Monitoring of a food intake restriction device

Information

  • Patent Grant
  • 8016745
  • Patent Number
    8,016,745
  • Date Filed
    Thursday, April 6, 2006
    18 years ago
  • Date Issued
    Tuesday, September 13, 2011
    13 years ago
Abstract
An implantable restriction device is configured to provide a restriction in a patient as a function of the pressure of fluid. The implantable restriction device includes one or more pressure sensors configured to sense pressure of the fluid within the implantable restriction device. Pressure data obtained by the one or more pressure sensors may be communicated to a device located external to the patient, such as a data logger, using telemetry coils or other communicators. The data logger may store the pressure data, and may communicate the pressure data to a remote location via a network such as the Internet. A docking station may be provided to couple the data logger to a network and/or to recharge a cell in the data logger.
Description
FIELD

Embodiments of the present invention relate generally to an implanted restrictive opening device and, more particularly, to a communication system for monitoring physiological parameters related to an implanted food intake restriction device.


BACKGROUND

Many devices and methods for treating obesity have been made and used, including but not limited to adjustable gastric bands. An example of such an adjustable gastric band is disclosed in U.S. Pat. No. 6,067,991, entitled “Mechanical Food Intake Restriction Device” which issued on May 30, 2000, which is incorporated herein by reference. To the extent that an adjustable gastric band system is fluid based, those of ordinary skill in the art will appreciate that it may be advantageous to acquire data indicating the pressure of fluid in the band system. Similar advantages may be achieved with fluid-filled members implanted within the stomach cavity or elsewhere. Such pressure data may be obtained before, during, and/or after pressure adjustment, and may be useful for adjustment, diagnostic, monitoring, or other purposes. It may be further advantageous to store such pressure data and/or communicate it to a remote location. The foregoing examples are merely illustrative and not exhaustive. While a variety of techniques and devices have been used treat obesity, it is believed that no one prior to the inventors has previously made or used an invention as described in the appended claims.


SUMMARY

In one aspect, a system for obtaining data from an implanted device comprises an implantable restriction forming device. The implantable restriction forming device is operable to form a restriction in a patient. The implantable restriction device comprises a fluid. The system further comprises an implantable pressure sensor in communication with the implantable restriction forming device. The implantable pressure sensor is operable to sense the pressure of the fluid. The system further comprises one or more implantable communicators in communication with the implantable pressure sensor. The one or more implantable communicators are operable to communicate data from within a patient. The system further comprises one or more external communicators in communication with the one or more implantable communicators. The one or more external communicators are operable to externally receive data communicated from within the patient by the one or more implantable communicators. The system further comprises a storage device in communication with the one or more external communicators. The storage device is operable to store at least a portion of data received by the one or more external communicators.


In another aspect, a system for obtaining data from an implanted device comprises a TET communicator that is operable to provide power to a device implanted within a patient. The system further comprises a telemetry communicator that is operable to transmit data communicated from one or more implantable pressure sensors located within a patient. The system further comprises a power supply in communication with the TET communicator. The power supply is operable to provide power to the TET communicator. The system further comprises a storage device in communication with the telemetry communicator. The storage device is operable to store data transmitted from the telemetry communicator. The system further comprises a communication port in communication with the storage device. The communication port is configured to communicate data from the storage device to one or both of a docking station or a network. The system further comprises a microprocessor in communication with the TET communicator, the telemetry communicator, the power supply, the storage device, and the communication port. The microprocessor is configured to regulate power supplied by the power supply to the TET communicator. The microprocessor is further configured to regulate transmission of data from the telemetry communicator to the storage device. The microprocessor is further configured to regulate transmission of data from the storage device to the communication port.


In yet another aspect, a method of obtaining data from an implanted device comprises receiving pressure data indicating pressure of fluid in an implanted restriction device. The implanted restriction device is operable to form a restriction in a patient. The pressure data is obtained using a pressure sensor in communication with the implanted restriction device. The pressure data is received using a communicator positioned locally relative to the patient. The method further comprises storing the received pressure data obtained using the communicator. The received pressure data is stored in a storage device positioned locally relative to the patient. The method further comprises transmitting at least a portion of the stored pressure data to a remote location. The remote location is positioned remotely relative to the patient. The method further comprises receiving the transmitted pressure data at the remote location and evaluating the pressure data received at the remote location.


Still other examples, features, aspects, embodiments, and advantages of the invention will become apparent to those skilled in the art from the following description, which includes by way of illustration, one of the best modes contemplated for carrying out the invention. As will be realized, the invention is capable of other different and obvious aspects, all without departing from the invention. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.





BRIEF DESCRIPTION OF THE DRAWINGS

While the specification concludes with claims which particularly point out and distinctly claim the invention, it is believed the present invention will be better understood from the following description of certain examples taken in conjunction with the accompanying drawings, in which like reference numerals identify the same elements and in which:



FIG. 1 is a simplified, schematic diagram of an implanted restrictive opening device and a bi-directional communication system between the implanted device and a remote monitoring unit;



FIG. 2 is a more detailed, perspective view of an implantable portion of the food intake restriction device shown in FIG. 1;



FIG. 3 is a side, partially sectioned view of the injection port shown in FIG. 2;



FIG. 4 is a side, sectional view, taken along line A-A of FIG. 3, illustrating an exemplary pressure sensor for measuring fluid pressure in the intake restriction device of FIG. 2;



FIG. 5 is a simplified schematic of a variable resistance circuit for the pressure sensor shown in FIG. 4;



FIG. 6 is a cross-sectional view of an alternative bi-directional infuser for the food intake restriction device of FIG. 2;



FIG. 7A is a schematic diagram of a mechanically adjustable restriction device incorporating a pressure transducer;



FIG. 7B is a cross-sectional view of the mechanically adjustable device of FIG. 7A taken along line B-B;



FIG. 8 is a block diagram of the major internal and external components of the intake restriction device shown in FIG. 1;



FIG. 9 is a schematic diagram illustrating a number of different communication links between the local and remote units of FIG. 1;



FIG. 10 is a flow diagram of an exemplary communication protocol between the local and remote units for a manually adjustable restriction device;



FIG. 11 is a flow diagram of an exemplary communication protocol between the local and remote units for a remotely adjustable restriction device;



FIG. 12 is a flow diagram of an exemplary communication protocol in which communication is initiated by the patient;



FIG. 13 is a simplified schematic diagram of a data logger for recording pressure measurements from the implanted restriction device;



FIG. 14 is a block diagram illustrating the major components of the data logger shown in FIG. 13;



FIG. 15 is a graphical representation of a fluid pressure measurement from the sensor shown in FIG. 4, as communicated through the system of the present invention;



FIG. 16 is a simplified schematic diagram of a data logging system for recording pressure measurements from the food intake restriction device shown in FIG. 1;



FIG. 17 is a block diagram illustrating several components of the data logging system shown in FIG. 16; and



FIG. 18 is a simplified schematic diagram showing the data logging system shown in FIG. 16 in a docking state with a number of different communication links.





DETAILED DESCRIPTION

The following description of certain examples of the invention should not be used to limit the scope of the present invention. Other examples, features, aspects, embodiments, and advantages of the invention will become apparent to those skilled in the art from the following description, which is by way of illustration, one of the best modes contemplated for carrying out the invention. As will be realized, the invention is capable of other different and obvious aspects, all without departing from the invention. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.


Referring now to the drawings in detail, wherein like numerals indicate the same elements throughout the views, FIG. 1 provides a simplified, schematic diagram of a bi-directional communication system 20 for transmitting data between an implanted restrictive opening device and a remotely located monitoring unit. Through communication system 20, data and command signals may be transmitted between the implanted device and a remotely located physician for monitoring and affecting patient treatment. The communication system of the invention enables a physician to control the restrictive opening device and monitor treatment without meeting face-to-face with the patient. For purposes of the disclosure herein, the terms “remote” and “remotely located” are defined as being at a distance of greater than six feet. In FIG. 1 and the following disclosure, the restrictive opening device is shown and described as being a food intake restriction device 22 for use in bariatric treatment. The use of a food intake restriction device is only representative however, and the present invention may be utilized with other types of implanted restrictive opening devices without departing from the scope of the invention.


As shown in FIG. 1, a first portion 24 of intake restriction device 22 is implanted beneath a patient's skin 27, while a second portion 26 is located external to the patient's skin. Implanted portion 24 comprises an adjustable restriction band 28 that is implanted about the gastrointestinal tract for the treatment of morbid obesity. In this application, adjustable band 28 is looped about the outer wall of a stomach 30 to create a stoma between an upper pouch 32 and a lower pouch 34 of the stomach. Adjustable band 28 may include a cavity made of silicone rubber, or another type of biocompatible material, that inflates inwardly against stomach 30 when filled with a fluid. Alternatively, band 28 may comprise a mechanically adjustable device having a fluid cavity that experiences pressure changes with band adjustments, or a combination hydraulic/mechanical adjustable band.


An injection port 36, which will be described in greater detail below, is implanted in a body region accessible for needle injections and telemetry communication signals. In the embodiment shown, injection port 36 fluidly communicates with adjustable band 28 via a catheter 40. A surgeon may position and permanently implant injection port 36 inside the body of the patient in order to perform adjustments of the food intake restriction or stoma. Injection port 36 is typically implanted in the lateral, subcostal region of the patient's abdomen under the skin and layers of fatty tissue. Alternatively, the surgeon may implant injection port 36 on the sternum of the patient.



FIG. 2 illustrates adjustable band 28 in greater detail. In this embodiment, band 28 includes a variable volume cavity 42 that expands or contracts against the outer wall of the stomach to form an adjustable stoma for controllably restricting food intake into the stomach. A physician may decrease the size of the stoma opening by adding fluid to variable volume cavity 42 or, alternatively, may increase the stoma size by withdrawing fluid from the cavity. Fluid may be added or withdrawn by inserting a needle into injection port 36. The fluid may be, but is not restricted to, a 0.9 percent saline solution.


Returning now to FIG. 1, external portion 26 of intake restriction device 22 comprises a hand-held antenna 54 electrically connected (in this embodiment via an electrical cable assembly 56) to a local unit 60. Electrical cable assembly 56 may be detachably connected to local unit 60 or antenna 54 to facilitate cleaning, maintenance, usage, and storage of external portion 26. Local unit 60 is a microprocessor-controlled device that communicates with implanted device 22 and a remote unit 170, as will be described further below. Through antenna 54, local unit 60 non-invasively communicates with implanted injection port 36. Antenna 54 may be held against the patient's skin near the location of injection port 36 to transmit telemetry and power signals to injection port 36.


Turning now to FIG. 3, which depicts a side, partially sectioned view of an exemplary injection port 36. As shown in FIG. 3, injection port 36 comprises a rigid housing 70 having an annular flange 72 containing a plurality of attachment holes 74 for fastening the injection port to tissue in a patient. A surgeon may attach injection port 36 to the tissue, such as the fascia covering an abdominal muscle, using any one of numerous surgical fasteners including suture filaments, staples, and clips. Injection port 36 further comprises a septum 76 typically made of a silicone rubber and compressively retained in housing 70. Septum 76 is penetrable by a Huber needle, or a similar type of injection instrument, for adding or withdrawing fluid from the port. Septum 76 self-seals upon withdrawal of the syringe needle to maintain the volume of fluid inside of injection port 36. Injection port 36 further comprises a reservoir 80 for retaining the fluid and a catheter connector 82. Connector 82 attaches to catheter 40, shown in FIG. 2, to form a closed hydraulic circuit between reservoir 80 and cavity 42. Housing 70 and connector 82 may be integrally molded from a biocompatible polymer or constructed from a metal such as titanium or stainless steel.


Injection port 36 also comprises a pressure sensor 84 for measuring fluid pressure within the device. The pressure measured by sensor 84 corresponds to the amount of restriction applied by band 28 to the patient's stomach or other body cavity. The pressure measurement is transmitted from sensor 84 to local unit 60 via telemetry signals using antenna 54. Local unit 60 may display, print and/or transmit the pressure measurement to a remote monitoring unit for evaluation, as will be described in more detail below. In the embodiment shown in FIG. 3, pressure sensor 84 is positioned at the bottom of fluid reservoir 80 within housing 70. A retaining cover 86 extends above pressure sensor 84 to substantially separate the sensor surface from reservoir 80, and protect the sensor from needle penetration. Retaining cover 86 may be made of a ceramic material such as, for example, alumina, which resists needle penetration yet does not interfere with electronic communications between pressure sensor 84 and antenna 54. Retaining cover 86 includes a vent 90 that allows fluid inside of reservoir 80 to flow to and impact upon the surface of pressure sensor 84.



FIG. 4 is a side, sectional view of pressure sensor 84, taken along line A-A of FIG. 3, illustrating an exemplary embodiment for measuring fluid pressure. Pressure sensor 84 is hermetically sealed within a housing 94 to prevent fluid infiltrating and effecting the operation of the sensor. The exterior of pressure sensor 84 includes a diaphragm 92 having a deformable surface. Diaphragm 92 is formed by thinning out a section of the bottom of titanium reservoir 80 to a thickness between 0.001″ and 0.002″. As fluid flows through vent 90 in reservoir 80, the fluid impacts upon the surface of diaphragm 92, causing the surface to mechanically displace. The mechanical displacement of diaphragm 92 is converted to an electrical signal by a pair of variable resistance, silicon strain gauges 96, 98. Strain gauges 96, 98 are attached to diaphragm 92 on the side opposite the working fluid in reservoir 80. Strain gauge 96 is attached to a center portion of diaphragm 92 to measure the displacement of the diaphragm. The second, matched strain gauge 98 is attached near the outer edge of diaphragm 92. Strain gauges 96, 98 may be attached to diaphragm 92 by adhesives, or may be diffused into the diaphragm structure. As fluid pressure within band 28 fluctuates, the surface of diaphragm 92 deforms up or down at the bottom of reservoir 80. The deformation of diaphragm 92 produces a resistance change in the center strain gauge 96.


As shown in FIG. 5, strain gauges 96, 98 form the top two resistance elements of a half-compensated, Wheatstone bridge circuit 100. As strain gauge 96 reacts to the mechanical displacements of diaphragm 92, the changing resistance of the gauge changes the potential across the top portion of the bridge circuit. Strain gauge 98 is matched to strain gauge 96 and athermalizes the Wheatstone bridge circuit. Differential amplifiers 102, 104 are connected to bridge circuit 100 to measure the change in potential within the bridge circuit due to the variable resistance strain gauges. In particular, differential amplifier 102 measures the voltage across the entire bridge circuit, while differential amplifier 104 measures the differential voltage across the strain gauge half of bridge circuit 100. The greater the differential between the strain gauge voltages, for a fixed voltage across the bridge, the greater the pressure difference. If desired, a fully compensated Wheatstone bridge circuit could also be used to increase the sensitivity and accuracy of the pressure sensor 84. In a fully compensated bridge circuit, four strain gauges are attached to the surface of diaphragm 92, rather than only two strain gauges as shown in FIG. 4.


Returning to FIG. 4, the output signals from differential amplifiers 102, 104 are applied to a microcontroller 106. Microcontroller 106 is integrated into a circuit board 110 within housing 94. A temperature sensor 112 measures the temperature within injection port 36 and inputs a temperature signal to microcontroller 106. Microcontroller 106 uses the temperature signal from sensor 112 to compensate for variations in body temperature and residual temperature errors not accounted for by strain gauge 98. Compensating the pressure measurement signal for variations in body temperature increases the accuracy of the pressure sensor 84. Additionally, a TET/telemetry coil 114 is located within housing 94. Coil 114 is connected to a capacitor 116 to form a tuned tank circuit for receiving power from and transmitting physiological data, including the measured fluid pressure, to local unit 60. FIGS. 3-5 illustrate one exemplary embodiment for measuring fluid pressure within an intake restriction device. Additional embodiments for measuring fluid pressure are described in U.S. patent application Ser. No. 11/065,410 entitled “Non-invasive Measurement of Fluid Pressure in a Bariatric Device,” the disclosure of which is incorporated herein by reference.


As an alternative to injection port 36, implanted portion 24 may include a bi-directional infuser for varying the fluid level within the adjustable restriction band 28. With an infuser, fluid can be added or withdrawn from band 28 via telemetry command signals, without the need to insert a syringe through the patient's skin and into the port septum. FIG. 6 is a cross-sectional view of an exemplary infuser 115. As shown in FIG. 6, infuser 115 includes a pump, designated generally as 118, for non-invasively transferring fluid into or out of the band in response to telemetry command signals. Pump 118 is encased within a cylindrical outer housing 120 having an annular cover 121 extending across a top portion. A collapsible bellows 122 is securely attached at a top peripheral edge to cover 121. Bellows 122 is comprised of a suitable material, such as titanium, which is capable of repeated flexure at the folds of the bellows, but which is sufficiently rigid so as to be noncompliant to variations in pressure. A lower peripheral edge of bellows 122 is secured to an annular bellows cap 123, which translates vertically within pump 118. The combination of cover 121, bellows 122 and bellows cap 123 defines the volume of a fluid reservoir 124. A catheter connector 119 attaches to catheter 40 (shown in FIG. 2) to form a closed hydraulic circuit between the band and fluid reservoir 124. The volume in reservoir 124 may be expanded by moving bellows cap 123 in a downward direction, away from cover 121. As bellows cap 123 descends, the folds of bellows 122 are stretched, creating a vacuum to pull fluid from the band, through catheter 40 and connector 119, and into reservoir 124. Similarly, the volume in reservoir 124 may be decreased by moving bellows cap 123 in an upward direction towards cover 121, thereby compressing the folds of bellows 122 and forcing fluid from the reservoir through catheter 40 and connector 119 and into band 28.


Bellows cap 123 includes an integrally formed lead screw portion 125 that operatively engages a matching thread on a cylindrical nut 126. The outer circumference of nut 126 is securely attached to an axial bore of a rotary drive plate 127. A cylindrical drive ring 128 is in turn mounted about the outer annular edge of rotary drive plate 127. Nut 126, drive plate 127 and drive ring 128 are all securely attached together by any suitable means to form an assembly that rotates as a unit about an axis formed by screw portion 125. A bushing frame 129 encloses TET and telemetry coils (not shown) for transmitting power and data signals between antenna 54 and pump 118.


Drive ring 128 is rotatably driven by one or more piezoelectric harmonic motors. In the embodiment shown in FIG. 6, two harmonic motors 131 are positioned so that a tip 113 of each motor is in frictional contact with the inner circumference of drive ring 128. When motors 131 are energized, tips 113 vibrate against drive ring 128, producing a “walking” motion along the inner circumference of the ring that rotates the ring. A microcontroller (not shown) in pump 118 is electrically connected to the TET and telemetry coils for receiving power to drive motors 131, as well as receiving and transmitting data signals for the pump. To alter the fluid level in band cavity 42, an adjustment prescription is transmitted by telemetry from antenna 54. The telemetry coil in infuser 115 detects and transmits the prescription signal to the microcontroller. The microcontroller in turn drives motors 131 an appropriate amount to collapse or expand bellows 122 and drive the desired amount of fluid to/from band 28.


