Monitoring of distributed power harvesting systems using DC power sources

Information

  • Patent Grant
  • 11002774
  • Patent Number
    11,002,774
  • Date Filed
    Thursday, March 19, 2020
    4 years ago
  • Date Issued
    Tuesday, May 11, 2021
    3 years ago
Abstract
A system includes a control circuit and a computer. The control circuit includes a control circuit configured to receive data from at least one solar panel, convert the received data according to a communication protocol, and forward the converted data via the communication protocol. The computer includes software that, when executed by the computer, causes the computer to receive, via the communication protocol, the converted data, detect, based on the received converted data, a problem in the at least one solar panel, and output, to a display and based on the detected problem, a status of the at least one solar panel corresponding to a time at which the data was collected.
Description
BACKGROUND
1. Field of the Invention

The field of the invention generally relates to management of distributed DC power sources and, more particularly, to monitoring of distributed DC power sources, such as solar cell array, fuel cells, batteries, and similar applications.


2. Related Arts

The recent increased interest in renewable energy has led to increased research in systems for distributed generation of energy, such as photovoltaic cells (PV), fuel cells, batteries (e.g., for hybrid cars), etc. Various topologies have been proposed for connecting these power sources to the load, taking into consideration various parameters, such as voltage/current requirements, operating conditions, reliability, safety, costs, etc. For example, most of these sources provide low voltage output (normally lower than 3V), so that many of them need to be connected serially to achieve the require operating voltage. Conversely, a serial connection may fail to provide the required current, so that several strings of serial connections may need to be connected in parallel to provide the required current.


It is also known that power generation from each of these sources depends on manufacturing, operating, and environmental conditions. For example, various inconsistencies in manufacturing may cause two identical sources to provide different output characteristics. Similarly, two identical sources may react differently to operating and/or environmental conditions, such as load, temperature, etc. In practical installations, different source may also experience different environmental conditions, e.g., in solar power installations some panels may be exposed to full sun, while others be shaded, thereby delivering different power output. While these problems and the solutions provided by the subject invention are applicable to any distributed power system, the following discussion turns to solar energy so as to provide better understanding by way of a concrete example.


A conventional installation of solar power system 10 is illustrated in FIG. 1. Since the voltage provided by each individual solar panel 101 is low, several panels are connected in series to form a string of panels 103. For a large installation, when higher current is required, several strings 103 may be connected in parallel to form the overall system 10. The solar panels are mounted outdoors, and their leads are connected to a maximum power point tracking (MPPT) module 107 and then to an inverter box 104. The MPPT 107 is typically implemented as part of the inverter 104.


The harvested power from the DC sources is delivered to the inverter 104, which converts the fluctuating direct-current (DC) into alternating-current (AC) having a desired voltage and frequency, which, for residential application, is usually 110V or 220V at 60 Hz or 220V at 50 Hz. The AC current from the inverter 104 may then be used for operating electric appliances or fed to the power grid. Alternatively, if the installation is not tied to the grid, the power extracted from the inverter may be directed to a conversion and charge/discharge circuit to store the excess power created as charge in batteries. In case of a battery-tied application, the inversion stage might be skipped altogether, and the DC output of the MPPT stage 107 may be fed into the charge/discharge circuit.



FIG. 2 illustrates one serial string of DC sources, e.g., solar panels 201a-201d, connected to MPPT circuit 207 and inverter 204. The current versus voltage (IV) characteristics are plotted (210a-210d) to the left of each DC source 201. For each DC source 201, the current decreases as the output voltage increases. At some voltage value the current goes to zero, and in some applications may assume a negative value, meaning that the source becomes a sink. Bypass diodes are used to prevent the source from becoming a sink. The power output of each source 201, which is equal to the product of current and voltage (P=I*V), varies depending on the voltage drawn from the source. At a certain current and voltage, the power reaches its maximum. It is desirable to operate a power generating cell at this maximum power point. The purpose of the MPPT is to find this point and operate the system at this point so as to draw the maximum power from the sources.


Various environmental and operational conditions impact the power output of DC power sources. For example, the solar energy incident on various panels, ambient temperature and other factors impact the power extracted from each panel. Depending on the number and type of panels used, the extracted power may vary widely in the voltage and current. Changes in temperature, solar irradiance and shading, either from near objects such as trees or far objects such as clouds, can cause power losses. Owners and even professional installers find it difficult to verify the correct operation of the system. With time, many more factors, such as aging, dust and dirt collection and module degradation affect the performance of the solar array.


Data collected at the inverter 104 is not sufficient to provide proper monitoring of the operation of the system. Moreover, when the system experiences power loss, it is desirable to ascertain whether it is due to environmental conditions or from malfunctions and/or poor maintenance of the components of the solar array. Furthermore, it is desirable to easily locate the particular solar panel that may be responsible for the power loss. However, to collect information from each panel requires some means of communication to a central data gathering system. The data gathering system needs to be able to control data transmission, avoid transmission collisions, and ascertain each sender of data. Such a requirement can be most easily accomplished using a duplex transmission method. However, a duplex transmission method requires additional transmission lines and complicates the system. On the other hand, one-way transmission is prone to collisions and makes it difficult to compare data transmitted from the various sources.


Consequently, conventional methods in the field of solar array monitoring focus mainly on the collection of the output parameters from the overall solar array. Due to the wide variability of power output of such systems, and the wide range of environmental conditions that affect the power output, the output parameters from the overall system are not sufficient to verify whether the solar array is operating at peak power production. Local disturbances, such as faulty installation, improper maintenance, reliability issues and obstructions might cause locals power losses which are difficult to detect from overall monitoring parameters.


For further discussion of the above issues relating to distributed power sources and solar panels, the reader is highly encouraged to review the following literature, which may or may not be prior art.

    • Cascade DC-DC Converter Connection of Photovoltaic Modules, G. R. Walker and P. C. Sernia, Power Electronics Specialists Conference, 2002. (PESCO2), Vol. 1 IEEE, Cairns, Australia, pp. 24-29.
    • Topology for Decentralized Solar Energy Inverters with a Low Voltage AC-Bus, Bjorn Lindgren.
    • Integrated Photovoltaic Maximum Power Point Tracking Converter, Johan H. R. Enslin et al., IEEE Transactions on Industrial Electronics, Vol. 44, No. 6, December 1997.
    • A New Distributed Converter Interface for PV Panels, R. Alonso et al., 20th European Photovoltaic Solar Energy Conference, 6-10 Jun. 2005, Barcelona, Spain.
    • Intelligent PV Module for Grid-Connected PV Systems, Eduardo Roman, et al., IEEE Transactions on Industrial Electronics, Vol. 53, No. 4, August 2006. Also in Spanish patent application ES2249147.
    • A Modular Fuel Cell, Modular DC-DC Converter Concept for High Performance and Enhanced Reliability, L. Palma and P. Enjeti, Power Electronics Specialists Conference, 2007, PESC 2007, IEEE Volume, Issue, 17-21 Jun. 2007 Page(s): 2633-2638. Digital Object Identifier 10.1109/PESC.2007.4342432.
    • Experimental Results of Intelligent PV Module for Grid-Connected PV Systems, R. Alonso et al., Twenty-first European Photovoltaic Solar Energy Conference, Proceedings of the International Conference held in Dresden, Germany, 4-8 Sep. 2006.
    • Cascaded DC-DC Converter Connection of Photovoltaic Modules, G. R. Walker and P. C. Semia, IEEE Transactions on Power Electronics, Vol. 19, No. 4, July 2004.
    • Cost Effectiveness of Shadow Tolerant Photovoltaic Systems, Quaschning, V.; Piske, R.; Hanitsch, R., Euronsun 96, Freiburg, Sep. 16-19, 1996.
    • Evaluation Test results of a New Distributed MPPT Converter, R. Orduz and M. A. Egido, 22nd European Photovoltaic Solar Energy Conference, 3-7 Sep. 2007, Milan, Italy.
    • Energy Integrated Management System for PV Applications, S. Uriarte et al., 20th European Photovoltaic Solar Energy Conference, 6-10 Jun. 2005, Barcelona, Spain.
    • U.S. Published Application 2006/0185727.


SUMMARY

The following summary of the invention is provided in order to provide a basic understanding of some aspects and features of the invention. This summary is not an extensive overview of the invention, and as such it is not intended to particularly identify key or critical elements of the invention, or to delineate the scope of the invention. Its sole purpose is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented below.


According to aspects of the invention, there is provided a monitoring system employing one-way transmission. Collisions are avoided or minimized by a novel transmission timing scheme. The novel transmission method also voids the necessity to synchronize the transmission of data. According to aspects of the invention, each transmission carries a unique ID of the data source. The data is collected and stored at a central analysis system, and various analysis is performed on the data to ascertain the operation parameters of each transmission source and of the entire system. According to further aspects of the invention, a mechanism for sending an interrupt message is provided. When a fault is detected in any of the power sources, an interrupt message may be sent that overrides all other messages, so that the fault may be detected immediately. According to aspects of the invention, all data transmission is done using power line communication (PLC). Alternatively, other modes of transmission may be used, such as wireless or dedicated transmission lines, such as Ethernet, RS232, RE485, etc.


According to aspects of the invention, a monitoring system for distributed DC power installation is provided, comprising: a plurality of power sources; a plurality of monitoring modules, each monitoring module associated with one of the power sources and collecting performance data of the associated power source; a plurality of transmitters, each transmitter associated with one of the monitoring modules and transmitting the performance data; a plurality of controllers, each associated with one of the transmitters and controlling transmission events according to elapsed time from timer initialization. Each of the power sources may be connected to a power line and wherein each transmitter transmits the performance data over the power line. Each of the monitoring modules comprises: a current measurement module for collecting the current data; and a voltage measurement module for collecting the voltage data. Each of the monitoring modules may further comprise a temperature sensor module for sensing the temperature data at the power source. Each of the monitoring modules may further comprise an arc detection module for detecting arcing at the power source. Each of the monitoring modules may further comprise a timer, and wherein each controller initializes the timer whenever the associated power source starts to generate power. Each of the monitoring modules may further comprise a randomizer for varying time increments for controlling transmission events. The monitoring system may further comprise a memory storing the performance data accumulated since timer initialization. The monitoring system may further comprise: a central analysis station; and, a communication translator for receiving the performance data from the monitoring modules and transmitting the performance data to the central analysis station. The central analysis station may analyze fault detection. The central analysis station may compare measured power to expected power determined based on external data. Each of the power sources may comprise a solar panel. Each of the power sources may comprise a string of serially connected solar panels. Each of the monitoring modules may comprise a current measurement module for collecting current data. The monitoring system may further comprise: a connection box for parallel coupling all of the string of serially connected solar panels; and, a voltage measuring module measuring the voltage of the parallel coupling. The monitoring system may further comprise: a connection box for parallel coupling all of the string of serially connected solar panels; and, total current measuring module measuring the total current of the parallel coupling. The monitoring system may detect current leakage by comparing output of the total current measuring module to the sum of current measuring modules of each of the monitoring modules.


According to aspects of the invention, a method for monitoring distributed power harvesting systems including DC power sources is provided, the method comprising: individually monitoring power generation at each of the DC power sources and, when power generation passes a threshold at one of the DC power sources, performing the steps: initializing a timer for the power source; collecting performance data for the power source; monitoring passage of time period of the timer and, when the time period reached a setup time, transmitting the collected performance data to a central analysis station. Collecting performance data may further comprise storing the performance data in memory, and wherein transmitting the collected performance data comprises transmitting the collected performance data accumulated since initialization of the timer. Collecting performance data may comprise measuring at least one of output voltage and output current. The method may further comprise comparing performance data for at least one of the DC power sources to performance data from the same DC power source at a different time. The method may further comprise comparing performance data for at least one of the DC power sources to performance data from adjacent ones of the DC power sources. The method may further comprise comparing performance data for at least one of the DC power sources to expected performance data based on external parameters. Monitoring passage of time period may further comprise introducing randomness to the setup time. The method may further comprise serially connecting a plurality of solar panels to form each of the DC power sources. Transmitting the collected performance data may comprise sending the collected performance data over a power line.


According to aspects of the invention, a distributed DC power harvesting system is provided, comprising: a plurality of solar panels serially connected to form a string of panels coupled to a power line; at least one monitoring module connected to the string of panels and gathering performance data from at least one solar panel, the monitoring module comprising: a transmitter for transmitting the performance data over the power line; a controller for controlling transmission events of the transmitter according to elapsed time from timer initialization; and, a receiving station coupled to the power line and receiving the performance data from the transmitter. The receiving station may further comprise at least one of a voltage and current sensor. The receiving station may further comprise a transmitter for relaying at least the performance data received from the power line. The transmitter may comprise a wireless transmitter. The monitoring module may comprise and least one of: a current measurement module for collecting current data from at least one solar panel; and a voltage measurement module for collecting voltage data from at least one solar panel. The monitoring module may further comprise a temperature sensor. The monitoring module may further comprise a timer, and wherein the controller initializes the timer whenever an associated panel starts to generate power. The monitoring module may further comprise a randomizer for varying time increments for controlling transmission events. The system may further comprise a memory storing the performance data accumulated since timer initialization. The system may further comprise: one or more additional string of panels; a connection box for parallel coupling of the string of panels and the one or more additional string of panels; and, a voltage measuring module measuring the voltage of the parallel coupling.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, exemplify the embodiments of the present invention and, together with the description, serve to explain and illustrate principles of the invention. The drawings are intended to illustrate major features of the exemplary embodiments in a diagrammatic manner. The drawings are not intended to depict every feature of actual embodiments nor relative dimensions of the depicted elements, and are not drawn to scale.



FIG. 1 illustrates a conventional solar power system.



FIG. 2 illustrates one serial string of DC sources and current versus voltage characteristic curve for the solar panels.



FIG. 3A illustrates a monitoring module according to aspects of the invention.



FIG. 3B is a flow chart illustrating a method for transmission of data according to various aspects.



FIG. 4 shows a communication and analysis system, according to aspects of the invention, being associated with the monitoring module of FIG. 3A.



FIG. 5 shows a distributed power harvesting system, including a monitoring module according to aspects of the invention.



FIG. 6 illustrates a solar system according to another embodiment of the invention.



FIG. 7 illustrates a power converter, according to aspects of the invention. FIG. 8 illustrates a typical centralized solar field installation.



FIG. 9 illustrates a solar field installation implementing monitoring according to an embodiment of the invention.



FIG. 10 illustrates a solar field installation implementing monitoring according to another embodiment of the invention.





DETAILED DESCRIPTION

Aspects of the present invention provide a monitoring system for solar panel system. The monitoring system includes modules that may be attached to each solar panel of the solar system. The monitoring module will monitor several parameters including, etc., panel voltage, panel current, panel temperature, lighting conditions, spatial orientation (e.g., tilt), and other parameters. The information from each monitoring module may be transmitted to a central management unit together with a unique module ID. The transmission may be done over the power lines, in wireless form, or with dedicated wiring—such as Ethernet, RS-232, RS-485 or other. In one aspect of the invention, transmission is done as power line communication in a one-way implementation. Collisions are avoided or minimized by using a unique transmission timing mechanism.


The central management unit may analyze the data from all solar panels. The monitoring system can be implemented at the string level, at the panel level or even at the cell level. The principle applicable at the panel level monitoring may be applied for string level and cell level. Moreover, the innovative monitoring system may be used in small installation, such as residential solar panel installations, and large installations, such as large solar panel field power plants.


Analysis of the data may enable detection and pinpointing of most of the common failures associated with solar array power loss. Further, smart analysis of current and historical data can also be used to suggest corrective measures such as cleaning or replacing a specific portion of the solar array. The system can also detect normal power losses caused by environmental conditions and prevent costly and difficult solar array testing. Additionally, analysis of the data can lead to suggestion for environmental corrective actions. For example, it may suggest changing the tilt or location of specific panels, or removing of obstacles that block the sun under certain conditions not realized at the time of installation.



FIG. 3A shows a monitoring module according to aspects of the invention. The exemplary monitoring module 300, according to aspect of the invention, is used to collect and transmit data from each solar panel, such as the solar panel 101 of FIG. 1. Data from all monitoring modules is transmitted via a communication system to a central analysis station, which analyzes the data and displays the status of the solar array.


The monitoring module 300 includes several sub-modules. The sub-modules within the monitoring module 300 include a current measurement module 301, a microcontroller 302, a communication module 303, a voltage measurement module 304, a random access memory (RAM) module, a non-volatile RAM or NVRAM module 306, a temperature sensor 307 and one or more external sensor interfaces 308.


The microcontroller module 302 is coupled to the other modules and controls the other modules. In one exemplary aspect shown in FIG. 3A, the current measurement module 301 is located in series with the input and output ports to the monitoring module 300. The location of the current measurement module 301 may vary depending on the type of current measurement device used in the module. In the exemplary aspect shown, the voltage measurement module 304 is located in parallel across the input port to the monitoring module 300. Voltage measurement devices are usually placed in parallel with the component whose voltage is being measured. In the exemplary aspect shown, the communication module 303 is shown as located in parallel with the output ports of the monitoring module 300. There is no requirement for a particular location for this module and the location shown is arbitrary. The sensor modules while coupled to the microcontroller module 302, are not shown as coupled to the input or output ports of the monitoring module 300. These sensor modules, however, may derive power from the panel connected to the monitoring module 300 and, therefore, may be located along a circuit path from the input to the output ports of the monitoring module 300. A power unit may be used to feed monitoring module 300. The power may be derived from one of many power sources, such as batteries or feed-in from another location. In one embodiment the monitoring module 300 may be fed from power harvested from the solar panel being monitored.


In various aspects of the invention, inclusion of some of the modules, such as the temperature sensor 307, is optional.


The monitoring module 300 can be implemented using discrete components or may be integrated to obtain an application specific integrated circuit (ASIC).


The measurement modules 301, 304 and the sensor modules 307, 308 may have filter circuits and analog to digital conversion circuits associated with them. FIG. 3A shows low-pass filter and analog to digital conversion circuits 311, 314, 317, 318 each associated with a corresponding measurement and sensor module.


Current and voltage measurement modules 301, 304 are used to collect current and voltage data. The collected data is transferred to the microcontroller module 302. The microcontroller module 302 may be a digital state machine. The microcontroller stores the collected information in its local RAM 305. Pre-defined data, stored in the NVRAM module 306, may be used to control the activity of the microcontroller 302.


The data collected by the current and voltage measurement modules 301, 304 and transferred to the microcontroller 302 may be subsequently transmitted to a central analysis station described below with respect to FIG. 4. The communication module 303 is used to transmit the data from the microcontroller 302 or from storage in RAM 305 to outside of the monitoring module 300.


The current measurement module 301 may be implemented by various techniques used to measure current. In one aspect of the invention, the current measurement module 301 is implemented using a very low value resistor. The voltage across the resistor will be proportional to the current flowing through the resistor. In another aspect of the invention, the current measurement module 301 is implemented using current probes which use the Hall Effect to measure the current through a conductor without the need to add a series resistor. After translating the current to voltage, the data passes through a low pass filter and is digitized. The low-pass filter and the analog to digital converter associated with the current measurement module 301 are shown as module 311 in FIG. 3A. As with the voltage measurement module, care must be taken to choose the correct resolution and sample rate for the analog to digital converter. If the current sensing technique does not require a series connection, then the monitoring module 300 may be connected to the panel in parallel. For a parallel connection, there is no need to disconnect the panel during the connection.


In one aspect of the invention, the voltage measurement module 304 uses simple parallel voltage measurement techniques in order to measure the voltage output of the solar panel. The analog voltage is passed through a low pass filter in order to minimize aliasing. The data is then digitized using an analog to digital converter. The low-pass filter and the analog to digital converter associated with the voltage measurement module 304 are shown as module 314 in FIG. 3A. The analog to digital converter 314 has sufficient resolution to correctly evaluate the voltage from the solar panel. The low-pass filter makes it possible for low sample rates to be sufficient for evaluating the state of the panel.


The optional temperature measurement module 307 enables the system to use temperature data in the analysis process. The temperature may be indicative of several types of failures and problems. Furthermore, the panel temperature is a factor in the power output from the panel and in the overall power production.


The one or more external sensor interfaces 308 enable connecting various external sensors to the monitoring module 300. These sensors are optional and may be used where they enable enhanced analysis of the state of the solar array. Examples of external sensors that may be used at the external sensor interfaces 308, include ambient temperature sensor, solar irradiance sensors, spatial orientation such as tilt sensor, sensors from neighboring panels and the like. When a type of sensor is regularly used, then it may be integrated into the monitoring module 300 instead of being an external component.


