiments, FISH is used to detect or test various biomarkers, including without limitation one or more of the following: ADA, AR, ASNA, BCL2, BRCA2, c-Met, CD33, CDW52, CES2, DNMT1, EGFR, EML4-ALK fusion, ERBB2, ERCC3, ESR1, FOLR2, GART, GSTP1, HDAC1, hENT-1, HIF1A, HSPCA, IGF-1R, IL2RA, KIT, MLH1, MMR, MS4A1, MASH2, NFKB2, NFKBIA, OGFR, p16, p21, p27, PARP-1, PI3K, PDGFC, PDGFRA, PDGFRB, PGR, POLA, PTEN, PTGS2, RAF1, RARA, RXRB, SPARC, SSTR1, TK1, TLE3, TNF, TOP1, TOP2A, TOP2B, TXNRD1, TYMS, VDR, VEGF, VHL, or ZAP70.


In some embodiments, FISH is used to detect or test for HER2, and depending on the results of the HER2 analysis and other molecular profiling techniques, additional FISH testing may be performed. The additional FISH testing can comprise that of CMYC and/or TOP2A. For example, FISH testing may indicate that a cancer is HER2+. The cancer may be a breast cancer. HER2+ cancers may then be followed up by FISH testing for CMYC and TOP2A, whereas HER2− cancers are followed up with FISH testing for CMYC. For some cancers, e.g., triple negative breast cancer (i.e., ER−/PR−/HER2−), additional FISH testing may not be performed. The decision whether to perform additional FISH testing can be guided by whether the additional FISH testing is likely to reveal information about candidate therapies for the cancer. The additional FISH can be selected on the basis of molecular characteristics of the tumor so that FISH is only performed where it is likely to indicate a candidate therapy for treating the cancer. As described herein, the molecular characteristics of the tumor determined can be determined by one or more of IHC, FISH, DNA microarray and sequence analysis. The genes and/or gene products used for FISH analysis can be at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100 or all of the genes and/or gene products listed in Table 2.


In some embodiments, the genes used for the mutation profiling comprise one or more of PIK3CA, EGFR, cKIT, KRAS, NRAS and BRAF. Mutation profiling can be determined by sequencing, including Sanger sequencing, array sequencing, pyrosequencing, NextGen sequencing, etc. Sequence analysis may reveal that genes harbor activating mutations so that drugs that inhibit activity are indicated for treatment. Alternately, sequence analysis may reveal that genes harbor mutations that inhibit or eliminate activity, thereby indicating treatment for compensating therapies. In embodiments, sequence analysis comprises that of exon 9 and 11 of c-KIT. Sequencing may also be performed on EGFR-kinase domain exons 18, 19, 20, and 21. Mutations, amplifications or misregulations of EGFR or its family members are implicated in about 30% of all epithelial cancers. Sequencing can also be performed on PI3K, encoded by the PIK3CA gene. This gene is a found mutated in many cancers. Sequencing analysis can also comprise assessing mutations in one or more ABCC1, ABCG2, ADA, AR, ASNS, BCL2, BIRC5, BRCA1, BRCA2, CD33, CD52, CDA, CES2, DCK, DHFR, DNMT1, DNMT3A, DNMT3B, ECGF1, EGFR, EPHA2, ERBB2, ERCC1, ERCC3, ESR1, FLT1, FOLR2, FYN, GART, GNRH1, GSTP1, HCK, HDAC1, HIF1A, HSP90AA1, IGFBP3, IGFBP4, IGFBP5, IL2RA, KDR, KIT, LCK, LYN, MET, MGMT, MLH1, MS4A1, MSH2, NFKB1, NFKB2, NFKBIA, NRAS, OGFR, PARP1, PDGFC, PDGFRA, PDGFRB, PGP, PGR, POLA1, PTEN, PTGS2, PTPN12, RAF1, RARA, RRM1, RRM2, RRM2B, RXRB, RXRG, SIK2, SPARC, SRC, SSTR1, SSTR2, SSTR3, SSTR4, SSTR5, TK1, TNF, TOP1, TOP2A, TOP2B, TXNRD1, TYMS, VDR, VEGFA, VHL, YES1, and ZAP70. One or more of the following genes can also be assessed by sequence analysis: ALK, EML4, hENT-1, IGF-1R, HSP90AA1, MMR, p16, p21, p27, PARP-1, PI3K and TLE3. The genes and/or gene products used for mutation or sequence analysis can be at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100 or all of the genes and/or gene products listed in Table 2.


In some embodiments, mutational analysis is performed on PIK3CA. The decision whether to perform mutational analysis on PIK3CA can be guided by whether this testing is likely to reveal information about candidate therapies for the cancer. The PIK3CA mutational analysis can be selected on the basis of molecular characteristics of the tumor so that the analysis is only performed where it is likely to indicate a candidate therapy for treating the cancer. As described herein, the molecular characteristics of the tumor determined can be determined by one or more of IHC, FISH, DNA microarray and sequence analysis. In one embodiment, PIK3CA is analyzed for a HER2+ cancer. The cancer can be a breast cancer.


In a related aspect, the invention provides a method of identifying a candidate treatment for a subject in need thereof by using molecular profiling of sets of known biomarkers. For example, the method can identify a chemotherapeutic agent for an individual with a cancer. The method comprises: obtaining a sample from the subject; performing an immunohistochemistry (IHC) analysis on the sample to determine an IHC expression profile on one or more, e.g. 2, 3, 4, 5, 6, 7, 8, 9, 10 or more, of: SPARC, PGP, Her2/neu, ER, PR, c-kit, AR, CD52, PDGFR, TOP2A, TS, ERCC1, RRM1, BCRP, TOPO1, PTEN, MGMT, MRP1, c-Met, EML4-ALK fusion, hENT-1, IGF-1R, MMR, p16, p21, p27, PARP-1, PI3K, COX2 and TLE3; performing a microarray analysis on the sample to determine a microarray expression profile on one or more, e.g. 2, 3, 4, 5, 6, 7, 8, 9, 10 or more, of: ABCC1, ABCG2, ADA, AR, ASNS, BCL2, BIRC5, BRCA1, BRCA2, CD33, CD52, CDA, CES2, DCK, DHFR, DNMT1, DNMT3A, DNMT3B, ECGF1, EGFR, EPHA2, ERBB2, ERCC1, ERCC3, ESR1, FLT1, FOLR2, FYN, GART, GNRH1, GSTP1, HCK, HDAC1, HIF1A, HSP90AA1, IGFBP3, IGFBP4, IGFBP5, IL2RA, KDR, KIT, LCK, LYN, MET, MGMT, MLH1, MS4A1, MSH2, NFKB1, NFKB2, NFKBIA, OGFR, PARP1, PDGFC, PDGFRA, PDGFRB, PGP, PGR, POLA1, PTEN, PTGS2, PTPN12, RAF1, RARA, RRM1, RRM2, RRM2B, RXRB, RXRG, SIK2, SPARC, SRC, SSTR1, SSTR2, SSTR3, SSTR4, SSTR5, TK1, TNF, TOP1, TOP2A, TOP2B, TXNRD1, TYMS, VDR, VEGFA, VHL, YES1, and ZAP70; performing a fluorescent in-situ hybridization (FISH) analysis on the sample to determine a FISH mutation profile on at least one of EGFR, HER2, EML4-ALK fusion and IGF-1R; performing DNA sequencing on the sample to determine a sequencing mutation profile on at least one of KRAS, BRAF, c-KIT, PI3K (PIK3CA), NRAS and EGFR; and comparing the IHC expression profile, microarray expression profile, FISH mutation profile and sequencing mutation profile against a rules database, wherein the rules database comprises a mapping of treatments whose biological activity is known against diseased cells that: i) overexpress or underexpress one or more proteins included in the IHC expression profile; ii) overexpress or underexpress one or more genes included in the microarray expression profile; iii) have zero or more mutations in one or more genes included in the FISH mutation profile; and/or iv) have zero or more mutations in one or more genes included in the sequencing mutation profile; and identifying the treatment if the comparison against the rules database indicates that the treatment should have biological activity against the disease; and the comparison against the rules database does not contraindicate the treatment for treating the disease. The disease can be a cancer. The molecular profiling steps can be performed in any order. In some embodiments, not all of the molecular profiling steps are performed. As a non-limiting example, microarray analysis is not performed if the sample quality does not meet a threshold value, as described herein. In some embodiments, the IHC expression profiling is performed on at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 95% of the gene products above. In some embodiments, the microarray expression profiling is performed on at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 95% of the genes listed above. In some embodiments, the IHC expression profiling is performed on all of the gene products above. In some embodiments, the microarray profiling is performed on all of the genes listed above. In some embodiments, the FISH profiling is performed on all of the gene products above. In some embodiments, the sequence profiling is performed on all of the genes listed above.


In a related aspect, the invention provides a method of identifying a candidate treatment for a subject in need thereof by using molecular profiling of defined sets of known biomarkers. For example, the method can identify a chemotherapeutic agent for an individual with a cancer. The method comprises: obtaining a sample from the subject, wherein the sample comprises formalin-fixed paraffin-embedded (FFPE) tissue or fresh frozen tissue, and wherein the sample comprises cancer cells; performing an immunohistochemistry (IHC) analysis on the sample to determine an IHC expression profile on at least: SPARC, PGP, Her2/neu, ER, PR, c-kit, AR, CD52, PDGFR, TOP2A, TS, ERCC1, RRM1, BCRP, TOPO1, PTEN, MGMT, MRP1, c-Met, EML4-ALK fusion, hENT-1, IGF-1R, MMR, p16, p21, p27, PARP-1, PI3K, and TLE3; performing a microarray analysis on the sample to determine a microarray expression profile on at least: ABCC1, ABCG2, ADA, AR, ASNS, BCL2, BIRC5, BRCA1, BRCA2, CD33, CD52, CDA, CES2, DCK, DHFR, DNMT1, DNMT3A, DNMT3B, ECGF1, EGFR, EPHA2, ERBB2, ERCC1, ERCC3, ESR1, FLT1, FOLR2, FYN, GART, GNRH1, GSTP1, HCK, HDAC1, HIF1A, HSP90AA1, IGFBP3, IGFBP4, IGFBP5, IL2RA, KDR, KIT, LCK, LYN, MET, MGMT, MLH1, MS4A1, MSH2, NFKB1, NFKB2, NFKBIA, OGFR, PARP1, PDGFC, PDGFRA, PDGFRB, PGP, PGR, POLA1, PTEN, PTGS2, PTPN12, RAF1, RARA, RRM1, RRM2, RRM2B, RXRB, RXRG, SIK2, SPARC, SRC, SSTR1, SSTR2, SSTR3, SSTR4, SSTR5, TK1, TNF, TOP1, TOP2A, TOP2B, TXNRD1, TYMS, VDR, VEGFA, VHL, YES1, and ZAP70; performing a fluorescent in-situ hybridization (FISH) analysis on the sample to determine a FISH mutation profile on at least one of EGFR, HER2, EML4-ALK fusion and IGF-1R; performing DNA sequencing on the sample to determine a sequencing mutation profile on at least KRAS, BRAF, c-KIT, PI3K (PIK3CA), NRAS and EGFR. The IHC expression profile, microarray expression profile, FISH mutation profile and sequencing mutation profile are compared against a rules database, wherein the rules database comprises a mapping of treatments whose biological activity is known against diseased cells that: i) overexpress or underexpress one or more proteins included in the IHC expression profile; ii) overexpress or underexpress one or more genes included in the microarray expression profile; iii) have zero or more mutations in one or more genes included in the FISH mutation profile; or iv) have zero or more mutations in one or more genes included in the sequencing mutation profile; and identifying the treatment if the comparison against the rules database indicates that the treatment should have biological activity against the disease; and the comparison against the rules database does not contraindicate the treatment for treating the disease. The disease can be a cancer. The molecular profiling steps can be performed in any order. In some embodiments, not all of the molecular profiling steps are performed. As a non-limiting example, microarray analysis is not performed if the sample quality does not meet a threshold value, as described herein. In some embodiments, the biological material is mRNA and the quality control test comprises a A260/A280 ratio and/or a Ct value of RT-PCR using a housekeeping gene, e.g., RPL13a. In embodiments, the mRNA does not pass the quality control test if the A260/A280 ratio <1.5 or the RPL13a Ct value is >30. In that case, microarray analysis may not be performed. Alternately, microarray results may be attenuated, e.g., given a lower priority as compared to the results of other molecular profiling techniques.


In some embodiments, molecular profiling is always performed on certain genes or gene products, whereas the profiling of other genes or gene products is optional. For example, IHC expression profiling may be performed on at least SPARC, TOP2A and/or PTEN. Similarly, microarray expression profiling may be performed on at least CD52. In other embodiments, genes in addition to those listed above are used to identify a treatment. For example, the group of genes used for the IHC expression profiling can further comprise DCK, EGFR, BRCA1, CK 14, CK 17, CK 5/6, E-Cadherin, p95, PARP-1, SPARC and TLE3. In some embodiments, the group of genes used for the IHC expression profiling further comprises Cox-2 and/or Ki-67. In some embodiments, HSPCA is assayed by microarray analysis. In some embodiments, FISH mutation is performed on c-Myc and TOP2A. In some embodiments, sequencing is performed on PI3K.


The methods of the invention can be used in any setting wherein differential expression or mutation analysis have been linked to efficacy of various treatments. In some embodiments, the methods are used to identify candidate treatments for a subject having a cancer. Under these conditions, the sample used for molecular profiling preferably comprises cancer cells. The percentage of cancer in a sample can be determined by methods known to those of skill in the art, e.g., using pathology techniques. Cancer cells can also be enriched from a sample, e.g., using microdissection techniques or the like. A sample may be required to have a certain threshold of cancer cells before it is used for molecular profiling. The threshold can be at least about 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 or 95% cancer cells. The threshold can depend on the analysis method. For example, a technique that reveals expression in individual cells may require a lower threshold that a technique that used a sample extracted from a mixture of different cells. In some embodiments, the diseased sample is compared to a normal sample taken from the same patient, e.g., adjacent but non-cancer tissue.


In embodiments, the methods of the invention are used detect gene fusions, such as those listed in U.S. patent application Ser. No. 12/658,770, filed Feb. 12, 2010; International PCT Patent Application PCT/US2010/000407, filed Feb. 11, 2010; and International PCT Patent Application PCT/US2010/54366, filed Oct. 27, 2010; all of which applications are incorporated by reference herein in their entirety. A fusion gene is a hybrid gene created by the juxtaposition of two previously separate genes. This can occur by chromosomal translocation or inversion, deletion or via trans-splicing. The resulting fusion gene can cause abnormal temporal and spatial expression of genes, leading to abnormal expression of cell growth factors, angiogenesis factors, tumor promoters or other factors contributing to the neoplastic transformation of the cell and the creation of a tumor. For example, such fusion genes can be oncogenic due to the juxtaposition of: 1) a strong promoter region of one gene next to the coding region of a cell growth factor, tumor promoter or other gene promoting oncogenesis leading to elevated gene expression, or 2) due to the fusion of coding regions of two different genes, giving rise to a chimeric gene and thus a chimeric protein with abnormal activity. Fusion genes are characteristic of many cancers. Once a therapeutic intervention is associated with a fusion, the presence of that fusion in any type of cancer identifies the therapeutic intervention as a candidate therapy for treating the cancer.


The presence of fusion genes, e.g., those described in U.S. patent application Ser. No. 12/658,770, filed Feb. 12, 2010; International PCT Patent Application PCT/US2010/000407, filed Feb. 11, 2010; and International PCT Patent Application PCT/US2010/54366, filed Oct. 27, 2010 or elsewhere herein, can be used to guide therapeutic selection. For example, the BCR-ABL gene fusion is a characteristic molecular aberration in ˜90% of chronic myelogenous leukemia (CML) and in a subset of acute leukemias (Kurzrock et al., Annals of Internal Medicine 2003; 138:819-830). The BCR-ABL results from a translocation between chromosomes 9 and 22, commonly referred to as the Philadelphia chromosome or Philadelphia translocation. The translocation brings together the 5′ region of the BCR gene and the 3′ region of ABL1, generating a chimeric BCR-ABL1 gene, which encodes a protein with constitutively active tyrosine kinase activity (Mittleman et al., Nature Reviews Cancer 2007; 7:233-245). The aberrant tyrosine kinase activity leads to de-regulated cell signaling, cell growth and cell survival, apoptosis resistance and growth factor independence, all of which contribute to the pathophysiology of leukemia (Kurzrock et al., Annals of Internal Medicine 2003; 138:819-830). Patients with the Philadelphia chromosome are treated with imatinib and other targeted therapies. Imatinib binds to the site of the constitutive tyrosine kinase activity of the fusion protein and prevents its activity. Imatinib treatment has led to molecular responses (disappearance of BCR-ABL+blood cells) and improved progression-free survival in BCR-ABL+CML patients (Kantarjian et al., Clinical Cancer Research 2007; 13:1089-1097). Another fusion gene, IGH-MYC, is a defining feature of ˜80% of Burkitt's lymphoma (Ferry et al. Oncologist 2006; 11:375-83). The causal event for this is a translocation between chromosomes 8 and 14, bringing the c-Myc oncogene adjacent to the strong promoter of the immunoglobulin heavy chain gene, causing c-myc overexpression (Mittleman et al., Nature Reviews Cancer 2007; 7:233-245). The c-myc rearrangement is a pivotal event in lymphomagenesis as it results in a perpetually proliferative state. It has wide ranging effects on progression through the cell cycle, cellular differentiation, apoptosis, and cell adhesion (Ferry et al. Oncologist 2006; 11:375-83).


A number of recurrent fusion genes have been catalogued in the Mittleman database (cgap.nci.nih.gov/Chromosomes/Mitelman). The gene fusions can be used to characterize neoplasms and cancers and guide therapy using the subject methods described herein. For example, TMPRSS2-ERG, TMPRSS2-ETV and SLC45A3-ELK4 fusions can be detected to characterize prostate cancer; and ETV6-NTRK3 and ODZ4-NRG1 can be used to characterize breast cancer. The EML4-ALK, RLF-MYCL1, TGF-ALK, or CD74-ROS1 fusions can be used to characterize a lung cancer. The ACSL3-ETV1, C150RF21-ETV1, FLJ35294-ETV1, HERV-ETV1, TMPRSS2-ERG, TMPRSS2-ETV1/4/5, TMPRSS2-ETV4/5, SLC5A3-ERG, SLC5A3-ETV1, SLC5A3-ETV5 or KLK2-ETV4 fusions can be used to characterize a prostate cancer. The GOPC-ROS1 fusion can be used to characterize a brain cancer. The CHCHD7-PLAG1, CTNNB1-PLAG1, FHIT-HMGA2, HMGA2-NFIB, LIFR-PLAG1, or TCEA1-PLAG1 fusions can be used to characterize a head and neck cancer. The ALPHA-TFEB, NONO-TFE3, PRCC-TFE3, SFPQ-TFE3, CLTC-TFE3, or MALAT1-TFEB fusions can be used to characterize a renal cell carcinoma (RCC). The AKAP9-BRAF, CCDC6-RET, ERC1-RETM, GOLGA5-RET, HOOK3-RET, HRH4-RET, KTN1-RET, NCOA4-RET, PCM1-RET, PRKARA1A-RET, RFG-RET, RFG9-RET, Ria-RET, TGF-NTRK1, TPM3-NTRK1, TPM3-TPR, TPR-MET, TPR-NTRK1, TRIM24-RET, TRIM27-RET or TRIM33-RET fusions can be used to characterize a thyroid cancer and/or papillary thyroid carcinoma; and the PAX8-PPARy fusion can be analyzed to characterize a follicular thyroid cancer. Fusions that are associated with hematological malignancies include without limitation TTL-ETV6, CDK6-MLL, CDK6-TLX3, ETV6-FLT3, ETV6-RUNX1, ETV6-TTL, MLL-AFF1, MLL-AFF3, MLL-AFF4, MLL-GAS7, TCBA1-ETV6, TCF3-PBX1 or TCF3-TFPT, which are characteristic of acute lymphocytic leukemia (ALL); BCL11B-TLX3, IL2-TNFRFS17, NUP214-ABL1, NUP98-CCDC28A, TAL1-STIL, or ETV6-ABL2, which are characteristic of T-cell acute lymphocytic leukemia (T-ALL); ATIC-ALK, KIAA1618-ALK, MSN-ALK, MYH9-ALK, NPM1-ALK, TGF-ALK or TPM3-ALK, which are characteristic of anaplastic large cell lymphoma (ALCL); BCR-ABL1, BCR-JAK2, ETV6-EVI1, ETV6-MN1 or ETV6-TCBA1, characteristic of chronic myelogenous leukemia (CML); CBFB-MYH11, CHIC2-ETV6, ETV6-ABL1, ETV6-ABL2, ETV6-ARNT, ETV6-CDX2, ETV6-HLXB9, ETV6-PER1, MEF2D-DAZAP1, AML-AFF1, MLL-ARHGAP26, MLL-ARHGEF12, MLL-CASC5, MLL-CBL, MLL-CREBBP, MLL-DAB21P, MLL-ELL, MLL-EP300, MLL-EPS15, MLL-FNBP1, MLL-FOXO3A, MLL-GMPS, MLL-GPHN, MLL-MLLT1, MLL-MLLT11, MLL-MLLT3, MLL-MLLT6, MLL-MYO1F, MLL-PICALM, MLL-SEPT2, MLL-SEPT6, MLL-SORBS2, MYST3-SORBS2, MYST-CREBBP, NPM1-MLF1, NUP98-HOXA13, PRDM16-EVI1, RABEP1-PDGFRB, RUNX1-EVI1, RUNX1-MDS1, RUNX1-RPL22, RUNX1-RUNX1T1, RUNX1-SH3D19, RUNX1-USP42, RUNX1-YTHDF2, RUNX1-ZNF687, or TAF15-ZNF-384, which are characteristic of acute myeloid leukemia (AML); CCND1-FSTL3, which is characteristic of chronic lymphocytic leukemia (CLL); BCL3-MYC, MYC-BTG1, BCL7A-MYC, BRWD3-ARHGAP20 or BTG1-MYC, which are characteristic of B-cell chronic lymphocytic leukemia (B-CLL); CITTA-BCL6, CLTC-ALK, IL21R-BCL6, PIM1-BCL6, TFCR-BCL6, IKZF1-BCL6 or SEC31A-ALK, which are characteristic of diffuse large B-cell lymphomas (DLBCL); FLIP1-PDGFRA, FLT3-ETV6, KIAA1509-PDGFRA, PDE4DIP-PDGFRB, NIN-PDGFRB, TP53BP1-PDGFRB, or TPM3-PDGFRB, which are characteristic of hyper eosinophilia/chronic eosinophilia; and IGH-MYC or LCP1-BCL6, which are characteristic of Burkitt's lymphoma. One of skill will understand that additional fusions, including those yet to be identified to date, can be used to guide treatment once their presence is associated with a therapeutic intervention.


The fusion genes and gene products can be detected using one or more techniques described herein. In some embodiments, the sequence of the gene or corresponding mRNA is determined, e.g., using Sanger sequencing, NextGen sequencing, pyrosequencing, DNA microarrays, etc. Chromosomal abnormalities can be assessed using FISH or PCR techniques, among others. For example, a break apart probe can be used for FISH detection of ALK fusions such as EML4-ALK, KIF5B-ALK and/or TFG-ALK. As an alternate, PCR can be used to amplify the fusion product, wherein amplification or lack thereof indicates the presence or absence of the fusion, respectively. In some embodiments, the fusion protein fusion is detected. Appropriate methods for protein analysis include without limitation mass spectroscopy, electrophoresis (e.g., 2D gel electrophoresis or SDS-PAGE) or antibody related techniques, including immunoassay, protein array or immunohistochemistry. The techniques can be combined. As a non-limiting example, indication of an ALK fusion by FISH can be confirmed for ALK expression using IHC, or vice versa.


Treatment Selection


The systems and methods allow identification of one or more therapeutic targets whose projected efficacy can be linked to therapeutic efficacy, ultimately based on the molecular profiling. Illustrative schemes for using molecular profiling to identify a treatment regime are shown in FIGS. 2, 42 and 44, each of which is described in further detail herein. The invention comprises use of molecular profiling results to suggest associations with treatment responses. In an embodiment, the appropriate biomarkers for molecular profiling are selected on the basis of the subject's tumor type. These suggested biomarkers can be used to modify a default list of biomarkers. In other embodiments, the molecular profiling is independent of the source material. In some embodiments, rules are used to provide the suggested chemotherapy treatments based on the molecular profiling test results. In an embodiment, the rules are generated from abstracts of the peer reviewed clinical oncology literature. Expert opinion rules can be used but are optional. In an embodiment, clinical citations are assessed for their relevance to the methods of the invention using a hierarchy derived from the evidence grading system used by the United States Preventive Services Taskforce. The “best evidence” can be used as the basis for a rule. The simplest rules are constructed in the format of “if biomarker positive then treatment option one, else treatment option two.” Treatment options comprise no treatment with a specific drug, treatment with a specific drug or treatment with a combination of drugs. In some embodiments, more complex rules are constructed that involve the interaction of two or more biomarkers. In such cases, the more complex interactions are typically supported by clinical studies that analyze the interaction between the biomarkers included in the rule. Finally, a report can be generated that describes the association of the chemotherapy response and the biomarker and a summary statement of the best evidence supporting the treatments selected. Ultimately, the treating physician will decide on the best course of treatment.


As a non-limiting example, molecular profiling might reveal that the EGFR gene is amplified or overexpressed, thus indicating selection of a treatment that can block EGFR activity, such as the monoclonal antibody inhibitors cetuximab and panitumumab, or small molecule kinase inhibitors effective in patients with activating mutations in EGFR such as gefitinib, erlotinib, and lapatinib. Other anti-EGFR monoclonal antibodies in clinical development include zalutumumab, nimotuzumab, and matuzumab. The candidate treatment selected can depend on the setting revealed by molecular profiling. For example, kinase inhibitors are often prescribed with EGFR is found to have activating mutations. Continuing with the illustrative embodiment, molecular profiling may also reveal that some or all of these treatments are likely to be less effective. For example, patients taking gefitinib or erlotinib eventually develop drug resistance mutations in EGFR. Accordingly, the presence of a drug resistance mutation would contraindicate selection of the small molecule kinase inhibitors. One of skill will appreciate that this example can be expanded to guide the selection of other candidate treatments that act against genes or gene products whose differential expression is revealed by molecular profiling. Similarly, candidate agents known to be effective against diseased cells carrying certain nucleic acid variants can be selected if molecular profiling reveals such variants.


As another example, consider the drug imatinib, currently marketed by Novartis as Gleevec in the US in the form of imatinib mesylate. Imatinib is a 2-phenylaminopyrimidine derivative that functions as a specific inhibitor of a number of tyrosine kinase enzymes. It occupies the tyrosine kinase active site, leading to a decrease in kinase activity. Imatinib has been shown to block the activity of Abelson cytoplasmic tyrosine kinase (ABL), c-Kit and the platelet-derived growth factor receptor (PDGFR). Thus, imatinib can be indicated as a candidate therapeutic for a cancer determined by molecular profiling to overexpress ABL, c-KIT or PDGFR. Imatinib can be indicated as a candidate therapeutic for a cancer determined by molecular profiling to have mutations in ABL, c-KIT or PDGFR that alter their activity, e.g., constitutive kinase activity of ABLs caused by the BCR-ABL mutation. As an inhibitor of PDGFR, imatinib mesylate appears to have utility in the treatment of a variety of dermatological diseases.


Cancer therapies that can be identified as candidate treatments by the methods of the invention include without limitation: 13-cis-Retinoic Acid, 2-CdA, 2-Chlorodeoxyadenosine, 5-Azacitidine, 5-Fluorouracil, 5-FU, 6-Mercaptopurine, 6-MP, 6-TG, 6-Thioguanine, Abraxane, Accutane®, Actinomycin-D, Adriamycin®, Adrucil®, Afinitor®, Agrylin®, Ala-Cort®, Aldesleukin, Alemtuzumab, ALIMTA, Alitretinoin, Alkaban-AQ®, Alkeran®, All-transretinoic Acid, Alpha Interferon, Altretamine, Amethopterin, Amifostine, Aminoglutethimide, Anagrelide, Anandron®, Anastrozole, Arabinosylcytosine, Ara-C, Aranesp®, Aredia®, Arimidex®, Aromasin®, Arranon®, Arsenic Trioxide, Asparaginase, ATRA, Avastin®, Azacitidine, BCG, BCNU, Bendamustine, Bevacizumab, Bexarotene, BEXXAR®, Bicalutamide, BiCNU, Blenoxane®, Bleomycin, Bortezomib, Busulfan, Busulfex®, C225, Calcium Leucovorin, Campath®, Camptosar®, Camptothecin-11, Capecitabine, Carac™, Carboplatin, Carmustine, Carmustine Wafer, Casodex®, CC-5013, CCI-779, CCNU, CDDP, CeeNU, Cerubidine®, Cetuximab, Chlorambucil, Cisplatin, Citrovorum Factor, Cladribine, Cortisone, Cosmegen®, CPT-11, Cyclophosphamide, Cytadren®, Cytarabine, Cytarabine Liposomal, Cytosar-U®, Cytoxan®, Dacarbazine, Dacogen, Dactinomycin, Darbepoetin Alfa, Dasatinib, Daunomycin Daunorubicin, Daunorubicin Hydrochloride, Daunorubicin Liposomal, DaunoXome®, Decadron, Decitabine, Delta-Cortef®, Deltasone®, Denileukin, Diftitox, DepoCyt™, Dexamethasone, Dexamethasone Acetate Dexamethasone Sodium Phosphate, Dexasone, Dexrazoxane, DHAD, DIC, Diodex Docetaxel, Doxorubicin, Doxorubicin Liposomal, Droxia™, DTIC, DTIC-Dome®, Duralone®, Efudex®, Eligard™, Ellence™, Eloxatin™, Elspar®, Emcyt®, Epirubicin, Epoetin Alfa, Erbitux, Erlotinib, Erwinia L-asparaginase, Estramustine, Ethyol Etopophos®, Etoposide, Etoposide Phosphate, Eulexin®, Everolimus, Evista®, Exemestane, Fareston®, Faslodex®, Femara®, Filgrastim, Floxuridine, Fludara®, Fludarabine, Fluoroplex®, Fluorouracil, Fluorouracil (cream), Fluoxymesterone, Flutamide, Folinic Acid, FUDR®, Fulvestrant, G-CSF, Gefitinib, Gemcitabine, Gemtuzumab ozogamicin, Gemzar, Gleevec™, Gliadel® Wafer, GM-CSF, Goserelin, Granulocyte-Colony Stimulating Factor, Granulocyte Macrophage Colony Stimulating Factor, Halotestin®, Herceptin®, Hexadrol, Hexalen®, Hexamethylmelamine, HMM, Hycamtin®, Hydrea®, Hydrocort Acetate®, Hydrocortisone, Hydrocortisone Sodium Phosphate, Hydrocortisone Sodium Succinate, Hydrocortone Phosphate, Hydroxyurea, Ibritumomab, Ibritumomab, Tiuxetan, Idamycin®, Idarubicin, Ifex®, IFN-alpha, Ifosfamide, IL-11, IL-2, Imatinib mesylate, Imidazole Carboxamide, Interferon alfa, Interferon Alfa-2b (PEG Conjugate), Interleukin-2, Interleukin-11, Intron A® (interferon alfa-2b), Iressa®, Irinotecan, Isotretinoin, Ixabepilone, Ixempra™, Kidrolase (t), Lanacort®, Lapatinib, L-asparaginase, LCR, Lenalidomide, Letrozole, Leucovorin, Leukeran, Leukine™, Leuprolide, Leurocristine, Leustatin™, Liposomal Ara-C Liquid Pred®, Lomustine, L-PAM, L-Sarcolysin, Lupron®, Lupron Depot®, Matulane®, Maxidex, Mechlorethamine, Mechlorethamine Hydrochloride, Medralone®, Medrol®, Megace®, Megestrol, Megestrol Acetate, Melphalan, Mercaptopurine, Mesna, Mesnex™, Methotrexate, Methotrexate Sodium, Methylprednisolone, Meticorten®, Mitomycin, Mitomycin-C, Mitoxantrone, M-Prednisol®, MTC, MTX, Mustargen®, Mustine, Mutamycin®, Myleran®, Mylocel™, Mylotarg®, Navelbine®, Nelarabine, Neosar®, Neulasta™, Neumega®, Neupogen®, Nexavar®, Nilandron®, Nilutamide, Nipent®, Nitrogen Mustard, Novaldex®, Novantrone®, Octreotide, Octreotide acetate, Oncospar®, Oncovin®, Ontak®, Onxal™, Oprevelkin, Orapred®, Orasone®, Oxaliplatin, Paclitaxel, Paclitaxel Protein-bound, Pamidronate, Panitumumab, Panretin®, Paraplatin®, Pediapred®, PEG Interferon, Pegaspargase, Pegfilgrastim, PEG-INTRON™, PEG-L-asparaginase, PEMETREXED, Pentostatin, Phenylalanine Mustard, Platinol®, Platinol-AQ®, Prednisolone, Prednisone, Prelone®, Procarbazine, PROCRIT®, Proleukin®, Prolifeprospan 20 with Carmustine Implant, Purinethol®, Raloxifene, Revlimid®, Rheumatrex®, Rituxan®, Rituximab, Roferon-A® (Interferon Alfa-2a), Rubex®, Rubidomycin hydrochloride, Sandostatin®, Sandostatin Sargramostim, Solu-Cortef®, Solu-Medrol®, Sorafenib, SPRYCEL™, STI-571, Streptozocin, SU11248, Sunitinib, Sutent®, Tamoxifen, Tarceva®, Targretin®, Taxol®, Taxotere®, Temodar®, Temozolomide, Temsirolimus, Teniposide, TESPA, Thalidomide, Thalomid®, TheraCys®, Thioguanine, Thioguanine Tabloid®, Thiophosphoamide, Thioplex®, Thiotepa, TICE®, Toposar®, Topotecan, Toremifene, Torisel®, Tositumomab, Trastuzumab, Treanda®, Tretinoin, Trexall™, Trisenox®, TSPA, TYKERB®, VCR, Vectibix™, Velban®, Velcade®, VePesid®, Vesanoid®, Viadur™, Vidaza®, Vinblastine, Vinblastine Sulfate, Vincasar Pfs®, Vincristine, Vinorelbine, Vinorelbine tartrate, VLB, VM-26, Vorinostat, VP-16, Vumon®, Xeloda®, Zanosar®, Zevalin™, Zinecard®, Zoladex®, Zoledronic acid, Zolinza, Zometa®, and any appropriate combinations thereof.


The candidate treatments identified according to the subject methods can be chosen from the class of therapeutic agents identified as Anthracyclines and related substances, Anti-androgens, Anti-estrogens, Antigrowth hormones (e.g., Somatostatin analogs), Combination therapy (e.g., vincristine, bcnu, melphalan, cyclophosphamide, prednisone (VBMCP)), DNA methyltransferase inhibitors, Endocrine therapy—Enzyme inhibitor, Endocrine therapy—other hormone antagonists and related agents, Folic acid analogs (e.g., methotrexate), Folic acid analogs (e.g., pemetrexed), Gonadotropin releasing hormone analogs, Gonadotropin-releasing hormones, Monoclonal antibodies (EGFR-Targeted—e.g., panitumumab, cetuximab), Monoclonal antibodies (Her2-Targeted—e.g., trastuzumab), Monoclonal antibodies (Multi-Targeted—e.g., alemtuzumab), Other alkylating agents, Other antineoplastic agents (e.g., asparaginase), Other antineoplastic agents (e.g., ATRA), Other antineoplastic agents (e.g., bexarotene), Other antineoplastic agents (e.g., celecoxib), Other antineoplastic agents (e.g., gemcitabine), Other antineoplastic agents (e.g., hydroxyurea), Other antineoplastic agents (e.g., irinotecan, topotecan), Other antineoplastic agents (e.g., pentostatin), Other cytotoxic antibiotics, Platinum compounds, Podophyllotoxin derivatives (e.g., etoposide), Progestogens, Protein kinase inhibitors (EGFR-Targeted), Protein kinase inhibitors (Her2 targeted therapy—e.g., lapatinib), Pyrimidine analogs (e.g., cytarabine), Pyrimidine analogs (e.g., fluoropyrimidines), Salicylic acid and derivatives (e.g., aspirin), Src-family protein tyrosine kinase inhibitors (e.g., dasatinib), Taxanes, Taxanes (e.g., nab-paclitaxel), Vinca Alkaloids and analogs, Vitamin D and analogs, Monoclonal antibodies (Multi-Targeted—e.g., bevacizumab), Protein kinase inhibitors (e.g., imatinib, sorafenib, sunitinib), Tyrosine Kinase inhibitors (TKI) (e.g., vemurafenib, sorafenib, imatinib, sunitinib, erlotinib, gefitinib, crizotinib, lapatinib).


In some embodiments, the candidate treatments identified according to the subject methods are chosen from at least the groups of treatments consisting of 5-fluorouracil, abarelix, alemtuzumab, aminoglutethimide, anastrozole, asparaginase, aspirin, ATRA, azacitidine, bevacizumab, bexarotene, bicalutamide, calcitriol, capecitabine, carboplatin, celecoxib, cetuximab, chemotherapy, cholecalciferol, cisplatin, cytarabine, dasatinib, daunorubicin, decitabine, doxorubicin, epirubicin, erlotinib, etoposide, exemestane, flutamide, fulvestrant, gefitinib, gemcitabine, gonadorelin, goserelin, hydroxyurea, imatinib, irinotecan, lapatinib, letrozole, leuprolide, liposomal-doxorubicin, medroxyprogesterone, megestrol, megestrol acetate, methotrexate, mitomycin, nab-paclitaxel, octreotide, oxaliplatin, paclitaxel, panitumumab, pegaspargase, pemetrexed, pentostatin, sorafenib, sunitinib, tamoxifen, Taxanes, temozolomide, toremifene, trastuzumab, VBMCP, and vincristine. The candidate treatments can be any of those in Tables 3-5, 7-13, 20 or 21 herein.


Rules Engine


In some embodiments, a database is created that maps treatments and molecular profiling results. The treatment information can include the projected efficacy of a therapeutic agent against cells having certain attributes that can be measured by molecular profiling. The molecular profiling can include differential expression or mutations in certain genes, proteins, or other biological molecules of interest. Through the mapping, the results of the molecular profiling can be compared against the database to select treatments. The database can include both positive and negative mappings between treatments and molecular profiling results. In some embodiments, the mapping is created by reviewing the literature for links between biological agents and therapeutic agents. For example, a journal article, patent publication or patent application publication, scientific presentation, etc can be reviewed for potential mappings. The mapping can include results of in vivo, e.g., animal studies or clinical trials, or in vitro experiments, e.g., cell culture. Any mappings that are found can be entered into the database, e.g., cytotoxic effects of a therapeutic agent against cells expressing a gene or protein. In this manner, the database can be continuously updated. It will be appreciated that the methods of the invention are updated as well.


The rules can be generated by evidence-based literature review. Biomarker research continues to provide a better understanding of the clinical behavior and biology of cancer. This body of literature can be maintained in an up-to-date data repository incorporating recent clinical studies relevant to treatment options and potential clinical outcomes. The studies can be ranked so that only those with the strongest or most reliable evidence are selected for rules generation. For example, the rules generation can employ the grading system from the current methods of the U.S. Preventive Services Task Force. The literature evidence can be reviewed and evaluated based on the strength of clinical evidence supporting associations between biomarkers and treatments in the literature study. This process can be performed by a staff of scientists, physicians and other skilled reviewers. The process can also be automated in whole or in part by using language search and heuristics to identify relevant literature. The rules can be generated by a review of a plurality of literature references, e.g., tens, hundreds, thousands or more literature articles.


In another aspect, the invention provides a method of generating a set of evidence-based associations, comprising: (a) searching one or more literature database by a computer using an evidence-based medicine search filter to identify articles comprising a gene or gene product thereof, a disease, and one or more therapeutic agent; (b) filtering the articles identified in (a) to compile evidence-based associations comprising the expected benefit and/or the expected lack of benefit of the one or more therapeutic agent for treating the disease given the status of the gene or gene product; (c) adding the evidence-based associations compiled in (b) to the set of evidence-based associations; and (d) repeating steps (a)-(c) for an additional gene or gene product thereof. The status of the gene can include one or more assessments as described herein which relate to a biological state, e.g., one or more of an expression level, a copy number, and a mutation. The genes or gene products thereof can be one or more genes or gene products thereof selected from Table 2. For example, the method can be repeated for 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50 or more of the genes or gene products thereof in Table 2. The disease can be a disease described here, e.g., in embodiment the disease comprises a cancer. The one or more literature database can be selected from the group consisting of the National Library of Medicine's (NLM's) MEDLNE™ database of citations, a patent literature database, and a combination thereof.


Evidence-based medicine (EBM) or evidence-based practice (EBP) aims to apply the best available evidence gained from the scientific method to clinical decision making. This approach assesses the strength of evidence of the risks and benefits of treatments (including lack of treatment) and diagnostic tests. Evidence quality can be assessed based on the source type (from meta-analyses and systematic reviews of double-blind, placebo-controlled clinical trials at the top end, down to conventional wisdom at the bottom), as well as other factors including statistical validity, clinical relevance, currency, and peer-review acceptance. Evidence-based medicine filters are searches that have been developed to facilitate searches in specific areas of clinical medicine related to evidence-based medicine (diagnosis, etiology, meta-analysis, prognosis and therapy). They are designed to retrieve high quality evidence from published studies appropriate to decision-making. The evidence-based medicine filter used in the invention can be selected from the group consisting of a generic evidence-based medicine filter, a McMaster University optimal search strategy evidence-based medicine filter, a University of York statistically developed search evidence-based medicine filter, and a University of California San Francisco systemic review evidence-based medicine filter. See e.g., US Patent Publication 20080215570; Shojania and Bero. Taking advantage of the explosion of systematic reviews: an efficient MEDLINE search strategy. Eff Clin Pract. 2001 July-August; 4(4):157-62; Ingui and Rogers. Searching for clinical prediction rules in MEDLINE. J Am Med Inform Assoc. 2001 July-August; 8(4):391-7; Haynes et al., Optimal search strategies for retrieving scientifically strong studies of treatment from Medline: analytical survey. BMJ. 2005 May 21; 330(7501):1179; Wilczynski and Haynes. Consistency and accuracy of indexing systematic review articles and meta-analyses in medline. Health Info Libr J. 2009 September; 26(3):203-10; which references are incorporated by reference herein in their entirety. A generic filter can be a customized filter based on an algorithm to identify the desired references from the one or more literature database. For example, the method can use one or more approach as described in U.S. Pat. No. 5,168,533 to Kato et al., U.S. Pat. No. 6,886,010 to Kostoff, or US Patent Application Publication No. 20040064438 to Kostoff; which references are incorporated by reference herein in their entirety.