In order to measure pressure variations within infuser 115, and, thus, the size of the stoma opening, a pressure sensor, indicated by block 84′, is included within bellows 122. Pressure sensor 84′ is similar to pressure sensor 84 described above. As the pressure against band 28 varies due to, for example, peristaltic pressure from swallowing, the fluid in band 28 experiences pressure changes. These pressure changes are conveyed back through the fluid in catheter 40 to bellows 122. The diaphragm in pressure sensor 84′ deflects in response to the fluid pressure changes within bellows 122. The diaphragm deflections are converted into an electrical signal indicative of the applied pressure in the manner described above with respect to FIGS. 4 and 5. The pressure signal is input to the infuser microcontroller, which transmits the pressure to a monitoring unit external to the patient via the telemetry coil. Additional details regarding the operation of bi-directional infuser 115 may be found in commonly-assigned, co-pending U.S. patent application Ser. No. 11/065,410 entitled “Non-invasive Measurement of Fluid Pressure in a Bariatric Device” which has been incorporated herein by reference.



FIGS. 7A and 7B depict a mechanically adjustable band 153 for creating a food intake restriction in the abdomen of a patient. Mechanical band 153 may be used as an alternative to hydraulically adjustable band 28 for creating a stoma. Mechanically adjustable band 153 comprises a substantially circular resilient core 133 having overlapping end portions 135, 137. Core 133 is substantially enclosed in a fluid-filled compliant housing 139. A releasable and lockable joint 149 of core 133 protrudes from the ends of housing 139 to enable the core and housing to be placed around the esophagus or stomach of a patient to form a stoma. An implanted motor 141 is spaced from core 133 to mechanically adjust the overlap of the core end portions 135, 137 and, accordingly, the stoma size formed by the core. Motor 141 adjusts the size of core 133 through a drive shaft 143 that is connected to a drive wheel (not shown) within housing 139. Motor 141 is molded together with a remote-controlled power supply unit 145 in a body 147 comprised of silicon rubber, or another similar material.


As motor 141 changes the size of core 133, the pressure of the fluid within housing 139 varies. To measure the pressure variations, a pressure sensor, similar to that described above, is placed in communication with the fluid of housing 139. The pressure sensor may be placed within housing 139, as shown by block 84″, so that the pressure variations within the stoma opening are transferred through the fluid in housing 139 to the diaphragm of the sensor. Sensor 84″ translates the deflections of the diaphragm into a pressure measurement signal, which is transmitted to an external unit via telemetry in the manner described above. In an alternative scenario, the pressure sensor may be placed within the implanted motor body 147, as indicated by block 84′, and fluidly connected to housing 139 via a tube 151 extending alongside drive shaft 143. As fluid pressure varies in housing 139 due to pressure changes within the stoma opening, the pressure differentials are transferred through the fluid in tube 151 to sensor 84′. Sensor 84″ generates an electrical signal indicative of the fluid pressure. This signal is transmitted from the patient to an external unit in the manner described above.



FIG. 8 is a block diagram illustrating the major components of implanted and external portions 24, 26 of intake restriction device 22. As shown in FIG. 8, external portion 26 includes a primary TET coil 130 for transmitting a power signal 132 to implanted portion 24. A telemetry coil 144 is also included for transmitting data signals to implanted portion 24. Primary TET coil 130 and telemetry coil 144 combine to form antenna 54 as shown. Local unit 60 of external portion 26 includes a TET drive circuit 134 for controlling the application of power to primary TET coil 130. TET drive circuit 134 is controlled by a microprocessor 136. A graphical user interface 140 is connected to microprocessor 136 for inputting patient information and displaying and/or printing data and physician instructions. Through user interface 140, the patient or clinician can transmit an adjustment request to the physician and also enter reasons for the request. Additionally, user interface 140 enables the patient to read and respond to instructions from the physician.


Local unit 60 also includes a primary telemetry transceiver 142 for transmitting interrogation commands to and receiving response data, including sensed fluid pressure, from implanted microcontroller 106. Primary transceiver 142 is electrically connected to microprocessor 136 for inputting and receiving command and data signals. Primary transceiver 142 drives telemetry coil 144 to resonate at a selected RF communication frequency. The resonating circuit generates a downlink alternating magnetic field 146 that transmits command data to implanted microcontroller 106. Alternatively, transceiver 142 may receive telemetry signals transmitted from secondary coil 114. The received data may be stored in a memory 138 associated with microprocessor 136. A power supply 150 supplies energy to local unit 60 in order to power intake restriction device 22. An ambient pressure sensor 152 is connected to microprocessor 136. Microprocessor 136 uses the signal from ambient pressure sensor 152 to adjust the received fluid pressure measurement for variations in atmospheric pressure due to, for example, variations in barometric conditions or altitude.



FIG. 8 also illustrates the major components of implanted portion 24 of device 22.


As shown in FIG. 8, secondary TET/telemetry coil 114 receives power and communication signals from external antenna 54. Coil 114 forms a tuned tank circuit that is inductively coupled with either primary TET coil 130 to power the implant, or primary telemetry coil 144 to receive and transmit data. A telemetry transceiver 158 controls data exchange with coil 114. Additionally, implanted portion 24 includes a rectifier/power regulator 160, microcontroller 106 described above, a memory 162 associated with the microcontroller, temperature sensor 112, pressure sensor 84 and a signal conditioning circuit 164 for amplifying the signal from the pressure sensor. The implanted components transmit the temperature adjusted pressure measurement from sensor 84 to local unit 60 via antenna 54. The pressure measurement may be stored in memory 138 within local unit 60, shown on a display within local unit 60, or transmitted in real time to a remote monitoring station.


As mentioned hereinabove, it is desirable to provide a communication system for the remote monitoring and control of an intake restriction device. Through the communication system, a physician may retrieve a history of fluid pressure measurements from the restriction device to evaluate the efficacy of the bariatric treatment. Additionally, a physician may downlink instructions for a device adjustment. A remotely located clinician may access the adjustment instructions through local unit 60. Using the instructions, the clinician may inject a syringe into injection port 36 and add or remove saline from fluid reservoir 80 to accomplish the device adjustment. Alternatively, the patient may access the instructions through local unit 60, and non-invasively execute the instructions in infuser 115 or mechanically adjustable band 153 using antenna 54. Real-time pressure measurements may be uplinked to the physician during the adjustment for immediate feedback on the effects of the adjustment. Alternatively, the patient or clinician may uplink pressure measurements to the physician after an adjustment for confirmation and evaluation of the adjustment.


As shown in FIG. 1, communication system 20 includes local unit 60 and a remote monitoring unit 170, also referred to herein as a base unit. Remote unit 170 may be located at a physician's office, a hospital or clinic, or elsewhere. Remote unit 170 of the present example is a personal computer type device comprising a microprocessor 172, which may be, for example, an Intel Pentium® microprocessor or the like. Alternatively, remote unit 170 may comprise a dedicated or non-dedicated server that is accessible over a network such as the Internet. In the present example, a system bus 171 interconnects microprocessor 172 with a memory 174 for storing data such as, for example, physiological parameters and patient instructions. A graphical user interface 176 is also interconnected to microprocessor 172 for displaying data and inputting instructions and correspondence to the patient. User interface 176 may comprise a video monitor, a touchscreen, or other display device, as well as a keyboard or stylus for entering information into remote unit 170. Other devices and configurations suitable for providing a remote unit 170 will be apparent to those of ordinary skill in the art.


A number of peripheral devices 178 may interface directly with local unit 60 for inputting physiological data related to the patient's condition. This physiological data may be stored in local unit 60 and uploaded to remote unit 170 during an interrogation or other data exchange. Examples of peripheral devices that can be utilized with the present invention include a weight scale, blood pressure monitor, thermometer, blood glucose monitor, or any other type of device that could be used outside of a physician's office to provide input regarding the current physiological condition of the patient. A weight scale, for example, can electrically communicate with local unit 60 either directly, or wirelessly through antenna 54, to generate a weight loss record for the patient. The weight loss record can be stored in memory 138 of local unit 60. During a subsequent interrogation by remote unit 170, or automatically at prescheduled intervals, the weight loss record can be uploaded by microprocessor 136 to remote unit 170. The weight loss record may be stored in memory 174 of remote unit 170 until accessed by the physician.


Also as shown in FIG. 1, a communication link 180 is created between local unit 60 and remote unit 170 for transmitting data, including voice, video, instructional information and command signals, between the units. Communication link 180 may comprise any of a broad range of data transmission media including web-based systems utilizing high-speed cable or dial-up connections, public telephone lines, wireless RF networks, satellite, T1 lines or any other type of communication medium suitable for transmitting data between remote locations. FIG. 9 illustrates various media for communication link 180 in greater detail. As shown in FIG. 9, local and remote units 60, 170 may communicate through a number of different direct and wireless connections. In particular, the units may communicate through the Internet 190 using cable or telephone modems 192, 194 or any other suitable device(s). In this instance, data may be transmitted through any suitable Internet communication medium such as, for example, e-mail, instant messaging, web pages, or document transmission. Alternatively, local and remote units 60, 170 may be connected through a public telephone network 196 using modems 200, 202. Units 60, 170 may also communicate through a microwave or RF antenna 204 via tunable frequency waves 206, 210. A communication link may also be established via a satellite 209 and tunable frequency waves 212, 214. In addition to the links described above, it is envisioned that other types of transmission media, that are either known in the art or which may be later developed, could also be utilized to provide the desired data communication between local and remote units 60, 170 without departing from the scope of the invention.



FIG. 10 is a data flow diagram of an exemplary interaction using bi-directional communication system 20. In this interaction, a physician may download an adjustment prescription that is subsequently manually executed by a clinician present with the patient. A physician initiates the communication session between remote unit 170 and local unit 60 as shown at step 220. The session may be initiated by transmitting an e-mail or instant message via the Internet link 190, or through any of the other communication links described with respect to FIG. 9. During the communication session, the physician may download instructions to memory 138, or may upload previously stored data obtained from device 22 or peripheral devices 178, as shown at step 222. This data may include fluid pressure, a weight history, or a patient compliance report. After the data is uploaded, the physician may evaluate the data and determine the need for a device adjustment, as shown at step 234. If an adjustment is indicated, the physician may download an adjustment prescription command to local unit 60 as shown at step 224. Local unit 60 stores the prescription in memory 138 for subsequent action by a clinician, as shown by step 226. With the patient present, the clinician accesses the prescription from memory 138. The clinician then inserts a syringe into septum 76 of injection port 36 and adds or withdraws the fluid volume specified in the prescription. Following the adjustment, the clinician places antenna 54 over the implant and instructs microcontroller 106 to transmit pressure measurements from sensor 84 to local unit 60. The pressure measurements are uploaded by microprocessor 136 in local unit 60 to remote unit 170, as shown at step 230, to provide a confirmation to the physician that the adjustment instructions were executed, and an indication of the resulting effect on the patient. In an off-line adjustment, the base unit terminates communication with local unit 60 following the downloading of the adjustment prescription, as shown by line 229, or following receipt of the patient data if an adjustment is not indicated, as shown by line 231.


In addition to the off-line adjustment session of steps 220-234, a physician may initiate a real-time interactive adjustment, as indicated at step 236, in order to monitor the patient's condition before, during and after the adjustment. In this instance, the physician downloads an adjustment prescription, as shown at step 237, while the patient is present with a clinician. The clinician inserts a syringe into septum 76 of injection port 36 and adds or withdraws the specified fluid from reservoir 80, as shown at step 238, to execute the prescription. After the injection, the physician instructs the clinician to place antenna 54 over the implant, as shown at step 241, to transmit fluid pressure measurements from the implant to local unit 60. The pressure measurements are then uplinked to the physician through link 180, as shown at step 243. The physician evaluates the pressure measurements at step 245. Based upon the evaluation, the physician may provide further instructions through link 180 to readjust the band as indicated by line 242. Additionally, the physician may provide instructions for the patient to take a particular action, such as eating or drinking, to test the adjustment, as shown at step 244. As the patient performs the test, the physician may upload pressure measurements from the implant, as shown at step 246, to evaluate the peristaltic pressure against the band as the food or liquid attempts to pass through the stoma. If the pressure measurements are too high, indicating a possible obstruction, the physician may immediately transmit additional command signals to the clinician to readjust the band and relieve the obstruction, as indicated by line 249. After the physician is satisfied with the results of the adjustment, the communication session is terminated at step 232. As shown in the flow diagram, communication link 180 enables a physician and patient to interact in a virtual treatment session during which the physician can prescribe adjustments and receive real-time fluid pressure feedback to evaluate the efficacy of the treatment.


In a second exemplary interaction, shown in FIG. 11, the physician downloads an adjustment prescription for a remotely adjustable device, such as infuser 115 shown in FIG. 6. The physician initiates this communication session through link 180 as shown at step 220. After initiating communications, the physician uploads previously stored data, such as fluid pressure histories, from memory 138 of local unit 60. The physician evaluates the data and determines whether an adjustment is indicated. If the physician chooses an off-line adjustment, an adjustment command is downloaded to local unit 60 and stored in memory 138, as indicated in step 224. With the prescription stored in memory 138, the patient, at his convenience, places antenna 54 over the implant area and initiates the adjustment through local unit 60, as indicated in step 233. Local unit 60 then transmits power and command signals to the implanted microcontroller 106 to execute the adjustment. After the adjustment, the patient establishes a communication link with remote monitoring unit 170 and uploads a series of pressure measurements from the implant to the remote unit. These pressure measurements may be stored in memory 174 of remote unit 170 until accessed by the physician.


In an alternative scenario, the patient may perform a real-time adjustment during a virtual treatment session with the physician. In this situation, the physician establishes communication with the patient through link 180. Once connected through link 180, the physician instructs the patient to place antenna 54 over the implant area, as shown at step 250. After antenna 54 is in position, the physician downloads an adjustment command to infuser 115 through link 180, as shown at step 252. During and/or after the adjustment is executed in infuser 115, a series of pressure measurements are uplinked from infuser 115 to the physician through link 180, as shown at step 254. The physician performs an immediate review of the fluid pressure changes resulting from the adjustment. If the resulting fluid pressure levels are too high or too low, the physician may immediately readjust the restriction band, as indicated by line 255. The physician may also instruct the patient to perform a particular action to test the adjustment, such as drinking or eating, as shown at step 256. As the patient performs the test, the physician may upload pressure measurements from the pressure sensor, as shown at step 258, to evaluate the peristaltic pressure against the band as the patient attempts to pass food or liquid through the stoma. If the pressure measurements are too high, indicating a possible obstruction, the physician may immediately transmit additional command signals to readjust the band and relieve the obstruction, as indicated by line 259. After the physician is satisfied with the results of the adjustment, the communication session is terminated at step 232. In the present invention, local unit 60 is at all times a slave to remote unit 170 so that only a physician can prescribe adjustments, and the patient is prevented from independently executing adjustments through local unit 60.


In a third exemplary communication session, shown in FIG. 12, a patient may initiate an interaction with remote unit 170 by entering a request through user interface 140, as shown at step 260. This request may be in the form of an e-mail or other electronic message. At step 262, the patient's request is transmitted through communication link 180 to remote unit 170. At remote unit 170, the patient's request is stored in memory 174 until retrieved at the physician's convenience (step 264). After the physician has reviewed the patient's request (step 266), instructions may be entered through user interface 176 and downloaded to local unit 60. The physician may communicate with the patient regarding treatment or the decision to execute or deny a particular adjustment request, as shown at step 268. If the physician determines at step 269 that an adjustment is required, the physician may initiate a communication session similar to those shown in the flow diagrams of FIGS. 10 and 11. If an adjustment is not indicated, the base unit terminates the session following the responsive communication of step 268.


In addition to the above scenarios, a physician may access local unit 60 at any time to check on patient compliance with previous adjustment instructions, or to remind the patient to perform an adjustment. In these interactions, the physician may contact local unit 60 to request a data upload from memory 138, or transmit a reminder to be stored in memory 138 and displayed the next time the patient turns on local unit 60. Additionally, local unit 60 can include an alarm feature to remind the patient to perform regularly scheduled adjustments, such as diurnal relaxations.


As mentioned above, communication system 20 can be used to uplink a fluid pressure history to remote unit 170 to allow the physician to evaluate the performance of device 22 over a designated time period. FIG. 13 illustrates a data logger 270 that may be used in conjunction with communication system 22 of the present invention to record fluid pressure measurements over a period of time. In this example, data logger 270 is external to the patient, and is positioned over the region under which injection port 36 is implanted within the patient. In another embodiment, data logger 270 is also implanted within the patient. As shown in FIG. 13, data logger 270 comprises TET and telemetry coils 285, 272 which may be worn by the patient so as to lie adjacent to implanted portion 24. TET coil 285 provides power to the implant, while telemetry coil 272 interrogates the implant and receives data signals, including fluid pressure measurements, through secondary telemetry coil 114. In another embodiment, TET coil 285 and telemetry coil 272 are consolidated into a single coil, and alternate between TET and telemetry functions at any suitable rate for any suitable durations.


The fluid pressure within the restriction band 28 is repeatedly sensed and transmitted to data logger 270 at an update rate sufficient to measure peristaltic pulses against the band. Typically, this update rate is in the range of 10-20 pressure measurements per second. As shown in FIG. 13, data logger 270 may be worn on a belt 274 about the patient's waist to position coils 272 adjacent injection port 36 when the port is implanted in the patient's abdominal area. Alternatively, data logger 270 can be worn about the patient's neck, as shown by device 270′, when injection port 36 is implanted on the patient's sternum. Data logger 270 is worn during waking periods to record fluid pressure variations during the patient's meals and daily routines. At the end of the day, or another set time period, data logger 270 may be removed and the recorded fluid pressure data downloaded to memory 138 of local unit 60. The fluid pressure history may be uploaded from memory 138 to remote unit 170 during a subsequent communication session. Alternatively, fluid pressure data may be directly uploaded from data logger 270 to remote unit 170 using communication link 180.