The microcontroller module 302 manages the monitoring process. The tasks performed by the microcontroller module 302 includes gathering information from the current and voltage measurement modules 301, 304, storing the information in local memory 305, 306 and transmitting the stored information to outside of the monitoring module 300. The microcontroller module 302 uses the information stored in memory in order to control its operation. This operating information may be stored in the non-volatile memory of the NVRAM module 306, to preserve the information even when power-loss occurs. Information in the NVRAM module 306 may include information about the microcontroller module 302 such as the serial number, the type of communication bus used, the status update rate and the ID of the central analysis station to which the data is transmitted. This information may be added to the parameters collected by the measurement modules 301, 304 before transmission out of the monitoring module 300.


The installation process of the monitoring module 300 includes connecting each of the monitoring modules 300 to a panel such as the solar panel 101 of FIG. 1 or the solar panel 501 of FIG. 5. The measurement features of the monitoring module 300 may be used to ensure that the panel and the monitoring module are properly connected and to record the serial number of the monitoring module 300 or the microcontroller within the monitoring module. The measurement features 301, 304, or other sensors, such as GPS, tilt etc., may also be used to determined physical location of the connection and the array connection topology. These parameters may be used by an analysis software at the central analysis station 403 to detect problems in the solar panels and the array.


The monitoring module 300 may be installed during the installation of the solar array or retrofitted to an existing installation. In both cases the monitoring module may be connected to the panel junction connection box or to the cables between the panels. The monitoring module may be provided with the connectors and cabling needed to enable easy installation and connection to the panels and cables.


The monitoring module 300 shown in FIG. 3A collects current, voltage and some other optional types of data from each of the panels in a distributed DC power harvesting system. Data from each panel is subsequently transmitted for analysis. The communication module 303 connects the microcontroller module 302 to the communication bus that is described below with reference in FIG. 4. The communication from each monitoring module 300 is performed using conventional power line communication technique (also known as power line carrier). However, a unique transmission timing is utilized in order to avoid or minimize collisions. This technique will be explained with reference to a specific example of a monitor connected to a solar panel.


When the solar panel “wakes”, i.e., starts to receive sun light and generate output power, the monitor initializes a timer to time t0. The monitor may or may not send data at the initialization time. Then, the monitor collects data continuously, but transmits collected data only after a given period has past from t0 or from the last transmission. For example, the monitor may transmit data every 15 minutes. Since the panels are spatially separated, they will most likely wake at different times, introducing randomness to the transmission time, so that each panel would transmit according to its own timer. That is, each monitor would transmit data at: t0+xC,


where x is a whole natural number and C is a set constant, say 15 minutes. However, for each panel to may be at a different time every morning.


As can be appreciated from the above, using the wake up time of the panel to initiate the timer introduces a measure of randomness that helps avoid collisions. According to another embodiment of the invention, another measure of randomness is introduced in the counter. For example, the transmission time may be calculated as t0+xC+ε, where ε is a random number provided by a random number generator, etc. Alternatively, the transmission time may be calculated as t0+x(C+ε). Notably, the random number should be generated separately to each module to prevent the chance that two panels wake at the same time and increment the counter at the same rate, thereby colliding on each transmission attempt. This random element may be reintroduced for each time a transmission is sent. Other methods of introducing randomness may also be used.



FIG. 3B is a flow chart illustrating a method for transmission of data by the monitor 300 of FIG. 3A. At step 340 it is checked whether the panel has awaken (i.e., receives light and generates power at a predetermined level). If so, the process proceeds to step 342 where the timer is initialized and the counting is started. Data, such as current, voltage, temperature, illumination, power output, etc., is then collected and stored, e.g., in RAM 305, at step 344, which continues so long as the timer progresses and the panel has not gone to sleep (352). As explained above, optionally a further randomization is introduced, which is shown by step 346. Then at step 348 it is determined whether the time for transmitting data has been reached and, if so, the data is transmitted at step 350. In this particular example, the data that is transmitted is the data accumulated since initialization of the timer. However, other methodologies may be implemented. For example, the data may be data accumulated since last transmission or current data reading. At step 352 it is checked whether the panel assumed the sleep mode, e.g., illumination or power generation is below a threshold. If so, the process ends. Otherwise, counting and transmission of data continues.


The above schemes minimize or avoid collisions. However, if a collision does occur, since the transmission is only one way, the central system would not get the data and would not know what data was lost, and the sending monitors would also have no way of knowing that the data never reached the central system. As a result, when the central system analyzes the data and compares data from one panel to another, errors may be introduced if some data transmission was lost due to collision. For example, if the central unit tries to compare power generated by several panels between 1 pm and 2 pm, the comparison would be inaccurate if data from two or more panels collided at 1:30 pm and is missing from the calculation.


To avoid this problem, a scheme is adopted wherein the data is accumulated at each monitor. Then, at each transmission, the accumulated total value of the data is transmitted. For example, at time t15 the power generated from wake to wake plus 15 minutes is transmitted. At time t0 the power generated from wake to wake plus 30 minutes is transmitted, and so on. In this way, even if one or more transmission was not received by the central unit, the central unit can reconstruct the missing data by, for example, extrapolating it from the data from all of the transmissions that were received. Similar extrapolation may be done in order to put data that arrived at different times from different panels in order to compare between panels on a unified time-base. E.g. Curves of power production from the monitors could be extrapolated for each panel based on the data points that arrived, and then these curves could be compared in order to detect power anomalies or other problems and phenomena.


According to a further aspect of the invention, an interrupt message may be sent, which overrules all other messages. An interrupt message may be sent by any monitoring module 300, for example, whenever a rapid corrective action may be required. This may be when power drops suddenly, as due to malfunction, panel breakage due to hail storms or other cause, etc. The interrupt message may be sent at any time, regardless of the counter's position. In connection with the interrupt message, according to an aspect of the invention a wide band noise detector (WBN) 309 is implemented in the module 300. When the wideband noise detector 309 detects noise above a certain threshold, it sends an interrupt message. Notably, this feature is implemented to identify arcing that may be caused due to an open connection in the system. That is, since the system voltage is relatively high, e.g., 400-600V, if a connection becomes separated, and potential may arc through the air. Such arcing can be detected as wideband noise. The wideband noise detector 309 may be implemented as part of the controller 302, as shown in FIG. 3A, or as a separate unit.


Additionally to assist in locating faults and deleterious conditions, each monitor has a unique ID, which is transmitted together with the data. In this way, the central unit can easily monitor each panel individually and the physical location of the panel corresponding to each data stream can be easily ascertained. Thus, for example, if every day at 2 pm there is power drop at one or more panels, their physical location can be easily ascertained by using the unique ID transmitted with the data. Then the status of the panels can be evaluated to see whether there is an obstacle that obscures the sun every day at 2 pm. Furthermore, if a geographic information sensor (such as a GPS) is attached to the monitoring module, it could directly transmit its location so the obstruction may be found and removed.


The central analysis unit may also use the ID information to perform data analysis by comparing the data from the particular panel to expected data obtained from external sources. That is, if the central analysis system knows the location, temperature, tilt, etc., of the panel having the particular ID, it may calculate expected power from this panel at the current prevailing conditions. If the data received from the panel substantially deviates from the expected power output, it may determine that the panel is faulty or some factors cause it to lose power. This is especially a beneficial feature in the topology of the embodiment described herein, since the maximum power point tracking is performed on an individual panel basis, so the power obtained should be commensurable with the expected power. That is, there is no error introduced due to tracking maximum power point on an average of several panels.



FIG. 4 shows a communication and analysis system, according to aspects of the invention, being associated with the monitoring module of FIG. 3A. FIG. 4 shows a system used for collecting data from each of the panels in a distributed power system and subsequent analysis of collected data. The system of FIG. 4 includes a number of panels 402 that generate power. Each panel includes a monitoring module such as the monitoring module 300. Data collected by the monitoring modules at the panels 402 are communicated by a module communication bus 404 to a communication translator 401. The communication translator 401 sends the data to a central analysis station 403 via a communication link 405. The central analysis station 403 receives the data that is transmitted via the communication bus 404, analyzes the data and displays the status of the panels corresponding to the time the data was collected.


In FIG. 4, one module communication bus 404 is shown for transmitting data from the monitoring modules 300 from a number of panels 402. The data may be transmitted on a single bus in the manner described above which eliminates or minimizes collisions. However, other transmission methods may be used. For example, the data from several panels may be multiplexed on the same module communication bus. Alternatively, each monitoring module 300 includes a separate module communication bus 404. The module communication buses 404 from the different monitoring modules carry the data from each monitoring module 300 to the communication translator 401.


The module communication bus 404 can be implemented in different ways. In one aspect of the invention, an off-the-shelf communication bus such as Ethernet, RS232 or RS485 is used. Using an off-the-shelf communication bus simplifies the design of the communication module 303 of the monitoring module 300 but requires separate cables. Other methods such as wireless communications or power line communications may also be used. When wired communication is used between the monitoring modules 300 and the communication translator 401, the communication translator 401 may be located in close physical proximity to the panels to reduce the length of the module communication bus 404 or buses. When wireless communication is used between the monitoring modules 300 and the communication translator 401, the communication translator 401 need not be in close physical proximity to the panels.


The communication translator 401 is used to convert the module communication bus or buses 404 to a standard communication protocol and physical layer. This enables receiving data from the monitoring module 300 on various data terminals, such as a computer or PDA. The central analysis station 403 may then be implemented as a software that is run on a standard PC, an embedded platform or a proprietary device.


In one aspect of the invention, unidirectional power line communication is used from the monitoring modules 300 to the central analysis station 403. With unidirectional communication, a mechanism for preventing cross-talk between the monitoring modules 300 may be provided. Such a mechanism may be implemented in the form of transmitting data from each of the monitoring modules 300 at preset times as explained with respect to FIG. 3B. In one aspect of the invention, a collision detection algorithm may be used to ensure the data is received without collisions at the central analysis station 403.


In one aspect of the invention, bidirectional communication is used between the central analysis station 403 and the monitoring modules 300. With bidirectional communication, the central analysis station 403 may proactively request the data collected by one or more of the monitoring modules 300.


The collected data is analyzed at the central analysis station 403. By analyzing the information from each of the monitoring modules, many causes for power losses can be detected. For example, when energy production from a panel is low on some hours of the day while the adjacent panels produce the same power on all hours, the low performance panel is probably shaded during the low production hours. Panels that produce little power in comparison to their adjacent panels might be constantly shaded, soiled or installed incorrectly. Comparison of the power output of each panel with its corresponding power output a year earlier may indicate that the output has diminished due to dust or soil collected on the panel. Additional data may be gathered from outside sources in order to monitor and evaluate the power production of the array. E.g. irradiance data from satellites, weather data from terrestrial stations, RADAR systems or satellites, or weather and irradiance forecasts based on historical data or computerized models, and so forth. Many more heuristics and algorithmic methods may be used to detect problems and help the owner of the system to pinpoint problems in the array. Having the unique ID transmitted with the data helps identify the panels and their physical location.



FIG. 5 shows a distributed power harvesting system, including a monitoring module, according to aspects of the invention. Configuration 50 enables connection of multiple power sources, for example solar panels 501 to a single power supply. The series connection of all of the solar panels is connected to an inverter 504. A central analysis station 500 is shown that is in communication with the monitoring modules 300 coupled to each of the solar panels 501. Station 500 may be incorporated into the inverter 504 or may be an independent unit.


In configuration 50, each solar panel 501 is connected to a separate power converter circuit 505. Power converter circuit 505 adapts optimally to the power characteristics of the connected solar panel 501 and transfers the power efficiently from input to output. Power converters 505 can be buck converters, boost converters, buck/boost converters, flyback or forward converters. The converters 505 may also contain a number of component converters, for example a serial connection of a buck and a boost converter.


Each converter 505 includes a control loop that receives a feedback signal, not from the output current or voltage, but rather from the input coming from the solar panel 501. An example of such a control loop is a maximum power point tracking (MPPT) loop in solar array applications. The MPPT loop in the converter locks the input voltage and current from each solar panel 501 to its optimal power point. The MPPT loop of the converter 505 operates to perform maximum power point tracking and transfers the input power to its output without imposing a controlled output voltage or output current.


Each converter 505 may include a monitoring module according to the aspects of the invention. For example, each converter 505 may include the monitoring module 300 of FIG. 3A. The communication link between the monitoring modules 300 and the central analysis station 500 may be wireless or wired. If wired, the connection may be done to each unit 505 individually or centrally via inverter 504. Note that there is additional value in monitoring the panels output when coupling it with MPPT tracking power converter 505, since this guaranties that the power monitored is at maximum power point, and therefore low power reading signify a real problem and are not merely a false-alarm that results from the current draw from a central inverter, which may not be optimal for each panel. Converters 505 can be connected in series or in parallel to form strings and arrays.


Conventional DC-to-DC converters have a wide input voltage range at the solar panel side and an output voltage predetermined and fixed on installation. In these conventional DC-to-DC voltage converters, the controller monitors the current or voltage at the input, and the voltage at the output. The controller determines the appropriate pulse width modulation (PWM) duty cycle to fix the input voltage to the predetermined value decreasing the duty cycle if the input voltage drops while varying the current extracted from the input. In converters 505, according to embodiments of the present invention, the controller monitors the voltage and current at its input and determines the PWM in such a way that maximum power is extracted, dynamically tracking the maximum point. In embodiments of the present invention, the feedback loop is closed on the input power in order to track maximum power rather than closing the feedback loop on the output voltage as performed by conventional DC-to-DC voltage converters.


The outputs of converters 505 are series connected into a single DC output into the inverter 504, which converts the series connected DC output to an alternating current power supply. If the output is not required to be AC, the inverter may be omitted, or other load, such as a central DC/DC converter or battery charger may be used instead.


The circuit of FIG. 5 provides maximum power available during continuous operation from each solar panel 501 by continuously performing MPPT on the output of each solar panel to react to changes in temperature, solar radiance, shading or other performance deterioration factors of each individual solar panel 501. As shown in FIG. 1, conventional solutions for combining power, perform MPPT on strings 103 or arrays of solar panels 101. As a result of having a separate MPPT circuit in each converter 505, and for each solar panel 501, in the embodiments of the present invention, each string 503 in the embodiment shown in FIG. 5 may have a different number of panels 501 connected in series. Furthermore panels 501 can be installed in different directions, as solar panels 501 do not have to be matched and partial shading degrades the performance of only the shaded panel. According to embodiments of the present invention, the MPPT circuit within the converter 505 harvests the maximum possible power from panel 501 and transfers this power as output regardless of the parameters of other solar panel 501.



FIG. 6 illustrates a solar system according to another embodiment of the invention. The embodiment of FIG. 6 is similar to that of FIG. 5, in that panels 601 are connected in series to form strings 603. The strings 603 are then connected in parallel to inverter 604. The inverter 604 includes a central analysis station 600 that receives data from reporting modules within converters 605. Central station 600 also receives data from reporting module 606, which provides data relating to the entire power delivered from all of the panels.



FIG. 7 illustrates a power converter, according to aspects of the invention. FIG. 7 highlights, among others, a monitoring and control functionality of a DC-to-DC converter 705, according to embodiments of the present invention. A DC voltage source 701 is also shown in the figure. Portions of a simplified buck and boost converter circuit are shown for the converter 705. The portions shown include the switching transistors 728, 730, 748 and 750 and the common inductor 708. Each of the switching transistors is controlled by a power conversion controller 706.


The power conversion controller 706 includes the pulse-width modulation (PWM) circuit 733, and a digital control machine 730 including a protection portion 737. The power conversion controller 706 is coupled to microcontroller 790, which includes an MPPT module 719, and may also optionally include a communication module 709, a monitoring and logging module 711, and a protection module 735.


A current sensor 703 may be coupled between the DC power source 701 and the converter 705, and output of the current sensor 703 may be provided to the digital control machine 730 through an associated analog to digital converter 723. A voltage sensor 704 may be coupled between the DC power source 701 and the converter 705 and output of the voltage sensor 704 may be provided to the digital control machine 730 through an associated analog to digital converter 724. The current sensor 703 and the voltage sensor 704 are used to monitor current and voltage output from the DC power source, e.g., the solar panel 701. The measured current and voltage are provided to the digital control machine 730 and are used to maintain the converter input power at the maximum power point.


The PWM circuit 733 controls the switching transistors of the buck and boost portions of the converter circuit. The PWM circuit may be a digital pulse-width modulation (DPWM) circuit. Outputs of the converter 705 taken at the inductor 708 and at the switching transistor 750 are provided to the digital control machine 730 through analog to digital converters 741, 742, so as to control the PWM circuit 733.


A random access memory (RAM) module 715 and a non-volatile random access memory (NVRAM) module 713 may be located outside the microcontroller 790 but coupled to the microcontroller 790. The unique ID and other related data, such as serial number, manufacturer, manufacturing date, etc., may be stored in the NVRAM. A temperature sensor 779 and one or more external sensor interfaces 707 may be coupled to the microcontroller 790. The temperature sensor 779 may be used to measure the temperature of the DC power source 701. A physical interface 717 may be coupled to the microcontroller 790 and used to convert data from the microcontroller 790 into a standard communication protocol and physical layer. An internal power supply unit 739 may be included in the converter 705.


In various aspects of the invention, the current sensor 703 may be implemented by various techniques used to measure current. In one aspect of the invention, the current measurement module 703 is implemented using a very low value resistor. The voltage across the resistor will be proportional to the current flowing through the resistor. In another aspect of the invention, the current measurement module 703 is implemented using current probes which use the Hall Effect to measure the current through a conductor without adding a series resistor. After translating the current to voltage, the data may be passed through a low pass filter and then digitized. The analog to digital converter associated with the current sensor 703 is shown as the A/D converter 723 in FIG. 7. Aliasing effect in the resulting digital data may be avoided by selecting an appropriate resolution and sample rate for the analog to digital converter. If the current sensing technique does not require a series connection, then the current sensor 703 may be connected to the DC power source 701 in parallel.


In one aspect of the invention, the voltage sensor 704 uses simple parallel voltage measurement techniques in order to measure the voltage output of the solar panel. The analog voltage is passed through a low pass filter in order to minimize aliasing. The data is then digitized using an analog to digital converter. The analog to digital converter associated with the voltage sensor 704 are shown as the A/D converter 724 in FIG. 7. The A/D converter 724 has sufficient resolution to generate an adequately sampled digital signal from the analog voltage measured at the DC power source 701 that may be a solar panel.


The current and voltage data collected for tracking the maximum power point at the converter input may be used for monitoring purposes also. An analog to digital converter with sufficient resolution may correctly evaluate the panel voltage and current. However, to evaluate the state of the panel, even low sample rates may be sufficient. A low-pass filter makes it possible for low sample rates to be sufficient for evaluating the state of the panel. The current and voltage data may be provided to the monitoring and logging module 711 for analysis.


The temperature sensor 779 enables the system to use temperature data in the analysis process. The temperature is indicative of some types of failures and problems. Furthermore, in the case that the power source is a solar panel, the panel temperature is a factor in power output production.


The one or more optional external sensor interfaces 707 enable connecting various external sensors to the converter 705. External sensors are optionally used to enhance analysis of the state of the solar panel 701, or a string or an array formed by connecting the solar panels 701. Examples of external sensors include ambient temperature sensors, solar radiance sensors, and sensors from neighboring panels. External sensors may be integrated into the converter 705 instead of being attached externally.


In one aspect of the invention, the information acquired from the current and voltage sensors 703, 704 and the optional temperature sensor 779 and external sensor 707 may be transmitted to a central analysis station for monitoring, control, and analysis using the communications interface 709. The central analysis station is not shown in the figure. The communication interface 709 connects a microcontroller 790 to a communication bus. The communication bus can be implemented in several ways. In one aspect of the invention, the communication bus is implemented using an off-the-shelf communication bus such as Ethernet or RS422. Other methods such as wireless communications or power line communications may also be used. If bidirectional communication is used, the central analysis station may request the data collected by the microcontroller 790. Alternatively or in addition, the information acquired from sensors 703, 704, 707 is logged locally using the monitoring and logging module 711 in local memory such as the RAM 715 or the NVRAM 713.


Analysis of the information from sensors 703, 704, 707 enables detection and location of many types of failures associated with power loss in solar arrays. Smart analysis can also be used to suggest corrective measures such as cleaning or replacing a specific portion of the solar array. Analysis of sensor information can also detect power losses caused by environmental conditions and prevent costly and difficult solar array testing.