The further filtering of articles identified by the evidence-based medicine filter can be performed using a computer, by one or more expert user, or combination thereof. The one or more expert can be a trained scientist or physician. In embodiments, the set of evidence-based associations comprise one or more of the rules in any of Tables 3-4 or 7-13. For example, the set of evidence-based associations can include at least 5, 10, 25, 50 or 100 rules in Tables 3-4 or 7-13. In some embodiments, the set of evidence-based associations comprises or consists of all of the rules in any of Tables 3-4 or 7-13. In an aspect, the invention provides a computer readable medium comprising the set of evidence-based associations generated by the subject methods. The invention further provides a computer readable medium comprising one or more rules in any of Tables 3-4 or 7-13 herein. In an embodiment, the computer readable medium comprises at least 5, 10, 25, 50 or 100 rules in any of Tables 3-4 or 7-13. For example, the computer readable medium can comprise all rules in any of Tables 3-4 or 7-13., e.g., all rules in Tables 7-12.


The rules for the mappings can contain a variety of supplemental information. In some embodiments, the database contains prioritization criteria. For example, a treatment with more projected efficacy in a given setting can be preferred over a treatment projected to have lesser efficacy. A mapping derived from a certain setting, e.g., a clinical trial, may be prioritized over a mapping derived from another setting, e.g., cell culture experiments. A treatment with strong literature support may be prioritized over a treatment supported by more preliminary results. A treatment generally applied to the type of disease in question, e.g., cancer of a certain tissue origin, may be prioritized over a treatment that is not indicated for that particular disease. Mappings can include both positive and negative correlations between a treatment and a molecular profiling result. In a non-limiting example, one mapping might suggest use of a kinase inhibitor like erlotinib against a tumor having an activating mutation in EGFR, whereas another mapping might suggest against that treatment if the EGFR also has a drug resistance mutation. Similarly, a treatment might be indicated as effective in cells that overexpress a certain gene or protein but indicated as not effective if the gene or protein is underexpressed.


The selection of a candidate treatment for an individual can be based on molecular profiling results from any one or more of the methods described. Alternatively, selection of a candidate treatment for an individual can be based on molecular profiling results from more than one of the methods described. For example, selection of treatment for an individual can be based on molecular profiling results from FISH alone, IHC alone, or microarray analysis alone. In other embodiments, selection of treatment for an individual can be based on molecular profiling results from IHC, FISH, and microarray analysis; IHC and FISH; IHC and microarray analysis, or FISH and microarray analysis. Selection of treatment for an individual can also be based on molecular profiling results from sequencing or other methods of mutation detection. Molecular profiling results may include mutation analysis along with one or more methods, such as IHC, immunoassay, and/or microarray analysis. Different combinations and sequential results can be used. For example, treatment can be prioritized according the results obtained by molecular profiling. In an embodiment, the prioritization is based on the following algorithm: 1) IHC/FISH and microarray indicates same target as a first priority; 2) IHC positive result alone next priority; or 3) microarray positive result alone as last priority. Sequencing can also be used to guide selection. In some embodiments, sequencing reveals a drug resistance mutation so that the effected drug is not selected even if techniques including IHC, microarray and/or FISH indicate differential expression of the target molecule. Any such contraindication, e.g., differential expression or mutation of another gene or gene product may override selection of a treatment.


An illustrative listing of microarray expression results versus predicted treatments is presented in Table 3. As disclosed herein, molecular profiling is performed to determine whether a gene or gene product is differentially expressed in a sample as compared to a control. The expression status of the gene or gene product is used to select agents that are predicted to be efficacious or not. For example, Table 3 shows that overexpression of the ADA gene or protein points to pentostatin as a possible treatment. On the other hand, underexpression of the ADA gene or protein implicates resistance to cytarabine, suggesting that cytarabine is not an optimal treatment.









TABLE 3







Molecular Profiling Results and Predicted Treaments










Gene Name
Expression Status
Candidate Agent(s)
Possible Resistance





ADA
Overexpressed
pentostatin



ADA
Underexpressed

cytarabine


AR
Overexpressed
abarelix, bicalutamide,




flutamide, gonadorelin,




goserelin, leuprolide


ASNS
Underexpressed
asparaginase, pegaspargase


BCRP (ABCG2)
Overexpressed

cisplatin, carboplatin,





irinotecan, topotecan


BRCA1
Underexpressed
mitomycin


BRCA2
Underexpressed
mitomycin


CD52
Overexpressed
alemtuzumab


CDA
Overexpressed

cytarabine


CES2
Overexpressed
irinotecan


c-kit
Overexpressed
sorafenib, sunitinib,




imatinib


COX-2
Overexpressed
celecoxib


DCK
Overexpressed
gemcitabine
cytarabine


DHFR
Underexpressed
methotrexate, pemetrexed


DHFR
Overexpressed

methotrexate


DNMT1
Overexpressed
azacitidine, decitabine


DNMT3A
Overexpressed
azacitidine, decitabine


DNMT3B
Overexpressed
azacitidine, decitabine


EGFR
Overexpressed
erlotinib, gefitinib,




cetuximab, panitumumab


EML4-ALK
Overexpressed (present)
crizotinib


EPHA2
Overexpressed
dasatinib


ER
Overexpressed
anastrazole, exemestane,




fulvestrant, letrozole,




megestrol, tamoxifen,




medroxyprogesterone,




toremifene,




aminoglutethimide


ERCC1
Overexpressed

carboplatin, cisplatin


GART
Underexpressed
pemetrexed


HER-2 (ERBB2)
Overexpressed
trastuzumab, lapatinib


HIF-1α
Overexpressed
sorafenib, sunitinib,




bevacizumab


IκB-α
Overexpressed
bortezomib


MGMT
Underexpressed
temozolomide


MGMT
Overexpressed

temozolomide


MRP1 (ABCC1)
Overexpressed

etoposide, paclitaxel,





docetaxel, vinblastine,





vinorelbine, topotecan,





teniposide


P-gp (ABCB1)
Overexpressed

doxorubicin, etoposide,





epirubicin, paclitaxel,





docetaxel, vinblastine,





vinorelbine, topotecan,





teniposide, liposomal





doxorubicin


PDGFR-α
Overexpressed
sorafenib, sunitinib,




imatinib


PDGFR-β
Overexpressed
sorafenib, sunitinib,




imatinib


PR
Overexpressed
exemestane, fulvestrant,




gonadorelin, goserelin,




medroxyprogesterone,




megestrol, tamoxifen,




toremifene


RARA
Overexpressed
ATRA


RRM1
Underexpressed
gemcitabine, hydroxyurea


RRM2
Underexpressed
gemcitabine, hydroxyurea


RRM2B
Underexpressed
gemcitabine, hydroxyurea


RXR-α
Overexpressed
bexarotene


RXR-β
Overexpressed
bexarotene


SPARC
Overexpressed
nab-paclitaxel


SRC
Overexpressed
dasatinib


SSTR2
Overexpressed
octreotide


SSTR5
Overexpressed
octreotide


TOPO I
Overexpressed
irinotecan, topotecan


TOPO IIα
Overexpressed
doxorubicin, epirubicin,




liposomal- doxorubicin


TOPO IIβ
Overexpressed
doxorubicin, epirubicin,




liposomal- doxorubicin


TS
Underexpressed
capecitabine, 5-




fluorouracil, pemetrexed


TS
Overexpressed

capecitabine, 5-





fluorouracil


VDR
Overexpressed
calcitriol, cholecalciferol


VEGFR1 (Flt1)
Overexpressed
sorafenib, sunitinib,




bevacizumab


VEGFR2
Overexpressed
sorafenib, sunitinib,




bevacizumab


VHL
Underexpressed
sorafenib, sunitinib









Table 4 presents a selection of illustrative rules for treatment selection. The table is ordered by groups of related therapeutic agents. Each row describes a rule that maps the information derived from molecular profiling with an indication of benefit or lack of benefit for the therapeutic agent. Thus, the database contains a mapping of treatments whose biological activity is known against cancer cells that have alterations in certain genes or gene products, including gene copy alterations, chromosomal abnormalities, overexpression of or underexpression of one or more genes or gene products, or have various mutations. For each agent, a Lineage is presented as applicable which corresponds to a type of cancer associated with use of the agent. Agents with Benefit are listed along with a Benefit Summary Statement that describes molecular profiling information that relates to the predicted beneficial agent. Similarly, agents with Lack of Benefit are listed along with a Lack of Benefit Summary Statement that describes molecular profiling information that relates to the lack of benefit associated with the agent. Finally, the molecular profiling Criteria are shown. In the criteria, results from analysis using DNA microarray (DMA), IHC, FISH, and mutation analysis (MA) for one or more biomarkers is listed. For microarray analysis, expression can be reported as over (overexpressed) or under (underexpressed). When these criteria are met according to the application of the molecular profiling techniques to a sample, then the therapeutic agent or agents are predicted to have a benefit or lack of benefit as indicated in the corresponding row.


Further drug associations and rules that can be used in embodiments of the invention are found in U.S. Patent Application Publication 20100304989, filed Feb. 12, 2010; International PCT Patent Application WO/2010/093465, filed Feb. 11, 2010; and International PCT Patent Application WO/2011/056688, filed Oct. 27, 2010; all of which applications are incorporated by reference herein in their entirety. See e.g., “Table 4: Rules Summary for Treatment Selection” of WO/2011/056688.









TABLE 4







Exemplary Rules Summary for Treatment Selection

















Agents
Lack of







with
Benefit


Therapeutic

Agents with
Benefit Summary
Lack of
Summary


Agent
Lineage
Benefit
Statement
Benefit
Statement
Criteria














Protein kinase
None
sunitinib,
Presence of c-Kit mutation
DMA: VEGFR1 overexpressed.


inhibitors

sorafenib
in exon 9 has been associated
DMA: HIF1A overexpressed.


(imatinib,


with benefit from sunitinib.
DMA: VEGFR2 overexpressed.


sorafenib,


In addition, over expression
DMA: KIT overexpressed.


sunitinib)


of HIF1A, VEGFR1, VEGFR2,
DMA: PDGFRA overexpressed.





c-Kit, PDGFRA and PDGFRB,
DMA: PDGFRB overexpressed.





and under expression of
DMA: VHL underexpressed.





VHL have been associated
MA: c-kit mutated - Exon 9





with benefit from





sunitinib and sorafenib.


Protein kinase
None
sunitinib,
Presence of c-Kit mutation
DMA: VEGFR1 overexpressed.


inhibitors

sorafenib
in exon 9 has been associated
DMA: HIF1A overexpressed.


(imatinib,


with benefit from sunitinib.
DMA: VEGFR2 overexpressed.


sorafenib,


In addition, over expression
DMA: KIT overexpressed.


sunitinib)


of HIF1A, VEGFR1, VEGFR2,
DMA: PDGFRA overexpressed.





c-Kit, PDGFRA and PDGFRB
DMA: PDGFRB overexpressed.





have been associated with
DMA: VHL.





benefit from sunitinib
MA: c-kit mutated - Exon 9





and sorafenib.


Protein kinase
None
sunitinib,
Presence of c-Kit mutation
DMA: VEGFR1 overexpressed.


inhibitors

sorafenib
in exon 9 has been associated
DMA: HIF1A overexpressed.


(imatinib,


with benefit from sunitinib.
DMA: VEGFR2.


sorafenib,


In addition, over expression
DMA: KIT overexpressed.


sunitinib)


of HIF1A, VEGFR1, c-Kit,
DMA: PDGFRA overexpressed.





PDGFRA and PDGFRB, and
DMA: PDGFRB overexpressed.





under expression of VHL
DMA: VHL underexpressed.





have been associated with
MA: c-kit mutated - Exon 9





benefit from sunitinib and





sorafenib.


Protein kinase
None
sunitinib,
Presence of c-Kit mutation
DMA: VEGFR1 overexpressed.


inhibitors

sorafenib
in exon 9 has been associated
DMA: HIF1A overexpressed.


(imatinib,


with benefit from sunitinib.
DMA: VEGFR2.


sorafenib,


In addition, over expression
DMA: KIT overexpressed.


sunitinib)


of HIF1A, VEGFR1, c-Kit,
DMA: PDGFRA overexpressed.





PDGFRA and PDGFRB have been
DMA: PDGFRB overexpressed.





associated with benefit from
DMA: VHL.





sunitinib and sorafenib.
MA: c-kit mutated - Exon 9,


Protein kinase
None
sunitinib,
Presence of c-Kit mutation
DMA: VEGFR1.


inhibitors

sorafenib
in exon 9 has been associated
DMA: HIF1A overexpressed.


(imatinib,


with benefit from sunitinib.
DMA: VEGFR2 overexpressed.


sorafenib,


In addition, over expression
DMA: KIT overexpressed.


sunitinib)


of HIF1A, VEGFR2, c-Kit,
DMA: PDGFRA overexpressed.





PDGFRA and PDGFRB, and
DMA: PDGFRB overexpressed.





under expression of VHL
DMA: VHL underexpressed.





have been associated with
MA: c-kit mutated - Exon 9





benefit from sunitinib and





sorafenib.


Protein kinase
None
sunitinib,
Presence of c-Kit mutation
DMA: VEGFR1.


inhibitors

sorafenib
in exon 9 has been associated
DMA: HIF1A overexpressed.


(imatinib,


with benefit from sunitinib.
DMA: VEGFR2 overexpressed.


sorafenib,


In addition, over expression
DMA: KIT overexpressed.


sunitinib)


of HIF1A, VEGFR2, c-Kit,
DMA: PDGFRA overexpressed.





PDGFRA and PDGFRB have been
DMA: PDGFRB overexpressed.





associated with benefit from
DMA: VHL.





sunitinib and sorafenib.
MA: c-kit mutated - Exon 9


Protein kinase
None
sunitinib,
Presence of c-Kit mutation
DMA: VEGFR1.


inhibitors

sorafenib
in exon 9 has been associated
DMA: HIF1A overexpressed.


(imatinib,


with benefit from sunitinib.
DMA: VEGFR2.


sorafenib,


In addition, over expression
DMA: KIT overexpressed.


sunitinib)


of HIF1A, c-Kit, PDGFRA and
DMA: PDGFRA overexpressed.





PDGFRB, and under expression
DMA: PDGFRB overexpressed.





of VHL have been associated
DMA: VHL underexpressed.





with benefit from sunitinib
MA: c-kit mutated - Exon 9





and sorafenib.


Protein kinase
None
sunitinib,
Presence of c-Kit mutation
DMA: VEGFR1.


inhibitors

sorafenib
in exon 9 has been associated
DMA: HIF1A overexpressed.


(imatinib,


with benefit from sunitinib.
DMA: VEGFR2.


sorafenib,


In addition, over expression
DMA: KIT overexpressed.


sunitinib)


of HIF1A, c-Kit, PDGFRA and
DMA: PDGFRA overexpressed.





PDGFRB have been associated
DMA: PDGFRB overexpressed.





with benefit from sunitinib
DMA: VHL.





and sorafenib.
MA: c-kit mutated - Exon 9


Protein kinase
None
sunitinib,
Presence of c-Kit mutation
DMA: VEGFR1 overexpressed.


inhibitors

sorafenib
in exon 9 has been associated
DMA: HIF1A overexpressed.


(imatinib,


with benefit from sunitinib.
DMA: VEGFR2 overexpressed.


sorafenib,


In addition, over expression
DMA: KIT overexpressed.


sunitinib)


of HIF1A, VEGFR1, VEGFR2,
DMA: PDGFRA overexpressed.





c-Kit and PDGFRA, and under
DMA: PDGFRB.





expression of VHL have been
DMA: VHL underexpressed.





associated with benefit from
MA: c-kit mutated - Exon 9





sunitinib and sorafenib.









The efficacy of various therapeutic agents given particular assay results, such as those in Table 4 above, is derived from reviewing, analyzing and rendering conclusions on empirical evidence, such as that is available the medical literature or other medical knowledge base. The results are used to guide the selection of certain therapeutic agents in a prioritized list for use in treatment of an individual. When molecular profiling results are obtained, e.g., differential expression or mutation of a gene or gene product, the results can be compared against the database to guide treatment selection. The set of rules in the database can be updated as new treatments and new treatment data become available. In some embodiments, the rules database is updated continuously. In some embodiments, the rules database is updated on a periodic basis. Any relevant correlative or comparative approach can be used to compare the molecular profiling results to the rules database. In one embodiment, a gene or gene product is identified as differentially expressed by molecular profiling. The rules database is queried to select entries for that gene or gene product. Treatment selection information selected from the rules database is extracted and used to select a treatment. The information, e.g., to recommend or not recommend a particular treatment, can be dependent on whether the gene or gene product is over or underexpressed, or has other abnormalities at the genetic or protein levels as compared to a reference. In some cases, multiple rules and treatments may be pulled from a database comprising the comprehensive rules set depending on the results of the molecular profiling. In some embodiments, the treatment options are presented in a prioritized list. In some embodiments, the treatment options are presented without prioritization information. In either case, an individual, e.g., the treating physician or similar caregiver may choose from the available options.


The methods described herein are used to prolong survival of a subject by providing personalized treatment. In some embodiments, the subject has been previously treated with one or more therapeutic agents to treat the disease, e.g., a cancer. The cancer may be refractory to one of these agents, e.g., by acquiring drug resistance mutations. In some embodiments, the cancer is metastatic. In some embodiments, the subject has not previously been treated with one or more therapeutic agents identified by the method. Using molecular profiling, candidate treatments can be selected regardless of the stage, anatomical location, or anatomical origin of the cancer cells.


Progression-free survival (PFS) denotes the chances of staying free of disease progression for an individual or a group of individuals suffering from a disease, e.g., a cancer, after initiating a course of treatment. It can refer to the percentage of individuals in a group whose disease is likely to remain stable (e.g., not show signs of progression) after a specified duration of time. Progression-free survival rates are an indication of the effectiveness of a particular treatment. Similarly, disease-free survival (DFS) denotes the chances of staying free of disease after initiating a particular treatment for an individual or a group of individuals suffering from a cancer. It can refer to the percentage of individuals in a group who are likely to be free of disease after a specified duration of time. Disease-free survival rates are an indication of the effectiveness of a particular treatment. Treatment strategies can be compared on the basis of the PFS or DFS that is achieved in similar groups of patients. Disease-free survival is often used with the term overall survival when cancer survival is described.


The candidate treatment selected by molecular profiling according to the invention can be compared to a non-molecular profiling selected treatment by comparing the progression free survival (PFS) using therapy selected by molecular profiling (period B) with PFS for the most recent therapy on which the patient has just progressed (period A). See FIG. 35. In one setting, a PFS(B)/PFS(A) ratio ≧1.3 was used to indicate that the molecular profiling selected therapy provides benefit for patient (Robert Temple, Clinical measurement in drug evaluation. Edited by Wu Ningano and G. T Thicker John Wiley and Sons Ltd. 1995; Von Hoff D. D. Clin Can Res. 4: 1079, 1999: Dhani et al. Clin Cancer Res. 15: 118-123, 2009). Other methods of comparing the treatment selected by molecular profiling to a non-molecular profiling selected treatment include determining response rate (RECIST) and percent of patients without progression or death at 4 months. The term “about” as used in the context of a numerical value for PFS means a variation of +/−ten percent (10%) relative to the numerical value. The PFS from a treatment selected by molecular profiling can be extended by at least 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or at least 90% as compared to a non-molecular profiling selected treatment. In some embodiments, the PFS from a treatment selected by molecular profiling can be extended by at least 100%, 150%, 200%, 300%, 400%, 500%, 600%, 700%, 800%, 900%, or at least about 1000% as compared to a non-molecular profiling selected treatment. In yet other embodiments, the PFS ratio (PFS on molecular profiling selected therapy or new treatment/PFS on prior therapy or treatment) is at least about 1.3. In yet other embodiments, the PFS ratio is at least about 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, or 2.0. In yet other embodiments, the PFS ratio is at least about 3, 4, 5, 6, 7, 8, 9 or 10.


Similarly, the DFS can be compared in patients whose treatment is selected with or without molecular profiling. In embodiments, DFS from a treatment selected by molecular profiling is extended by at least 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or at least 90% as compared to a non-molecular profiling selected treatment. In some embodiments, the DFS from a treatment selected by molecular profiling can be extended by at least 100%, 150%, 200%, 300%, 400%, 500%, 600%, 700%, 800%, 900%, or at least about 1000% as compared to a non-molecular profiling selected treatment. In yet other embodiments, the DFS ratio (DFS on molecular profiling selected therapy or new treatment/DFS on prior therapy or treatment) is at least about 1.3. In yet other embodiments, the DFS ratio is at least about 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, or 2.0. In yet other embodiments, the DFS ratio is at least about 3, 4, 5, 6, 7, 8, 9 or 10.


In some embodiments, the candidate treatment of the invention will not increase the PFS ratio or the DFS ratio in the patient, nevertheless molecular profiling provides invaluable patient benefit. For example, in some instances no preferable treatment has been identified for the patient. In such cases, molecular profiling provides a method to identify a candidate treatment where none is currently identified. The molecular profiling may extend PFS, DFS or lifespan by at least 1 week, 2 weeks, 3 weeks, 4 weeks, 1 month, 5 weeks, 6 weeks, 7 weeks, 8 weeks, 2 months, 9 weeks, 10 weeks, 11 weeks, 12 weeks, 3 months, 4 months, 5 months, 6 months, 7 months, 8 months, 9 months, 10 months, 11 months, 12 months, 13 months, 14 months, 15 months, 16 months, 17 months, 18 months, 19 months, 20 months, 21 months, 22 months, 23 months, 24 months or 2 years. The molecular profiling may extend PFS, DFS or lifespan by at least 2½ years, 3 years, 4 years, 5 years, or more. In some embodiments, the methods of the invention improve outcome so that patient is in remission.


The effectiveness of a treatment can be monitored by other measures. A complete response (CR) comprises a complete disappearance of the disease: no disease is evident on examination, scans or other tests. A partial response (PR) refers to some disease remaining in the body, but there has been a decrease in size or number of the lesions by 30% or more. Stable disease (SD) refers to a disease that has remained relatively unchanged in size and number of lesions. Generally, less than a 50% decrease or a slight increase in size would be described as stable disease. Progressive disease (PD) means that the disease has increased in size or number on treatment. In some embodiments, molecular profiling according to the invention results in a complete response or partial response. In some embodiments, the methods of the invention result in stable disease. In some embodiments, the invention is able to achieve stable disease where non-molecular profiling results in progressive disease.


Computer Systems


Conventional data networking, application development and other functional aspects of the systems (and components of the individual operating components of the systems) may not be described in detail herein but are part of the invention. Furthermore, the connecting lines shown in the various figures contained herein are intended to represent illustrative functional relationships and/or physical couplings between the various elements. It should be noted that many alternative or additional functional relationships or physical connections may be present in a practical system.


The various system components discussed herein may include one or more of the following: a host server or other computing systems including a processor for processing digital data; a memory coupled to the processor for storing digital data; an input digitizer coupled to the processor for inputting digital data; an application program stored in the memory and accessible by the processor for directing processing of digital data by the processor; a display device coupled to the processor and memory for displaying information derived from digital data processed by the processor; and a plurality of databases. Various databases used herein may include: patient data such as family history, demography and environmental data, biological sample data, prior treatment and protocol data, patient clinical data, molecular profiling data of biological samples, data on therapeutic drug agents and/or investigative drugs, a gene library, a disease library, a drug library, patient tracking data, file management data, financial management data, billing data and/or like data useful in the operation of the system. As those skilled in the art will appreciate, user computer may include an operating system (e.g., Windows NT, 95/98/2000, OS2, UNIX, Linux, Solaris, MacOS, etc.) as well as various conventional support software and drivers typically associated with computers. The computer may include any suitable personal computer, network computer, workstation, minicomputer, mainframe or the like. User computer can be in a home or medical/business environment with access to a network. In an illustrative embodiment, access is through a network or the Internet through a commercially-available web-browser software package.


As used herein, the term “network” shall include any electronic communications means which incorporates both hardware and software components of such. Communication among the parties may be accomplished through any suitable communication channels, such as, for example, a telephone network, an extranet, an intranet, Internet, point of interaction device, personal digital assistant (e.g., Palm Pilot®, Blackberry®), cellular phone, kiosk, etc.), online communications, satellite communications, off-line communications, wireless communications, transponder communications, local area network (LAN), wide area network (WAN), networked or linked devices, keyboard, mouse and/or any suitable communication or data input modality. Moreover, although the system is frequently described herein as being implemented with TCP/IP communications protocols, the system may also be implemented using IPX, Appletalk, IP-6, NetBIOS, OSI or any number of existing or future protocols. If the network is in the nature of a public network, such as the Internet, it may be advantageous to presume the network to be insecure and open to eavesdroppers. Specific information related to the protocols, standards, and application software used in connection with the Internet is generally known to those skilled in the art and, as such, need not be detailed herein. See, for example, DILIP NAIK, INTERNET STANDARDS AND PROTOCOLS (1998); JAVA 2 COMPLETE, various authors, (Sybex 1999); DEBORAH RAY AND ERIC RAY, MASTERING HTML 4.0 (1997); and LOSHIN, TCP/IP CLEARLY EXPLAINED (1997) and DAVID GOURLEY AND BRIAN TOTTY, HTTP, THE DEFINITIVE GUIDE (2002), the contents of which are hereby incorporated by reference.


The various system components may be independently, separately or collectively suitably coupled to the network via data links which includes, for example, a connection to an Internet Service Provider (ISP) over the local loop as is typically used in connection with standard modem communication, cable modem, Dish networks, ISDN, Digital Subscriber Line (DSL), or various wireless communication methods, see, e.g., GILBERT HELD, UNDERSTANDING DATA COMMUNICATIONS (1996), which is hereby incorporated by reference. It is noted that the network may be implemented as other types of networks, such as an interactive television (ITV) network. Moreover, the system contemplates the use, sale or distribution of any goods, services or information over any network having similar functionality described herein.


As used herein, “transmit” may include sending electronic data from one system component to another over a network connection. Additionally, as used herein, “data” may include encompassing information such as commands, queries, files, data for storage, and the like in digital or any other form.


The system contemplates uses in association with web services, utility computing, pervasive and individualized computing, security and identity solutions, autonomic computing, commodity computing, mobility and wireless solutions, open source, biometrics, grid computing and/or mesh computing.


Any databases discussed herein may include relational, hierarchical, graphical, or object-oriented structure and/or any other database configurations. Common database products that may be used to implement the databases include DB2 by IBM (White Plains, N.Y.), various database products available from Oracle Corporation (Redwood Shores, Calif.), Microsoft Access or Microsoft SQL Server by Microsoft Corporation (Redmond, Wash.), or any other suitable database product. Moreover, the databases may be organized in any suitable manner, for example, as data tables or lookup tables. Each record may be a single file, a series of files, a linked series of data fields or any other data structure. Association of certain data may be accomplished through any desired data association technique such as those known or practiced in the art. For example, the association may be accomplished either manually or automatically. Automatic association techniques may include, for example, a database search, a database merge, GREP, AGREP, SQL, using a key field in the tables to speed searches, sequential searches through all the tables and files, sorting records in the file according to a known order to simplify lookup, and/or the like. The association step may be accomplished by a database merge function, for example, using a “key field” in pre-selected databases or data sectors.


More particularly, a “key field” partitions the database according to the high-level class of objects defined by the key field. For example, certain types of data may be designated as a key field in a plurality of related data tables and the data tables may then be linked on the basis of the type of data in the key field. The data corresponding to the key field in each of the linked data tables is preferably the same or of the same type. However, data tables having similar, though not identical, data in the key fields may also be linked by using AGREP, for example. In accordance with one embodiment, any suitable data storage technique may be used to store data without a standard format. Data sets may be stored using any suitable technique, including, for example, storing individual files using an ISO/IEC 7816-4 file structure; implementing a domain whereby a dedicated file is selected that exposes one or more elementary files containing one or more data sets; using data sets stored in individual files using a hierarchical filing system; data sets stored as records in a single file (including compression, SQL accessible, hashed via one or more keys, numeric, alphabetical by first tuple, etc.); Binary Large Object (BLOB); stored as ungrouped data elements encoded using ISO/IEC 7816-6 data elements; stored as ungrouped data elements encoded using ISO/IEC Abstract Syntax Notation (ASN.1) as in ISO/IEC 8824 and 8825; and/or other proprietary techniques that may include fractal compression methods, image compression methods, etc.


In one illustrative embodiment, the ability to store a wide variety of information in different formats is facilitated by storing the information as a BLOB. Thus, any binary information can be stored in a storage space associated with a data set. The BLOB method may store data sets as ungrouped data elements formatted as a block of binary via a fixed memory offset using either fixed storage allocation, circular queue techniques, or best practices with respect to memory management (e.g., paged memory, least recently used, etc.). By using BLOB methods, the ability to store various data sets that have different formats facilitates the storage of data by multiple and unrelated owners of the data sets. For example, a first data set which may be stored may be provided by a first party, a second data set which may be stored may be provided by an unrelated second party, and yet a third data set which may be stored, may be provided by a third party unrelated to the first and second party. Each of these three illustrative data sets may contain different information that is stored using different data storage formats and/or techniques. Further, each data set may contain subsets of data that also may be distinct from other subsets.


As stated above, in various embodiments, the data can be stored without regard to a common format. However, in one illustrative embodiment, the data set (e.g., BLOB) may be annotated in a standard manner when provided for manipulating the data. The annotation may comprise a short header, trailer, or other appropriate indicator related to each data set that is configured to convey information useful in managing the various data sets. For example, the annotation may be called a “condition header”, “header”, “trailer”, or “status”, herein, and may comprise an indication of the status of the data set or may include an identifier correlated to a specific issuer or owner of the data. Subsequent bytes of data may be used to indicate for example, the identity of the issuer or owner of the data, user, transaction/membership account identifier or the like. Each of these condition annotations are further discussed herein.


The data set annotation may also be used for other types of status information as well as various other purposes. For example, the data set annotation may include security information establishing access levels. The access levels may, for example, be configured to permit only certain individuals, levels of employees, companies, or other entities to access data sets, or to permit access to specific data sets based on the transaction, issuer or owner of data, user or the like. Furthermore, the security information may restrict/permit only certain actions such as accessing, modifying, and/or deleting data sets. In one example, the data set annotation indicates that only the data set owner or the user are permitted to delete a data set, various identified users may be permitted to access the data set for reading, and others are altogether excluded from accessing the data set. However, other access restriction parameters may also be used allowing various entities to access a data set with various permission levels as appropriate. The data, including the header or trailer may be received by a standalone interaction device configured to add, delete, modify, or augment the data in accordance with the header or trailer.


One skilled in the art will also appreciate that, for security reasons, any databases, systems, devices, servers or other components of the system may consist of any combination thereof at a single location or at multiple locations, wherein each database or system includes any of various suitable security features, such as firewalls, access codes, encryption, decryption, compression, decompression, and/or the like.


The computing unit of the web client may be further equipped with an Internet browser connected to the Internet or an intranet using standard dial-up, cable, DSL or any other Internet protocol known in the art. Transactions originating at a web client may pass through a firewall in order to prevent unauthorized access from users of other networks. Further, additional firewalls may be deployed between the varying components of CMS to further enhance security.


Firewall may include any hardware and/or software suitably configured to protect CMS components and/or enterprise computing resources from users of other networks. Further, a firewall may be configured to limit or restrict access to various systems and components behind the firewall for web clients connecting through a web server. Firewall may reside in varying configurations including Stateful Inspection, Proxy based and Packet Filtering among others. Firewall may be integrated within an web server or any other CMS components or may further reside as a separate entity.


The computers discussed herein may provide a suitable website or other Internet-based graphical user interface which is accessible by users. In one embodiment, the Microsoft Internet Information Server (IIS), Microsoft Transaction Server (MTS), and Microsoft SQL Server, are used in conjunction with the Microsoft operating system, Microsoft NT web server software, a Microsoft SQL Server database system, and a Microsoft Commerce Server. Additionally, components such as Access or Microsoft SQL Server, Oracle, Sybase, Informix MySQL, Interbase, etc., may be used to provide an Active Data Object (ADO) compliant database management system.


Any of the communications, inputs, storage, databases or displays discussed herein may be facilitated through a website having web pages. The term “web page” as it is used herein is not meant to limit the type of documents and applications that might be used to interact with the user. For example, a typical website might include, in addition to standard HTML documents, various forms, Java applets, JavaScript, active server pages (ASP), common gateway interface scripts (CGI), extensible markup language (XML), dynamic HTML, cascading style sheets (CSS), helper applications, plug-ins, and the like. A server may include a web service that receives a request from a web server, the request including a URL (yahoo.com/stockquotes/ge) and an IP address (123.56.789.234). The web server retrieves the appropriate web pages and sends the data or applications for the web pages to the IP address. Web services are applications that are capable of interacting with other applications over a communications means, such as the internet. Web services are typically based on standards or protocols such as XML, XSLT, SOAP, WSDL and UDDI. Web services methods are well known in the art, and are covered in many standard texts. See, e.g., ALEX NGHIEM, IT WEB SERVICES: A ROADMAP FOR THE ENTERPRISE (2003), hereby incorporated by reference.


The web-based clinical database for the system and method of the present invention preferably has the ability to upload and store clinical data files in native formats and is searchable on any clinical parameter. The database is also scalable and may use an EAV data model (metadata) to enter clinical annotations from any study for easy integration with other studies. In addition, the web-based clinical database is flexible and may be XML and XSLT enabled to be able to add user customized questions dynamically. Further, the database includes exportability to CDISC ODM.


Practitioners will also appreciate that there are a number of methods for displaying data within a browser-based document. Data may be represented as standard text or within a fixed list, scrollable list, drop-down list, editable text field, fixed text field, pop-up window, and the like. Likewise, there are a number of methods available for modifying data in a web page such as, for example, free text entry using a keyboard, selection of menu items, check boxes, option boxes, and the like.


The system and method may be described herein in terms of functional block components, screen shots, optional selections and various processing steps. It should be appreciated that such functional blocks may be realized by any number of hardware and/or software components configured to perform the specified functions. For example, the system may employ various integrated circuit components, e.g., memory elements, processing elements, logic elements, look-up tables, and the like, which may carry out a variety of functions under the control of one or more microprocessors or other control devices. Similarly, the software elements of the system may be implemented with any programming or scripting language such as C, C++, Macromedia Cold Fusion, Microsoft Active Server Pages, Java, COBOL, assembler, PERL, Visual Basic, SQL Stored Procedures, extensible markup language (XML), with the various algorithms being implemented with any combination of data structures, objects, processes, routines or other programming elements. Further, it should be noted that the system may employ any number of conventional techniques for data transmission, signaling, data processing, network control, and the like. Still further, the system could be used to detect or prevent security issues with a client-side scripting language, such as JavaScript, VB Script or the like. For a basic introduction of cryptography and network security, see any of the following references: (1) “Applied Cryptography: Protocols, Algorithms, And Source Code In C,” by Bruce Schneier, published by John Wiley & Sons (second edition, 1995); (2) “Java Cryptography” by Jonathan Knudson, published by O'Reilly & Associates (1998); (3) “Cryptography & Network Security: Principles & Practice” by William Stallings, published by Prentice Hall; all of which are hereby incorporated by reference.


As used herein, the term “end user”, “consumer”, “customer”, “client”, “treating physician”, “hospital”, or “business” may be used interchangeably with each other, and each shall mean any person, entity, machine, hardware, software or business. Each participant is equipped with a computing device in order to interact with the system and facilitate online data access and data input. The customer has a computing unit in the form of a personal computer, although other types of computing units may be used including laptops, notebooks, hand held computers, set-top boxes, cellular telephones, touch-tone telephones and the like. The owner/operator of the system and method of the present invention has a computing unit implemented in the form of a computer-server, although other implementations are contemplated by the system including a computing center shown as a main frame computer, a minicomputer, a PC server, a network of computers located in the same of different geographic locations, or the like. Moreover, the system contemplates the use, sale or distribution of any goods, services or information over any network having similar functionality described herein.


In one illustrative embodiment, each client customer may be issued an “account” or “account number”. As used herein, the account or account number may include any device, code, number, letter, symbol, digital certificate, smart chip, digital signal, analog signal, biometric or other identifier/indicia suitably configured to allow the consumer to access, interact with or communicate with the system (e.g., one or more of an authorization/access code, personal identification number (PIN), Internet code, other identification code, and/or the like). The account number may optionally be located on or associated with a charge card, credit card, debit card, prepaid card, embossed card, smart card, magnetic stripe card, bar code card, transponder, radio frequency card or an associated account. The system may include or interface with any of the foregoing cards or devices, or a fob having a transponder and RFID reader in RF communication with the fob. Although the system may include a fob embodiment, the invention is not to be so limited. Indeed, system may include any device having a transponder which is configured to communicate with RFID reader via RF communication. Typical devices may include, for example, a key ring, tag, card, cell phone, wristwatch or any such form capable of being presented for interrogation. Moreover, the system, computing unit or device discussed herein may include a “pervasive computing device,” which may include a traditionally non-computerized device that is embedded with a computing unit. The account number may be distributed and stored in any form of plastic, electronic, magnetic, radio frequency, wireless, audio and/or optical device capable of transmitting or downloading data from itself to a second device.


As will be appreciated by one of ordinary skill in the art, the system may be embodied as a customization of an existing system, an add-on product, upgraded software, a standalone system, a distributed system, a method, a data processing system, a device for data processing, and/or a computer program product. Accordingly, the system may take the form of an entirely software embodiment, an entirely hardware embodiment, or an embodiment combining aspects of both software and hardware. Furthermore, the system may take the form of a computer program product on a computer-readable storage medium having computer-readable program code means embodied in the storage medium. Any suitable computer-readable storage medium may be used, including hard disks, CD-ROM, optical storage devices, magnetic storage devices, and/or the like.


The system and method is described herein with reference to screen shots, block diagrams and flowchart illustrations of methods, apparatus (e.g., systems), and computer program products according to various embodiments. It will be understood that each functional block of the block diagrams and the flowchart illustrations, and combinations of functional blocks in the block diagrams and flowchart illustrations, respectively, can be implemented by computer program instructions.


These computer program instructions may be loaded onto a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions that execute on the computer or other programmable data processing apparatus create means for implementing the functions specified in the flowchart block or blocks. These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including instruction means which implement the function specified in the flowchart block or blocks. The computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer-implemented process such that the instructions which execute on the computer or other programmable apparatus provide steps for implementing the functions specified in the flowchart block or blocks.


Accordingly, functional blocks of the block diagrams and flowchart illustrations support combinations of means for performing the specified functions, combinations of steps for performing the specified functions, and program instruction means for performing the specified functions. It will also be understood that each functional block of the block diagrams and flowchart illustrations, and combinations of functional blocks in the block diagrams and flowchart illustrations, can be implemented by either special purpose hardware-based computer systems which perform the specified functions or steps, or suitable combinations of special purpose hardware and computer instructions. Further, illustrations of the process flows and the descriptions thereof may make reference to user windows, web pages, websites, web forms, prompts, etc. Practitioners will appreciate that the illustrated steps described herein may comprise in any number of configurations including the use of windows, web pages, web forms, popup windows, prompts and the like. It should be further appreciated that the multiple steps as illustrated and described may be combined into single web pages and/or windows but have been expanded for the sake of simplicity. In other cases, steps illustrated and described as single process steps may be separated into multiple web pages and/or windows but have been combined for simplicity.


Molecular Profiling Methods



FIG. 1 illustrates a block diagram of an illustrative embodiment of a system 10 for determining individualized medical intervention for a particular disease state that uses molecular profiling of a patient's biological specimen. System 10 includes a user interface 12, a host server 14 including a processor 16 for processing data, a memory 18 coupled to the processor, an application program 20 stored in the memory 18 and accessible by the processor 16 for directing processing of the data by the processor 16, a plurality of internal databases 22 and external databases 24, and an interface with a wired or wireless communications network 26 (such as the Internet, for example). System 10 may also include an input digitizer 28 coupled to the processor 16 for inputting digital data from data that is received from user interface 12.


User interface 12 includes an input device 30 and a display 32 for inputting data into system 10 and for displaying information derived from the data processed by processor 16. User interface 12 may also include a printer 34 for printing the information derived from the data processed by the processor 16 such as patient reports that may include test results for targets and proposed drug therapies based on the test results.


Internal databases 22 may include, but are not limited to, patient biological sample/specimen information and tracking, clinical data, patient data, patient tracking, file management, study protocols, patient test results from molecular profiling, and billing information and tracking. External databases 24 nay include, but are not limited to, drug libraries, gene libraries, disease libraries, and public and private databases such as UniGene, OMIM, GO, TIGR, GenBank, KEGG and Biocarta.