FIG. 14 shows data logger 270 in greater detail. As shown in FIG. 14, data logger 270 includes a microprocessor 276 for controlling telemetry communications with implanted device 24. Microprocessor 276 is connected to a memory 280 for, among other functions, storing pressure measurements from device 24. In the present example, memory 280 comprises 40 Mb of SRAM and is configured to store 100 hours of time stamped pressure data. Of course, any other type of memory 280 may be used, and memory 280 may store any amount of and any other type of data. By way of example only, any other type of volatile memory or any type of non-volatile memory may be used, including but not limited to flash memory, hard drive memory, etc. While data logger 270 of the present example is operational, fluid pressure is read and stored in memory 280 at a designated data rate controlled by microprocessor 276. Microprocessor 276 is energized by a power supply 282. In one embodiment, power supply 282 comprises a rechargeable cell (not shown), such as a rechargeable battery. In one version of this embodiment, the rechargeable cell is removable and may be recharged using a recharging unit and replaced with another rechargeable cell while the spent cell is recharging. In another version of this embodiment, the rechargeable cell is recharged by plugging a recharging adapter into a data logger 270 and a wall unit. In yet another version of this embodiment, the rechargeable cell is recharged wirelessly by a wireless recharging unit. In another embodiment, power supply 282 comprises an ultra capacitor, which may also be recharged. Of course, any other type of power supply 282 may be used.


To record fluid pressure, microprocessor 276 initially transmits a power signal to implanted portion 24 via TET drive circuit 283 and TET coil 285. After the power signal, microprocessor 276 transmits an interrogation signal to implanted portion 24 via telemetry transceiver 284 and telemetry coil 272. The interrogation signal is intercepted by telemetry coil 114 and transmitted to microcontroller 106. Microcontroller 106 sends a responsive, temperature-adjusted pressure reading from sensor 84 via transceiver 158 and secondary telemetry coil 114. The pressure reading is received through coil 272 and directed by transceiver 284 to microprocessor 276. Microprocessor 276 subsequently stores the pressure measurement and initiates the next interrogation request.


When the patient is finished measuring and recording fluid pressure, logger 270 is removed and the recorded pressure data downloaded to local unit 60, or directly to remote unit 170. As shown in FIGS. 9 and 14, data logger 270 may comprise a modem 286 for transmitting the sensed fluid pressure directly to remote unit 170 using a telephone line 288. The patient may connect logger modem 286 to a telephone line, dial the physician's modem, and select a “send” button on user interface 292. Once connected, microprocessor 276 transmits the stored pressure history through the phone line to microprocessor 172 in remote unit 170. Alternatively, data logger 270 may include a USB port 290 for connecting the logger to local unit 60. Logger USB port 290 may be connected to a USB port 198 on local unit 60 (shown in FIG. 8), and the “send” switch activated to download pressure data to memory 138 in the local unit. After the pressure data is downloaded, logger 270 may be turned off through user interface 292, or reset and placed back on the patient's body for continued pressure measurement.



FIG. 15 is a graphical representation of an exemplary pressure signal 294 as measured by sensor 84 during repeated interrogation by local unit 60 or data logger 270 over a sampling time period. Pressure signal 294 may be displayed using graphical user interface 140 of local unit 60 or graphical user interface 176 of remote unit 170. In the example shown in FIG. 15, the fluid pressure in band 28 is initially measured while the patient is stable, resulting in a steady pressure reading as shown. Next, an adjustment is applied to band 28 to decrease the stoma size. During the band adjustment, pressure sensor 84 continues to measure the fluid pressure and transmit the pressure readings through the patient's skin to local unit 60. As seen in the graph of FIG. 15, fluid pressure rises following the band adjustment.


In the example shown, the patient is asked to drink a liquid after the adjustment to check the accuracy of the adjustment. As the patient drinks, pressure sensor 84 continues to measure the pressure spikes due to the peristaltic pressure of swallowing the liquid. The physician may evaluate these pressure spikes from a remote location in order to evaluate and direct the patient's treatment. If the graph indicates pressure spikes exceeding desired levels, the physician may immediately take corrective action through communication system 20, and view the results of the corrective action, until the desired results are achieved. Accordingly, through communication system 20 a physician can perform an adjustment and visually see the results of the adjustment, even when located at a considerable distance from the patient.


In addition to adjustments, communication system 20 can be used to track the performance of an intake restriction device over a period of time. In particular, a sampling of pressure measurements from data logger 270 may be uploaded to the physician's office for evaluation. The physician may visually check a graph of the pressure readings to evaluate the performance of the restriction device. It will be appreciated that long term pressure data may be helpful in seeing when the patient eats or drinks during the day and how much. Such data may thus be useful in compliance management.


Pressure measurement logs can also be regularly transmitted to remote monitoring unit 170 to provide a physician with a diagnostic tool to ensure that a food intake restriction device is operating effectively. For instance, pressure data may be helpful in seeing how much band 28 pressure or tightness varies, and if band 28 tends to obstruct at times. If any abnormalities appear, the physician may use communication system 20 to contact the patient and request additional physiological data, prescribe an adjustment, or, where components permit, administer an adjustment. In particular, communication system 20 may be utilized to detect a no pressure condition within band 28, indicating a fluid leakage. Alternatively, system 20 may be used to detect excessive pressure spikes within band 28 or pressure being stuck at a fixed level, which may indicate a kink in catheter 40 or a blockage within the stoma.


Local unit 60, another type of docking station 360, remote unit 170, or some other device may further comprise a logic that is configured to process pressure data and actively provide an alert to a physician, the patient, or someone else when a dramatic change in pressure is detected or under other predefined conditions. Such an alert may comprise any of the following: an e-mail, a phone call, an audible signal, or any other type of alert. The conditions for and/or type of an alert may also vary relative to the recipient of the alert. For instance, with respect to alerts for physicians, such alerts may be limited to those provided upon an indication that some component of implanted portion 24 has structurally failed (e.g., a kink in catheter 40, a burst band 28, etc.). With respect to alerts for patients, such alerts may be limited to those provided upon an indication that the patient is eating too much, eating to quickly, or if the bite sizes are too big. A variety of other conditions under which alerts may be directed to a physician or patient will be apparent to those of ordinary skill in the art. In addition, it will be appreciated that physicians and patients may receive alerts under similar conditions, or that either party may simply not receive alerts at all.


To the extent that local unit 60 has a graphical user interface permitting the patient to see pressure data, local unit 60 may be used by the patient to evaluate pressure readings at home and notify their physician when the band 28 pressure drops below a specified baseline, indicating the need for an adjustment of the device. Communication system 20 thus has benefits as a diagnostic and monitoring tool during patient treatment with a bariatric device. The convenience of evaluating an intake restriction device 22 through communication system 20 facilitates more frequent monitoring and, components permitting, adjustments of the device.


An alternate embodiment of a data logging system 300 is shown in FIG. 16. In this example, data logging system 300 comprises a coil head 354 and a data logger 370. Coil head 354 and data logger 370 are in communication via a cable 356. Cable 356 is detachable from coil head 354 and data logger 370. Of course, it will be appreciated that cable 356 is merely exemplary, and that any suitable alternative may be used, including but not limited to a wireless transmitter/receiver system. In the present example, coil head 354 is worn around the neck of the patient, and is positioned generally over injection port 36. Data logger 370 is worn on a belt 274 about the patient's waist. Of course, these respective locations are merely exemplary, and it will be appreciated that coil head 354 and data logger 370 may be positioned elsewhere. By way of example only, where injection port 36 is implanted in the patient's abdomen, coil head 354 may be worn on a belt 274. It will also be appreciated that coil head 354 and data logger 370 are represented as simple blocks in FIG. 16 for illustrative purposes only, and that either of coil head 354 or data logger 370 may be provided in a variety of shapes, sizes, and configurations.


Exemplary components of data logging system 300 are shown in FIG. 17. As shown, data logger 370 comprises a microprocessor 276, a memory 280, a power supply 282, a USB port 290, and a user interface 292. Coil head 354 comprises a TET drive circuit 283, a telemetry transceiver 284, a TET coil 285, and a telemetry coil 272. TET drive circuit 283 is configured to receive power from power supply 282 via cable 356. TET drive circuit is further configured to receive signals from microprocessor 276 via cable 356. Telemetry transceiver 284 is configured to receive signals from microprocessor 276, and transmit signals to microprocessor 276, via cable 356. In another embodiment, telemetry transceiver 284 is configured to only transmit signals to microprocessor 276. It will be appreciated that many of the components depicted in FIG. 17 are similar to those depicted in FIG. 14 and described in the accompanying text. Accordingly, the above discussion of such components with reference to FIG. 14 may also be applied to the components shown in FIG. 17. In the present example, coil head 354 and data logger 370 may be viewed as a separation of components comprising data logger 270 (described above) into two physically separate units. It will further be appreciated that any of the components shown in FIG. 17, as well as their relationships, functions, etc., may be varied in any suitable way.


In the present example, coil head 354 is configured similar to and functions in a manner similar to antenna 54 described above. TET coil 285 of coil head 354 is configured to provide power to injection port 36. Of course, to the extent that any other devices (e.g., a pump, etc.) are implanted in the patient that are configured to receive power from a TET coil 285, TET coil 285 may also provide power to such devices. Power provided by TET coil 285 may be provided to TET coil 285 by and regulated by TET drive circuit 285, which may itself receive power from power supply 282 via cable 356. Such power provided to TET drive circuit 283 may be regulated by microprocessor 276 via cable 356. In addition, or in the alternative, microprocessor 276 may regulate the manner in which TET drive circuit 285 provides power to TET coil 285. Other suitable configurations and relationships between these components, as well as alternative ways in which they may operate, will be apparent to those of ordinary skill in the art. It will also be appreciated that, while the present example contemplates the use of RF signaling through TET coil 285, any other type of powering technique, as well as alternative power communicators, may be used.


Telemetry coil 272 of coil head 354 is configured to receive signals from coil 114 of injection port 36, including signals indicative of the pressure of fluid within the implanted device (e.g., pressure of fluid within the injection port 36, within catheter 40, and/or within adjustable band 28, pressure obtained using pressure sensor 84, etc.) and signals indicative of temperature. It will be appreciated that telemetry coil 272 may also receive any other type of signal representing any other type of information from any other source. Signals received by telemetry coil 272 are communicated to telemetry transceiver 284, which is configured to communicate such signals to microprocessor 276 via cable 356. Telemetry transceiver 284 may perform any appropriate translation or processing of signals received from telemetry coil 272 before communicating signals to microprocessor 276. Other suitable configurations and relationships between these components, as well as alternative ways in which they may operate, will be apparent to those of ordinary skill in the art. It will also be appreciated that components may be combined. By way of example only, TET coil 285 and telemetry coil 272 may be consolidated into a single coil, and alternate between TET and telemetry functions at any suitable rate for any suitable durations. In addition, while the present example contemplates the use of RF signaling through telemetry coil 272, it will be appreciated that any other type of communication technique (e.g., ultrasonic, magnetic, etc.), as well as alternative communicators other than a coil, may be used.


Data logger 370 may receive pressure measurements throughout a given day, and store the same in memory 280, thereby recording fluid pressure variations during the patient's meals and daily routines. In the present example, memory 280 comprises 40 Mb of SRAM and is configured to store 100 hours of time stamped pressure data. Of course, any other type of memory 280 may be used, and memory 280 may store any amount of and any other type of data. By way of example only, any other type of volatile memory or any type of non-volatile memory may be used, including but not limited to flash memory, hard drive memory, etc. While data logger 370 of the present example is operational, fluid pressure is read and stored in memory 280 at a designated data rate controlled by microprocessor 276. In one embodiment, fluid pressure is repeatedly sensed and transmitted to data logger 370, then stored in memory 280, at an update rate sufficient to measure peristaltic pulses against adjustable band 28. By way of example only, the update rate may range between approximately 10-20 pressure measurements per second. Other suitable update rates may be used.


In another embodiment, implanted portion 24 comprises a memory (not shown). By way of example only, such implanted memory may be located in injection port 36 or elsewhere. Such implanted memory may be used for a variety of purposes, to the extent that such memory is included. For instance, such implanted memory may store the same data as memory 280 of data logger 370, such that implanted memory provides a backup for memory 280 of data logger 370. In this version, such data may be further retained in implanted memory for archival purposes, may be replaced on a daily basis, may be replaced or updated after data logger 370 transmits the same data to remote unit 170, or may otherwise be used. It will also be appreciated that an implanted memory may be used to store pre-selected information or pre-selected types of information. For instance, an implanted memory may store maximum and minimum pressure measurements, fluoroscopic images or video of a patient swallowing, and/or any other information. Other information suitable for storing in an implanted memory will be apparent to those of ordinary skill in the art. It will also be appreciated that any type of memory may be implanted, including but not limited to volatile (e.g., SRAM, etc.), non-volatile (e.g., flash, hard drive, etc.), or other memory.


In the present example, microprocessor 276 is energized by a power supply 282. In one embodiment, power supply 282 comprises a rechargeable cell (not shown), such as a rechargeable battery. In one version of this embodiment, the rechargeable cell is removable and may be recharged using a recharging unit and replaced with another rechargeable cell while the spent cell is recharging. In another version of this embodiment, the rechargeable cell is recharged by plugging a recharging adapter into a data logger 370 and a wall unit. In yet another version of this embodiment, the rechargeable cell is recharged wirelessly by a wireless recharging unit. In another embodiment, power supply 282 comprises an ultra capacitor, which may also be recharged. Of course, any other type of power supply 282 may be used.


Data logger 370 of the present example may be configured to provide an alert to the patient under a variety of circumstances in a variety of ways. For instance, data logger 370 may provide an audible and/or visual alert when there is a drastic change in fluid pressure. Alternatively, data logger 370 may provide an audible and/or visual alert upon a determination, based at least in part on pressure data, that the patient is eating too much, too quickly, etc. Data logger 370 may also alert the patient upon a determination that coil head 354 is not communicating with injection port 36 properly. Still other conditions under which a patient may be alerted by data logger 370 will be apparent to those of ordinary skill in the art. It will also be appreciated that user interface 292 may comprise any number or types of features, including but not limited to a speaker, an LED, and LCD display, an on/off switch, etc. In the present example, user interface 292 is configured to provide only output to the patient, and does not permit the patient to provide input to data logger 370. User interface 292 of the present example thus consists of a green LED to show that the power supply 282 is sufficiently charged and a red LED to show that the power supply 282 needs to be recharged. Of course, user interface 292 may alternatively permit the patient to provide input to data logger 370, and may comprise any suitable components and features.


As shown in FIG. 18, data logging system 300 further comprises a docking station 360. Docking station 360 is configured to receive data communications from data logger 370, and is further configured to transmit data communications to remote unit 170. In the present example, data logger 370 comprises a USB port 290, such that docking station 360 may receive communications from data logger 370 via a USB cable (not shown) coupled with USB port 290. In one embodiment, docking station 360 comprises the patient's personal computer. Of course, docking station 360 may receive communications from data logger 370 in any other suitable way. For instance, such communications may be transmitted wirelessly (e.g., via RF signals, Bluetooth, ultrawideband, etc.).


In another embodiment, docking station 360 is dedicated to coupling with data logger 370, and comprises a cradle-like feature (not shown) configured to receive data logger 370. In this example, the cradle-like feature includes contacts configured to electrically engage corresponding contacts on data logger 370 to provide communication between docking station 360 and data logger 370. Docking station 360 may thus relate to data logger 370 in a manner similar to docking systems for personal digital assistants (PDAs), BLACKBERRY® devices, cordless telephones, etc. Other suitable ways in which data logger 370 and docking station 360 may communicate or otherwise engage will be apparent to those of ordinary skill in the art. It will also be appreciated that docking station 360 is depicted in FIG. 18 as a desktop computer for illustrative purposes only, and that docking station 360 may be provided in a variety of alternative shapes, sizes, and configurations.


In one embodiment, docking station 360 comprises local unit 60 described above. Accordingly, it will be appreciated that the above discussion referring to components depicted in FIG. 9 may also be applied to components depicted in FIG. 18. Similarly, methods such as those shown in FIGS. 10-12 and described in accompanying text may also be implemented with docking station 360. In another embodiment, data logger 370 comprises local unit 60. In yet another embodiment, data logger 370 is provided with an AC adapter or similar device operable to recharge power supply 282, and data logger 370 further comprises an Ethernet port (not shown) enabling data logger 370 to be connected directly to a network such as the Internet for transmitting information to remote unit 170. It will therefore be appreciated that any of the features and functions described herein with respect to local unit 60 and/or docking station 360 may alternatively be incorporated into data logger 370 or may be otherwise allocated.


In one exemplary use, the patient wears coil head 354 and data logger 370 throughout the day to record pressure measurements in memory 280. At night, the patient decouples data logger 370 from coil head 354 and couples data logger 370 with docking station 360. While data logger 370 and docking station 360 are coupled, docking station 360 transmits data received from data logger 370 to remote unit 170. To the extent that power supply 282 comprises a rechargeable cell, docking station 360 may be further configured to recharge the cell while data logger 370 is coupled with docking station 360. Of course, it will be immediately apparent to those of ordinary skill in the art that a patient need not necessarily decouple data logger 370 from coil head 354 in order to couple data logger 370 with docking station 360. It will also be appreciated that pressure measurements may be recorded in memory 280 during the night in addition to or as an alternative to recording such measurements during the day, and that pressure measurements may even be recorded twenty four hours a day. It is thus contemplated that the timing of pressure measurement taking and recordation need not be limited to the daytime only. It is also contemplated that every pressure measurement that is taken need not necessarily be recorded.


As described above, data logger 370 is configured to receive, store, and communicate data relating to the pressure of fluid. However, data logger 370 may receive, store, and/or communicate a variety of other types of data. By way of example only, data logger 370 may also receive, process, store, and/or communicate data relating to temperature, EKG measurements, eating frequency of the patient, the size of meals eaten by the patient, the amount of walking done by the patient, etc. It will therefore be appreciated that data logger 370 may be configured to process received data to create additional data for communicating to docking station 360. For instance, data logger 370 may process pressure data obtained via coil head 354 to create data indicative of the eating frequency of the patient. It will also be appreciated that data logger 370 may comprise additional components to obtain non-pressure data. For instance, data logger 370 may comprise a pedometer or accelerometer (not shown) to obtain data relating to the amount of walking done by the patient. Data obtained by such additional components may be stored in memory 280 and communicated to docking station 360 in a manner similar to pressure data. Data logger 370 may also comprise components for obtaining data to be factored in with internal fluid pressure measurements to account for effects of various conditions on the fluid pressure. For instance, data logger 370 may comprise a barometer for measuring atmospheric pressure. In another embodiment, data logger 370 comprises an inclinometer or similar device to determine the angle at which the patient is oriented (e.g., standing, lying down, etc.), which may be factored into pressure data to account for hydrostatic pressure effects caused by a patient's orientation. Alternatively, an inclinometer or other device for obtaining non-pressure data may be physically separate from data logger 370 (e.g., implanted). Still other types of data, ways in which such data may be obtained, and ways in which such data may be used will be apparent to those of ordinary skill in the art.