Consequently, in one aspect of the invention, the microcontroller 790 simultaneously maintains the maximum power point of input power to the converter 705 from the attached DC power source or solar panel 701 based on the MPPT algorithm in the MPPT module 719 and manages the process of gathering the information from sensors 703, 704, 707. The collected information may be stored in the local memory 713, 715 and transmitted to an external central analysis station. In one aspect of the invention, the microcontroller 790 uses previously defined parameters stored in the NVRAM 713 in order to operate. The information stored in the NVRAM 713 may include information about the converter 705 such as serial number, the type of communication bus used, the status update rate and the ID of the central analysis station. This information may be added to the parameters collected by the sensors before transmission.


The converters 705 may be installed during the installation of the solar array or retrofitted to existing installations. In both cases, the converters 705 may be connected to a panel junction connection box or to cables connecting the panels 701. Each converter 705 may be provided with the connectors and cabling to enable easy installation and connection to solar panels 701 and panel cables.


In one aspect of the invention, the physical interface 717 is used to convert to a standard communication protocol and physical layer so that during installation and maintenance, the converter 705 may be connected to one of various data terminals, such as a computer or PDA. Analysis may then be implemented as software which will be run on a standard computer, an embedded platform or a proprietary device.


The installation process of the converters 705 includes connecting each converter 705 to a solar panel 701. One or more of the sensors 703, 704, 707 may be used to ensure that the solar panel 701 and the converter 705 are properly coupled together. During installation, parameters such as serial number, physical location and the array connection topology may be stored in the NVRAM 713. These parameters may be used by analysis software to detect future problems in solar panels 701 and arrays.


When the DC power sources 701 are solar panels, one of the problems facing installers of photovoltaic solar panel arrays is safety. The solar panels 701 are connected in series during the day when there is sunlight. Therefore, at the final stages of installation, when several solar panels 701 are connected in series, the voltage across a string of panels may reach dangerous levels. Voltages as high as 600V are common in domestic installations. Thus, the installer faces a danger of electrocution. The converters 705 that are connected to the panels 701 may use built-in functionality to prevent such a danger. For example, the converters 705 may limit the output voltage to a safe level until a predetermined minimum load is detected. Only after detecting this predetermined load, the microcontroller 790 ramps up the output voltage from the converter 705.


Another method of providing a safety mechanism is to use communications between the converters 705 and the associated inverter for the string or array of panels. This communication, that may be for example a power line communication, may provide a handshake before any significant or potentially dangerous power level is made available. Thus, the converters 705 would wait for an analog or digital signal from the inverter in the associated array before transferring power to inverter.


The above methodology for monitoring, control and analysis of the DC power sources 701 may be implemented on solar panels or on strings or arrays of solar panels or for other power sources such as batteries and fuel cells.


The innovative monitoring described so far may be implemented in any solar panel installation, but is particularly beneficial for residential and relatively small installations. On the other hand, for large installations, such as, e.g., 025 megawatt solar field and larger, implementing monitoring on each panel may prove to be prohibitively expensive. Accordingly, the monitoring solution provided herein may be modified for such applications.



FIG. 8 illustrates a typical centralized solar field installation. In FIG. 8, a large field installation is formed by connecting several solar panels 805 in series so as to form a string 810. Normally 8-20 panels 805 are serially connected to form one string 810. Then, several strings, e.g., eight or twelve strings are connected in parallel to form a cluster 815. Several clusters are then connected together in a super cluster junction box 820, sometimes called a combiner box, to form a super cluster. The super cluster may be connected to a central inverter, or to other super clusters. According to the prior art, monitoring of such a system is done by measuring current and voltage at the output of the super cluster. However, such monitoring detects only major malfunctions and fails to detect smaller problems that, if corrected, can lead to higher efficiency. On the other hand, it has been proposed to provide a monitor at each panel and utilize master-slave arrangement to obtain performance data from each panel. However, such an arrangement is costly both in terms of the additional cost for each monitor on each panel (there are normally hundreds to tens of thousands of panels in large field installations) and in terms of complexity of the transmission requirements. For further background information the reader is directed to U.S. Patent Publication 2006/0162772.



FIG. 9 illustrates a centralized solar field installation implementing monitoring according to an embodiment of the invention. The system 900 is arranged with panels 905 serially connected to strings 910, which are connected in parallel to form clusters 915, which are in tum connected to a super cluster junction box 920. In the embodiment of FIG. 9 one monitor 925 is installed for each string 910 of serially connected panels 905. The monitor 925 may be the same monitor 300 as in FIG. 3A. On the other hand, in one embodiment the monitor 925 includes only a current probe and transmission means, which may be similar to that of monitor 300. While in FIG. 9 the monitor 925 is shown connected to the first panel 905, it may be connected to any of the serially connected panels in the string 910. Additionally, one voltage monitor 930 is connected at the super cluster junction box 920. A power unit may be used to feed monitors 925 and 930. The power may be derived from one of many power sources, such as batteries or feed-in from another location. In one embodiment monitors 925 and 930 may be fed from power harvested from the cable running through them—the solar panel being monitored in the case of monitor 925, and the current from one or more entire clusters 915 in the case of combiner box 920.


With the arrangement of FIG. 9, since each string 910 is connected in parallel to all other strings at the super cluster junction box 920, the voltage measured by the voltage monitor 930 indicates the voltage of each string 910. The voltage measurement is sent from the box 920 and the current is sent from each string separately to a central monitoring system (not shown). Alternatively, monitors 925 may send their data over power line communication or in other means to monitor 930, which then aggregates the data and sends it to central monitoring system. The monitor 930 may transmit the data it receives together with any data it monitors itself to a central monitoring station (not shown) using other transmission methods, such as Ethernet, wireless communication (WiFi, ZigBee, etc.) via one-way or two way communication, as illustrated by the arrow 955. Consequently, the central monitoring station can calculate the power production from each string. Such monitoring is more sensitive to power drops and other malfunctions at each string. This enables improved identification of failing or malfunctioning panels without the expense of installing monitor at each panel.


Additionally, rather than utilizing complicated master slave arrangement, in this embodiment the monitors 925 send the data using the power line communication via uni-directional communication method as explained above with respect to FIGS. 3A and 3B. This way, no dedicated bus is required and collisions are avoided by using the randomizing mechanism discussed above. Since solar fields may be very large and include many thousands or transmitting monitors, it is beneficial to prevent data transmitted in one part of the field to interfere with data transmitted in other parts. In an aspect of the invention, such a separation might be done by introducing capacitors 960 between the output terminals of each super cluster combiner box 920. This capacitor 920 is used to attenuate the PLC signaling in the super-cluster, and prevent interference with other super-clusters.



FIG. 10 illustrates a solar field installation implementing monitoring according to another embodiment of the invention. The embodiment of FIG. 10 is similar to that of FIG. 9, except that a current monitor 1035 is added to measure the total current provided by each cluster 1015. The current measured at current monitor 1035 should be the sum of the current measurements of all of the monitors 1025. That is, the reading of current monitor should be commensurable to the sum of the reading reported by all of the monitors 1025 (less transmission losses). If an abnormal discrepancy is detected, then it means that at least one of the strings 1010 has problem with current delivery. This may be due to a faulty connector, bad cable isolation, or other factors. Thus, the problem is detected and could easily be pinpointed and fixed.


Embodiments of the invention, such as those described above, provide a greater degree of fault tolerance, maintenance and serviceability by monitoring, controlling, logging and/or communicating the performance of each solar panel 501, or strings of solar panels 503. A microcontroller used in the MPPT circuit of the converter 505, may include the monitoring module 300 of FIG. 3A. Then, this microcontroller may also be used to perform the monitoring, logging and communication functions. These functions allow for quick and easy troubleshooting during installation, thereby significantly reducing installation time. These functions are also beneficial for quick detection of problems during maintenance work. Furthermore, by monitoring the operation of each part of the system, preventive maintenance may be performed in a timely manner to avoid downtime of the system.


The present invention has been described in relation to particular examples, which are intended in all respects to be illustrative rather than restrictive. Those skilled in the art will appreciate that many different combinations of hardware, software, and firmware will be suitable for practicing the present invention. Moreover, other implementations of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims and their equivalents.

Claims
  • 1. An apparatus comprising: a computer comprising software that, when executed, causes the computer to: receive, from a control circuit of at least one solar panel, data that was collected from the at least one solar panel, wherein the data comprises at least one of a location, a temperature, a spatial orientation, or a lighting condition associated with the at least one solar panel;determine, based on the data, an expected power of the at least one solar panel;receive, from the control circuit, a measured power of the at least one solar panel;detect, based on a comparison between the measured power and the expected power, a fault in the at least one solar panel, andoutput, to a display and based on the detected fault, a status of the at least one solar panel.
  • 2. The apparatus according to claim 1, wherein the software, when executed, further causes the computer to generate, based on the data, curves of power production over time, and wherein the software, when executed, causes the computer to detect the fault further based on the curves of power production.
  • 3. The apparatus according to claim 2, wherein the software, when executed, further causes the computer to extrapolate the curves of power production for each solar panel of the at least one solar panel, and wherein the software, when executed, causes the computer to detect the fault further based on the extrapolated curves of power production.
  • 4. The apparatus according to claim 3, wherein the computer is further configured to compare the extrapolated curves of power production with each other, and wherein the software, when executed, causes the computer to detect the fault further based on the comparison of the extrapolated curves of power production.
  • 5. The apparatus according to claim 3, wherein the software, when executed, further causes the computer to detect a power anomaly based on the extrapolated curves of power production.
  • 6. The apparatus according to claim 1, wherein the software, when executed, further causes the computer to perform a fault detection analysis.
  • 7. The apparatus according to claim 1, wherein the software, when executed, further causes the computer to extrapolate missing data from the data, and wherein the software, when executed, causes the computer to detect the fault further based on the missing data.
  • 8. The apparatus according to claim 1, wherein the data comprises a unique identifier specific to a monitoring module associated with the at least one solar panel.
  • 9. The apparatus according to claim 1, wherein the computer is further configured to: receive, from a second control circuit of at least one other solar panel, second data that was collected from the at least one other solar panel;determine, based on the second data, a second expected power of the at least one other solar panel, wherein the second expected power is different from the expected power of the at least one solar panel; andreceive, from the second control circuit, a second measured power of the at least one other solar panel; anddetect, based on a comparison between the second measured power and the second expected power, a second fault in the at least one other solar panel.
  • 10. A method comprising: receiving, by a central analysis system from a control circuit of at least one solar panel, data that was collected from the at least one solar panel, wherein the data comprises at least one of a location, a temperature, a spatial orientation, or a lighting condition associated with the at least one solar panel;determining, based on the data, an expected power of the at least one solar panel;receiving, from the control circuit, a measured power of the at least one solar panel;detecting, based on a comparison between the measured power and the expected power, a fault in the at least one solar panel; andoutputting, for display and based on the detected fault, a status of the at least one solar panel.
  • 11. The method according to claim 10, further comprising generating, based on the data, curves of power production over time, wherein the detecting the fault is further based on the curves of power production.
  • 12. The method according to claim 11, further comprising extrapolating the curves of power production for each solar panel of the at least one solar panel, wherein the detecting the fault is further based on the extrapolated curves of power production.
  • 13. The method according to claim 12, further comprising comparing the extrapolated curves of power production with each other, and wherein the detecting the fault is further based on the comparison of the extrapolated curves of power production.
  • 14. The method according to claim 12, further comprising detecting a power anomaly based on the extrapolated curves of power production.
  • 15. The method according to claim 10, further comprising performing a fault detection analysis.
  • 16. The method according to claim 10, further comprising extrapolating missing data from the data, wherein the detecting the fault is further based on the missing data.
  • 17. The method according to claim 10, wherein the data comprises a unique identifier specific to a monitoring module associated with the at least one solar panel.
  • 18. The method according to claim 10, further comprising: receiving, from a second control circuit of at least one other solar panel, second data that was collected from the at least one other solar panel;determining, based on the second data, a second expected power of the at least one other solar panel, wherein the second expected power is different from the expected power of the at least one solar panel; andreceiving, from the second control circuit, a second measured power of the at least one other solar panel; anddetecting, based on a comparison between the second measured power and the second expected power, a second fault in the at least one other solar panel.
CROSS-REFERENCE TO RELATED APPLICATIONS

This Application is a continuation of U.S. patent application Ser. No. 16/250,200 filed Jan. 17, 2019, titled “Monitoring of Distributed Power Harvesting Systems Using DC Power Sources,” which is a continuation of U.S. patent application Ser. No. 15/480,574 filed Apr. 6, 2017, titled “Monitoring of Distributed Power Harvesting Systems Using DC Power Sources,” now U.S. Pat. No. 10,184,965, which is a continuation of U.S. patent application Ser. No. 14/513,877 filed Oct. 14, 2014, titled “Monitoring of Distributed Power Harvesting Systems Using DC Power Sources,” now U.S. Pat. No. 9,644,993, which is a continuation of U.S. patent application Ser. No. 13/901,890 filed May 24, 2013, titled “Monitoring of Distributed Power Harvesting Systems Using DC Power Sources,” now U.S. Pat. No. 8,903,681, which is a continuation of U.S. patent application Ser. No. 11/951,419 filed Dec. 6, 2007, titled “Monitoring of Distributed Power Harvesting Systems Using DC Power Sources”, now U.S. Pat. No. 8,473,250, which claims priority to U.S. Provisional Patent Applications, Ser. No. 60/868,851, filed Dec. 6, 2006, and titled “Distributed Solar Array Monitoring, Management and Maintenance,” Ser. No. 60/868,893, filed Dec. 6, 2006, and titled “Distributed Power Harvesting System for Distributed Power Sources,” Ser. No. 60/868,962, filed Dec. 7, 2006, and titled “System, Method and Apparatus for Chemically Independent Battery,” Ser. No. 60/908,095, filed Mar. 26, 2007, and titled “System and Method for Power Harvesting from Distributed Power Sources,” and Ser. No. 60/916,815, filed May 9, 2007, and titled “Harvesting Power from Direct Current Power Sources. The entire contents of the above-identified applications are incorporated herein by reference. Further, this Application is related to U.S. patent application Ser. No. 11/950,224, filed Dec. 4, 2007, titled “Current Bypass for Distributed Power Harvesting Systems Using DC Power Sources,” patent application Ser. No. 11/950,271, filed Dec. 4, 2007, titled “Distributed Power Harvesting Systems Using DC Power Sources,” patent application Ser. No. 11/950,307, filed Dec. 4, 2007, titled “Method for Distributed Power Harvesting Systems Using DC Power Sources,” patent application Ser. No. 11/951,485, filed Dec. 6, 2007, titled “Removable Component Cartridge for Increasing Reliability in Power Harvesting Systems,” and patent application Ser. No. 11/951,562, filed Dec. 6, 2007, titled “Battery Power Delivery Module,” in which the entire contents of the above-identified applications are incorporated herein by reference.