Various methods may be used in accordance with system 10. FIG. 2 shows a flowchart of an illustrative embodiment of a method 50 for determining individualized medical intervention for a particular disease state that uses molecular profiling of a patient's biological specimen that is non disease specific. In order to determine a medical intervention for a particular disease state using molecular profiling that is independent of disease lineage diagnosis (i.e. not single disease restricted), at least one test is performed for at least one target from a biological sample of a diseased patient in step 52. A target is defined as any molecular finding that may be obtained from molecular testing. For example, a target may include one or more genes, one or more gene expressed proteins, one or more molecular mechanisms, and/or combinations of such. For example, the expression level of a target can be determined by the analysis of mRNA levels or the target or gene, or protein levels of the gene. Tests for finding such targets may include, but are not limited, fluorescent in-situ hybridization (FISH), an in-situ hybridization (ISH), and other molecular tests known to those skilled in the art. PCR-based methods, such as real-time PCR or quantitative PCR can be used. Furthermore, microarray analysis, such as a comparative genomic hybridization (CGH) micro array, a single nucleotide polymorphism (SNP) microarray, a proteomic array, or antibody array analysis can also be used in the methods disclosed herein. In some embodiments, microarray analysis comprises identifying whether a gene is up-regulated or down-regulated relative to a reference with a significance of p<0.001. Tests or analyses of targets can also comprise immunohistochemical (IHC) analysis. In some embodiments, IHC analysis comprises determining whether 30% or more of a sample is stained, if the staining intensity is +2 or greater, or both.


Furthermore, the methods disclosed herein also including profiling more than one target. For example, the expression of a plurality of genes can be identified. Furthermore, identification of a plurality of targets in a sample can be by one method or by various means. For example, the expression of a first gene can be determined by one method and the expression level of a second gene determined by a different method. Alternatively, the same method can be used to detect the expression level of the first and second gene. For example, the first method can be IHC and the second by microarray analysis, such as detecting the gene expression of a gene.


In some embodiments, molecular profiling can also including identifying a genetic variant, such as a mutation, polymorphism (such as a SNP), deletion, or insertion of a target. For example, identifying a SNP in a gene can be determined by microarray analysis, real-time PCR, or sequencing. Other methods disclosed herein can also be used to identify variants of one or more targets.


Accordingly, one or more of the following may be performed: an IHC analysis in step 54, a microanalysis in step 56, and other molecular tests know to those skilled in the art in step 58.


Biological samples are obtained from diseased patients by taking a biopsy of a tumor, conducting minimally invasive surgery if no recent tumor is available, obtaining a sample of the patient's blood, or a sample of any other biological fluid including, but not limited to, cell extracts, nuclear extracts, cell lysates or biological products or substances of biological origin such as excretions, blood, sera, plasma, urine, sputum, tears, feces, saliva, membrane extracts, and the like.


In step 60, a determination is made as to whether one or more of the targets that were tested for in step 52 exhibit a change in expression compared to a normal reference for that particular target. In one illustrative method of the invention, an IHC analysis may be performed in step 54 and a determination as to whether any targets from the IHC analysis exhibit a change in expression is made in step 64 by determining whether 30% or more of the biological sample cells were 2 or greater staining for the particular target. It will be understood by those skilled in the art that there will be instances where +1 or greater staining will indicate a change in expression in that staining results may vary depending on the technician performing the test and type of target being tested. In another illustrative embodiment of the invention, a micro array analysis may be performed in step 56 and a determination as to whether any targets from the micro array analysis exhibit a change in expression is made in step 66 by identifying which targets are up-regulated or down-regulated by determining whether the fold change in expression for a particular target relative to a normal tissue of origin reference is significant at p<0.001. A change in expression may also be evidenced by an absence of one or more genes, gene expressed proteins, molecular mechanisms, or other molecular findings.


After determining which targets exhibit a change in expression in step 60, at least one non-disease specific agent is identified that interacts with each target having a changed expression in step 70. An agent may be any drug or compound having a therapeutic effect. A non-disease specific agent is a therapeutic drug or compound not previously associated with treating the patient's diagnosed disease that is capable of interacting with the target from the patient's biological sample that has exhibited a change in expression. Some of the non-disease specific agents that have been found to interact with specific targets found in different cancer patients are shown in Table 5 below.









TABLE 5







Illustrative target-drug associations









Patients
Target(s) Found
Treatment(s)





Advanced Pancreatic Cancer
HER 2/neu
Trastuzumab


Advanced Pancreatic Cancer
EGFR, HIF 1α
Cetuximab,




Sirolimus


Advanced Ovarian Cancer
ERCC3
Irofulven


Advanced Adenoid Cystic
Vitamin D receptors,
Calcitriol,


Carcinoma
Androgen receptors
Flutamide









Finally, in step 80, a patient profile report may be provided which includes the patient's test results for various targets and any proposed therapies based on those results. An illustrative patient profile report 100 is shown in FIGS. 3A-3D. Patient profile report 100 shown in FIG. 3A identifies the targets tested 102, those targets tested that exhibited significant changes in expression 104, and proposed non-disease specific agents for interacting with the targets 106. Patient profile report 100 shown in FIG. 3B identifies the results 108 of immunohistochemical analysis for certain gene expressed proteins 110 and whether a gene expressed protein is a molecular target 112 by determining whether 30% or more of the tumor cells were +2 or greater staining. Report 100 also identifies immunohistochemical tests that were not performed 114. Patient profile report 100 shown in FIG. 3C identifies the genes analyzed 116 with a micro array analysis and whether the genes were under expressed or over expressed 118 compared to a reference. Finally, patient profile report 100 shown in FIG. 3D identifies the clinical history 120 of the patient and the specimens that were submitted 122 from the patient. Molecular profiling techniques can be performed anywhere, e.g., a foreign country, and the results sent by network to an appropriate party, e.g., the patient, a physician, lab or other party located remotely.



FIG. 4 shows a flowchart of an illustrative embodiment of a method 200 for identifying a drug therapy/agent capable of interacting with a target. In step 202, a molecular target is identified which exhibits a change in expression in a number of diseased individuals. Next, in step 204, a drug therapy/agent is administered to the diseased individuals. After drug therapy/agent administration, any changes in the molecular target identified in step 202 are identified in step 206 in order to determine if the drug therapy/agent administered in step 204 interacts with the molecular targets identified in step 202. If it is determined that the drug therapy/agent administered in step 204 interacts with a molecular target identified in step 202, the drug therapy/agent may be approved for treating patients exhibiting a change in expression of the identified molecular target instead of approving the drug therapy/agent for a particular disease.



FIGS. 5-14 are flowcharts and diagrams illustrating various parts of an information-based personalized medicine drug discovery system and method in accordance with the present invention. FIG. 5 is a diagram showing an illustrative clinical decision support system of the information-based personalized medicine drug discovery system and method of the present invention. Data obtained through clinical research and clinical care such as clinical trial data, biomedical/molecular imaging data, genomics/proteomics/chemical library/literature/expert curation, biospecimen tracking/LIMS, family history/environmental records, and clinical data are collected and stored as databases and datamarts within a data warehouse. FIG. 6 is a diagram showing the flow of information through the clinical decision support system of the information-based personalized medicine drug discovery system and method of the present invention using web services. A user interacts with the system by entering data into the system via form-based entry/upload of data sets, formulating queries and executing data analysis jobs, and acquiring and evaluating representations of output data. The data warehouse in the web based system is where data is extracted, transformed, and loaded from various database systems. The data warehouse is also where common formats, mapping and transformation occurs. The web based system also includes datamarts which are created based on data views of interest.


A flow chart of an illustrative clinical decision support system of the information-based personalized medicine drug discovery system and method of the present invention is shown in FIG. 7. The clinical information management system includes the laboratory information management system and the medical information contained in the data warehouses and databases includes medical information libraries, such as drug libraries, gene libraries, and disease libraries, in addition to literature text mining. Both the information management systems relating to particular patients and the medical information databases and data warehouses come together at a data junction center where diagnostic information and therapeutic options can be obtained. A financial management system may also be incorporated in the clinical decision support system of the information-based personalized medicine drug discovery system and method of the present invention.



FIG. 8 is a diagram showing an illustrative biospecimen tracking and management system which may be used as part of the information-based personalized medicine drug discovery system and method of the present invention. FIG. 8 shows two host medical centers which forward specimens to a tissue/blood bank. The specimens may go through laboratory analysis prior to shipment. Research may also be conducted on the samples via micro array, genotyping, and proteomic analysis. This information can be redistributed to the tissue/blood bank. FIG. 9 depicts a flow chart of an illustrative biospecimen tracking and management system which may be used with the information-based personalized medicine drug discovery system and method of the present invention. The host medical center obtains samples from patients and then ships the patient samples to a molecular profiling laboratory which may also perform RNA and DNA isolation and analysis.


A diagram showing a method for maintaining a clinical standardized vocabulary for use with the information-based personalized medicine drug discovery system and method of the present invention is shown in FIG. 10. FIG. 10 illustrates how physician observations and patient information associated with one physician's patient may be made accessible to another physician to enable the other physician to use the data in making diagnostic and therapeutic decisions for their patients.



FIG. 11 shows a schematic of an illustrative microarray gene expression database which may be used as part of the information-based personalized medicine drug discovery system and method of the present invention. The micro array gene expression database includes both external databases and internal databases which can be accessed via the web based system. External databases may include, but are not limited to, UniGene, GO, TIGR, GenBank, KEGG. The internal databases may include, but are not limited to, tissue tracking, LIMS, clinical data, and patient tracking. FIG. 12 shows a diagram of an illustrative micro array gene expression database data warehouse which may be used as part of the information-based personalized medicine drug discovery system and method of the present invention. Laboratory data, clinical data, and patient data may all be housed in the micro array gene expression database data warehouse and the data may in turn be accessed by public/private release and used by data analysis tools.


Another schematic showing the flow of information through an information-based personalized medicine drug discovery system and method of the present invention is shown in FIG. 13. Like FIG. 7, the schematic includes clinical information management, medical and literature information management, and financial management of the information-based personalized medicine drug discovery system and method of the present invention. FIG. 14 is a schematic showing an illustrative network of the information-based personalized medicine drug discovery system and method of the present invention. Patients, medical practitioners, host medical centers, and labs all share and exchange a variety of information in order to provide a patient with a proposed therapy or agent based on various identified targets.



FIGS. 15-25 are computer screen print outs associated with various parts of the information-based personalized medicine drug discovery system and method shown in FIGS. 5-14. FIGS. 15 and 16 show computer screens where physician information and insurance company information is entered on behalf of a client. FIGS. 17-19 show computer screens in which information can be entered for ordering analysis and tests on patient samples.



FIG. 20 is a computer screen showing micro array analysis results of specific genes tested with patient samples. This information and computer screen is similar to the information detailed in the patient profile report shown in FIG. 3C. FIG. 22 is a computer screen that shows immunohistochemistry test results for a particular patient for various genes. This information is similar to the information contained in the patient profile report shown in FIG. 3B.



FIG. 21 is a computer screen showing selection options for finding particular patients, ordering tests and/or results, issuing patient reports, and tracking current cases/patients.



FIG. 23 is a computer screen which outlines some of the steps for creating a patient profile report as shown in FIGS. 3A through 3D. FIG. 24 shows a computer screen for ordering an immunohistochemistry test on a patient sample and FIG. 25 shows a computer screen for entering information regarding a primary tumor site for micro array analysis. It will be understood by those skilled in the art that any number and variety of computer screens may be used to enter the information necessary for using the information-based personalized medicine drug discovery system and method of the present invention and to obtain information resulting from using the information-based personalized medicine drug discovery system and method of the present invention.



FIGS. 26-31 represent tables that show the frequency of a significant change in expression of certain genes and/or gene expressed proteins by tumor type, i.e. the number of times that a gene and/or gene expressed protein was flagged as a target by tumor type as being significantly overexpressed or underexpressed. The tables show the total number of times a gene and/or gene expressed protein was overexpressed or underexpressed in a particular tumor type and whether the change in expression was determined by immunohistochemistry analysis (FIG. 26, FIG. 28) or microarray analysis (FIGS. 27, 30). The tables also identify the total number of times an overexpression of any gene expressed protein occurred in a particular tumor type using immunohistochemistry and the total number of times an overexpression or underexpression of any gene occurred in a particular tumor type using gene microarray analysis.


The systems of the invention can be used to automate the steps of identifying a molecular profile to assess a cancer. In an aspect, the invention provides a method of generating a report comprising a molecular profile. The method comprises: performing a search on an electronic medium to obtain a data set, wherein the data set comprises a plurality of scientific publications corresponding to plurality of cancer biomarkers; and analyzing the data set to identify a rule set linking a characteristic of each of the plurality of cancer biomarkers with an expected benefit of a plurality of treatment options, thereby identifying the cancer biomarkers included within a molecular profile. The method can further comprise performing molecular profiling on a sample from a subject to assess the characteristic of each of the plurality of cancer biomarkers, and compiling a report comprising the assessed characteristics into a list, thereby generating a report that identifies a molecular profile for the sample. The report can further comprise a list describing the expected benefit of the plurality of treatment options based on the assessed characteristics, thereby identifying candidate treatment options for the subject. The sample from the subject may comprise cancer cells. The cancer can be any cancer disclosed herein or known in the art.


The characteristic of each of the plurality of cancer biomarkers can be any useful characteristic for molecular profiling as disclosed herein or known in the art. Such characteristics include without limitation mutations (point mutations, insertions, deletions, rearrangements, etc), epigenetic modifications, copy number, nucleic acid or protein expression levels, post-translational modifications, and the like.


In an embodiment, the method further comprises identifying a priority list as amongst said plurality of cancer biomarkers. The priority list can be sorted according to any appropriate priority criteria. In an embodiment, the priority list is sorted according to strength of evidence in the plurality of scientific publications linking the cancer biomarkers to the expected benefit. In another embodiment, the priority list is sorted according to strength of the expected benefit. In still another embodiment, the priority list is sorted according to strength of the expected benefit. One of skill will appreciate that the priority list can be sorted according to a combination of these or other appropriate priority criteria. The candidate treatment options can be sorted according to the priority list, thereby identifying a ranked list of treatment options for the subject.


The candidate treatment options can be categorized by expected benefit to the subject. For example, the candidate treatment options can categorized as those that are expected to provide benefit, those that are not expected to provide benefit, or those whose expected benefit cannot be determined.


The candidate treatment options can include regulatory approved and/or on-compendium treatments for the cancer. The candidate treatment options can include regulatory approved but off-label treatments for the cancer, such as a treatment that has been approved for a cancer of another lineage. The candidate treatment options can include treatments that are under development, such as in ongoing clinical trials. The report may identify treatments as approved, on- or off-compendium, in clinical trials, and the like.


In some embodiments, the method further comprises analyzing the data set to select a laboratory technique to assess the characteristics of the biomarkers, thereby designating a technique that can be used to assess the characteristic for each of the plurality of biomarkers. In other embodiments, the laboratory technique is chosen based on its applicability to assess the characteristic of each of the biomarkers. The laboratory techniques can be those disclosed herein, including without limitation FISH for gene copy number or mutation analysis, IHC for protein expression levels, RT-PCR for mutation or expression analysis, sequencing or RFLP for mutation analysis. Sequencing includes any useful sequencing method disclosed herein or known in the art, including without limitation Sanger sequencing, pyrosequencing, or next generation sequencing methods.


In a related aspect, the invention provides a method comprising: performing a search on an electronic medium to obtain a data set comprising a plurality of scientific publications corresponding to plurality of cancer biomarkers; analyzing the data set to select a method to assess a characteristic of each of the cancer biomarkers, thereby designating a method for characterizing each of the biomarkers; further analyzing the data set to select a rule set that identifies a priority list as amongst the biomarkers; performing tumor profiling on a tumor sample from a subject comprising the selected methods to determine the status of the characteristic of each of the biomarkers; and compiling the status in a report according to said priority list; thereby generating a report that identifies a tumor profile.


Molecular Profiling Targets


The present invention provides methods and systems for analyzing diseased tissue using molecular profiling as previously described above. Because the methods rely on analysis of the characteristics of the tumor under analysis, the methods can be applied in for any tumor or any stage of disease, such an advanced stage of disease or a metastatic tumor of unknown origin. As described herein, a tumor or cancer sample is analyzed for molecular characteristics in order to predict or identify a candidate therapeutic treatment. The molecular characteristics can include the expression of genes or gene products, assessment of gene copy number, or mutational analysis. Any relevant determinable characteristic that can assist in prediction or identification of a candidate therapeutic can be included within the methods of the invention.


The biomarker patterns or biomarker signature sets can be determined for tumor types, diseased tissue types, or diseased cells including without limitation adipose, adrenal cortex, adrenal gland, adrenal gland—medulla, appendix, bladder, blood vessel, bone, bone cartilage, brain, breast, cartilage, cervix, colon, colon sigmoid, dendritic cells, skeletal muscle, endometrium, esophagus, fallopian tube, fibroblast, gallbladder, kidney, larynx, liver, lung, lymph node, melanocytes, mesothelial lining, myoepithelial cells, osteoblasts, ovary, pancreas, parotid, prostate, salivary gland, sinus tissue, skeletal muscle, skin, small intestine, smooth muscle, stomach, synovium, joint lining tissue, tendon, testis, thymus, thyroid, uterus, and uterus corpus.


The methods of the present invention can be used for selecting a treatment of any cancer or tumor type, including but not limited to breast cancer (including HER2+ breast cancer, HER2− breast cancer, ER/PR+, HER2− breast cancer, or triple negative breast cancer), pancreatic cancer, cancer of the colon and/or rectum, leukemia, skin cancer, bone cancer, prostate cancer, liver cancer, lung cancer, brain cancer, cancer of the larynx, gallbladder, parathyroid, thyroid, adrenal, neural tissue, head and neck, stomach, bronchi, kidneys, basal cell carcinoma, squamous cell carcinoma of both ulcerating and papillary type, metastatic skin carcinoma, osteo sarcoma, Ewing's sarcoma, veticulum cell sarcoma, myeloma, giant cell tumor, small-cell lung tumor, islet cell carcinoma, primary brain tumor, acute and chronic lymphocytic and granulocytic tumors, hairy-cell tumor, adenoma, hyperplasia, medullary carcinoma, pheochromocytoma, mucosal neuroma, intestinal ganglioneuroma, hyperplastic corneal nerve tumor, marfanoid habitus tumor, Wilm's tumor, seminoma, ovarian tumor, leiomyoma, cervical dysplasia and in situ carcinoma, neuroblastoma, retinoblastoma, soft tissue sarcoma, malignant carcinoid, topical skin lesion, mycosis fungoides, rhabdomyosarcoma, Kaposi's sarcoma, osteogenic and other sarcoma, malignant hypercalcemia, renal cell tumor, polycythermia vera, adenocarcinoma, glioblastoma multiforma, leukemias, lymphomas, malignant melanomas, and epidermoid carcinomas. The cancer or tumor can comprise, without limitation, a carcinoma, a sarcoma, a lymphoma or leukemia, a germ cell tumor, a blastoma, or other cancers. Carcinomas that can be assessed using the subject methods include without limitation epithelial neoplasms, squamous cell neoplasms, squamous cell carcinoma, basal cell neoplasms basal cell carcinoma, transitional cell papillomas and carcinomas, adenomas and adenocarcinomas (glands), adenoma, adenocarcinoma, linitis plastica insulinoma, glucagonoma, gastrinoma, vipoma, cholangiocarcinoma, hepatocellular carcinoma, adenoid cystic carcinoma, carcinoid tumor of appendix, prolactinoma, oncocytoma, hurthle cell adenoma, renal cell carcinoma, grawitz tumor, multiple endocrine adenomas, endometrioid adenoma, adnexal and skin appendage neoplasms, mucoepidermoid neoplasms, cystic, mucinous and serous neoplasms, cystadenoma, pseudomyxoma peritonei, ductal, lobular and medullary neoplasms, acinar cell neoplasms, complex epithelial neoplasms, warthin's tumor, thymoma, specialized gonadal neoplasms, sex cord stromal tumor, thecoma, granulosa cell tumor, arrhenoblastoma, sertoli leydig cell tumor, glomus tumors, paraganglioma, pheochromocytoma, glomus tumor, nevi and melanomas, melanocytic nevus, malignant melanoma, melanoma, nodular melanoma, dysplastic nevus, lentigo maligna melanoma, superficial spreading melanoma, and malignant acral lentiginous melanoma. Sarcoma that can be assessed using the subject methods include without limitation Askin's tumor, botryodies, chondrosarcoma, Ewing's sarcoma, malignant hemangio endothelioma, malignant schwannoma, osteosarcoma, soft tissue sarcomas including: alveolar soft part sarcoma, angiosarcoma, cystosarcoma phyllodes, dermatofibrosarcoma, desmoid tumor, desmoplastic small round cell tumor, epithelioid sarcoma, extraskeletal chondrosarcoma, extraskeletal osteosarcoma, fibrosarcoma, hemangiopericytoma, hemangiosarcoma, kaposi's sarcoma, leiomyosarcoma, liposarcoma, lymphangiosarcoma, lymphosarcoma, malignant fibrous histiocytoma, neurofibrosarcoma, rhabdomyosarcoma, and synovialsarcoma. Lymphoma and leukemia that can be assessed using the subject methods include without limitation chronic lymphocytic leukemia/small lymphocytic lymphoma, B-cell prolymphocytic leukemia, lymphoplasmacytic lymphoma (such as waldenström macroglobulinemia), splenic marginal zone lymphoma, plasma cell myeloma, plasmacytoma, monoclonal immunoglobulin deposition diseases, heavy chain diseases, extranodal marginal zone B cell lymphoma, also called malt lymphoma, nodal marginal zone B cell lymphoma (nmzl), follicular lymphoma, mantle cell lymphoma, diffuse large B cell lymphoma, mediastinal (thymic) large B cell lymphoma, intravascular large B cell lymphoma, primary effusion lymphoma, burkitt lymphoma/leukemia, T cell prolymphocytic leukemia, T cell large granular lymphocytic leukemia, aggressive NK cell leukemia, adult T cell leukemia/lymphoma, extranodal NK/T cell lymphoma, nasal type, enteropathy-type T cell lymphoma, hepatosplenic T cell lymphoma, blastic NK cell lymphoma, mycosis fungoides/sezary syndrome, primary cutaneous CD30-positive T cell lymphoproliferative disorders, primary cutaneous anaplastic large cell lymphoma, lymphomatoid papulosis, angioimmunoblastic T cell lymphoma, peripheral T cell lymphoma, unspecified, anaplastic large cell lymphoma, classical Hodgkin lymphomas (nodular sclerosis, mixed cellularity, lymphocyte-rich, lymphocyte depleted or not depleted), and nodular lymphocyte-predominant Hodgkin lymphoma. Germ cell tumors that can be assessed using the subject methods include without limitation germinoma, dysgerminoma, seminoma, nongerminomatous germ cell tumor, embryonal carcinoma, endodermal sinus turmor, choriocarcinoma, teratoma, polyembryoma, and gonadoblastoma. Blastoma includes without limitation nephroblastoma, medulloblastoma, and retinoblastoma. Other cancers include without limitation labial carcinoma, larynx carcinoma, hypopharynx carcinoma, tongue carcinoma, salivary gland carcinoma, gastric carcinoma, adenocarcinoma, thyroid cancer (medullary and papillary thyroid carcinoma), renal carcinoma, kidney parenchyma carcinoma, cervix carcinoma, uterine corpus carcinoma, endometrium carcinoma, chorion carcinoma, testis carcinoma, urinary carcinoma, melanoma, brain tumors such as glioblastoma, astrocytoma, meningioma, medulloblastoma and peripheral neuroectodermal tumors, gall bladder carcinoma, bronchial carcinoma, multiple myeloma, basalioma, teratoma, retinoblastoma, choroidea melanoma, seminoma, rhabdomyosarcoma, craniopharyngeoma, osteosarcoma, chondrosarcoma, myosarcoma, liposarcoma, fibrosarcoma, Ewing sarcoma, and plasmocytoma.


In a further embodiment, the cancer may be a lung cancer including non-small cell lung cancer and small cell lung cancer (including small cell carcinoma (oat cell cancer), mixed small cell/large cell carcinoma, and combined small cell carcinoma), colon cancer, breast cancer, prostate cancer, liver cancer, pancreas cancer, brain cancer, kidney cancer, ovarian cancer, stomach cancer, skin cancer, bone cancer, gastric cancer, breast cancer, pancreatic cancer, glioma, glioblastoma, hepatocellular carcinoma, papillary renal carcinoma, head and neck squamous cell carcinoma, leukemia, lymphoma, myeloma, or a solid tumor.


In embodiments, the cancer comprises an acute lymphoblastic leukemia; acute myeloid leukemia; adrenocortical carcinoma; AIDS-related cancers; AIDS-related lymphoma; anal cancer; appendix cancer; astrocytomas; atypical teratoid/rhabdoid tumor; basal cell carcinoma; bladder cancer; brain stem glioma; brain tumor (including brain stem glioma, central nervous system atypical teratoid/rhabdoid tumor, central nervous system embryonal tumors, astrocytomas, craniopharyngioma, ependymoblastoma, ependymoma, medulloblastoma, medulloepithelioma, pineal parenchymal tumors of intermediate differentiation, supratentorial primitive neuroectodermal tumors and pineoblastoma); breast cancer; bronchial tumors; Burkitt lymphoma; cancer of unknown primary site; carcinoid tumor; carcinoma of unknown primary site; central nervous system atypical teratoid/rhabdoid tumor; central nervous system embryonal tumors; cervical cancer; childhood cancers; chordoma; chronic lymphocytic leukemia; chronic myelogenous leukemia; chronic myeloproliferative disorders; colon cancer; colorectal cancer; craniopharyngioma; cutaneous T-cell lymphoma; endocrine pancreas islet cell tumors; endometrial cancer; ependymoblastoma; ependymoma; esophageal cancer; esthesioneuroblastoma; Ewing sarcoma; extracranial germ cell tumor; extragonadal germ cell tumor; extrahepatic bile duct cancer; gallbladder cancer; gastric (stomach) cancer; gastrointestinal carcinoid tumor; gastrointestinal stromal cell tumor; gastrointestinal stromal tumor (GIST); gestational trophoblastic tumor; glioma; hairy cell leukemia; head and neck cancer; heart cancer; Hodgkin lymphoma; hypopharyngeal cancer; intraocular melanoma; islet cell tumors; Kaposi sarcoma; kidney cancer; Langerhans cell histiocytosis; laryngeal cancer; lip cancer; liver cancer; malignant fibrous histiocytoma bone cancer; medulloblastoma; medulloepithelioma; melanoma; Merkel cell carcinoma; Merkel cell skin carcinoma; mesothelioma; metastatic squamous neck cancer with occult primary; mouth cancer; multiple endocrine neoplasia syndromes; multiple myeloma; multiple myeloma/plasma cell neoplasm; mycosis fungoides; myelodysplastic syndromes; myeloproliferative neoplasms; nasal cavity cancer; nasopharyngeal cancer; neuroblastoma; Non-Hodgkin lymphoma; nonmelanoma skin cancer; non-small cell lung cancer; oral cancer; oral cavity cancer; oropharyngeal cancer; osteosarcoma; other brain and spinal cord tumors; ovarian cancer; ovarian epithelial cancer; ovarian germ cell tumor; ovarian low malignant potential tumor; pancreatic cancer; papillomatosis; paranasal sinus cancer; parathyroid cancer; pelvic cancer; penile cancer; pharyngeal cancer; pineal parenchymal tumors of intermediate differentiation; pineoblastoma; pituitary tumor; plasma cell neoplasm/multiple myeloma; pleuropulmonary blastoma; primary central nervous system (CNS) lymphoma; primary hepatocellular liver cancer; prostate cancer; rectal cancer; renal cancer; renal cell (kidney) cancer; renal cell cancer; respiratory tract cancer; retinoblastoma; rhabdomyosarcoma; salivary gland cancer; Sézary syndrome; small cell lung cancer; small intestine cancer; soft tissue sarcoma; squamous cell carcinoma; squamous neck cancer; stomach (gastric) cancer; supratentorial primitive neuroectodermal tumors; T-cell lymphoma; testicular cancer; throat cancer; thymic carcinoma; thymoma; thyroid cancer; transitional cell cancer; transitional cell cancer of the renal pelvis and ureter; trophoblastic tumor; ureter cancer; urethral cancer; uterine cancer; uterine sarcoma; vaginal cancer; vulvar cancer; Waldenström macroglobulinemia; or Wilm's tumor.


The methods of the invention can be used to determine biomarker patterns or biomarker signature sets in a number of tumor types, diseased tissue types, or diseased cells including accessory, sinuses, middle and inner ear, adrenal glands, appendix, hematopoietic system, bones and joints, spinal cord, breast, cerebellum, cervix uteri, connective and soft tissue, corpus uteri, esophagus, eye, nose, eyeball, fallopian tube, extrahepatic bile ducts, other mouth, intrahepatic bile ducts, kidney, appendix-colon, larynx, lip, liver, lung and bronchus, lymph nodes, cerebral, spinal, nasal cartilage, excl. retina, eye, nos, oropharynx, other endocrine glands, other female genital, ovary, pancreas, penis and scrotum, pituitary gland, pleura, prostate gland, rectum renal pelvis, ureter, peritonem, salivary gland, skin, small intestine, stomach, testis, thymus, thyroid gland, tongue, unknown, urinary bladder, uterus, nos, vagina & labia, and vulva, nos.


In some embodiments, the molecular profiling methods are used to identify a treatment for a cancer of unknown primary (CUP). Approximately 40,000 CUP cases are reported annually in the US. Most of these are metastatic and/or poorly differentiated tumors. Because molecular profiling can identify a candidate treatment depending only upon the diseased sample, the methods of the invention can be used in the CUP setting. Moreover, molecular profiling can be used to create signatures of known tumors, which can then be used to classify a CUP and identify its origin. In an aspect, the invention provides a method of identifying the origin of a CUP, the method comprising performing molecular profiling on a panel of diseased samples to determine a panel of molecular profiles that correlate with the origin of each diseased sample, performing molecular profiling on a CUP sample, and correlating the molecular profile of the CUP sample with the molecular profiling of the panel of diseased samples, thereby identifying the origin of the CUP sample. The identification of the origin of the CUP sample can be made by matching the molecular profile of the CUP sample with the molecular profiles that correlate most closely from the panel of disease samples. The molecular profiling can use any of the techniques described herein, e.g., IHC, FISH, microarray and sequencing. The diseased samples and CUP samples can be derived from a patient sample, e.g., a biopsy sample, including a fine needle biopsy. In one embodiment, DNA microarray and IHC profiling are performed on the panel of diseased samples, DNA microarray is performed on the CUP samples, and then IHC is performed on the CUP sample for a subset of the most informative genes as indicated by the DNA microarray analysis. This approach can identify the origin of the CUP sample while avoiding the expense of performing unnecessary IHC testing. The IHC can be used to confirm the microarray findings.


The biomarker patterns or biomarker signature sets of the cancer or tumor can be used to determine a therapeutic agent or therapeutic protocol that is capable of interacting with the biomarker pattern or signature set. For example, with advanced breast cancer, immunohistochemistry analysis can be used to determine one or more gene expressed proteins that are overexpressed. Accordingly, a biomarker pattern or biomarker signature set can be identified for advanced stage breast cancer and a therapeutic agent or therapeutic protocol can be identified which is capable of interacting with the biomarker pattern or signature set.


These examples of biomarker patterns or biomarker signature sets for advanced stage breast cancer are just one example of the extensive number of biomarker patterns or biomarker signature sets for a number of advanced stage diseases or cancers that can be identified from the tables depicted in FIGS. 26-31. In addition, a number of non disease specific therapies or therapeutic protocols may be identified for treating patients with these biomarker patterns or biomarker signature sets by using method steps of the present invention described above such as depicted in FIGS. 1-2 and FIGS. 5-14.


The biomarker patterns and/or biomarker signature sets disclosed in the table depicted in FIGS. 26 and 28, and the tables depicted in FIGS. 27 and 30 may be used for a number of purposes including, but not limited to, specific cancer/disease detection, specific cancer/disease treatment, and identification of new drug therapies or protocols for specific cancers/diseases. The biomarker patterns and/or biomarker signature sets disclosed in the table depicted in FIGS. 26 and 28, and the tables depicted in FIGS. 27 and 30 can also represent drug resistant expression profiles for the specific tumor type or cancer type. The biomarker patterns and/or biomarker signature sets disclosed in the table depicted in FIGS. 26 and 28, and the tables depicted in FIGS. 27 and 30 represent advanced stage drug resistant profiles.


The biomarker patterns and/or biomarker signature sets can comprise at least one biomarker. In yet other embodiments, the biomarker patterns or signature sets can comprise at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 biomarkers. In some embodiments, the biomarker signature sets or biomarker patterns can comprise at least 15, 20, 30, 40, 50, or 60 biomarkers. In some embodiments, the biomarker signature sets or biomarker patterns can comprise at least 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10,000, 15,000, 20,000, 25,000, 30,000, 35,000, 40,000, 45,000 or 50,000 biomarkers. Analysis of the one or more biomarkers can be by one or more methods. For example, analysis of 2 biomarkers can be performed using microarrays. Alternatively, one biomarker may be analyzed by IHC and another by microarray. Any such combinations of methods and biomarkers are contemplated herein.


The one or more biomarkers can be selected from the group consisting of, but not limited to: Her2/Neu, ER, PR, c-kit, EGFR, MLH1, MSH2, CD20, p53, Cyclin D1, bcl2, COX-2, Androgen receptor, CD52, PDGFR, AR, CD25, VEGF, HSP90, PTEN, RRM1, SPARC, Survivin, TOP2A, BCL2, HIF1A, AR, ESR1, PDGFRA, KIT, PDGFRB, CDW52, ZAP70, PGR, SPARC, GART, GSTP1, NFKBIA, MSH2, TXNRD1, HDAC1, PDGFC, PTEN, CD33, TYMS, RXRB, ADA, TNF, ERCC3, RAF1, VEGF, TOP1, TOP2A, BRCA2, TK1, FOLR2, TOP2B, MLH1, IL2RA, DNMT1, HSPCA, ERBR2, ERBB2, SSTR1, VHL, VDR, PTGS2, POLA, CES2, EGFR, OGFR, ASNS, NFKB2, RARA, MS4A1, DCK, DNMT3A, EREG, Epiregulin, FOLR1, GNRH1, GNRHR1, FSHB, FSHR, FSHPRH1, folate receptor, HGF, HIG1, IL13RA1, LTB, ODC1, PPARG, PPARGC1, Lymphotoxin Beta Receptor, Myc, Topoisomerase II, TOPO2B, TXN, VEGFC, ACE2, ADH1C, ADH4, AGT, AREG, CA2, CDK2, caveolin, NFKB1, ASNS, BDCA1, CD52, DHFR, DNMT3B, EPHA2, FLT1, HSP90AA1, KDR, LCK, MGMT, RRM1, RRM2, RRM2B, RXRG, SRC, SSTR2, SSTR3, SSTR4, SSTR5, VEGFA, or YES1.


For example, a biological sample from an individual can be analyzed to determine a biomarker pattern or biomarker signature set that comprises a biomarker such as HSP90, Survivin, RRM1, SSTRS3, DNMT3B, VEGFA, SSTR4, RRM2, SRC, RRM2B, HSP90AA1, STR2, FLT1, SSTR5, YES1, BRCA1, RRM1, DHFR, KDR, EPHA2, RXRG, or LCK. In other embodiments, the biomarker SPARC, HSP90, TOP2A, PTEN, Survivin, or RRM1 forms part of the biomarker pattern or biomarker signature set. In yet other embodiments, the biomarker MGMT, SSTRS3, DNMT3B, VEGFA, SSTR4, RRM2, SRC, RRM2B, HSP90AA1, STR2, FLT1, SSTR5, YES1, BRCA1, RRM1, DHFR, KDR, EPHA2, RXRG, CD52, or LCK is included in a biomarker pattern or biomarker signature set. In still other embodiments, the biomarker hENT1, cMet, P21, PARP-1, TLE3 or IGF1R is included in a biomarker pattern or biomarker signature set.


The expression level of HSP90, Survivin, RRM1, SSTRS3, DNMT3B, VEGFA, SSTR4, RRM2, SRC, RRM2B, HSP90AA1, STR2, FLT1, SSTR5, YES1, BRCA1, RRM1, DHFR, KDR, EPHA2, RXRG, or LCK can be determined and used to identify a therapeutic for an individual. The expression level of the biomarker can be used to form a biomarker pattern or biomarker signature set. Determining the expression level can be by analyzing the levels of mRNA or protein, such as by microarray analysis or IHC. In some embodiments, the expression level of a biomarker is performed by IHC, such as for SPARC, TOP2A, or PTEN, and used to identify a therapeutic for an individual. The results of the IHC can be used to form a biomarker pattern or biomarker signature set. In yet other embodiments, a biological sample from an individual or subject is analyzed for the expression level of CD52, such as by determining the mRNA expression level by methods including, but not limited to, microarray analysis. The expression level of CD52 can be used to identify a therapeutic for the individual. The expression level of CD52 can be used to form a biomarker pattern or biomarker signature set. In still other embodiments, the biomarkers hENT1, cMet, P21, PARP-1, TLE3 and/or IGF1R are assessed to identify a therapeutic for the individual.


As described herein, the molecular profiling of one or more targets can be used to determine or identify a therapeutic for an individual. For example, the expression level of one or more biomarkers can be used to determine or identify a therapeutic for an individual. The one or more biomarkers, such as those disclosed herein, can be used to form a biomarker pattern or biomarker signature set, which is used to identify a therapeutic for an individual. In some embodiments, the therapeutic identified is one that the individual has not previously been treated with. For example, a reference biomarker pattern has been established for a particular therapeutic, such that individuals with the reference biomarker pattern will be responsive to that therapeutic. An individual with a biomarker pattern that differs from the reference, for example the expression of a gene in the biomarker pattern is changed or different from that of the reference, would not be administered that therapeutic. In another example, an individual exhibiting a biomarker pattern that is the same or substantially the same as the reference is advised to be treated with that therapeutic. In some embodiments, the individual has not previously been treated with that therapeutic and thus a new therapeutic has been identified for the individual.


Molecular profiling according to the invention can take on a biomarker-centric or a therapeutic-centric point of view. Although the approaches are not mutually exclusive, the biomarker-centric approach focuses on sets of biomarkers that are expected to be informative for a tumor of a given tumor lineage, whereas the therapeutic-centric point approach identifies candidate therapeutics using biomarker panels that are lineage independent. In a biomarker-centric view, panels of specific biomarkers are run on different tumor types. See FIG. 47A. This approach provides a method of identifying a candidate therapeutic by collecting a sample from a subject with a cancer of known origin, and performing molecular profiling on the cancer for specific biomarkers depending on the origin of the cancer. The molecular profiling can be performed using any of the various techniques disclosed herein. As an example, FIG. 47A shows biomarker panels for breast cancer, ovarian cancer, colorectal cancer, lung cancer, and a “complete” profile to run on any cancer. In the figure, markers shown in italics are assessed using mutational analysis (e.g., sequencing approaches), marker shown underlined are analyzed by FISH, and the remainder are analyzed using IHC. DNA microarray profiling can be performed on any sample. The candidate therapeutic is selected based on the molecular profiling results according to the subject methods. An advantage to the bio-marker centric approach is only performing assays that are most likely to yield informative results. Another advantage is that this approach can focus on identifying therapeutics conventionally used to treat cancers of the specific lineage. In a therapeutic-centric approach, the biomarkers assessed are not dependent on the origin of the tumor. See FIG. 47B. This approach provides a method of identifying a candidate therapeutic by collecting a sample from a subject with a cancer, and performing molecular profiling on the cancer for a panel of biomarkers without regards to the origin of the cancer. The molecular profiling can be performed using any of the various techniques disclosed herein. As an example, in FIG. 47B, markers shown in italics are assessed using mutational analysis (e.g., sequencing approaches), marker shown underlined are analyzed by FISH, and the remainder are analyzed using IHC. DNA microarray profiling can be performed on any sample. The candidate therapeutic is selected based on the molecular profiling results according to the subject methods. An advantage to the therapeutic-marker centric approach is that the most promising therapeutics are identified only taking into account the molecular characteristics of the tumor itself. Another advantage is that the method can be preferred for a cancer of unidentified primary origin (CUP). In some embodiments, a hybrid of biomarker-centric and therapeutic-centric points of view is used to identify a candidate therapeutic. This method comprises identifying a candidate therapeutic by collecting a sample from a subject with a cancer of known origin, and performing molecular profiling on the cancer for a comprehensive panel of biomarkers, wherein a portion of the markers assessed depend on the origin of the cancer. For example, consider a breast cancer. A comprehensive biomarker panel is run on the breast cancer, e.g., the complete panel as shown in FIG. 47B, but additional sequencing analysis is performed on one or more additional markers, e.g., BRCA1 or any other marker with mutations informative for theranosis or prognosis of the breast cancer. Theranosis can be used to refer to the likely efficacy of a therapeutic treatment. Prognosis refers to the likely outcome of an illness. One of skill will appreciate that the hybrid approach can be used to identify a candidate therapeutic for any cancer having additional biomarkers that provide theranostic or prognostic information, including the cancers disclosed herein.


Methods for providing a theranosis of disease include selecting candidate therapeutics for various cancers by assessing a sample from a subject in need thereof (i.e., suffering from a particular cancer). The sample is assessed by performing an immunohistochemistry (IHC) to determine of the presence or level of: AR, BCRP, c-KIT, ER, ERCC1, HER2, IGF1R, MET (also referred to herein as cMet), MGMT, MRP1, PDGFR, PGP, PR, PTEN, RRM1, SPARC, TOPO1, TOP2A, TS, COX-2, CK5/6, CK14, CK17, Ki67, p53, CAV-1, CYCLIN D1, EGFR, E-cadherin, p95, TLE3 or a combination thereof; performing a microarray analysis on the sample to determine a microarray expression profile on one or more (such as at least five, 10, 15, 20, 25, 30, 40, 50, 60, 70 or all) of: ABCC1, ABCG2, ADA, AR, ASNS, BCL2, BIRC5, BRCA1, BRCA2, CD33, CD52, CDA, CES2, DCK, DHFR, DNMT1, DNMT3A, DNMT3B, ECGF1, EGFR, EPHA2, ERBB2, ERCC1, ERCC3, ESR1, FLT1, FOLR2, FYN, GART, GNRH1, GSTP1, HCK, HDAC1, HIF1A, HSP90AA1, IGFBP3, IGFBP4, IGFBP5, IL2RA, KDR, KIT, LCK, LYN, MET, MGMT, MLH1, MS4A1, MSH2, NFKB1, NFKB2, NFKBIA, OGFR, PARP1, PDGFC, PDGFRA, PDGFRB, PGP, PGR, POLA1, PTEN, PTGS2, PTPN12, RAF1, RARA, RRM1, RRM2, RRM2B, RXRB, RXRG, SIK2, SPARC, SRC, SSTR1, SSTR2, SSTR3, SSTR4, SSTR5, TK1, TNF, TOP1, TOP2A, TOP2B, TXNRD1, TYMS, VDR, VEGFA, VHL, YES1, and ZAP70; comparing the results obtained from the IHC and microarray analysis against a rules database, wherein the rules database comprises a mapping of candidate treatments whose biological activity is known against a cancer cell that expresses one or more proteins included in the IHC expression profile and/or expresses one or more genes included in the microarray expression profile; and determining a candidate treatment if the comparison indicates that the candidate treatment has biological activity against the cancer.