It will be appreciated that several embodiments described herein may enable health care providers or others to use pressure data as a feedback mechanism to identify, train, and/or prescribe dietary advice to a patient. Such a feedback mechanism may provide data or otherwise be used in multiple ways. For instance, pressure feedback may be obtained when a patient swallows a particular food portion, and based on such pressure feedback, the patient may be taught to eat smaller portions, larger portions, or portions equal to the portion tested. Of course, a food portion so prescribed may be tested by evaluating pressure feedback obtained when the patient swallows the prescribed food portion, such that a food portion prescription may be refined through reiteration. As another example, a patient may test desired foods for appropriateness based on pressure feedback together with portion size and/or based on any other parameters. It will also be appreciated that continuous pressure data monitoring may be used to enable portion size monitoring, food consistency monitoring (e.g., liquids vs. solids) and/or eating frequency. Still other ways in which pressure data may be used to provide dietary advice will be apparent to those of ordinary skill in the art. It will also be appreciated that such uses may be practiced locally, remotely (e.g., via remote unit 170), or combinations thereof.


While data logging system 300 is described herein as being implemented with injection port 36, it will be appreciated that data logging system 300 may alternatively be implemented with any other type of pressure sensing system or other implanted systems. By way of example only, data logging system 300 may be combined with any of the pressure sensing devices disclosed in U.S. Non-Provisional patent application Ser. No. 11/369,682, filed Mar. 7, 2006, and entitled “System and Method for Determining Implanted Device Positioning and Obtaining Pressure Data,” the disclosure of which is incorporated by reference herein for illustrative purposes. For instance, data logging system 300 may receive pressure measurements obtained by any of the pressure sensors described in that patent application. In addition, the needle guidance sense head described in that patent application may be used with at least a portion of data logging system 300 to provide needle guidance for a local clinician to adjust fluid pressure in accordance with a remote physician's instructions that are based on pressure measurements obtained by the needle guidance sense head and communicated to the remote physician in substantially real-time. For instance, the needle guidance sense head may be coupled with data logger 370, which may connected directly to the Internet (or via docking station 360) to provide pressure measurements to the remote physician. Still other ways in which devices and components described herein may be combined with components described in U.S. Non-Provisional patent application Ser. No. 11/369,682 will be apparent to those of ordinary skill in the art.


It will become readily apparent to those skilled in the art that the above invention has equally applicability to other types of implantable bands. For example, bands are used for the treatment of fecal incontinence. One such band is described in U.S. Pat. No. 6,461,292 which is hereby incorporated herein by reference. Bands can also be used to treat urinary incontinence. One such band is described in U.S. Patent Application 2003/0105385 which is hereby incorporated herein by reference. Bands can also be used to treat heartburn and/or acid reflux. One such band is described in U.S. Pat. No. 6,470,892 which is hereby incorporated herein by reference. Bands can also be used to treat impotence. One such band is described in U.S. Patent Application 2003/0114729 which is hereby incorporated herein by reference.


While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. For example, as would be apparent to those skilled in the art, the disclosures herein have equal application in robotic-assisted surgery. In addition, it should be understood that every structure described above has a function and such structure can be referred to as a means for performing that function. Accordingly, it is intended that the invention be limited only by the spirit and scope of the appended claims.


While the present invention has been illustrated by description of several embodiments, it is not the intention of the applicant to restrict or limit the spirit and scope of the appended claims to such detail. Numerous other variations, changes, and substitutions will occur to those skilled in the art without departing from the scope of the invention. For instance, the device and method of the present invention has been illustrated with respect to transmitting pressure data from the implant to the remote monitoring unit. However, other types of data may also be transmitted to enable a physician to monitor a plurality of different aspects of the restrictive opening implant. Additionally, the present invention is described with respect to a food intake restriction device for bariatric treatment. The present invention is not limited to this application, and may also be utilized with other restrictive opening implants or artificial sphincters without departing from the scope of the invention. The structure of each element associated with the present invention can be alternatively described as a means for providing the function performed by the element. It will be understood that the foregoing description is provided by way of example, and that other modifications may occur to those skilled in the art without departing from the scope and spirit of the appended Claims.

Claims
  • 1. A system for obtaining data from an implanted device, the system comprising: (a) an implantable restriction forming device, wherein the implantable restriction forming device is operable to form a restriction in a patient, wherein the implantable restriction forming device comprises an implantable injection port, wherein the implantable injection port defines a fluid reservoir in fluid communication with the implantable restriction forming device, wherein the fluid reservoir of the implantable injection port is configured to receive a fluid, wherein the implantable injection port includes a needle penetrable septum configured to receive a needle for adding fluid to or withdrawing fluid from the fluid reservoir via the needle;(b) an implantable pressure sensor positioned within the implantable injection port of the implantable restriction forming device, wherein the implantable pressure sensor comprises a diaphragm in fluid communication with the fluid reservoir of the implantable injection port and one or more strain gauges connected with the diaphragm, wherein the one or more strain gauges are configured to sense strain in the diaphragm as a function of the pressure of the fluid such that the implantable pressure sensor is operable to sense the pressure of fluid in the fluid reservoir;(c) one or more implantable communicators in communication with the implantable pressure sensor, wherein the one or more implantable communicators are operable to communicate data from within a patient;(d) one or more external communicators in communication with the one or more implantable communicators, wherein the one or more external communicators are operable to externally receive data communicated from within a patient by the one or more implantable communicators; and(e) a storage device in communication with the one or more external communicators, wherein the storage device is operable to store at least a portion of data received by the one or more external communicators.
  • 2. The system of claim 1, wherein the implantable restriction forming device further comprises an adjustable gastric band in fluid communication with the implantable injection port.
  • 3. The system of claim 1, wherein one or both of the one or more implantable communicators or the one or more external communicators comprise at least one coil.
  • 4. The system of claim 1, further comprising a data logger in communication with the one or more external communicators, wherein the storage device is located within the data logger, wherein the data logger is operable to provide a source of energy to the one or more external communicators.
  • 5. The system of claim 4, further comprising a sense head, wherein the one or more external communicators are located within the sense head.
  • 6. The system of claim 5, wherein the data logger and the sense head are located in separate housings connected via a cable.
  • 7. The system of claim 4, wherein the data logger comprises a rechargeable cell, wherein the rechargeable cell is configured to provide power to the one or more external communicators.
  • 8. The system of claim 7, further comprising a docking station, wherein the data logger is configured to selectively couple with the docking station, wherein the docking station is configured to recharge the rechargeable cell.
  • 9. The system of claim 8, wherein the docking station further comprises a communication port in communication with the storage device, wherein the communication port is configured to communicate with a remote monitoring unit via the network.
  • 10. The system of claim 1, further comprising a communication port in communication with the storage device, wherein the communication port is configured to communicate with a remote monitoring unit via the network.
  • 11. A system for obtaining data from an implantable restriction forming device, the system comprising: (a) a gastric band having an inflatable member, the inflatable member being configured to receive fluid, the gastric band being configured to form a restriction in a patient based on the pressure of fluid in the inflatable member;(b) an implantable injection port in fluid communication with the inflatable member of the gastric band, wherein the implantable injection port includes a needle penetrable septum configured to receive a needle for adjusting an amount of fluid in the inflatable member via the needle;(c) a pressure sensor, wherein the pressure sensor is configured to sense the pressure of fluid in the inflatable member;(d) a TET communicator, wherein the TET communicator is operable to provide power to a device implanted within a patient;(e) a telemetry communicator, wherein the telemetry communicator is operable to transmit data communicated from the one or more implantable pressure sensors located within the implantable restriction forming device;(f) a storage device in communication with the telemetry communicator, wherein the storage device is operable to store data transmitted from the telemetry communicator;(g) a microprocessor in communication with the TET communicator, the telemetry coil, and the storage device, wherein the microprocessor is configured to regulate transmission of data from the telemetry communicator to the storage device; and(h) a patient orientation sensor configured to detect orientation data associated with a patient, wherein the patient orientation sensor is in communication with the microprocessor, wherein the microprocessor is configured to account for hydrostatic effects on the fluid pressure caused by patient orientation as detected by the patient orientation sensor.
  • 12. The system of claim 11, wherein the TET communicator and the telemetry communicator are physically separate communicators.
  • 13. The system of claim 11, further comprising a first housing and a second housing, wherein the TET communicator and the telemetry communicator are located in the first housing, wherein the storage device and the microprocessor are located in the second housing.
  • 14. The system of claim 13, further comprising a docking station, wherein the docking station is operable to engage one or more components of the second housing.
  • 15. The system of claim 14, wherein the docking station is further operable to receive data communicated from the storage device.
PRIORITY

This application is a continuation-in-part of prior co-pending U.S. Non-Provisional application Ser. No. 11/167,861, filed Jun. 24, 2005, entitled “Remote Monitoring and Adjustment of Food Intake Restriction Device,” the disclosure of which is incorporated by reference herein. This application is also a continuation-in-part of prior U.S. Non-Provisional application Ser. No. 11/065,410, filed Feb. 24, 2005, now U.S. Pat. No. 7,699,770 entitled “Device for Non-Invasive Measurement of Fluid Pressure in an Adjustable Restriction Device,” the disclosure of which is incorporated by reference herein.