US Referenced Citations (1042)
Number Name Date Kind
2367925 Brown Jan 1945 A
2758219 Miller Aug 1956 A
2852721 Harders et al. Sep 1958 A
3369210 Manickella Feb 1968 A
3392326 Lamberton Jul 1968 A
3566143 Paine et al. Feb 1971 A
3696286 Ule Oct 1972 A
3740652 Burgener Jun 1973 A
3958136 Schroeder May 1976 A
3982105 Eberle Sep 1976 A
4060757 McMurray Nov 1977 A
4101816 Shepter Jul 1978 A
4104687 Zulaski Aug 1978 A
4129788 Chavannes Dec 1978 A
4146785 Neale Mar 1979 A
4161771 Bates Jul 1979 A
4171861 Hohorst Oct 1979 A
4183079 Wachi Jan 1980 A
4257087 Cuk Mar 1981 A
4296461 Mallory et al. Oct 1981 A
4321581 Tappeiner et al. Mar 1982 A
4346341 Blackburn et al. Aug 1982 A
4367557 Stern et al. Jan 1983 A
4375662 Baker Mar 1983 A
4404472 Steigerwald Sep 1983 A
4412142 Ragonese et al. Oct 1983 A
4452867 Conforti Jun 1984 A
4453207 Paul Jun 1984 A
4460232 Sotolongo Jul 1984 A
4479175 Gille et al. Oct 1984 A
4481654 Daniels et al. Nov 1984 A
4488136 Hansen et al. Dec 1984 A
4545997 Wong et al. Oct 1985 A
4549254 Kissel Oct 1985 A
4554502 Rohatyn Nov 1985 A
4554515 Burson et al. Nov 1985 A
4580090 Bailey et al. Apr 1986 A
4591965 Dickerson May 1986 A
4598330 Woodworth Jul 1986 A
4602322 Merrick Jul 1986 A
4604567 Chetty Aug 1986 A
4623753 Feldman et al. Nov 1986 A
4626983 Harada et al. Dec 1986 A
4631565 Tihanyi Dec 1986 A
4637677 Barkus Jan 1987 A
4639844 Gallios et al. Jan 1987 A
4641042 Miyazawa Feb 1987 A
4641079 Kato et al. Feb 1987 A
4644458 Harafuji et al. Feb 1987 A
4649334 Nakajima Mar 1987 A
4652770 Kumano Mar 1987 A
4683529 Bucher, II Jul 1987 A
4685040 Steigerwald et al. Aug 1987 A
4686617 Colton Aug 1987 A
4706181 Mercer Nov 1987 A
4719553 Hinckley Jan 1988 A
4720667 Lee et al. Jan 1988 A
4720668 Lee et al. Jan 1988 A
4736151 Dishner Apr 1988 A
4746879 Ma et al. May 1988 A
4772994 Harada et al. Sep 1988 A
4783728 Hoffman Nov 1988 A
4819121 Saito et al. Apr 1989 A
RE33057 Clegg et al. Sep 1989 E
4864213 Kido Sep 1989 A
4868379 West Sep 1989 A
4873480 Lafferty Oct 1989 A
4888063 Powell Dec 1989 A
4888702 Gerken et al. Dec 1989 A
4899269 Rouzies Feb 1990 A
4903851 Slough Feb 1990 A
4906859 Kobayashi et al. Mar 1990 A
4910518 Kim et al. Mar 1990 A
4951117 Kasai Aug 1990 A
4978870 Chen et al. Dec 1990 A
4987360 Thompson Jan 1991 A
5001415 Watkinson Mar 1991 A
5027051 Lafferty Jun 1991 A
5027059 de Montgolfier et al. Jun 1991 A
5045988 Glitter et al. Sep 1991 A
5081558 Mahler Jan 1992 A
5138422 Fujii et al. Aug 1992 A
5144222 Herbert Sep 1992 A
5155670 Brian Oct 1992 A
5191519 Kawakami Mar 1993 A
5196781 Jamieson et al. Mar 1993 A
5210519 Moore May 1993 A
5237194 Takahashi Aug 1993 A
5268832 Kandatsu Dec 1993 A
5280133 Nath Jan 1994 A
5280232 Kohl et al. Jan 1994 A
5287261 Ehsani Feb 1994 A
5289361 Vinciarelli Feb 1994 A
5289998 Bingley et al. Mar 1994 A
5327071 Frederick et al. Jul 1994 A
5329222 Gyugyi et al. Jul 1994 A
5345375 Mohan Sep 1994 A
5379209 Goff Jan 1995 A
5381327 Yan Jan 1995 A
5402060 Erisman Mar 1995 A
5404059 Loffler Apr 1995 A
5412558 Sakurai et al. May 1995 A
5413313 Mutterlein et al. May 1995 A
5446645 Shirahama et al. Aug 1995 A
5460546 Kunishi et al. Oct 1995 A
5477091 Fiorina et al. Dec 1995 A
5493154 Smith et al. Feb 1996 A
5497289 Sugishima et al. Mar 1996 A
5501083 Kim Mar 1996 A
5504418 Ashley Apr 1996 A
5504449 Prentice Apr 1996 A
5517378 Asplund et al. May 1996 A
5530335 Decker et al. Jun 1996 A
5539238 Malhi Jul 1996 A
5548504 Takehara Aug 1996 A
5563780 Goad Oct 1996 A
5565855 Knibbe Oct 1996 A
5576941 Nguyen et al. Nov 1996 A
5585749 Pace et al. Dec 1996 A
5604430 Decker et al. Feb 1997 A
5616913 Litterst Apr 1997 A
5636107 Lu et al. Jun 1997 A
5644219 Kurokawa Jul 1997 A
5646501 Fishman et al. Jul 1997 A
5648731 Decker et al. Jul 1997 A
5659465 Flack et al. Aug 1997 A
5677833 Bingley Oct 1997 A
5684385 Guyonneau et al. Nov 1997 A
5686766 Tamechika Nov 1997 A
5703390 Itoh Dec 1997 A
5708576 Jones et al. Jan 1998 A
5719758 Nakata et al. Feb 1998 A
5722057 Wu Feb 1998 A
5726615 Bloom Mar 1998 A
5731603 Nakagawa et al. Mar 1998 A
5734565 Mueller et al. Mar 1998 A
5747967 Muljadi et al. May 1998 A
5773963 Blanc et al. Jun 1998 A
5777515 Kimura Jul 1998 A
5777858 Rodulfo Jul 1998 A
5780092 Agbo et al. Jul 1998 A
5793184 O'Connor Aug 1998 A
5798631 Spee et al. Aug 1998 A
5801519 Midya et al. Sep 1998 A
5804894 Leeson et al. Sep 1998 A
5812045 Ishikawa et al. Sep 1998 A
5814970 Schmidt Sep 1998 A
5821734 Faulk Oct 1998 A
5822186 Bull et al. Oct 1998 A
5838148 Kurokami et al. Nov 1998 A
5847549 Dodson, III Dec 1998 A
5859772 Hilpert Jan 1999 A
5869956 Nagao Feb 1999 A
5873738 Shimada et al. Feb 1999 A
5886882 Rodulfo Mar 1999 A
5886890 Ishida et al. Mar 1999 A
5892354 Nagao et al. Apr 1999 A
5898585 Sirichote et al. Apr 1999 A
5903138 Hwang et al. May 1999 A
5905645 Cross May 1999 A
5917722 Singh Jun 1999 A
5919314 Kim Jul 1999 A
5923100 Lukens et al. Jul 1999 A
5923158 Kurokami et al. Jul 1999 A
5929614 Copple Jul 1999 A
5930128 Dent Jul 1999 A
5930131 Feng Jul 1999 A
5932994 Jo et al. Aug 1999 A
5933327 Leighton et al. Aug 1999 A
5945806 Faulk Aug 1999 A
5946206 Shimizu et al. Aug 1999 A
5949668 Schweighofer Sep 1999 A
5961739 Osborne Oct 1999 A
5963010 Hayashi et al. Oct 1999 A
5963078 Wallace Oct 1999 A
5986909 Hammond et al. Nov 1999 A
5990659 Frannhagen Nov 1999 A
6002290 Avery et al. Dec 1999 A
6021052 Unger et al. Feb 2000 A
6031736 Takehara et al. Feb 2000 A
6037720 Wong et al. Mar 2000 A
6038148 Farrington et al. Mar 2000 A
6046470 Williams et al. Apr 2000 A
6046919 Madenokouji et al. Apr 2000 A
6050779 Nagao et al. Apr 2000 A
6058035 Madenokouji et al. May 2000 A
6064086 Nakagawa et al. May 2000 A
6078511 Fasullo et al. Jun 2000 A
6081104 Kern Jun 2000 A
6082122 Madenokouji et al. Jul 2000 A
6087738 Hammond Jul 2000 A
6091329 Newman Jul 2000 A
6093885 Takehara et al. Jul 2000 A
6094129 Baiatu Jul 2000 A
6101073 Takehara Aug 2000 A
6105317 Tomiuchi et al. Aug 2000 A
6111188 Kurokami et al. Aug 2000 A
6111391 Cullen Aug 2000 A
6111767 Randleman Aug 2000 A
6130458 Takagi et al. Oct 2000 A
6150739 Baumgartl et al. Nov 2000 A
6151234 Oldenkamp Nov 2000 A
6163086 Choo Dec 2000 A
6166455 Li Dec 2000 A
6166527 Dwelley et al. Dec 2000 A
6169678 Kondo et al. Jan 2001 B1
6175219 Imamura et al. Jan 2001 B1
6175512 Hagihara et al. Jan 2001 B1
6191456 Stoisiek et al. Feb 2001 B1
6215286 Scoones et al. Apr 2001 B1
6219623 Wills Apr 2001 B1
6225793 Dickmann May 2001 B1
6255360 Domschke et al. Jul 2001 B1
6255804 Herniter et al. Jul 2001 B1
6256234 Keeth et al. Jul 2001 B1
6259234 Perol Jul 2001 B1
6262558 Weinberg Jul 2001 B1
6268559 Yamawaki Jul 2001 B1
6281485 Siri Aug 2001 B1
6285572 Onizuka et al. Sep 2001 B1
6292379 Edevold et al. Sep 2001 B1
6301128 Jang et al. Oct 2001 B1
6304065 Wittenbreder Oct 2001 B1
6307749 Daanen et al. Oct 2001 B1
6311137 Kurokami et al. Oct 2001 B1
6316716 Hilgrath Nov 2001 B1
6320769 Kurokami et al. Nov 2001 B2
6331670 Takehara et al. Dec 2001 B2
6339538 Randleman Jan 2002 B1
6346451 Simpson et al. Feb 2002 B1
6350944 Sherif et al. Feb 2002 B1
6351130 Preiser et al. Feb 2002 B1
6369461 Jungreis et al. Apr 2002 B1
6369462 Sin Apr 2002 B1
6380719 Underwood et al. Apr 2002 B2
6396170 Laufenberg et al. May 2002 B1
6396239 Benn et al. May 2002 B1
6425248 Tonomura et al. Jul 2002 B1
6429546 Ropp et al. Aug 2002 B1
6429621 Arai Aug 2002 B1
6433522 Siri Aug 2002 B1
6433978 Neiger et al. Aug 2002 B1
6441597 Lethellier Aug 2002 B1
6445599 Nguyen Sep 2002 B1
6448489 Kimura et al. Sep 2002 B2
6452814 Wittenbreder Sep 2002 B1
6469919 Bennett Oct 2002 B1
6472254 Cantarini et al. Oct 2002 B2
6483203 McCormack Nov 2002 B1
6493246 Suzui et al. Dec 2002 B2
6501362 Hoffman et al. Dec 2002 B1
6507176 Wittenbreder, Jr. Jan 2003 B2
6509712 Landis Jan 2003 B1
6515215 Mimura Feb 2003 B1
6519165 Koike Feb 2003 B2
6528977 Arakawa Mar 2003 B2
6531848 Chitsazan et al. Mar 2003 B1
6545211 Mimura Apr 2003 B1
6548205 Leung et al. Apr 2003 B2
6560131 vonBrethorst May 2003 B1
6587051 Takehara et al. Jul 2003 B2
6590793 Nagao et al. Jul 2003 B1
6590794 Carter Jul 2003 B1
6593520 Kondo et al. Jul 2003 B2
6593521 Kobayashi Jul 2003 B2
6603672 Deng et al. Aug 2003 B1
6608468 Nagase Aug 2003 B2
6611130 Chang Aug 2003 B2
6611441 Kurokami et al. Aug 2003 B2
6628011 Droppo et al. Sep 2003 B2
6633824 Dollar, II Oct 2003 B2
6650031 Goldack Nov 2003 B1
6650560 MacDonald et al. Nov 2003 B2
6653549 Matsushita et al. Nov 2003 B2
6657419 Renyolds Dec 2003 B2
6672018 Shingleton Jan 2004 B2
6678174 Suzui et al. Jan 2004 B2
6690590 Stamenic et al. Feb 2004 B2
6693327 Priefert et al. Feb 2004 B2
6693781 Kroker Feb 2004 B1
6708507 Sem Mar 2004 B1
6709291 Wallace et al. Mar 2004 B1
6731136 Knee May 2004 B2
6738692 Schienbein et al. May 2004 B2
6744643 Luo et al. Jun 2004 B2
6765315 Hammerstrom et al. Jul 2004 B2
6768047 Chang et al. Jul 2004 B2
6768180 Salama et al. Jul 2004 B2
6788033 Vinciarelli Sep 2004 B2
6788146 Forejt et al. Sep 2004 B2
6795318 Haas et al. Sep 2004 B2
6800964 Beck Oct 2004 B2
6801442 Suzui et al. Oct 2004 B2
6807069 Nieminen et al. Oct 2004 B2
6809942 Madenokouji et al. Oct 2004 B2
6810339 Wills Oct 2004 B2
6812396 Makita et al. Nov 2004 B2
6828503 Yoshikawa et al. Dec 2004 B2
6837739 Gorringe et al. Jan 2005 B2
6838611 Kondo et al. Jan 2005 B2
6842354 Tallam et al. Jan 2005 B1
6850074 Adams et al. Feb 2005 B2
6856102 Lin et al. Feb 2005 B1
6882131 Takada et al. Apr 2005 B1
6888728 Takagi et al. May 2005 B2
6914418 Sung Jul 2005 B2
6919714 Delepaut Jul 2005 B2
6927955 Suzui et al. Aug 2005 B2
6933627 Wilhelm Aug 2005 B2
6933714 Fasshauer et al. Aug 2005 B2
6936995 Kapsokavathis et al. Aug 2005 B2
6940735 Deng et al. Sep 2005 B2
6949843 Dubovsky Sep 2005 B2
6950323 Achleitner et al. Sep 2005 B2
6963147 Kurokami et al. Nov 2005 B2
6966184 Toyomura et al. Nov 2005 B2
6970365 Turchi Nov 2005 B2
6980783 Liu et al. Dec 2005 B2
6984967 Notman Jan 2006 B2
6984970 Capel Jan 2006 B2
6987444 Bub et al. Jan 2006 B2
6996741 Pittelkow et al. Feb 2006 B1
7030597 Bruno et al. Apr 2006 B2
7031176 Kotsopoulos et al. Apr 2006 B2
7038430 Itabashi et al. May 2006 B2
7042195 Tsunetsugu et al. May 2006 B2
7045991 Nakamura et al. May 2006 B2
7046531 Zocchi et al. May 2006 B2
7053506 Alonso et al. May 2006 B2
7061211 Satoh et al. Jun 2006 B2
7061214 Mayega et al. Jun 2006 B2
7064967 Ichinose et al. Jun 2006 B2
7068017 Willner et al. Jun 2006 B2
7072194 Nayar et al. Jul 2006 B2
7078883 Chapman et al. Jul 2006 B2
7079406 Kurokami et al. Jul 2006 B2
7087332 Harris Aug 2006 B2
7090509 Gilliland et al. Aug 2006 B1
7091707 Cutler Aug 2006 B2
7097516 Werner et al. Aug 2006 B2
7099169 West et al. Aug 2006 B2
7126053 Kurokami et al. Oct 2006 B2
7126294 Minami et al. Oct 2006 B2
7138786 Ishigaki et al. Nov 2006 B2
7142997 Widner Nov 2006 B1
7148669 Maksimovic et al. Dec 2006 B2
7157888 Chen et al. Jan 2007 B2
7158359 Bertele et al. Jan 2007 B2
7158395 Deng et al. Jan 2007 B2
7161082 Matsushita et al. Jan 2007 B2
7174973 Lysaght Feb 2007 B1
7176667 Chen et al. Feb 2007 B2
7183667 Colby et al. Feb 2007 B2
7193872 Siri Mar 2007 B2
7202653 Pai Apr 2007 B2
7218541 Price et al. May 2007 B2
7248946 Bashaw et al. Jul 2007 B2
7256566 Bhavaraju et al. Aug 2007 B2
7259474 Blanc Aug 2007 B2
7262979 Wai et al. Aug 2007 B2
7276886 Kinder et al. Oct 2007 B2
7277304 Stancu et al. Oct 2007 B2
7281141 Elkayam et al. Oct 2007 B2
7282814 Jacobs Oct 2007 B2
7282924 Wittner Oct 2007 B1
7291036 Daily et al. Nov 2007 B1
RE39976 Schiff et al. Jan 2008 E
7315052 Alter Jan 2008 B2
7319313 Dickerson et al. Jan 2008 B2
7324361 Siri Jan 2008 B2
7336004 Lai Feb 2008 B2
7336056 Dening Feb 2008 B1
7339287 Jepsen et al. Mar 2008 B2
7348802 Kasanyal et al. Mar 2008 B2
7352154 Cook Apr 2008 B2
7361952 Miura et al. Apr 2008 B2
7371963 Suenaga et al. May 2008 B2
7372712 Stancu et al. May 2008 B2
7385380 Ishigaki et al. Jun 2008 B2
7385833 Keung Jun 2008 B2
7388348 Mattichak Jun 2008 B2
7391190 Rajagopalan Jun 2008 B1
7394237 Chou et al. Jul 2008 B2
7405117 Zuniga et al. Jul 2008 B2
7414870 Rottger et al. Aug 2008 B2
7420354 Cutler Sep 2008 B2
7420815 Love Sep 2008 B2
7432691 Cutler Oct 2008 B2
7435134 Lenox Oct 2008 B2
7435897 Russell Oct 2008 B2
7443052 Wendt et al. Oct 2008 B2
7443152 Utsunomiya Oct 2008 B2
7450401 Iida Nov 2008 B2
7456523 Kobayashi Nov 2008 B2
7463500 West Dec 2008 B2
7466566 Fukumoto Dec 2008 B2
7471014 Lum et al. Dec 2008 B2
7471524 Batarseh et al. Dec 2008 B1
7479774 Wai et al. Jan 2009 B2
7482238 Sung Jan 2009 B2
7485987 Mod et al. Feb 2009 B2
7495419 Ju Feb 2009 B1
7504811 Watanabe et al. Mar 2009 B2
7518346 Prexl et al. Apr 2009 B2
7538451 Nomoto May 2009 B2
7560915 Ito et al. Jul 2009 B2
7589437 Henne et al. Sep 2009 B2
7595616 Prexl et al. Sep 2009 B2
7599200 Tomonaga Oct 2009 B2
7600349 Liebendorfer Oct 2009 B2
7602080 Hadar et al. Oct 2009 B1
7605498 Ledenev et al. Oct 2009 B2
7612283 Toyomura et al. Nov 2009 B2
7626834 Chisenga et al. Dec 2009 B2
7646116 Batarseh et al. Jan 2010 B2
7649434 Xu et al. Jan 2010 B2
7701083 Savage Apr 2010 B2
7709727 Roehrig et al. May 2010 B2
7719140 Ledenev et al. May 2010 B2
7723865 Kitanaka May 2010 B2
7733069 Toyomura et al. Jun 2010 B2
7748175 Liebendorfer Jul 2010 B2
7759575 Jones et al. Jul 2010 B2
7763807 Richter Jul 2010 B2
7780472 Lenox Aug 2010 B2
7782031 Qiu et al. Aug 2010 B2
7783389 Yamada et al. Aug 2010 B2
7787273 Lu et al. Aug 2010 B2
7804282 Bertele Sep 2010 B2
7807919 Powell et al. Oct 2010 B2
7808125 Sachdeva et al. Oct 2010 B1
7812701 Lee et al. Oct 2010 B2
7821225 Chou et al. Oct 2010 B2
7839022 Wolfs Nov 2010 B2
7843085 Ledenev et al. Nov 2010 B2
7864497 Quardt et al. Jan 2011 B2
7868599 Rahman et al. Jan 2011 B2
7880334 Evans et al. Feb 2011 B2
7883808 Norimatsu et al. Feb 2011 B2
7884278 Powell et al. Feb 2011 B2
7893346 Nachamkin et al. Feb 2011 B2
7898112 Powell et al. Mar 2011 B2
7900361 Adest et al. Mar 2011 B2
7906870 Ohm Mar 2011 B2
7919952 Fahrenbruch Apr 2011 B1
7919953 Porter et al. Apr 2011 B2
7925552 Tarbell et al. Apr 2011 B2
7944191 Xu May 2011 B2
7945413 Krein May 2011 B2
7948221 Watanabe et al. May 2011 B2
7952897 Nocentini et al. May 2011 B2
7960650 Richter et al. Jun 2011 B2
7960950 Glovinsky Jun 2011 B2
7969133 Zhang et al. Jun 2011 B2
7977810 Choi et al. Jul 2011 B2
8003885 Richter et al. Aug 2011 B2
8004113 Sander et al. Aug 2011 B2
8004116 Ledenev et al. Aug 2011 B2
8004117 Adest et al. Aug 2011 B2
8004866 Bucella et al. Aug 2011 B2
8013472 Adest et al. Sep 2011 B2
8018748 Leonard Sep 2011 B2
8039730 Hadar et al. Oct 2011 B2
3050804 Kemahan Nov 2011 A1
8058747 Avrutsky et al. Nov 2011 B2
8058752 Erickson, Jr. et al. Nov 2011 B2
8067855 Mumtaz et al. Nov 2011 B2
8077437 Mumtaz et al. Dec 2011 B2
8089780 Mochikawa et al. Jan 2012 B2
8089785 Rodriguez Jan 2012 B2
8090548 Abdennadher et al. Jan 2012 B2
8093756 Porter et al. Jan 2012 B2
8093757 Wolfs Jan 2012 B2
8098055 Avrutsky et al. Jan 2012 B2
8102074 Hadar et al. Jan 2012 B2
8102144 Capp et al. Jan 2012 B2
8111052 Glovinsky Feb 2012 B2
8116103 Zacharias et al. Feb 2012 B2
8138631 Allen et al. Mar 2012 B2
8138914 Wong et al. Mar 2012 B2
8158877 Klein et al. Apr 2012 B2
8179147 Dargatz et al. May 2012 B2
8184460 O'Brien et al. May 2012 B2
8204709 Presher, Jr. et al. Jun 2012 B2
8212408 Fishman Jul 2012 B2
8212409 Bettenwort et al. Jul 2012 B2
8271599 Eizips et al. Sep 2012 B2
8274172 Hadar et al. Sep 2012 B2
8279644 Zhang et al. Oct 2012 B2
8289742 Adest et al. Oct 2012 B2
8304932 Ledenev et al. Nov 2012 B2
8310101 Amaratunga et al. Nov 2012 B2
8310102 Raju Nov 2012 B2
8314375 Arditi et al. Nov 2012 B2
8325059 Rozenboim Dec 2012 B2
8369113 Rodriguez Feb 2013 B2
8405248 Mumtaz et al. Mar 2013 B2
8405349 Kikinis et al. Mar 2013 B2
8405367 Chisenga et al. Mar 2013 B2
8410950 Takehara et al. Apr 2013 B2
8415552 Hadar et al. Apr 2013 B2
8415937 Hester Apr 2013 B2
8436592 Saitoh May 2013 B2
8461809 Rodriguez Jun 2013 B2
8473250 Adest et al. Jun 2013 B2
8509032 Rakib Aug 2013 B2
8570017 Perichon et al. Oct 2013 B2
8581441 Rotzoll et al. Nov 2013 B2
8653689 Rozenboim Feb 2014 B2
8669675 Capp et al. Mar 2014 B2
8686333 Arditi et al. Apr 2014 B2
8751053 Hadar et al. Jun 2014 B2
8773236 Makhota et al. Jul 2014 B2