Assessment can further comprise determining a fluorescent in-situ hybridization (FISH) profile of EGFR, HER2, cMYC, TOP2A, MET, or a combination thereof, comparing the FISH profile against a rules database comprising a mapping of candidate treatments predetermined as effective against a cancer cell having a mutation profile for EGFR, HER2, cMYC, TOP2A, MET, or a combination thereof, and determining a candidate treatment if the comparison of the FISH profile against the rules database indicates that the candidate treatment has biological activity against the cancer.


As explained further herein, the FISH analysis can be performed based on the origin of the sample. This can avoid unnecessary laboratory procedures and concomitant expenses by targeting analysis of genes that are known to play a role in a particular disorder, e.g., a particular type of cancer. In an embodiment, EGFR, HER2, cMYC, and TOP2A are assessed for breast cancer. In another embodiment, EGFR and MET are assessed for lung cancer. Alternately, FISH analysis of all of EGFR, HER2, cMYC, TOP2A, MET can be performed on a sample. The complete panel may be assessed, e.g., when a sample is of unknown or mixed origin, to provide a comprehensive view of an unusual sample, or when economies of scale dictate that it is more efficient to perform FISH on the entire panel than to make individual assessments.


In an additional embodiment, the sample is assessed by performing nucleic acid sequencing on the sample to determine a presence of a mutation of KRAS, BRAF, NRAS, PIK3CA (also referred to as PI3K), c-Kit, EGFR, or a combination thereof, comparing the results obtained from the sequencing against a rules database comprising a mapping of candidate treatments predetermined as effective against a cancer cell having a mutation profile for KRAS, BRAF, NRAS, PIK3CA, c-Kit, EGFR, or a combination thereof; and determining a candidate treatment if the comparison of the sequencing to the mutation profile indicates that the candidate treatment has biological activity against the cancer.


As explained further herein, the nucleic acid sequencing can be performed based on the origin of the sample. This can avoid unnecessary laboratory procedures and concomitant expenses by targeting analysis of genes that are known to play a role in a particular disorder, e.g., a particular type of cancer. In an embodiment, the sequences of PIK3CA and c-KIT are assessed for breast cancer. In another embodiment, the sequences of KRAS and BRAF are assessed for GI cancers such as colorectal cancer. In still another embodiment, the sequences of KRAS, BRAF and EGFR are assessed for lung cancer. Alternately, sequencing of all of KRAS, BRAF, NRAS, PIK3CA, c-Kit, EGFR can be performed on a sample. The complete panel may be sequenced, e.g., when a sample is of unknown or mixed origin, to provide a comprehensive view of an unusual sample, or when economies of scale dictate that it is more efficient to sequence the entire panel than to make individual assessments.


The genes and gene products used for molecular profiling, e.g., by microarray, IHC, FISH, sequencing, and/or PCR (e.g., qPCR), can be selected from those listed in Table 2. In an embodiment, IHC is performed for one or more, e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20 or more, of: AR, BCRP, CAV-1, CD20, CD52, CK 5/6, CK14, CK17, c-kit, CMET, COX-2, Cyclin D1, E-Cad, EGFR, ER, ERCC1, HER-2, IGF1R, Ki67, MGMT, MRP1, P53, p95, PDGFR, PGP, PR, PTEN, RRM1, SPARC, TLE3, TOPO1, TOPO2A, TS, TUBB3; expression analysis (e.g., microarray or RT-PCR) is performed on one or more, e.g. 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50 or more, of: ABCC1, ABCG2, ADA, AR, ASNS, BCL2, BIRC5, BRCA1, BRCA2, CD33, CD52, CDA, CES2, cKit, c-MYC, DCK, DHFR, DNMT1, DNMT3A, DNMT3B, ECGF1, EGFR, EPHA2, ERCC1, ERCC3, ESR1, FLT1, FOLR2, FYN, GART, GNRH1, GSTP1, HCK, HDAC1, HER2/ERBB2, HIF1A, HSP90, IGFBP3, IGFBP4, IGFBP5, IL2RA, KDR, LCK, LYN, MET, MGMT, MLH1, MS4A1, MSH2, NFKB1, NFKB2, NFKBIA, OGFR, PARP1, PDGFC, PDGFRa, PDGFRA, PDGFRB, PGP, PGR, POLA1, PTEN, PTGS2, RAF1, RARA, ROS1, RRM1, RRM2, RRM2B, RXRB, RXRG, SIK2, SRC, SSTR1, SSTR2, SSTR3, SSTR4, SSTR5, SPARC, TK1, TNF, TOP2B, TOP2A, TOPO1, TXNRD1, TYMS, VDR, VEGFA, VHL, YES1, and ZAP70; fluorescent in-situ hybridization (FISH) is performed on 1, 2, 3, 4, 5, 6 or 7 of ALK, cMET, c-MYC, EGFR, HER-2, PIK3CA, and TOPO2A; and DNA sequencing or PCR are performed on 1, 2, 3, 4, 5 or 6 of BRAF, c-kit, EGFR, KRAS, NRAS, and PIK3CA. In an embodiment, all of these genes and/or the gene products thereof are assessed.


Assessing one or more biomarkers disclosed herein can be used for characterizing any of the cancers disclosed herein. Characterizing includes the diagnosis of a disease or condition, the prognosis of a disease or condition, the determination of a disease stage or a condition stage, a drug efficacy, a physiological condition, organ distress or organ rejection, disease or condition progression, therapy-related association to a disease or condition, or a specific physiological or biological state.


A cancer in a subject can be characterized by obtaining a biological sample from a subject and analyzing one or more biomarkers from the sample. For example, characterizing a cancer for a subject or individual may include detecting a disease or condition (including pre-symptomatic early stage detecting), determining the prognosis, diagnosis, or theranosis of a disease or condition, or determining the stage or progression of a disease or condition. Characterizing a cancer can also include identifying appropriate treatments or treatment efficacy for specific diseases, conditions, disease stages and condition stages, predictions and likelihood analysis of disease progression, particularly disease recurrence, metastatic spread or disease relapse. Characterizing can also be identifying a distinct type or subtype of a cancer. The products and processes described herein allow assessment of a subject on an individual basis, which can provide benefits of more efficient and economical decisions in treatment.


In an aspect, characterizing a cancer includes predicting whether a subject is likely to respond to a treatment for the cancer. As used herein, a “responder” responds to or is predicted to respond to a treatment and a “non-responder” does not respond or is predicted to not respond to the treatment. Biomarkers can be analyzed in the subject and compared to biomarker profiles of previous subjects that were known to respond or not to a treatment. If the biomarker profile in a subject more closely aligns with that of previous subjects that were known to respond to the treatment, the subject can be characterized, or predicted, as a responder to the treatment. Similarly, if the biomarker profile in the subject more closely aligns with that of previous subjects that did not respond to the treatment, the subject can be characterized, or predicted as a non-responder to the treatment.


The sample used for characterizing a cancer can be any disclosed herein, including without limitation a tissue sample, tumor sample, or a bodily fluid. Bodily fluids that can be used included without limitation peripheral blood, sera, plasma, ascites, urine, cerebrospinal fluid (CSF), sputum, saliva, bone marrow, synovial fluid, aqueous humor, amniotic fluid, cerumen, breast milk, broncheoalveolar lavage fluid, semen (including prostatic fluid), Cowper's fluid or pre-ejaculatory fluid, female ejaculate, sweat, fecal matter, hair, tears, cyst fluid, pleural and peritoneal fluid, pericardial fluid, malignant effusion, lymph, chyme, chyle, bile, interstitial fluid, menses, pus, sebum, vomit, vaginal secretions, mucosal secretion, stool water, pancreatic juice, lavage fluids from sinus cavities, bronchopulmonary aspirates or other lavage fluids. In an embodiment, the sample comprises vesicles. The biomarkers can be associated with the vesicles. In some embodiments, vesicles are isolated from the sample and the biomarkers associated with the vesicles are assessed.


Comprehensive and Select Molecular Profiling


Molecular profiling according to the invention can be used to guide treatment selection for cancers at any stage of disease or prior treatment. Molecular profiling comprises assessment of DNA mutations, gene rearrangements, gene copy number variation, RNA expression, protein expression, as well as assessment of other biological entities and phenomena that can inform clinical decision making. In some embodiments, the methods herein are used to guide selection of candidate treatments using the standard of care treatments for a particular type or lineage of cancer. For example, these “select” profiles may be used to assist in treatment selection for a newly diagnosed cancer having multiple treatment options. In other embodiments, comprehensive profiling is performed with lesser regard to the lineage or stage of the cancer. Rather, the “comprehensive” profile can be performed to assess a wide panel of druggable or drug-associated biomarker targets for any biological sample or specimen of interest. One of skill will appreciate that the select profiles comprise subsets of the comprehensive profile, such that the comprehensive profile can be used to guide selection of candidate treatments for any cancer at any point of care. The comprehensive profile may also be preferable when select profiling is unavailable or is not expected to provide further benefit, such as in the salvage treatment setting for recurrent cancer or wherein all standard treatments have been exhausted. For example, the comprehensive profile may be used to assist in treatment selection when standard therapies are not an option for any reason or when standard treatments have been exhausted for the patient. The comprehensive profile may be used to assist in treatment selection for highly aggressive or rare tumors with uncertain treatment regimens.


In embodiments, the select profiles focus on standard therapeutic associations for various types or stages of disease. Generally, select profiles are intended to guide treatment selection within the standard of care. As a non-limiting example, consider an ovarian cancer. The ovarian select profile can associate ovarian specific treatments with their relevant biomarkers. In some embodiments, the select profile may also associate experimental agents with the intended disease. By way of example and returning to the ovarian cancer example, the ovarian select profile can also associate ovarian specific experimental agents, e.g., drugs in phase I and phase II clinical trials, with their relevant biomarkers. In the latter cases, the select profiles can be used to identify patients who are potential candidates for clinical trial enrollment. One of skill will appreciate that the select profiles can be updated as the standard of care and/or availability of experimental agents for the disease change.


The biomarkers which comprise the select and comprehensive profiles can include genes or gene products that are known to be associated directly with a particular drug or class of drugs. The biomarkers can also be genes or gene products that interact with such drug associated targets, e.g., as members of a common pathway. The biomarkers can be selected from Table 2. In some embodiments, the genes and/or gene products included in the select and/or comprehensive profiles are selected from Table 6.









TABLE 6







Exemplary Genes and Gene Products and Related Therapies








Biomarker
Description





ALK
ALK rearrangements may indicate the fusion of ALK (anaplastic lymphoma kinase) gene with



fusion partners, such as EML4. EML4-ALK fusion results in the pathologic expression of a



fusion protein with constitutively active ALK kinase, resulting in aberrant activation of



downstream signaling pathways including RAS-ERK, JAK3-STAT3 and PI3K-AKT. Patients



with ALK rearrangements such as EML4-ALK are likely to respond to the ALK-targeted agent



crizotinib.


AR
The androgen receptor (AR) is a member of the nuclear hormone receptor superfamily. Prostate



tumor dependency on androgens/AR signaling is the basis for hormone withdrawal, or



androgen ablation therapy, to treat men with prostate cancer. Androgen receptor antagonists as



well as agents which block androgen production are indicated for the treatment of AR



expressing prostate cancers.


BRAF
BRAF encodes a protein belonging to the raf/mil family of serine/threonine protein kinases.



This protein plays a role in regulating the MAP kinase/ERK signaling pathway initiated by



EGFR activation, which affects cell division, differentiation, and secretion. Patients with



mutated BRAF genes have a reduced likelihood of response to EGFR targeted monoclonal



antibodies, such as cetuximab in colorectal cancer. A BRAF enzyme inhibitor, vemurafenib,



was approved by FDA to treat unresectable or metastatic melanoma patients harboring BRAF



V600E mutations.


c-kit
c-Kit is a cytokine receptor expressed on the surface of hematopoietic stem cells as well as other



cell types. This receptor binds to stem cell factor (SCF, a cell growth factor). As c-Kit is a



receptor tyrosine kinase, ligand binding causes receptor dimerization and initiates a



phosphorylation cascade resulting in changes in gene expression. These changes affect cell



proliferation, apoptosis, chemotaxis and adhesion. c-Kit is inhibited by multi-targeted agents



including imatinib, sunitinib and sorafenib.


EGFR
EGFR (epidermal growth factor receptor) is a receptor tyrosine kinase and its abnormalities



contribute to the growth and proliferation of many human cancers. Sensitizing mutations are



commonly detected in NSCLC and patients harboring such mutations may respond to EGFR-



targeted tyrosine kinase inhibitors including erlotinib and gefitinib. Lung cancer patients



overexpressing EGFR protein are known to respond to the EGFR monoclonal antibody,



cetuximab. Increased gene expression of EGFR is associated with response to irinotecan



containing regimen in colorectal cancer patients.


ER
The estrogen receptor (ER) is a member of the nuclear hormone family of intracellular receptors



which is activated by the hormone estrogen. It functions as a DNA binding transcription factor



to regulate estrogen-mediated gene expression. Estrogen receptors overexpressing breast cancers



are referred to as “ER positive.” Estrogen binding to ER on cancer cells leads to cancer cell



proliferation. Breast tumors over-expressing ER are indicated for treatment with hormone-based



anti-estrogen therapy.


ERCC1
Nucleotide excision repair (NER) is a DNA repair mechanism necessary for the repair of DNA



damage from a vast variety of sources including chemicals and ultraviolet (UV) light from the



sun. ERCC1 (excision repair cross-complementation group 1) is an important enzyme in the



NER pathway. Platinum-based drugs induce DNA cross-links that interfere with DNA



replication. Tumors with low ERCC1 expression and, hence, less DNA repair capacity, are more



likely to benefit from platinum-based DNA damaging agents.


Her2/Neu
ErbB2/Her2 encodes a member of the epidermal growth factor (EGF) receptor family of



receptor tyrosine kinases. Her2 has no ligand-binding domain of its own and, therefore, cannot



bind growth factors. It does, however, bind tightly to other ligand-bound EGF receptor family



members to form a heterodimer and enhances kinase-mediated activation of downstream



signaling pathways leading to cell proliferation. Her2 is overexpressed in 15-30% of newly



diagnosed breast cancers and is also expressed in various other cancers. Her2 is a target for the



monoclonal antibodies trastuzumab and pertuzumab which bind to the receptor extracellularly;



the kinase inhibitor lapatinib binds and blocks the receptor intracellularly.


KRAS
Proto-oncogene of the Kirsten murine sarcoma virus (KRAS) is a signaling intermediate



involved in many signaling cascades including the EGFR pathway. Mutations at activating



hotspots are associated with resistance to EGFR tyrosine kinase inhibitors (erlotinib, gefitinib)



and monoclonal antibodies (cetuximab, panitumumab).


MGMT
O-6-methylguanine-DNA methyltransferase (MGMT) encodes a DNA repair enzyme. Loss of



MGMT expression leads to compromised DNA repair in cells and may play a significant role in



cancer formation. Low MGMT expression has been correlated with response to alkylating



agents like temozolomide and dacarbazine.


NRAS
NRAS is an oncogene and a member of the (GTPase) ras family, which includes KRAS and



HRAS. This biomarker has been detected in multiple cancers including melanoma, colorectal



cancer, AML and bladder cancer. Evidence suggests that an acquired mutation in NRAS may be



associated with resistance to vemurafenib in melanoma patients. In other cancers, e.g., colorectal



cancer, NRAS mutation is associated with resistance to EGFR-targeted monoclonal antibodies.


PGP
P-glycoprotein (MDR1, ABCB1) is an ATP-dependent, transmembrane drug efflux pump with



broad substrate specificity, which pumps antitumor drugs out of cells. Its expression is often



induced by chemotherapy drugs and is thought to be a major mechanism of chemotherapy



resistance. Overexpression of PGP is associated with resistance to anthracylines (doxorubicin,



epirubicin). PGP remains the most important and dominant representative of Multi-Drug



Resistance phenotype and is correlated with disease state and resistant phenotype.


PIK3CA
The hot spot missense mutations in the gene PIK3CA are present in various malignancies, e.g.,



breast, colon and NSCLC, resulting in activation of the PI3 kinase pathway. This pathway is an



active target for drug development. PIK3CA mutations have been associated with benefit from



mTOR inhibitors (everolimus, temsirolimus). Evidence suggests that breast cancer patients with



activation of the PI3K pathway due to PTEN loss or PIK3CA mutation/amplification have a



significantly shorter survival following trastuzumab treatment. PIK3CA mutated (exon 20)



colorectal cancer patients are less likely to respond to EGFR targeted monoclonal antibody



therapy.


PR
The progesterone receptor (PR or PGR) is an intracellular steroid receptor that specifically binds



progesterone, an important hormone that fuels breast cancer growth. PR positivity in a tumor



indicates that the tumor is more likely to be responsive to hormone therapy by anti-estrogens,



aromatase inhibitors and progestogens.


PTEN
PTEN (phosphatase and tensin homolog) is a tumor suppressor gene that prevents cells from



proliferating. Loss of PTEN protein is one of the most common occurrences in multiple



advanced human cancers. PTEN is an important mediator in signaling downstream of EGFR,



and its loss is associated with reduced benefit to trastuzumab and EGFR-targeted therapies.



Intra-tumoral PTEN loss has been associated with benefit from mTOR inhibitors (everolimus,



temsirolimus).


RRM1
Ribonucleotide reductase subunit M1 (RRM1) is a component of the ribonucleotide reductase



holoenzyme consisting of M1 and M2 subunits. The ribonucleotide reductase is a rate-limiting



enzyme involved in the production of nucleotides required for DNA synthesis. Gemcitabine is a



deoxycitidine analogue which inhibits ribonucleotide reductase activity. High RRM1 level is



associated with resistance to gemcitabine.


SPARC
SPARC (secreted protein acidic and rich in cysteine) is a calcium-binding matricellular



glycoprotein secreted by many types of cells. Studies indicate SPARC over-expression improves



the response to the anticancer drug, nab-paclitaxel. The improved response is thought to be



related to SPARC's role in accumulating albumin and albumin-targeted agents within tumor



tissue.


TLE3
TLE3 is a member of the transducin-like enhancer of split (TLE) family of proteins that have



been implicated in tumorigenesis. It acts downstream of APC and beta-catenin to repress



transcription of a number of oncogenes, which influence growth and microtubule stability.



Studies indicate that TLE3 expression is associated with response to taxane therapy in various



cancers, e.g., breast, ovarian and lung cancers.


TOP2A
TOPOIIA is an enzyme that alters the supercoiling of double-stranded DNA and allows



chromosomal segregation into daughter cells. Due to its essential role in DNA synthesis and



repair, and frequent overexpression in tumors, TOPOIIA is an ideal target for antineoplastic



agents. In breast cancer, co-amplification of TOPOIIA and HER2 has been associated with



benefit from anthracycline-based therapy. In HER2 negative breast cancers, patients with low



gene expression of TOPOIIA may derive benefit from anthracycline-based therapy.


TOPO1
Topoisomerase I is an enzyme that alters the supercoiling of double-stranded DNA. TOPOI acts



by transiently cutting one strand of the DNA to relax the coil and extend the DNA molecule.



Higher expression of TOPOI has been associated with response to TOPOI inhibitors including



irinotecan and topotecan.


TS
Thymidylate synthase (TS) is an enzyme involved in DNA synthesis that generates thymidine



monophosphate (dTMP), which is subsequently phosphorylated to thymidine triphosphate for



use in DNA synthesis and repair. Low levels of TS are predictive of response to



fluoropyrimidines and other folate analogues.


cMET
C-Met is a tyrosine kinase receptor for hepatocyte growth factor (HGF) or scatter factor (SF)



and is overexpressed and amplified in a wide range of tumors. cMET overexpression has been



associated with a more aggressive biology and a worse prognosis in many human malignancies.



Amplification or overexpression of cMET has been implicated in the development of acquired



resistance to erlotinib and gefitinib in NSCLC.


EREG
EREG, also known as epiregulin, is a ligand of the epidermal growth factor receptor.



Overexpression of EREG in primary colorectal cancer patients has been shown to significantly



predict clinical outcome in KRAS wildtype patients treated with cetuximab indicating ligand



driven autocrine oncogenic EGFR signaling.


BRCA1
BRCA1, breast cancer type 1 susceptibility gene, is a gene involved in cell growth, cell division,



and DNA-damage repair. Low expression of the BRCA1 gene has been associated with clinical



benefit from cisplatin and carboplatin in cancers of the lung and ovary.


ERBB3
ERBB3 encodes for HER3, a member of the epidermal growth factor receptor (EGFR) family.



This protein forms heterodimers with other EGF receptor family members which do have kinase



activity. Amplification and/or overexpression of ERBB3 have been reported in numerous



cancers, including breast cancer. ERBB3 is a target for drug development.


TUBB3
Class III β-Tubulin (TUBB3) is part of a class of proteins that provide the framework for



microtubules, major structural components of the cytoskeleton. Due to their importance in



maintaining structural integrity of the cell, microtubules are ideal targets for anti-cancer agents.



Low expression of TUBB3 is associated with potential clinical benefit to taxanes and vinca



alkaloids in certain tumor types.


VEGFR2
VEGFR2, vascular endothelial growth factor 2, is one of three main subtypes of VEGFR. This



protein is an important signaling protein in angiogenesis. Evidence suggests that increased levels



of VEGFR2 may be predictive of response to anti-angiogenic drugs.


AREG
AREG, also known as amphiregulin, is a ligand of the epidermal growth factor receptor.



Overexpression of AREG in primary colorectal cancer patients has been associated with



increased clinical benefit from cetuximab in KRAS wildtype patients.


GNA11
G proteins are a family of heterotrimeric proteins coupling seven-transmembrane domain



receptor. These heterotrimeric proteins are composed of three subunits: Galpha, Gbeta, and



Ggamma. The GNA11 gene encodes the alpha-11 subunit (Galpha11). Recent data suggests that



over half of uveal melanoma patients lacking a mutation in GNAQ exhibit mutations in GNA11.



Clinical trials are underway with HDAC inhibitors and MEK inhibitors in patients harboring



GNA11 mutations.


GNAQ
G proteins are a family of heterotrimeric proteins coupling seven-transmembrane domain



receptors. G proteins are potential drivers of MAPK activation. In uveal melanomas 46-53% of



patients exhibit a GNAQ mutation which encodes the q class of G-protein alpha subunit.



Clinical trials are underway with HDAC inhibitors and MEK inhibitors in patients harboring



GNAQ mutations.









Illustrative and non-limiting select profiles are presented in the following paragraphs. Select profiles can be generated for other conditions and types of cancer as desired.


In an embodiment, the invention provides a select profile for ovarian cancer comprising one or more, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 14, of: cMET, ER, HER2, PR, PTEN, TLE3, BRCA1, ERBB3, ERCC1, RRM1, TOPO1, TOPO2A, TS, and PIK3CA. The invention further provides a method of selecting a candidate treatment for an ovarian cancer comprising assessment of one or more members of the ovarian cancer select profile using one or more molecular profiling method presented herein, e.g., FISH, IHC, RT-PCR, expression array, sequencing, RFLP, etc. In an embodiment, protein analysis such as IHC is used to assess one or more, e.g., 1, 2, 3, 4, 5 or 6, of: cMET, ER, HER2, PR, PTEN, TLE3. In another embodiment, gene expression analysis such as RT-PCR (qPCR) is used to assess one or more of, e.g., 1, 2, 3, 4, 5, 6 or 7, BRCA1, ERBB3, ERCC1, RRM1, TOPO1, TOPO2A, TS. In still another embodiment, sequence analysis is performed for PIK3CA. The molecular profile can be based on assessing the biomarkers as illustrated in FIG. 32E or FIG. 33E.


The biomarker—treatment associations for an ovarian cancer may comprise those associations in Table 7. The table indicates whether the indicated markers are profiled for select and/or comprehensive profiling of ovarian cancer. See column headed “Select, Comprehensive, or Both.” The class of drug and illustrative drugs of the indicated class are indicated in the columns “Class of Drugs” and “Drugs,” respectively. The columns headed “Biomarker Result” illustrate illustrative methods of profiling the indicated biomarkers, generally as true (“T”) or false (“F”) or any. One of skill will appreciate that alternative methods can be used to analyze the biomarkers as appropriate. For example, expression analysis performed by RT-PCR could be performed by microarray or other expression analysis method such as those described herein or known in the art. The joint result of the indicated biomarker results combined to predict a benefit or not of the indicated candidate drugs. As an example in Table 7, consider that expression of ERCC1 is found to be low by RT-PCR (ERCC1 low=T), then platinum compounds are predicted to have treatment benefit (T). However, if low expression of ERCC1 is determined to be false, then the expression of BRCA1 will determine the expected benefit with platinum compounds: if expression of ERCC1 is not low (i.e., ERCC1 low=F) and expression of BRCA1 is low (i.e., BRCA1 low=T), then platinum compounds are expected to be of benefit (i.e., overall benefit=T); if expression of ERCC1 is not low (i.e., ERCC1 low=F) and expression of BRCA1 is not low or is not determined (i.e., BRCA1 low=F or No Data), then platinum compounds are not expected to be of benefit (i.e., overall benefit=F).









TABLE 7





Ovarian Cancer Comprehensive and Select Profiles





















Select,








Comprehensive,


Biomarker
Biomarker
Biomarker
Treatment


or Both
Class of Drugs
Drugs
Result
Result
Result
Benefit






Platinum
cisplatin,
ERCC1 Low
BRCA1 Low


Both
compounds
carboplatin
(RT-PCR)
(RT-PCR)

Overall Benefit








T
Any

T





F
T

T





F
F or No Data

F





No Data
T

T





No Data
F

F





No Data
No Data

Indeterminate







doxorubicin,



Anthracyclines
epirubicin,



and related
liposomal-
TOP2A High
PGP Low


Comprehensive
substances
doxorubicin
(RT-PCR)
(RT-PCR)

Overall Benefit








T
T or No Data

T





T
F

F





F
Any

F





No Data
T

T





No Data
F

F





No Data
No Data

Indeterminate






Topo1
topotecan,
TOPO1 High


Both
inhibitors
irinotecan
(RT-PCR)


Overall benefit








T


T





F


F





No Data


Indeterminate








RRM1 Low


Both
Antimetabolites
gemcitabine
(RT-PCR)


Overall benefit








T


T





F


F





No Data


Indeterminate








ER



Anti-
tamoxifen,
Positive


Both
estrogens
fulvestrant
(IHC)


Overall Benefit








T


T





F


F





No Data


Indeterminate






Endocrine



therapy -

ER



enzyme
letrozole,
Positive


Both
inhibitor
anastrozole
(IHC)


Overall Benefit








T


T





F


F





No Data


Indeterminate






Gonadotropin



releasing

ER
PR



hormone

Positive
Positive


Both
analogs
leuprolide
(IHC)
(IHC)

Overall Benefit








T
Any

T





F
T

T





F
F

F





F
No Data

Indeterminate





No Data
T

T





No Data
F or No Data

Indeterminate








ER
PR




megestrol
Positive
Positive


Both
Progestogens
acetate
(IHC)
(IHC)

Overall Benefit








T
Any

T





F
T

T





F
F

F





F
No Data

Indeterminate





No Data
T

T





No Data
F or No Data

Indeterminate







pemetrexed,
TS Low


Both
Antimetabolites
capecitabine
(RT-PCR)


Overall benefit








T


T





F


F





No Data


Indeterminate








TLE3




docetaxel,
Positive
TUBB3 Low


Comprehensive
Taxanes
paclitaxel
(IHC)
(RT-PCR)

Overall Benefit








T
Any

T





F
Any

F





No Data
T

T





No Data
F

F





No Data
No Data

Indeterminate








TLE3




docetaxel,
Positive


Select
Taxanes
paclitaxel
(IHC)


Overall Benefit








T


T





F


F





No Data


Indeterminate








SPARC_MONO
SPARC_POLY





Positive
Positive


Comprehensive
Taxanes
nab-paclitaxel
(IHC)
(IHC)

Overall Benefit








T
Any

T





F
T

T





F
F or No Data

F





No Data
T

T





No Data
F

F





No Data
No Data

Indeterminate








MGMT



Alkylating
temozolomide,
Negative


Comprehensive
agents
dacarbazine
(IHC)


Overall benefit








T


T





F


F





No Data


Indeterminate








BRAF





Mutated


Comprehensive
TKI
sorafenib
(Sequencing)


Overall benefit








T


T





F


F





No Data


Indeterminate








c-KIT




imatinib,
Mutated


Comprehensive
TKI
sunitinib
(Sequencing)


Overall Benefit








T


T





F


F





No Data


Indeterminate






Monoclonal



antibodies

HER2
HER2



(Her2-targeted -

Positive
Amplified


Comprehensive
trastuzumab)
trastuzumab
(IHC)
(FISH)

Overall Benefit








T
Any

T





F
T or Equivocal

T






high





F
F or Equivocal

F






low





F
No Data

Indeterminate





Equivocal
T or Equivocal

T






high





Equivocal
F or Equivocal

F






low





Equivocal
No Data

Indeterminate





No Data
T or Equivocal

T






high





No Data
F, Equivocal low

Indeterminate






or No Data






Monoclonal



antibodies

HER2



(Her2-targeted -

Positive


Select
trastuzumab)
trastuzumab
(IHC)


Overall Benefit








T or Equivocal


T





high





F or Equivocal


F





low





No Data


Indeterminate









cMET
cMET




erlotinib,
EGFR High
Positive
Amplified


Comprehensive
TKI
gefitinib
(RT-PCR)
(IHC)
(FISH)
Overall Benefit








T
Any
Any
T





F
Any
Any
F





No Data
Any
Any
Indeterminate








ALK
ALK





Positive
Positive


Comprehensive
TKI
crizotinib
(FISH)
(RFLP)

Overall benefit








T
Any

T





F
Any

F





No Data
Any

Indeterminate








PIK3CA
PTEN



mTOR
everolimus,
Mutated
Negative


Both
inhibitors
temsirolimus
(Sequencing)
(IHC)

Overall Benefit








T
Any

T





F
T

T





F
F

F





F
No Data

Indeterminate





No Data
T

T





No Data
F or No Data

Indeterminate







doxorubicin,



Anthracyclines
liposomal-



and related
doxorubicin,
TOP2A High


Select
substances
epirubicin
(RT-PCR)


Overall Benefit








T


T





F


F





No Data


Indeterminate









In an embodiment, the invention provides a select profile for breast cancer comprising one or more, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 or 17 of: HER2, TOPO2A, ER, PR, PTEN, TLE3, BRCA1, ERBB3, ERCC1, RRM1, TOPO1, TS, BRAF, KRAS, PIK3CA, ALK. The invention further provides a method of selecting a candidate treatment for a breast cancer comprising assessment of one or more members of the breast cancer select profile using one or more molecular profiling method presented herein, e.g., FISH/CISH, IHC, RT-PCR, expression array, sequencing, RFLP, etc. In one embodiment, FISH and/or CISH is used to assess one or more, e.g., 1 or 2, of: HER2, TOPO2A. In an embodiment, protein analysis such as IHC is used to assess one or more, e.g., 1, 2, 3, 4 or 5, of: ER, HER2, PR, PTEN, TLE3. In another embodiment, gene expression analysis such as RT-PCR (qPCR) is used to assess one or more of, e.g., 1, 2, 3, 4, 5 or 6, BRCA1, ERBB3, ERCC1, RRM1, TOPO1, TS. In still another embodiment, sequence analysis is used to assess one or more, e.g., 1, 2 or 3, of: BRAF, KRAS, PIK3CA. The breast cancer select profile can also comprise assessment of the presence of ALK or an ALK mutation/translocation/rearrangement, e.g., an EML4-ALK fusion, e.g., by FISH, RT-PCR, sequencing or RFLP. The molecular profile can be based on assessing the biomarkers as illustrated in FIG. 32D or FIG. 33D.


The biomarker—treatment associations for a breast cancer may comprise those associations in Table 8. The table indicates whether the indicated markers are profiled for select and/or comprehensive profiling of breast cancer. See column headed “Select, Comprehensive, or Both.” The class of drug and illustrative drugs of the indicated class are indicated in the columns “Class of Drugs” and “Drugs,” respectively. The columns headed “Biomarker Result” illustrate illustrative methods of profiling the indicated biomarkers, generally as true (“T”) or false (“F”) or any. One of skill will appreciate that alternative methods can be used to analyze the biomarkers as appropriate. For example, expression analysis performed by RT-PCR could be performed by microarray or other expression analysis method such as those described herein or known in the art. The joint result of the indicated biomarker results combined to predict a benefit or not of the indicated candidate drugs, following the logic described above for Table 7.









TABLE 8





Breast Cancer Comprehensive and Select Profiles






















Select









Comprehensive


Biomarker
Biomarker
Biomarker
Biomarker
Treatment


or Both
Drug Class
Drugs
Result
Result
Result
Result
Benefit






Platinum
cisplatin,
ERCC1 Low
BRCA1 Low


Both
compounds
carboplatin
(RT-PCR)
(RT-PCR)


Overall Benefit








T
Any


T





F
Any


F





No Data
T


T





No Data
F


F





No Data
No Data


Indeterminate








TLE3




docetaxel,
Positive
TUBB3 Low


Comprehensive
Taxanes
paclitaxel
(IHC)
(RT-PCR)


Overall Benefit








T
Any


T





F
Any


F





No Data
T


T





No Data
F


F





No Data
No Data


Indeterminate








SPARC_MONO
SPARC_POLY




nab-
Positive
Positive


Comprehensive
Taxanes
paclitaxel
(IHC)
(IHC)


Overall Benefit








T
Any


T





F or No Data
T


T





F or No Data
F


F





F
No Data


F





No Data
No Data


Indeterminate








RRM1 Low


Both
Antimetabolites
gemcitabine
(RT-PCR)



Overall benefit








T



T





F



F





No Data



Indeterminate







fluorouracil,
TS Low


Both
Antimetabolites
capecitabine
(RT-PCR)



Overall benefit








T



T





F



F





No Data



Indeterminate






Topo1

TOPO1 High


Both
inhibitors
irinotecan
(RT-PCR)



Overall benefit








T



T





F



F





No Data



Indeterminate








MGMT



Alkylating
temozolomide,
Negative


Comprehensive
agents
dacarbazine
(RT-PCR)



Overall benefit








T



T





F



F





No Data



Indeterminate








c-KIT




imatinib,
Mutated


Comprehensive
TKI
sunitinib
(Sequencing)



Overall Benefit








T



T





F



F





No Data



Indeterminate







bicalutamide,
AR



Anti-
flutamide,
Positive


Comprehensive
androgens
abiraterone
(IHC)



Overall Benefit








T



T





F



F





No Data



Indeterminate







tamoxifen,
ER
PR



Anti-
toremifene,
Positive
Positive


Both
estrogens
fulvestrant
(IHC)
(IHC)


Overall Benefit








T
Any


T





F or No Data
T


T





F
F


F





F
No Data


Indeterminate





No Data
F or No Data


Indeterminate






Endocrine



therapy -
letrozole,
ER
PR



enzyme
anastrozole,
Positive
Positive


Both
inhibitor
exemestane
(IHC)
(IHC)


Overall Benefit








T
Any


T





F or No Data
T


T





F
F


F





F
No Data


Indeterminate





No Data
F or No Data


Indeterminate








ER
PR




megestrol
Positive
Positive


Both
Progestogens
acetate
(IHC)
(IHC)


Overall Benefit








T
Any


T





F or No Data
T


T





F
F


F





F
No Data


Indeterminate





No Data
F or No Data


Indeterminate







medroxypro-
ER
PR




gesterone
Positive
Positive


Comprehensive
Progestogens
acetate
(IHC)
(IHC)


Overall Benefit








T
Any


T





F or No Data
T


T





F
F


F





F
No Data


Indeterminate





No Data
F or No Data


Indeterminate






Gonadotropin



releasing

ER
PR



hormone
leuprolide,
Positive
Positive


Both
analogs
goserelin
(IHC)
(IHC)


Overall Benefit








T
Any


T





F or No Data
T


T





F
F


F





F
No Data


Indeterminate





No Data
F or No Data


Indeterminate








HER2
HER2





Positive
Amplified


Both
TKI
lapatinib
(IHC)
(FISH)


Overall Benefit








T
Any


T





F or Equivocal
T or Equivocal


T






High





F or Equivocal
F or Equivocal


F






Low





F or Equivocal
No Data


Indeterminate





No Data
T or Equivocal


T






High





No Data
F, Equivocal


Indeterminate






Low or No






Data









cMET
cMET




erlotinib,
EGFR High
Positive
Amplified


Comprehensive
TKI
gefitinib
(RT-PCR)
(IHC)
(FISH)

Overall Benefit








T
Any
Any

T





F
Any
Any

F





No Data
Any
Any

Indeterminate







doxorubicin,



Anthracyclines
liposomal-
TOP2A
HER2



and related
doxorubicin,
Amplified
Amplified


Both
substances
epirubicin
(FISH)
(FISH)


Overall Benefit








T
T


T





T
F


F





T or No Data
No Data or


Indeterminate






Equivocal





F
Any


F








PIK3CA
PTEN
KRAS
BRAF



mTOR
everolimus,
Mutated
Negative
Mutated
Mutated


Both
Inhibitors
temsirolimus
(Sequencing)
(IHC)
(Sequencing)
(Sequencing)
Overall Benefit








T
Any
F or No Data
F or No Data
T





F or No Data
T
F or No Data
F or No Data
T





Any
Any
T
Any
F





T or No Data
Any
F or No Data
T
F





F
T or No Data
F or No Data
T
F





F
F
F or No Data
Any
F





F
No Data
F or No Data
F or No Data
Indeterminate





No Data
F or No Data
F or No Data
F or No Data
Indeterminate








ALK
ALK





Positive
Positive


Both
TKI
crizotinib
(FISH)
(RLFP)


Overall benefit








T
Any


T





F
Any


Indeterminate





No Data
Any


T






Monoclonal



antibodies

HER2
HER2
PTEN
PIK3CA



(Her2-Targeted -

Positive
Amplified
Negative
Mutated


Both
trastuzumab)
trastuzumab
(IHC)
(FISH)
(IHC)
(Sequencing)
Overall Benefit








T
Any
Any
Any
T





F
T or Equivocal
Any
Any
T






High





F
F or Equivocal
Any
Any
F






Low





F
No Data
Any
Any
Indeterminate





Equivocal
T or Equivocal
Any
Any
T






High





Equivocal
F or Equivocal
Any
Any
F






Low





Equivocal
No Data
Any
Any
Indeterminate





No Data
T or Equivocal
Any
Any
T






High





No Data
F, Equivocal
Any
Any
Indeterminate






low or No






Data








TLE3




docetaxel,
Positive


Select
Taxanes
paclitaxel
(IHC)



Overall benefit








T



T





F



F





No Data



Indeterminate









In an embodiment, the invention provides a select profile for melanoma comprising one or more, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or 13 of: MGMT, PTEN, SPARC, ERBB3, ERCC1, TUBB3, BRAF, c-KIT, GNA11, GNAQ, BRAF, NRAS, PIK3CA. The invention further provides a method of selecting a candidate treatment for a melanoma comprising assessment of one or more members of the melanoma select profile using one or more molecular profiling method presented herein, e.g., FISH, IHC, RT-PCR, expression array, sequencing, RFLP, etc. In an embodiment, protein analysis such as IHC is used to assess one or more, e.g., 1, 2, 3, 4 or 5, of: MGMT, PTEN, SPARC. SPARC can be detected using various monoclonal or polyclonal antibodies. In another embodiment, gene expression analysis such as RT-PCR (qPCR) is used to assess one or more of, e.g., 1, 2, 3 or 4, of: ERBB3, ERCC1, TUBB3. In another embodiment, sequence analysis is used to assess BRAF, e.g., cobas PCR can be used to assess the presence of the BRAF V600E mutation. In still another embodiment, sequence analysis is used to assess one or more, e.g., 1, 2, 3, 4, 5 or 6, of: c-KIT, GNA11, GNAQ, BRAF, NRAS, PIK3CA. In an embodiment, the molecular profile further comprises detection of the presence of VEGFR2, e.g., by RT-PCR. In some embodiments wherein the melanoma comprises uveal melanoma, the molecular profiling comprises that of GNA11 and/or GNAQ. The molecular profile can be based on assessing the biomarkers as illustrated in FIG. 32C or FIG. 33C.


The biomarker-treatment associations for melanoma may comprise those associations in Table 9. The table indicates whether the indicated markers are profiled for select and/or comprehensive profiling of melanoma. See column headed “Select, Comprehensive, or Both.” The class of drug and illustrative drugs of the indicated class are indicated in the columns “Class of Drugs” and “Drugs,” respectively. The columns headed “Biomarker Result” illustrate illustrative methods of profiling the indicated biomarkers, generally as true (“T”) or false (“F”) or any. One of skill will appreciate that alternative methods can be used to analyze the biomarkers as appropriate. For example, expression analysis performed by RT-PCR could be performed by microarray or other expression analysis method such as those described herein or known in the art. The joint result of the indicated biomarker results combined to predict a benefit or not of the indicated candidate drugs, following the logic described above for Table 7.