US Referenced Citations (1689)
Number Name Date Kind
RE03036 Shunk Jul 1868 E
RE03037 Tucker Jul 1868 E
RE03115 Lewis Sep 1868 E
RE03187 Winchester Nov 1868 E
RE03322 Murch Mar 1869 E
236373 Spilman Jan 1881 A
322388 Lord Jul 1885 A
400401 Gutzkow Mar 1889 A
D23637 Casad et al. Sep 1894 S
D24900 Clemecet Nov 1895 S
D25318 Perky Mar 1896 S
D27151 Moulten Jun 1897 S
D29715 Wheeler Nov 1898 S
D29745 Bunker Nov 1898 S
D29885 Gillespie et al. Dec 1898 S
D30690 Schwedtmann May 1899 S
D30966 Howe Jun 1899 S
D31230 Hogan Jul 1899 S
689758 Shaw Dec 1901 A
724913 Montgomery Apr 1903 A
899477 Williams Sep 1908 A
926197 Kim Jun 1909 A
953875 Waring Apr 1910 A
991192 Battenfeld May 1911 A
1087988 Sheldon Feb 1914 A
1210701 Ryden Jan 1917 A
1219296 Hahn Mar 1917 A
1224355 Brown May 1917 A
1263914 Martin Apr 1918 A
1310290 Piechowicz Jul 1919 A
1384873 Strickland Jul 1921 A
1421507 Lindberg Jul 1922 A
1551525 Hamer Aug 1925 A
1560973 Cheron Nov 1925 A
1620633 Colvin Mar 1927 A
1623403 Friel Apr 1927 A
1689085 Russell et al. Oct 1928 A
1764071 Foulke Jun 1930 A
1782704 Woodruff et al. Nov 1930 A
1807107 Sternberch May 1931 A
1865446 Sears Jul 1932 A
1882338 Reed et al. Oct 1932 A
1924781 Gaiser Aug 1933 A
2027875 Odend'hal Jan 1936 A
2063430 Graser Dec 1936 A
2099160 Charch Nov 1937 A
2105127 Petrone Jan 1938 A
2106192 Saville Jan 1938 A
2143429 Auble Jan 1939 A
2166603 Menzer Jul 1939 A
2168427 McConkey Aug 1939 A
2174525 Padernal Oct 1939 A
2178463 Bahnson Oct 1939 A
2180599 Menasco Nov 1939 A
2177564 Havill Dec 1939 A
2203460 Fieber Jun 1940 A
2206038 Ford Jul 1940 A
2216374 Martin Oct 1940 A
2223699 Norgren Dec 1940 A
2225145 Baumbach Dec 1940 A
2225880 Montelius Dec 1940 A
2261060 Giesler Oct 1941 A
2261355 Flynn Nov 1941 A
2295539 Beach Sep 1942 A
2303108 Blackburn Nov 1942 A
2303502 Rous Dec 1942 A
2318819 Verson May 1943 A
2327407 Edyvean Aug 1943 A
2327615 Ankarlo Aug 1943 A
2354571 Blain Jul 1944 A
2396351 Thompson Mar 1946 A
2426392 Fennema Aug 1947 A
2426817 Carlton et al. Sep 1947 A
2440260 Gall Apr 1948 A
2442573 Stafford Jun 1948 A
2453217 Gregg et al. Nov 1948 A
2455859 Foley Dec 1948 A
2477922 Emery et al. Aug 1949 A
2478876 Nelson Aug 1949 A
2482392 Whitaker Sep 1949 A
2494881 Kost Jan 1950 A
2509210 Clark May 1950 A
2509673 Church May 1950 A
2511765 Bradbury Jun 1950 A
2520056 Pozun Aug 1950 A
2521976 Hays Sep 1950 A
2533924 Foley Dec 1950 A
2538259 Merriman Jan 1951 A
2581479 Grashman Jan 1952 A
2600324 Rappaport Jun 1952 A
2606003 McNeill Aug 1952 A
2615940 Williams Oct 1952 A
2632447 Dobes Mar 1953 A
2639342 Cope May 1953 A
2640119 Bradford, Jr. May 1953 A
2641742 Wolfe Jun 1953 A
2651304 Browner Sep 1953 A
2665577 Sanowskis Jan 1954 A
2673999 Shey Apr 1954 A
2676609 Pfarrer Apr 1954 A
2684118 Osmun Jul 1954 A
2689611 Martinson Sep 1954 A
2697435 Ray Dec 1954 A
2723323 Niemi Nov 1955 A
2734992 Elliot et al. Feb 1956 A
2740007 Amelang Mar 1956 A
2740853 Hatman, Jr. Apr 1956 A
2742323 Shey Apr 1956 A
2747332 Morehouse May 1956 A
2753876 Kurt Jul 1956 A
2756883 Schreck Jul 1956 A
2756983 Furcini Jul 1956 A
2761603 Fairchild Sep 1956 A
2773312 Peck Dec 1956 A
2783728 Hoffmann Mar 1957 A
2787875 Johnson Apr 1957 A
2793379 Moore May 1957 A
2795460 Bletcher Jun 1957 A
2804514 Peters Aug 1957 A
2822113 Joiner, Jr. Feb 1958 A
2831478 Uddenberg et al. Apr 1958 A
2864393 Drake Dec 1958 A
2865541 Hicks Dec 1958 A
2870024 Martin Jan 1959 A
2883995 Bialous et al. Apr 1959 A
2886355 Wurzel May 1959 A
2895215 Neher et al. Jul 1959 A
2899493 Levine Aug 1959 A
2902861 Frost et al. Sep 1959 A
2923531 Bauer et al. Feb 1960 A
2924263 Landis Feb 1960 A
2924432 Arps et al. Feb 1960 A
2930170 Holsman et al. Mar 1960 A
2938592 Charske et al. May 1960 A
2941338 Santschi Jun 1960 A
2943682 Ingram, Jr. et al. Jul 1960 A
2958781 Marchal et al. Nov 1960 A
2961479 Bertling Nov 1960 A
2976355 Levine Mar 1961 A
2976686 Stelzer Mar 1961 A
2977876 Meyers Apr 1961 A
2986715 Church et al. May 1961 A
2989019 Van Sciver, II Jun 1961 A
3010692 Jentoft Nov 1961 A
3013234 Bourns Dec 1961 A
3018791 Knox Jan 1962 A
3034356 Bieganski May 1962 A
3040800 Harley Jun 1962 A
3057618 Abrams et al. Sep 1962 A
3060262 Hoer Oct 1962 A
3070373 Mathews et al. Dec 1962 A
3082414 Papaminas Mar 1963 A
3085577 Berman et al. Apr 1963 A
3096410 Anderson Jul 1963 A
3099262 Bigliano Jul 1963 A
3125028 Rohde Mar 1964 A
3126029 Englesson Mar 1964 A
3129072 Cook et al. Apr 1964 A
3135914 Callan et al. Jun 1964 A
3144017 Muth Aug 1964 A
3151258 Sonderegger et al. Sep 1964 A
3153460 Raskin Oct 1964 A
3161051 Perry, Jr. Dec 1964 A
3167044 Henrickson Jan 1965 A
3171549 Orloff Mar 1965 A
3172700 Haas Mar 1965 A
3173269 Imbertson Mar 1965 A
3182494 Beatty et al. May 1965 A
3187181 Keller Jun 1965 A
3187745 Baum et al. Jun 1965 A
3190388 Moser et al. Jun 1965 A
3205547 Riekse Sep 1965 A
3208255 Burk Sep 1965 A
3209570 Hills Oct 1965 A
3221468 Casey Dec 1965 A
3228703 Wilson Jan 1966 A
3229684 Nagumo et al. Jan 1966 A
3236088 Moller Feb 1966 A
3238624 McCabe Mar 1966 A
3240510 Spouge Mar 1966 A
3245642 Dicke Apr 1966 A
3255568 Martin et al. Jun 1966 A
3260091 Shaw, Jr. Jul 1966 A
3265822 Moulten Aug 1966 A
3266489 Watkins et al. Aug 1966 A
3273447 Frank Sep 1966 A
3283352 Hu Nov 1966 A
3290919 Malinak et al. Dec 1966 A
3292493 Franklin Dec 1966 A
3292888 Fischer Dec 1966 A
3294988 Packard Dec 1966 A
3299603 Shaw Jan 1967 A
3299882 Masino Jan 1967 A
3301514 Sugaya Jan 1967 A
3302457 Mayes Feb 1967 A
3306384 Ross Feb 1967 A
3313314 Burke et al. Apr 1967 A
3316935 Kaiser et al. May 1967 A
3320750 Haise et al. May 1967 A
3321035 Tarpley May 1967 A
3332788 Barnby Jul 1967 A
3334510 Hallesy Aug 1967 A
3339401 Peters Sep 1967 A
3340868 Darling Sep 1967 A
3347162 Braznell Oct 1967 A
3350944 De Michele Nov 1967 A
3353364 Blanding et al. Nov 1967 A
3353481 Antonucci Nov 1967 A
3356334 Scaramucci Dec 1967 A
3356510 Barnby Dec 1967 A
3357218 Mitchell Dec 1967 A
3357461 Friendship Dec 1967 A
3359741 Nelson Dec 1967 A
3361300 Kaplan Jan 1968 A
3364929 Ide et al. Jan 1968 A
3365684 Stemke Jan 1968 A
3378456 Roberts Apr 1968 A
3380445 Frasier Apr 1968 A
3380649 Roberts Apr 1968 A
3385022 Anderson May 1968 A
3389355 Schroeder, Jr. Jun 1968 A
3393612 Gorgens et al. Jul 1968 A
3396561 Day Aug 1968 A
3399667 Nishimoto et al. Sep 1968 A
3400734 Rosenberg Sep 1968 A
3403237 Wysong Sep 1968 A
3409924 Slama Nov 1968 A
3411347 Wirth et al. Nov 1968 A
3417476 Martens Dec 1968 A
3420325 McAlister et al. Jan 1969 A
3422324 Webb Jan 1969 A
3426165 Beaman Feb 1969 A
3438391 Yocum Apr 1969 A
3443608 Copping et al. May 1969 A
3445335 Gluntz May 1969 A
3447281 Bufford et al. Jun 1969 A
3450153 Hildebrandt et al. Jun 1969 A
3453546 Fryer Jul 1969 A
3453848 Williamson Jul 1969 A
3456134 Ko Jul 1969 A
3457909 Laird Jul 1969 A
3460557 Gallant Aug 1969 A
3463338 Schneider Aug 1969 A
3469818 Cowan Sep 1969 A
3470725 Brown et al. Oct 1969 A
3472230 Fogarty Oct 1969 A
3478344 Schwitzgebel et al. Nov 1969 A
3482449 Werner Dec 1969 A
3482816 Arnold Dec 1969 A
3487959 Pearne et al. Jan 1970 A
3491842 Delacour et al. Jan 1970 A
3492638 Lane Jan 1970 A
3502829 Reynolds Mar 1970 A
3503116 Strack Mar 1970 A
3504664 Haddad Apr 1970 A
3505808 Eschle Apr 1970 A
3509754 Massingill et al. May 1970 A
3512517 Kadish et al. May 1970 A
3514919 Ashton et al. Jun 1970 A
3516220 Buford et al. Jun 1970 A
3517553 Williams et al. Jun 1970 A
3527226 Hakin et al. Sep 1970 A
3529908 Smith Sep 1970 A
3530449 Anderson Sep 1970 A
3533403 Woodson Oct 1970 A
3534728 Barrows Oct 1970 A
3534872 Roth et al. Oct 1970 A
3535914 Veith et al. Oct 1970 A
3539009 Kudlaty Nov 1970 A
3543744 LePar Dec 1970 A
3545275 Harrison et al. Dec 1970 A
3550583 Chiku Dec 1970 A
3550847 Scott Dec 1970 A
3563094 Rieschel Feb 1971 A
3563245 McLean et al. Feb 1971 A
3566083 McMillin Feb 1971 A
3566875 Stoehr Mar 1971 A
3568367 Myers Mar 1971 A
3568636 Lockwood Mar 1971 A
3576554 Temps, Jr. et al. Apr 1971 A
3580082 Strack May 1971 A
3581402 London et al. Jun 1971 A
3583387 Garner et al. Jun 1971 A
3587204 George Jun 1971 A
3590809 London Jul 1971 A
3590818 Lemole Jul 1971 A
3590992 Soderstrom et al. Jul 1971 A
3592183 Watkins et al. Jul 1971 A
3594519 Schmidlin Jul 1971 A
3602885 Grajeda Aug 1971 A
3610016 Bultman Oct 1971 A
3610851 Krupski Oct 1971 A
3611811 Lissau Oct 1971 A
3614926 Brechtel Oct 1971 A
3614955 Mirowski et al. Oct 1971 A
3619742 Rud, Jr. Nov 1971 A
3623371 Jullien-Davin Nov 1971 A
3624854 Strong Dec 1971 A
3630424 Schieser et al. Dec 1971 A
3631847 Hobbs, II Jan 1972 A
3633881 Yurdin Jan 1972 A
3635061 Rydell et al. Jan 1972 A
3635074 Moos et al. Jan 1972 A
3638496 King Feb 1972 A
3644883 Borman et al. Feb 1972 A
3648687 Ramsey, III Mar 1972 A
3651289 Nagashima et al. Mar 1972 A
3651405 Whitney et al. Mar 1972 A
3653671 Shipes Apr 1972 A
3659615 Enger May 1972 A
3677685 Aoki et al. Jul 1972 A
3686958 Porter et al. Aug 1972 A
3688568 Karper et al. Sep 1972 A
3701392 Wirth et al. Oct 1972 A
3702677 Heffington Nov 1972 A
3703099 Rouse et al. Nov 1972 A
3712138 Alinari et al. Jan 1973 A
3713124 Durland et al. Jan 1973 A
3719524 Ripley et al. Mar 1973 A
3721412 Kindorf Mar 1973 A
3723247 Leine et al. Mar 1973 A
3724000 Eakman Apr 1973 A
3727463 Intraub Apr 1973 A
3727615 Lenzkes Apr 1973 A
3730174 Madison May 1973 A
3730560 Abildgaard et al. May 1973 A
3731679 Wilhelmson et al. May 1973 A
3731681 Blackshear et al. May 1973 A
3732731 Fussell, Jr. May 1973 A
3735040 Punt et al. May 1973 A
3736930 Georgi Jun 1973 A
3738356 Workman Jun 1973 A
3740921 Meyer et al. Jun 1973 A
3746111 Berthiaume et al. Jul 1973 A
3748678 Ballou Jul 1973 A
3749098 De Bennetot et al. Jul 1973 A
3749422 Abildgaard et al. Jul 1973 A
3749423 Abildgaard et al. Jul 1973 A
3750194 Summers Aug 1973 A
3757770 Brayshaw et al. Sep 1973 A
3759095 Short, Jr. et al. Sep 1973 A
3760638 Lawson et al. Sep 1973 A
3763960 John et al. Oct 1973 A
3765142 Lindquist et al. Oct 1973 A
3765494 Kielman, Jr. Oct 1973 A
3769156 Brecy et al. Oct 1973 A
3769830 Porter et al. Nov 1973 A
3774243 Ny et al. Nov 1973 A
3776333 Mathauser Dec 1973 A
3778051 Allen et al. Dec 1973 A
3780578 Sellman et al. Dec 1973 A
3781902 Shim et al. Dec 1973 A
3783585 Hoyland et al. Jan 1974 A
3789667 Porter et al. Feb 1974 A
3796095 Fussell, Jr. Mar 1974 A
3807219 Wallskog Apr 1974 A
3811429 Fletcher et al. May 1974 A
3815722 Sessoms Jun 1974 A
3818765 Eriksen et al. Jun 1974 A
3820400 Russo Jun 1974 A
3820795 Taylor Jun 1974 A
3823610 Fussell, Jr. Jul 1974 A
3825065 Lloyd et al. Jul 1974 A
3825963 Abildgaard et al. Jul 1974 A
3825964 Groswith, III et al. Jul 1974 A
3828672 Gazzola et al. Aug 1974 A
3828766 Krasnow Aug 1974 A
3831588 Rindner Aug 1974 A
3831942 Del Mar Aug 1974 A
3833238 Liard et al. Sep 1974 A
3834167 Tabor Sep 1974 A
3834739 Abildgaard et al. Sep 1974 A
3835523 Stansfield et al. Sep 1974 A
3839708 Bredesen et al. Oct 1974 A
3842483 Cramer Oct 1974 A
3842668 Lippke et al. Oct 1974 A
3845664 Perry, Jr. Nov 1974 A
3845751 Runstetler Nov 1974 A
3845757 Weyer Nov 1974 A
3847434 Weman et al. Nov 1974 A
3850208 Hamilton Nov 1974 A
3853117 Murr Dec 1974 A
3854469 Giori et al. Dec 1974 A
3855902 Kirst et al. Dec 1974 A
3857399 Zacouto et al. Dec 1974 A
3857452 Hartman Dec 1974 A
3857745 Grausch et al. Dec 1974 A
3858581 Kamen Jan 1975 A
3863622 Buuck Feb 1975 A
3863933 Tredway Feb 1975 A
3867950 Fischell Feb 1975 A
3868008 Brumbaugh Feb 1975 A
3868679 Arneson Feb 1975 A
3871599 Takada et al. Mar 1975 A
3872285 Shum et al. Mar 1975 A
3874388 King et al. Apr 1975 A
3876980 Haemmig et al. Apr 1975 A
3878908 Andersson et al. Apr 1975 A
3881528 Mackenzie May 1975 A
3886948 Hakim et al. Jun 1975 A
3893111 Cotter Jul 1975 A
3893451 Durand et al. Jul 1975 A
3895681 Griffin et al. Jul 1975 A
3899862 Muys et al. Aug 1975 A
3904234 Hill et al. Sep 1975 A
3908334 Rychiger et al. Sep 1975 A
3908461 Turpen Sep 1975 A
3908721 McGahey et al. Sep 1975 A
3910087 Jones Oct 1975 A
3912168 Mullins et al. Oct 1975 A
3912304 Abildgaard et al. Oct 1975 A
3918286 Whitehead Nov 1975 A
3918291 Pauly et al. Nov 1975 A
3920965 Sohrwardy et al. Nov 1975 A
3921682 McGahey et al. Nov 1975 A
3922951 Linsinger et al. Dec 1975 A
3923060 Ellinwood, Jr. Dec 1975 A
3924635 Hakim et al. Dec 1975 A
3928980 Ganzinotti et al. Dec 1975 A
3929175 Coone Dec 1975 A
3930682 Booth Jan 1976 A
3930852 Tanaka et al. Jan 1976 A
3936028 Norton et al. Feb 1976 A
3939823 Kaye et al. Feb 1976 A
3940122 Janzen et al. Feb 1976 A
3940630 Bergonz Feb 1976 A
3942299 Bory et al. Mar 1976 A
3942382 Hok et al. Mar 1976 A
3942536 Mirowski et al. Mar 1976 A
3943915 Severson Mar 1976 A
3945704 Kraus et al. Mar 1976 A
3946613 Silver Mar 1976 A
3946615 Hluchan Mar 1976 A
3946724 La Balme et al. Mar 1976 A
3948141 Shinjo et al. Apr 1976 A
3949388 Fuller Apr 1976 A
3953289 Costes et al. Apr 1976 A
3954271 Tredway, Sr. May 1976 A
3958558 Dunphy et al. May 1976 A
3960142 Elliott et al. Jun 1976 A
3961425 Swanson et al. Jun 1976 A
3961646 Schon et al. Jun 1976 A
3962895 Rydell Jun 1976 A
3962921 Lips Jun 1976 A
3963019 Quandt Jun 1976 A
3964485 Neumeier Jun 1976 A
3964770 Abildgaard et al. Jun 1976 A
3967737 Peralta et al. Jul 1976 A
3968473 Patton et al. Jul 1976 A
3968594 Kawakami Jul 1976 A
3972320 Kalman Aug 1976 A
3973753 Wheeler Aug 1976 A
3973858 Poisson et al. Aug 1976 A
3974655 Halpern et al. Aug 1976 A
3974865 Fenton et al. Aug 1976 A
3976278 Dye et al. Aug 1976 A
3977391 Fleischmann Aug 1976 A
3980871 Lindstrom et al. Sep 1976 A
3982571 Fenton et al. Sep 1976 A
3983948 Jeter Oct 1976 A
3985133 Jenkins et al. Oct 1976 A
3987860 Jabsen Oct 1976 A
3989005 Bowler, Jr. et al. Nov 1976 A
3991749 Zent Nov 1976 A
3992948 D'Antonio et al. Nov 1976 A
3993149 Harvey Nov 1976 A
3996927 Frank Dec 1976 A
3996962 Sutherland Dec 1976 A
4003141 Le Roy Jan 1977 A
4005282 Jennings Jan 1977 A
4005593 Goldberg Feb 1977 A
4006735 Hittman et al. Feb 1977 A
4009591 Hester Mar 1977 A
4010449 Faggin et al. Mar 1977 A
4014319 Favre et al. Mar 1977 A
4014321 March Mar 1977 A
4016764 Rice Apr 1977 A
4017329 Larson Apr 1977 A
4018134 Linsinger et al. Apr 1977 A
4022190 Meyer May 1977 A
4024864 Davies et al. May 1977 A
4025912 Rice May 1977 A
4026276 Chubbuck May 1977 A