8796884 Naiknaware et al. Aug 2014 B2
8811047 Rodriguez Aug 2014 B2
8823218 Hadar et al. Sep 2014 B2
8823342 Williams Sep 2014 B2
8841916 Avrutsky Sep 2014 B2
8853886 Avrutsky et al. Oct 2014 B2
8854193 Makhota et al. Oct 2014 B2
8860241 Hadar et al. Oct 2014 B2
8860246 Hadar et al. Oct 2014 B2
8922061 Arditi Dec 2014 B2
8933321 Hadar et al. Jan 2015 B2
9362743 Gazit et al. Jun 2016 B2
9466737 Ledenev Oct 2016 B2
9647442 Yoscovich et al. May 2017 B2
9831916 Behrends Nov 2017 B2
9865411 Friebe et al. Jan 2018 B2
9991717 Rowe et al. Jun 2018 B1
10032939 Ledenev et al. Jul 2018 B2
20010023703 Kondo et al. Sep 2001 A1
20010032664 Takehara et al. Oct 2001 A1
20010034982 Naga et al. Nov 2001 A1
20010035180 Kimura et al. Nov 2001 A1
20010048605 Kurokami et al. Dec 2001 A1
20010050102 Matsumi et al. Dec 2001 A1
20010054881 Watanabe Dec 2001 A1
20020002040 Kline et al. Jan 2002 A1
20020014262 Matsushita et al. Feb 2002 A1
20020034083 Ayyanar et al. Mar 2002 A1
20020038667 Kondo et al. Apr 2002 A1
20020041505 Suzui et al. Apr 2002 A1
20020044473 Toyomura et al. Apr 2002 A1
20020047309 Droppo et al. Apr 2002 A1
20020056089 Houston May 2002 A1
20020063552 Arakawa May 2002 A1
20020078991 Nagao et al. Jun 2002 A1
20020080027 Conley Jun 2002 A1
20020105765 Kondo et al. Aug 2002 A1
20020113689 Gehlot Aug 2002 A1
20020118559 Kurokami et al. Aug 2002 A1
20020127980 Amanullah Sep 2002 A1
20020134567 Rasmussen et al. Sep 2002 A1
20020148497 Sasaoka et al. Oct 2002 A1
20020149950 Takebayashi Oct 2002 A1
20020165458 Carter et al. Nov 2002 A1
20020177401 Judd et al. Nov 2002 A1
20020179140 Toyomura Dec 2002 A1
20020180408 McDaniel et al. Dec 2002 A1
20030025594 Akiyama et al. Feb 2003 A1
20030038615 Elbanhawy Feb 2003 A1
20030058593 Bertele et al. Mar 2003 A1
20030058662 Baudelot et al. Mar 2003 A1
20030066076 Minahan Apr 2003 A1
20030066555 Hui et al. Apr 2003 A1
20030075211 Makita et al. Apr 2003 A1
20030080741 LeRow et al. May 2003 A1
20030085621 Potega May 2003 A1
20030090233 Browe May 2003 A1
20030094931 Renyolds May 2003 A1
20030107352 Downer et al. Jun 2003 A1
20030121514 Davenport et al. Jul 2003 A1
20030156439 Ohmichi et al. Aug 2003 A1
20030164695 Fasshauer et al. Sep 2003 A1
20030185026 Matsuda et al. Oct 2003 A1
20030193821 Krieger et al. Oct 2003 A1
20030201674 Droppo et al. Oct 2003 A1
20030214274 Lethellier Nov 2003 A1
20030223257 Onoe Dec 2003 A1
20040004402 Kippley Jan 2004 A1
20040027112 Kondo et al. Feb 2004 A1
20040041548 Perry Mar 2004 A1
20040056768 Matsushita et al. Mar 2004 A1
20040061527 Knee Apr 2004 A1
20040076028 Achleitner et al. Apr 2004 A1
20040117676 Kobayashi et al. Jun 2004 A1
20040118446 Toyomura Jun 2004 A1
20040123894 Erban Jul 2004 A1
20040124816 DeLepaut Jul 2004 A1
20040125618 De Rooij et al. Jul 2004 A1
20040140719 Vulih et al. Jul 2004 A1
20040164718 McDaniel et al. Aug 2004 A1
20040165408 West et al. Aug 2004 A1
20040167676 Mizumaki Aug 2004 A1
20040169499 Huang et al. Sep 2004 A1
20040170038 Ichinose et al. Sep 2004 A1
20040189090 Yanagida et al. Sep 2004 A1
20040189432 Yan et al. Sep 2004 A1
20040201279 Templeton Oct 2004 A1
20040201933 Blanc Oct 2004 A1
20040207366 Sung Oct 2004 A1
20040211458 Gui et al. Oct 2004 A1
20040223351 Kurokami et al. Nov 2004 A1
20040230343 Zalesski Nov 2004 A1
20040233685 Matsuo et al. Nov 2004 A1
20040246226 Moon Dec 2004 A1
20040255999 Matsushita et al. Dec 2004 A1
20040258141 Tustison et al. Dec 2004 A1
20040262998 Kunow et al. Dec 2004 A1
20040263119 Meyer et al. Dec 2004 A1
20040264225 Bhavaraju et al. Dec 2004 A1
20050002214 Deng et al. Jan 2005 A1
20050005785 Poss et al. Jan 2005 A1
20050006958 Dubovsky Jan 2005 A1
20050017697 Capel Jan 2005 A1
20050017701 Hsu Jan 2005 A1
20050030772 Phadke Feb 2005 A1
20050040800 Sutardja Feb 2005 A1
20050057214 Matan Mar 2005 A1
20050057215 Matan Mar 2005 A1
20050068012 Cutler Mar 2005 A1
20050068820 Radosevich et al. Mar 2005 A1
20050099138 Wilhelm May 2005 A1
20050103376 Matsushita et al. May 2005 A1
20050105224 Nishi May 2005 A1
20050105306 Deng et al. May 2005 A1
20050110454 Tsai et al. May 2005 A1
20050121067 Toyomura et al. Jun 2005 A1
20050122747 Gaksch Jun 2005 A1
20050135031 Colby et al. Jun 2005 A1
20050139258 Liu et al. Jun 2005 A1
20050162018 Realmuto et al. Jul 2005 A1
20050163063 Kuchler et al. Jul 2005 A1
20050172995 Rohrig et al. Aug 2005 A1
20050179420 Satoh et al. Aug 2005 A1
20050194937 Jacobs Sep 2005 A1
20050201397 Petite Sep 2005 A1
20050213272 Kobayashi Sep 2005 A1
20050225090 Wobben Oct 2005 A1
20050226017 Kotsopoulos et al. Oct 2005 A1
20050242795 Al-Kuran et al. Nov 2005 A1
20050257827 Gaudiana et al. Nov 2005 A1
20050269988 Thrap Dec 2005 A1
20050275386 Jepsen et al. Dec 2005 A1
20050275527 Kates Dec 2005 A1
20050275979 Xu Dec 2005 A1
20050281064 Olsen et al. Dec 2005 A1
20050286510 Nakajima et al. Dec 2005 A1
20060001406 Matan Jan 2006 A1
20060017327 Siri et al. Jan 2006 A1
20060034106 Johnson Feb 2006 A1
20060038692 Schnetker Feb 2006 A1
20060043792 Hjort et al. Mar 2006 A1
20060053447 Krzyzanowski et al. Mar 2006 A1
20060066349 Murakami Mar 2006 A1
20060068239 Norimatsu et al. Mar 2006 A1
20060077046 Endo Apr 2006 A1
20060103360 Cutler May 2006 A9
20060108979 Daniel et al. May 2006 A1
20060113843 Beveridge Jun 2006 A1
20060113979 Ishigaki et al. Jun 2006 A1
20060116968 Arisawa Jun 2006 A1
20060118162 Saelzer et al. Jun 2006 A1
20060125449 Unger Jun 2006 A1
20060132102 Harvey Jun 2006 A1
20060149396 Templeton Jul 2006 A1
20060162772 Presher, Jr. Jul 2006 A1
20060163946 Henne et al. Jul 2006 A1
20060164065 Hoouk et al. Jul 2006 A1
20060171182 Siri et al. Aug 2006 A1
20060174939 Matan Aug 2006 A1
20060176029 McGinty et al. Aug 2006 A1
20060176031 Forman et al. Aug 2006 A1
20060176036 Flatness et al. Aug 2006 A1
20060176716 Balakrishnan et al. Aug 2006 A1
20060185727 Matan Aug 2006 A1
20060192540 Balakrishnan et al. Aug 2006 A1
20060208660 Shinmura et al. Sep 2006 A1
20060222916 Norimatsu et al. Oct 2006 A1
20060227578 Datta et al. Oct 2006 A1
20060231132 Neussner Oct 2006 A1
20060232220 Melis Oct 2006 A1
20060237058 McClintock et al. Oct 2006 A1
20060238750 Shimotomai Oct 2006 A1
20060261751 Okabe et al. Nov 2006 A1
20060290317 McNulty et al. Dec 2006 A1
20070001653 Xu Jan 2007 A1
20070013349 Bassett Jan 2007 A1
20070019613 Frezzolini Jan 2007 A1
20070024257 Boldo Feb 2007 A1
20070027644 Bettenwort et al. Feb 2007 A1
20070030068 Motonobu et al. Feb 2007 A1
20070035975 Dickerson et al. Feb 2007 A1
20070040540 Cutler Feb 2007 A1
20070044837 Simburger et al. Mar 2007 A1
20070075689 Kinder et al. Apr 2007 A1
20070075711 Blanc et al. Apr 2007 A1
20070081364 Andreycak Apr 2007 A1
20070103108 Capp et al. May 2007 A1
20070107767 Hayden et al. May 2007 A1
20070115635 Low et al. May 2007 A1
20070119718 Gibson et al. May 2007 A1
20070121648 Hahn May 2007 A1
20070133241 Mumtaz et al. Jun 2007 A1
20070133421 Young Jun 2007 A1
20070147075 Bang Jun 2007 A1
20070158185 Andelman et al. Jul 2007 A1
20070159866 Siri Jul 2007 A1
20070164612 Wendt et al. Jul 2007 A1
20070164750 Chen et al. Jul 2007 A1
20070165347 Wendt et al. Jul 2007 A1
20070205778 Fabbro et al. Sep 2007 A1
20070209656 Lee Sep 2007 A1
20070211888 Corcoran et al. Sep 2007 A1
20070223165 Itri et al. Sep 2007 A1
20070227574 Cart Oct 2007 A1
20070235071 Work et al. Oct 2007 A1
20070236187 Wai et al. Oct 2007 A1
20070246546 Yoshida Oct 2007 A1
20070247877 Kwon et al. Oct 2007 A1
20070271006 Golden et al. Nov 2007 A1
20070273339 Haines Nov 2007 A1
20070273342 Kataoka et al. Nov 2007 A1
20070273351 Matan Nov 2007 A1
20070284451 Uramoto Dec 2007 A1
20070290636 Beck et al. Dec 2007 A1
20070290656 Lee Tai Keung Dec 2007 A1
20080021707 Bou-Ghazale et al. Jan 2008 A1
20080024098 Hojo Jan 2008 A1
20080036440 Garnier Feb 2008 A1
20080055941 Victor et al. Mar 2008 A1
20080080177 Chang Apr 2008 A1
20080088184 Tung et al. Apr 2008 A1
20080089277 Alexander et al. Apr 2008 A1
20080097655 Hadar et al. Apr 2008 A1
20080106250 Prior et al. May 2008 A1
20080111529 Shah et al. May 2008 A1
20080115823 Kinsey May 2008 A1
20080121272 Besser et al. May 2008 A1
20080122449 Besser et al. May 2008 A1
20080122518 Besser et al. May 2008 A1
20080136367 Adest et al. Jun 2008 A1
20080143188 Adest et al. Jun 2008 A1
20080143462 Belisle et al. Jun 2008 A1
20080144294 Adest et al. Jun 2008 A1
20080147335 Adest et al. Jun 2008 A1
20080149167 Liu Jun 2008 A1
20080150366 Adest et al. Jun 2008 A1
20080150484 Kimball et al. Jun 2008 A1
20080164766 Adest et al. Jul 2008 A1
20080179949 Besser et al. Jul 2008 A1
20080186004 Williams Aug 2008 A1
20080191560 Besser et al. Aug 2008 A1
20080191675 Besser et al. Aug 2008 A1
20080192510 Falk Aug 2008 A1
20080198523 Schmidt et al. Aug 2008 A1
20080205096 Lai et al. Aug 2008 A1
20080218152 Bo Sep 2008 A1
20080224652 Zhu et al. Sep 2008 A1
20080236647 Gibson et al. Oct 2008 A1
20080236648 Klein et al. Oct 2008 A1
20080238195 Shaver et al. Oct 2008 A1
20080238372 Cintra et al. Oct 2008 A1
20080246460 Smith Oct 2008 A1
20080246463 Sinton et al. Oct 2008 A1
20080252273 Woo et al. Oct 2008 A1
20080264470 Masuda et al. Oct 2008 A1
20080266919 Mallwitz Oct 2008 A1
20080283118 Rotzoll et al. Nov 2008 A1
20080291707 Fang Nov 2008 A1
20080294472 Yamada Nov 2008 A1
20080297963 Lee et al. Dec 2008 A1
20080303503 Wolfs Dec 2008 A1
20080304296 NadimpalliRaju et al. Dec 2008 A1
20080304298 Toba et al. Dec 2008 A1
20090012917 Thompson et al. Jan 2009 A1
20090014050 Haaf Jan 2009 A1
20090015071 Iwata et al. Jan 2009 A1
20090020151 Fornage Jan 2009 A1
20090021877 Fornage et al. Jan 2009 A1
20090039833 Kitagawa Feb 2009 A1
20090039852 Fishelov et al. Feb 2009 A1
20090066357 Fornage Mar 2009 A1
20090066399 Chen et al. Mar 2009 A1
20090069950 Kurokami et al. Mar 2009 A1
20090073726 Babcock Mar 2009 A1
20090080226 Fornage Mar 2009 A1
20090084570 Gherardini et al. Apr 2009 A1
20090097172 Bremicker et al. Apr 2009 A1
20090097283 Krein et al. Apr 2009 A1
20090101191 Beck et al. Apr 2009 A1
20090102440 Coles Apr 2009 A1
20090114263 Powell et al. May 2009 A1
20090120485 Kikinis May 2009 A1
20090121549 Leonard May 2009 A1
20090133736 Powell et al. May 2009 A1
20090140715 Adest et al. Jun 2009 A1
20090141522 Adest et al. Jun 2009 A1
20090145480 Adest et al. Jun 2009 A1
20090146667 Adest et al. Jun 2009 A1
20090146671 Gazit Jun 2009 A1
20090147554 Adest et al. Jun 2009 A1
20090150005 Hadar et al. Jun 2009 A1
20090179500 Ragonese et al. Jul 2009 A1
20090179662 Moulton et al. Jul 2009 A1
20090182532 Stoeber et al. Jul 2009 A1
20090184746 Fahrenbruch Jul 2009 A1
20090189456 Skutt Jul 2009 A1
20090190275 Gilmore et al. Jul 2009 A1
20090195081 Quardt et al. Aug 2009 A1
20090206666 Sella et al. Aug 2009 A1
20090207543 Boniface et al. Aug 2009 A1
20090217965 Dougal et al. Sep 2009 A1
20090224817 Nakamura et al. Sep 2009 A1
20090234692 Powell et al. Sep 2009 A1
20090237042 Glovinski Sep 2009 A1
20090237043 Glovinsky Sep 2009 A1
20090242011 Proisy et al. Oct 2009 A1
20090243547 Andelfinger Oct 2009 A1
20090273241 Gazit et al. Nov 2009 A1
20090278496 Nakao et al. Nov 2009 A1
20090282755 Abbott et al. Nov 2009 A1
20090283129 Foss Nov 2009 A1
20090283130 Gilmore et al. Nov 2009 A1
20090284232 Zhang et al. Nov 2009 A1
20090284240 Zhang et al. Nov 2009 A1
20090284998 Zhang et al. Nov 2009 A1
20090295225 Asplund et al. Dec 2009 A1
20090296434 De Rooij et al. Dec 2009 A1
20090322494 Lee Dec 2009 A1
20100001587 Casey et al. Jan 2010 A1
20100002349 La Scala et al. Jan 2010 A1
20100013452 Tang et al. Jan 2010 A1
20100026097 Avrutsky et al. Feb 2010 A1
20100052735 Burkland et al. Mar 2010 A1
20100057267 Liu et al. Mar 2010 A1
20100060000 Scholte-Wassink Mar 2010 A1
20100085670 Palaniswami et al. Apr 2010 A1
20100115093 Rice May 2010 A1
20100124027 Handelsman et al. May 2010 A1
20100127570 Hadar et al. May 2010 A1
20100127571 Hadar May 2010 A1
20100131108 Meyer May 2010 A1
20100132757 He et al. Jun 2010 A1
20100132758 Gilmore Jun 2010 A1
20100133911 Williams et al. Jun 2010 A1
20100139734 Hadar et al. Jun 2010 A1
20100139743 Hadar et al. Jun 2010 A1
20100141153 Recker et al. Jun 2010 A1
20100176773 Capel Jul 2010 A1
20100181957 Goeltner Jul 2010 A1
20100191383 Gaul Jul 2010 A1
20100195357 Fornage et al. Aug 2010 A1
20100207764 Muhlberger et al. Aug 2010 A1
20100207770 Thiemann Aug 2010 A1
20100208501 Matan et al. Aug 2010 A1
20100213897 Tse Aug 2010 A1
20100214808 Rodriguez Aug 2010 A1
20100229915 Ledenev et al. Sep 2010 A1
20100241375 Kumar et al. Sep 2010 A1
20100244575 Coccia et al. Sep 2010 A1
20100246223 Xuan Sep 2010 A1
20100264736 Mumtaz et al. Oct 2010 A1
20100269430 Haddock Oct 2010 A1
20100277001 Wagoner Nov 2010 A1
20100282290 Schwarze et al. Nov 2010 A1
20100286836 Shaver, II et al. Nov 2010 A1
20100288327 Lisi et al. Nov 2010 A1
20100289337 Stauth et al. Nov 2010 A1
20100294528 Sella et al. Nov 2010 A1
20100294903 Shmukler et al. Nov 2010 A1
20100295680 Dumps Nov 2010 A1
20100297860 Shmukler et al. Nov 2010 A1
20100301991 Sella et al. Dec 2010 A1
20100308662 Schatz et al. Dec 2010 A1
20100309692 Chisenga et al. Dec 2010 A1
20100321148 Gevorkian Dec 2010 A1
20100326809 Lang et al. Dec 2010 A1
20100327657 Kuran Dec 2010 A1
20100327659 Lisi et al. Dec 2010 A1
20100332047 Arditi et al. Dec 2010 A1
20110006743 Fabbro Jan 2011 A1
20110012430 Cheng et al. Jan 2011 A1
20110019444 Dargatz et al. Jan 2011 A1
20110025130 Hadar et al. Feb 2011 A1
20110031816 Buthker et al. Feb 2011 A1
20110031946 Egan et al. Feb 2011 A1
20110037600 Takehara et al. Feb 2011 A1
20110043172 Dearn Feb 2011 A1
20110045802 Bland et al. Feb 2011 A1
20110049990 Amaratunga et al. Mar 2011 A1
20110050190 Avrutsky Mar 2011 A1
20110056533 Kuan Mar 2011 A1
20110061713 Powell et al. Mar 2011 A1
20110062784 Wolfs Mar 2011 A1
20110079263 Avrutsky Apr 2011 A1
20110083733 Marroquin et al. Apr 2011 A1
20110084553 Adest et al. Apr 2011 A1
20110088741 Dunton et al. Apr 2011 A1
20110114154 Lichy et al. May 2011 A1
20110115295 Moon et al. May 2011 A1
20110121441 Halstead et al. May 2011 A1
20110121652 Sella et al. May 2011 A1
20110125431 Adest et al. May 2011 A1
20110132424 Rakib Jun 2011 A1
20110133552 Binder et al. Jun 2011 A1
20110139213 Lee Jun 2011 A1
20110140536 Adest et al. Jun 2011 A1
20110141644 Hastings et al. Jun 2011 A1
20110161722 Makhota et al. Jun 2011 A1
20110172842 Makhota et al. Jul 2011 A1
20110173276 Eizips et al. Jul 2011 A1
20110181251 Porter et al. Jul 2011 A1
20110181340 Gazit Jul 2011 A1
20110183537 Fornage et al. Jul 2011 A1
20110210610 Mitsuoka et al. Sep 2011 A1
20110210611 Ledenev et al. Sep 2011 A1
20110210612 Leutwein Sep 2011 A1
20110218687 Hadar et al. Sep 2011 A1
20110227411 Arditi Sep 2011 A1
20110232714 Bhavaraju et al. Sep 2011 A1
20110240100 Lu et al. Oct 2011 A1
20110245989 Makhota et al. Oct 2011 A1
20110246338 Eich Oct 2011 A1
20110254372 Haines et al. Oct 2011 A1
20110260866 Avrutsky et al. Oct 2011 A1
20110267721 Chaintreuil et al. Nov 2011 A1
20110267859 Chapman Nov 2011 A1
20110271611 Maracci et al. Nov 2011 A1
20110273015 Adest et al. Nov 2011 A1
20110273016 Adest et al. Nov 2011 A1
20110273302 Fornage et al. Nov 2011 A1
20110285205 Ledenev et al. Nov 2011 A1
20110285375 Deboy Nov 2011 A1
20110290317 Naumovitz et al. Dec 2011 A1
20110291486 Adest et al. Dec 2011 A1
20110301772 Zuercher et al. Dec 2011 A1
20110304204 Avrutsky et al. Dec 2011 A1
20110304213 Avrutsky et al. Dec 2011 A1
20110304215 Avrutsky et al. Dec 2011 A1
20110316346 Porter et al. Dec 2011 A1
20120007434 Perreault et al. Jan 2012 A1
20120007613 Gazit Jan 2012 A1
20120019966 DeBoer Jan 2012 A1
20120032515 Ledenev et al. Feb 2012 A1
20120033463 Rodriguez Feb 2012 A1
20120039099 Rodriguez Feb 2012 A1
20120043818 Stratakos et al. Feb 2012 A1
20120043823 Stratakos et al. Feb 2012 A1
20120044014 Stratakos et al. Feb 2012 A1
20120048325 Matsuo et al. Mar 2012 A1
20120049627 Matsuo et al. Mar 2012 A1
20120049801 Chang Mar 2012 A1
20120056483 Capp et al. Mar 2012 A1
20120081009 Shteynberg et al. Apr 2012 A1
20120081934 Garrity et al. Apr 2012 A1
20120087159 Chapman et al. Apr 2012 A1
20120091810 Aiello et al. Apr 2012 A1
20120098344 Bergveld et al. Apr 2012 A1
20120104861 Kojori et al. May 2012 A1