TABLE 9





Melanoma Comprehensive and Select Profiles





















Select








Comprehensive


Biomarker
Biomarker
Biomarker
Treatment


or Both
Class of Drugs
Drugs
Result
Result
Result
Benefit






Platinum
cisplatin,
ERCC1 Low
BRCA1 Low


Comprehensive
compounds
carboplatin
(RT-PCR)
(RT-PCR)

Overall Benefit








T
Any

T





F
Any

F





No Data
T

T





No Data
F

F





No Data
No Data

Indeterminate







doxorubicin,



Anthracyclines
liposomal-



and related
doxorubicin,
TOP2A High
PGP Low


Comprehensive
substances
epirubicin
(RT-PCR)
(RT-PCR)

Overall Benefit








T
T or No Data

T





T
F

F





F
Any

F





No Data
T

T





No Data
F

F





No Data
No Data

Indeterminate








TLE3




docetaxel,
Positive
TUBB3 Low


Comprehensive
Taxanes
paclitaxel
(IHC)
(RT-PCR)

Overall Benefit








T
Any

T





F
Any

F





No Data
T

T





No Data
F

F





No Data
No Data

Indeterminate








SPARC_MONO
SPARC_POLY





Positive
Positive


Both
Taxanes
nab-paclitaxel
(IHC)
(IHC)

Overall Benefit








T
Any

T





F
T

T





F
F or No Data

F





No Data
T

T





No Data
F

F





No Data
No Data

Indeterminate








RRM1 Low


Comprehensive
Antimetabolites
gemcitabine
(RT-PCR)


Overall benefit








T


T





F


F





No Data


Indeterminate







fluorouracil,
TS Low


Comprehensive
Antimetabolites
capecitabine
(RT-PCR)


Overall benefit








T


T





F


F





No Data


Indeterminate






Topo1

TOPO1 High


Comprehensive
inhibitors
irinotecan
(RT-PCR)


Overall benefit








T


T





F


F





No Data


Indeterminate








MGMT



Alkylating
temozolomide,
Negative


Both
agents
dacarbazine
(IHC)


Overall benefit








T


T





F


F





No Data


Indeterminate








BRAF
BRAF





Mutated
Mutated


Both
TKI
vemurafenib
(cobas PCR)
(Sequencing)

Overall Benefit








T
Any

T





F
Any

F





No Data
Any

Indeterminate








PIK3CA
PTEN



mTOR
everolimus,
Mutated
Negative


Both
inhibitors
temsirolimus
(Sequencing)
(IHC)

Overall Benefit








T
Any

T





F
T

T





F
F

F





F
No Data

Indeterminate





No Data
T

T





No Data
F or No Data

Indeterminate








c-KIT




imatinib,
Mutated


Both
TKI
sunitinib
(Sequencing)


Overall Benefit








T


T





F


F





No Data


Indeterminate









cMET
cMET




erlotinib,
EGFR High
Positive
Amplified


Comprehensive
TKI
gefitinib
(RT-PCR)
(IHC)
(FISH)
Overall Benefit








T
Any
Any
T





F
Any
Any
F





No Data
Any
Any
Indeterminate








ALK
ALK





Positive
Positive


Comprehensive
TKI
crizotinib
(RFLP)
(FISH)

Overall benefit








T
T

T





T
F

F





T
No Data

Indeterminate





F
T

T





F
F

F





F
No Data

Indeterminate





No Data
T

T





No Data
F

F





No Data
No Data

Indeterminate








HER2
HER2





Positive
Amplified


Comprehensive
TKI
lapatinib
(IHC)
(FISH)

Overall Benefit








T
Any

T





F
T or Equivocal

T






High





F
F or Equivocal

F






Low





F
No Data

Indeterminate





Equivocal
T or Equivocal

T






High





Equivocal
F or Equivocal

F






Low





Equivocal
No Data

Indeterminate





No Data
T or Equivocal

T






High





No Data
F, Equivocal

Indeterminate






Low, or No Data






Monoclonal



antibodies

HER2
HER2



(Her2-Targeted -

Positive
Amplified


Comprehensive
trastuzumab)
trastuzumab
(IHC)
(FISH)

Overall Benefit








T
Any

T





F
T or Equivocal

T






High





F
F or Equivocal

F






Low





F
No Data

Indeterminate





Equivocal
T or Equivocal

T






High





Equivocal
F or Equivocal

F






Low





Equivocal
No Data

Indeterminate





No Data
T or Equivocal

T






High





No Data
F, Equivocal

Indeterminate






Low, or No Data






Platinum
cisplatin,
ERCC1 Low


Select
compounds
carboplatin
(RT-PCR)


Overall Benefit








T


T





F


F





No Data


Indeterminate








TUBB3 Low


Select
Taxanes
paclitaxel
(RT-PCR)


Overall Benefit








T


T





F


F





No Data


Indeterminate









In an embodiment, the invention provides a select profile for colorectal cancer comprising one or more, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 of: ALK, PTEN, AREG, EGFR, ERCC1, EREG, TS, TOPO1, BRAF, KRAS, NRAS, PIK3CA. The invention further provides a method of selecting a candidate treatment for a colorectal cancer comprising assessment of one or more members of the colorectal cancer select profile using one or more molecular profiling method presented herein, e.g., FISH, IHC, RT-PCR, expression array, sequencing, RFLP, etc. In an embodiment, protein analysis such as IHC is used to assess PTEN. In another embodiment, gene expression analysis such as RT-PCR (qPCR) is used to assess one or more of, e.g., 1, 2, 3, 4, 5 or 6, of: AREG, EGFR, ERCC1, EREG, TS. In still another embodiment, sequence analysis is used to assess one or more, e.g., 1, 2, 3 or 4, of: BRAF, KRAS, NRAS, PIK3CA. The colorectal cancer select profile can also comprise assessment of the presence of ALK or an ALK mutation/translocation/rearrangement, e.g., an EML4-ALK fusion, e.g., by FISH, RT-PCR, sequencing or RFLP. In an embodiment, the molecular profile further comprises detection of the presence of VEGFR2, e.g., by RT-PCR. The molecular profile can be based on assessing the biomarkers as illustrated in FIG. 32B or FIG. 33B.


The biomarker-treatment associations for a colorectal cancer may comprise those associations in Table 10. The table indicates whether the indicated markers are profiled for select and/or comprehensive profiling of colorectal cancer. See column headed “Select, Comprehensive, or Both.” The class of drug and illustrative drugs of the indicated class are indicated in the columns “Class of Drugs” and “Drugs,” respectively. The columns headed “Biomarker Result” illustrate illustrative methods of profiling the indicated biomarkers, generally as true (“T”) or false (“F”) or any. One of skill will appreciate that alternative methods can be used to analyze the biomarkers as appropriate. For example, expression analysis performed by RT-PCR could be performed by microarray or other expression analysis method such as those described herein or known in the art. The joint result of the indicated biomarker results combined to predict a benefit or not of the indicated candidate drugs, following the logic described above for Table 7.









TABLE 10





Colorectal Cancer Comprehensive and Select Profiles


























Select,













Comp. or
Class of

Biomarker
Biomarker


Both
Drugs
Drugs
Result
Result







doxorubicin,



Anthracyclines
liposomal-



and related
doxorubicin,
TOP2A High
PGP Low


Comprehensive
substances
epirubicin
(RT-PCR)
(RT-PCR)






Overall Benefit








T
T or No






T






Data





T
F






F





F
Any






F





No Data
T






T





No Data
F






F





No Data
No Data






Indeter.








TLE3




docetaxel,
Positive
TUBB3 Low


Comp.
Taxanes
paclitaxel
(IHC)
(RT-PCR)






Overall Benefit








T
Any






T





F
Any






F





No Data
T






T





No Data
F






F





No Data
No Data






Indeter.








SPARC_MONO
SPARC_POLY




nab-
Positive
Positive


Comp.
Taxanes
paclitaxel
(IHC)
(IHC)






Overall Benefit








T
Any






T





F
T






T





F
F or No






F






Data





No Data
T






T





No Data
F






F





No Data
No Data






Indeter.








RRM1 Low


Comp.
Antimetabolites
gemcitabine
(RT-PCR)







Overall benefit








T







T





F







F





No Data







Indeter.







fluorouracil,
TS Low


Both
Antimetabolites
capecitabine
(RT-PCR)







Overall benefit








T







T





F







F





No Data







Indeter.






Antimetabolite



based regimen



(FOLFIRI,
FOLFIRI,
TOPO1 Low
EGFR Low


Both
irinotecan)
irinotecan
(RT-PCR)
(RT-PCR)






Overall Benefit








T
T or No






F






Data





T or No
F






T





Data





F
Any






T





No Data
T






F





No Data
No Data






Indeter.






Antimetabolite



based regimen



(FOLFOX,
FOLFOX,
ERCC1 Low
TS Low


Both
CapOx)
CapOx
(RT-PCR)
(RT-PCR)






Overall Benefit








T
T or No






T






Data





T or No
F






F





Data





F
Any






F





No Data
T






T





No Data
No Data






Indeter.








MGMT



Alkylating
temozolomide,
Negative


Comp.
agents
dacarbazine
(IHC)







Overall benefit








T







T





F







F





No Data







Indeter.








PIK3CA
PTEN
KRAS
BRAF



mTOR
everolimus,
Mutated
Negative
Mutated
Mutated


Both
Inhibitors
temsirolimus
(Sequencing)
(IHC)
(Sequencing)
(Sequencing)




Overall Benefit








T
Any
F
F or No




T








Data





T
T
No Data
F




T





T
F or No
No Data
F or No




T






Data

Data





T
T
T
Any




F





T
T
F or No
T




F







Data





T
F or No
T
Any




F






Data





T
F or No
F or No
T




F






Data
Data





F or No
T
F or No
F or No




T





Data

Data
Data





F
T or No
T
Any




F






Data





F
T or No
F or No
T




F






Data
Data





F
F
Any
Any




F





F
No Data
F or No
F or No




Indeter.







Data
Data





No Data
T
F or No
T




F







Data





No Data
Any
T
Any




F





No Data
F or No
F or No
T




F






Data
Data





No Data
F or No
F or No
F or No




Indeter.






Data
Data
Data








c-KIT




imatinib,
Mutated


Comp.
TKI
sunitinib
(Sequencing)







Overall Benefit








T







T





F







F





No Data







Indeter.








HER2
HER2





Positive
Amplified


Comp.
TKI
lapatinib
(IHC)
(FISH)






Overall Benefit








T
Any






T





F, Equivocal
T or






T





or No Data
Equivocal






High





F or
For






F





Equivocal
Equivocal






Low





F or
No Data






Indeter.





Equivocal





No Data
F, Equivocal






Indeter.






Low or No






Data






Monoclonal



antibodies

HER2
HER2



(Her2-Targeted -

Positive
Amplified


Comp.
trastuzumab)
trastuzumab
(IHC)
(FISH)






Overall Benefit








T
Any






T





F, Equivocal
T or






T





or No Data
Equivocal






High





F or
F or






F





Equivocal
Equivocal






Low





F or
No Data






Indeter.





Equivocal





No Data
F, Equivocal






Indeter.






Low or No






Data








ALK
ALK





Positive
Positive


Both
TKI
crizotinib
(FISH)
(RFLP)






Overall benefit








T
Any






T





F
Any






F





No Data
Any






Indeter.






Monoclonal

KRAS




PTEN



antibodies

Mutated
KRAS



Negative (in



(EGFR-targeted -

(Except
G13D
BRAF
NRAS

metastatic



panitumumab,
cetuximab,
G13D)
Present
Mutated
Mutated
PIK3CA
lesion)
AREG Low
EREG Low


Both
cetuximab)
panitumumab
(Sequencing)
(Sequencing)
(Sequencing)
(Sequencing)
(Sequencing)
(IHC)
(RT-PCR)
(RT-PCR)
Overall Benefit








T
Any
Any
Any
Any
Any
Any
Any
F





F or No
T
Any
Any
Any
Any
Any
Any
F





Data





F or No
F or No
T
Any
Any
Any
Any
Any
F





Data
Data





F or No
F or No
F or No
T
Any
Any
Any
Any
F





Data
Data
Data





F or No
F or No
F or No
F or No
T
Any
Any
Any
F





Data
Data
Data
Data





F
F
F or No
F or No
F or No
Any
Any
Any
T







Data
Data
Data





F
No Data
F or No
F or No
F or No
Any
Any
Any
Indeter.







Data
Data
Data





No Data
F or No
F or No
F or No
F or No
Any
Any
Any
Indeter.






Data
Data
Data
Data









cMET
cMET




erlotinib,
EGER High
Positive
Amplified


Comp.
TKI
gefitinib
(RT-PCR)
(IHC)
(FISH)





Overall Benefit








T
Any
Any





T





F
Any
Any





F





No Data
Any
Any





Indeter.









In an embodiment, the invention provides a select profile for non-small cell lung cancer (NSCLC) comprising one or more, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 14, of: cMET, HER2, ALK, PTEN, TLE3, BRCA1, EGFR, ERCC1, RRM1, TS, BRAF, EGFR, KRAS, PIK3CA. The invention further provides a method of selecting a candidate treatment for a NSCLC cancer comprising assessment of one or more members of the NSCLC select profile using one or more molecular profiling method presented herein, e.g., FISH, IHC, RT-PCR, expression array, sequencing, RFLP, etc. In one embodiment, FISH is used to assess one or more, e.g., 1, 2 or 3, of: cMET, HER2, ALK. In an embodiment, protein analysis such as IHC is used to assess one or more, e.g., 1, 2, 3 or 4, of: cMET, EGFR, PTEN, TLE3. The EGFR IHC can be used to ascertain an IHC score (H-score), which takes into account the percentage of cells (0-100%) as well as each staining intensity category (0-3+) to compute a semi-quantitative score between 0 and 300. In another embodiment, gene expression analysis such as RT-PCR (qPCR) is used to assess one or more of, e.g., 1, 2, 3, 4 or 5, of: BRCA1, EGFR, ERCC1, RRM1, TS. In still another embodiment, sequence analysis is used to assess one or more, e.g., 1, 2, 3 or 4, of: BRAF, EGFR, KRAS, PIK3CA. In some embodiments, sequencing is used to assess EGFR if the sample is more than 50% tumor. RFLP can also be used to assess EGFR. In some embodiments, RFLP is used to assess EGFR if the sample is less than 50% tumor. The NSCLC select profile can also comprise assessment of the presence of ALK or an ALK mutation/translocation/rearrangement, e.g., an EML4-ALK fusion, e.g., by FISH, RT-PCR, sequencing or RFLP. The molecular profile can be based on assessing the biomarkers as illustrated in FIG. 32A or FIG. 33A. In an embodiment, the molecular profile for NSCLC can also comprise assessment of ROS1. For example, TKI inhibitors such as crizotinib or other ROS1 inhibitor compounds can have benefit when mutations or rearrangements in ROS1 are identified.


The biomarker-treatment associations for a NSCLC may comprise those associations in Table 11. The table indicates whether the indicated markers are profiled for select and/or comprehensive profiling of NSCLC. See column headed “Select, Comprehensive, or Both.” The class of drug and illustrative drugs of the indicated class are indicated in the columns “Class of Drugs” and “Drugs,” respectively. The columns headed “Biomarker Result” illustrate illustrative methods of profiling the indicated biomarkers, generally as true (“T”) or false (“F”) or any. One of skill will appreciate that alternative methods can be used to analyze the biomarkers as appropriate. For example, expression analysis performed by RT-PCR could be performed by microarray or other expression analysis method such as those described herein or known in the art. The joint result of the indicated biomarker results combined to predict a benefit or not of the indicated candidate drugs, following the logic described above for Table 7.









TABLE 11





NSCLC Comprehensive and Select Profiles




















Select,







Comprehensive



Secondary


or Both
Drug Class
Drug
Results
Results
Overall Benefit








EGFR





Activating





Mutation




erlotinib,
(Sequencing,
KRAS Mutated


Both
TKI
gefitinib
RFLP)
(Sequencing)








T
Any
T





F
Any
F





No Data
F
Indeterminate





No Data
T
F





No Data
No Data
Indeterminate






Platinum
cisplatin,
ERCC1 Low
BRCA1 Low


Both
compounds
carboplatin
(RT-PCR)
(RT-PCR)








T
Any
T





F
Any
F





No Data
T
T





No Data
F
F





No Data
No Data
Indeterminate








RRM1 Low


Both
Antimetabolites
gemcitabine
(RT-PCR)








T

T





F

F





No Data

Indeterminate








TS Low


Both
Antimetabolites
pemetrexed
(RT-PCR)








T

T





F

F





No Data

Indeterminate








PIK3CA



mTOR
everolimus,
Mutated
PTEN Negative


Comprehensive
inhibitors
temsirolimus
(Sequencing)
(IHC)








T
Any
T





F
T
T





F
F
F





F
No Data
Indeterminate





No Data
T
T





No Data
F
Indeterminate





No Data
No Data
Indeterminate






Monoclonal



Antibodies



(EGFR



Targeted-

EGFR Positive


Both
cetuximab)
cetuximab
(IHC H-Score)








T

T





F

F





No Data

Indeterminate








ALK Positive
ALK Positive


Both
TKI
crizotinib
(FISH)
(RFLP)








T
Any
T





F
Any
F





No Data
Any
Indeterminate







doxorubicin,



Anthracyclines
liposomal-



and related
doxorubicin,
TOP2A High
PGP Low


Comprehensive
substances
epirubicin
(RT-PCR)
(RT-PCR)








T
T or No Data
T





T
F
F





F
Any
F





No Data
T
T





No Data
F
F





No Data
No Data
Indeterminate








SPARC_MONO
SPARC_POLY


Both
Taxanes
nab-paclitaxel
Positive (IHC)
Positive (IHC)








T
Any
T





F
T
T





F
F or No Data
F





No Data
T
T





No Data
F
F





No Data
No Data
Indeterminate






Topo1

TOPO1 High


Comprehensive
inhibitors
irinotecan
(RT-PCR)








T

T





F

F





No Data

Indeterminate






Alkylating
temozolomide,
MGMT


Comprehensive
Agents
dacarbazine
Negative (IHC)








T

T





F

F





No Data

Indeterminate








BRAF Mutated


Comprehensive
TKI
sorafenib
(Sequencing)








T

T





F

F





No Data

Indeterminate







imatinib,
c-KIT Mutated


Comprehensive
TKI
sunitinib
(Sequencing)








T

T





F

F





No Data

Indeterminate









HER2





HER2 Positive
Amplified


Comprehensive
TKI
lapatinib
(IHC)
(FISH)








T
T
T





F
T
T





Equivocal
T
T





Equivocal
F
F





Equivocal
Equivocal High
T





Equivocal
Equivocal Low
F





Equivocal
No Data
Indeterminate





No Data
T
T





No Data
F
Indeterminate





No Data
Equivocal High
T





No Data
Equivocal Low
Indeterminate





No Data
No Data
Indeterminate






Monoclonal



antibodies


HER2



(Her2-targeted -

HER2 Positive
Amplified


Comprehensive
trastuzumab)
trastuzumab
(IHC)
(FISH)








T
T
T





F
T
T





Equivocal
T
T





Equivocal
F
F





Equivocal
Equivocal low
F





Equivocal
Equivocal high
T





Equivocal
No Data
Indeterminate





No Data
T
T





No Data
F
Indeterminate





No Data
Equivocal low
Indeterminate





No Data
Equivocal high
T





No Data
No Data
Indeterminate







docetaxel,
TLE3 Positive
TUBB3 Low


Comprehensive
Taxanes
paclitaxel
(IHC)
(RT-PCR)








T
T
T





F
T
F





No Data
T
T





No Data
F
F





No Data
No Data
Indeterminate







docetaxel,
TLE3 Positive


Select
Taxanes
paclitaxel
(IHC)








T

T





F

F





No Data

Indeterminate









A comprehensive molecular profile can be created by molecular profiling of the biomarkers indicated as part of a comprehensive profile in Tables 7-11. In addition, the biomarker-treatment associations for a comprehensive molecular profile may comprise those associations in Table 12 in addition to those in Tables 7-11. Table 12 indicates whether the indicated markers are profiled for gastrointestinal stromal tumor (GIST) and/or comprehensive profiling of any cancer. See column headed “GIST, Comprehensive, or Both.” The class of drug and illustrative drugs of the indicated class are indicated in the columns “Class of Drugs” and “Drugs,” respectively. The columns headed “Biomarker Result” illustrate illustrative methods of profiling the indicated biomarkers, generally as true (“T”) or false (“F”) or any. One of skill will appreciate that alternative methods can be used to analyze the biomarkers as appropriate. For example, expression analysis performed by RT-PCR could be performed by microarray or other expression analysis method such as those described herein or known in the art. The joint result of the indicated biomarker results combined to predict a benefit or not of the indicated candidate drugs, following the logic described above for Table 7. The molecular profile can be based on assessing the biomarkers as illustrated in FIG. 32F and FIG. 32G.


In an embodiment, a comprehensive profile is used to select a candidate treatment for a gastrointestinal stromal tumor (GIST). The molecular profile for GIST can comprise a comprehensive profile with the additional molecular profiling indicated for a GIST in Table 12, namely differential sequence analysis of cKIT in GIST versus other cancers to predict treatment benefit with tyrosine kinase inhibitors (TKI). In GIST, imatinib associates with mutations in exons 9, 11 and/or 13 of cKIT, sunitinib associates with mutations in exon 9 of cKIT, and sorafenib associates with mutations in exons 9 and/or 11 of cKIT. In all other lineages, imatinib and sunitinib associate with mutations in exon 11 and/or 13 of cKIT.









TABLE 12





All Other Lineages Comprehensive and GIST Profiles





















GIST,








Comprehensive,


Biomarker
Biomarker
Biomarker
Treatment


or Both
Class of Drugs
Drugs
Result
Result
Result
Benefit






Platinum
cisplatin,
ERCC1 Low
BRCA1 Low


Both
compounds
carboplatin
(RT-PCR)
(RT-PCR)

Overall Benefit








T
Any

T





F
Any

F





No Data
T

T





No Data
F

F





No Data
No Data

Indeterminate







doxorubicin,



Anthracyclines
liposomal-



and related
doxorubicin,
TOP2A High
PGP Low


Both
substances
epirubicin
(RT-PCR)
(RT- PCR)

Overall Benefit








T
T or No Data

T





T
F

F





F
Any

F





No Data
T

T





No Data
F

F





No Data
No Data

Indeterminate








TLE3




docetaxel,
Positive
TUBB3 Low


Both
Taxanes
paclitaxel
(IHC)
(RT-PCR)

Overall Benefit








T
Any

T





F
Any

F





No Data
T

T





No Data
F

F





No Data
No Data

Indeterminate








SPARC MONO
SPARC POLY





Positive
Positive


Both
Taxanes
nab-paclitaxel
(IHC)
(IHC)

Overall Benefit








T
Any

T





F
T

T





F
F or No Data

F





No Data
T

T





No Data
F

F





No Data
No Data

Indeterminate








RRM1 Low


Both
Antimetabolites
gemcitabine
(RT-PCR)


Overall benefit








T


T





F


F





No Data


Indeterminate







fluorouracil,




capecitabine,
TS Low


Both
Antimetabolites
pemetrexed
(RT-PCR)


Overall benefit








T


T





F


F





No Data


Indeterminate






TOPO1
irinotecan,
TOPO1 High


Both
inhibitors
topotecan
(RT-PCR)


Overall benefit








T


T





F


F





No Data


Indeterminate








MGMT



Alkylating
temozolomide,
Negative


Both
agents
dacarbazine
(IHC)


Overall benefit








T


T





F


F





No Data


Indeterminate








PIK3CA
PTEN



mTOR
everolimus,
Mutated
Negative


Both
inhibitors
temsirolimus
(Sequencing)
(IHC)

Overall Benefit








T
Any

T





F
T

T





F
F

F





F
No Data

Indeterminate





No Data
T

T





No Data
F or No Data

Indeterminate







bicalutamide,
AR



Anti-
flutamide,
Positive


Both
androgens
abiraterone
(IHC)


Overall Benefit








T


T





F


F





No Data


Indeterminate







tamoxifen,
ER
PR



Anti-
toremifene,
Positive
Positive


Both
estrogens
fulvestrant
(IHC)
(IHC)

Overall Benefit








T
Any

T





F
T

T





F
F

F





F
No Data

Indeterminate





No Data
T

T





No Data
F or No Data

Indeterminate






Endocrine



therapy -
letrozole,
ER
PR



enzyme
anastrozole,
Positive
Positive


Both
inhibitor
exemestane
(IHC)
(IHC)

Overall Benefit








T
Any

T





F
T

T





F
F

F





F
No Data

Indeterminate





No Data
T

T





No Data
F or No Data

Indeterminate







medroxypro-




gesterone,
ER
PR




megestrol
Positive
Positive


Both
Progestogens
acetate
(IHC)
(IHC)

Overall Benefit








T
Any

T





F
T

T





F
F

F





F
No Data

Indeterminate





No Data
T

T





No Data
F or No Data

Indeterminate






Gonadotropin



releasing

ER
PR



hormone
leuprolide,
Positive
Positive


Both
analogs
goserelin
(IHC)
(IHC)

Overall Benefit








T
Any

T





F
T

T





F
F

F





F
No Data

Indeterminate





No Data
T

T





No Data
F or No Data

Indeterminate








HER2
HER2





Positive
Amplified


Both
TKI
lapatinib
(IHC)
(FISH)

Overall Benefit








T
Any

T





F
T or Equivocal

T






High





F
F or Equivocal

F






Low





F
No Data

Indeterminate





Equivocal
T or Equivocal

T






High





Equivocal
F or Equivocal

F






Low





Equivocal
No Data

Indeterminate





No Data
T or Equivocal

T






High





No Data
F, Equivocal

Indeterminate






Low or No Data






Monoclonal



antibodies

HER2
HER2



(Her2-targeted -

Positive
Amplified


Both
trastuzumab)
trastuzumab
(IHC)
(FISH)

Overall Benefit








T
Any

T





F
T or Equivocal

T






High





F
F or Equivocal

F






Low





F
No Data

Indeterminate





Equivocal
T or Equivocal

T






High





Equivocal
F or Equivocal

F






Low





Equivocal
No Data

Indeterminate





No Data
T or Equivocal

T






High





No Data
F, Equivocal

Indeterminate






Low or No Data









cMET
cMET




erlotinib,
EGFR High
Positive
Amplified


Both
TKI
gefitinib
(RT-PCR)
(IHC)
(FISH)
Overall Benefit








T
Any
Any
T





F
Any
Any
F





No Data
Any
Any
Indeterminate








ALK
ALK





Positive
Positive


Both
TKI
crizotinib
(FISH)
(RFLP)

Overall benefit








T
Any

T





F
Any

F





No Data
Any

Indeterminate








c-KIT Mutated


GIST
TKI
imatinib
(Sequencing)


Overall Benefit








T


T





F


F





No Data


Indeterminate








c-KIT Mutated


GIST
TKI
sunitinib
(Sequencing)


Overall Benefit








T


T





F


F





No Data


Indeterminate








c-KIT Mutated


GIST
TKI
sorafenib
(Sequencing)


Overall Benefit








T


T





F


F





No Data


Indeterminate







imatinib,
c-KIT Mutated


Comprehensive
TKI
sunitinib
(Sequencing)


Overall Benefit








T


T





F


F





No Data


Indeterminate









In embodiments, the comprehensive profiles focus on biomarker analysis to guide selection for standard and additional therapeutic associations. For example, the therapeutic associations can comprise those for various types or stages of disease. A comprehensive profile may be used to guide selection of candidate therapy at any point in care. For example, a comprehensive profile can be used to identify a candidate treatment for a newly diagnosed case or when the patient has exhausted standard of care therapies or has an aggressive disease. In practice, molecular profiling according to the invention has identified beneficial therapies for a cancer patient when all standard-of-care treatments were exhausted the treating physician was unsure of what treatment to select next. See, e.g., Example 1. One of skill in the art will appreciate that by its very nature a comprehensive molecular profiling can be used to select a therapy for any appropriate indication independent of the nature of the indication (e.g., source, stage, prior treatment, etc). However, in some embodiments, a comprehensive molecular profile is tailored for a particular indication. For example, biomarkers associated with treatments that are known to be ineffective for a cancer from a particular anatomical origin may not be assessed as part of a comprehensive molecular profile for that particular cancer. Similarly, biomarkers associated with treatments that have been previously used and failed for a particular patient may not be assessed as part of a comprehensive molecular profile for that particular patient. In yet another non-limiting example, biomarkers associated with treatments that are only known to be effective for a cancer from a particular anatomical origin may only be assessed as part of a comprehensive molecular profile for that particular cancer. One of skill will further appreciate that the comprehensive molecular profile can be updated to reflect advancements, e.g., new treatments, new biomarker-drug associations, and the like, as available.


In an embodiment, the invention provides a comprehensive molecular profile for cancer comprising one or more, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 or 27 of: ALK, AR, AREG, BRAF, BRCA1, c-KIT, cMET, EGFR, ER, ERBB3, ERCC1, EREG, HER2, KRAS, MGMT, NRAS, PGP (MDR-1), PIK3CA, PR, PTEN, RRM1, SPARC, TLE3, TOPO1, TOPO2A, TS, TUBB3. The invention further provides a method of selecting a candidate treatment for a cancer comprising assessment of one or more members of the comprehensive cancer profile using one or more molecular profiling method presented herein, e.g., FISH/CISH, IHC, RT-PCR, expression array, sequencing, RFLP, etc. In one embodiment, FISH/CISH is used to assess one or more, e.g., 1 or 2, of: cMET and HER2. In an embodiment, protein analysis such as IHC is used to assess one or more, e.g., 1, 2, 3, 4, 5, 6, 7, 8 or 9, of: AR, cMET, ER, HER2, MGMT, PR, PTEN, SPARC, TLE3. The IHC can be used to ascertain an IHC score (H-score), which takes into account the percentage of cells (0-100%) as well as each staining intensity category (0-3+) to compute a semi-quantitative score between 0 and 300. In another embodiment, expression analysis, e.g., by RT-PCR (qPCR) or microarray, is used to assess one or more of, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12, of: AREG, BRCA1, EGFR, ERBB3, ERCC1, EREG, PGP (MDR-1), RRM1, TOPO1, TOPO2A, TS, TUBB3. In still another embodiment, sequence analysis is used to assess one or more, e.g., 1, 2, 3, 4 or 5, of: BRAF, KRAS, NRAS, PIK3CA, c-KIT. The comprehensive cancer profile can also comprise assessment of the presence of ALK or an ALK mutation/translocation/rearrangement, e.g., an EML4-ALK fusion, e.g., by FISH, RT-PCR, sequencing or RFLP. In an embodiment, the molecular profile further comprises detection of the presence of VEGFR2, e.g., by RT-PCR. Any biomarker disclosed herein, e.g., in Table 2, Tables 6-12, or in the select profiles above, can be assessed as part of the comprehensive molecular profile. The comprehensive profile for a malignancy of any lineage can be as shown in FIG. 32F or FIG. 33F.


The comprehensive profile can further comprise molecular profiling of certain genes in the context of specific cancer lineage. For example, the comprehensive profile can comprise the molecular profiling described above and in addition one or more of the following markers. A comprehensive profile of melanoma can include molecular profiling of BRAF, GNA11 and/or GNAQ. For example, one or more of these biomarkers can be assessed for a mutation, e.g., by sequencing or PCR. In an embodiment, BRAF is assessed using the FDA approved Cobas® 4800 BRAF V600 Mutation Test from Roche Molecular Diagnostics (Roche Diagnostics, Indianapolis, Ind.). According to the manufacturer, the kit comprises a real-time PCR test to detect the BRAF V600E (1799 T>A) mutation in human melanoma, e.g., in formalin-fixed, paraffin-embedded (FFPET) tissue. It is designed to help select patients for treatment with vemurafenib, an oral medicine designed to treat patients whose melanoma tumors harbor a mutated form of the BRAF gene. The test may also detect other V600 mutations such as V600D and V600K. Vemurafenib is designed to target and inhibit some mutated forms of the BRAF protein found in about half of all cases of melanoma. GNAQ/GNA11 mutations can promote tumor growth and metastatis. MEK inhibitors may inhibit the GNAQ/GNA11 pathway. Similarly, a comprehensive profile of non-small cell lung cancer can include additional molecular profiling of EGFR and/or ALK. For example, and EGFR mutation can be detected by sequence analysis and/or RFLP. EGFR protein can be assessed by IHC, including by determining an H-score. ALK can be assessed using FISH and/or CISH. In an embodiment, ALK is assessed using the Vysis ALK Break Apart FISH Probe Kit from Abbott Molecular, Inc. (Des Plaines, Ill.). According to the manufacturer, this kit comprises a laboratory test that uses DNA probes with attached fluorescent dyes to detect the presence of chromosomal rearrangements of the ALK gene, located on chromosome 2, in a non-small cell lung cancer (NSCLC) tissue sample. If the test result indicates the presence of rearrangements (such as translocation) involving the ALK gene in the cancer cell, then a patient with NSCLC may be eligible for treatment with the cancer drug crizotinib. Crizotinib selectively interferes with the ALK gene and can benefit patients with ALK mutations. In addition, the comprehensive profile for a breast cancer can comprise further molecular profiling of TOPO2A, e.g, using FISH or CISH. In sum, embodiments of the comprehensive profile can be as shown in FIGS. 32F and 32G.


The comprehensive and select profiles of the invention can comprise further gene and gene products to identify additional biomarker-treatment associations. In an embodiment, the molecular profile comprises one or more additional gene or gene product listed in Table 2. For example, the molecular profile may comprise one or more additional gene or gene product selected from the group consisting of MSH2, ERBB4, ROS1, MGMT, and a combination thereof. Any appropriate technique can be used to assess the gene and/or gene products. In a non-limiting example, the molecular profile can include one or more additional analysis selected from the group consisting of allele-specific PCR for BRAF and/or KRAS; RT-PCR for one or more of ER, HER2, MSH2 and PR; sequence analysis for ERBB4; RFLP and/or microsatellite instability for ROS1 rearrangements and/or HER2 exon 20 insertion; pyrosequencing for MGMT methylation status; and a combination thereof.


One of skill will appreciate that the laboratory techniques of the select and comprehensive profiles can be substituted by alternative techniques if appropriate, including alternative techniques as disclosed herein or known in the art. For example, FISH and CISH are generally interchangeable methods so that one can often be used in place of the other. Similarly, Dual ISH methods such as described herein can be substituted for conventional ISH methods. In an embodiment, the FDA approved INFORM HER2 Dual ISH DNA Probe Cocktail kit from Ventana Medical Systems, Inc. (Tucson, Ariz.) is used for FISH/CISH analysis of HER2. This kit allows the determination of the HER2 gene status by enumeration of the ratio of the HER2 gene to Chromosome 17. The HER2 and Chromosome 17 probes are detected using two color chromogenic in situ hybridization (CISH) reactions. A number of methods can be used to assess nucleic acid sequences, and any alterations thereof (point mutations, insertions, deletions, translocations, rearrangements, etc). These include Sanger sequencing, next generation sequencing, polymerase chain reaction (PCR), real-time PCR (qPCR; RT-PCR), a low density microarray, a DNA microarray, a comparative genomic hybridization (CGH) microarray, a single nucleotide polymorphism (SNP) microarray, RFLP, pyrosequencing, methylation specific PCR, mass spec, Southern blotting and related methods such as described herein. Similarly, a number of methods can be used to assess gene expression, including without limitation next generation sequencing, polymerase chain reaction (PCR), real-time PCR (qPCR; RT-PCR), a low density microarray, a DNA microarray, a comparative genomic hybridization (CGH) microarray, a single nucleotide polymorphism (SNP) microarray, proteomic arrays, antibody arrays or mass spec. The presence or level of a protein can also be assessed using multiple methods as appropriate, including without limitation IHC, immunocapture, immunoblotting, Western analysis, ELISA, immunoprecipitation, flow cytometry, and the like. The desired laboratory technique can be chosen based of multiple criteria, including without limitation accuracy, precision, reproduceability, cost, amount of sample available, type of sample available, time to perform the technique, regulatory approval status of the technique platform, regulatory approval status of the particular test, and the like.


In some embodiments, more than one technique is used to assess a same biomarker. For example, results of profiling both gene expression and protein expression can provide confirmatory results. In other cases, a certain method may provide optimal results depending on the available sample. In some embodiments, sequencing is used to assess EGFR if the sample is more than 50% tumor. RFLP can also be used to assess EGFR. In some embodiments, RFLP is used to assess EGFR if the sample is less than 50% tumor. In still other cases, one technique may indicate a desire to perform another technique, e.g., a less expensive technique or one that requires lesser sample quantity may indicate a desire to perform a more expensive technique or one that consumes more sample. In an embodiment, RFLP of ALK is performed first, and then FISH or PCR is performed if the RFLP indicates the presence of a particular ALK alteration such as an ALK fusion. The FISH and/or PCR assay can be designed such that only certain fusion products are detected, e.g., EML4-ALK. The alternate methods may also provide different information about the biomarker. For example, sequence analysis may reveal the presence of a mutant protein, whereas IHC of the protein may reveal its level and/or cellular location. As another example, gene copy number or gene expression at the RNA level may be elevated, but the presence of interfering RNAs may still downregulate protein expression. As still another example, a biomarker can be assessed using a same technique but with different reagents that provide actionable results. As an example, SPARC can be assessed by IHC using either a polyclonal or a monoclonal antibody. This context is identified herein, e.g., as SPARCp (i.e., SPARC detected using a polyclonal antibody), SPARCm (SPARC detected using a monoclonal antibody), or SPARC (m/p) to refer to both.


One of skill will appreciate that molecular profiles of the invention can be updated as new evidence becomes available. For example, new evidence may appear in the literature describing an association between a treatment and potential benefit for cancer or a certain lineage of cancer. This information can be incorporated into an appropriate comprehensive or select molecular profile. As another example, new evidence may be presented for a biomarker that is already assessed according to the invention. Consider the BRAF V600E mutation that is currently FDA approved for directed treatment with vemurafenib for melanoma. If the treatment is determined to be effective in another setting, e.g., for another lineage of cancer, BRAF V600E can be added to an appropriate select or comprehensive molecular profile for that setting.


Clinical Trial Connector


Thousands of clinical trials for therapies are underway in the United States, with several hundred of these tied to biomarker status. In an embodiment, the select and/or comprehensive profiles of the invention include molecular profiling of markers that are associated with ongoing clinical trials. Thus, the molecular profile can be linked to clinical trials of therapies that are correlated to a subject's biomarker profile. The method can further comprise identifying trial location(s) to facilitate patient enrollment. The database of ongoing clinical trials can be obtained from www.clinicaltrials.gov in the United States, or similar source in other locations. The molecular profiles generated by the methods of the invention can be linked to ongoing clinical trials and updated on a regular basis, e.g., daily, bi-weekly, weekly, monthly, or other appropriate time period.



FIG. 33 herein indicates an association of certain biomarkers in the select and comprehensive profiles of the invention with ongoing clinical trials. Profiling of the specified markers can provide an indication that a subject is a candidate for a clinical trial, e.g., by suggesting that an agent in a clinical trial may benefit the subject. For example, FIG. 33A indicates that MEK and BRAF inhibitors are in clinical trials for NSCLC and are associated with profiling of BRAF and/or NRAS; and pan-HER treatments are in clinical trials for NSCLC and are associated with profiling of HER2 and/or ERBB3. FIG. 33B indicates that crizotinib is in clinical trials for colorectal cancer and is associated with profiling of ALK; everolimus and temsirolimus are in clinical trials for colorectal cancer and are associated with profiling of PIK3CA, KRAS, BRAF or PTEN; cMET inhibitors are in clinical trials for colorectal cancer and are associated with profiling of EGFR; and pan-HER treatments are in clinical trials for colorectal cancer and are associated with profiling of ERBB3. FIG. 33C indicates that everolimus and temsirolimus are in clinical trials for melanoma and are associated with profiling of PIK3CA or PTEN; HDAC and MEK inhibitors are in clinical trials for uveal melanoma and are associated with profiling of GNAQ and GNA11; MEK inhibitors are in clinical trials for melanoma and are associated with profiling of NRAS; pan-HER treatments are in clinical trials for melanoma and are associated with profiling of HER2 and ERBB3; crizotinib is in clinical trials for melanoma and is associated with profiling of ALK; and MEK inhibitors and BRAF inhibitors are in clinical trials for melanoma and are associated with profiling of KRAS. FIG. 33D indicates that everolimus and temsirolimus are in clinical trials for breast cancer and are associated with profiling of PIK3CA, KRAS, BRAF or PTEN; crizotinib is in clinical trials for breast cancer and is associated with profiling of ALK; pan-HER treatments are in clinical trials for breast cancer and are associated with profiling of ERBB3; and MEK inhibitors and BRAF inhibitors are in clinical trials for breast cancer and are associated with profiling of NRAS. FIG. 33E indicates that everolimus and temsirolimus are in clinical trials for ovarian cancer and are associated with profiling of PIK3CA or PTEN; pan-HER treatments are in clinical trials for ovarian cancer and are associated with profiling of ERBB3; cMET inhibitors are in clinical trials for ovarian cancer and are associated with profiling of cMET; crizotinib is in clinical trials for ovarian cancer and is associated with profiling of ALK; and MEK inhibitors and BRAF inhibitors are in clinical trials for ovarian cancer and are associated with profiling of BRAF, NRAS and KRAS. FIG. 33F indicates that crizotinib is in clinical trials for various cancers and is associated with profiling of ALK; MEK inhibitors and BRAF inhibitors are in clinical trials for various cancers and are associated with profiling of BRAF, NRAS and KRAS; and pan-HER treatments are in clinical trials for various cancers and are associated with profiling of ERBB3.