4027661 Lyon et al. Jun 1977 A
4031899 Renirie et al. Jun 1977 A
4036775 Trautvetter et al. Jul 1977 A
4039069 Kwan et al. Aug 1977 A
4041954 Ohara et al. Aug 1977 A
4042504 Drori et al. Aug 1977 A
4045345 Drori et al. Aug 1977 A
4047296 Ishida et al. Sep 1977 A
4047851 Bender Sep 1977 A
4048494 Liesting et al. Sep 1977 A
4048879 Cox Sep 1977 A
4049004 Walters Sep 1977 A
4051338 Harris, III Sep 1977 A
4052991 Zacouto et al. Oct 1977 A
4055074 Thimons et al. Oct 1977 A
4055175 Clemens et al. Oct 1977 A
4056854 Boretos et al. Nov 1977 A
4058007 Exner et al. Nov 1977 A
4062351 Hastwell et al. Dec 1977 A
4062354 Taylor et al. Dec 1977 A
4062360 Bentley Dec 1977 A
4063439 Besson et al. Dec 1977 A
4064882 Johnson et al. Dec 1977 A
4070239 Bevilacqua Jan 1978 A
4072047 Reismuller et al. Feb 1978 A
4073292 Edelman Feb 1978 A
4075099 Pelton et al. Feb 1978 A
4075602 Clothier Feb 1978 A
4077072 Dezura et al. Mar 1978 A
4077394 McCurdy Mar 1978 A
4077405 Haerten et al. Mar 1978 A
4077882 Gangemi Mar 1978 A
4078620 Westlake et al. Mar 1978 A
4080653 Barnes, Jr. et al. Mar 1978 A
4084752 Hagiwara et al. Apr 1978 A
4086488 Hill Apr 1978 A
4087568 Fay et al. May 1978 A
4088417 Kosmowski May 1978 A
4089329 Couvillon, Jr. et al. May 1978 A
4090802 Bilz et al. May 1978 A
4092719 Salmon et al. May 1978 A
4092925 Fromson Jun 1978 A
4096866 Fischell Jun 1978 A
4098293 Kramer et al. Jul 1978 A
4103496 Colamussi et al. Aug 1978 A
4106370 Kraus et al. Aug 1978 A
4107689 Jellinek Aug 1978 A
4107995 Ligman et al. Aug 1978 A
4108148 Cannon, III Aug 1978 A
4108575 Schal et al. Aug 1978 A
4109148 Jaulmes et al. Aug 1978 A
4109518 Dooley et al. Aug 1978 A
4109644 Kojima Aug 1978 A
4111056 Mastromatteo Sep 1978 A
4111629 Nussbaumer et al. Sep 1978 A
4114424 Johnson Sep 1978 A
4114603 Wilkinson Sep 1978 A
4114606 Seylar Sep 1978 A
4120097 Jeter Oct 1978 A
4120134 Scholle Oct 1978 A
4121635 Hansel Oct 1978 A
4123310 Varon et al. Oct 1978 A
4124023 Fleischmann et al. Nov 1978 A
4127110 Bullara Nov 1978 A
4130169 Denison Dec 1978 A
4131596 Allen Dec 1978 A
4133355 Mayer Jan 1979 A
4133367 Abell Jan 1979 A
4135509 Shannon Jan 1979 A
4140131 Dutcher et al. Feb 1979 A
4141348 Hittman Feb 1979 A
4141349 Ory et al. Feb 1979 A
4143661 LaForge et al. Mar 1979 A
4146029 Ellinwood, Jr. Mar 1979 A
4147161 Ikebe et al. Apr 1979 A
4148096 Haas et al. Apr 1979 A
4149423 Frosch et al. Apr 1979 A
4151823 Grosse et al. May 1979 A
4153085 Adams May 1979 A
4156422 Hildebrandt et al. May 1979 A
4160448 Jackson Jul 1979 A
4160971 Jones et al. Jul 1979 A
4166469 Littleford Sep 1979 A
4167304 Gelbke Sep 1979 A
4167952 Reinicke Sep 1979 A
4168567 Leguy et al. Sep 1979 A
4170280 Schwarz Oct 1979 A
4171218 Hoshino et al. Oct 1979 A
4173228 Van Steenwyk et al. Nov 1979 A
4183124 Hoffman Jan 1980 A
4183247 Allen et al. Jan 1980 A
4185641 Minior et al. Jan 1980 A
4186287 Scott Jan 1980 A
4186749 Fryer Feb 1980 A
4186751 Fleischmann Feb 1980 A
4190057 Hill et al. Feb 1980 A
4191004 Gmuer et al. Mar 1980 A
4191187 Wright et al. Mar 1980 A
4192192 Schnell Mar 1980 A
4193397 Tucker et al. Mar 1980 A
4204547 Allocca May 1980 A
4206755 Klein et al. Jun 1980 A
4206761 Cosman Jun 1980 A
4206762 Cosman Jun 1980 A
4207903 O'Neill Jun 1980 A
4212074 Kuno et al. Jul 1980 A
4217221 Masso Aug 1980 A
4217588 Freeny, Jr. Aug 1980 A
4220189 Marquez Sep 1980 A
4221219 Tucker Sep 1980 A
4221523 Eberle Sep 1980 A
4223837 Gubbiotti et al. Sep 1980 A
4226124 Kersten et al. Oct 1980 A
4226229 Eckhart et al. Oct 1980 A
4227533 Godfrey Oct 1980 A
4231376 Lyon et al. Nov 1980 A
4232682 Veth Nov 1980 A
4237900 Schulman et al. Dec 1980 A
4241247 Byrne et al. Dec 1980 A
4241870 Marcus Dec 1980 A
4245593 Stein Jan 1981 A
4246877 Kennedy Jan 1981 A
4247850 Marcus Jan 1981 A
4248238 Joseph et al. Feb 1981 A
4248241 Tacchi Feb 1981 A
4256094 Kapp et al. Mar 1981 A
4256118 Nagel et al. Mar 1981 A
4262343 Claycomb Apr 1981 A
4262632 Hanton et al. Apr 1981 A
4265241 Portner et al. May 1981 A
4265252 Chubbuck et al. May 1981 A
4271018 Drori et al. Jun 1981 A
4273070 Hoefelmayr et al. Jun 1981 A
4274444 Ruyak Jun 1981 A
4275600 Turner et al. Jun 1981 A
4275913 Marcus Jun 1981 A
4278540 Drori et al. Jul 1981 A
4280036 Fukatsu et al. Jul 1981 A
4280775 Wood Jul 1981 A
4281666 Cosman Aug 1981 A
4281667 Cosman Aug 1981 A
4284073 Krause et al. Aug 1981 A
4285770 Chi et al. Aug 1981 A
4291699 Geddes et al. Sep 1981 A
4295963 Drori et al. Oct 1981 A
4297927 Kuroda et al. Nov 1981 A
4303075 Heilman et al. Dec 1981 A
4305402 Katims Dec 1981 A
4312374 Drori et al. Jan 1982 A
4314480 Becker Feb 1982 A
4316693 Baxter et al. Feb 1982 A
4325387 Helfer Apr 1982 A
4327804 Reed May 1982 A
4328654 Van Ginkel et al. May 1982 A
4332254 Lundquist Jun 1982 A
4332255 Hakim et al. Jun 1982 A
4339831 Johnson Jul 1982 A
4342218 Fox Aug 1982 A
4342308 Trick Aug 1982 A
4346604 Snook et al. Aug 1982 A
4347851 Jundaniam Sep 1982 A
4350647 de la Cruz Sep 1982 A
4350970 von Tomkewitsch et al. Sep 1982 A
4351037 Scherbatskoy Sep 1982 A
4351116 Scott, Jr. Sep 1982 A
4356486 Mount Oct 1982 A
4360010 Finney Nov 1982 A
4360277 Daniel et al. Nov 1982 A
4361153 Slocum et al. Nov 1982 A
4363236 Meyers Dec 1982 A
4364276 Schimazoe et al. Dec 1982 A
4365425 Gotchel Dec 1982 A
4368937 Palombo et al. Jan 1983 A
4369013 Abildgaard et al. Jan 1983 A
4373527 Fischell Feb 1983 A
4376523 Goyen et al. Mar 1983 A
4378809 Cosman Apr 1983 A
4380427 Hehl et al. Apr 1983 A
4385636 Cosman May 1983 A
4386422 Mumby et al. May 1983 A
4387715 Hakim et al. Jun 1983 A
4387907 Hiestand et al. Jun 1983 A
4392368 Folkesson et al. Jul 1983 A
4393899 Tsuji et al. Jul 1983 A
4393951 Horst-Rudolf et al. Jul 1983 A
4395232 Koch Jul 1983 A
4395258 Wang et al. Jul 1983 A
4395916 Martin Aug 1983 A
4398983 Suzuki et al. Aug 1983 A
4399705 Weiger et al. Aug 1983 A
4399707 Wamstad Aug 1983 A
4399809 Baro et al. Aug 1983 A
4399821 Bowers Aug 1983 A
4403984 Ash et al. Sep 1983 A
4404968 Evans, Sr. Sep 1983 A
4404974 Titus Sep 1983 A
4405318 Whitney et al. Sep 1983 A
4407125 Parsons et al. Oct 1983 A
4407271 Schiff Oct 1983 A
4407296 Anderson Oct 1983 A
4407326 Wilhelm Oct 1983 A
4408597 Tenney, Jr. Oct 1983 A
4415071 Butler et al. Nov 1983 A
4416282 Saulson et al. Nov 1983 A
4418899 Zimmermann et al. Dec 1983 A
4419393 Hanson et al. Dec 1983 A
4421124 Marshall Dec 1983 A
4421505 Schwartz Dec 1983 A
4424720 Bucchianeri Jan 1984 A
4428228 Banzhaf et al. Jan 1984 A
4428365 Hakky et al. Jan 1984 A
4430899 Wessel et al. Feb 1984 A
4431009 Marino, Jr. et al. Feb 1984 A
4431365 Sturtz, Jr. Feb 1984 A
4432363 Kakegawa et al. Feb 1984 A
4435173 Siposs et al. Mar 1984 A
4439186 Kuhl et al. Mar 1984 A
4441491 Evans, Sr. Apr 1984 A
4441501 Parent Apr 1984 A
4444194 Burcham Apr 1984 A
4444498 Heinemann Apr 1984 A
4445385 Endo May 1984 A
4446711 Valente May 1984 A
4447224 DeCant, Jr. et al. May 1984 A
4449493 Kopec et al. May 1984 A
4450811 Ichikawa et al. May 1984 A
4450946 Olding et al. May 1984 A
4451033 Nestegard May 1984 A
4453537 Spitzer Jun 1984 A
4453578 Wilder Jun 1984 A
4460835 Masuoka et al. Jul 1984 A
4464170 Clemens et al. Aug 1984 A
4465015 Osta et al. Aug 1984 A
4465474 Mardorf et al. Aug 1984 A
4466290 Frick Aug 1984 A
4468172 Dixon et al. Aug 1984 A
4468762 Jurgens et al. Aug 1984 A
4469365 Marcus et al. Sep 1984 A
4471182 Wielgos et al. Sep 1984 A
4471786 Inagaki et al. Sep 1984 A
4473067 Schiff Sep 1984 A
4473078 Angel Sep 1984 A
4476721 Hochreuther et al. Oct 1984 A
4478213 Redding Oct 1984 A
4478538 Kakino et al. Oct 1984 A
4483196 Kurtz et al. Nov 1984 A
4484135 Ishihara et al. Nov 1984 A
4485813 Anderson et al. Dec 1984 A
4489916 Stevens Dec 1984 A
4492632 Mattson Jan 1985 A
4494411 Koschke et al. Jan 1985 A
4494950 Fischell Jan 1985 A
4497176 Rubin et al. Feb 1985 A
4497201 Allen et al. Feb 1985 A
4499394 Koal Feb 1985 A
4499691 Karazim et al. Feb 1985 A
4499750 Gerber et al. Feb 1985 A
4503678 Wimbush et al. Mar 1985 A
4511974 Nakane et al. Apr 1985 A
4513295 Jones et al. Apr 1985 A
4515004 Jaenson May 1985 A
4515750 Pardini et al. May 1985 A
4516866 Yamauchi et al. May 1985 A
4518637 Takeda et al. May 1985 A
4519401 Ko et al. May 1985 A
4520443 Yuki et al. May 1985 A
4522213 Wallroth et al. Jun 1985 A
4527568 Rickards et al. Jul 1985 A
4529401 Leslie et al. Jul 1985 A
4531526 Genest Jul 1985 A
4531936 Gordon Jul 1985 A
4536000 Rohm et al. Aug 1985 A
4537005 Hoyland et al. Aug 1985 A
4537129 Heinemann et al. Aug 1985 A
4538616 Rogoff Sep 1985 A
4540404 Wolvek Sep 1985 A
4542461 Eldridge et al. Sep 1985 A
4544369 Skakoon et al. Oct 1985 A
4545185 Chikatani et al. Oct 1985 A
4546524 Kreft Oct 1985 A
4548209 Wielders et al. Oct 1985 A
4551128 Hakim et al. Nov 1985 A
4552150 Zacouto et al. Nov 1985 A
4553226 Scherbatskoy Nov 1985 A
4556063 Thompson et al. Dec 1985 A
4556086 Raines Dec 1985 A
4557269 Reynolds et al. Dec 1985 A
4557332 Denison et al. Dec 1985 A
4559815 Needham et al. Dec 1985 A
4560979 Rosskopf et al. Dec 1985 A
4561442 Vollmann et al. Dec 1985 A
4562751 Nason et al. Jan 1986 A
4563175 LaFond Jan 1986 A
4565116 Hehl et al. Jan 1986 A
4566456 Koning et al. Jan 1986 A
4569623 Goldmann Feb 1986 A
4570351 Szanto et al. Feb 1986 A
4571161 Leblanc et al. Feb 1986 A
4571749 Fischell Feb 1986 A
4571995 Timme Feb 1986 A
4573835 Eckardt et al. Mar 1986 A
4574792 Trick Mar 1986 A
4576181 Wallace et al. Mar 1986 A
4576183 Plicchi et al. Mar 1986 A
4577512 Lowenheck et al. Mar 1986 A
4581018 Jassawalla et al. Apr 1986 A
4581915 Haulsee et al. Apr 1986 A
4587840 Dobler et al. May 1986 A
4589805 Duffner et al. May 1986 A
4592339 Kuzmak et al. Jun 1986 A
4592340 Boyles Jun 1986 A
4593703 Cosman Jun 1986 A
4595228 Chu Jun 1986 A
4595390 Hakim et al. Jun 1986 A
4596563 Pande Jun 1986 A
4599943 Kobler et al. Jul 1986 A
4600855 Strachan et al. Jul 1986 A
4602541 Benzinger et al. Jul 1986 A
4604089 Santangelo et al. Aug 1986 A
4605354 Daly Aug 1986 A
4606419 Perini Aug 1986 A
4606478 Hack et al. Aug 1986 A
4610256 Wallace Sep 1986 A
4614137 Jones Sep 1986 A
4615691 Hakim et al. Oct 1986 A
4617016 Blomberg et al. Oct 1986 A
4618861 Gettens et al. Oct 1986 A
4620807 Polit Nov 1986 A
4621331 Iwata et al. Nov 1986 A
4622871 Van Sickle et al. Nov 1986 A
4626462 Kober et al. Dec 1986 A
4633304 Nagasaki et al. Dec 1986 A
4633878 Bombardieri et al. Jan 1987 A
4635182 Hintz Jan 1987 A
4637736 Andeen et al. Jan 1987 A
4638665 Benson et al. Jan 1987 A
4644246 Knapen et al. Feb 1987 A
4646553 Tufte et al. Mar 1987 A
4648363 Kronich Mar 1987 A
4648406 Miller Mar 1987 A
4658358 Leach et al. Apr 1987 A
4658760 Zehuhr Apr 1987 A
4660568 Cosman Apr 1987 A
4665511 Rodney et al. May 1987 A
4665896 LaForge et al. May 1987 A
4669484 Masters Jun 1987 A
4672974 Lee Jun 1987 A
4674457 Berger et al. Jun 1987 A
4674546 Fournier et al. Jun 1987 A
4678408 Nason et al. Jul 1987 A
4681559 Hooven Jul 1987 A
4683850 Bauder et al. Aug 1987 A
4685463 Williams Aug 1987 A
4685469 Keller et al. Aug 1987 A
4685903 Cable et al. Aug 1987 A
4686987 Salo et al. Aug 1987 A
4687530 Berscheid et al. Aug 1987 A
4691694 Boyd et al. Sep 1987 A
4691710 Dickens et al. Sep 1987 A
4693253 Adams Sep 1987 A
4695237 Inaba et al. Sep 1987 A
4696189 Hochreuther et al. Sep 1987 A
4697574 Karcher et al. Oct 1987 A
4698038 Key et al. Oct 1987 A
4700497 Sato et al. Oct 1987 A
4700610 Bauer et al. Oct 1987 A
4701143 Key et al. Oct 1987 A
4703756 Gough et al. Nov 1987 A
4705507 Boyles Nov 1987 A
4706948 Kroecher et al. Nov 1987 A
4711249 Brooks Dec 1987 A
4712562 Ohayon et al. Dec 1987 A
4718425 Tanaka et al. Jan 1988 A
4722348 Ligtenberg et al. Feb 1988 A
4724806 Hartwig et al. Feb 1988 A
4724830 Fischell Feb 1988 A
4725826 Hunter Feb 1988 A
4727887 Haber Mar 1988 A
4728479 Merkovsky Mar 1988 A
4729517 Krokor et al. Mar 1988 A
4730188 Milheiser Mar 1988 A
4730420 Stratmann et al. Mar 1988 A
4730619 Koning et al. Mar 1988 A
4731058 Doan Mar 1988 A
4735205 Chachques et al. Apr 1988 A
4738267 Lazorthes et al. Apr 1988 A
4738268 Kipnis Apr 1988 A
4741345 Matthews et al. May 1988 A
4741732 Crankshaw et al. May 1988 A
4743129 Keryhuel et al. May 1988 A
4745541 Vaniglia et al. May 1988 A
4746830 Holland May 1988 A
4750495 Moore et al. Jun 1988 A
4752115 Murray, Jr. et al. Jun 1988 A
4752658 Mack Jun 1988 A
4757463 Ballou et al. Jul 1988 A
4759386 Grouw, III Jul 1988 A
4763649 Merrick Aug 1988 A
4765001 Smith Aug 1988 A
4767406 Wadham et al. Aug 1988 A
4769001 Prince Sep 1988 A
4772257 Hakim et al. Sep 1988 A
4772896 Nakatsu et al. Sep 1988 A
4773401 Citak et al. Sep 1988 A
4774950 Cohen Oct 1988 A
4774955 Jones Oct 1988 A
4777953 Ash et al. Oct 1988 A
4779626 Peel et al. Oct 1988 A
4781192 Demer Nov 1988 A
4782826 Fogarty Nov 1988 A
4783106 Nutter Nov 1988 A
4785822 Wallace Nov 1988 A
4788847 Sterghos Dec 1988 A
4791318 Lewis et al. Dec 1988 A
4794803 Osterhout et al. Jan 1989 A
4796641 Mills et al. Jan 1989 A
4798211 Goor et al. Jan 1989 A
4799491 Eckerle Jan 1989 A
4799625 Weaver, Jr. et al. Jan 1989 A
7987227 Goodwin Jan 1989 B1
4802488 Eckerle Feb 1989 A
4803987 Calfee et al. Feb 1989 A
4804368 Skakoon et al. Feb 1989 A
4807321 Grasselli et al. Feb 1989 A
4808167 Mann et al. Feb 1989 A
4812823 Dickerson Mar 1989 A
4819656 Spector Apr 1989 A
4820265 DeSatnick et al. Apr 1989 A
4820953 Saubolle et al. Apr 1989 A
4821167 Wiebe Apr 1989 A
4821723 Baker, Jr. et al. Apr 1989 A
4823779 Daly et al. Apr 1989 A
4830006 Haluska et al. May 1989 A
4832034 Pizziconi et al. May 1989 A
4833384 Munro et al. May 1989 A
4834731 Nowak et al. May 1989 A
4838857 Strowe et al. Jun 1989 A
4840068 Mayhew, Jr. Jun 1989 A
4840350 Cook et al. Jun 1989 A
4844002 Yasue et al. Jul 1989 A
4846153 Berci Jul 1989 A
4846191 Brockway et al. Jul 1989 A
4846664 Hehl et al. Jul 1989 A
4854328 Pollack Aug 1989 A
4863470 Carter Sep 1989 A
4865587 Walling Sep 1989 A
4867160 Schaldach et al. Sep 1989 A
4867498 Delphia et al. Sep 1989 A
4867618 Brohammer Sep 1989 A
4869252 Gilli Sep 1989 A
4870258 Mochizuki et al. Sep 1989 A
4871351 Feingold et al. Oct 1989 A
4872483 Shah Oct 1989 A
4872869 Johns Oct 1989 A
4873677 Sakamoto et al. Oct 1989 A
4875483 Vollmann et al. Oct 1989 A
4880004 Baker, Jr. et al. Nov 1989 A
4882678 Hollis et al. Nov 1989 A
4886392 Iio Dec 1989 A