20120113554 Paoletti et al. May 2012 A1
20120119584 Hadar et al. May 2012 A1
20120134058 Pamer May 2012 A1
20120146420 Wolfs Jun 2012 A1
20120146583 Gaul et al. Jun 2012 A1
20120161526 Huang et al. Jun 2012 A1
20120161528 Mumtaz et al. Jun 2012 A1
20120169124 Nakashima et al. Jul 2012 A1
20120174961 Larson et al. Jul 2012 A1
20120187769 Spannhake et al. Jul 2012 A1
20120199172 Avrutsky Aug 2012 A1
20120200311 Chaintreuil Aug 2012 A1
20120215367 Eizips et al. Aug 2012 A1
20120217973 Avrutsky Aug 2012 A1
20120240490 Gangemi Sep 2012 A1
20120253533 Eizips et al. Oct 2012 A1
20120253541 Arditi et al. Oct 2012 A1
20120255591 Arditi et al. Oct 2012 A1
20120271576 Kamel Oct 2012 A1
20120274145 Taddeo Nov 2012 A1
20120274264 Mun et al. Nov 2012 A1
20120280571 Hargis Nov 2012 A1
20120299380 Haupt Nov 2012 A1
20120318320 Robbins Dec 2012 A1
20130026839 Grana Jan 2013 A1
20130026840 Arditi et al. Jan 2013 A1
20130026842 Arditi et al. Jan 2013 A1
20130026843 Arditi et al. Jan 2013 A1
20130063119 Lubomirsky Mar 2013 A1
20130094112 Burghardt et al. Apr 2013 A1
20130094262 Avrutsky Apr 2013 A1
20130134790 Amaratunga et al. May 2013 A1
20130181533 Capp et al. Jul 2013 A1
20130192657 Hadar et al. Aug 2013 A1
20130194706 Har-Shai et al. Aug 2013 A1
20130222144 Hadar et al. Aug 2013 A1
20130229834 Garrity et al. Sep 2013 A1
20130229842 Garrity Sep 2013 A1
20130234518 Mumtaz et al. Sep 2013 A1
20130235637 Rodriguez Sep 2013 A1
20130279210 Chisenga et al. Oct 2013 A1
20130285459 Jaoui et al. Oct 2013 A1
20130294126 Garrity et al. Nov 2013 A1
20130307556 Ledenev et al. Nov 2013 A1
20130320778 Hopf et al. Dec 2013 A1
20130332093 Adest et al. Dec 2013 A1
20130335861 Laschinski et al. Dec 2013 A1
20140062206 Bryson Mar 2014 A1
20140169053 Ilic et al. Jun 2014 A1
20140191583 Chisenga et al. Jul 2014 A1
20140233136 Heerdt Aug 2014 A1
20140246915 Mumtaz Sep 2014 A1
20140246927 Mumtaz Sep 2014 A1
20140252859 Chisenga et al. Sep 2014 A1
20140265551 Willis Sep 2014 A1
20140265579 Mumtaz Sep 2014 A1
20140293491 Robbins Oct 2014 A1
20140306543 Garrity et al. Oct 2014 A1
20140327313 Arditi et al. Nov 2014 A1
20140327995 Panjwani et al. Nov 2014 A1
20150022006 Garrity et al. Jan 2015 A1
20150028683 Hadar et al. Jan 2015 A1
20150028692 Makhota et al. Jan 2015 A1
20150061409 Dunton et al. Mar 2015 A1
20150131187 Krein et al. May 2015 A1
20150318410 Higuma Nov 2015 A1
20150381108 Hoft et al. Dec 2015 A1
20150381111 Nicolescu et al. Dec 2015 A1
20160006392 Hoft Jan 2016 A1
20160126367 Dunton et al. May 2016 A1
20160181802 Jacobson et al. Jun 2016 A1
20160226252 Kravtiz et al. Aug 2016 A1
20160329715 Orr et al. Nov 2016 A1
20170104413 Busch et al. Apr 2017 A1
20170179876 Freeman et al. Jun 2017 A1
20170207746 Yoscovich et al. Jul 2017 A1
20170211190 Glasscock et al. Jul 2017 A1
20170278375 Galin et al. Sep 2017 A1
20170288384 Loewenstern et al. Oct 2017 A1
20180191292 Ehlmann Jul 2018 A1
20190379279 Adest et al. Dec 2019 A1
Foreign Referenced Citations (469)
Number Date Country
2073800 Sep 2000 AU
2005262278 Jan 2006 AU
1183574 Mar 1985 CA
2063243 Dec 1991 CA
2301657 Mar 1999 CA
2394761 Jun 2001 CA
2658087 Jun 2001 CA
2443450 Mar 2005 CA
2572452 Jan 2006 CA
2613038 Jan 2007 CA
2704605 May 2009 CA
1106523 Aug 1995 CN
2284479 Jun 1998 CN
1188453 Jul 1998 CN
2305016 Jan 1999 CN
1262552 Aug 2000 CN
1064487 Apr 2001 CN
1309451 Aug 2001 CN
1362655 Aug 2002 CN
2514538 Oct 2002 CN
1122905 Oct 2003 CN
2579063 Oct 2003 CN
1551377 Dec 2004 CN
1185782 Jan 2005 CN
2672938 Jan 2005 CN
1201157 May 2005 CN
1614854 May 2005 CN
1245795 Mar 2006 CN
1787717 Jun 2006 CN
1794537 Jun 2006 CN
1841254 Oct 2006 CN
1841823 Oct 2006 CN
1892239 Jan 2007 CN
1902809 Jan 2007 CN
1929276 Mar 2007 CN
1930925 Mar 2007 CN
101030752 Sep 2007 CN
101050770 Oct 2007 CN
100371843 Feb 2008 CN
101136129 Mar 2008 CN
100426175 Oct 2008 CN
201203438 Mar 2009 CN
101488271 Jul 2009 CN
101523230 Sep 2009 CN
101647172 Feb 2010 CN
101672252 Mar 2010 CN
101697462 Apr 2010 CN
101779291 Jul 2010 CN
101847939 Sep 2010 CN
201601477 Oct 2010 CN
201623478 Nov 2010 CN
201623651 Nov 2010 CN
101953060 Jan 2011 CN
102084584 Jun 2011 CN
102117815 Jul 2011 CN
202103601 Jan 2012 CN
102386259 Mar 2012 CN
102474112 May 2012 CN
102771017 Nov 2012 CN
202871823 Apr 2013 CN
104685785 Jun 2015 CN
105075046 Nov 2015 CN
105164915 Dec 2015 CN
3236071 Jan 1984 DE
3525630 Jan 1987 DE
3729000 Mar 1989 DE
4019710 Jan 1992 DE
4032569 Apr 1992 DE
9312710 Oct 1993 DE
4232356 Mar 1994 DE
4325436 Feb 1995 DE
4328511 Mar 1995 DE
19515786 Nov 1995 DE
19502762 Aug 1996 DE
19614861 Jul 1997 DE
19609189 Sep 1997 DE
19618882 Nov 1997 DE
19701897 Jul 1998 DE
19718046 Nov 1998 DE
19732218 Mar 1999 DE
19737286 Mar 1999 DE
19838230 Feb 2000 DE
19846818 Apr 2000 DE
19859732 Jun 2000 DE
19904561 Aug 2000 DE
19928809 Jan 2001 DE
019937410 Feb 2001 DE
19961705 Jul 2001 DE
10064039 Dec 2001 DE
10060108 Jun 2002 DE
10103431 Aug 2002 DE
10136147 Feb 2003 DE
10222621 Nov 2003 DE
202004001246 Apr 2004 DE
10345302 Apr 2005 DE
102004043478 Apr 2005 DE
69734495 Jul 2006 DE
69735169 Aug 2006 DE
102005018173 Oct 2006 DE
102005030907 Jan 2007 DE
102005032864 Jan 2007 DE
102006023563 Nov 2007 DE
102006026073 Dec 2007 DE
602004011201 Dec 2008 DE
102007050031 Apr 2009 DE
102008042199 Apr 2010 DE
102008057874 May 2010 DE
0027405 Apr 1981 EP
169673 Jan 1986 EP
0178757 Apr 1986 EP
0206253 Dec 1986 EP
0231211 Aug 1987 EP
0293219 Nov 1988 EP
0340006 Nov 1989 EP
419093 Mar 1991 EP
420295 Apr 1991 EP
0521467 Jan 1993 EP
0576271 Dec 1993 EP
0577334 Jan 1994 EP
604777 Jul 1994 EP
0628901 Dec 1994 EP
0642199 Mar 1995 EP
653692 May 1995 EP
0670915 Sep 1995 EP
677749 Oct 1995 EP
0677749 Jan 1996 EP
756178 Jan 1997 EP
0756372 Jan 1997 EP
0780750 Jun 1997 EP
0809293 Nov 1997 EP
827254 Mar 1998 EP
0895146 Feb 1999 EP
0906660 Apr 1999 EP
0947905 Oct 1999 EP
1012886 Jun 2000 EP
1024575 Aug 2000 EP
1034465 Sep 2000 EP
1035640 Sep 2000 EP
1039620 Sep 2000 EP
1039621 Sep 2000 EP
1047179 Oct 2000 EP
1130770 Sep 2001 EP
1143594 Oct 2001 EP
1187291 Mar 2002 EP
1235339 Aug 2002 EP
1239573 Sep 2002 EP
1239576 Sep 2002 EP
1254505 Nov 2002 EP
1271742 Jan 2003 EP
1330009 Jul 2003 EP
1339153 Aug 2003 EP
1369983 Dec 2003 EP
1376706 Jan 2004 EP
1388774 Feb 2004 EP
1400988 Mar 2004 EP
1407534 Apr 2004 EP
1418482 May 2004 EP
1429393 Jun 2004 EP
1442473 Aug 2004 EP
1447561 Aug 2004 EP
1457857 Sep 2004 EP
1463188 Sep 2004 EP
1475882 Nov 2004 EP
1503490 Feb 2005 EP
1521345 Apr 2005 EP
1526633 Apr 2005 EP
1531542 May 2005 EP
1531545 May 2005 EP
1532727 May 2005 EP
1552563 Jul 2005 EP
1562281 Aug 2005 EP
1580862 Sep 2005 EP
1603212 Dec 2005 EP
1610571 Dec 2005 EP
1623495 Feb 2006 EP
1657557 May 2006 EP
1657797 May 2006 EP
1691246 Aug 2006 EP
1706937 Oct 2006 EP
1708070 Oct 2006 EP
1716272 Nov 2006 EP
1728413 Dec 2006 EP
1750193 Feb 2007 EP
1766490 Mar 2007 EP
1782146 May 2007 EP
1785800 May 2007 EP
1837985 Sep 2007 EP
1842121 Oct 2007 EP
1609250 Jan 2008 EP
1887675 Feb 2008 EP
1901419 Mar 2008 EP
1902349 Mar 2008 EP
1911101 Apr 2008 EP
2048679 Apr 2009 EP
2054944 May 2009 EP
2061088 May 2009 EP
2092625 Aug 2009 EP
2092631 Aug 2009 EP
2135348 Dec 2009 EP
2144133 Jan 2010 EP
2179451 Apr 2010 EP
2206159 Jul 2010 EP
2232690 Sep 2010 EP
2234237 Sep 2010 EP
2315328 Apr 2011 EP
2374190 Oct 2011 EP
2393178 Dec 2011 EP
2395648 Dec 2011 EP
2495766 Sep 2012 EP
2533299 Dec 2012 EP
2549635 Jan 2013 EP
2561596 Feb 2013 EP
2621045 Jul 2013 EP
2666222 Nov 2013 EP
2722979 Apr 2014 EP
2779251 Sep 2014 EP
2139104 Oct 2017 EP
2249147 Mar 2006 ES
2249149 Mar 2006 ES
2796216 Jan 2001 FR
2819653 Jul 2002 FR
1211885 Nov 1970 GB
1261838 Jan 1972 GB
1571681 Jul 1980 GB
1597508 Sep 1981 GB
2327208 Jan 1999 GB
2339465 Jan 2000 GB
2376801 Dec 2002 GB
2399463 Sep 2004 GB
2399465 Sep 2004 GB
2415841 Jan 2006 GB
2419968 May 2006 GB
2421847 Jul 2006 GB
2476508 Jun 2011 GB
2480015 Nov 2011 GB
2480015 Dec 2011 GB
2482653 Feb 2012 GB
2483317 Mar 2012 GB
2485527 May 2012 GB
2486408 Jun 2012 GB
2487368 Jul 2012 GB
2497275 Jun 2013 GB
2498365 Jul 2013 GB
2498790 Jul 2013 GB
2498791 Jul 2013 GB
2499991 Sep 2013 GB
61065320 Apr 1986 JP
S62154122 Jul 1987 JP
H01311874 Dec 1989 JP
H04219982 Aug 1992 JP
H04364378 Dec 1992 JP
8009557 Jan 1996 JP
H0897460 Apr 1996 JP
H08116628 May 1996 JP
H08185235 Jul 1996 JP
H08227324 Sep 1996 JP
H08316517 Nov 1996 JP
H08317664 Nov 1996 JP
H094692 Jan 1997 JP
H09148611 Jun 1997 JP
H09275644 Oct 1997 JP
2676789 Nov 1997 JP
H1017445 Jan 1998 JP
H1075580 Mar 1998 JP
H10201086 Jul 1998 JP
H10201105 Jul 1998 JP
11041832 Feb 1999 JP
H1146457 Feb 1999 JP
11103538 Apr 1999 JP
2892183 May 1999 JP
11206038 Jul 1999 JP
H11266545 Sep 1999 JP
11289891 Oct 1999 JP
11318042 Nov 1999 JP
H11332088 Nov 1999 JP
2000020150 Jan 2000 JP
3015512 Mar 2000 JP
2000-112545 Apr 2000 JP
2000-116010 Apr 2000 JP
2000160789 Jun 2000 JP
2000166097 Jun 2000 JP
2000174307 Jun 2000 JP
2000232791 Aug 2000 JP
2000232793 Aug 2000 JP
2000316282 Nov 2000 JP
2000324852 Nov 2000 JP
2000339044 Dec 2000 JP
2000341974 Dec 2000 JP
2000347753 Dec 2000 JP
2000358330 Dec 2000 JP
2001060120 Mar 2001 JP
2001075662 Mar 2001 JP
2001178145 Jun 2001 JP
2001189476 Jul 2001 JP
2001224142 Aug 2001 JP
2001238466 Aug 2001 JP
2001250964 Sep 2001 JP
2002073184 Mar 2002 JP
2002238246 Aug 2002 JP
2002-262461 Sep 2002 JP
2002270876 Sep 2002 JP
2002300735 Oct 2002 JP
2002339591 Nov 2002 JP
2002354677 Dec 2002 JP
2003102134 Apr 2003 JP
2003124492 Apr 2003 JP
2003134661 May 2003 JP
2003134667 May 2003 JP
2003289674 Oct 2003 JP
2004055603 Feb 2004 JP
2004-096090 Mar 2004 JP
2004111754 Apr 2004 JP
2004-147465 May 2004 JP
2004194500 Jul 2004 JP
2004260944 Sep 2004 JP
2004-334704 Nov 2004 JP
2004312994 Nov 2004 JP
2005-151662 Jun 2005 JP
3656531 Jun 2005 JP
2005192314 Jul 2005 JP
2005251039 Sep 2005 JP
2005-276942 Oct 2005 JP
2005-312287 Nov 2005 JP
2006041440 Feb 2006 JP
2006271083 Oct 2006 JP
2007058845 Mar 2007 JP
2010-146047 Jul 2010 JP
2010245532 Oct 2010 JP
2012511299 May 2012 JP
20010044490 Jun 2001 KR
20040086088 Oct 2004 KR
100468127 Jan 2005 KR
200402282 Nov 2005 KR
100725755 May 2007 KR
100912892 Aug 2009 KR
1011483 Sep 2000 NL
8202134 Jun 1982 WO
1982002134 Jun 1982 WO
1984003402 Aug 1984 WO
1988004801 Jun 1988 WO
1992007418 Apr 1992 WO
1993013587 Jul 1993 WO
1996007130 Mar 1996 WO
1996013093 May 1996 WO
1998023021 May 1998 WO
1999028801 Jun 1999 WO
0000839 Jan 2000 WO
1121178 Apr 2000 WO
0042689 Jul 2000 WO
0075947 Dec 2000 WO
0077522 Dec 2000 WO
01047095 Jun 2001 WO
0231517 Apr 2002 WO
02056126 Jul 2002 WO
0278164 Oct 2002 WO
02078164 Oct 2002 WO
02093655 Nov 2002 WO
03012569 Feb 2003 WO
2003012569 Feb 2003 WO
2003050938 Jun 2003 WO
2003071655 Aug 2003 WO
03084041 Oct 2003 WO
2004001942 Dec 2003 WO
2004006342 Jan 2004 WO
2004008619 Jan 2004 WO
2004023278 Mar 2004 WO
2004053993 Jun 2004 WO
2004090993 Oct 2004 WO
2004098261 Nov 2004 WO
2004100344 Nov 2004 WO
2004100348 Nov 2004 WO
2004107543 Dec 2004 WO
2005015584 Feb 2005 WO
2005027300 Mar 2005 WO
2005053189 Jun 2005 WO
2005069096 Jul 2005 WO
2005076444 Aug 2005 WO
2005076445 Aug 2005 WO
2005089030 Sep 2005 WO
2005112551 Dec 2005 WO
2005119609 Dec 2005 WO
2005124498 Dec 2005 WO
2006002380 Jan 2006 WO
2006005125 Jan 2006 WO
2006007198 Jan 2006 WO
2006011071 Feb 2006 WO
2006011359 Feb 2006 WO
2006013600 Feb 2006 WO
2006033143 Mar 2006 WO
2006048688 May 2006 WO
2006048689 May 2006 WO
2006071436 Jul 2006 WO
2006078685 Jul 2006 WO
2006079503 Aug 2006 WO
2006089778 Aug 2006 WO
2006110613 Oct 2006 WO
2007006564 Jan 2007 WO
2007007360 Jan 2007 WO
2007010326 Jan 2007 WO
2007048421 May 2007 WO
2007072517 Jun 2007 WO
2007073951 Jul 2007 WO
2007080429 Jul 2007 WO
2007084196 Jul 2007 WO
2007090476 Aug 2007 WO
2007113358 Oct 2007 WO
2007124518 Nov 2007 WO
2007129808 Nov 2007 WO
2008008528 Jan 2008 WO
2008026207 Mar 2008 WO
2008077473 Jul 2008 WO
2008097591 Aug 2008 WO
2008125915 Oct 2008 WO
2008132551 Nov 2008 WO
2008132553 Nov 2008 WO
2008142480 Nov 2008 WO
2009006879 Jan 2009 WO
2009007782 Jan 2009 WO
2009020917 Feb 2009 WO
2009046533 Apr 2009 WO
2009051221 Apr 2009 WO
2009051222 Apr 2009 WO
2009051853 Apr 2009 WO
2009056957 May 2009 WO
2009059028 May 2009 WO
2009064683 May 2009 WO
2009072075 Jun 2009 WO
2009073867 Jun 2009 WO
2009072077 Jun 2009 WO
2009073868 Jun 2009 WO
2009073995 Jun 2009 WO
2009114341 Sep 2009 WO
2009118682 Oct 2009 WO
2009118683 Oct 2009 WO
2009136358 Nov 2009 WO
2009155392 Dec 2009 WO
2010002960 Jan 2010 WO
2010003941 Jan 2010 WO
2010014116 Feb 2010 WO
2010037393 Apr 2010 WO
2010056777 May 2010 WO
2010062662 Jun 2010 WO
2010065043 Jun 2010 WO
2010065388 Jun 2010 WO
2010072717 Jul 2010 WO
2010078303 Jul 2010 WO
2010091025 Aug 2010 WO
2010094012 Aug 2010 WO
2010120315 Oct 2010 WO
2010134057 Nov 2010 WO
20100134057 Nov 2010 WO
2011005339 Jan 2011 WO
2011011711 Jan 2011 WO
2011014275 Feb 2011 WO
2011017721 Feb 2011 WO
2011023732 Mar 2011 WO
2011028456 Mar 2011 WO
2011028457 Mar 2011 WO
2011059067 May 2011 WO
2011074025 Jun 2011 WO
2011085259 Jul 2011 WO
2011109746 Sep 2011 WO
2011119587 Sep 2011 WO
2011133843 Oct 2011 WO
2011133928 Oct 2011 WO
2011151672 Dec 2011 WO
2013015921 Jan 2013 WO
2013019899 Feb 2013 WO
2013130563 Sep 2013 WO
Non-Patent Literature Citations (250)
Entry
Aug. 9, 2010, Hong, Wei, et al., “Charge Equalization of Battery POwer Modules in Series” The 2010 International Power Electronics Conference, IEEE, p. 1568-1572.
Jun. 6, 2018—EP Search Report EP App No. 18151594.1.
Jun. 29, 2018—EP Search Report—EP App No. 18175980.4.
Jan. 29, 2019—European Search Report for EP App No. 18199117.5.
Jul. 12, 2019—European Search Report—EP 19170538.3.
Sep. 4, 2019—Extended European Search Report—EP 19181247.8.
Aug. 6, 2019—Notice of Opposition of European Patent 2232663—Fronius International GmbH.
Sep. 5, 2019—Notice of Opposition of European Patent 2549635—Huawei Technologies Co.
Sep. 5, 2019—Notice of Opposition of European Patent 2549635—Fronius International GmbH.
Solide Arbeit, Heinz Neuenstein, Dec. 2007.
Spitzenwirkungsgrad mit drei Spitzen, Heinz Neuenstien and Andreas Schlumberger, Jan. 2007.
Technical Information, Temperature Derating for Sunny Boy, Sunny Mini Central, Sunny Tripower, Aug. 9, 2019.
Prinout from Energy Matters online Forum, Jul. 2011.
Wayback Machine Query for Energy Matters Online Forum Jul. 2011.
Nov. 27, 2019—European Search Report—3567562.
Baocheng, DC to AC Inverter with Improved One Cycle Control, 2003.
Brekken, Utility-Connected Power Converter for Maximizing Power Transfer From a Photovoltaic Source While Drawing Ripple-Free Current, 2002.
Cramer, Modulorientierter Stromrichter Geht in Serienfertigung , SPVSE, 1994.
Cramer, Modulorientierter Stromrichter, Juelich, Dec. 31, 1995.
Cramer, String-Wechselrichter Machen Solarstrom Billiger, Elektronik, Sep. 1996.
Dehbonei, A Combined Voltage Controlled and Current Controlled “Dual Converter” for a Weak Grid Connected Photovoltaic System with Battery Energy Storage, 2002.
Engler, Begleitende Untersuchungen zur Entwicklung eines Multi-String-Wechselrichters, SPVSE, Mar. 2002.
Seipel, Untersuchungen zur Entwicklung modulorientierter Stromrichter Modulorientierter Stromrichter für netzgekoppelte Photovoltaik-Anlagen, SPVSE, 1995.
Hoor, DSP-Based Stable Control Loops Design for a Single Stage Inverter, 2006.
Isoda, Battery Charging Characteristics in Small Scaled Photovoltaic System Using Resonant DC-DC Converter With Electric Isolation, 1990.
Jones, Communication Over Aircraft Power lines, Dec. 2006/ Jan. 2007.
Kalaivani, A Novel Control Strategy for the Boost DC-AC Inverter, 2006.
Lee, Powering the Dream, IET Computing & Control Engineering, Dec. 2006/ Jan. 2007.
Lee, A Novel Topology for Photovoltaic Series Connected DC/DC Converter with High Efficiency Under Wide Load Range, Jun. 2007.
Lin, LLC DC/DC Resonant Converter with PLL Control Scheme, 2007.
Niebauer, Solarenergie Optimal Nutzen, Stromversorgung, Elektronik, 1996.
Rodrigues, Experimental Study of Switched Modular Series Connected DC-DC Converters, 2001.
Sanchis, Buck-Boost DC-AC Inverter: Proposal for a New Control Strategy, 2004.
Ben, A New DC-to-AC Inverter With Dynamic Robust Performance, 1998.
Shaojun, Research on a Novel Inverter Based on DC/DC Converter Topology, 2003.