Report


In an embodiment, the methods of the invention comprise generating a molecular profile report. The report can be delivered to the treating physician or other caregiver of the subject whose cancer has been profiled. The report can comprise multiple sections of relevant information, including without limitation: 1) a list of the genes and/or gene products in the molecular profile; 2) a description of the molecular profile of the genes and/or gene products as determined for the subject; 3) a treatment associated with one or more of the genes and/or gene products in the molecular profile; and 4) and an indication whether each treatment is likely to benefit the patient, not benefit the patient, or has indeterminate benefit. The list of the genes and/or gene products in the molecular profile can be those presented herein for the select or comprehensive profiles of the invention. The description of the molecular profile of the genes and/or gene products as determined for the subject may include such information as the laboratory technique used to assess each biomarker (e.g., RT-PCR, FISH/CISH, IHC, PCR, RFLP, sequencing, etc) as well as the result and criteria used to score each technique. By way of example, the criteria for scoring a protein as positive or negative for IHC may comprise the amount of staining and/or percentage of positive cells, the criteria for scoring a nucleic acid RT-PCR may be a cycle number indicating whether the level of the appropriate nucleic acid is differentially regulated as compared to a control sample, or criteria for scoring a mutation may be a presence or absence. The treatment associated with one or more of the genes and/or gene products in the molecular profile can be determined using a rule set as described herein, e.g., in any of Tables 7-12. The indication whether each treatment is likely to benefit the patient, not benefit the patient, or has indeterminate benefit may be weighted. For example, a potential benefit may be a strong potential benefit or a lesser potential benefit. Such weighting can be based on any appropriate criteria, e.g., the strength of the evidence of the biomarker-treatment association, or the results of the profiling, e.g., a degree of over- or underexpression.


Various additional components can be added to the report as desired. In an embodiment, the report comprises a list having an indication of whether one or more of the genes and/or gene products in the molecular profile are associated with an ongoing clinical trial. The report may include identifiers for any such trials, e.g., to facilitate the treating physician's investigation of potential enrollment of the subject in the trial. In some embodiments, the report provides a list of evidence supporting the association of the genes and/or gene products in the molecular profile with the reported treatment. The list can contain citations to the evidentiary literature and/or an indication of the strength of the evidence for the particular biomarker-treatment association. In still another embodiment, the report comprises a description of the genes and/or gene products in the molecular profile. The description of the genes and/or gene products in the molecular profile may comprise without limitation the biological function and/or various treatment associations.



FIG. 34 herein presents an illustrative report for select profiling of a breast cancer. Description thereof is provided in the Examples.


EXAMPLES
Example 1
Molecular Profiling to Find Targets and Select Treatments for Refractory Cancers

The primary objective was to compare progression free survival (PFS) using a treatment regimen selected by molecular profiling with the PFS for the most recent regimen the patient progressed on (e.g. patients are their own control) (FIG. 35). The molecular profiling approach was deemed of clinical benefit for the individual patient who had a PFS ratio (PFS on molecular profiling selected therapy/PFS on prior therapy) of ≧1.3.


The study was also performed to determine the frequency with which molecular profiling by IHC, FISH and microarray yielded a target against which there is a commercially available therapeutic agent and to determine response rate (RECIST) and percent of patients without progression or death at 4 months.


The study was conducted in 9 centers throughout the United States. An overview of the method is depicted in FIG. 36. As can be seen in FIG. 36, the patient was screened and consented for the study. Patient eligibility was verified by one of two physician monitors. The same physicians confirmed whether the patients had progressed on their prior therapy and how long that PFS (TTP) was. A tumor biopsy was then performed, as discussed below. The tumor was assayed using IHC, FISH (on paraffin-embedded material) and microarray (on fresh frozen tissue) analyses.


The results of the IHC/FISH and microarray were given to two study physicians who in general used the following algorithm in suggesting therapy to the physician caring for the patient: 1) IHC/FISH and microarray indicated same target was first priority; 2) IHC positive result alone next priority; and 3) microarray positive result alone the last priority.


The patient's physician was informed of the suggested treatment and the patient was treated with the suggested agent(s) (package insert recommendations). The patient's disease status was assessed every 8 weeks and adverse effects were assessed by the NCI CTCAE version 3.0.


To be eligible for the study, the patient was required to: 1) provide informed consent and HIPAA authorization; 2) have any histologic type of metastatic cancer; 3) have progressed by RECIST criteria on at least 2 prior regimens for advanced disease; 4) be able to undergo a biopsy or surgical procedure to obtain tumor samples; 5) be ≧18 years, have a life expectancy >3 months, and an Eastern Cooperative Oncology Group (ECOG) Performance Status or 0-1; 6) have measurable or evaluable disease; 7) be refractory to last line of therapy (documented disease progression under last treatment; received ≧6 weeks of last treatment; discontinued last treatment for progression); 8) have adequate organ and bone marrow function; 9) have adequate methods of birth control; and 10) if CNS metastases then adequately controlled. The ECOG performance scale is described in Oken, M. M., Creech, R. H., Tormey, D. C., Horton, J., Davis, T. E., McFadden, E. T., Carbone, P. P.: Toxicity And Response Criteria Of The Eastern Cooperative Oncology Group. Am J Clin Oncol 5:649-655, 1982, which is incorporated by reference in its entirety. Before molecular profiling was performed, the principal investigator at the site caring for the patient must designate what they would treat the patient with if no molecular profiling results were available.


Methods


All biopsies were performed at local investigators' sites. For needle biopsies, 2-3 18 gauge needle core biopsies were performed. For DNA microarray (MA) analysis, tissue was immediately frozen and shipped on dry ice via FedEx to a central CLIA certified laboratory, Caris MPI in Phoenix, Ariz. For IHC, paraffin blocks were shipped on cold packs. IHC was considered positive for target if 2+ in ≧30% of cells. The MA was considered positive for a target if the difference in expression for a gene between tumor and control organ tissue was at a significance level of p≦0.001.


Ascertainment of the Time to Progression to Document the Progression-Free Survival Ratio


Time to progression under the last line of treatment was documented by imaging in 58 patients (88%). Among these 58 patients, documentation by imaging alone occurred in 49 patients (74%), and documentation by imaging with tumor markers occurred in nine patients (14%; ovarian cancer, n 3; colorectal, n 1; pancreas, n 1; prostate, n 3; breast, n 1). Patients with clinical proof of progression were accepted when the investigator reported the assessment of palpable and measurable lesions (i.e., inflammatory breast cancer, skin/subcutaneous nodules, or lymph nodes), which occurred in six patients (9%). One patient (2%) with prostate cancer was included with progression by tumor marker. In one patient (2%) with breast cancer, the progression was documented by increase of tumor marker and worsening of bone pain. The time to progression achieved with a treatment based on molecular profiling was documented by imaging in 44 patients (67%) and by clinical events detected between two scheduled tumor assessments in 20 patients. These clinical events were reported as serious adverse events related to disease progression (e.g., death, bleeding, bowel obstruction, hospitalization), and the dates of reporting were censored as progression of disease. The remaining two patients were censored at the date of last follow-up.


IHC/FISH


For IHC studies, the formalin fixed, paraffin embedded tumor samples had slices from these blocks submitted for IHC testing for the following proteins: EGFR, SPARC, C-kit, ER, PR, Androgen receptor, PGP, RRM1, TOPO1, BRCP1, MRP1, MGMT, PDGFR, DCK, ERCC1, Thymidylate synthase, Her2/neu and TOPO2A. IHCs for all proteins were not carried out on all patients' tumors.


Formalin-fixed paraffin-embedded patient tissue blocks were sectioned (4 μm thick) and mounted onto glass slides. After deparaffination and rehydration through a series of graded alcohols, pretreatment was performed as required to expose the targeted antigen.


Human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR) were stained as specified by the vendor (DAKO, Denmark). All other antibodies were purchased from commercial sources and visualized with a DAB biotin-free polymer detection kit. Appropriate positive control tissue was used for each antibody. Negative control slides were stained by replacing the primary antibody with an appropriately matched isotype negative control reagent. All slides were counterstained with hematoxylin as the final step and cover slipped. Tissue microarray sections were analyzed by FISH for EGFR and HER-2/neu copy number per the manufacturer's instructions. FISH for HER-2/neu (was done with the PathVysion HER2 DNA Probe Kit (Abbott Molecular, Abbott Park, Ill.). FISH for EGFR was done with the LSI EGFR/CEP 7 Probe (Abbott Molecular).


All slides were evaluated semi-quantitatively by a first pathologist, who confirmed the original diagnosis as well as read each of the immunohistochemical stains using a light microscope. Some lineage immunohistochemical stains were performed to confirm the original diagnosis, as necessary. Staining intensity and extent of staining were determined; both positive, tumor-specific staining of tumor cells and highly positive (≧2+), pervasive (≧30%) tumor specific staining results were recorded. IHC was considered positive for target if staining was ≧2+ in ≧30% of cells. Rather than look for a positive signal without qualification, this approach raises the stringency of the cut point such that it would be a significant or more demonstrative positive. A higher positive is more likely to be associated with a therapy that would affect the time to progression. The cut point used (i.e., staining was ≧2+ in ≧30% of cells) is similar to some cut points used in breast cancer for HER2/neu. When IHC cut points were compared with evidence from the tissue of origin of the cancer, the cut points were equal to or higher (more stringent) than the evidence cut points. A standard 10% quality control was performed by a second pathologist.


Microarray


Tumor samples obtained for microarray were snap frozen within 30 minutes of resection and transmitted to Caris-MPI on dry ice. The frozen tumor fragments were placed on a 0.5 mL aliquot of frozen 0.5M guanidine isothiocyanate solution in a glass tube, and simultaneously thawed and homogenized with a Covaris S2 focused acoustic wave homogenizer (Covaris, Woburn, Mass.). A 0.5 mL aliquot of TriZol was added, mixed and the solution was heated to 65° C. for 5 minutes then cooled on ice and phase separated by the addition of chloroform followed by centrifugation. An equal volume of 70% ethanol was added to the aqueous phase and the mixture was chromatographed on a Qiagen RNeasy column (Qiagen, Germantown, Md.). RNA was specifically bound and then eluted. The RNA was tested for integrity by assessing the ratio of 28S to 18S ribosomal RNA on an Agilent BioAnalyzer (Agilent, Santa Clara, Calif.). Two to five micrograms of tumor RNA and two to five micrograms of RNA from a sample of a normal tissue representative of the tumor's tissue of origin were separately converted to cDNA and then labeled during T7 polymerase amplification with contrasting fluor tagged (Cy3, Cy5) cytidine triphosphate. The labeled tumor and its tissue of origin reference were hybridized to an Agilent H1Av2 60-mer olio array chip with 17,085 unique probes.


The arrays contain probes for 50 genes for which there is a possible therapeutic agent that would potentially interact with that gene (with either high expression or low expression). Those 50 genes included: ADA, AR, ASNA, BCL2, BRCA2, CD33, CDW52, CES2, DNMT1, EGFR, ERBB2, ERCC3, ESR1, FOLR2, GART, GSTP1, HDAC1, HIF1A, HSPCA, IL2RA, KIT, MLH1, MS4A1, MASH2, NFKB2, NFKBIA, OGFR, PDGFC, PDGFRA, PDGFRB, PGR, POLA, PTEN, PTGS2, RAF1, RARA, RXRB, SPARC, SSTR1, TK1, TNF, TOP1, TOP2A, TOP2B, TXNRD1, TYMS, VDR, VEGF, VHL, and ZAP70.


The chips were hybridized from 16 to 18 hours at 60° C. and then washed to remove non-stringently hybridized probe and scanned on an Agilent Microarray Scanner. Fluorescent intensity data were extracted, normalized, and analyzed using Agilent Feature Extraction Software. Gene expression was judged to be different from its reference based on an estimate of the significance of the extent of change, which was estimated using an error model that takes into account the levels of signal to noise for each channel, and uses a large number of positive and negative controls replicated on the chip to condition the estimate. Expression changes at the level of p≦0.001 were considered as significantly different.


Statistical Considerations


The protocol called for a planned 92 patients to be enrolled of which an estimated 64 patients would be treated with therapy assigned by molecular profiling. The other 28 patients were projected to not have molecular profiling results available because of (a) inability to biopsy the patient; (b) no target identified by the molecular profiling; or (c) deteriorating performance status. Sixty four patients were required to receive molecular profiling treatment in order to reject the null hypothesis (Ho) that: ≦15% of patients would have a PFS ratio of ≧1.3 (e.g. a non-promising outcome).


Treatment Selection


Treatment for the patients based on molecular profiling results was selected using the following algorithm: 1) IHC/FISH and microarray indicates same target; 2) IHC positive result alone; 3) microarray positive result alone. The patient's physician was informed of suggested treatment and the patient was treated based on package insert recommendations. Disease status was assessed every 8 weeks. Adverse effects were assessed by NCI CTCAE version 3.0.


The targets and associated drugs are listed in Table 13.









TABLE 13







Pairings of Targets and Drugs








Potential Target
Agents Suggested as Interacting With the Target





IHC



EGFR
Cetuximab, erlotinib, gefitinib


SPARC
Nanoparticle albumin-bound paclitaxel


c-KIT
Imatinib, sunitinib, sorafenib


ER
Tamoxifen, aromatase inhibitors, toremifene,



progestational agent


PR
Progestational agents, tamoxifen, aromatase



inhibitor, goserelin


Androgen receptor
Flutamide, abarelix, bicalutamide, leuprolide,



goserelin


PGP
Avoid natural products, doxorubicin, etoposide,



docetaxel, vinorelbine


HER2/NEU
Trastuzumab


PDGFR
Sunitinib, imatinib, sorafenib


CD52
Alemtuzumab


CD25
Denileukin diftitox


HSP90
Geldanamycin, CNF2024


TOP2A
Doxorubicin, epirubicin, etoposide


Microarray


ADA
Pentostatin, cytarabine


AR
Flutamide, abarelix, bicalutamide, leuprolide,



goserelin


ASNA
Asparaginase


BCL2
Oblimersen sodium†


BRCA2
Mitomycin


CD33
Gemtuzumab ozogamicin


CDW52
Alemtuzumab


CES-2
Irinotecan


DCK
Gemcitabine


DNMT1
Azacitidine, decitabine


EGFR
Cetuximab, erlotinib, gefitinib


ERBB2
Trastuzumab


ERCC1
Cisplatin, carboplatin, oxaliplatin


ESR1
Tamoxifen, aromatase inhibitors, toremifene,



progestational agent


FOLR2
Methotrexate, pemetrexed


GART
Pemetrexed


GSTP1
Platinum


HDAC1
Vorinostat


HIF1α
Bevacizumab, sunitinib, sorafenib


HSPCA
Geldanamycin, CNF2024


IL2RA
Aldesleukin


KIT
Imatinib, sunitinib, sorafenib


MLH-1
Gemcitabine, oxaliplatin


MSH1
Gemcitabine


MSH2
Gemcitabine, oxaliplatin


NFKB2
Bortezomib


NFKB1
Bortezomib


OGFR
Opioid growth factor


PDGFC
Sunitinib, imatinib, sorafenib


PDGFRA
Sunitinib, imatinib, sorafenib


PDGFRB
Sunitinib, imatinib, sorafenib


PGR
Progestational agents, tamoxifen, aromatase



inhibitors, goserelin


POLA
Cytarabine


PTEN
Rapamycin (if low)


PTGS2
Celecoxib


RAF1
Sorafenib


RARA
Bexarotene, all-trans-retinoic acid


RXRB
Bexarotene


SPARC
Nanoparticle albumin-bound paclitaxel


SSTR1
Octreotide


TK1
Capecitabine


TNF
Infliximab


TOP1
Irinotecan, topotecan


TOP2A
Doxorubicin, etoposide, mitoxantrone


TOP2B
Doxorubicin, etoposide, mitoxantrone


TXNRD1
Px12


TYMS
Fluorouracil, capecitabine


VDR
Calcitriol


VEGF
Bevacizumab, sunitinib, sorafenib


VHL
Bevacizumab, sunitinib, sorafenib


ZAP70
Geldanamycin, CNF2024









Results


The distribution of the patients is diagrammed in FIG. 37 and the characteristics of the patients shown in Tables 14 and 15. As can be seen in FIG. 37, 106 patients were consented and evaluated. There were 20 patients who did not proceed with molecular profiling for the reasons outlined in FIG. 37 (mainly worsening condition or withdrawing their consent or they did not want any additional therapy). There were 18 patients who were not treated following molecular profiling (mainly due to worsening condition or withdrawing consent because they did not want additional therapy). There were 68 patients treated, with 66 of them treated according to molecular profiling results and 2 not treated according to molecular profiling results. One of the two was treated with another agent because the clinician caring for the patient felt a sense of urgency to treat and the other was treated with another agent because the insurance company would not cover the molecular profiling suggested treatment.


The median time for molecular profiling results being made accessible to a clinician was 16 days from biopsy (range 8 to 30 days) and a median of 8 days (range 0 to 23 days) from receipt of the tissue sample for analysis. Some modest delays were caused by the local teams not sending the patients' blocks immediately (due to their need for a pathology workup of the specimen). Patient tumors were sent from 9 sites throughout the United States including: Greenville, Sc; Tyler, Tex.; Beverly Hills, Calif.; Huntsville, Ala.; Indianapolis, Ind.; San Antonio, Tex.; Scottsdale, Ariz. and Los Angeles, Calif.


Table 14 details the characteristics of the 66 patients who had molecular profiling performed on their tumors and who had treatment according to the molecular profiling results. As seen in Table 14, of the 66 patients the majority were female, with a median age of 60 (range 27-75). The number of prior treatment regimens was 2-4 in 53% of patients and 5-13 in 38% of patients. There were 6 patients (9%), who had only 1 prior therapy because no approved active 2nd line therapy was available. Twenty patients had progressed on prior phase I therapies. The majority of patients had an ECOG performance status of 1.









TABLE 14







Patient Characteristics (n = 66)











Characteristic
n
%







Gender





Female
43
65



Male
23
35



Age



Median (range)
60
(27-75)



Number of Prior Treatments



2-4*
35
53



5-13
25
38



ECOG



0
18
27



1
48
73







*Note:



6 patients (9%) had 1 prior






As seen in Table 15, tumor types in the 66 patients included breast cancer 18 (27%), colorectal 11 (17%), ovarian 5 (8%), and 32 patients (48%) were in the miscellaneous categories. Many patients had the more rare types of cancers.









TABLE 15







Patient Tumor Types (n = 66)











Tumor Type
n
%















Breast
18
27



Colorectal
11
17



Ovarian
5
8



Miscellaneous
32
48



Prostate
4
6



Lung
3
5



Melanoma
2
3



Small cell (esopha/retroperit)
2
3



Cholangiocarcinoma
2
3



Mesothelioma
2
3



H&N (SCC)
2
3



Pancreas
2
3



Pancreas neuroendocrine
1
1.5



Unknown (SCC)
1
1.5



Gastric
1
1.5



Peritoneal pseudomyxoma
1
1.5



Anal Canal (SCC)
1
1.5



Vagina (SCC)
1
1.5



Cervis
1
1.5



Renal
1
1.5



Eccrine seat adenocarinoma
1
1.5



Salivary gland adenocarinoma
1
1.5



Soft tissue sarcoma (uterine)
1
1.5



GIST (Gastric)
1
1.5



Thyroid-Anaplastic
1
1.5










Primary Endpoint: PFS Ratio ≧1.3


As far as the primary endpoint for the study is concerned (PFS ratio of ≧1.3), in the 66 patients treated according to molecular profiling results, the number of patients with PFS ratio greater or equal to 1.3 was 18 out of the 66 or 27%, 95% CI 17-38% one-sided, one-sample non parametric test p=0.007. The null hypothesis was that ≦15% of this patient population would have a PFS ratio of ≧1.3. Therefore, the null hypothesis is rejected and our conclusion is that this molecular profiling approach is beneficial. FIG. 38 details the comparison of PFS on molecular profiling therapy (the bar) versus PFS (TTP) on the patient's last prior therapy (the boxes) for the 18 patients. The median PFS ratio is 2.9 (range 1.3-8.15).


If the primary endpoint is examined, as shown in Table 16, a PFS ratio ≧1.3 was achieved in 8/18 (44%) of patients with breast cancer, 4/11 (36%) patients with colorectal cancer, 1/5 (20%) of patients with ovarian cancer and 5/32 (16%) patients in the miscellaneous tumor types (note that miscellaneous tumor types with PFS ratio ≧1.3 included: lung 1/3, cholangiocarcinoma 1/3, mesothelioma 1/2, eccrine sweat gland tumor 1/1, and GIST (gastric) 1/1).









TABLE 16







Primary Endpoint - PFS Ratio ≧ 1.3 By Tumor Type










Tumor Type
Total Treated
Number with PFS Ratio ≧ 1.3
%













Breast
18
8
44


Colorectal
11
4
36


Ovarian
5
1
20


Miscellaneous*
32
5
16


Total
66
18
27





*lung 1/3, cholangiocarcinoma 1/2, mesothelioma 1/2, eccrine sweat 1/1, GIST (gastric) 1/1






The treatment that the 18 patients with the PFS ≧1.3 received based on profiling is detailed in Table 17. As can be seen in that table for breast cancer patients, the treatment ranged from diethylstibesterol to nab paclitaxel+gemcitabine to doxorubicin. Treatments for patients with other tumor types are also detailed in Table 17. The table further shows a comparison of the drugs that the responding patients received versus the drugs that would have been suggested without molecular profiling and indicates which targets were used to suggest the therapies. Overall, 14 were treated with combinations and 4 were treated with single agents.









TABLE 17







Targets Noted in Patients' Tumors, Treatment Suggested on the Basis of These Results, and


Treatment Investigator Would Use if No Target Was Identified (in patients with PFS ratio ≧ 1.3)













Treatment the



Targets Used to Suggest
Treatment Suggested on
Investigator Would Have


Location of Primary
Treatment and Method
Basis of Patient's Tumor
Used if No Results From


Tumor
Used
Molecular Profiling
Molecular Profiling





Breast
ESR1: I; ESR1: M
DES 5 mg TID
Investigational


Cholangiocarcinoma
EGFR: I; TOP1: M
CPT-11 350 mg/m2 every 3
Investigational




weeks; cetuximab 400




mg/m2 day 1, 250 mg/m2




every week


Breast
SPARC: I; SPARC, ERBB2:
NAB paclitaxel 260 mg/m2
Docetaxel, trastuzumab



M
every 3 weeks; trastuzumab




6 mg/kg every 3 weeks


Eccrine sweat gland (right
c-KIT: I; c-KIT: M
Sunitinib 50 mg/d, 4 weeks
Best supportive care


forearm)

on/2 weeks off


Ovary
HER2/NEU, ER: I;
Lapatinib 1,250 mg PO
Bevacizumab



HER2/NEU: M
days 1-21; tamoxifen 20 mg




PO


Colon/rectum
PDGFR, c-KIT: I I;
CPT-11 70 mg/m2 weekly
Cetuximab



PDGFR, TOP1: M
for 4 weeks on/2 weeks off;




sorafenib 400 mg BID


Breast
SPARC: I; DCK: M
NAB paclitaxel 90 mg/m2
Mitomycin




every 3 weeks; gemcitabine




750 mg/m2 days 1, 8, 15,




every 3 weeks


Breast
ER: I; ER, TYMS: M
Letrozole 2.5 mg daily;
Capecitabine




capecitabine 1,250 mg/m2




BID, 2 weeks on/1 week off


Malignant mesothelioma
MLH1, MLH2: I; RRM2B,
Gemcitabine 1,000 mg/m2
Gemcitabine



RRM1, RRM2, TOP2B: M
days 1 and 8, every 3




weeks; etoposide 50 mg/m2




3 days every 3 weeks


Breast
MSH2
Oxaliplatin 85 mg/m2 every
Investigational




2 weeks; fluorouracil (5FU)




1,200 mg/m2 days 1 and 2,




every 2 weeks; trastuzumab




4 mg/kg day 1, 2 mg/kg




every week


Non-small-cell lung cancer
EGFR: I; EGFR
Cetuximab 400 mg/m2 day
Vinorelbine




1, 250 mg/m2 every week;




CPT-11 125 mg/m2 weekly




for 4 weeks on/2 weeks off


Colon/rectum
MGMT
Temozolomide 150 mg/m2
Capecitabine




for 5 days every 4 weeks;




bevacizumab 5 mg/kg every




2 weeks


Colon/rectum
PDGFR, c-KIT: I; PDGFR:
Mitomycin 10 mg once
Capecitabine



KDR, HIF1A, BRCA2: M
every 4-6 weeks; sunitinib




37.5 mg/d, 4 weeks on/2




weeks off


Breast
DCK, DHFR: M
Gemcitabine 1,000 mg/m2
Best supportive care




days 1 and 8 every 3 weeks;




pemetrexed 500 mg/m2 days




1 and 8, every 3 weeks


Breast
TOP2A: I; TOP2A: M
Doxorubicin 50 mg/m2
Vinorelbine




every 3 weeks


Colon/rectum
MGMT, VEGFA, HIF1A: M
Temozolomide 150 mg/m2
Panitumumab




for 5 days every 4 weeks;




sorafenib 400 mg BID


Breast
ESR1, PR: I; ESR1, PR: M
Exemestane 25 mg every
Doxorubicin liposomal




day


GIST (stomach)
EGFR: I; EGFR, RRM2: M
Gemcitabine 1,000 mg/m2
None




days 1, 8, and 15 every 4




weeks; cetuximab 400




mg/m2 day 1, 250 mg/m2




every week





* Abbreviations used in Table 17: I, immunohistochemistry; M, microarray; DES, diethylstilbestrol; CPT-11, irinotecan; TID, three times a day; NAB, nanoparticle albumin bound; PO, orally; BID, twice a day; GIST, GI stromal tumor.






Secondary Endpoints


The results for the secondary endpoint for this study are as follows. The frequency with which molecular profiling of a patients' tumor yielded a target in the 86 patients where molecular profiling was attempted was 84/86 (98%). Broken down by methodology, 83/86 (97%) yielded a target by IHC/FISH and 81/86 (94%) yielding a target by microarray. RNA was tested for integrity by assessing the ratio of 28S to 18S ribosomal RNA on an Agilent BioAnalyzer. 83/86 (97%) specimens had ratios of 1 or greater and gave high intra-chip reproducibility ratios. This demonstrates that very good collection and shipment of patients' specimens throughout the United States and excellent technical results can be obtained.


By RECIST criteria in 66 patients, there was 1 complete response and 5 partial responses for an overall response rate of 10% (one CR in a patient with breast cancer and PRs in breast, ovarian, colorectal and NSCL cancer patients). Patients without progression at 4 months included 14 out of 66 or 21%.


In an exploratory analysis, a waterfall plot for all patients for maximum % change of the summed diameters of target lesions with respect to baseline diameters was generated. The patients who had progression and the patients who had some shrinkage of their tumor sometime during their course along with those partial responses by RECIST criteria is demonstrated in FIG. 39. There is some shrinkage of patient's tumors in over 47% of the patients (where 2 or more evaluations were completed).


Other Analyses—Safety


As far as safety analyses there were no treatment related deaths. There were nine treatment related serious adverse events including anemia (2 patients), neutropenia (2 patients), dehydration (1 patient), pancreatitis (1 patient), nausea (1 patient), vomiting (1 patient), and febrile neutropenia (1 patient). Only one patient (1.5%) was discontinued due to a treatment related adverse event of grade 2 fatigue.


Other Analyses—Relationship Between What the Clinician Caring for the Patient would have Selected Versus What the Molecular Profiling Selected


The relationship between what the clinician selected to treat the patient before knowing what molecular profiling results suggested for treatment was also examined. As detailed in FIG. 40, there is no pattern between the two. More specifically, no matches for the 18 patients with PFS ratio ≧1.3 were noted.


The overall survival for the 18 patients with a PFS ratio of ≧1.3 versus all 66 patients is shown in FIG. 41. This exploratory analysis was done to help determine if the PFS ratio had some clinical relevance. The overall survival for the 18 patients with the PFS ratio of ≧1.3 is 9.7 months versus 5 months for the whole population—log rank 0.026. This exploratory analysis indicates that the PFS ratio is correlated with the clinical parameter of survival.


Conclusions


This prospective multi-center pilot study demonstrates: (a) the feasibility of measuring molecular targets in patients' tumors from 9 different centers across the US with good quality and sufficient tumor collection—and treat patients based on those results; (b) this molecular profiling approach gave a longer PFS for patients on a molecular profiling suggested regimen than on the regimen they had just progressed on for 27% of the patients (confidence interval 17-38%) p=0.007; and (c) this is a promising result demonstrating use and benefits of molecular profiling.


The results also demonstrate that patients with refractory cancer can commonly have simple targets (such as ER) for which therapies are available and can be beneficial to them. Molecular profiling for patients who have exhausted other therapies and who are perhaps candidates for phase I or II trials could have this molecular profiling performed.


Example 2
Molecular Profiling System

Molecular profiling is performed to determine a treatment for a disease, typically a cancer. Using a molecular profiling approach, molecular characteristics of the disease itself are assessed to determine a candidate treatment. Thus, this approach provides the ability to select treatments without regard to the anatomical origin of the diseased tissue, or other “one-size-fits-all” approaches that do not take into account personalized characteristics of a particular patient's affliction. The profiling comprises determining gene and gene product expression levels, gene copy number and mutation analysis. Treatments are identified that are indicated to be effective against diseased cells that overexpress certain genes or gene products, underexpress certain genes or gene products, carry certain chromosomal aberrations or mutations in certain genes, or any other measureable cellular alterations as compared to non-diseased cells. Because molecular profiling is not limited to choosing amongst therapeutics intended to treat specific diseases, the system has the power to take advantage of any useful technique to measure any biological characteristic that can be linked to a therapeutic efficacy. The end result allows caregivers to expand the range of therapies available to treat patients, thereby providing the potential for longer life span and/or quality of life than traditional “one-size-fits-all” approaches to selecting treatment regimens.


A molecular profiling system has several individual components to measure expression levels, chromosomal aberrations and mutations. The components are shown in FIG. 42. The input sample can be formalin fixed paraffin embedded (FFPE) cancer tissue.


Gene expression analysis is performed using an expression microarray or qPCR (RT-PCR). The qPCR can be performed using a low density microarray. In addition to gene expression analysis, the system can perform a set of immunohistochemistry assays on the input sample. Gene copy number is determined for a number of genes via FISH (fluorescence in situ hybridization) and mutation analysis is done by DNA sequencing (including sequence sensitive PCR assays and RFLP, as desired) for a several specific mutations. All of this data is stored for each patient case. Data is reported from the expression, IHC, FISH and DNA sequencing analysis. All laboratory experiments are performed according to Standard Operating Procedures (SOPs).


Expression can be measured using real-time PCR (qPCR, RT-PCR). The analysis can employ a low density microarray. The low density microarray can be a PCR-based microarray, such as a Taqman™ Low Density Microarray (Applied Biosystems, Foster City, Calif.).


Expression can be measured using a microarray. The expression microarray can be an Agilent 44K chip (Agilent Technologies, Inc., Santa Clara, Calif.). This system is capable of determining the relative expression level of roughly 44,000 different sequences through RT-PCR from RNA extracted from fresh frozen tissue. Alternately, the system uses the Illumina Whole Genome DASL assay (Illumina Inc., San Diego, Calif.), which offers a method to simultaneously profile over 24,000 transcripts from minimal RNA input, from both fresh frozen (FF) and formalin-fixed paraffin embedded (FFPE) tissue sources, in a high throughput fashion. The analysis makes use of the Whole-Genome DASL Assay with UDG (Illumina, cat#DA-903-1024/DA-903-1096), the Illumina Hybridization Oven, and the Illumina iScan System according to the manufacturer's protocols. FIG. 43 shows results obtained from microarray profiling of an FFPE sample. Total RNA was extracted from tumor tissue and was converted to cDNA. The cDNA sample was then subjected to a whole genome (24K) microarray analysis using the Illumina Whole Genome DASL process. The expression of a subset of 80 genes was then compared to a tissue specific normal control and the relative expression ratios of these 80 target genes indicated in the figure was determined as well as the statistical significance of the differential expression.


DNA for mutation analysis is extracted from formalin-fixed paraffin-embedded (FFPE) tissues after macrodissection of the fixed slides in an area that % tumor nuclei ≧10% as determined by a pathologist. Extracted DNA is only used for mutation analysis if % tumor nuclei ≧10%. DNA is extracted using the QIAamp DNA FFPE Tissue kit according to the manufacturer's instructions (QIAGEN Inc., Valencia, Calif.). DNA can also be extracted using the QuickExtract™ FFPE DNA Extraction Kit according to the manufacturer's instructions (Epicentre Biotechnologies, Madison, Wis.). The BRAF Mutector I BRAF Kit (TrimGen, cat#MH1001-04) is used to detect BRAF mutations (TrimGen Corporation, Sparks, Md.). The DxS KRAS Mutation Test Kit (DxS, #KR-03) is used to detect KRAS mutations (QIAGEN Inc., Valencia, Calif.). BRAF and KRAS sequencing of amplified DNA is performed using Applied Biosystems' BigDye® Terminator V1.1 chemistry (Life Technologies Corporation, Carlsbad, Calif.).


IHC is performed according to standard protocols. IHC detection systems vary by marker and include Dako's Autostainer Plus (Dako North America, Inc., Carpinteria, Calif.), Ventana Medical Systems Benchmark® XT (Ventana Medical Systems, Tucson, Ariz.), and the LeicaNision Biosystems Bond System (Leica Microsystems Inc., Bannockburn, Ill.). All systems are operated according to the manufacturers' instructions. American Society of Clinical Oncology (ASCO) and College of American Pathologist (CAP) standards are followed for ER, PR, and HER2 testing. ER, PR and HER2 as well as Ki-67, p53, and E-cad IHCs analyzed by the ACIS® (Automated Cellular Imaging System). The ACIS system comprises a microscope that scans the slides and constructs an image of the entire tissue section. Ten areas of tumor are analyzed for percentage positive cells and staining intensity within the selected fields.


FISH is performed on formalin-fixed paraffin-embedded (FFPE) tissue. FFPE tissue slides for FISH must be Hematoxylin and Eosin (H&E) stained and given to a pathologist for evaluation. Pathologists will mark areas of tumor for FISH analysis. The pathologist report shows whether tumor is present and sufficient enough to perform a complete analysis. FISH is performed using the Abbott Molecular VP2000 according to the manufacturer's instructions (Abbott Laboratories, Des Plaines, Iowa).


Illustrative reports generated by the system are shown in International PCT Patent Application PCT/US2010/000407, filed Feb. 11, 2010; and International PCT Patent Application PCT/US2010/54366, filed Oct. 27, 2010, each of which application is incorporated herein by reference in its entirety.


Example 3
Workflow for Identifying a Therapeutic Agent


FIG. 44 illustrates a diagram that outlines a workflow for identifying a therapeutic agent by analyzing a sample from an individual with breast cancer (441). The sample is cut into a number of slides (442) and stained with hematoxylin and eosin (H&E) (443). The stained slides are read by a pathologist (444) to determine what panel of markers to test, e.g., whether to analyze the sample using a complete biomarker panel analysis or a tumor-specific biomarker panel analysis, e.g., for breast cancer sample analysis (445). The pathologist also identifies sections (446) for DNA microarray analysis (447), FISH analysis, e.g., to measure HER2 expression (448), or mutational analysis via sequencing (449). DNA microarray analysis can be performed on a whole genome scale, with focus on genes that are informative for therapeutic treatment options, including at least ABCC1, ABCG2, ADA, AR, ASNS, BCL2, BIRC5, BRCA1, BRCA2, CD33, CD52, CDA, CES2, DCK, DHFR, DNMT1, DNMT3A, DNMT3B, ECGF1, EGFR, EPHA2, ERBB2, ERCC1, ERCC3, ESR1, FLT1, FOLR2, FYN, GART, GNRH1, GSTP1, HCK, HDAC1, HIF1A, HSP90AA1, IGFBP3, IGFBP4, IGFBP5, IL2RA, KDR, KIT, LCK, LYN, MET, MGMT, MLH1, MS4A1, MSH2, NFKB1, NFKB2, NFKBIA, OGFR, PARP1, PDGFC, PDGFRA, PDGFRB, PGP, PGR, POLA1, PTEN, PTGS2, PTPN12, RAF1, RARA, RRM1, RRM2, RRM2B, RXRB, RXRG, SIK2, SPARC, SRC, SSTR1, SSTR2, SSTR3, SSTR4, SSTR5, TK1, TNF, TOP1, TOP2A, TOP2B, TXNRD1, TYMS, VDR, VEGFA, VHL, YES1, and ZAP70. IHC is run on selected sections to analyze expression of biomarkers including AR, c-kit, CAV-1, CK 5/6, CK14, CK17, ECAD, ER, Her2/Neu, Ki67, MRP1, P53, PDGFR, PGP, PR, PTEN, SPARC, TLE3 and TS (4410). Each marker can be analyzed using a single or multiple antibodies for IHC detection. For example, SPARC is detected using an anti-SPARC monoclonal antibody (referred to herein as SPARC MC, SPARC Mono, SPARC m or the like), and an anti-SPARC polyclonal antibody (referred to herein as SPARC PC, SPARC Poly, SPARC p or the like), Given the results of the previous analysis, the sample is further analyzed with relevant marker panels (4411). The sample is classified as HER2+(4412), Triple Negative (4416), or ER/PR+, HER2− (4418). Further analysis depends on whether prior analysis determined that the sample should undergo “complete” biomarker panel analysis or a “tumor-specific” biomarker panel analysis. Tumor-specific analysis is performed for any cancer with a primary diagnosis, or first line, second line or third line therapy. Complete biomarker analysis is indicated for cancers that are fourth line, metastatic or beyond. Complete is also performed if the therapeutic history of the cancer is unknown (and thus becomes the default). In this manner, unnecessary testing can be avoided. HER2+(4412) samples are further analyzed by FISH for CMYC and TOP2A (4413), by IHC for p95 for tumor-specific analysis or for BCRP, ERCC1, MGMT, P95, RRM1, TOP2A and TOPO1 for complete analysis (4414), and by sequencing for mutation analysis of PIK3CA (4415). Triple negative (4416) samples are analyzed by IHC for p95 for tumor-specific analysis or for BCRP, ERCC1, MGMT, P95, RRM1, TOP2A and TOPO1 for complete analysis (4417). ER/PR+, HER2− (4418) samples are further analyzed by FISH for CMYC (4419), by IHC for p95 for tumor-specific analysis or for BCRP, ERCC1, MGMT, P95, RRM1, TOP2A and TOPO1 for complete analysis (4420). The results of the analysis are used to identify a therapeutic for the individual. The workflow can be generalized for the analysis of other diseases and tumor types.



FIG. 45 and Table 18 illustrate a biomarker centric view of the workflow described above. In FIG. 45, initial IHC and FISH results on the indicated biomarkers is used to characterize the cancer as HER2+, Triple Negative, or ER/PR+, HER2−. The characterization guides the additional IHC, FISH and sequencing analysis that is performed. “DNA MA” indicates that a DNA microarray is performed on all samples that meet the quality threshold as described herein. DNA microarray analysis can be performed on a whole genome scale, with focus on genes that are informative for therapeutic treatment options, including at least ABCC1, ABCG2, ADA, AR, ASNS, BCL2, BIRC5, BRCA1, BRCA2, CD33, CD52, CDA, CES2, DCK, DHFR, DNMT1, DNMT3A, DNMT3B, ECGF1, EGFR, EPHA2, ERBB2, ERCC1, ERCC3, ESR1, FLT1, FOLR2, FYN, GART, GNRH1, GSTP1, HCK, HDAC1, HIF1A, HSP90AA1, IGFBP3, IGFBP4, IGFBP5, IL2RA, KDR, KIT, LCK, LYN, MET, MGMT, MLH1, MS4A1, MSH2, NFKB1, NFKB2, NFKBIA, OGFR, PARP1, PDGFC, PDGFRA, PDGFRB, PGP, PGR, POLA1, PTEN, PTGS2, PTPN12, RAF1, RARA, RRM1, RRM2, RRM2B, RXRB, RXRG, SIK2, SPARC, SRC, SSTR1, SSTR2, SSTR3, SSTR4, SSTR5, TK1, TNF, TOP1, TOP2A, TOP2B, TXNRD1, TYMS, VDR, VEGFA, VHL, YES1, and ZAP70. IHC is run on selected sections to analyze expression of biomarkers including AR, c-kit, CAV-1, CK 5/6, CK14, CK17, ECAD, ER, Her2/Neu, Ki67, MRP1, P53, PDGFR, PGP, PR, PTEN, SPARC, TLE3 and TS. Table 18 outlines shows the criteria used to perform additional assays. Tumor-specific analysis is used in the case of cancer with a primary diagnosis, or first line, second line or third line therapy. Complete biomarker analysis is indicated for cancers that are fourth line, metastatic or beyond.









TABLE 18







Additional Assays










Tumor-Specific
Complete













Criteria
Primary diagnosis
Fourth line therapy



First line therapy
Metastatic



Second line therapy
Therapeutic history unknown



Third line therapy


Additional

IHC: BCRP, ERCC1, MGMT,


Testing

RRM1, TOPO1




FISH: EGFR









Table 19 indicates prognostic markers in the breast cancer profiling. The markers used in the profiling can be used for theranostic (e.g., to guide selection of a candidate therapeutic) and prognostic purposes. “Y” in the “Prognostic?” column indicates that the marker can indicate a prognosis. Further details are described herein.









TABLE 19







Prognostic Breast Cancer Profiling
















Triple
ER/PR+/




Prog-
HER2+
Neg
HER2−


Biomarker
Method
nostic?
Profile
Profile
Profile





AR
IHC

Y
Y
Y


Caveolin-1
IHC
Y
Y
Y
Y


CK 14
IHC
Y
Y
Y
Y


CK 17
IHC
Y
Y
Y
Y


CK 5/6
IHC
Y
Y
Y
Y


c-Kit
IHC
Y
Y
Y
Y


cMYC
FISH
Y
Y

Y


Cyclin D1
IHC
Y


Y


ECAD
IHC
Y
Y
Y
Y


EGFR
IHC
Y


Y


ER (ESR1)
IHC

Y
Y
Y


HER2 (ERBB2)
IHC/FISH

Y
Y
Y


Ki67
IHC

Y
Y
Y


MRP1 (ABCC1)
IHC

Y
Y
Y


P53
IHC
Y
Y
Y
Y


P95
IHC

Y
Y
Y


PDGFR
IHC
Y
Y
Y
Y


PGP (ABCB1)
IHC

Y
Y
Y


PI3K
SEQ

Y


PR
IHC

Y
Y
Y


PTEN
IHC

Y
Y
Y


SPARC
IHC

Y
Y
Y


TLE3
IHC

Y
Y
Y


TOP2A
FISH

Y


TOP2A
IHC

Y
Y
Y


TS (TYMS)
IHC

Y
Y
Y









Table 20 provides illustrative candidate treatments corresponding to the molecular profiling described in this Example. In the table, a positive result for the indicated biomarker using the indicated technique guides selection of the corresponding therapeutic agent, or that of a related agent.