4893630 Bray, Jr. Jan 1990 A
4895151 Grevis et al. Jan 1990 A
4896594 Baur et al. Jan 1990 A
4898158 Daly et al. Feb 1990 A
4898578 Rubalcaba, Jr. Feb 1990 A
4899751 Cohen Feb 1990 A
4899752 Cohen Feb 1990 A
4902277 Mathies et al. Feb 1990 A
4903701 Moore et al. Feb 1990 A
4905698 Strohl, Jr. et al. Mar 1990 A
4909678 Kakimoto et al. Mar 1990 A
4913147 Fahlstrom et al. Apr 1990 A
4919143 Ayers Apr 1990 A
4924872 Frank May 1990 A
4926903 Kawai et al. May 1990 A
4932406 Berkovits Jun 1990 A
4934369 Maxwell Jun 1990 A
4936304 Kresh et al. Jun 1990 A
4940037 Eckert et al. Jul 1990 A
4941718 Alexander, III et al. Jul 1990 A
4942004 Catanzaro Jul 1990 A
4944050 Shames et al. Jul 1990 A
4944298 Sholder Jul 1990 A
4944307 Hon et al. Jul 1990 A
4945761 Lessi et al. Aug 1990 A
4949724 Mahutte et al. Aug 1990 A
4952205 Mauerer et al. Aug 1990 A
4952928 Carroll et al. Aug 1990 A
4953563 Kaiser et al. Sep 1990 A
4954677 Alberter et al. Sep 1990 A
4958630 Rosenbluth et al. Sep 1990 A
4958645 Cadell et al. Sep 1990 A
4960424 Grooters Oct 1990 A
4960966 Evans et al. Oct 1990 A
4967585 Grimaldo Nov 1990 A
4967761 Nathanielsz Nov 1990 A
4970823 Chen et al. Nov 1990 A
4971251 Dobrick et al. Nov 1990 A
4977896 Robinson et al. Dec 1990 A
4978335 Arthur, III Dec 1990 A
4978338 Melsky et al. Dec 1990 A
4979730 Holbrook et al. Dec 1990 A
4980671 McCurdy Dec 1990 A
4981141 Segalowitz Jan 1991 A
4981173 Perkins et al. Jan 1991 A
4981426 Aoki et al. Jan 1991 A
4987897 Funke et al. Jan 1991 A
4988337 Ito et al. Jan 1991 A
4992794 Brouwers et al. Feb 1991 A
4997556 Yano et al. Mar 1991 A
5001528 Bahraman Mar 1991 A
5003807 Terrell et al. Apr 1991 A
5003975 Hafelfinger et al. Apr 1991 A
5003976 Alt et al. Apr 1991 A
5004472 Wallace Apr 1991 A
5004873 Schnut Apr 1991 A
5005574 Fearnot et al. Apr 1991 A
5005586 Lahr Apr 1991 A
5006884 Ohta et al. Apr 1991 A
5006997 Reich Apr 1991 A
5007401 Grohn et al. Apr 1991 A
5007430 Dardik Apr 1991 A
5007919 Silva et al. Apr 1991 A
5009662 Wallace et al. Apr 1991 A
5010893 Sholder Apr 1991 A
5012286 Kawano et al. Apr 1991 A
5012810 Strand et al. May 1991 A
5013292 Lemay et al. May 1991 A
5014040 Weaver et al. May 1991 A
5019032 Robertson May 1991 A
5019041 Robinson et al. May 1991 A
5020845 Falcoff et al. Jun 1991 A
5021046 Wallace Jun 1991 A
5022395 Russie Jun 1991 A
5024965 Chang et al. Jun 1991 A
5026180 Tajima et al. Jun 1991 A
5026360 Johnsen et al. Jun 1991 A
5028918 Giles et al. Jul 1991 A
5032822 Sweet Jul 1991 A
5036869 Inahara et al. Aug 1991 A
5038800 Oba et al. Aug 1991 A
5041086 Koenig et al. Aug 1991 A
5041826 Milheiser Aug 1991 A
5042503 Torok et al. Aug 1991 A
5044770 Haghkar Sep 1991 A
5046661 Kimura et al. Sep 1991 A
5048060 Arai et al. Sep 1991 A
5050922 Falcoff Sep 1991 A
5052910 Hehl et al. Oct 1991 A
5053008 Bajaj Oct 1991 A
5057078 Foote et al. Oct 1991 A
5058583 Geddes et al. Oct 1991 A
5061239 Shiels Oct 1991 A
5062052 Sparer et al. Oct 1991 A
5062053 Shirai et al. Oct 1991 A
5064974 Vigneau et al. Nov 1991 A
5067960 Grandjean et al. Nov 1991 A
5068779 Sullivan et al. Nov 1991 A
5069680 Grandjean et al. Dec 1991 A
5077102 Chong Dec 1991 A
5077870 Melbye et al. Jan 1992 A
5078139 Strand et al. Jan 1992 A
5082006 Jonasson et al. Jan 1992 A
5083563 Collins et al. Jan 1992 A
5084699 DeMichele Jan 1992 A
5085224 Galen et al. Feb 1992 A
5085258 Fink, Jr. et al. Feb 1992 A
5089673 Strzodka et al. Feb 1992 A
5089979 McEachern et al. Feb 1992 A
5095309 Troyk et al. Mar 1992 A
5096271 Portman Mar 1992 A
5097831 Lekholm Mar 1992 A
5098384 Abrams Mar 1992 A
5099845 Besz et al. Mar 1992 A
5103832 Jackson Apr 1992 A
5105810 Collins et al. Apr 1992 A
5107850 Olive Apr 1992 A
5112344 Petros et al. May 1992 A
5113859 Funke et al. May 1992 A
5113869 Nappholz et al. May 1992 A
5115676 Lee May 1992 A
5117825 Grevious Jun 1992 A
5120313 Elftman Jun 1992 A
5121777 Leininger et al. Jun 1992 A
5127451 Fink, Jr. et al. Jul 1992 A
5129394 Mehra Jul 1992 A
5129806 Hehl et al. Jul 1992 A
5131145 Badoureaux et al. Jul 1992 A
5131388 Pless et al. Jul 1992 A
5133358 Gustafson et al. Jul 1992 A
5135488 Foote et al. Aug 1992 A
5139484 Hazon et al. Aug 1992 A
5144949 Olson Sep 1992 A
5148580 Dyckow et al. Sep 1992 A
5148695 Ellis Sep 1992 A
5152770 Bangmark et al. Oct 1992 A
5152776 Pinchuk Oct 1992 A
5154170 Bennett et al. Oct 1992 A
5154171 Chirife et al. Oct 1992 A
5154693 East et al. Oct 1992 A
5156972 Issachar et al. Oct 1992 A
5158078 Bennett et al. Oct 1992 A
5163429 Cohen Nov 1992 A
5163904 Lampropoulos et al. Nov 1992 A
5167615 East et al. Dec 1992 A
5168757 Rabenau et al. Dec 1992 A
5168982 Hakanen et al. Dec 1992 A
5171299 Heitzmann et al. Dec 1992 A
5173873 Wu et al. Dec 1992 A
5174286 Chirige et al. Dec 1992 A
5174291 Schoonen et al. Dec 1992 A
5176502 Sanderson et al. Jan 1993 A
5178197 Healy Jan 1993 A
5181423 Philipps et al. Jan 1993 A
5181517 Hickey Jan 1993 A
5184132 Baird Feb 1993 A
5184614 Collins et al. Feb 1993 A
5184619 Austin Feb 1993 A
5185535 Farb et al. Feb 1993 A
5186224 Schirmacher et al. Feb 1993 A
5188106 Nappholz et al. Feb 1993 A
5188604 Orth Feb 1993 A
5192314 Daskalakis Mar 1993 A
5195362 Eason Mar 1993 A
5197322 Indravudh Mar 1993 A
5199427 Strickland Apr 1993 A
5199428 Obel et al. Apr 1993 A
5201753 Lampropoulos et al. Apr 1993 A
5204670 Stinton Apr 1993 A
5207429 Walmsley et al. May 1993 A
5209223 McGorry et al. May 1993 A
5209732 Lampropoulos et al. May 1993 A
5211129 Taylor et al. May 1993 A
5211161 Stef et al. May 1993 A
5212476 Maloney May 1993 A
5213331 Avanzini May 1993 A
5215523 Williams et al. Jun 1993 A
5218343 Stobbe et al. Jun 1993 A
5218957 Strickland Jun 1993 A
5226429 Kuzmak Jul 1993 A
5226604 Seiffert et al. Jul 1993 A
5230694 Rosenblum Jul 1993 A
5233985 Hudrik Aug 1993 A
5235326 Beigel et al. Aug 1993 A
5244269 Harriehausen et al. Sep 1993 A
5244461 Derlien et al. Sep 1993 A
5246008 Mueller et al. Sep 1993 A
5249858 Nusser Oct 1993 A
5250020 Bley Oct 1993 A
5254096 Rondelet et al. Oct 1993 A
5256157 Samiotes et al. Oct 1993 A
5263244 Centa et al. Nov 1993 A
5263981 Polyak et al. Nov 1993 A
5267940 Moulder Dec 1993 A
5267942 Saperston Dec 1993 A
5269891 Colin et al. Dec 1993 A
5271395 Wahlstrand et al. Dec 1993 A
5274859 Redman et al. Jan 1994 A
5280789 Potts Jan 1994 A
5282839 Roline et al. Feb 1994 A
5282840 Hudrlik Feb 1994 A
5291894 Nagy et al. Mar 1994 A
5292219 Merin et al. Mar 1994 A
5295967 Rondelet et al. Mar 1994 A
5298022 Bernardi et al. Mar 1994 A
5298884 Gilmore et al. Mar 1994 A
5300093 Koestner Apr 1994 A
5300120 Knapp et al. Apr 1994 A
5304112 Mrklas et al. Apr 1994 A
5305923 Kirschner et al. Apr 1994 A
5312443 Adams et al. May 1994 A
5312452 Salo May 1994 A
5312453 Shelton et al. May 1994 A
5313953 Yomtov et al. May 1994 A
5314451 Mulier May 1994 A
5314457 Jeutter et al. May 1994 A
5324315 Grevious Jun 1994 A
5325834 Ballheimer et al. Jul 1994 A
5326249 Weissfloch et al. Jul 1994 A
5328460 Lord et al. Jul 1994 A
5330511 Boute et al. Jul 1994 A
5337750 Wallock Aug 1994 A
5341430 Aulia et al. Aug 1994 A
5342401 Spano et al. Aug 1994 A
5342406 Thompson Aug 1994 A
5344388 Maxwell et al. Sep 1994 A
5347476 McBean, Sr. Sep 1994 A
5348210 Linzell et al. Sep 1994 A
5348536 Young et al. Sep 1994 A
5350413 Miller et al. Sep 1994 A
5352180 Candelon et al. Oct 1994 A
5353622 Theener Oct 1994 A
5353800 Pohndorf et al. Oct 1994 A
5354200 Klein et al. Oct 1994 A
5354316 Keimel Oct 1994 A
5354319 Wyborny et al. Oct 1994 A
5360407 Leonard et al. Nov 1994 A
5365462 McBean, Sr. Nov 1994 A
5365619 Solomon Nov 1994 A
5365985 Todd et al. Nov 1994 A
5368040 Carney Nov 1994 A
5370665 Hudrlik Dec 1994 A
5373852 Harrison et al. Dec 1994 A
5375073 McBean Dec 1994 A
5377128 McBean Dec 1994 A
5378231 Johnson et al. Jan 1995 A
5382232 Hague et al. Jan 1995 A
5383915 Adams Jan 1995 A
5388578 Yomtov et al. Feb 1995 A
5388586 Lee et al. Feb 1995 A
5388831 Quadri et al. Feb 1995 A
5394909 Mitchell et al. Mar 1995 A
5396899 Strittmatter Mar 1995 A
5402944 Pape et al. Apr 1995 A
5406957 Tansey Apr 1995 A
5409009 Olson Apr 1995 A
5411031 Yomtov May 1995 A
5411551 Winston et al. May 1995 A
5411552 Andersen et al. May 1995 A
5416372 Ljungstroem et al. May 1995 A
5417226 Juma May 1995 A
5417717 Salo et al. May 1995 A
5425362 Siker et al. Jun 1995 A
5425713 Taylor et al. Jun 1995 A
5431171 Harrison et al. Jul 1995 A
5431629 Lampropoulos et al. Jul 1995 A
5431694 Snaper et al. Jul 1995 A
5433694 Lim et al. Jul 1995 A
5437605 Helmy et al. Aug 1995 A
5443215 Fackler Aug 1995 A
5447519 Peterson Sep 1995 A
5449345 Taylor et al. Sep 1995 A
5449368 Kuzmak Sep 1995 A
5456690 Duong-Van Oct 1995 A
5461293 Rozman et al. Oct 1995 A
5461390 Hoshen Oct 1995 A
5464435 Neumann Nov 1995 A
5467627 Smith et al. Nov 1995 A
5474226 Joseph Dec 1995 A
5479818 Walter et al. Jan 1996 A
5482049 Addiss et al. Jan 1996 A
5487760 Villafana Jan 1996 A
5490514 Rosenberg Feb 1996 A
5493738 Sanderson et al. Feb 1996 A
5494036 Uber, III et al. Feb 1996 A
5494193 Kirschner et al. Feb 1996 A
5504474 Libman et al. Apr 1996 A
5505916 Berry, Jr. Apr 1996 A
5507412 Ebert et al. Apr 1996 A
5507737 Palmskog et al. Apr 1996 A
5507785 Deno Apr 1996 A
5509888 Miller Apr 1996 A
5509891 DeRidder Apr 1996 A
5513945 Hartmann et al. May 1996 A
5514103 Srisathapat et al. May 1996 A
5518504 Polyak May 1996 A
5520606 Schoolman et al. May 1996 A
5523740 Burgmann et al. Jun 1996 A
5534018 Wahlstrand et al. Jul 1996 A
5535752 Halperin et al. Jul 1996 A
5538005 Harrison et al. Jul 1996 A
5540731 Testerman Jul 1996 A
5541857 Walter et al. Jul 1996 A
5545140 Conero et al. Aug 1996 A
5545151 O'Connor et al. Aug 1996 A
5545186 Olson et al. Aug 1996 A
5545214 Stevens Aug 1996 A
5547470 Johnson et al. Aug 1996 A
5551427 Altman Sep 1996 A
5551439 Hickey Sep 1996 A
5554185 Block et al. Sep 1996 A
5558644 Boyd et al. Sep 1996 A
5564434 Halperin et al. Oct 1996 A
5575770 Melsky et al. Nov 1996 A
5584803 Stevens et al. Dec 1996 A
5586629 Shoberg et al. Dec 1996 A
5591171 Brown Jan 1997 A
5592939 Martinelli Jan 1997 A
5593430 Renger Jan 1997 A
5594665 Walter et al. Jan 1997 A
5596986 Goldfarb Jan 1997 A
5597284 Weltlich et al. Jan 1997 A
5610083 Chan et al. Mar 1997 A
5611768 Tutrone, Jr. Mar 1997 A
5612497 Walter et al. Mar 1997 A
5615671 Schoonen et al. Apr 1997 A
5619991 Sloane Apr 1997 A
5622869 Lewis et al. Apr 1997 A
5625946 Wildeson et al. May 1997 A
5626623 Kieval et al. May 1997 A
5626630 Markowitz et al. May 1997 A
5630836 Prem et al. May 1997 A
5634255 Bishop et al. Jun 1997 A
5637083 Bertrand et al. Jun 1997 A
5643207 Rise Jul 1997 A
5645065 Shapiro et al. Jul 1997 A
5645116 McDonald Jul 1997 A
5650766 Burgmann et al. Jul 1997 A
5673585 Bishop et al. Oct 1997 A
5676690 Noren et al. Oct 1997 A
5681285 Ford et al. Oct 1997 A
5686831 Vandervalk et al. Nov 1997 A
5687734 Dempsey et al. Nov 1997 A
5693076 Kaemmerer Dec 1997 A
5702368 Stevens et al. Dec 1997 A
5702427 Ecker et al. Dec 1997 A
5702431 Wang et al. Dec 1997 A
5704352 Tremblay et al. Jan 1998 A
5711302 Lampropoulos et al. Jan 1998 A
5715786 Seiberth et al. Feb 1998 A
5715837 Chen Feb 1998 A
5716342 Dumbraveanu et al. Feb 1998 A
5720436 Buschor et al. Feb 1998 A
5721382 Kriesel et al. Feb 1998 A
5730101 Aupperle et al. Mar 1998 A
5732710 Rabinovich et al. Mar 1998 A
5733313 Barreras, Sr. et al. Mar 1998 A
5738652 Boyd et al. Apr 1998 A
5742233 Hoffman et al. Apr 1998 A
5743267 Nikolic et al. Apr 1998 A
5749369 Rabinovich et al. May 1998 A
5749909 Schroeppel et al. May 1998 A
5755687 Donion May 1998 A
5755748 Borza et al. May 1998 A
5765568 Sweezer, Jr. et al. Jun 1998 A
5769812 Stevens et al. Jun 1998 A
5771903 Jakobsson Jun 1998 A
5782774 Shmulewitz Jul 1998 A
5787520 Dunbar Aug 1998 A
5791344 Schulman et al. Aug 1998 A
5792094 Stevens et al. Aug 1998 A
5792179 Sideris Aug 1998 A
5795325 Valley et al. Aug 1998 A
5796827 Coppersmith et al. Aug 1998 A
5797403 DiLorenzo Aug 1998 A
5800375 Sweezer et al. Sep 1998 A
5803917 Butter field et al. Sep 1998 A
5807265 Itoigawa et al. Sep 1998 A
5807336 Russo et al. Sep 1998 A
5810015 Flaherty Sep 1998 A
5810757 Sweezer, Jr. et al. Sep 1998 A
5810841 McNeirney et al. Sep 1998 A
5814016 Valley et al. Sep 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5833603 Kovacs et al. Nov 1998 A
5836300 Mault Nov 1998 A
5836886 Itoigawa et al. Nov 1998 A
5840081 Andersen et al. Nov 1998 A
5849225 Ebina et al. Dec 1998 A
5855597 Jayaraman et al. Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5860938 Lafontaine et al. Jan 1999 A
5861018 Feierbach Jan 1999 A
5863366 Snow Jan 1999 A
5868702 Stevens et al. Feb 1999 A
5873837 Lieber et al. Feb 1999 A
5875953 Shioya et al. Mar 1999 A
5879499 Corvi Mar 1999 A
5881919 Womac et al. Mar 1999 A
5885238 Stevens et al. Mar 1999 A
5887475 Muldner Mar 1999 A
5899927 Ecker et al. May 1999 A
5916179 Sharrock Jun 1999 A
5916237 Schu Jun 1999 A
5928182 Kraus et al. Jul 1999 A
5935078 Feierbach Aug 1999 A
5935083 Williams Aug 1999 A
5938669 Klaiber et al. Aug 1999 A
5951487 Brehmeier-Flick et al. Sep 1999 A
5957861 Combs et al. Sep 1999 A
5967986 Cimochowski et al. Oct 1999 A
5970801 Ciobanu et al. Oct 1999 A
5971934 Scherer et al. Oct 1999 A
5974873 Nelson et al. Nov 1999 A
5978985 Thurman Nov 1999 A
5993395 Shulze Nov 1999 A
5993398 Alperin Nov 1999 A
5995874 Borza et al. Nov 1999 A
6009878 Weijand et al. Jan 2000 A
6010482 Kriesel et al. Jan 2000 A
6015386 Kensey et al. Jan 2000 A
6015387 Schwartz et al. Jan 2000 A
6019729 Itoigawa et al. Feb 2000 A
6024704 Meador et al. Feb 2000 A
6030413 Lazarus Feb 2000 A
6035461 Nguyen Mar 2000 A
6053873 Govari et al. Apr 2000 A
6056723 Donlon May 2000 A
6058330 Borza et al. May 2000 A
6059757 Macoviak et al. May 2000 A
6067474 Schulman et al. May 2000 A
6067991 Forsell et al. May 2000 A
6071267 Zamierowski Jun 2000 A
6076016 Feierbach Jun 2000 A
6083174 Brehmeier-Flick et al. Jul 2000 A
6087831 Bornert et al. Jul 2000 A
6090096 St. Goar et al. Jul 2000 A
6102678 Peciat et al. Aug 2000 A
6102856 Groff et al. Aug 2000 A
6102922 Jakobsson et al. Aug 2000 A
6106477 Meisel et al. Aug 2000 A
6106551 Crossett et al. Aug 2000 A
6110145 Macoviak Aug 2000 A
6113553 Chubbuck Sep 2000 A
6131664 Sonnier Oct 2000 A
6135945 Sultan Oct 2000 A