Siri, Sequentially Controlled Distributed Solar-Array Power System with Maximum Power Tracking, 2004.
Walko, Poised for Power, IEE Power Engineer, Feb./ Mar. 2005.
White, Electrical Isolation Requirements in Power-Over-Ethernet (PoE) Power Sourcing Equipment (PSE), 2006.
Yu, Power Conversion and Control Methods for Renewable Energy Sources, May 2005.
Zacharias, Modularisierung in der PV-Systemtechnik—Schnittstellen zur Standardisierung der Komponenten, Institut für Solare Energieversorgungstechnik (ISET), 1996.
Dec. 24, 2019—CN Office Action—CN Application 201610946835.5.
Jan. 30, 2020—EP Office Action—EP 18204177.2.
Feb. 3, 2020—Chinese Office Action—201710749388.9.
QT Technical Application Papers, “ABB Circuit-Breakers for Direct current Applications”, ABB SACE S.p.A., An ABB Group Company, L.V. Breakers, Via Baioni, 35, 24123 Bergamo-Italy, Tel.: ⇄035.395.111—Telefax: ⇄035.395.306-433, Sep. 2007.
Woyte, et al., “Mains Monitoring and Protection in a European Context”, 17th European Photovoltaic Solar Energy Conference and Exhibition, Munich, Germany, Oct. 22-26, 2001, ACHIM, Woyte, et al., pp. 1-4.
“Implementation and testing of Anti-Islanding Algorithms for IEEE 929-2000 Compliance of Single Phase Photovoltaic Inverters”, Raymond M. Hudson, Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE, May 19-24, 2002.
Fairchild Semiconductor, Application Note 9016, IGBT Basics 1, by K.S. Oh Feb. 1, 2001.
“Disconnect Switches in Photovoltaic Applications”, ABB, Inc., Low Voltage Control Products & Systems, 1206 Hatton Road, Wichita Falls, TX 86302, Phone 888-385-1221, 940-397-7000, Fax: 940-397-7085, 1SXU301197B0201, Nov. 2009.
Walker, “A DC Circuit Breaker for an Electric Vehicle Battery Pack”, Australasian Universities Power Engineering Conference and lEAust Electric Energy Conference, Sep. 26-29, 1999.
Combined Search and Examination Report for GB1018872.0 dated Apr. 15, 2011, 2 pages.
International Search Report and Opinion of International Patent Application PCT/2009/051221, dated Oct. 19, 2009.
International Search Report and Opinion of International Patent Application PCT/2009/051222, dated Oct. 7, 2009.
Communication in EP07874025.5 dated Aug. 17, 2011.
IPRP for PCT/IB2008/055095 dated Jun. 8, 2010, with Written Opinion.
ISR for PCT/IB2008/055095 dated Apr. 30, 2009.
ISR for PCT/IL07/01064 dated Mar. 25, 2008.
IPRP for PCT/IB2007/004584 dated Jun. 10, 2009, with Written Opinion.
IPRP for PCT/IB2007/004591 dated Jul. 13, 2010, with Written Opinion.
IPRP for PCT/IB2007/004643 dated Jun. 10, 2009, with Written Opinion.
Written Opinion for PCT/IB2008/055092 submitted with IPRP dated Jun. 8, 2010.
IPRP for PCT/US2008/085754 dated Jun. 8, 2010, with Written Opinion dated Jan. 21, 2009.
IPRP for PCT/US2008/085755 dated Jun. 8, 2010, with Written Opinion dated Jan. 20, 2009.
IPRP for PCT/IB2009/051221 dated Sep. 28, 2010, with Written Opinion.
IPRP for PCT/IB2009/051222 dated Sep. 28, 2010, with Written Opinion.
IPRP for PCT/IB2009/051831 dated Nov. 9, 2010, with Written Opinion.
IPRP for PCT/US2008/085736 dated Jun. 7, 2011, with Written Opinion.
IPRP for PCT/IB2010/052287 dated Nov. 22, 2011, with Written Opinion.
ISR for PCT/IB2010/052413 dated Sep. 7, 2010.
UK Intellectual Property Office, Application No. GB1109618.7, Patents Act 1977, Examination Report Under Section 18(3), Sep. 16, 2011.
UK Intellectual Property Office, Patents Act 1977: Patents Rules Notification of Grant: Patent Serial No. GB2480015, Nov. 29, 2011.
Walker, et al. “PV String Per-Module Maximum Power Point Enabling Converters”, School of Information Technology and Electrical Engineering The University of Queensland, Sep. 28, 2003.
Walker, “Cascaded DC-DC Converter Connection of Photovoltaic Modules”, 33rd Annual IEEE Power Electronics Specialists Conference. PESC 2002. Conference Proceedings. Cairns, Queensland, Australia, Jun. 23-27, 2002; [Annual Power Electronics Specialists Conference], New York, NY: IEEE US, vol. 1, Jun. 23, 2002, pp. 24-29, XP010596060 ISBN: 978-0-7803-7262-7, figure 1.
Baggio, “Quasi-ZVS Activity Auxiliary Commutation Circuit for Two Switches Forward Converter”, 32nd Annual IEEE Power Electronics Specialists Conference. PESC 2001 Conference Proceedings. Vancouver, Canada, Jun. 17-21, 2001; [Annual Power Electronics Specialists Conference] New York, NY: IEEE, US.
Ilic, “Interleaved Zero-Current-Transition Buck Converter”, IEEE Transactions on Industry Applications, IEEE Service Center, Piscataway, NJ, US, vol. 43, No. 6, Nov. 1, 2007, pp. 1619-1627, XP011197477 ISSN: 0093-9994, pp. 1619-1922.
Lee: “Novel Zero-Voltage-Transition and Zero-Current-Transition Pulse-Width-Modulation Converters”, Power Electronics Specialists Conference, 1997, PESC '97, Record, 28th Annual IEEE St. Louis, MO, USA, Jun. 22-27, 1997, New York, NY, USA IEEE, US, vol. 1, Jun. 22, 1997, pp. 233-239, XP010241553, ISBN: 978-0-7803-3840-1, pp. 233-236.
Sakamoto, “Switched Snubber for High-Frequency Switching Converters”, Electronics & Communications in Japan, Part 1—Communications, Wiley, Hoboken, NJ, US, vol. 76, No. 2, Feb. 1, 1993, pp. 30-38, XP000403018 ISSN: 8756-6621, pp. 30-35.
Duarte, “A Family of ZVX-PWM Active-Clamping DC-to-DC Converters: Synthesis, Analysis and Experimentation”, Telecommunications Energy Conference, 1995, INTELEC '95, 17th International The Hague, Netherlands, Oct. 29-Nov. 1, 1995, New York, NY, US, IEEE, US, Oct. 29, 1995, pp. 502-509, XP010161283 ISBN: 378-0-7803-2750-4 p. 503-504.
IPRP for PCT/IL2007/001064 dated Mar. 17, 2009, with Written Opinion dated Mar. 25, 2008.
IPRP for PCT/IB2007/004586 dated Jun. 10, 2009, with Written Opinion.
Gao, et al., “Parallel-Connected Solar PV System to Address Partial and Rapidly Fluctuating Shadow Conditions”, IEEE Transactions on Industrial Electronics, vol. 56, No. 5, May 2009, pp. 1548-1556.
IPRP PCT/IB2007/004610—date of issue Jun. 10, 2009.
Extended European Search Report—EP12176089.6—dated Nov. 8, 2012.
Gwon-Jong Yu et al: “Maximum power point tracking with temperature compensation of photovoltaic for air conditioning system with fuzzy controller”, May 13, 1996; May 13, 1996-May 17, 1996, May 13, 1996 ( May 13, 1996), pp. 1429-1432, XP010208423.
Extended European Search Report—EP12177067.1—dated Dec. 7, 2012.
GB Combined Search and Examination Report—GB1200423.0—dated Apr. 30, 2012.
GB Combined Search and Examination Report—GB1201499.9—dated May 28, 2012.
GB Combined Search and Examination Report—GB1201506.1—dated May 22, 2012.
“Study of Energy Storage Capacitor Reduction for Single Phase PWM Rectifier”, Ruxi Wang et al., Virginia Polytechnic Institute and State University, Feb. 2009.
“Multilevel Inverters: A Survey of Topologies, Controls, and Applications”, José Rodriguez et al., IEEE Transactions on Industrial Electronics, vol. 49, No. 4, Aug. 2002.
Extended European Search Report—EP 08878650.4—dated Mar. 28, 2013.
Satcon Solstice—Satcon Solstice 100 kW System Solution Sheet—2010.
John Xue, “PV Module Series String Balancing Converters”, University of Queensland—School of Information Technology & Electrical Engineering, Nov. 6, 2002.
Robert W. Erickson, “Future of Power Electronics for Photovoltaics”, IEEE Applied Power Electronics Conference, Feb. 2009.
Ciobotaru, et al., Control of single-stage single-phase PV inverter, Aug. 7, 2006.
International Search Report and Written Opinion for PCT/IB2007/004591 dated Jul. 5, 2010.
European Communication for EP07873361.5 dated Jul. 12, 2010.
European Communication for EP07874022.2 dated Oct. 18, 2010.
European Communication for EP07875148.4 dated Oct. 18, 2010.
Chen, et al., “A New Low-Stress Buck-Boost Converter for Universal-Input PFC Applications”, IEEE Applied Power Electronics Conference, Feb. 2001, Colorado Power Electronics Center Publications.
Chen, et al., “Buck-Boost PWM Converters Having Two Independently Controlled Switches”, IEEE Power Electronics Specialists Conference, Jun. 2001, Colorado Power Electronics Center Publications.
Esram, et al., “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques”, IEEE Transactions on Energy Conversion, vol. 22, No. 2, Jun. 2007, pp. 439-449.
Walker, et al., “Photovoltaic DC-DC Module Integrated Converter for Novel Cascaded and Bypass Grid Connection Topologies—Design and Optimisation”, 37th IEEE Power Electronics Specialists Conference, Jun. 18-22, 2006, Jeju, Korea.
Geoffrey R. Walker Affidavit re: U.S. Appl. No. 11/950,307, submitted in an IDS for U.S. Appl. No. 11/950,271, filed Mar. 9, 2010.
Geoffrey R. Walker Affidavit re: U.S. Appl. No. 11/950,271, submitted in an IDS for U.S. Appl. No. 11/950,271, filed Mar. 9, 2010.
International Search Report for PCT/IB2007/004610 dated Feb. 23, 2009.
International Search Report for PCT/IB2007/004584 dated Jan. 28, 2009.
International Search Report for PCT/IB2007/004586 dated Mar. 5, 2009.
International Search Report for PCT/IB2007/004643 dated Jan. 30, 2009.
International Search Report for PCT/US2008/085736 dated Jan. 28, 2009.
International Search Report for PCT/US2008/085754 dated Feb. 9, 2009.
International Search Report for PCT/US2008/085755 dated Feb. 3, 2009.
Kajihara, et al., “Model of Photovoltaic Cell Circuits Under Partial Shading”, 2005 IEEE, pp. 866-870.
Knaupp, et al., “Operation of a 10 KW PV Façade with 100 W AC Photovoltaic Modules”, 1996 IEEE, 25th PVSC, May 13-17, 1996, pp. 1235-1238, Washington, DC.
Alonso, et al., “Cascaded H-Bridge Multilevel Converter for Grid Connected Photovoltaic Generators with Independent Maximum Power Point Tracking of Each Solar Array”, 2003 IEEE 34th, Annual Power Electronics Specialists Conference, Acapulco, Mexico, Jun. 15-19, 2003, pp. 731-735, vol. 2.
Myrzik, et al., “String and Module Integrated Inverters for Single-Phase Grid Connected Photovoltaic Systems—A Review”, Power Tech Conference Proceedings, 2003 IEEE Bologna, Jun. 23-26, 2003, p. 8, vol. 2.
Chen, et al., “Predictive Digital Current Programmed Control”, IEEE Transactions on Power Electronics, vol. 18, Issue 1, Jan. 2003.
Wallace, et al., “DSP Controlled Buck/Boost Power Factor Correction for Telephony Rectifiers”, Telecommunications Energy Conference 2001, INTELEC 2001, Twenty-Third International, Oct. 18, 2001, pp. 132-138.
Alonso, “A New Distributed Converter Interface for PV Panels”, 20th European Photovoltaic Solar Energy Conference, Jun. 6-10, 2005, Barcelona, Spain, pp. 2288-2291.
Alonso, “Experimental Results of Intelligent PV Module for Grid-Connected PV Systems”, 21st European Photovoltaic Solar Energy Conference, Sep. 4-8, 2006, Dresden, Germany, pp. 2297-2300.
Enslin, “Integrated Photovoltaic Maximum Power Point Tracking Converter”, IEEE Transactions on Industrial Electronics, vol. 44, No. 6, Dec. 1997, pp. 769-773.
Sep. 7-9, 1999—Lindgren, “Topology for Decentralised Solar Energy Inverters with a Low Voltage AC-Bus”, Chalmers University of Technology, Department of Electrical Power Engineering, EPE '99—Lausanne.
Jun. 20-25, 2004—Nikraz, “Digital Control of a Voltage Source Inverter in a Photovoltaic Applications”, 2004 35th Annual IEEE Power Electronics Specialists Conference, Aachen, Germany, 2004, pp. 3266-3271.
Orduz, “Evaluation Test Results of a New Distributed MPPT Converter”, 22nd European Photovoltaic Solar Energy Conference, Sep. 3-7, 2007, Milan, Italy.
Jun. 17-21, 2007—Palma, “A Modular Fuel Cell, Modular DC-DC Converter Concept for High Performance and Enhanced Reliability”, IEEE 2007, pp. 2633-2638.
Sep. 16-19, 1996—Quaschning, “Cost Effectiveness of Shadow Tolerant Photovoltaic Systems”, Berlin University of Technology, Institute of Electrical Energy Technology, Renewable Energy Section. EuroSun '96, pp. 819-824.
Roman, “Intelligent PV Module for Grid-Connected PV Systems”, IEEE Transactions on Industrial Electronics, vol. 52, No. 4, Aug. 2006, pp. 1066-1073.
Roman, “Power Line Communications in Modular PV Systems”, 20th European Photovoltaic Solar Energy Conference, Jun. 6-10, 2005, Barcelona, Spain, pp. 2249-2252.
Uriarte, “Energy Integrated Management System for PV Applications”, 20th European Photovoltaic Solar Energy Conference, Jun. 6-10, 2005, Barcelona, Spain, pp. 2292-2295.
Walker, “Cascaded DC-DC Converter Connection of Photovoltaic Modules”, IEEE Transactions on Power Electronics, vol. 19, No. 4, Jul. 2004, pp. 1130-1139.
Oct. 3-7, 1999—Matsui, et al., “A New Maximum Photovoltaic Power Tracking Control Scheme Based on Power Equilibrium at DC Link”, IEEE, 1999, pp. 804-809.
Hou, et al., Application of Adaptive Algorithm of Solar Cell Battery Charger, Apr. 2004.
Sep. 15-22, 2000—Stamenic, et al., “Maximum Power Point Tracking for Building Integrated Photovoltaic Ventilation Systems”.
International Preliminary Report on Patentability for PCT/IB2008/055092 dated Jun. 8, 2010.
International Search Report for PCT/IB2008/055092 dated Sep. 8, 2009.
International Search Report and Opinion of International Patent Application WO2009136358 (PCT/IB2009/051831), dated Sep. 16, 2009.
Informal Comments to the International Search Report dated Dec. 3, 2009.
PCT/IB2010/052287 International Search Report and Written Opinion dated Sep. 2, 2010.
UK Intellectual Property office, Combined Search and Examination Report for GB1100450.4 under Sections 17 and 18 (3), Jul. 14, 2011.
Jain, et al., “A Single-Stage Grid Connected Inverter Topology for Solar PV Systems with Maximum Power Point Tracking”, IEEE Transactions on Power Electronics, vol. 22, No. 5, Sep. 2007, pp. 1928-1940.
Lynch, et al., “Flexible DER Utility Interface System: Final Report”, Sep. 2004-May 2006, Northern Power Systems, Inc., Waitsfield, Vermont B. Kroposki, et al., National Renewable Energy Laboratory Golden, Colorado Technical Report NREL/TP-560-39876, Aug. 2006.
Schimpf, et al., “Grid Connected Converters for Photovoltaic, State of the Art, Ideas for improvement of Transformerless Inverters”, NORPIE/2008, Nordic Workshop on Power and Industrial Electronics, Jun. 9-11, 2008.
Sandia Report SAND96-2797 I UC-1290 Unlimited Release, Printed Dec. 1996, “Photovoltaic Power Systems and The National Electrical Code: Suggested Practices”, by John Wiles, Southwest Technology Development Institute New Mexico State University Las Cruces, NM.
United Kingdom Intellectual Property Office, Combined Search and Examination Report Under Sections 17 and 18(3), GB1020862.7, dated Jun. 16, 2011.
GB Combined Search and Examination Report—GB1203763.6—dated Jun. 25, 2012.
Mohammad Reza Amini et al., “Quasi Resonant DC Link Inverter with a Simple Auxiliary Circuit”, Journal of Power Electronics, vol. 11, No. 1, Jan. 2011.
Khairy Fathy et al., “A Novel Quasi-Resonant Snubber-Assisted ZCS-PWM DC-DC Converter with High Frequency Link”, Journal of Power Electronics, vol. 7, No. 2, Apr. 2007.
May 22, 1998—Cheng K.W.E., “New Generation of Switched Capacitor Converters”, Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Power Electronics Conference, PESC 98.
1999—Per Karlsson, “Quasi Resonant DC Link Converters—Analysis and Design for a Battery Charger Application”, Universitetstryckeriet, Lund University, 1999, ISBN 91-88934-14-4; Added to Lund University Publications on Jun. 4, 2012.
Hsiao Sung-Hsin et al., “ZCS Switched-Capacitor Bidirectional Converters with Secondary Output Power Amplifier for Biomedical Applications”, Power Electronics Conference (IPEC) Jun. 21, 2010.
Nov. 27-30, 2007—Yuang-Shung Lee et al.,“A Novel QR ZCS Switched-Capacitor Bidirectional Converter”, IEEE, 2007.
Antti Tolvanen et al., “Seminar on Solar Simulation Standards and Measurement Principles”, May 9, 2006 Hawaii.
J.A. Eikelboom and M.J. Jansen, “Characterisation of PV Modules of New Generations—Results of tests and simulations”, Jun. 2000.
Yeong-Chau Kuo et al., “Novel Maximum-Power-Point-Tracking Controller for Photovoltaic Energy Conversion System”, IEEE Transactions on Industrial Electronics, vol. 48, No. 3, Jun. 2001.
C. Liu et al., “Advanced Algorithm for MPPT Control of Photovoltaic Systems”, Canadian Solar Buildings Conference, Montreal, Aug. 20-24, 2004.
May 22, 1998—Chihchiang Hua and Chihming Shen, “Study of Maximum Power Tracking Techniques and Control of DC/DC Converters for Photovoltaic Power System”, IEEE.