TABLE 20







Illustrative Drug-biomarker Associations









Drug
Method
Biomarker(s)





5-fluorouracil
DNA Microarray
TYMS



IHC
TS


aminoglutethimide
DNA Microarray
ESR1, PR



IHC
ER, PR


anastrozole
DNA Microarray
ESR1, PR



IHC
ER, PR


capecitabine
DNA Microarray
TYMS



IHC
TS


doxorubicin
DNA Microarray
ABCB1, TOP2A



FISH
HER2, TOP2A



IHC
PGP, TOP2A


epirubicin
DNA Microarray
ABCB1, TOP2A



FISH
HER2, TOP2A



IHC
PGP, TOP2A


exemestane
DNA Microarray
ESR1, PR



IHC
ER, PR


fulvestrant
DNA Microarray
ESR1, PR



IHC
ER, Ki67, PR


gonadorelin
DNA Microarray
PR


goserelin
DNA Microarray
PR


irinotecan
IHC
TOPO1


lapatinib
FISH
HER2



IHC
HER2


letrozole
DNA Microarray
ESR1, PR



IHC
ER, PR


leuprolide
DNA Microarray
PR


liposomal-
DNA Microarray
ABCB1, TOP2A


doxorubicin
FISH
HER2, TOP2A



IHC
PGP, TOP2A


medroxyprogesterone
DNA Microarray
ESR1, PR



IHC
ER, PR


megestrol acetate
DNA Microarray
ESR1, PR



IHC
ER, PR


methotrexate
DNA Microarray
ABCC1, DHFR



IHC
MRP1


nab-paclitaxel
DNA Microarray
SPARC



IHC
SPARC mono,




SPARC poly


pemetrexed
DNA Microarray
DHFR, GART, TYMS



IHC
TS


tamoxifen
DNA Microarray
ESR1, PR



IHC
ER, Ki67, PR


taxanes
IHC
TLE3


toremifene
DNA Microarray
ESR1, PR



IHC
ER, Ki67, PR


trastuzumab
FISH
HER2



IHC
HER2, P95, PTEN



Mutation
PIK3CA



(sequence analysis)









An illustrative benefit of the molecular profiling approach is illustrated in FIG. 46. For every 100 HER2+ patients, only about 30 (30%) will be Responders to treatment with trastuzumab. Molecular profiling according to the Example identifies 50 (50%) out of the 70 patients (70%) not likely to respond, e.g., because of PIK3CA mutations (25%), lack of PTEN (15%) or a p95 HER2 truncation (10%). HER2 spans the cell membrane and trastuzumab binds the external portion of the protein. However, most HER2 tests, including the FDA approved tests available from Dako (Dako North America, Inc., Carpinteria, Calif.) and Ventana (Ventana Medical Systems, Inc., Tucson, Ariz.), target the internal domain of HER2. Profiling according to the invention uses two antibodies for HER2: one with affinity to the internal domain, another with affinity to both the internal and external domains. If the latter antibody is negative but the tests targeting the internal domain are positive (e.g., the FDA approved tests), then HER2 is “p95 truncated” and trastuzumab will not be effective. By identifying patients unlikely to respond, efficacy of trastuzumab for a selected population can be increased from 30% to 60%. Furthermore, the molecular profiling methods of the invention can identify candidate treatments that are more likely to be effective in the trastuzumab non-responders.


Illustrative reports generated by the system are shown in International PCT Patent Application PCT/US2010/000407, filed Feb. 11, 2010; and International PCT Patent Application PCT/US2010/54366, filed Oct. 27, 2010, each of which application is incorporated herein by reference in its entirety.


Example 4
Biomarker—Drug Associations

Table 21 lists exemplary associations between biomarkers and drugs associated with the biomarkers. When the biomarkers are found to be overexpressed in a patient sample, the drugs are indicated for use in treating the patient as described herein. For each drug, an indication is given of exemplary techniques that can be used to assess the corresponding biomarker. One of skill will appreciate that any technique can be used as described herein or known in the art, including without limitation microarray, PCR, IHC, ISH, FISH, and/or sequence analysis. Abbreviations in the table include the following: GE—Gene expression (e.g., RT-PCR; DNA microrarray); MA—Mutational analysis; IHC—Immunohistochemistry; FISH—Fluorescent in situ hybridization









TABLE 21







Biomarker - Drug Associations








Biomarker
Drug Associations





ABCC1 (MRP1)
doxorubicin (IHC and GE), epirubicin (IHC and GE), methotrexate (IHC and GE),



vincristine (IHC and GE), vinorelbine (IHC and GE), vinblastine (IHC and GE), etoposide



(IHC and GE)


ABCG2 (BCRP)
cisplatin (IHC and GE)), carboplatin (IHC and GE)


ADA
pentostatin (GE), cytarabine (GE)


ALK (e.g., EML4-
crizotinib (FISH), pemetrexed (FISH)


ALK)


AR
bicalutamide (IHC and GE), flutamide (IHC and GE), abarelix (GE), goserelin (GE),



leuprolide (GE), gonadorelin (GE)


ASNS
asparaginase (GE), pegaspargase (GE)


BRCA1
mitomycin (GE), cisplatin (GE), carboplatin (GE)


BRCA2
mitomycin (GE), cisplatin (GE), carboplatin (GE)


CD52
alemtuzumab (IHC and GE)


CDA
cytarabine (GE)


CES2
irinotecan (GE)


DCK
gemcitabine (GE), cytarabine (GE)


DHFR
methotrexate (GE), pemetrexed (GE)


DNMT1
azacitidine (GE), decitabine (GE)


DNMT3A
azacitidine (GE), decitabine (GE)


DNMT3B
azacitidine (GE), decitabine (GE)


EGFR
gefitinib (FISH and MA), erlotinib (FISH and MA), cetuximab (FISH and MA),



panitumumab (FISH and MA)


EPHA2
dasatinib (GE)


ERBB2 (HER2)
trastuzumab (IHC and FISH), lapatinib (IHC and FISH), doxorubicin (FISH), epirubicin



(FISH), liposomal-doxorubicin (FISH)


ERCC1
cisplatin (IHC and GE), carboplatin (IHC and GE), oxaliplatin (IHC and GE)


ER
tamoxifen (IHC and GE), toremifene (GE), fulvestrant (GE), anastrozole (IHC and GE),



letrozole (IHC and GE), exemestane (GE), aminoglutethimide (GE), megestrol (GE),



medroxyprogesterone (GE)


FLT1 (VEGFR1)
bevacizumab (GE), sunitinib (GE), sorafenib (GE)


GART
pemetrexed (GE)


HIF1A
sunitinib (GE), sorafenib (GE)


IGFBP3
letrozole (GE)


IGFBP4
letrozole (GE)


IGFBP5
letrozole (GE)


KDR (VEGFR2)
sunitinib (GE), sorafenib (GE)


Ki67
“tamoxifen + chemotherapy” (IHC) - breast only


KIT (cKIT)
sunitinib (MA and GE), sorafenib (GE), imatinib (MA and GE), dasatinib (MA and GE)


KRAS
gefitinib (MA), erlotinib (MA), cetuximab (MA), panitumumab (MA), sorafenib (MA),



combination therapy (VBMCP) (MA)


cMET/MET
gefitinib (FISH), erlotinib (FISH)


MGMT
temozolomide (IHC and GE)


PDGFRA
sunitinib (GE), sorafenib (GE)


PDGFRB
sunilinib (GE), sorafenib (GE)


PGP (ABCB1)
doxorubicin (IHC and GE), liposomal doxorubicin (IHC and GE), epirubicin (IHC and GE),



etoposide (IHC and GE), teniposide (GE), docetaxel (IHC and GE), paclitaxel (IHC and



GE), vincristine (IHC and GE), vinorelbine (IHC and GE), vinblastine (IHC and GE)


PIK3CA/PI3K
cetuximab (MA), panitumumab (MA), trastuzumab (MA)


PR
tamoxifen (IHC and GE), toremifene (GE), fulvestrant (GE), anastrozole (IHC and GE),



letrozole (IHC and GE), exemestane (GE), aminoglutethimide (GE), goserelin (GE),



leuprolide (GE), gonadorelin (GE), megestrol (GE), medroxyprogesterone (GE)


PTEN
erlotinib (IHC), gefitinib (IHC), cetuximab (IHC), panitumumab (IHC), trastuzumab (IHC)


PTGS2 (COX2)
celecoxib (IHC and GE), aspirin (IHC)


BRAF1 (BRAF)
cetuximab (MA), panitumumab (MA)


RARA
ATRA (GE)


RRM1
gemcitabine (IHC and GE), hydroxyurea (GE)


RRM2
gemcitabine (GE), hydroxyurea (GE)


RRM2B
gemcitabine (GE), hydroxyurea (GE)


RXRB
bexarotene (GE)


SPARC (mono/poly)
nab-paclitaxel (IHC and GE)


SRC
dasatinib (GE)


SSTR2
octreotide (GE)


SSTR5
octreotide (GE)


TLE3
paclitaxel (IHC), docetaxel (IHC)


TOPO1/TOP1
irinotecan (IHC and GE), topotecan (IHC and GE)


TOPO2A/TOP2A
doxorubicin (IHC, FISH and GE), liposomal doxorubicin (IHC, FISH and GE), epirubicin



(IHC, FISH and GE)


TOP2B
doxorubicin (GE), liposomal doxorubicin (GE), epirubicin (GE)


TUBB3
paclitaxel (IHC), docetaxel (IHC), vinorelbine (IHC)


TS/TYMS
pemetrexed (IHC and GE), capecitabine (GE), fluorouracil (IHC and GE)


VDR
choleciferol (GE), calcitriol (GE)


VHL
sunitinib (GE), sorafenib (GE)









Example 5
HER2 Overexpression in Various Tumors

Testing for HER2 assists in the management of breast cancer and gastro-esophageal junction cancer. The purpose of this Example was to capture the relative frequency and distribution of HER2 overexpression in other cancers.


In a cohort of 11,223 patient samples, HER2 was assayed by immunohistochemistry using the Ventana HER2 (4B5) antibody. Slides were read by pathologists using the cutoff of (>=3+ and >=30% as positive) for HER2. In this same cohort, 2,246 patient samples underwent HER2 by FISH testing using Abbott's Pathvysion HER2 assay. FISH analysis was interpreted by a cytogeneticist based on ASCO/CAP guidelines for breast cancer. Prior to the analysis, 4,116 patient samples were excluded secondary to an unknown tumor lineage or other rarely observed lineages. In all, twenty-seven tumor lineages comprising 7,107 patient specimens were analyzed.


The frequency of HER2 by IHC was highest in breast carcinoma (68.6%), colorectal adenocarcinoma (7.2%), ovarian surface epithelial carcinoma (5.4%), gastroesophageal adenocarcinoma (4.5%), non-small cell lung cancer (3.1%), pancreatic adenocarcinoma (1.3%) and gastric adenocarcinoma (1.3%). In these same lineages, frequency of HER2 by FISH was highest in breast carcinoma (46.0%) followed by surface epithelial ovarian carcinoma (12.7%), non-small cell lung cancer (8.3%), gastroesophageal adenocarcinoma (6.7%), gastric adenocarcinoma (4.8%), pancreatic adenocarcinoma (4.0%), and colorectal adenocarcinoma (3.2%). Distributional differences in IHC versus FISH results were analyzed by Pearson's chi-square (×2) test, with statistical significance (p<0.05) achieved in breast carcinoma, gastric adenocarcinoma, gastroesophageal adenocarcinoma and surface epithelial ovarian carcinoma.


HER2 status was investigated in a large patient pool with advanced malignancies in a single clinical laboratory with standardized IHC and FISH. This study shows that HER2 is frequently expressed in multiple cancer types, which merits the inclusion of therapeutic strategies using HER2-targeted therapy in many types of tumors.


Example 6
Molecular Profiling of Metastatic Breast Cancer in Body Cavity Fluids

The diagnosis of malignant effusion signifies disease progression and is associated with a worse prognosis regardless of tumor origin. Cancer cells in fluids have genotypic and phenotypic characteristics that differ from the primary tumor. This Example reports the molecular profiling for breast cancer metastasis in pleural and peritoneal fluids.


Malignant fluid samples submitted for molecular profiling were retrospectively identified. A cell-block was prepared or available for testing for all samples. An H&E slide was prepared from the cell-block and reviewed by a pathologist before further testing. Malignant cell percentages were determined for purpose of DNA microarray and sequencing. The results were reviewed and data compiled to calculate the yield of various molecular predictive tests.


28 metastatic breast cancer fluid samples were identified. Of the 28 cases, 10 biomarkers by IHC could be performed in 20 samples (71.4%), 1-9 in 1 sample (3.5%), while 7 samples were insufficient quality for IHC (25%). DNA microarray analysis was performed for 10 cases (35.7%). FISH was performed for EGFR in 7 cases (25%), Her2 Neu FISH was performed for 11 cases (39%), cMYC FISH was performed for 5 samples (17.8%) and TOPO2a by FISH in was performed for 3 samples (10.7%). Combined IHC/FISH and MA data was available in 10 cases, IHC and FISH data in 11 cases and IHC and MA data in 10 cases. Combined results of predictive markers provided information on therapeutic guidance according to the workflow presented in Example 3.


Molecular profiling of malignant fluids offers additional opportunities for testing those patients where other tissue samples such as needle core biopsy or resection samples are not available. Molecular profiling of fluids provides insight into the molecular characteristics of malignant cells in body cavity fluids and associated expression of unique therapeutic targets.


Example 7
Distribution of Hormone Receptors in Epithelial Malignancies

The importance of steroid hormone receptors to the biology of breast cancer was recognized over 40 years ago. New insights into hormone receptor biology and the increasing array of proteins that can modify their function have already translated into better therapies for breast cancer. Thus, the responsiveness of a tumor to hormone therapy is an important parameter in cancer management. Besides breast cancer, other cancers also express steroid hormone receptors. This Example examined the relative distribution of hormone receptors in various types of cancer including breast cancer.


In a total cohort of 9,491 patient samples, hormone receptors estrogen receptor (ER), progesterone receptor (PR) and androgen receptor (AR) were assayed by immunohistochemistry on a Ventana platform using antibodies (ER (SP1), PR (IE2) and AR (AR 27)) (Ventana Medical Systems, Inc., Tucson, Ariz.). The slides were read manually by pathologists using the cutoff of ≧+1 staining intensity and ≧10% of sample as positive for AR, PR and ER. Based on these cutoffs, samples were deemed positive or negative.


The frequency of ER was highest in cancers of the breast (40.8%) followed by ovary (25.0%), uterus (14.9%), lung (4.0%) and peritoneum (2.2%). The most common cancer types with negative ER expression were lung (14.7%), colon (13.3%), pancreas (10.5%), breast (9.4%) and skin (4.2%). The cancer distribution of PR mimics that of ER, with a slightly lower prevalence (breast 25.5%, ovary 22.0%, uterus 13.3%, lung 5.6%, and pancreas 3.9%). The most common cancer types in which PR was negatively expressed were lung (14.0%), colon (12.6%), breast (12.2%), pancreas (9.5%) and ovary (7.6%). The frequency of AR was higher in breast cancers (45.7%) than prostate cancer (5.8%). Other cancer types with overexpression of AR included ovary (18.5%), uterus (3.4%) and lung (3.0%). In contrast, low expression of AR is most often found in lung (14.3%), colon (12.0%), pancreas (9.7%), breast (9.65), and skin (3.7%). All distributional differences by HR status were analyzed by Pearson's chi-square (χ2) test and showed statistical significance (p<0.001).


Cancer is a heterogeneous disease with different molecular drivers regulating its growth, survival and response to therapy. This Example shows that hormone receptors are frequently expressed in cancer types outside of breast, which merits the inclusion of therapeutic strategies using hormone therapy in such tumors.


Example 8
Correlation of HER2 Expression by IHC, DNA Microarray and FISH in Breast Cancer

HER2 overexpression occurs in approximately 15-20% of patients with breast cancer and is associated with aggressive disease and decreased survival. HER2 status is predictive of response to trastuzumab and lapatinib. Given the importance of HER2 positive disease, accurate evaluation of HER2 status is essential. This Example provides insights into the relationship between HER2 expression by immunohistochemistry, DNA microarray and FISH in a cohort of 1,032 breast cancers.


HER2 protein expression were determined by IHC and interpreted per ASCO/CAP scoring criteria. Samples scored as equivocal (>=2+ staining intensity; >10% of sample to <+3+ staining intensity; <=30% of sample) were further assessed for gene amplification with HER2 FISH testing (Pathvysion). All samples were tested for HER2 RNA expression by DNA microarray provided there was sufficient quantity of RNA in all tumor samples.


Investigation of two-way comparisons using qualitative (categorial) outcome measure (overexpressed, underexpressed, equivocal) yielded statistically significant results but demonstrated poor kappa values, a measure of the agreement between qualitative items (IHC/FISH K=0.096, p<0.001; FISH/Microarray K=0.079, p<0.05; IHC/Microarray K=0.126, p<0.001). Equivocal or negative protein expression trend towards non-amplification (76.9%, n=837 and 90.5% n=182, respectively, p<0.001). Low RNA levels are most often associated with IHC negativity (61.2%, n=762) but are also noted in samples with HER2 overexpression (38.4%, n=478). The least structured relationship is observed between RNA expression measured by DNA microarray and gene amplification measured by FISH. Pearson correlation coefficients, based on intensity of staining, IHC quick score (multiplying the percentage of positive cells by the intensity), gene expression ratio (DNA Microarray) and HER2-FISH ratio indicate that both IHC quick score and intensity of staining exhibit modest correlations (r=0.529, n=979, p<0.001; r=0.486, n=981, p<0.001, respectively). This is evidenced in the association between HER2 protein expression and median HER2-FISH ratio, which was 5.32 (SD=2.47) in overexpressed and 1.06 (SD=0.34) in underexpressed samples, even when controlling for equivocal expression (Kruskal Wallis <0.001, n=142). DNA Microarray showed the least concordance with the other assays (FISH r=0.440, n=573, p<0.001; IHC quick score r=0.377, n=573, p<0.001; IHC intensity r=0.342, n=573, p<0.001).


Protein expression by IHC is a preferred test for HER2 expression when performed per ASCO/CAP guidelines and correlates well with gene amplification by FISH. DNA microarray provides confirmatory results.


Example 9
ERCC1, RRM1, TOP2A, and TLE3 Protein Expression in 1,105 Samples of Triple Negative Breast Cancer

Triple negative breast cancer (TNBC) presents a treatment dilemma for clinicians. The most effective treatments in breast cancer target the Estrogen (ER) and Progesterone (PR) hormone receptors and the HER2 receptor tyrosine kinase. TNBC tumors do not express ER or PR and do not over express HER2, making treatment decisions difficult with these tumors. The current National Comprehensive Cancer Network (NCCN) guidelines list anthracyclines, taxanes and anti-metabolites such as gemcitabine as preferred agents for the treatment of invasive and recurrent breast cancer. Platinum agents are also listed as possible therapy options for recurrent breast cancer. TOP2A, TLE3, RRM1, and ERCC1 protein levels have been associated with responses to anthracyclines, taxanes, gemcitabine, and cisplatin respectively.


The protein expression levels of ER, PR, HER2, ERCC1, TOP2A, TLE3, and RRM1 in 1105 clinical breast cancer samples were assessed by standard immunohistochemical methods. Samples were classified as triple negative if no expression was detected for ER and PR, and HER2 was not over expressed. All other breast cancers were considered to be non-triple negative breast cancers (NTNBC). In unselected breast cancer patients, TLE3 was the most frequently highly expressed marker. Approximately 69% of all patients showed high expression of TLE3 and thus were recommended for treatment with taxanes. Fewer tumors from patients with TNBC (44.6%) had high levels of expression of TLE3 as compared to those with NTNBC (75.8%). However, this difference was not statistically significant (p=0.069). In contrast, reduced expression of ERCC1 was observed in 36.9% of TNBC specimens versus 24.4% in NTNBC samples, suggesting that cisplatin may have benefit for patients with TNBC (p=0.0002). There was also a statistically significant difference observed in increased levels of TOP2A expression levels in TNBC versus NTNBC. Anthracycline and/or cisplatin may be more beneficial therapeutic agents in treating TNBC when compared to NTNBC.


Example 10
PTPN12 Gene Expression Signature in Triple Negative Breast Cancer Cohort

Triple Negative (TN) breast cancer is an aggressive subtype of breast cancer defined as the absence of Her2 gene amplification and/or expression, absence of ER expression, and absence of PR expression. In contrast to the other two major subtypes (HER2+ or ER/PR+; see FIG. 45), the molecular mechanism underlying TN is poorly understood and no effective treatment for the TN patients currently exists. PTPN12, a tyrosine phosphatase, has been found to bind and dephosphorylate the product of the oncogene c-ABL, thereby implicating a role in oncogenesis. PTPN12 may act as a tumor suppressor in triple negative breast cancer by inhibiting several oncogenic tyrosine kinase receptors, including EGFR, HER2, and PDGFR-beta. See Sun et al., Activation of Multiple Proto-oncogenic Tyrosine Kinases in Breast Cancer via Loss of the PTPN12 Phosphatase, Cell 144:703-718, 4 Mar. 2011; which publication is incorporated by reference herein in its entirety. This Example investigated variability associated with PTPN12 transcript in the microarray gene expression data obtained from 105 TNP as determined by IHC for ER and PR and IHC and FISH for HER2 during our clinical molecular profiling on solid tumors.


105 gene expression microarrays of triple negative breast cancer patients whose tissue samples were analyzed with molecular profiling as described herein. See, e.g., Example 2. The triple negative status of each patient was determined by IHC (for ER, PR, and Her2) and by FISH (for Her2). Gene expression was performed using illumina HT-12 platform which contains over twenty nine thousand probes representing ˜18 thousand genes in the genome. Patient gene expression data were normalized using quantile normalization method. Following data normalization, genes were ranked based on the Spearman correlation p-values and the top 1000 genes were selected that were significantly correlated with PTPN12 mRNA expression levels. Two-dimensional hierarchical clustering was performed on the 1000 top correlated genes with PTPN12 expression across the 105 TNP samples. A comprehensive pathway analysis was also performed using all the genes as the input to the GSEA software. For methodology, see Subramanian et al, Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. PNAS 2005 vol. 102, 43, 15545-15550; Mootha et al, PGC-1-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genetics 2003, 34, 267-273; which publications are incorporated by reference herein in their entirety. All the gene expression analyses were performed using R software (version 2.13.0).



FIG. 48A shows the distribution of PTPN12 mRNA levels as measured by Illumina HT-12 platform. This result demonstrated the presence of variability in PTPN12 transcript levels among the TN patients. Correlation analysis was performed at the transcriptome level followed by hierarchical clustering of the subset of transcripts that exhibited significant covariation with PTPN12 mRNA levels. The top 1000 significantly correlated transcripts with PTPN12 were included. The results of the two dimensional clustering is shown in FIG. 48B. As shown in the FIG. 48B, this analysis identified three distinct subset of TN patients: Patients with a) low expression of PTPN12 (P1); intermediate expression of PTPN12 (P2); and high expression of PTPN12 (P3). Top 1000 significantly correlated transcripts divided into 7 clusters (denoted in FIG. 48B as C1-C7) each with a distinct pattern of expression.


Functional classification of genes within each cluster revealed the presence of several oncogenes and tumor suppressor genes within each cluster. All clusters contain unique set of genes related to cell proliferation, cell death, cell motility, cell cycle regulation and other cancer related pathways. From the 7 clusters, clusters 1, 6 and 7 had the highest fraction of such genes. The gene expression pattern and the gene content of these three clusters is as follows: Cluster 1 (208 genes) were genes that were highly expressed in all three TN patient groups and the expression of the genes was highest in high PTPN12 expressing patients. Functional classification of genes by the DAVID bioinformatics tool at NCBI showed several genes related to cancer, including 19 MAP kinase signaling genes, and 15 genes involved in regulation of apoptosis. Cluster 6 (150 genes) contained genes showing very low expression in low-expressing TN patients, moderately expressed in medium expressing TN patients, and highly expressed in high-expressing TN patients. Cluster 6 had the highest fraction of cancer related genes including 7 mitosis and cell cycle check point genes, 6 cytoskeletal genes, 4 phosphatases and 6 kinases including KRAS, 4 DNA repair genes, 8 signal transduction genes, 3 positive regulator of apoptosis, and 22 genes involved in regulation of gene expression. Cluster 7 (166 genes) contained genes that were expressed at low level throughout the three TNP groups but the severity of under-expression was higher in TNP patients with low PTPN12 expression. In cluster 7 there were 5 genes belonging to the EGFR and FGF signaling pathways, and 6 genes involved in mitosis.


Examination of the top correlated genes revealed the presence of SOCS4, which has been recently associated with earlier tumor stage and better clinical outcome in breast cancer patients (see Sasi et al. Higher expression levels of SOCS 1, 3, 4, 7 are associated with earlier tumour stage and better clinical outcome in human breast cancer. BMC Cancer 2010, 10, 178; which publication is incorporated by reference herein in its entirety), and several proteosome genes including CBL among the PTPN12 top 1000 correlated genes. The positive association of PTPN12 with SOCS4 and CBL gene products in C2 cluster (shown in FIG. 48C) suggests that PTPN12 negates EGFR/Her2 signaling by promoting degradation of these receptors by ubiquitination. Consistent with this hypothesis, when P1 and P3 patients are selected for pathway analysis, the proteosome pathway was the most differentially regulated (upregulated) pathway among over 800 pathways investigated by the GSEA pathway analysis software (Table 22 and FIG. 48D).









TABLE 22







Top 25 Differentially Expressed Pathways between P1 and P3 clusters (GSEA Analysis)














Number of Pathway Genes





# of Genes
Differentially Expressed
Nominal


Pathway
Source
in Pathway
(% Total)
p-value














PROTEASOME PATHWAY
Biocarta
17
 9 (53%)
<0.01


ATM PATHWAY
Biocarta
20
 4 (20%)
0.02


CYCLIN E ASSOCIATED
Reactome
56
27 (48%)
<0.01


EVENTS DURING G1 S


TRANSITION


CDC20 PHOSPHO APC
Reactome
61
22 (36%)
0.02


MEDIATED DEGRADATION


OF CYCLIN A


VIF MEDIATED
Reactome
46
18 (39%)
0.02


DEGRADATION OF


APOBEC3G


STABILIZATION OF P53
Reactome
45
18 (40%)
0.07


G1 S TRANSITION
Reactome
97
40 (41%)
0.07


REGULATION OF APC
Reactome
68
23 (34%)
0.02


ACTIVATORS BETWEEN G1


S AND EARLY ANAPHASE


WNT PATHWAY
Biocarta
25
11 (44%)
<0.01


SCF SKP2 MEDIATED
Reactome
50
21 (42%)
<0.01


DEGRADATION OF P27 P21


SIGNALING BY WNT
Reactome
56
22 (39%)
0.02


PARKINSONS DISEASE
KEGG
107
41 (38%)
0.02


P53 INDEPENDENT DNA
Reactome
42
17 (40%)
0.02


DAMAGE RESPONSE


REGULATION OF
Reactome
46
17 (37%)
0.04


ORNITHINE


DECARBOXYLASE


S PHASE
Reactome
98
46 (47%)
<0.01


AUTODEGRADATION OF
Reactome
56
20 (36%)
0.05


CDH1 BY CDH1 APC


HOMOLOGOUS
Reactome
15
 4 (27%)
<0.01


RECOMBINATION REPAIR


PROTEASOME
KEGG
42
16 (38%)
0.03


UBIQUITIN MEDIATED
KEGG
124
33 (27%)
0.02


PROTEOLYSIS


OXIDATIVE
KEGG
113
43 (38%)
0.02


PHOSPHORYLATION


M G1 TRANSITION
Reactome
60
24 (40%)
0.08


CELL CYCLE CHECKPOINTS
Reactome
106
40 (38%)
0.04


SCF BETA TRCP MEDIATED
Reactome
46
17 (37%)
0.02


DEGRADATION OF EMI1


DEADENYLATION OF
Reactome
20
 8 (40%)
0.04


MRNA


REGULATION OF BETA
Reactome
108
36 (33%)
0.02


CELL DEVELOPMENT









PTPN12 associates with numerous cancer-related genes and pathways, including playing a role in the regulation thereof. Molecular profiling of PTPN12 can shed light on treatment options for triple negative breast cancer patients and itself presents a promising therapeutic target for TNP patients.


Example 11
Molecular Profiling of Head and Neck Squamous Cell Carcinoma

Squamous cell carcinoma is one of the most common cancers in humans, and usually arises from mutated ectodermal or endodermal cells lining body cavities. It can develop in a variety of organs and tissues, including the skin, lips, mouth, esophagus, urinary bladder, prostate, lung, vagina, cervix, and others. Squamous cell carcinoma is most likely to appear in males over 40 years of age with a history of heavy alcohol use coupled with smoking. Head and neck squamous cell carcinoma (HNSCC) is the most common form of larynx cancer, accounting for over 90% of throat cancer. HNSCC is an aggressive disease with unpredictable prognosis. Failure of first-line treatment is common, thus additional therapeutic options for this setting are desireable. This Example used molecular profiling of biomarker expression in HNSCC to identify candidate therapies.


In a cohort of 166 patients with HNSCC, a panel of biomarkers that are useful in determining sensitivity or resistance to various chemotherapies were analyzed. Expression of ERCC1, MGMT, MRP1, PGP, RRM1, TOPO1, TOPO2A and TS were assayed by immunohistochemistry (IHC) on a Ventana platform (Ventana Medical Systems, Inc, Tucson, Ariz.). Primary antibodies included: ERCC1 (Monoclonal clone 8F1, abcam, Cambridge, Mass.), MGMT (Monoclonal clone MT23.3, Invitrogen Life Science, Carlsbad, Calif.), MRP1 (Monoclonal clone 33A6, Leica Microsystems, Buffalo Grove, Ill.), PGP (Monoclonal clone C494), RRM1 (polyclonal), TOPO1 (Monoclonal clone 1D6, Leica), TOPO2A (Monoclonal clone 3F6, Leica) and TS (Monoclonal clone TS106, Santa Cruz Biotechnology, Inc., Santa Cruz, Calif.). Stained slides were evaluated by a pathologist using intensity grades (0-3) and percentage of tumor cells staining (0-100%). Association of benefit and lack of benefit was determined based on predefined thresholds.


The distribution of percentages across all biomarker categories (relative expression) was analyzed by non-parametric Chi Square tests. All differences between relative expression levels attained statistical significance (p<0.001). The most frequently over expressed biomarkers in HNSCC were MRP1 (90.4%), TOPO2A (79.5%), MGMT (76.7%), ERCC1 (51.9%) and RRM1 (44.1%). Conversely, the biomarkers with greatest frequency of negative expression values were PGP (92.2%), TS (58.3%) and TOPO1 (57.6%). Based on these data, a large percentage of patients in this cohort may have a decreased benefit from cisplatin or carboplatin based on ERCC1, irinotecan or topotecan based on TOPO1, gemcitabine based on RRM1 and temozolomide based on MGMT. Based on the frequency of negative expression values for TS and above threshold values for TOPO2A, this cohort may have an increased benefit from 5-fluorouracil or pemetrexed, and doxorubicin or etoposide, respectively. The distribution of the classical drug pumps, MRP1 and PGP were differentially expressed. MRP1 was above threshold in 90% of the cohort, indicating resistance to agents like doxorubicin, etoposide and methotrexate, whereas PGP was negative in 92% of cases, suggesting a potential increased benefit from paclitaxel or docetaxel.


HNSCC is a challenging disease to treat, with few therapeutic options after failure of first-line regimens. This Example used molecular profiling to identify candidate therapies. The results indicated that fluoropyrimidines, 5-fluorouracil or pemetrexed, and taxanes, paclitaxel or docetaxel, are treatment options for HNSCC supported by the high preponderance of negative expression values of TS and PGP, respectively, in this cohort.


Example 12
SPARC Expression in Breast Cancer Patients

SPARC (secreted protein acid and rich in cysteine; also known as osteonectin) belongs to a group of extracellular matrix proteins and promotes adhesion of cells from the matrix. It plays an important role in tumor development in breast cancer and has a significant bearing on patient prognosis and long term survival. It is also known to predict response to nab-paclitaxel in certain tumor types including breast cancer. In 2005, the FDA approved a solvent free formulation of paclitaxel for the treatment of metastatic breast cancer that uses albumin bound (nab) technology (Abraxane®; nab-paclitaxel). Clinical studies have shown that nab-paclitaxel is significantly more effective than paclitaxel. This Example evaluated the frequency distribution of SPARC among breast cancer patients, including triple negative patients (ER−, PR−, HER2−), in which identification of a novel therapeutic target is warranted.


We analyzed tumor SPARC expression by immunohistochemistry (IHC) using a monoclonal antibody (Catalog # MAB941, R&D Systems, Minneapolis, Minn.) and a polyclonal antibody (Catalog # X1867P, Exalpha Biologicals, Shirley, Mass.). Immunoreactivity was assessed by scoring the percentage of cells stained in each field and by the intensity of staining. A cutoff point of 2+ and >30% stained tumor cells was considered SPARC positive.


From an analysis of 885 breast cancer patients profiled, 262 patients were triple negative for ER, PR and HER2. Among the triple negative subset, 42% stained positive for SPARC expression by IHC. 138 patients were HER2 positive out of which 47% stained positive for SPARC expression. 434 patients were hormone receptor positive out of which 41% stained positive for SPARC expression. Further, there were 318 SPARC positive patients as determined by positive staining using either the monoclonal or polyclonal antibody. Fifty out of 318 cases (16%) stained positive by both antibodies and the remaining stained positive by either monoclonal (59%, 185 out of 318) or polyclonal (26%, 83 out of 318) antibody thereby indicating that use of both SPARC antibodies may identify additional patients that can benefit from SPARC associated therapies.


SPARC over-expression is a functionally important feature of a subset of breast cancer patients. The triple negative subset of tumors generally has a more aggressive clinical course and does not benefit from conventional targeted therapies. Nab-paclitaxel is a candidate therapeutic agent for this subset of breast cancer patients that over-express SPARC. Molecular profiling can be used to identify these and other breast cancer patients likely to benefit from this therapeutic agent.


Example 13
Differential Expression of Biomarkers in Gastrointestinal Versus Pulmonary Carcinoid Tumors

Carcinoid tumors are endocrine neoplasms that most commonly arise in the gastrointestinal and pulmonary system. Approximately 12,000 cases of carcinoid tumor are diagnosed a year with a 5-year survival rate of 67.2% for all carcinoid tumor sites. The majority of the patients present with advance disease for which treatment options are very limited, therefore the evaluation of predictive markers for which associated chemotherapeutic agents exist is highly desirable. This Example examined biomarker expression in carcinoid tumors.


146 carcinoid tumors were interrogated for biomarkers, 33 pulmonary, 97 gastrointestinal (GI) tract (including esophagus, stomach, small bowel, colon, rectum, appendix and pancreas) and 16 miscellaneous (mediastinum, thymus, cervix, breast and unknown primary site). Due to small number of tumors in the miscellaneous category, analysis was restricted to pulmonary and GI carcinoid tumors only. Molecular profiling as taught herein was performed by IHC and scored semi quantitatively by a pathologist for SPARC mono, SPARC poly, Her2, TOP02, TOPO1, PGP, MRP1, PTEN, TS, ERCC1, RRM1, MGMT, C-KIT, ER, PR and AR. SSTR2 and SSTR5 expression was compared between groups by DNA Microarray. Based on these analyses, the pulmonary carcinoids differentially express Topo2, PGP, MGMT, CKIT and PR, while the GI carcinoids differentially express Topo1, RRM1 and ER and SSTR2 and SSTR5. There is similar expression of SPARC, MRP1, PTEN, TS, ERCC1 at both sites. All pulmonary and GI carcinoid tumors were negative for Her2.


This Example reveals differences in biomarker expression in GI and Pulmonary Carcinoid tumors. Treatment with irinotecan, gemcitabine, anti-estrogens and Octreotide may be more relevant in GI carcinoids based on molecular markers present while targets associated with response to anthracyclines, temozolomide, imatinib may be more commonly expressed in pulmonary carcinoid tumors.


Example 14
Therapeutic Target Expression in Advanced Prostate Cancer Patients Submitted for Comprehensive Molecular Profiling

Approximately 30,000 men die from advanced PCa each year and the poor prognosis of this disease underscores a need for novel therapeutic and clinical strategies.


This Example analyzed targeted genes and proteins in 141 patient specimens using molecular profiling according to the invention. The profiling used techniques as taught herein and included IHC (for as many as 29 different biomarkers), FISH for EGFR, ALK, c-Myc, Her2neu and TOP2A, sequencing for BRAF, c-ckit, EGFR, KRAS, and PIK3CA, and whole genome RNA expression microarray. Therapeutic associations were then assigned based on the differentially expressed biomarkers. See, e.g., Example 4. Due to amount of tumor tissue present in the specimen, physician test requests and other factors, the number of biomarkers interrogated varied from case to case.


Therapeutic associations based on IHC results included: 92% HER2 negative (potential lack of benefit from HER2 targeted therapy); 85% AR high (potential benefit from anti-androgen therapy); 79% ERCC1 negative (potential benefit from platinum-based therapies); 70% TS negative (potential benefit from fluorouracil), 54% PTEN negative (suggesting activation of PIK3CA pathway), 66% RRM1 low (potential benefit from gemcitabine); 64% TOPO2A low (potential lack of benefit from anthracyclines); 44% TOPO1 high (potential benefit from irinotecan) 34% MGMT high (potential lack of benefit from temozolomide); 28% SPARC high (potential benefit from nab-paclitaxel). Potential therapeutic associations based on FISH and Sequencing included: 82% HER2 negative by FISH (potential minimal benefit to HER2 targeted therapy), 13% EGFR positive by FISH and a majority 90% and 81% wild-type for KRAS (exons 2, 3) and BRAF (exons 11, 15), respectively, indicating potential benefit from EGFR targeted therapies. Two drug pumps, PGP and MRP1, were 85% negative and 91% positive, respectively.


Advanced PCa is an aggressive disease where a one-size-fit-all approach may not be effective. The data is this Example confirms that these tumors are heterogeneous at the molecular level and has important therapeutic implications as outlined above.


Example 15
Molecular Profiling of Uveal Melanoma Patients

Uveal melanoma is the most common primary intraocular malignancy of the adult eye and represents 5% of all melanomas. Once uveal melanoma metastasizes it is notoriously resistant to medical interventions. There is a great need for improved therapy as the prognosis is poor for advanced stages. This Example used molecular profiling to investigate the presence of novel therapeutic targets.


Molecular profiling was used to investigate samples from 49 uveal melanoma patients. Techniques performed as taught herein included immunohistochemistry for 16 markers including cKIT, PDGFR, cMET, PTEN and IGF1R. Further, microarray analysis was performed on 29 samples using the Illumina platform. Amplification of EGFR using RT-PCR and mutational analysis by sequencing of cKIT, BRAF, KRAS and NRAS were performed on a subset of the patients.


Overexpression of KIT at the protein and RNA level was observed in 74% (28 out of 38) and 45% (13 out of 29) of the patients, respectively. KIT is capable of stimulating downstream MAPK signaling pathways. Expression of cKIT did not correlate with any activating cKIT mutation in any of the 34 samples tested. MET was overexpressed in 15 out of 17 cases at the RNA level and IGF1R was high in 4 out of 6 patients indicating poor prognosis. PTEN expression by IHC was found in 90% of the patients (36 out of 40) indicating that the PI3K pathway is not activated in the majority of uveal melanoma patients. BRAF was wildtype in the 42 patients tested. Similarly, no KRAS or NRAS mutations were found. Protein and RNA expression of PDGFR was absent in these patients. MGMT was lost in 16 out of 40 pts at the protein level and 10 out of 29 patients at the RNA level. EGFR expression, copy number and protein levels were low in the patients tested.


These data suggest that cKIT is a promising target in uveal melanoma. Low expression of MGMT in about a third of the patients indicates a likelihood of response to dacarbazine and temozolomide.


Example 16
Frequency of Biomarker Over-Expression in Breast Carcinoma Subtypes Including a Large Cohort of Triple Negative Patients

The taxanes are an important class of agents for the treatment of a broad range of malignancies including breast cancer. They improve survival in patients with early stage and metastatic breast cancer. Transducin-Like Enhancer of split 3 (TLE3) is a transcriptional repressor which influences growth and microtubule stability and its expression has been implicated in response to taxane therapy in breast cancer. In this Example, molecular profiling according to the invention was used to investigate the tumor expression of TLE3 in breast cancer patients, including a large cohort of triple negative subtype. We also assessed the expression of multidrug resistance protein 1 (MRP1), P-glycoprotein (Pgp), Secreted protein acidic and rich in cystein (SPARC) in the same samples. The biomarker SPARC has been shown to be associated with response to albumin bound paclitaxel. On the other hand, Pgp and MRP1 being part of the multidrug resistance proteins are associated with resistance to taxanes.


Molecular profiling was used to analyze MRP1, Pgp, SPARC, TLE, ER, PR and HER2/neu expression by immunohistochemistry in 978 breast cancer patients. Immunoreactivity was assessed by scoring the percentage of cells stained in each field and by the intensity of staining.


The 978 breast cancer patients were sub-classed by hormone receptors (ER and PR) and HER2 expression/amplification. Overall, 36% of the total breast cancer patients were hormone receptor positive, 15% were HER2 positive and 49% were triple negative. A total of 477 patients were triple negative of which 61% stained positive for TLE3 expression. Of the 150 HER2 positive patients, 73% stained positive for TLE3 expression as compared with 82% TLE3 positivity in the 351 hormone receptor positive patients. By pairwise comparison, the hormone receptor positive vs triple-negative patients showed the highest statistical significance (p=2.5e-10). MRP1 was positive in majority of the samples (95%), whereas Pgp was negative in 93% of samples. SPARC expression was not different between the different subtypes of breast cancer and the expression frequency ranged from 83-88%.