6152885 Taepke Nov 2000 A
6158965 Butterfield et al. Dec 2000 A
6159156 Van Bockel et al. Dec 2000 A
6162180 Miesel et al. Dec 2000 A
6162245 Jayaraman et al. Dec 2000 A
6168614 Andersen et al. Jan 2001 B1
6171252 Roberts Jan 2001 B1
6210347 Forsell Apr 2001 B1
6216028 Haynor et al. Apr 2001 B1
6234745 Pugh et al. May 2001 B1
6240316 Richmond et al. May 2001 B1
6240318 Phillips May 2001 B1
6245102 Jayaraman Jun 2001 B1
6248080 Miesel et al. Jun 2001 B1
6251093 Valley et al. Jun 2001 B1
6269819 Oz et al. Aug 2001 B1
6277078 Porat et al. Aug 2001 B1
6285897 Kilcoyne et al. Sep 2001 B1
6292697 Roberts Sep 2001 B1
6305381 Weijand et al. Oct 2001 B1
6309350 VanTassel et al. Oct 2001 B1
6315769 Peer et al. Nov 2001 B1
6319208 Abita et al. Nov 2001 B1
6328699 Eigler et al. Dec 2001 B1
6338735 Stevens Jan 2002 B1
6357438 Hansen Mar 2002 B1
6360122 Fischell et al. Mar 2002 B1
6360822 Robertson et al. Mar 2002 B1
6366799 Acker et al. Apr 2002 B1
6366817 Kung Apr 2002 B1
6379308 Brockway et al. Apr 2002 B1
6379380 Satz Apr 2002 B1
6398752 Sweezer, Jr. et al. Jun 2002 B1
6409674 Brockway et al. Jun 2002 B1
6416291 Butterfield et al. Jul 2002 B1
6423031 Donlon Jul 2002 B1
6430444 Borza et al. Aug 2002 B1
6431175 Penner et al. Aug 2002 B1
6432040 Meah Aug 2002 B1
6443887 Derus et al. Sep 2002 B1
6443893 Schnakenberg et al. Sep 2002 B1
6450173 Forsell Sep 2002 B1
6450543 Fukano et al. Sep 2002 B1
6450946 Forsell Sep 2002 B1
6453907 Forsell Sep 2002 B1
6454699 Forsell Sep 2002 B1
6454700 Forsell Sep 2002 B1
6454701 Forsell et al. Sep 2002 B1
6460543 Forsell Oct 2002 B1
6461292 Forsell et al. Oct 2002 B1
6461293 Forsell et al. Oct 2002 B1
6463329 Goedeke Oct 2002 B1
6463935 Forsell Oct 2002 B1
6464628 Forsell Oct 2002 B1
6470212 Weijand et al. Oct 2002 B1
6470213 Alley Oct 2002 B1
6470892 Forsell Oct 2002 B1
6471635 Forsell Oct 2002 B1
6475136 Forsell Nov 2002 B1
6475170 Doron et al. Nov 2002 B1
6481292 Reich Nov 2002 B1
6482145 Forsell Nov 2002 B1
6482171 Corvi et al. Nov 2002 B1
6482177 Leinders et al. Nov 2002 B1
6486588 Doron et al. Nov 2002 B2
6503189 Forsell et al. Jan 2003 B1
6503208 Skovlund et al. Jan 2003 B1
6504286 Porat et al. Jan 2003 B1
6505062 Ritter et al. Jan 2003 B1
6511490 Robert Jan 2003 B2
6516212 Bladen et al. Feb 2003 B1
6531739 Cable et al. Mar 2003 B2
6533719 Kuyava et al. Mar 2003 B2
6533733 Ericson et al. Mar 2003 B1
6542350 Rogers Apr 2003 B1
6558321 Burd et al. May 2003 B1
6558994 Cha et al. May 2003 B2
6573563 Lee et al. Jun 2003 B2
6582462 Andersen et al. Jun 2003 B1
6587709 Solf et al. Jul 2003 B2
6589189 Meyerson et al. Jul 2003 B2
6599250 Webb et al. Jul 2003 B2
6605112 Moll et al. Aug 2003 B1
6629534 St. Goar et al. Oct 2003 B1
6640137 MacDonald Oct 2003 B2
6641610 Wolf et al. Nov 2003 B2
6645143 VanTassel et al. Nov 2003 B2
6654629 Montegrande Nov 2003 B2
6673109 Cox Jan 2004 B2
6678561 Forsell et al. Jan 2004 B2
6682480 Habib et al. Jan 2004 B1
6682503 Fariss et al. Jan 2004 B1
6682559 Myers Jan 2004 B2
6689046 Sayet et al. Feb 2004 B2
6690963 Ben-Haim et al. Feb 2004 B2
6695866 Kuehn et al. Feb 2004 B1
6709385 Forsell et al. Mar 2004 B2
6718200 Marmaropoulos et al. Apr 2004 B2
6719787 Cox Apr 2004 B2
6719788 Cox Apr 2004 B2
6719789 Cox Apr 2004 B2
6731976 Penn et al. May 2004 B2
6733525 Yang et al. May 2004 B2
6736846 Cox May 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6757557 Bladen et al. Jun 2004 B1
6779851 Bouchiere Aug 2004 B2
6796942 Kreiner et al. Sep 2004 B1
6822343 Estevez Nov 2004 B2
6851628 Garrison et al. Feb 2005 B1
6855115 Fonseca et al. Feb 2005 B2
6889772 Buytaeft et al. May 2005 B2
6890300 Lloyd et al. May 2005 B2
6896651 Gross et al. May 2005 B2
6898690 Lambrecht et al. May 2005 B2
6913600 Valley et al. Jul 2005 B2
6915165 Forsell et al. Jul 2005 B2
6926246 Ginggen et al. Aug 2005 B2
6929653 Strecter Aug 2005 B2
6932792 St. Goar et al. Aug 2005 B1
6951229 Garrison et al. Oct 2005 B2
6951571 Srivastava Oct 2005 B1
6953429 Forsell et al. Oct 2005 B2
6961619 Casey Nov 2005 B2
6970742 Mann et al. Nov 2005 B2
6979350 Moll et al. Dec 2005 B2
6985078 Suzuki et al. Jan 2006 B2
6989027 Allen et al. Jan 2006 B2
7011095 Wolf et al. Mar 2006 B2
7011624 Forsell et al. Mar 2006 B2
7017583 Forsell et al. Mar 2006 B2
7018406 Seguin et al. Mar 2006 B2
7021402 Beato et al. Apr 2006 B2
7025727 Brockway et al. Apr 2006 B2
7044920 Letort et al. May 2006 B2
7060080 Bachmann et al. Jun 2006 B2
7081683 Ariav et al. Jul 2006 B2
7109933 Ito et al. Sep 2006 B2
7131447 Sterman et al. Nov 2006 B2
7131945 Fink et al. Nov 2006 B2
7134580 Garrison et al. Nov 2006 B2
7143462 Hohlbein Dec 2006 B2
7144400 Byrum et al. Dec 2006 B2
7147640 Huebner et al. Dec 2006 B2
7153262 Stivoric et al. Dec 2006 B2
7187978 Makek et al. Mar 2007 B2
7225032 Schmeling et al. May 2007 B2
7257438 Kinast Aug 2007 B2
7285090 Stivoric et al. Oct 2007 B2
20010011543 Forsell Aug 2001 A1
20010041823 Snyder et al. Nov 2001 A1
20020049394 Roy et al. Apr 2002 A1
20020120200 Brockway et al. Aug 2002 A1
20020138009 Brockway et al. Sep 2002 A1
20020177782 Penner Nov 2002 A1
20030009201 Forsell Jan 2003 A1
20030023134 Tracey Jan 2003 A1
20030030893 Cornelius et al. Feb 2003 A1
20030032857 Forsell Feb 2003 A1
20030037591 Ashton et al. Feb 2003 A1
20030045775 Forsell Mar 2003 A1
20030066536 Forsell Apr 2003 A1
20030088148 Forsell May 2003 A1
20030092962 Forsell May 2003 A1
20030093117 Saadat May 2003 A1
20030100929 Forsell May 2003 A1
20030105385 Forsell Jun 2003 A1
20030109771 Forsell Jun 2003 A1
20030114729 Forsell Jun 2003 A1
20030120150 Govari Jun 2003 A1
20030125605 Forsell Jul 2003 A1
20030125768 Peter Jul 2003 A1
20030135089 Forsell Jul 2003 A1
20030135090 Forsell Jul 2003 A1
20030136417 Fonseca et al. Jul 2003 A1
20030144648 Forsell Jul 2003 A1
20030163079 Burnett Aug 2003 A1
20030216666 Ericson et al. Nov 2003 A1
20030225371 Hadzic et al. Dec 2003 A1
20040014456 Vnnen Jan 2004 A1
20040039256 Kawatahara et al. Feb 2004 A1
20040054351 Deniega et al. Mar 2004 A1
20040054352 Clark et al. Mar 2004 A1
20040055610 Forsell Mar 2004 A1
20040064030 Forsell Apr 2004 A1
20040082867 Esch et al. Apr 2004 A1
20040082904 Houde et al. Apr 2004 A1
20040106874 Eigler et al. Jun 2004 A1
20040113790 Hamel et al. Jun 2004 A1
20040133092 Kain Jul 2004 A1
20040143212 Trombley et al. Jul 2004 A1
20040147969 Mann et al. Jul 2004 A1
20040172087 Forsell Sep 2004 A1
20040186396 Roy et al. Sep 2004 A1
20040193045 Scarborough et al. Sep 2004 A1
20040215159 Forsell Oct 2004 A1
20040243148 Wasielewski Dec 2004 A1
20040254537 Conlon et al. Dec 2004 A1
20050004516 Vanney Jan 2005 A1
20050015014 Fonseca et al. Jan 2005 A1
20050025979 Sandt et al. Feb 2005 A1
20050027175 Yang Feb 2005 A1
20050027998 Teglia et al. Feb 2005 A1
20050038328 Stoehrer et al. Feb 2005 A1
20050061079 Schulman Mar 2005 A1
20050065450 Stuebe et al. Mar 2005 A1
20050102026 Turner et al. May 2005 A1
20050159789 Brockway et al. Jul 2005 A1
20050165317 Turner et al. Jul 2005 A1
20050182330 Brockway et al. Aug 2005 A1
20050187482 O'Brien et al. Aug 2005 A1
20050187488 Wolf Aug 2005 A1
20050192642 Forsell Sep 2005 A1
20050203360 Brauker et al. Sep 2005 A1
20050240144 Wassermann et al. Oct 2005 A1
20050240155 Conlon Oct 2005 A1
20050240156 Conlon Oct 2005 A1
20050250979 Coe Nov 2005 A1
20050267406 Hassler Dec 2005 A1
20050267500 Hassler, Jr. et al. Dec 2005 A1
20050272968 Byrum et al. Dec 2005 A1
20050277960 Hassler et al. Dec 2005 A1
20050277974 Hassler et al. Dec 2005 A1
20050288604 Eigler et al. Dec 2005 A1
20050288720 Ross et al. Dec 2005 A1
20050288721 Girouard et al. Dec 2005 A1
20050288739 Hassler et al. Dec 2005 A1
20050288740 Hassler Dec 2005 A1
20050288741 Hassler et al. Dec 2005 A1
20050288742 Giordano et al. Dec 2005 A1
20060002035 Gao et al. Jan 2006 A1
20060010090 Brockway et al. Jan 2006 A1
20060020224 Geiger Jan 2006 A1
20060020305 Desai et al. Jan 2006 A1
20060035446 Chang et al. Feb 2006 A1
20060047205 Ludomirsky et al. Mar 2006 A1
20060049714 Liu et al. Mar 2006 A1
20060058627 Flaherty et al. Mar 2006 A1
20060064134 Mazar et al. Mar 2006 A1
20060085051 Fritsch Apr 2006 A1
20060089571 Gertner Apr 2006 A1
20060089619 Ginggen Apr 2006 A1
20060094966 Brockway et al. May 2006 A1
20060100531 Moser May 2006 A1
20060113187 Deng et al. Jun 2006 A1
20060118793 Yang et al. Jun 2006 A1
20060122285 Falloon et al. Jun 2006 A1
20060122863 Gottesman et al. Jun 2006 A1
20060142635 Forsell Jun 2006 A1
20060149124 Forsell Jul 2006 A1
20060149161 Wilson et al. Jul 2006 A1
20060149324 Mann et al. Jul 2006 A1
20060149327 Hedberg et al. Jul 2006 A1
20060157701 Bauer et al. Jul 2006 A1
20060161186 Hassler et al. Jul 2006 A1
20060178617 Adams et al. Aug 2006 A1
20060178695 Decant et al. Aug 2006 A1
20060183967 Lechner Aug 2006 A1
20060184206 Baker et al. Aug 2006 A1
20060189887 Hassler et al. Aug 2006 A1
20060189888 Hassler et al. Aug 2006 A1
20060189889 Gertner Aug 2006 A1
20060199997 Hassler, Jr. et al. Sep 2006 A1
20060211912 Dlugos et al. Sep 2006 A1
20060211913 Dlugos et al. Sep 2006 A1
20060211914 Hassler et al. Sep 2006 A1
20060217668 Schulze et al. Sep 2006 A1
20060217673 Schulze et al. Sep 2006 A1
20060235310 O'Brien et al. Oct 2006 A1
20060235439 Molitor et al. Oct 2006 A1
20060235448 Roslin et al. Oct 2006 A1
20060244914 Cech et al. Nov 2006 A1
20060247682 Gerber et al. Nov 2006 A1
20060247719 Maschino et al. Nov 2006 A1
20060247721 Maschino et al. Nov 2006 A1
20060247722 Maschino et al. Nov 2006 A1
20060247723 Gerber et al. Nov 2006 A1
20060247724 Gerber et al. Nov 2006 A1
20060247725 Gerber et al. Nov 2006 A1
20060252982 Hassler et al. Nov 2006 A1
20060293625 Hunt et al. Dec 2006 A1
20060293626 Byrum et al. Dec 2006 A1
20060293627 Byrum et al. Dec 2006 A1
20070010790 Byrum et al. Jan 2007 A1
20070027356 Ortiz Feb 2007 A1
20070027493 Ben-Haim et al. Feb 2007 A1
20070067206 Haggerty et al. Mar 2007 A1
20070070906 Thakur Mar 2007 A1
20070072452 Inagaki et al. Mar 2007 A1
20070081304 Takeguchi Apr 2007 A1
20070156013 Birk Jul 2007 A1
20070167672 Dlugos et al. Jul 2007 A1
20070173881 Birk et al. Jul 2007 A1
20070179583 Goetzinger et al. Aug 2007 A1
20070208313 Conlon et al. Sep 2007 A1
20070225781 Saadat et al. Sep 2007 A1
20080009680 Hassler Jan 2008 A1
20080172072 Pool et al. Jul 2008 A1
20080250340 Dlugos et al. Oct 2008 A1
20080250341 Dlugos et al. Oct 2008 A1
20090005703 Fasciano Jan 2009 A1
Foreign Referenced Citations (161)
Number Date Country
729 467 Feb 2001 AU
1059035 Jul 1979 CA
1119469 Mar 1982 CA
1275135 Oct 1990 CA
1277885 Dec 1990 CA
1317482 May 1993 CA
2082015 May 1993 CA
1327191 Feb 1994 CA
2119101 Sep 1994 CA
2305998 Apr 1999 CA
1119469 Mar 1982 CN
1059035 Feb 1992 CN
1241003 Jan 2000 CN
9416395 Dec 1994 DE
10156494 Jun 2003 DE
0417171 Mar 1991 EP
0508141 Oct 1992 EP
0568730 Nov 1993 EP
0605302 Jul 1994 EP
0 654 232 May 1995 EP
0660482 Jun 1995 EP
0714017 May 1996 EP
0769340 Apr 1997 EP
0846475 Jun 1998 EP
0848780 Jun 1998 EP
0876808 Nov 1998 EP
0888079 Jan 1999 EP
0914059 May 1999 EP
0981293 Mar 2000 EP
0997680 May 2000 EP
1003021 May 2000 EP
1022983 Aug 2000 EP
1050265 Nov 2000 EP
1115329 Jul 2001 EP
1119314 Aug 2001 EP
1128871 Sep 2001 EP
1202674 May 2002 EP
1213991 Jun 2002 EP
1253877 Nov 2002 EP
1253879 Nov 2002 EP
1253880 Nov 2002 EP
1253881 Nov 2002 EP
1253883 Nov 2002 EP
1253888 Nov 2002 EP
1255511 Nov 2002 EP
1255513 Nov 2002 EP
1255514 Nov 2002 EP
1263355 Dec 2002 EP
1263357 Dec 2002 EP
1284691 Feb 2003 EP
1374758 Jan 2004 EP
4581 Jun 2004 EP
1442715 Aug 2004 EP
1488735 Dec 2004 EP
1500411 Jan 2005 EP
1510306 Mar 2005 EP
1518514 Mar 2005 EP
1545303 Jun 2005 EP
1547549 Jun 2005 EP
1563814 Aug 2005 EP
1568338 Aug 2005 EP
1582175 Oct 2005 EP
1582176 Oct 2005 EP
1584303 Oct 2005 EP
1586283 Oct 2005 EP
1591086 Nov 2005 EP
1593359 Nov 2005 EP
1598030 Nov 2005 EP
1600120 Nov 2005 EP
1609440 Dec 2005 EP
1649884 Apr 2006 EP
1674033 Jun 2006 EP
1 676 527 Jul 2006 EP
1676527 Jul 2006 EP
1736123 Dec 2006 EP
1799119 Jun 2007 EP
2355937 May 2001 GB
2006175191 Jul 2006 JP
WO 8911244 Nov 1989 WO
WO 8911701 Nov 1989 WO
WO 9004368 May 1990 WO
WO 9511057 Apr 1995 WO
WO 9715351 May 1997 WO
WO 9733513 Sep 1997 WO
WO 9833554 Aug 1998 WO
WO 9835610 Aug 1998 WO
WO 9901063 Jan 1999 WO
WO 9918850 Apr 1999 WO
WO 0004945 Feb 2000 WO
WO 0033738 Jun 2000 WO
WO 0072899 Dec 2000 WO
WO 0104487 Jan 2001 WO
WO 0112075 Feb 2001 WO
WO 0112076 Feb 2001 WO
WO 0112077 Feb 2001 WO
WO 0112078 Feb 2001 WO
WO 0121066 Mar 2001 WO
WO 0136014 May 2001 WO
WO 0145485 Jun 2001 WO
WO 0145486 Jun 2001 WO
WO 0147431 Jul 2001 WO
WO 0147432 Jul 2001 WO
WO 0147433 Jul 2001 WO
WO 0147434 Jul 2001 WO
WO 0147435 Jul 2001 WO
WO 0147440 Jul 2001 WO
WO 0147575 Jul 2001 WO
WO 0148451 Jul 2001 WO
WO 0149245 Jul 2001 WO
WO 0150832 Jul 2001 WO
WO 0150833 Jul 2001 WO
WO 0154626 Aug 2001 WO
WO 0158388 Aug 2001 WO
WO 0158390 Aug 2001 WO
WO 0158391 Aug 2001 WO
WO 0158393 Aug 2001 WO
WO 01 60453 Aug 2001 WO
WO 0181890 Nov 2001 WO
WO 0200118 Jan 2002 WO
WO 0215769 Feb 2002 WO
WO 0226161 Apr 2002 WO
WO 02053228 Jul 2002 WO
WO 02055126 Jul 2002 WO
WO 02058551 Aug 2002 WO
WO 02065894 Aug 2002 WO
WO 02076289 Oct 2002 WO
WO 02082984 Oct 2002 WO
WO 02089655 Nov 2002 WO
WO 02090894 Nov 2002 WO
WO 03002192 Jan 2003 WO
WO 03002193 Jan 2003 WO
WO 03061467 Jan 2003 WO
WO 03020182 Mar 2003 WO
WO 03043534 May 2003 WO
WO 03061504 Jul 2003 WO
WO 03096889 Nov 2003 WO
WO 2004014245 Feb 2004 WO
WO 2004014456 Feb 2004 WO
WO 2004019773 Mar 2004 WO
WO 2004030541 Apr 2004 WO
WO 2004058101 Jul 2004 WO
WO 2004066879 Aug 2004 WO
WO 2004110263 Dec 2004 WO
WO 2005000206 Jan 2005 WO
WO 2005007075 Jan 2005 WO
WO 2005027998 Mar 2005 WO
WO 2005084544 Sep 2005 WO
WO 2005107583 Nov 2005 WO
WO 2006001851 Jan 2006 WO
WO 2006018927 Feb 2006 WO
WO 2006035446 Apr 2006 WO
WO 2006113187 Oct 2006 WO
WO 2006122285 Nov 2006 WO
WO 2007067206 Jun 2007 WO
WO 2007070906 Jun 2007 WO
WO 2007072452 Jun 2007 WO
WO 2007081304 Jul 2007 WO
WO 2007104356 Sep 2007 WO
WO20 07140430 Dec 2007 WO
WO 2007140430 Dec 2007 WO
WO 2008088949 Jul 2008 WO
Related Publications (1)
Number Date Country
20060199997 A1 Sep 2006 US
Continuation in Parts (2)
Number Date Country
Parent 11167861 Jun 2005 US
Child 11398940 US
Parent 11065410 Feb 2005 US
Child 11167861 US