Tore Skjellnes et al., “Load sharing for parallel inverters without communication”, Nordic Workshop in Power and Industrial Electronics, Aug. 12-14, 2002.
Jun. 23, 2000—Giorgio Spiazzi at el., “A New Family of Zero-Current-Switching Variable Frequency dc-dc Converters”, IEEE.
Nayar, C.V., M. Ashari and W.W.L Keerthiphala, “A Grid Interactive Photovoltaic Uninterruptible Power Supply System Using Battery Storage and a Back up Diesel Generator”, IEEE Transactions on Energy Conversion, vol. 15, No. 3, Sep. 2000, pp. 348?353.
Ph. Strauss et al., “AC coupled PV Hybrid systems and Micro Grids—state of the art and future trends”, 3rd World conference on Photovoltaic Energy Conversion, Osaka, Japan May 11-18, 2003.
Jul. 16-20, 2000—Nayar, C.V., abstract, Power Engineering Society Summer Meeting, 2000. IEEE, 2000, pp. 1280-1282 vol. 2.
Mar. 15, 2004—D. C. Martins et al., “Analysis of Utility Interactive Photovoltaic Generation System using a Single Power Static Inverter”, Asian J. Energy Environ., vol. 5, Issue 2, (2004), pp. 115-137.
Rafael C. Beltrame et al., “Decentralized Multi String PV System With Integrated ZVT Cell”, Congresso Brasileiro de Automatica / 12 a Sep. 16, 2010, Bonito-MS.
Sergio Busquets-Monge et al., “Multilevel Diode-clamped Converter for Photovoltaic Generators With Independent Voltage Control of Each Solar Array”, IEEE Transactions on Industrial Electronics, vol. 55, No. 7, Jul. 2008.
Soeren Baekhoej Kjaer et al., “A Review of Single-Phase Grid-Connected Inverters for Photovoltaic Modules”, IEEE Transactions on Industry Applications, vol. 41, No. 5, Sep./Oct. 2005.
Office Action—JP 2011-539491—dated Mar. 26, 2013.
Supplementary European Search Report—EP08857456—dated Dec. 6, 2013.
Extended European Search Report—EP14151651.8—dated Feb. 25, 2014.
Iyomori H et al: “Three-phase bridge power block module type auxiliary resonant AC link snubber-assisted soft switching inverter for distributed AC power supply”, INTELEC 2003. 25th International Telecommunications Energy Conference. Yokohama, Japan, Oct. 19-23, 2003; Tokyo, IEICE, JP, Oct. 23, 2003 (Oct. 23, 2003), pp. 650-656, XP031895550, ISBN: 978-4-88552-196-6.
Yuqing Tang: “High Power Inverter EMI characterization and Improvement Using Auxiliary Resonant Snubber Inverter”, Dec. 17, 1998 (Dec. 17, 1998), XP055055241, Blacksburg, Virginia Retrieved from the Internet: URL:http: jscholar.lib.vt.edu/theses/available/etd-012299-165108/unrestricted/THESIS. PDF, [retrieved on Mar. 5, 2013].
Yoshida M et al: “Actual efficiency and electromagnetic noises evaluations of a single inductor resonant AC link snubber-assisted three-phase soft-switching inverter”, INTELEC 2003. 25th International Telecommunications Energy Conference. Yokohama, Japan, Oct. 19-23, 2003; Tokyo, IEICE, JP, Oct. 23, 2003 (Oct. 23, 2003), pp. 721-726, XP031895560, ISBN: 978-4-88552-196-6.
Third party observation—EP07874025.5—dated Aug. 6, 2011.
Extended European Search Report—EP 13152967.9—dated Aug. 28, 2014.
Extended European Search Report—EP 14159696—dated Jun. 20, 2014.
Gow Ja A et al: “A Modular DC-DC Converter and Maximum Power Tracking Controller for Medium to Large Scale Photovoltaic Generating Plant”8<SUP>th </SUP> European Conference on Power Electronics and Applications. Lausaane, CH, Sep. 7-9, 1999, EPE. European Conference on Power Electronics and Applications, Brussls: EPE Association, BE, vol. Conf. 8, Sep. 7, 1999, pp. 1-8, XP000883026.
Chihchiang Hua et al: “Comparative Study of Peak Power Tracking Techniques for Solar Storage System” Applied Power Electronics Conference and Exposition, 1998. APEC '98. Conference Proceedings 1998, Thirteenth Annual Anaheim, CA USA Feb. 15-19, 1998, New York, NY, USA, IEEE, US, Feb. 15, 1998, pp. 679-685, XP010263666.
Matsuo H et al: “Novel Solar Cell Power Supply System Using the Multiple-input DC-DC Converter” 20<SUP>th 3UP</SUP> International telecommunications Energy Conference. Intelec '98 San Francisco, CA, Oct. 4-8, 1998, Intelec ntemational Telecommunications Energy Conference, New York, NY: IEEE, US, Oct. 4, 1998, pp. 797-802, XP000896384.
Chihchiang Hua et al: “DSP-based controller application in battery storage of photovoltaic system” Industrial Electronics, Control, and Instrumentation, 1996, Proceedings of the 1996 IEEE IECON 22<SUP>nd</SUP> International Conference on Taipei, Taiwan Aug. 5-10, 1996, New York, NY, USA, IEEE, US, Aug. 5, 1996, pp. 1705-1710, XP010203239.
Hua C et al: “Implementation of a DSP-Controlled Photovoltaic System with Peak Power Tracking” IEEE Transactions on industrial Electronics, IEEE, Inc. New York, US, vol. 45, No. 1, Feb. 1, 1998, pp. 99-107, XP000735209.
I. Weiss et al.: “A new PV system technology—the development of a magnetic power transmission from the PV module to the power bus” 16th European Photovoltaic Solar Energy Conference, vol. III, May 1-5, 2000, pp. 2096-2099, XP002193468 Glasgow,UK cited in the application.
Basso, Tim, “IEEE Standard for Interconnecting Distributed Resources With the Electric Power System,” IEEE PES Meeting, Jun. 9, 2004.
Feb. 11, 2003,—Boostbuck.com, “The Four Boostbuck Topologies,” located at http://www.boostbuck.com/TheFourTopologies.html.
Apr. 2002—Gautam, Nalin K. et al., “An Efficient Algorithm to Simulate the Electrical Performance of Solar Photovoltaic Arrays,” Energy, vol. 27, No. 4, pp. 347-361, 2002.
Nordmann, T. et al., “Performance of PV Systems Under Real Conditions,” European Workshop on Life Cycle Analysis and Recycling of Solar Modules, The “Waste” Challenge, Brussels, Belgium, Mar. 18-19, 2004.
Wiles, John, “Photovoltaic Power Systems and the National Electrical Code: Suggested Practices,” Sandia National Laboratories, document No. SAND2001-0674, Mar. 2001.
Hewes, J. “Relays,” located at http://web.archive.org/web/20030816010159/www.kpsec.freeuk.com/components/relay.htm, Aug. 16, 2003.
Advanced Energy Group, “The Basics of Solar Power Systems,” located at http://web.archive.org/web/20010331044156/http://www.solar4powercom/solar-power-basics.html, Mar. 31, 2001.
International Patent Application No. PCT/AU2005/001017, International Search Report and Written Opinion, Aug. 18, 2005.
Baek, Ju-Won et al., “High Boost Converter using Voltage Multiplier,” 2005 IEEE Conference, IECON 05, pp. 567-572, Nov. 2005.
Nikimedia Foundation, Inc., “Electric Power Transmission,” located at http://web.archive.org/web/20041210095723/en.wikipedia.org/wiki/Electric-power-transmission, Nov. 17, 2004.
Jacobsen, K.S., “Synchronized Discrete Multi-Tone (SDMT) Modulation for Cable Modems: Making the Most of the Scarce Reverse Channel Bandwidth,” Conference Proceedings of Wescon/97, pp. 374-380, Nov. 4, 1997.
Loyola, L. et al., “A Multi-Channel Infrastructure based on DCF Access Mechanism for Wireless LAN Mesh Networks Compliant with IEEE 802.11,” 2005 Asia-Pacific Conference on Communications, pp. 497-501, Oct 5, 2005.
Storfer, Lior, “Enhancing Cable Modem TCP Performance,” Texas Instruments Inc. white paper, Jul. 2003.
International Preliminary Report on Patentability Issued in corresponding international application No. PCT/US04/16668, filed May 27, 2004.
International Application No. PCT/US13/27965, International Preliminary Examination Report, dated Sep. 2, 2014.
International Patent Application PCT/US13/027965, International Search Report and Written Opinion, dated Jun. 2, 2013.
International Application No. PCT/US12/44045, International Preliminary Examination Report, dated Jan. 28, 2014.
International Patent Application No. PCT/US2012/044045, International Search Report and Written Opinion, dated Jan. 2, 2013.
International Patent Application No. PCT/US2009/047734, International Search Report and Written Opinion, dated May 4, 2010.
Linares, Leonor et al., “Improved Energy Capture in Series String Photovoltaics via Smart Distributed Power Electronics,” 24th Annual IEEE Applied Power Electronics Conference and Exposition, pp. 904-910, Feb. 15, 2009.
International Patent Application No. PCT/US2010/029929, International Search Report and Written Opinion, dated Oct. 27, 2010.
International Patent Application No. PCT/US2011/020591, International Search Report and Written Opinion, dated Aug. 8, 2011.
International Patent Application No. PCT/US2011/033544, International Search Report and Written Opinion, dated Nov. 24, 2011.
J. Keller and B. Kroposki, titled, “Understanding Fault Characteristics of Inverter-Based Distributed Energy Resources”, in a Technical Report NREL/TP-550-46698, published Jan. 2010, pp. 1 through 48.
International Patent Application No. PCT/US2008/081827, International Search Report and Written Opinion, dated Jun. 24, 2009.
International Patent Application No. PCT/US2010/046274 International Search Report and Written Opinion, dated Apr. 22, 2011.
International Patent Application No. PCT/US2011/033658, International Search Report and Written Opinion, dated Jan. 13, 2012.
International Patent Application No. PCT/US2011/029392, International Search Report and Written Opinion, dated Oct. 24, 2011.
European Patent Application No. 09829487.9, Extended Search Report, dated Apr. 21, 2011.
International Patent Application No. PCT/US2009/062536, International Search Report and Written Opinion, dated Jun. 17, 2010.
International Patent Application No. PCT/US2010/022915, International Search Report and Written Opinion, dated Aug. 23, 2010.
International Patent Application No. PCT/US2010/046272, International Search Report and Written Opinion, dated Mar. 31, 2011.
International Patent Application No. PCT/US2010/029936, International Search Report and Written Opinion, dated Nov. 12, 2010.
International Patent Application No. PCT/US08/75127, International Search Report and Written Opinion, dated Apr. 28, 2009.
International Patent Application No. PCT/US09/35890, International Search Report and Written Opinion, dated Oct. 1, 2009.
European Patent Application No. 08845104.2, Extended Search Report, dated Jul. 31, 2014.
European Patent Application No. 11772811.3, Extended Search Report, dated Dec. 15, 2014.
International Patent Application No. PCT/US2008/082935, International Search Report and Written Opinion, dated Jun. 25, 2009.
Jun. 6-10, 2004—Rodriguez, C., and G. A. J. Amaratunga. “Dynamic stability of grid-connected photovoltaic systems.” Power Engineering Society General Meeting, 2004. IEEE, pp. 2194-2200.
Nov. 3-Dec. 29, 1999—Kikuchi, Naoto, et al. “Single phase amplitude modulation inverter for utility interaction photovoltaic system.” Industrial Electronics Society, 1999. IECON'99 Proceedings. The 25th Annual Conference of the IEEE. vol. 1. IEEE, 1999.
Oct. 7-12, 1990—Nonaka, Sakutaro, et al. “Interconnection system with single phase IGBT PWM CSI between photovoltaic arrays and the utility line.” Industry Applications Society Annual Meeting, 1990., Conference Record of the 1990 IEEE.
Jun. 23-27, 2002—Calais, Martina, et al. “Inverters for single-phase grid connected photovoltaic systems—an overview.” Power Electronics Specialists Conference, 2002. pesc 02. 2002 IEEE 33rd Annual. vol. 4. IEEE, 2002.
Jul. 1999—Marra, Enes Goncalves, and José Antenor Pomilio. “Self-excited induction generator controlled by a VS-PWM bidirectional converter for rural applications.” Industry Applications, IEEE Transactions on 35.4 (1999): 877-883.
Apr. 2-5, 2002—Xiaofeng Sun, Weiyang Wu, Xin Li, Qinglin Zhao: A Research on Photovoltaic Energy Controlling System with Maximum Power Point Tracking:; Proceedings of the Power Conversion Conference—Osaka 2002 (Cat. No. 02TH8579) IEEE—Piscataway, NJ, USA, ISBN 0-7803-7156-9, vol. 2, p. 822-826, XP010590259: the whole document.
International Search Report for corresponding PCT/GB2005/050198 completed Jun. 28, 2006 by C. Wirner of the EPO.
Brunello, Gustavo, et al., “Shunt Capacitor Bank Fundamentals and Protection,” 2003 Conference for Protective Relay Engineers, Apr. 8-10, 2003, pp. 1-17, Texas A&M University, College Station, TX, USA.
Cordonnier, Charles-Edouard, et al., “Application Considerations for Sensefet Power Devices,” PCI Proceedings, May 11, 1987, pp. 47-65.
Jun. 9-11, 2003—Kotsopoulos, Andrew, et al., “Predictive DC Voltage Control of Single-Phase PV Inverters with Small JC Link Capacitance,” IEEE International Symposium, Month Unknown, 2003, pp. 793-797.
Meinhardt, Mike, et al., “Multi-String-Converter with Reduced Specific Costs and Enhanced Functionality,” Solar Energy, May 21, 2001, pp. 217-227, vol. 69, Elsevier Science Ltd.
Mar. 6-10, 2005—Kimball, et al.: “Analysis and Design of Switched Capacitor Converters”; Grainger Center for Electric Machinery and Electromechanics, University of Illinois at Urbana-Champaign, 1406 W. Green St, Urbana, IL 61801 USA, © 2005 IEEE; pp. 1473-1477.
Martins, et al.: “Interconnection of a Photovoltaic Panels Array to a Single-Phase Utility Line From a Static Conversion System”; Power Electronics Specialists Conference, 2000. PESC 00. 2000 IEEE 31st Annual; Jun. 18, 2000-Jun. 23, 2000; ISSN: 0275-9306; pp. 1207-1211, vol. 3.
International Search Report for corresponding PCT/GB2005/050197, completed Dec. 20, 2005 by K-R Zettler of the EPO.
Kjaer, Soeren Baekhoej, et al., “Design Optimization of a Single Phase Inverter for Photovoltaic Applications,” IEEE 34th Annual Power Electronics Specialist Conference, Jun. 15-19, 2003, pp. 1183-1190, vol. 3, IEEE.
Jun. 23-27, 2002—Shimizu, Toshihisa, et al., “A Flyback-type Single Phase Utility Interactive Inverter with Low-frequency Ripple Current Reduction on the DC Input for an AC Photovoltaic Module System,” IEEE 33rd Annual Power Electronics Specialist Conference 2002, pp. 1483-1488, vol. 3, IEEE.
Written Opinion of PCT/GB2005/050197, dated Feb. 14, 2006, Enecsys Limited.
Jun. 17-21, 2001—Yatsuki, Satoshi, et al., “A Novel AC Photovoltaic Module System based on the Impedance-Admittance Conversion Theory,” IEEE 32nd Annual Power Electronics Specialists Conference, Month Unknown, 2001, pp. 2191-2196, vol. 4, IEEE.
International Search Report for corresponding PCT/GB2004/001965, dated Aug. 16, 2004 by A. Roider.
Mar. 5-9, 1995—Naik et al., A Novel Grid Interface for Photovoltaic, Wind-Electric, and Fuel-Cell Systems With a Controllable Power Factor or Operation, IEEE, 1995, pp. 995-998.
Petkanchin, Processes following changes of phase angle between current and voltage in electric circuits, Aug. 1999, Power Engineering Review, IEEE vol. 19, Issue 8, pp. 59-60.
Mumtaz, Asim, et al., “Grid Connected PV Inverter Using a Commercially Available Power IC,” PV in Europe Conference, Oct. 2002, 3 pages, Rome, Italy.
Koutroulis, Eftichios, et al., “Development of a Microcontroller-Based, Photovoltaic Maximum Power Point Tracking control System,” IEEE Transactions on Power Electronics, Jan. 2001, pp. 46-54, vol. 16, No. 1, IEEE.
European Search Report—EP App. 14159457.2—dated Jun. 12, 2015.
European Search Report and Written Opinion—EP Appl. 12150819.6—dated Jul. 6, 2015.
Alonso, O. et al. “Cascaded H-Bridge Multilevel Converter for Grid Connected Photovoltaic Generators With Independent Maximum Power Point Tracking of Each Solar Array.” IEEE 34th Annual Power Electronics Specialists Conference. vol. 2, Jun. 15, 2003.
Apr. 20, 2020—European Search Report—EP 20151729.9.
Apr. 23, 2020—European Search Report—EP 19217486.0.
May 12, 2020—Extended European Search Report—EP 20161381.7.
Oct. 12, 2020—CN Office Action—CN 201610946835.5.
Nov. 12, 2020—Preliminary Opinion by EPO—EP 12188944.8.
Jul. 8, 2020—CN Office Action—CN 201710362679.2.
Sep. 17, 2020 Extended European Search Report—EP Application 20176744.9.
Related Publications (1)
Number Date Country
20200217877 A1 Jul 2020 US
Provisional Applications (5)
Number Date Country
60916815 May 2007 US
60908095 Mar 2007 US
60868962 Dec 2006 US
60868893 Dec 2006 US
60868851 Dec 2006 US
Continuations (5)
Number Date Country
Parent 16250200 Jan 2019 US
Child 16823406 US
Parent 15480574 Apr 2017 US
Child 16250200 US
Parent 14513877 Oct 2014 US
Child 15480574 US
Parent 13901890 May 2013 US
Child 14513877 US
Parent 11951419 Dec 2007 US
Child 13901890 US