This Example highlights that TLE3 is over-expressed in the majority of HER2 positive and hormone receptor positive breast cancer patients. The frequency of over-expression of TLE3 was lowest in the triple negative subtype thereby making it more important to identify those patients in this group who are most likely to respond to taxanes prior to therapy. Even though the frequency of TLE3 and SPARC was fairly high in the patients tested, there were very few patients who did not express any drug resistant proteins. Since both paclitaxel and docetaxel are substrates for Pgp and MRP1 mediated efflux, and their efficacy is compromised in cells that overexpress it, the evaluation of these predictive biomarkers may prove to be a valuable aid in the identification of individuals who may not benefit from taxanes.


Example 17
Molecular Profiling of Ewing Sarcoma (ES) and Desmoplastic Small Round Cell Tumors (DSRCT)

Ewing Sarcoma (ES)/PNET and Desmoplastic Small Round Cell Tumor (DSRCT) are sarcomas with distinct chromosomal translocations involving EWS gene (predominately EWS-FLI1 and EWS-WT1; respectively). Their diagnosis and treatment has been difficult due to the rarity, diverse clinical presentation, overlapping histologic features and genetic complexity. Therefore, novel approaches in clinical management are warranted.


Seventeen cases (9 ES and 8 DSRCT) were analyzed using molecular profiling according to the invention. The whole genome transcriptome analysis (29,285 transcripts) was performed using HumanHT-12 v4 beadChip (Illumina Inc., San Diego, Calif.). Additionally, a select number of chemotherapy-predictive (theranostic) biomarkers were evaluated using immunohistochemistry, FISH, and DNA sequencing.


160 commonly up and 357 commonly down regulated genes were observed between ES and DSRCT in transcriptome analysis. Cell cycle signaling, DNA replication and E2F mediated pathway genes were most commonly up regulated. In addition, higher expression of SOX-2, a putative cancer stem cell marker, was observed in DSRCT than in ES. Without being bound by theory, this suggests that EWS-WT1 translocation may result in reprogramming of DSRCT to express cancer stem cells.


Above threshold expression of TOP2A and TOPO1 was observed in approximately 50% of all cases. Additional theranostic biomarkers (ERCC1, TS, SPARC and MGMT) showed significant inter-individual variations. No KRAS mutations or EGFR gene amplifications were observed in any case.


These data suggest therapeutic targets in cell cycle regulation, DNA replication, receptor TKI pathways and stem cell reprogramming. The data further suggest the benefits of individualized therapeutic assessment including predicted susceptibilities to anthracycline, irinotecan, platinum analogs, fluorouracil and temozolomide in both tumors.


Example 18
Molecular Profiling of Pancreatic Cancers

Molecular profiling of pancreatic tumors was performed following the methods described in Example 2. The molecular profiling comprised FISH (ALK, cMET, cMYC, EGFR, HER2, TOP2A), IHC (AR, BCRP, cKIT, CAV1, CK17, cMET, COX-2, Cyclin D1, ECAD, EGFR, ER, ERCC1, HER2, GFR1, Ki67, MGMT, MRP1, p53, PDGFR, PGP, PR, PTEN, RRM1, SPARC (with monoclonal and polyclonal antibodies), TLE3, TOP2A, TOPO1, TS, TUBB3), whole genome DNA microarray (focus on ABCC1, ABCG2, ADA, AR, ASNS, BCL2, BIRC5, BRCA1, BRCA2, CD33, CD52, CDA, CES2, DCK, DHFR, DNMT1, DNMT3A, DNMT3B, ECGF1, EGFR, EPHA2, ERBB2, ERCC1, ERCC3, ESR1, FLT1, FOLR2, FYN, GART, GNRH1, GSTP1, HCK, HDAC1, HIF1A, HSP90AA1, IGFBP3, IGFBP4, IGFBP5, IL2RA, KDR, KIT, LCK, LYN, MET, MGMT, MLH1, MS4A1, MSH2, NFKB1, NFKB2, NFKBIA, OGFR, PARP1, PDGFC, PDGFRA, PDGFRB, PGP, PgR, POLA1, PTEN, PTGS2, RAF1, RARA, RRM1, RRM2, RRM2B, RXRB, RXRG, SIK2, SRC, SSTR1, SSTR2, SSTR3, SSTR4, SSTR5, TK1, TNF, TOP1, TOP2A, TOP2B, TXNRD1, TYMS, VDR, VEGFA, VHL, YES1, ZAP70) and sequencing (BRAF, cKIT, EGFR, KRAS, PIK3CA). An appropriate threshold was determined for each marker assessed. For example, by IHC (e.g., 30% or more of the sample is +2 or greater in staining intensity) or microarray (e.g., p value ≦0.001) to determine whether the markers were up or down-regulated compared to normal pancreatic tissue. For each protein found to be overexpressed by IHC, i.e., “Above Threshold,” in the pancreatic tumor samples, the biomarker—drug associations herein (see, e.g., Tables 20-21 above) were used to identify a candidate treatment for the individual. For example, TOPO1 was found to be above threshold in 32.73% of the tumor samples, thus indicating irinotecan and/or topotecan for treating those patients. Similarly, for each gene found to be differentially expressed by microarray, i.e., over- or underexpressed in the tumor samples compared to normal tissue, the biomarker—drug associations herein were used to identify a candidate treatment for the individual (see, e.g., Tables 20-21 herein). For example, TOP2A was found to be over expressed in 84.84% of the pancreatic tumor samples, thus indicating anthracyclines such as doxorubicin, liposomal doxorubicin, and/or epirubicin for treating those patients.


In many cases, a protein or gene was found to overexpressed in only a small proportion of the pancreatic samples assessed. This data reveals the power of molecular profiling as the profiling approach was able to identify promising therapeutics on a patient-by-patient basis, whereas selection of drugs based on the class of cancer as a whole would have indicated that the drugs are unlikely to be effective for those patients.


The molecular profiling can further be used to identify a biomarker or panel of biomarkers that are commonly overexpressed or underexpressed in a cancer and thus can be used to distinguish a cancer sample from a normal sample. For example, TOP2A was overexpressed in 84.84% of the pancreatic tumors assessed. Thus, overexpression of TOP2A overexpression is indicative of a pancreatic cancer. Assessing a panel of TOP2A and additional biomarkers may further improve the ability to distinguish a cancer and normal sample.


Example 19
Molecular Profiling in Ovarian Cancer

Molecular profiling of ovarian tumors was performed using IHC and Illumina Whole Genome DASL microarray assay as described in Example 2. 428 samples were analyzed by IHC for AR, BCRP, cKIT, ER, ERCC1, HER2, MGMT, MRP1, PDGFR, PGP, PR, PTEN, RRM1, SPARC, TOP2A, TOPO1, TS, cMET, and TUBB3. 144 ovarian tumor samples from were analyzed by microarray. Table 23 shows the results of analysis of the microarray profiling. In the table, “Gene” indicates the gene whose level was assessed by microarray. “n” is the number of ovarian tumor patient samples that were assessed for that gene. The “mean” is the sample mean of the expression ratios. “sd” is the standard deviation of the expression ratios. “z” is a z-score calculated as (“mean”—˜)/(“sd”/sqrt(“n”)), where μ=0. “p-value” is a two-tailed p-value for the z-score. The p-values were corrected for multiple comparisons using False-Discovery Rate (“FDR”) and Bonferroni's correction (“Bonf”). Using uncorrected p-values, the following genes were significantly overexpressed in the ovarian samples: TOP2A, MET, MSH2, RRM2, VHL, OGFR, TK1, PARP1. TOP2A was significantly overexpressed when correcting for multiple comparisons.









TABLE 23







Gene Expression Data Analysis














Gene
n
mean
sd
z
p-value
FDR
Bonf

















TOP2A
144
4.612
15.890
3.483
0.000
0.044
0.044


MET
7
2.004
2.034
2.607
0.009
0.268
0.803


MSH2
144
3.522
16.113
2.623
0.009
0.268
0.766


RRM2
144
3.250
16.221
2.404
0.016
0.300
1.00


VHL
144
3.220
16.199
2.385
0.017
0.300
1.00


OGFR
144
2.791
16.303
2.054
0.040
0.503
1.00


TK1
144
2.805
16.378
2.055
0.040
0.503
1.00


PARP1
7
1.602
2.147
1.973
0.048
0.533
1.00


EPHA2
144
2.497
16.325
1.835
0.066
0.593
1.00


HIF1A
144
2.501
16.409
1.829
0.067
0.593
1.00


VDR
144
2.372
16.407
1.735
0.083
0.662
1.00


ABCC1
144
2.207
16.433
1.612
0.107
0.733
1.00


GART
144
2.197
16.415
1.606
0.108
0.733
1.00


DHFR
144
2.049
16.431
1.497
0.134
0.750
1.00


EGFR
144
2.006
16.508
1.458
0.145
0.750
1.00


ERCC3
144
2.056
16.462
1.498
0.134
0.750
1.00


ESR1
144
2.038
16.506
1.482
0.138
0.750
1.00


BCL2
144
1.638
16.568
1.186
0.235
0.762
1.00


BRCA1
144
1.572
16.539
1.140
0.254
0.762
1.00


CD52
144
1.647
16.571
1.193
0.233
0.762
1.00


ECGF1
144
1.927
16.464
1.404
0.160
0.762
1.00


FYN
144
1.573
16.561
1.140
0.254
0.762
1.00


GSTP1
144
1.707
16.479
1.243
0.214
0.762
1.00


KIT
144
−1.633
17.300
−1.133
0.257
0.762
1.00


LCK
144
1.583
16.541
1.149
0.251
0.762
1.00


NFKB2
144
1.841
16.468
1.342
0.180
0.762
1.00


PTEN
144
1.625
16.533
1.179
0.238
0.762
1.00


SRC
144
1.554
16.543
1.127
0.260
0.762
1.00


TYMS
144
1.661
16.512
1.207
0.228
0.762
1.00


VEGFA
144
1.784
16.497
1.298
0.194
0.762
1.00


ADA
144
0.957
16.762
0.685
0.493
0.777
1.00


ASNS
144
1.194
16.622
0.862
0.389
0.777
1.00


BIRC5
144
1.088
16.692
0.782
0.434
0.777
1.00


BRCA2
144
1.414
16.551
1.025
0.305
0.777
1.00


DNMT1
144
0.952
16.655
0.686
0.493
0.777
1.00


DNMT3B
144
1.351
16.600
0.977
0.329
0.777
1.00


ERBB2
144
0.880
16.729
0.631
0.528
0.777
1.00


ERCC1
144
1.119
16.630
0.807
0.420
0.777
1.00


FLT1
144
1.118
16.613
0.807
0.419
0.777
1.00


GNRH1
144
0.893
16.700
0.642
0.521
0.777
1.00


HCK
144
1.192
16.673
0.858
0.391
0.777
1.00


HDAC1
144
1.037
16.634
0.748
0.454
0.777
1.00


HSP90AA1
144
0.931
16.658
0.671
0.502
0.777
1.00


IL2RA
144
1.142
16.632
0.824
0.410
0.777
1.00


LYN
144
0.977
16.690
0.702
0.482
0.777
1.00


MGMT
144
1.410
16.551
1.022
0.307
0.777
1.00


MLH1
144
0.964
16.700
0.692
0.489
0.777
1.00


MS4A1
144
0.972
16.648
0.700
0.484
0.777
1.00


PDGFC
144
0.909
16.718
0.652
0.514
0.777
1.00


PDGFRA
144
−1.342
17.253
−0.933
0.351
0.777
1.00


PGP
7
0.817
2.724
0.793
0.428
0.777
1.00


POLA1
144
0.934
16.651
0.673
0.501
0.777
1.00


PTGS2
144
0.877
16.747
0.628
0.530
0.777
1.00


RRM1
144
1.155
16.617
0.834
0.404
0.777
1.00


RXRG
144
1.044
16.667
0.751
0.452
0.777
1.00


SSTR3
144
1.190
16.599
0.860
0.390
0.777
1.00


SSTR5
144
1.128
16.648
0.813
0.416
0.777
1.00


TNF
144
1.408
16.562
1.020
0.308
0.777
1.00


TOP1
144
1.119
16.603
0.809
0.419
0.777
1.00


TXNRD1
144
1.097
16.667
0.789
0.430
0.777
1.00


SSTR4
144
0.823
16.674
0.592
0.554
0.799
1.00


RARA
144
0.728
16.711
0.523
0.601
0.831
1.00


RXRB
144
0.753
16.703
0.541
0.588
0.831
1.00


YES1
144
0.721
16.703
0.518
0.605
0.831
1.00


RRM2B
144
0.671
16.756
0.480
0.631
0.842
1.00


TOP2B
144
0.670
16.758
0.480
0.631
0.842
1.00


DCK
144
0.612
16.746
0.439
0.661
0.868
1.00


AR
144
0.295
16.823
0.211
0.833
0.894
1.00


CDA
144
0.351
16.857
0.250
0.803
0.894
1.00


CES2
144
0.375
16.789
0.268
0.789
0.894
1.00


DNMT3A
144
0.459
16.833
0.327
0.744
0.894
1.00


FOLR2
144
0.329
16.825
0.235
0.814
0.894
1.00


IGFBP4
7
0.285
3.114
0.242
0.809
0.894
1.00


IGFBP5
7
−0.503
3.863
−0.344
0.731
0.894
1.00


KDR
144
0.472
16.769
0.337
0.736
0.894
1.00


NFKB1
144
0.555
16.781
0.397
0.691
0.894
1.00


NFKBIA
9
0.361
3.626
0.299
0.765
0.894
1.00


PDGFRB
144
−0.442
17.024
−0.312
0.755
0.894
1.00


PGR
144
0.384
16.864
0.274
0.784
0.894
1.00


RAF1
144
0.422
16.836
0.301
0.764
0.894
1.00


SPARC
144
−0.310
17.062
−0.218
0.827
0.894
1.00


SSTR1
144
0.429
16.774
0.307
0.759
0.894
1.00


SIK2
7
−0.217
3.588
−0.160
0.873
0.925
1.00


IGFBP3
7
−0.226
4.162
−0.144
0.886
0.928
1.00


ABCG2
144
−0.087
16.904
−0.062
0.951
0.962
1.00


SSTR2
144
0.102
16.876
0.072
0.942
0.962
1.00


ZAP70
144
−0.112
16.930
−0.079
0.937
0.962
1.00


CD33
144
0.001
16.915
0.001
1.000
1.000
1.00









By IHC, the proteins most often expressed were MGMT, RRM1, MRP1 and TOPO1. The proteins most often lacking expression were HER2, PGP and cKIT.


In most cases, a gene was found to under- or overexpressed in only a portion of the ovarian cancer samples assessed. The differentially expressed genes can be used to select a candidate therapeutic, e.g., using the gene-drug associations in Tables 20-21. This data reveals the power of molecular profiling as the profiling approach is able to identify promising therapeutics on a patient-by-patient basis, whereas selection of drugs based on the class of cancer as a whole would have indicated that many of the listed drugs are unlikely to be effective for those patients.


Table 23 further reveals biomarkers that can be used to identify or prognose a cancer. For example, TOP2A was significantly overexpressed in the cohort of ovarian patients assessed. Thus, overexpression of TOP2A overexpression is indicative of an ovarian cancer. Assessing a panel of TOP2A and additional biomarkers such as MET, MSH2, RRM2, VHL, OGFR, TK1, and/or PARP1, or any biomarker in Table 23, may further improve the ability to distinguish a cancer and normal sample. In addition, the expression levels of CDA were found to correlate with AJCC stage at diagnosis (p value=5.85E-05, false discovery rate=5.15E-03) and CD52 (p-value=2.53E-05; false discovery rate=2.02E-03) and RRM1 (p-value=5.78E-04; false discovery rate=2.31E-02) were found to correlate with Ascites status. Thus, profiling of these genes may be used to assess a cancer's stage or progression.


Example 20
Molecular Profiling in Prostate Cancer

Despite the widespread use of prostate specific antigen screening for early detection, prostate cancer remains the second leading cause of cancer related death among men in the US. Metastatic, hormone refractory prostate cancer (HRPCa) is the end stage, lethal form of the disease. Defining the molecular mechanisms underlying the transition of an androgen responsive prostate cancer represents an important clinical problem. Currently, no effective therapies exist for end stage, hormone refractory disease. In this Example, we investigated the differentially expressed genes in primary prostate tumor vs. hormone refractory prostate tumor to identify therapeutic targets.


Molecular profiling was performed using methodology generally as described in Example 2. More specifically, formalin fixed paraffin embedded tumor samples from 14 cases (8 primary, chemotherapy-naïve and 6 locally recurrent, hormonal therapy-refractory carcinomas) were analyzed for the whole genome RNA (29,285 transcripts) microarray expression using Illumina cDNA-mediated annealing, selection, extension and ligation (DASL) process with the HumanHT-12 v4 beadChip (Illumina Inc., San Diego, Calif.). Additionally, several chemotherapy-predictive (theranostic) biomarkers were analyzed using immunohistochemical (IHC) methods. These included MRP1, SPARC, TOPO1, ERCC1, RRM1, TOP2A, AR, MGMT, PR, c-kit, ER, PGP and TS.


Analysis of the transcriptomes from the 2 groups of patients identified 773 genes highly significantly expressed between the Primary and the Recurrent groups (p-value <0.05). See Tables 24-25. The microarray analysis identified 299 genes significantly differentially expressed between the primary and recurrent groups (p-value <0.01, Student's t-test). Using only the data for these 299 genes, two dimensional hierarchical clustering identified eight clusters corresponding to five general patterns. As shown in FIG. 49A, the clusters include: Pattern 1—underexpressed in both groups but more so in recurrent than primary (2 clusters with 28 and 22 genes respectively (clusters 1-2)); Pattern 2—slightly overexpressed in primary and underexpressed or no change in recurrent (1 cluster with 65 genes (cluster 3)); Pattern 3—slightly under expressed/no change in primary and overexpressed in recurrent (1 cluster, 12 genes (cluster 4)); Pattern 4—overexpressed in primary and no change in recurrent (1 cluster, 25 genes (cluster 5)); Pattern 5—overexpressed in both groups but more so in recurrent than primary (3 clusters with 58, 32, and 57 genes in each cluster (clusters 6-8)).









TABLE 24







Top 15 genes over-expressed in primary prostate cancer vs. recurrent prostate cancer patients













Fold Change
Fold Change





Gene
Primary
Recurrent
delta


Name
(Prim/control)
(Recurrent/control)
(prim/recurrent)
p-value
Description















SNORA39
12.098
0.994
12.173
0.039
small nucleolar RNA, H/ACA box 39


OR56A4
8.377
1.103
7.597
0.014
olfactory receptor, family 56, subfamily A,







member 4


SOD2
1.170
0.164
7.136
0.047
superoxide dismutase 2, mitochondrial


UHRF1
7.912
1.158
6.834
0.014
ubiquitin-like with PHD and ring linger domains 1


SNORA3
5.558
0.828
6.709
0.047
small nucleolar RNA, H/ACA box 3


RBM3
2.730
0.411
6.649
0.020
RNA binding motif (RNP1, RRM) protein 3


SNORA71A
7.315
1.120
6.530
0.037
small nucleolar RNA, H/ACA box 71A


ZC3HAV1
1.184
0.188
6.283
0.044
zinc finger CCCH-type, antiviral 1


TAF13
3.642
0.604
6.030
0.014
TAF13 RNA polymerase II, TATA box binding







protein (TBP)-associated factor, 18 kDa


SPAG1
3.670
0.621
5.906
0.050
sperm associated antigen 1


TAF13
3.712
0.639
5.806
0.012
TAF13 RNA polymerase II, TATA box binding







protein (TBP)-associated factor, 18 kDa


PABPC1L2B
4.349
0.749
5.804
0.014
poly(A) binding protein, cytoplasmic 1-like 2B


CDKN1A
2.872
0.509
5.644
0.035
cyclin-dependent kinase inhibitor 1A (p21, Cip1)


AFF3
1.861
0.331
5.623
0.012
AF4/FMR2 family, member 3


ZNF48
1.372
0.256
5.358
0.018
zinc finger protein 48
















TABLE 25







Top 10 genes under-expressed in primary prostate cancer vs recurrent prostate cancer patients













Fold Change
Fold Change






Primary
Recurrent
delta


Gene Name
(Prim/control)
(Recurrent/control)
(prim/recurrent)
p value
Description





CALCB
1.174
4.548
0.258
0.019
calcitonin-related polypeptide beta


MIPEP
0.174
0.677
0.257
0.027
mitochondrial intermediate peptidase


ADSSL1
0.087
0.361
0.242
0.034
adenylosuccinate synthase like 1


PFKFB2
0.226
1.002
0.226
0.050
6-phosphofructo-2-kinase/fructose-2,6-







biphosphatase 2


TBX19
0.374
1.722
0.217
0.024
T-box 19


RAB9B
0.111
0.570
0.195
0.018
RAB9B, member RAS oncogene







family


RFXANK
0.255
1.343
0.190
0.009
regulatory factor X-associated ankyrin-







containing protein


AHNAK2
0.453
2.782
0.163
0.032
AHNAK nucleoprotein 2


GCK
0.634
5.431
0.117
0.045
glucokinase (hexokinase 4)


HLA-DRB1
0.033
0.565
0.059
0.044
major histocompatibility complex,







class II, DR beta 1









The cyclin-dependent kinase inhibitor p21 was down regulated 5.6 fold in the hormone refractory tumors which indicates unfavorable clinical outcome in this subset of patients as has been reported a variety of solid and hematologic tumors. HLA class II molecule mRNA (HLA-DRB1) was significantly higher in recurrent tumor samples when compared to primary tumors. This indicates therapeutic benefit from immunotherapy with Sipuleucel-T, the first active cellular immunotherapy and the first biologic approved to treat hormone refractory prostate cancer patients.


Individual gene analysis using IHC revealed upregulation of androgen receptor (AR) mRNA in recurrent HRPCa. This was accompanied by a down regulation of regulator of G-protein signaling 2 (RGS2) and ras responsive element binding protein 1 (RREB1). See FIGS. 49B-C. Consistent down regulation of excision repair cross-complementing group 1 (ERCC1) and thymidylate synthase (TS) proteins were observed in HRPCa.


Androgen receptor was found to be upregulated both at the RNA as well as protein level which is indicative of the presence of androgen receptor mediated signaling in hormone refractory prostate tumors. AR coregulator, RREB1 gene was found to be down regulated in hormone refractory prostate carcinomas, which may be indicative of androgen independent AR signaling in the absence of androgen through activation of ras pathway.


Up-regulation of AR in HRPCa is associated with down regulation of androgen receptor signaling co-regulators (RGS2 and RREB1), providing for the mechanism of androgen-independent activation of AR in HRPCa. Platinum based drugs are indicated for treating HRPCa due to the down regulation of nucleotide excision repair protein ERCC1, while fluoropyrimidines are potentially beneficial due to the lack of TS protein expression in HRPCa. The heat map derived signature (FIG. 49A) readily distinguishes between prostate cancer specimens from men who were treatment naïve vs. hormone refractory cancers with five different expression patterns.


Example 21
Molecular Profiling in Colorectal (CRC) Cancer

Colorectal cancer (CRC) will be diagnosed in 140,000 new patients and 50,000 will die of the disease in 2011 in the United States. Adjuvant chemotherapy with 5-FU and Leucovorin (LV) has demonstrated improved disease-free (DFS) and overall survival (OS). More recently, the addition of oxaliplatin (FOLFOX) has provided an even greater benefit. Biomarkers, such as thymidylate synthetase (TS) and ERCC1 are known to respectively influence the response to 5-FU and platinum-based chemotherapies. Molecular profiling as presented herein provides an evidence-based tool marrying the relevant peer-reviewed clinical literature with IHC biomarker expression (immunoreactivity), mutation analysis and microarray seeking to provide the treating physician with the status of drugable targets in each patient's tumor specimen.


IHC was used to analyze a population of 33 patients with Stage III colorectal cancer surgically staged by a single surgeon at a single institution from April 2000 to September 2007. All patients were candidates for adjuvant chemotherapy with 17 receiving 5-FU/Leucovorin, 11 receiving FOLFOX and 5 on whom treatment information is unavailable. IHC results were correlated with age (range: 41-84 years; mean 61.64±12.61), gender (13 male; 20 female), pre-op CEA (range: 0-64; mean 6.15±15.96), tumor size (range: 1.4-10.0 cm; mean 4.56±1.71), number of involved lymph nodes (range: 1-21; mean 3.55±4.24) and overall survival (OS; 24/33). IHC was performed as described in Example 2. IHC results for 17 biomarkers were assessed on all patients by scoring the percentage of cells stained in each primary tumor along with the intensity of staining.


There were four recurrences in the 33 patients analyzed. No significant relationship to recurrence for any of the IHC markers, age, gender, tumor size or number of involved lymph nodes. However, with a minimum follow-up of 48 months since surgery, ERCC1 was a significant predictor of OS was using a Cox regression analysis (Hazard ratio=0.25, p=0.042). A Kaplan-Meier plot (FIG. 50) for ERCC1 revealed a mean survival of 50 months for no expression and 83.5 months for above threshold expression (p=0.050 by log rank test). Patient age was significantly different between these 2 groups (58 vs. 68.9 years, p=0.017). There was no difference in OS between the 5-FU/LV and the FOLFOX treated group. There was no correlation found between TS and ERCC1 expression (p=0.145) or between TS expression and OS.


ERCC1 showed prognostic value in Stage III CRC treated with 5-FU based adjuvant chemotherapy. Above threshold expression of ERCC1 in the patient cohort was significantly correlated with improved overall survival and older patients.


Example 22
Differences in Biomarker Expression in HNSCC According to TP53 Status

Patients with TP53 wildtype head and neck squamous cell carcinoma (HNSCC) tend to be HPV-positive, which associates with better prognosis. It is unknown which additional molecular characteristics contribute to improved survival rates. This Example explored biomarker expression profiles for insight into molecular differences between TP53 mutant and wildtype HNSCC patients.


TP53 gene sequencing was performed using the TP53 AmpliChip microarray (Roche Medical Systems). Sequencing was performed on 61 HNSCC patients that had also been tested with molecular profiling as presented herein, e.g., Examples 1-4. To perform the TP53 sequencing, DNA was extracted from a FFPE sample, then amplified and processed on the AmpliChip for single base pair substitution and deletion in exons 2-11 and their splice sites in the TP53 gene (GenBank X54156). EGFR FISH and Her2 IHC, as well as 22 additional predictive biomarkers, e.g. TS, TOPO2A, MGMT, etc., were assayed and retrospectively analyzed. All tests were performed in a CLIA-certified lab and interpreted by board-certified pathologists or cytogeneticists. Statistical analysis was performed using SPSS (PASW statistics17) for both parametric and non-parametric tests of independence.


52 of the 61 cases provided sufficient quality DNA for TP53 analysis. Sequencing results revealed a mutation is 13 of the 52 samples, for a mutation rate of 25%. EGFR FISH as well as HER2 IHC were also observed as differentially expressed in wildtype vs. mutated TP53 (p=0.002 and p=0.004, respectively). Matched-pair analysis in the TP53-mutated subgroup (n=13) demonstrated no significant trend regarding EGFR status (p=0.763) but a slight trend towards HER-2 negativity (p=0.020). In the TP53 wildtype subgroup (n=39), a strong trend towards EGFR FISH non-amplification (n=28, 71.8%, p<0.001) as well as HER-2 negativity (n=38, 97.4%, p<0.001) was shown.


Without being bound by theory, it is suspected that the absence of EGFR amplification in the TP53 wildtype cancers may be a contributing factor to the improved prognosis generally observed in HPV-positive HNSCC. Additionally, the strong association between TP53 wildtype HNSCC patients and EGFR non-amplification suggests EGFR-targeted therapies like cetuximab would likely lack benefit in TP53 wildtype patients.


Example 23
Molecular Profiling System

A system for carrying out molecular profiling according to the invention comprises the components used to perform molecular profiling on a patient sample, identify potentially beneficial and non-beneficial treatment options based on the molecular profiling, and return a report comprising the results of the analysis to the treating physician or other appropriate caregiver.


Formalin-fixed paraffin-embedded (FFPE) are reviewed by a pathologist for quality control before subsequent analysis. Nucleic acids (DNA and RNA) are extracted from FFPE tissues after microdissection of the fixed slides. Nucleic acids are extracted using phenol-chloroform extraction or a kit such as the QIAamp DNA FFPE Tissue kit according to the manufacturer's instructions (QIAGEN Inc., Valencia, Calif.).


Polymerase chain reaction (PCR) amplification is performed using the ABI Veriti Thermal Cycler (Applied Biosystems, cat#9902). PCR is performed using the Platinum Taq Polymerase High Fidelity Kit (Invitrogen, cat#11304-029). Amplified products can be purified prior to further analysis with Sanger sequencing, pyrosequencing or the like. Purification is performed using CleanSEQ reagent, (Beckman Coulter, cat#000121), AMPure XP reagent (Beckman Coulter, cat#A63881) or similar. Sequencing of amplified DNA is performed using Applied Biosystem's ABI Prism 3730xl DNA Analyzer and BigDye® Terminator V1.1 chemistry (Life Technologies Corporation, Carlsbad, Calif.). The BRAF V600E mutation is assessed using the FDA approved Cobas® 4800 BRAF V600 Mutation Test from Roche Molecular Diagnostics (Roche Diagnostics, Indianapolis, Ind.).


For RFLP, ALK fragment analysis is performed on reverse transcribed mRNA isolated from a formalin-fixed paraffin-embedded tumor sample using FAM-linked primers designed to flank and amplify EML4-ALK fusion products. The assay is designed to detect variants v1, v2, v3a, v3b, 4, 5a, 5b, 6, 7, 8a and 8b. Other rare translocations may be detected by this assay; however, detection is dependent on the specific rearrangement. This test does not detect ALK fusions to genes other than EML4.


IHC is performed according to standard protocols. IHC detection systems vary by marker and include Dako's Autostainer Plus (Dako North America, Inc., Carpinteria, Calif.), Ventana Medical Systems Benchmark® XT (Ventana Medical Systems, Tucson, Ariz.), and the LeicaNision Biosystems Bond System (Leica Microsystems Inc., Bannockburn, Ill.). All systems are operated according to the manufacturers' instructions.


FISH is performed on formalin-fixed paraffin-embedded (FFPE) tissue. FFPE tissue slides for FISH must be Hematoxylin and Eosion (H & E) stained and given to a pathologist for evaluation. Pathologists will mark areas of tumor to be FISHed for analysis. The pathologist report must show tumor is present and sufficient enough to perform a complete analysis. FISH is performed using the Abbott Molecular VP2000 according to the manufacturer's instructions (Abbott Laboratories, Des Plaines, Iowa). ALK is assessed using the Vysis ALK Break Apart FISH Probe Kit from Abbott Molecular, Inc. (Des Plaines, Ill.). HER2 is assessed using the INFORM HER2 Dual ISH DNA Probe Cocktail kit from Ventana Medical Systems, Inc. (Tucson, Ariz.) and/or SPoT-Light® HER2 CISH Kit available from Life Technologies (Carlsbad, Calif.).


A report generated by the system in shown in FIG. 34. In this Example, a treating physician has chosen to profile a female patient with a primary breast cancer using a Select Profile. See, e.g., the breast cancer profiles in Table 8, FIG. 32D and FIG. 33D. FIG. 34A shows that the patient had a primary tumor in the breast. FIG. 34A further presents a summary of treatments associated with potential benefit, potential lack of benefit, and biomarkers that indicate an association of the patient's cancer with clinical trials. FIGS. 34B-34D provide experiment details and evidence for the markers that were assessed. FIGS. 34E-H present an overview of ongoing clinical trials of therapeutic agents that are associated with the profiled biomarkers. FIGS. 34 I-J present a table of literature evidence linking the candidate treatments to the biomarkers. FIGS. 34M-N presents a detailed report of mutational analysis that was performed, FIG. 340 presents a detailed report of RT-PCR analysis that was performed, and FIG. 34P presents a detailed report of the IHC analysis that was performed, and FIG. 34Q presents a detailed report of the in situ hybridization analysis that was performed. FIGS. 34R-34S present a summary description of the profiled biomarkers. Finally, FIG. 34T presents a chart explaining the codes for level of evidence.


Example 24
Molecular Profiling of Carcinoid Tumors

The discovery of novel treatments for refractory or metastatic carcinoid is made more difficult by the rarity of the disease. Molecular profiling of an individual patient's tumors offers the opportunity to discover new regimens for patients with carcinoid cancers.


Patients with refractory carcinoid had tissue samples submitted for molecular profiling (MP) to identify markers of chemotherapy drug sensitivity or resistance. Formalin-fixed tissue was analyzed by immunohistochemistry and fluorescent in situ hybridization assays and fresh-frozen tissue by oligonucleotide microarray (MA) gene expression assays. Assays were performed in a Clinical Laboratory Improvement Amendments (CLIA)-certified laboratory. Molecular profiling techniques were as described in Example 2.


Profiling was performed for 24 patients with the disease frequency shown in Table 26:









TABLE 26







Patient Description








Disease
Number of Patients











Carcinoid
1


Carcinoid breast
1


Groin node with metastatic NET
1


High grade mediastinal NET
1


Ileal carcinoid
2


Mediastinal metastatic NET
1


Metastatic carcinoid
10


Metastatic appendix carcinoid
1


Metastatic gastric carcinoid
1


Metastatic pancreatic carcinoid
1


Mucinous carcinoid
1


Multifocal carcinoid tumor involving terminal
1


ileum


Pancreatic carcinoid
1


Rectosigmoid carcinoid
1









Abbreviations in Table 26: NET, neuroendocrine tumor


A therapeutic target was identified by molecular profiling for all 24 patients. IHC showed increased PDGFR in 6/24 tumors suggesting treatment with sunitinib or other tyrosine kinase inhibitor. PTEN was decreased or absent in 16/19 by IHC and 2/15 by microarray suggesting treatment with everolimus or NVP-BEZ235 might be effective. By IHC, six tumors exhibited low MGMT and low thymidilate synthetase suggesting the combination of temozolomide and capcitabine, a regimen used in pancreatic neuroendocrine cancers, may be effective for these patients. By microarray, SSTR2 was overexpressed in 7/15 perhaps explaining limited utility of octreotide analogues in some patients and potential efficacy of new panoctreotide analogues. All 14 tumors tested for TOPO1 were positive suggesting treatment irinotecan, but efficacy may be limited because markers of chemotherapy resistance including BCRP (13/14) MRP1 (12/14) and p-glycoprotein (MDR1 or ABCB1) (13/22) were seen.


The heterogeneity of identified targets by molecular profiling highlights the benefits of treating disease based on molecular profiling rather than the traditional population-based approach. Molecular profiling can help guide chemotherapy decisions.


Example 25
Identifying Therapeutics for Adrenocortical Cancers

Current first-line cytotoxic chemotherapy for patients with metastatic adrenocortical cancer (ACC) is a regimen of doxorubicin, etoposide, cisplatin and mitotane. Response rates of 49% have been reported. For patients with refractory tumors there is no standard second-line regimen.


Samples from 50 recurrent or metastatic ACC tumors where analyzed by immunohistochemistry (IHC) molecular profiling as described in Example 2 for expression of markers associated with drug sensitivity and resistance.


Sensitivity to doxorubicin, part of the current first-line therapy, was predicted by an increased expression of TOP2A in 8 of 38 (21%) patients. IHC markers implicated in drug resistance included over-expression of p-glycoprotein (PGP), which is associated with resistance to doxorubicin, in 35 of 42 (83%) patients. Over-expression of both PGP and MRP1, which have been implicated in resistance to etoposide, occurred in 9 of 14 patients (64%). ERCC1 and BCRP which are indicative for resistance to cisplatin were over expressed in 7 of 31 patients (23%) and in 10 of 14 patients (71%) respectively.


IHC markers suggested sensitivity to other chemotherapeutic agents including irinotecan, by expression of TOPO1 in 12 of 14 patients (86%) and nab-paclitaxel by expression of SPARC in 38 of 48 patients (79%).


Immunohistochemical analysis of refractory or metastatic ACC tumors identified resistance to standard therapy with doxorubicin, etoposide, cisplatin and mitotane. For patients with refractory adrenocortical cancers, where there is no standard second-line regimen, a more comprehensive biomarker analysis can expose therapeutic targets for subsequent treatment.


Although preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1.-100. (canceled)
  • 101. A system for generating a report identifying a therapeutic agent for an individual with a cancer comprising: a. at least one nucleic acid sequencing device configured to assay a plurality of molecular targets in a biological sample from the individual to determine a nucleic acid sequence for the each of the plurality of molecular targets, wherein the plurality of molecular targets comprises NRAS, APC, GNA11, GNAQ, and HRAS;b. at least one computer database comprising: i. a reference sequence for each of the plurality of molecular targets; andii. a listing of available therapeutic agents with efficacy linked to each of the plurality of molecular targets;c. a computer-readable program code comprising instructions to input the nucleic acid sequences for the each of the plurality of molecular targets and to compare each of the sequences with a corresponding reference sequence from the at least one computer database in (b)(i);d. a computer-readable program code comprising instructions to access the at least one computer database and to identify at least one therapeutic agent from the listing of available therapeutic agents in (b)(ii), wherein the comparison to the reference in (c) indicates a likely benefit of the at least one therapeutic agent for treating the cancer; ande. a computer-readable program comprising instructions to generate a report that comprises a listing of the molecular targets for which the comparison to the reference sequence indicated a likely benefit of the at least one therapeutic agent in (d) and the at least one therapeutic agent identified in (d).
  • 102. The system of claim 101, wherein the nucleic acid sequences are input into the system from a location that is remote from the at least one computer database.
  • 103. The system of claim 101, wherein the nucleic acid sequences are input into the system over an internet connection.
  • 104. The system of claim 101, wherein the report is in electronic or paper format.
  • 105. The system of claim 101, wherein the at least one computer database further comprises data corresponding to at least one clinical trial of a molecular target.
  • 106. The system of claim 101, wherein the reference sequence for each of the plurality of molecular targets comprises a wild type nucleic acid sequence for that molecular target.
  • 107. The system of claim 101, wherein the nucleic acid sequences are determined after the individual has received drug therapy for the cancer.
  • 108. The system of claim 101, wherein the nucleic acid sequences are determined by assessing nucleic acid collected from a cell, a tissue sample, a blood sample or any combination thereof.
  • 109. The system of claim 101, wherein each reference sequence is obtained from at least one individual without the cancer.
  • 110. The system of claim 101, wherein the plurality of molecular targets further comprises at least one of ALK, AR, BRAF, KIT, EGFR, ER, ERCC1, HER2, KRAS, MGMT, PIK3CA, PTEN, TOPOI, TS, MET, BRCA1, and ERBB3.
  • 111. The system of claim 101, wherein the plurality of molecular targets further comprises at least one of TOP2A and microsatellite instability.
  • 112. The system of claim 101, wherein the report further comprises a listing of at least one additional molecular target for which the comparison to the reference in (c) indicates a likely lack of benefit of at least one therapeutic agent and the at least one additional therapeutic agent.
  • 113. The system of claim 101, further comprising a computer-readable program code comprising instructions to prioritize the list of the at least one therapeutic agent.
  • 114. The system of claim 113, wherein the report provides a prioritized list of the at least one therapeutic agent.
  • 115. The system of claim 101, wherein the individual has been treated by and failed to respond to at least one cancer therapeutic.
  • 116. The system of claim 101, wherein the at least one device configured to assay the plurality of molecular targets is configured to perform next generation sequencing.
  • 117. The system of claim 101, wherein the at least one device configured to assay the plurality of molecular targets is configured to perform at least one of polymerase chain reaction (PCR), pyrosequencing, real-time PCR, sequencing, NextGen sequencing, methylation specific PCR (MSPCR), restriction fragment length polymorphism (RFLP analysis), immunohistochemistry (IHC), immunoassay, an expression microarray, a comparative genomic hybridization (CGH) microarray, a single nucleotide polymorphism (SNP) microarray, in-situ hybridization (ISH), fluorescent in-situ hybridization (FISH), and a proteomic array.
  • 118. The system of claim 101, wherein the at least one nucleic acid sequencing device is configured to identify at least one of a mutation, polymorphism, deletion, insertion, substitution, translocation, fusion, break, duplication, amplification or repeat in a nucleic acid sequence corresponding to each of the plurality of molecular targets.
RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 13/580,372, filed Apr. 7, 2014, which application is a 371 national stage entry of International Patent Application PCT/US2012/041393, filed Jun. 7, 2012, which application claims the benefit of priority to U.S. Provisional Patent Application Ser. No. 61/494,295, filed Jun. 7, 2011; 61/499,594, filed Jun. 21, 2011; 61/522,240, filed Aug. 10, 2011; 61/523,150, filed Aug. 12, 2011; 61/527,883, filed Aug. 26, 2011; 61/532,482, filed Sep. 8, 2011; 61/533,683, filed Sep. 12, 2011; 61/559,642, filed Nov. 14, 2011; 61/564,435, filed Nov. 29, 2011; 61/567,483, filed Dec. 6, 2011; 61/587,609, filed Jan. 17, 2012; 61/593,781, filed Feb. 1, 2012; 61/594,363, filed Feb. 2, 2012; and 61/618,609, filed Mar. 30, 2012; all of which applications are incorporated by reference herein in their entirety.

Provisional Applications (14)
Number Date Country
61494295 Jun 2011 US
61499594 Jun 2011 US
61522240 Aug 2011 US
61523150 Aug 2011 US
61527883 Aug 2011 US
61532482 Sep 2011 US
61533683 Sep 2011 US
61559642 Nov 2011 US
61564435 Nov 2011 US
61567483 Dec 2011 US
61587609 Jan 2012 US
61593781 Feb 2012 US
61594363 Feb 2012 US
61618609 Mar 2012 US
Continuations (1)
Number Date Country
Parent 13580372 Apr 2014 US
Child 15294493 US